1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This provides Objective-C code generation targeting the Apple runtime. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGObjCRuntime.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtObjC.h" 25 #include "clang/Basic/LangOptions.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <cstdio> 40 41 using namespace clang; 42 using namespace CodeGen; 43 44 namespace { 45 46 // FIXME: We should find a nicer way to make the labels for metadata, string 47 // concatenation is lame. 48 49 class ObjCCommonTypesHelper { 50 protected: 51 llvm::LLVMContext &VMContext; 52 53 private: 54 // The types of these functions don't really matter because we 55 // should always bitcast before calling them. 56 57 /// id objc_msgSend (id, SEL, ...) 58 /// 59 /// The default messenger, used for sends whose ABI is unchanged from 60 /// the all-integer/pointer case. 61 llvm::Constant *getMessageSendFn() const { 62 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 63 // be called a lot. 64 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 65 return 66 CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 67 params, true), 68 "objc_msgSend", 69 llvm::AttributeSet::get(CGM.getLLVMContext(), 70 llvm::AttributeSet::FunctionIndex, 71 llvm::Attribute::NonLazyBind)); 72 } 73 74 /// void objc_msgSend_stret (id, SEL, ...) 75 /// 76 /// The messenger used when the return value is an aggregate returned 77 /// by indirect reference in the first argument, and therefore the 78 /// self and selector parameters are shifted over by one. 79 llvm::Constant *getMessageSendStretFn() const { 80 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 81 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 82 params, true), 83 "objc_msgSend_stret"); 84 85 } 86 87 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 88 /// 89 /// The messenger used when the return value is returned on the x87 90 /// floating-point stack; without a special entrypoint, the nil case 91 /// would be unbalanced. 92 llvm::Constant *getMessageSendFpretFn() const { 93 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 94 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 95 params, true), 96 "objc_msgSend_fpret"); 97 98 } 99 100 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 101 /// 102 /// The messenger used when the return value is returned in two values on the 103 /// x87 floating point stack; without a special entrypoint, the nil case 104 /// would be unbalanced. Only used on 64-bit X86. 105 llvm::Constant *getMessageSendFp2retFn() const { 106 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 107 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 108 llvm::Type *resultType = 109 llvm::StructType::get(longDoubleType, longDoubleType, nullptr); 110 111 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 112 params, true), 113 "objc_msgSend_fp2ret"); 114 } 115 116 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 117 /// 118 /// The messenger used for super calls, which have different dispatch 119 /// semantics. The class passed is the superclass of the current 120 /// class. 121 llvm::Constant *getMessageSendSuperFn() const { 122 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 123 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 124 params, true), 125 "objc_msgSendSuper"); 126 } 127 128 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 129 /// 130 /// A slightly different messenger used for super calls. The class 131 /// passed is the current class. 132 llvm::Constant *getMessageSendSuperFn2() const { 133 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 134 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 135 params, true), 136 "objc_msgSendSuper2"); 137 } 138 139 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 140 /// SEL op, ...) 141 /// 142 /// The messenger used for super calls which return an aggregate indirectly. 143 llvm::Constant *getMessageSendSuperStretFn() const { 144 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 145 return CGM.CreateRuntimeFunction( 146 llvm::FunctionType::get(CGM.VoidTy, params, true), 147 "objc_msgSendSuper_stret"); 148 } 149 150 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 151 /// SEL op, ...) 152 /// 153 /// objc_msgSendSuper_stret with the super2 semantics. 154 llvm::Constant *getMessageSendSuperStretFn2() const { 155 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 156 return CGM.CreateRuntimeFunction( 157 llvm::FunctionType::get(CGM.VoidTy, params, true), 158 "objc_msgSendSuper2_stret"); 159 } 160 161 llvm::Constant *getMessageSendSuperFpretFn() const { 162 // There is no objc_msgSendSuper_fpret? How can that work? 163 return getMessageSendSuperFn(); 164 } 165 166 llvm::Constant *getMessageSendSuperFpretFn2() const { 167 // There is no objc_msgSendSuper_fpret? How can that work? 168 return getMessageSendSuperFn2(); 169 } 170 171 protected: 172 CodeGen::CodeGenModule &CGM; 173 174 public: 175 llvm::Type *ShortTy, *IntTy, *LongTy, *LongLongTy; 176 llvm::Type *Int8PtrTy, *Int8PtrPtrTy; 177 llvm::Type *IvarOffsetVarTy; 178 179 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 180 llvm::Type *ObjectPtrTy; 181 182 /// PtrObjectPtrTy - LLVM type for id * 183 llvm::Type *PtrObjectPtrTy; 184 185 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 186 llvm::Type *SelectorPtrTy; 187 188 private: 189 /// ProtocolPtrTy - LLVM type for external protocol handles 190 /// (typeof(Protocol)) 191 llvm::Type *ExternalProtocolPtrTy; 192 193 public: 194 llvm::Type *getExternalProtocolPtrTy() { 195 if (!ExternalProtocolPtrTy) { 196 // FIXME: It would be nice to unify this with the opaque type, so that the 197 // IR comes out a bit cleaner. 198 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 199 ASTContext &Ctx = CGM.getContext(); 200 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 201 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 202 } 203 204 return ExternalProtocolPtrTy; 205 } 206 207 // SuperCTy - clang type for struct objc_super. 208 QualType SuperCTy; 209 // SuperPtrCTy - clang type for struct objc_super *. 210 QualType SuperPtrCTy; 211 212 /// SuperTy - LLVM type for struct objc_super. 213 llvm::StructType *SuperTy; 214 /// SuperPtrTy - LLVM type for struct objc_super *. 215 llvm::Type *SuperPtrTy; 216 217 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 218 /// in GCC parlance). 219 llvm::StructType *PropertyTy; 220 221 /// PropertyListTy - LLVM type for struct objc_property_list 222 /// (_prop_list_t in GCC parlance). 223 llvm::StructType *PropertyListTy; 224 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 225 llvm::Type *PropertyListPtrTy; 226 227 // MethodTy - LLVM type for struct objc_method. 228 llvm::StructType *MethodTy; 229 230 /// CacheTy - LLVM type for struct objc_cache. 231 llvm::Type *CacheTy; 232 /// CachePtrTy - LLVM type for struct objc_cache *. 233 llvm::Type *CachePtrTy; 234 235 llvm::Constant *getGetPropertyFn() { 236 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 237 ASTContext &Ctx = CGM.getContext(); 238 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 239 SmallVector<CanQualType,4> Params; 240 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 241 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 242 Params.push_back(IdType); 243 Params.push_back(SelType); 244 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 245 Params.push_back(Ctx.BoolTy); 246 llvm::FunctionType *FTy = 247 Types.GetFunctionType( 248 Types.arrangeBuiltinFunctionDeclaration(IdType, Params)); 249 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 250 } 251 252 llvm::Constant *getSetPropertyFn() { 253 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 254 ASTContext &Ctx = CGM.getContext(); 255 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 256 SmallVector<CanQualType,6> Params; 257 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 258 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 259 Params.push_back(IdType); 260 Params.push_back(SelType); 261 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 262 Params.push_back(IdType); 263 Params.push_back(Ctx.BoolTy); 264 Params.push_back(Ctx.BoolTy); 265 llvm::FunctionType *FTy = 266 Types.GetFunctionType( 267 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 268 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 269 } 270 271 llvm::Constant *getOptimizedSetPropertyFn(bool atomic, bool copy) { 272 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 273 ASTContext &Ctx = CGM.getContext(); 274 // void objc_setProperty_atomic(id self, SEL _cmd, 275 // id newValue, ptrdiff_t offset); 276 // void objc_setProperty_nonatomic(id self, SEL _cmd, 277 // id newValue, ptrdiff_t offset); 278 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 279 // id newValue, ptrdiff_t offset); 280 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 281 // id newValue, ptrdiff_t offset); 282 283 SmallVector<CanQualType,4> Params; 284 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 285 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 286 Params.push_back(IdType); 287 Params.push_back(SelType); 288 Params.push_back(IdType); 289 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 290 llvm::FunctionType *FTy = 291 Types.GetFunctionType( 292 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 293 const char *name; 294 if (atomic && copy) 295 name = "objc_setProperty_atomic_copy"; 296 else if (atomic && !copy) 297 name = "objc_setProperty_atomic"; 298 else if (!atomic && copy) 299 name = "objc_setProperty_nonatomic_copy"; 300 else 301 name = "objc_setProperty_nonatomic"; 302 303 return CGM.CreateRuntimeFunction(FTy, name); 304 } 305 306 llvm::Constant *getCopyStructFn() { 307 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 308 ASTContext &Ctx = CGM.getContext(); 309 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 310 SmallVector<CanQualType,5> Params; 311 Params.push_back(Ctx.VoidPtrTy); 312 Params.push_back(Ctx.VoidPtrTy); 313 Params.push_back(Ctx.LongTy); 314 Params.push_back(Ctx.BoolTy); 315 Params.push_back(Ctx.BoolTy); 316 llvm::FunctionType *FTy = 317 Types.GetFunctionType( 318 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 319 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 320 } 321 322 /// This routine declares and returns address of: 323 /// void objc_copyCppObjectAtomic( 324 /// void *dest, const void *src, 325 /// void (*copyHelper) (void *dest, const void *source)); 326 llvm::Constant *getCppAtomicObjectFunction() { 327 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 328 ASTContext &Ctx = CGM.getContext(); 329 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 330 SmallVector<CanQualType,3> Params; 331 Params.push_back(Ctx.VoidPtrTy); 332 Params.push_back(Ctx.VoidPtrTy); 333 Params.push_back(Ctx.VoidPtrTy); 334 llvm::FunctionType *FTy = 335 Types.GetFunctionType( 336 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 337 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 338 } 339 340 llvm::Constant *getEnumerationMutationFn() { 341 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 342 ASTContext &Ctx = CGM.getContext(); 343 // void objc_enumerationMutation (id) 344 SmallVector<CanQualType,1> Params; 345 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 346 llvm::FunctionType *FTy = 347 Types.GetFunctionType( 348 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params)); 349 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 350 } 351 352 llvm::Constant *getLookUpClassFn() { 353 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 354 ASTContext &Ctx = CGM.getContext(); 355 // Class objc_lookUpClass (const char *) 356 SmallVector<CanQualType,1> Params; 357 Params.push_back( 358 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst()))); 359 llvm::FunctionType *FTy = 360 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration( 361 Ctx.getCanonicalType(Ctx.getObjCClassType()), 362 Params)); 363 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass"); 364 } 365 366 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 367 llvm::Constant *getGcReadWeakFn() { 368 // id objc_read_weak (id *) 369 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 370 llvm::FunctionType *FTy = 371 llvm::FunctionType::get(ObjectPtrTy, args, false); 372 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 373 } 374 375 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 376 llvm::Constant *getGcAssignWeakFn() { 377 // id objc_assign_weak (id, id *) 378 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 379 llvm::FunctionType *FTy = 380 llvm::FunctionType::get(ObjectPtrTy, args, false); 381 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 382 } 383 384 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 385 llvm::Constant *getGcAssignGlobalFn() { 386 // id objc_assign_global(id, id *) 387 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 388 llvm::FunctionType *FTy = 389 llvm::FunctionType::get(ObjectPtrTy, args, false); 390 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 391 } 392 393 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 394 llvm::Constant *getGcAssignThreadLocalFn() { 395 // id objc_assign_threadlocal(id src, id * dest) 396 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 397 llvm::FunctionType *FTy = 398 llvm::FunctionType::get(ObjectPtrTy, args, false); 399 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 400 } 401 402 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 403 llvm::Constant *getGcAssignIvarFn() { 404 // id objc_assign_ivar(id, id *, ptrdiff_t) 405 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 406 CGM.PtrDiffTy }; 407 llvm::FunctionType *FTy = 408 llvm::FunctionType::get(ObjectPtrTy, args, false); 409 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 410 } 411 412 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 413 llvm::Constant *GcMemmoveCollectableFn() { 414 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 415 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 416 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 417 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 418 } 419 420 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 421 llvm::Constant *getGcAssignStrongCastFn() { 422 // id objc_assign_strongCast(id, id *) 423 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 424 llvm::FunctionType *FTy = 425 llvm::FunctionType::get(ObjectPtrTy, args, false); 426 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 427 } 428 429 /// ExceptionThrowFn - LLVM objc_exception_throw function. 430 llvm::Constant *getExceptionThrowFn() { 431 // void objc_exception_throw(id) 432 llvm::Type *args[] = { ObjectPtrTy }; 433 llvm::FunctionType *FTy = 434 llvm::FunctionType::get(CGM.VoidTy, args, false); 435 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 436 } 437 438 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 439 llvm::Constant *getExceptionRethrowFn() { 440 // void objc_exception_rethrow(void) 441 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 442 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 443 } 444 445 /// SyncEnterFn - LLVM object_sync_enter function. 446 llvm::Constant *getSyncEnterFn() { 447 // int objc_sync_enter (id) 448 llvm::Type *args[] = { ObjectPtrTy }; 449 llvm::FunctionType *FTy = 450 llvm::FunctionType::get(CGM.IntTy, args, false); 451 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 452 } 453 454 /// SyncExitFn - LLVM object_sync_exit function. 455 llvm::Constant *getSyncExitFn() { 456 // int objc_sync_exit (id) 457 llvm::Type *args[] = { ObjectPtrTy }; 458 llvm::FunctionType *FTy = 459 llvm::FunctionType::get(CGM.IntTy, args, false); 460 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 461 } 462 463 llvm::Constant *getSendFn(bool IsSuper) const { 464 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 465 } 466 467 llvm::Constant *getSendFn2(bool IsSuper) const { 468 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 469 } 470 471 llvm::Constant *getSendStretFn(bool IsSuper) const { 472 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 473 } 474 475 llvm::Constant *getSendStretFn2(bool IsSuper) const { 476 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 477 } 478 479 llvm::Constant *getSendFpretFn(bool IsSuper) const { 480 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 481 } 482 483 llvm::Constant *getSendFpretFn2(bool IsSuper) const { 484 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 485 } 486 487 llvm::Constant *getSendFp2retFn(bool IsSuper) const { 488 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 489 } 490 491 llvm::Constant *getSendFp2RetFn2(bool IsSuper) const { 492 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 493 } 494 495 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 496 }; 497 498 /// ObjCTypesHelper - Helper class that encapsulates lazy 499 /// construction of varies types used during ObjC generation. 500 class ObjCTypesHelper : public ObjCCommonTypesHelper { 501 public: 502 /// SymtabTy - LLVM type for struct objc_symtab. 503 llvm::StructType *SymtabTy; 504 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 505 llvm::Type *SymtabPtrTy; 506 /// ModuleTy - LLVM type for struct objc_module. 507 llvm::StructType *ModuleTy; 508 509 /// ProtocolTy - LLVM type for struct objc_protocol. 510 llvm::StructType *ProtocolTy; 511 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 512 llvm::Type *ProtocolPtrTy; 513 /// ProtocolExtensionTy - LLVM type for struct 514 /// objc_protocol_extension. 515 llvm::StructType *ProtocolExtensionTy; 516 /// ProtocolExtensionTy - LLVM type for struct 517 /// objc_protocol_extension *. 518 llvm::Type *ProtocolExtensionPtrTy; 519 /// MethodDescriptionTy - LLVM type for struct 520 /// objc_method_description. 521 llvm::StructType *MethodDescriptionTy; 522 /// MethodDescriptionListTy - LLVM type for struct 523 /// objc_method_description_list. 524 llvm::StructType *MethodDescriptionListTy; 525 /// MethodDescriptionListPtrTy - LLVM type for struct 526 /// objc_method_description_list *. 527 llvm::Type *MethodDescriptionListPtrTy; 528 /// ProtocolListTy - LLVM type for struct objc_property_list. 529 llvm::StructType *ProtocolListTy; 530 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 531 llvm::Type *ProtocolListPtrTy; 532 /// CategoryTy - LLVM type for struct objc_category. 533 llvm::StructType *CategoryTy; 534 /// ClassTy - LLVM type for struct objc_class. 535 llvm::StructType *ClassTy; 536 /// ClassPtrTy - LLVM type for struct objc_class *. 537 llvm::Type *ClassPtrTy; 538 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 539 llvm::StructType *ClassExtensionTy; 540 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 541 llvm::Type *ClassExtensionPtrTy; 542 // IvarTy - LLVM type for struct objc_ivar. 543 llvm::StructType *IvarTy; 544 /// IvarListTy - LLVM type for struct objc_ivar_list. 545 llvm::Type *IvarListTy; 546 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 547 llvm::Type *IvarListPtrTy; 548 /// MethodListTy - LLVM type for struct objc_method_list. 549 llvm::Type *MethodListTy; 550 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 551 llvm::Type *MethodListPtrTy; 552 553 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 554 llvm::Type *ExceptionDataTy; 555 556 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 557 llvm::Constant *getExceptionTryEnterFn() { 558 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 559 return CGM.CreateRuntimeFunction( 560 llvm::FunctionType::get(CGM.VoidTy, params, false), 561 "objc_exception_try_enter"); 562 } 563 564 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 565 llvm::Constant *getExceptionTryExitFn() { 566 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 567 return CGM.CreateRuntimeFunction( 568 llvm::FunctionType::get(CGM.VoidTy, params, false), 569 "objc_exception_try_exit"); 570 } 571 572 /// ExceptionExtractFn - LLVM objc_exception_extract function. 573 llvm::Constant *getExceptionExtractFn() { 574 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 575 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 576 params, false), 577 "objc_exception_extract"); 578 } 579 580 /// ExceptionMatchFn - LLVM objc_exception_match function. 581 llvm::Constant *getExceptionMatchFn() { 582 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 583 return CGM.CreateRuntimeFunction( 584 llvm::FunctionType::get(CGM.Int32Ty, params, false), 585 "objc_exception_match"); 586 } 587 588 /// SetJmpFn - LLVM _setjmp function. 589 llvm::Constant *getSetJmpFn() { 590 // This is specifically the prototype for x86. 591 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 592 return 593 CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, 594 params, false), 595 "_setjmp", 596 llvm::AttributeSet::get(CGM.getLLVMContext(), 597 llvm::AttributeSet::FunctionIndex, 598 llvm::Attribute::NonLazyBind)); 599 } 600 601 public: 602 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 603 }; 604 605 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 606 /// modern abi 607 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 608 public: 609 // MethodListnfABITy - LLVM for struct _method_list_t 610 llvm::StructType *MethodListnfABITy; 611 612 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 613 llvm::Type *MethodListnfABIPtrTy; 614 615 // ProtocolnfABITy = LLVM for struct _protocol_t 616 llvm::StructType *ProtocolnfABITy; 617 618 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 619 llvm::Type *ProtocolnfABIPtrTy; 620 621 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 622 llvm::StructType *ProtocolListnfABITy; 623 624 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 625 llvm::Type *ProtocolListnfABIPtrTy; 626 627 // ClassnfABITy - LLVM for struct _class_t 628 llvm::StructType *ClassnfABITy; 629 630 // ClassnfABIPtrTy - LLVM for struct _class_t* 631 llvm::Type *ClassnfABIPtrTy; 632 633 // IvarnfABITy - LLVM for struct _ivar_t 634 llvm::StructType *IvarnfABITy; 635 636 // IvarListnfABITy - LLVM for struct _ivar_list_t 637 llvm::StructType *IvarListnfABITy; 638 639 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 640 llvm::Type *IvarListnfABIPtrTy; 641 642 // ClassRonfABITy - LLVM for struct _class_ro_t 643 llvm::StructType *ClassRonfABITy; 644 645 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 646 llvm::Type *ImpnfABITy; 647 648 // CategorynfABITy - LLVM for struct _category_t 649 llvm::StructType *CategorynfABITy; 650 651 // New types for nonfragile abi messaging. 652 653 // MessageRefTy - LLVM for: 654 // struct _message_ref_t { 655 // IMP messenger; 656 // SEL name; 657 // }; 658 llvm::StructType *MessageRefTy; 659 // MessageRefCTy - clang type for struct _message_ref_t 660 QualType MessageRefCTy; 661 662 // MessageRefPtrTy - LLVM for struct _message_ref_t* 663 llvm::Type *MessageRefPtrTy; 664 // MessageRefCPtrTy - clang type for struct _message_ref_t* 665 QualType MessageRefCPtrTy; 666 667 // SuperMessageRefTy - LLVM for: 668 // struct _super_message_ref_t { 669 // SUPER_IMP messenger; 670 // SEL name; 671 // }; 672 llvm::StructType *SuperMessageRefTy; 673 674 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 675 llvm::Type *SuperMessageRefPtrTy; 676 677 llvm::Constant *getMessageSendFixupFn() { 678 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 679 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 680 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 681 params, true), 682 "objc_msgSend_fixup"); 683 } 684 685 llvm::Constant *getMessageSendFpretFixupFn() { 686 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 687 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 688 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 689 params, true), 690 "objc_msgSend_fpret_fixup"); 691 } 692 693 llvm::Constant *getMessageSendStretFixupFn() { 694 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 695 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 696 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 697 params, true), 698 "objc_msgSend_stret_fixup"); 699 } 700 701 llvm::Constant *getMessageSendSuper2FixupFn() { 702 // id objc_msgSendSuper2_fixup (struct objc_super *, 703 // struct _super_message_ref_t*, ...) 704 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 705 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 706 params, true), 707 "objc_msgSendSuper2_fixup"); 708 } 709 710 llvm::Constant *getMessageSendSuper2StretFixupFn() { 711 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 712 // struct _super_message_ref_t*, ...) 713 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 714 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 715 params, true), 716 "objc_msgSendSuper2_stret_fixup"); 717 } 718 719 llvm::Constant *getObjCEndCatchFn() { 720 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 721 "objc_end_catch"); 722 723 } 724 725 llvm::Constant *getObjCBeginCatchFn() { 726 llvm::Type *params[] = { Int8PtrTy }; 727 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 728 params, false), 729 "objc_begin_catch"); 730 } 731 732 llvm::StructType *EHTypeTy; 733 llvm::Type *EHTypePtrTy; 734 735 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 736 }; 737 738 class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 739 public: 740 class SKIP_SCAN { 741 public: 742 unsigned skip; 743 unsigned scan; 744 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 745 : skip(_skip), scan(_scan) {} 746 }; 747 748 /// opcode for captured block variables layout 'instructions'. 749 /// In the following descriptions, 'I' is the value of the immediate field. 750 /// (field following the opcode). 751 /// 752 enum BLOCK_LAYOUT_OPCODE { 753 /// An operator which affects how the following layout should be 754 /// interpreted. 755 /// I == 0: Halt interpretation and treat everything else as 756 /// a non-pointer. Note that this instruction is equal 757 /// to '\0'. 758 /// I != 0: Currently unused. 759 BLOCK_LAYOUT_OPERATOR = 0, 760 761 /// The next I+1 bytes do not contain a value of object pointer type. 762 /// Note that this can leave the stream unaligned, meaning that 763 /// subsequent word-size instructions do not begin at a multiple of 764 /// the pointer size. 765 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 766 767 /// The next I+1 words do not contain a value of object pointer type. 768 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 769 /// when the required skip quantity is a multiple of the pointer size. 770 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 771 772 /// The next I+1 words are __strong pointers to Objective-C 773 /// objects or blocks. 774 BLOCK_LAYOUT_STRONG = 3, 775 776 /// The next I+1 words are pointers to __block variables. 777 BLOCK_LAYOUT_BYREF = 4, 778 779 /// The next I+1 words are __weak pointers to Objective-C 780 /// objects or blocks. 781 BLOCK_LAYOUT_WEAK = 5, 782 783 /// The next I+1 words are __unsafe_unretained pointers to 784 /// Objective-C objects or blocks. 785 BLOCK_LAYOUT_UNRETAINED = 6 786 787 /// The next I+1 words are block or object pointers with some 788 /// as-yet-unspecified ownership semantics. If we add more 789 /// flavors of ownership semantics, values will be taken from 790 /// this range. 791 /// 792 /// This is included so that older tools can at least continue 793 /// processing the layout past such things. 794 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 795 796 /// All other opcodes are reserved. Halt interpretation and 797 /// treat everything else as opaque. 798 }; 799 800 class RUN_SKIP { 801 public: 802 enum BLOCK_LAYOUT_OPCODE opcode; 803 CharUnits block_var_bytepos; 804 CharUnits block_var_size; 805 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 806 CharUnits BytePos = CharUnits::Zero(), 807 CharUnits Size = CharUnits::Zero()) 808 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 809 810 // Allow sorting based on byte pos. 811 bool operator<(const RUN_SKIP &b) const { 812 return block_var_bytepos < b.block_var_bytepos; 813 } 814 }; 815 816 protected: 817 llvm::LLVMContext &VMContext; 818 // FIXME! May not be needing this after all. 819 unsigned ObjCABI; 820 821 // arc/mrr layout of captured block literal variables. 822 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 823 824 /// LazySymbols - Symbols to generate a lazy reference for. See 825 /// DefinedSymbols and FinishModule(). 826 llvm::SetVector<IdentifierInfo*> LazySymbols; 827 828 /// DefinedSymbols - External symbols which are defined by this 829 /// module. The symbols in this list and LazySymbols are used to add 830 /// special linker symbols which ensure that Objective-C modules are 831 /// linked properly. 832 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 833 834 /// ClassNames - uniqued class names. 835 llvm::StringMap<llvm::GlobalVariable*> ClassNames; 836 837 /// MethodVarNames - uniqued method variable names. 838 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 839 840 /// DefinedCategoryNames - list of category names in form Class_Category. 841 llvm::SmallSetVector<std::string, 16> DefinedCategoryNames; 842 843 /// MethodVarTypes - uniqued method type signatures. We have to use 844 /// a StringMap here because have no other unique reference. 845 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 846 847 /// MethodDefinitions - map of methods which have been defined in 848 /// this translation unit. 849 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 850 851 /// PropertyNames - uniqued method variable names. 852 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 853 854 /// ClassReferences - uniqued class references. 855 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 856 857 /// SelectorReferences - uniqued selector references. 858 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 859 860 /// Protocols - Protocols for which an objc_protocol structure has 861 /// been emitted. Forward declarations are handled by creating an 862 /// empty structure whose initializer is filled in when/if defined. 863 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 864 865 /// DefinedProtocols - Protocols which have actually been 866 /// defined. We should not need this, see FIXME in GenerateProtocol. 867 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 868 869 /// DefinedClasses - List of defined classes. 870 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 871 872 /// ImplementedClasses - List of @implemented classes. 873 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses; 874 875 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 876 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 877 878 /// DefinedCategories - List of defined categories. 879 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 880 881 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 882 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 883 884 /// GetNameForMethod - Return a name for the given method. 885 /// \param[out] NameOut - The return value. 886 void GetNameForMethod(const ObjCMethodDecl *OMD, 887 const ObjCContainerDecl *CD, 888 SmallVectorImpl<char> &NameOut); 889 890 /// GetMethodVarName - Return a unique constant for the given 891 /// selector's name. The return value has type char *. 892 llvm::Constant *GetMethodVarName(Selector Sel); 893 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 894 895 /// GetMethodVarType - Return a unique constant for the given 896 /// method's type encoding string. The return value has type char *. 897 898 // FIXME: This is a horrible name. 899 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 900 bool Extended = false); 901 llvm::Constant *GetMethodVarType(const FieldDecl *D); 902 903 /// GetPropertyName - Return a unique constant for the given 904 /// name. The return value has type char *. 905 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 906 907 // FIXME: This can be dropped once string functions are unified. 908 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 909 const Decl *Container); 910 911 /// GetClassName - Return a unique constant for the given selector's 912 /// runtime name (which may change via use of objc_runtime_name attribute on 913 /// class or protocol definition. The return value has type char *. 914 llvm::Constant *GetClassName(StringRef RuntimeName); 915 916 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 917 918 /// BuildIvarLayout - Builds ivar layout bitmap for the class 919 /// implementation for the __strong or __weak case. 920 /// 921 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there 922 /// are any weak ivars defined directly in the class. Meaningless unless 923 /// building a weak layout. Does not guarantee that the layout will 924 /// actually have any entries, because the ivar might be under-aligned. 925 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 926 CharUnits beginOffset, 927 CharUnits endOffset, 928 bool forStrongLayout, 929 bool hasMRCWeakIvars); 930 931 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI, 932 CharUnits beginOffset, 933 CharUnits endOffset) { 934 return BuildIvarLayout(OI, beginOffset, endOffset, true, false); 935 } 936 937 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI, 938 CharUnits beginOffset, 939 CharUnits endOffset, 940 bool hasMRCWeakIvars) { 941 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars); 942 } 943 944 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 945 946 void UpdateRunSkipBlockVars(bool IsByref, 947 Qualifiers::ObjCLifetime LifeTime, 948 CharUnits FieldOffset, 949 CharUnits FieldSize); 950 951 void BuildRCBlockVarRecordLayout(const RecordType *RT, 952 CharUnits BytePos, bool &HasUnion, 953 bool ByrefLayout=false); 954 955 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 956 const RecordDecl *RD, 957 ArrayRef<const FieldDecl*> RecFields, 958 CharUnits BytePos, bool &HasUnion, 959 bool ByrefLayout); 960 961 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 962 963 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 964 965 /// GetIvarLayoutName - Returns a unique constant for the given 966 /// ivar layout bitmap. 967 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 968 const ObjCCommonTypesHelper &ObjCTypes); 969 970 /// EmitPropertyList - Emit the given property list. The return 971 /// value has type PropertyListPtrTy. 972 llvm::Constant *EmitPropertyList(Twine Name, 973 const Decl *Container, 974 const ObjCContainerDecl *OCD, 975 const ObjCCommonTypesHelper &ObjCTypes, 976 bool IsClassProperty); 977 978 /// EmitProtocolMethodTypes - Generate the array of extended method type 979 /// strings. The return value has type Int8PtrPtrTy. 980 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 981 ArrayRef<llvm::Constant*> MethodTypes, 982 const ObjCCommonTypesHelper &ObjCTypes); 983 984 /// PushProtocolProperties - Push protocol's property on the input stack. 985 void PushProtocolProperties( 986 llvm::SmallPtrSet<const IdentifierInfo*, 16> &PropertySet, 987 SmallVectorImpl<llvm::Constant*> &Properties, 988 const Decl *Container, 989 const ObjCProtocolDecl *Proto, 990 const ObjCCommonTypesHelper &ObjCTypes, 991 bool IsClassProperty); 992 993 /// GetProtocolRef - Return a reference to the internal protocol 994 /// description, creating an empty one if it has not been 995 /// defined. The return value has type ProtocolPtrTy. 996 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 997 998 /// Return a reference to the given Class using runtime calls rather than 999 /// by a symbol reference. 1000 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF, 1001 const ObjCInterfaceDecl *ID, 1002 ObjCCommonTypesHelper &ObjCTypes); 1003 1004 public: 1005 /// CreateMetadataVar - Create a global variable with internal 1006 /// linkage for use by the Objective-C runtime. 1007 /// 1008 /// This is a convenience wrapper which not only creates the 1009 /// variable, but also sets the section and alignment and adds the 1010 /// global to the "llvm.used" list. 1011 /// 1012 /// \param Name - The variable name. 1013 /// \param Init - The variable initializer; this is also used to 1014 /// define the type of the variable. 1015 /// \param Section - The section the variable should go into, or empty. 1016 /// \param Align - The alignment for the variable, or 0. 1017 /// \param AddToUsed - Whether the variable should be added to 1018 /// "llvm.used". 1019 llvm::GlobalVariable *CreateMetadataVar(Twine Name, llvm::Constant *Init, 1020 StringRef Section, CharUnits Align, 1021 bool AddToUsed); 1022 1023 protected: 1024 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1025 ReturnValueSlot Return, 1026 QualType ResultType, 1027 llvm::Value *Sel, 1028 llvm::Value *Arg0, 1029 QualType Arg0Ty, 1030 bool IsSuper, 1031 const CallArgList &CallArgs, 1032 const ObjCMethodDecl *OMD, 1033 const ObjCInterfaceDecl *ClassReceiver, 1034 const ObjCCommonTypesHelper &ObjCTypes); 1035 1036 /// EmitImageInfo - Emit the image info marker used to encode some module 1037 /// level information. 1038 void EmitImageInfo(); 1039 1040 public: 1041 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) : 1042 CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { } 1043 1044 bool isNonFragileABI() const { 1045 return ObjCABI == 2; 1046 } 1047 1048 ConstantAddress GenerateConstantString(const StringLiteral *SL) override; 1049 1050 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1051 const ObjCContainerDecl *CD=nullptr) override; 1052 1053 void GenerateProtocol(const ObjCProtocolDecl *PD) override; 1054 1055 /// GetOrEmitProtocol - Get the protocol object for the given 1056 /// declaration, emitting it if necessary. The return value has type 1057 /// ProtocolPtrTy. 1058 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0; 1059 1060 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1061 /// object for the given declaration, emitting it if needed. These 1062 /// forward references will be filled in with empty bodies if no 1063 /// definition is seen. The return value has type ProtocolPtrTy. 1064 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1065 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1066 const CGBlockInfo &blockInfo) override; 1067 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1068 const CGBlockInfo &blockInfo) override; 1069 1070 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1071 QualType T) override; 1072 }; 1073 1074 class CGObjCMac : public CGObjCCommonMac { 1075 private: 1076 ObjCTypesHelper ObjCTypes; 1077 1078 /// EmitModuleInfo - Another marker encoding module level 1079 /// information. 1080 void EmitModuleInfo(); 1081 1082 /// EmitModuleSymols - Emit module symbols, the list of defined 1083 /// classes and categories. The result has type SymtabPtrTy. 1084 llvm::Constant *EmitModuleSymbols(); 1085 1086 /// FinishModule - Write out global data structures at the end of 1087 /// processing a translation unit. 1088 void FinishModule(); 1089 1090 /// EmitClassExtension - Generate the class extension structure used 1091 /// to store the weak ivar layout and properties. The return value 1092 /// has type ClassExtensionPtrTy. 1093 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID, 1094 CharUnits instanceSize, 1095 bool hasMRCWeakIvars, 1096 bool isClassProperty); 1097 1098 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1099 /// for the given class. 1100 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1101 const ObjCInterfaceDecl *ID); 1102 1103 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1104 IdentifierInfo *II); 1105 1106 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1107 1108 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1109 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1110 1111 /// EmitIvarList - Emit the ivar list for the given 1112 /// implementation. If ForClass is true the list of class ivars 1113 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1114 /// interface ivars will be emitted. The return value has type 1115 /// IvarListPtrTy. 1116 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1117 bool ForClass); 1118 1119 /// EmitMetaClass - Emit a forward reference to the class structure 1120 /// for the metaclass of the given interface. The return value has 1121 /// type ClassPtrTy. 1122 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1123 1124 /// EmitMetaClass - Emit a class structure for the metaclass of the 1125 /// given implementation. The return value has type ClassPtrTy. 1126 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1127 llvm::Constant *Protocols, 1128 ArrayRef<llvm::Constant*> Methods); 1129 1130 llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD); 1131 1132 llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD); 1133 1134 /// EmitMethodList - Emit the method list for the given 1135 /// implementation. The return value has type MethodListPtrTy. 1136 llvm::Constant *EmitMethodList(Twine Name, StringRef Section, 1137 ArrayRef<llvm::Constant *> Methods); 1138 1139 /// EmitMethodDescList - Emit a method description list for a list of 1140 /// method declarations. 1141 /// - TypeName: The name for the type containing the methods. 1142 /// - IsProtocol: True iff these methods are for a protocol. 1143 /// - ClassMethds: True iff these are class methods. 1144 /// - Required: When true, only "required" methods are 1145 /// listed. Similarly, when false only "optional" methods are 1146 /// listed. For classes this should always be true. 1147 /// - begin, end: The method list to output. 1148 /// 1149 /// The return value has type MethodDescriptionListPtrTy. 1150 llvm::Constant *EmitMethodDescList(Twine Name, StringRef Section, 1151 ArrayRef<llvm::Constant *> Methods); 1152 1153 /// GetOrEmitProtocol - Get the protocol object for the given 1154 /// declaration, emitting it if necessary. The return value has type 1155 /// ProtocolPtrTy. 1156 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1157 1158 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1159 /// object for the given declaration, emitting it if needed. These 1160 /// forward references will be filled in with empty bodies if no 1161 /// definition is seen. The return value has type ProtocolPtrTy. 1162 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1163 1164 /// EmitProtocolExtension - Generate the protocol extension 1165 /// structure used to store optional instance and class methods, and 1166 /// protocol properties. The return value has type 1167 /// ProtocolExtensionPtrTy. 1168 llvm::Constant * 1169 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1170 ArrayRef<llvm::Constant*> OptInstanceMethods, 1171 ArrayRef<llvm::Constant*> OptClassMethods, 1172 ArrayRef<llvm::Constant*> MethodTypesExt); 1173 1174 /// EmitProtocolList - Generate the list of referenced 1175 /// protocols. The return value has type ProtocolListPtrTy. 1176 llvm::Constant *EmitProtocolList(Twine Name, 1177 ObjCProtocolDecl::protocol_iterator begin, 1178 ObjCProtocolDecl::protocol_iterator end); 1179 1180 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1181 /// for the given selector. 1182 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1183 Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel); 1184 1185 public: 1186 CGObjCMac(CodeGen::CodeGenModule &cgm); 1187 1188 llvm::Function *ModuleInitFunction() override; 1189 1190 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1191 ReturnValueSlot Return, 1192 QualType ResultType, 1193 Selector Sel, llvm::Value *Receiver, 1194 const CallArgList &CallArgs, 1195 const ObjCInterfaceDecl *Class, 1196 const ObjCMethodDecl *Method) override; 1197 1198 CodeGen::RValue 1199 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1200 ReturnValueSlot Return, QualType ResultType, 1201 Selector Sel, const ObjCInterfaceDecl *Class, 1202 bool isCategoryImpl, llvm::Value *Receiver, 1203 bool IsClassMessage, const CallArgList &CallArgs, 1204 const ObjCMethodDecl *Method) override; 1205 1206 llvm::Value *GetClass(CodeGenFunction &CGF, 1207 const ObjCInterfaceDecl *ID) override; 1208 1209 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override; 1210 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override; 1211 1212 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1213 /// untyped one. 1214 llvm::Value *GetSelector(CodeGenFunction &CGF, 1215 const ObjCMethodDecl *Method) override; 1216 1217 llvm::Constant *GetEHType(QualType T) override; 1218 1219 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1220 1221 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1222 1223 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1224 1225 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1226 const ObjCProtocolDecl *PD) override; 1227 1228 llvm::Constant *GetPropertyGetFunction() override; 1229 llvm::Constant *GetPropertySetFunction() override; 1230 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 1231 bool copy) override; 1232 llvm::Constant *GetGetStructFunction() override; 1233 llvm::Constant *GetSetStructFunction() override; 1234 llvm::Constant *GetCppAtomicObjectGetFunction() override; 1235 llvm::Constant *GetCppAtomicObjectSetFunction() override; 1236 llvm::Constant *EnumerationMutationFunction() override; 1237 1238 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1239 const ObjCAtTryStmt &S) override; 1240 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1241 const ObjCAtSynchronizedStmt &S) override; 1242 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1243 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1244 bool ClearInsertionPoint=true) override; 1245 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1246 Address AddrWeakObj) override; 1247 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1248 llvm::Value *src, Address dst) override; 1249 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1250 llvm::Value *src, Address dest, 1251 bool threadlocal = false) override; 1252 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1253 llvm::Value *src, Address dest, 1254 llvm::Value *ivarOffset) override; 1255 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1256 llvm::Value *src, Address dest) override; 1257 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1258 Address dest, Address src, 1259 llvm::Value *size) override; 1260 1261 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1262 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1263 unsigned CVRQualifiers) override; 1264 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1265 const ObjCInterfaceDecl *Interface, 1266 const ObjCIvarDecl *Ivar) override; 1267 1268 /// GetClassGlobal - Return the global variable for the Objective-C 1269 /// class of the given name. 1270 llvm::GlobalVariable *GetClassGlobal(StringRef Name, 1271 bool Weak = false) override { 1272 llvm_unreachable("CGObjCMac::GetClassGlobal"); 1273 } 1274 }; 1275 1276 class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1277 private: 1278 ObjCNonFragileABITypesHelper ObjCTypes; 1279 llvm::GlobalVariable* ObjCEmptyCacheVar; 1280 llvm::GlobalVariable* ObjCEmptyVtableVar; 1281 1282 /// SuperClassReferences - uniqued super class references. 1283 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1284 1285 /// MetaClassReferences - uniqued meta class references. 1286 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1287 1288 /// EHTypeReferences - uniqued class ehtype references. 1289 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1290 1291 /// VTableDispatchMethods - List of methods for which we generate 1292 /// vtable-based message dispatch. 1293 llvm::DenseSet<Selector> VTableDispatchMethods; 1294 1295 /// DefinedMetaClasses - List of defined meta-classes. 1296 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1297 1298 /// isVTableDispatchedSelector - Returns true if SEL is a 1299 /// vtable-based selector. 1300 bool isVTableDispatchedSelector(Selector Sel); 1301 1302 /// FinishNonFragileABIModule - Write out global data structures at the end of 1303 /// processing a translation unit. 1304 void FinishNonFragileABIModule(); 1305 1306 /// AddModuleClassList - Add the given list of class pointers to the 1307 /// module with the provided symbol and section names. 1308 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container, 1309 StringRef SymbolName, StringRef SectionName); 1310 1311 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1312 unsigned InstanceStart, 1313 unsigned InstanceSize, 1314 const ObjCImplementationDecl *ID); 1315 llvm::GlobalVariable * BuildClassMetaData(const std::string &ClassName, 1316 llvm::Constant *IsAGV, 1317 llvm::Constant *SuperClassGV, 1318 llvm::Constant *ClassRoGV, 1319 bool HiddenVisibility, 1320 bool Weak); 1321 1322 llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD); 1323 1324 llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD); 1325 1326 /// EmitMethodList - Emit the method list for the given 1327 /// implementation. The return value has type MethodListnfABITy. 1328 llvm::Constant *EmitMethodList(Twine Name, StringRef Section, 1329 ArrayRef<llvm::Constant *> Methods); 1330 /// EmitIvarList - Emit the ivar list for the given 1331 /// implementation. If ForClass is true the list of class ivars 1332 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1333 /// interface ivars will be emitted. The return value has type 1334 /// IvarListnfABIPtrTy. 1335 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1336 1337 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1338 const ObjCIvarDecl *Ivar, 1339 unsigned long int offset); 1340 1341 /// GetOrEmitProtocol - Get the protocol object for the given 1342 /// declaration, emitting it if necessary. The return value has type 1343 /// ProtocolPtrTy. 1344 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override; 1345 1346 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1347 /// object for the given declaration, emitting it if needed. These 1348 /// forward references will be filled in with empty bodies if no 1349 /// definition is seen. The return value has type ProtocolPtrTy. 1350 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override; 1351 1352 /// EmitProtocolList - Generate the list of referenced 1353 /// protocols. The return value has type ProtocolListPtrTy. 1354 llvm::Constant *EmitProtocolList(Twine Name, 1355 ObjCProtocolDecl::protocol_iterator begin, 1356 ObjCProtocolDecl::protocol_iterator end); 1357 1358 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1359 ReturnValueSlot Return, 1360 QualType ResultType, 1361 Selector Sel, 1362 llvm::Value *Receiver, 1363 QualType Arg0Ty, 1364 bool IsSuper, 1365 const CallArgList &CallArgs, 1366 const ObjCMethodDecl *Method); 1367 1368 /// GetClassGlobal - Return the global variable for the Objective-C 1369 /// class of the given name. 1370 llvm::GlobalVariable *GetClassGlobal(StringRef Name, 1371 bool Weak = false) override; 1372 1373 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1374 /// for the given class reference. 1375 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1376 const ObjCInterfaceDecl *ID); 1377 1378 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1379 IdentifierInfo *II, bool Weak, 1380 const ObjCInterfaceDecl *ID); 1381 1382 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override; 1383 1384 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1385 /// for the given super class reference. 1386 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1387 const ObjCInterfaceDecl *ID); 1388 1389 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1390 /// meta-data 1391 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1392 const ObjCInterfaceDecl *ID, bool Weak); 1393 1394 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1395 /// the given ivar. 1396 /// 1397 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1398 const ObjCInterfaceDecl *ID, 1399 const ObjCIvarDecl *Ivar); 1400 1401 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1402 /// for the given selector. 1403 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel); 1404 Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel); 1405 1406 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1407 /// interface. The return value has type EHTypePtrTy. 1408 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1409 bool ForDefinition); 1410 1411 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; } 1412 1413 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; } 1414 1415 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1416 uint32_t &InstanceStart, 1417 uint32_t &InstanceSize); 1418 1419 // Shamelessly stolen from Analysis/CFRefCount.cpp 1420 Selector GetNullarySelector(const char* name) const { 1421 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1422 return CGM.getContext().Selectors.getSelector(0, &II); 1423 } 1424 1425 Selector GetUnarySelector(const char* name) const { 1426 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1427 return CGM.getContext().Selectors.getSelector(1, &II); 1428 } 1429 1430 /// ImplementationIsNonLazy - Check whether the given category or 1431 /// class implementation is "non-lazy". 1432 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1433 1434 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1435 const ObjCIvarDecl *IV) { 1436 // Annotate the load as an invariant load iff inside an instance method 1437 // and ivar belongs to instance method's class and one of its super class. 1438 // This check is needed because the ivar offset is a lazily 1439 // initialised value that may depend on objc_msgSend to perform a fixup on 1440 // the first message dispatch. 1441 // 1442 // An additional opportunity to mark the load as invariant arises when the 1443 // base of the ivar access is a parameter to an Objective C method. 1444 // However, because the parameters are not available in the current 1445 // interface, we cannot perform this check. 1446 if (const ObjCMethodDecl *MD = 1447 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl)) 1448 if (MD->isInstanceMethod()) 1449 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 1450 return IV->getContainingInterface()->isSuperClassOf(ID); 1451 return false; 1452 } 1453 1454 public: 1455 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1456 // FIXME. All stubs for now! 1457 llvm::Function *ModuleInitFunction() override; 1458 1459 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1460 ReturnValueSlot Return, 1461 QualType ResultType, Selector Sel, 1462 llvm::Value *Receiver, 1463 const CallArgList &CallArgs, 1464 const ObjCInterfaceDecl *Class, 1465 const ObjCMethodDecl *Method) override; 1466 1467 CodeGen::RValue 1468 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1469 ReturnValueSlot Return, QualType ResultType, 1470 Selector Sel, const ObjCInterfaceDecl *Class, 1471 bool isCategoryImpl, llvm::Value *Receiver, 1472 bool IsClassMessage, const CallArgList &CallArgs, 1473 const ObjCMethodDecl *Method) override; 1474 1475 llvm::Value *GetClass(CodeGenFunction &CGF, 1476 const ObjCInterfaceDecl *ID) override; 1477 1478 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override 1479 { return EmitSelector(CGF, Sel); } 1480 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override 1481 { return EmitSelectorAddr(CGF, Sel); } 1482 1483 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1484 /// untyped one. 1485 llvm::Value *GetSelector(CodeGenFunction &CGF, 1486 const ObjCMethodDecl *Method) override 1487 { return EmitSelector(CGF, Method->getSelector()); } 1488 1489 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override; 1490 1491 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override; 1492 1493 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {} 1494 1495 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1496 const ObjCProtocolDecl *PD) override; 1497 1498 llvm::Constant *GetEHType(QualType T) override; 1499 1500 llvm::Constant *GetPropertyGetFunction() override { 1501 return ObjCTypes.getGetPropertyFn(); 1502 } 1503 llvm::Constant *GetPropertySetFunction() override { 1504 return ObjCTypes.getSetPropertyFn(); 1505 } 1506 1507 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 1508 bool copy) override { 1509 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1510 } 1511 1512 llvm::Constant *GetSetStructFunction() override { 1513 return ObjCTypes.getCopyStructFn(); 1514 } 1515 1516 llvm::Constant *GetGetStructFunction() override { 1517 return ObjCTypes.getCopyStructFn(); 1518 } 1519 1520 llvm::Constant *GetCppAtomicObjectSetFunction() override { 1521 return ObjCTypes.getCppAtomicObjectFunction(); 1522 } 1523 1524 llvm::Constant *GetCppAtomicObjectGetFunction() override { 1525 return ObjCTypes.getCppAtomicObjectFunction(); 1526 } 1527 1528 llvm::Constant *EnumerationMutationFunction() override { 1529 return ObjCTypes.getEnumerationMutationFn(); 1530 } 1531 1532 void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1533 const ObjCAtTryStmt &S) override; 1534 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1535 const ObjCAtSynchronizedStmt &S) override; 1536 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, 1537 bool ClearInsertionPoint=true) override; 1538 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1539 Address AddrWeakObj) override; 1540 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1541 llvm::Value *src, Address edst) override; 1542 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1543 llvm::Value *src, Address dest, 1544 bool threadlocal = false) override; 1545 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1546 llvm::Value *src, Address dest, 1547 llvm::Value *ivarOffset) override; 1548 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1549 llvm::Value *src, Address dest) override; 1550 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1551 Address dest, Address src, 1552 llvm::Value *size) override; 1553 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, 1554 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, 1555 unsigned CVRQualifiers) override; 1556 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1557 const ObjCInterfaceDecl *Interface, 1558 const ObjCIvarDecl *Ivar) override; 1559 }; 1560 1561 /// A helper class for performing the null-initialization of a return 1562 /// value. 1563 struct NullReturnState { 1564 llvm::BasicBlock *NullBB; 1565 NullReturnState() : NullBB(nullptr) {} 1566 1567 /// Perform a null-check of the given receiver. 1568 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1569 // Make blocks for the null-receiver and call edges. 1570 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1571 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1572 1573 // Check for a null receiver and, if there is one, jump to the 1574 // null-receiver block. There's no point in trying to avoid it: 1575 // we're always going to put *something* there, because otherwise 1576 // we shouldn't have done this null-check in the first place. 1577 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1578 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1579 1580 // Otherwise, start performing the call. 1581 CGF.EmitBlock(callBB); 1582 } 1583 1584 /// Complete the null-return operation. It is valid to call this 1585 /// regardless of whether 'init' has been called. 1586 RValue complete(CodeGenFunction &CGF, RValue result, QualType resultType, 1587 const CallArgList &CallArgs, 1588 const ObjCMethodDecl *Method) { 1589 // If we never had to do a null-check, just use the raw result. 1590 if (!NullBB) return result; 1591 1592 // The continuation block. This will be left null if we don't have an 1593 // IP, which can happen if the method we're calling is marked noreturn. 1594 llvm::BasicBlock *contBB = nullptr; 1595 1596 // Finish the call path. 1597 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1598 if (callBB) { 1599 contBB = CGF.createBasicBlock("msgSend.cont"); 1600 CGF.Builder.CreateBr(contBB); 1601 } 1602 1603 // Okay, start emitting the null-receiver block. 1604 CGF.EmitBlock(NullBB); 1605 1606 // Release any consumed arguments we've got. 1607 if (Method) { 1608 CallArgList::const_iterator I = CallArgs.begin(); 1609 for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(), 1610 e = Method->param_end(); i != e; ++i, ++I) { 1611 const ParmVarDecl *ParamDecl = (*i); 1612 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1613 RValue RV = I->RV; 1614 assert(RV.isScalar() && 1615 "NullReturnState::complete - arg not on object"); 1616 CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime); 1617 } 1618 } 1619 } 1620 1621 // The phi code below assumes that we haven't needed any control flow yet. 1622 assert(CGF.Builder.GetInsertBlock() == NullBB); 1623 1624 // If we've got a void return, just jump to the continuation block. 1625 if (result.isScalar() && resultType->isVoidType()) { 1626 // No jumps required if the message-send was noreturn. 1627 if (contBB) CGF.EmitBlock(contBB); 1628 return result; 1629 } 1630 1631 // If we've got a scalar return, build a phi. 1632 if (result.isScalar()) { 1633 // Derive the null-initialization value. 1634 llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType); 1635 1636 // If no join is necessary, just flow out. 1637 if (!contBB) return RValue::get(null); 1638 1639 // Otherwise, build a phi. 1640 CGF.EmitBlock(contBB); 1641 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1642 phi->addIncoming(result.getScalarVal(), callBB); 1643 phi->addIncoming(null, NullBB); 1644 return RValue::get(phi); 1645 } 1646 1647 // If we've got an aggregate return, null the buffer out. 1648 // FIXME: maybe we should be doing things differently for all the 1649 // cases where the ABI has us returning (1) non-agg values in 1650 // memory or (2) agg values in registers. 1651 if (result.isAggregate()) { 1652 assert(result.isAggregate() && "null init of non-aggregate result?"); 1653 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType); 1654 if (contBB) CGF.EmitBlock(contBB); 1655 return result; 1656 } 1657 1658 // Complex types. 1659 CGF.EmitBlock(contBB); 1660 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1661 1662 // Find the scalar type and its zero value. 1663 llvm::Type *scalarTy = callResult.first->getType(); 1664 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1665 1666 // Build phis for both coordinates. 1667 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1668 real->addIncoming(callResult.first, callBB); 1669 real->addIncoming(scalarZero, NullBB); 1670 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1671 imag->addIncoming(callResult.second, callBB); 1672 imag->addIncoming(scalarZero, NullBB); 1673 return RValue::getComplex(real, imag); 1674 } 1675 }; 1676 1677 } // end anonymous namespace 1678 1679 /* *** Helper Functions *** */ 1680 1681 /// getConstantGEP() - Help routine to construct simple GEPs. 1682 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1683 llvm::GlobalVariable *C, unsigned idx0, 1684 unsigned idx1) { 1685 llvm::Value *Idxs[] = { 1686 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1687 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1688 }; 1689 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs); 1690 } 1691 1692 /// hasObjCExceptionAttribute - Return true if this class or any super 1693 /// class has the __objc_exception__ attribute. 1694 static bool hasObjCExceptionAttribute(ASTContext &Context, 1695 const ObjCInterfaceDecl *OID) { 1696 if (OID->hasAttr<ObjCExceptionAttr>()) 1697 return true; 1698 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1699 return hasObjCExceptionAttribute(Context, Super); 1700 return false; 1701 } 1702 1703 /* *** CGObjCMac Public Interface *** */ 1704 1705 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1706 ObjCTypes(cgm) { 1707 ObjCABI = 1; 1708 EmitImageInfo(); 1709 } 1710 1711 /// GetClass - Return a reference to the class for the given interface 1712 /// decl. 1713 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1714 const ObjCInterfaceDecl *ID) { 1715 return EmitClassRef(CGF, ID); 1716 } 1717 1718 /// GetSelector - Return the pointer to the unique'd string for this selector. 1719 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) { 1720 return EmitSelector(CGF, Sel); 1721 } 1722 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) { 1723 return EmitSelectorAddr(CGF, Sel); 1724 } 1725 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1726 *Method) { 1727 return EmitSelector(CGF, Method->getSelector()); 1728 } 1729 1730 llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1731 if (T->isObjCIdType() || 1732 T->isObjCQualifiedIdType()) { 1733 return CGM.GetAddrOfRTTIDescriptor( 1734 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1735 } 1736 if (T->isObjCClassType() || 1737 T->isObjCQualifiedClassType()) { 1738 return CGM.GetAddrOfRTTIDescriptor( 1739 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1740 } 1741 if (T->isObjCObjectPointerType()) 1742 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1743 1744 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1745 } 1746 1747 /// Generate a constant CFString object. 1748 /* 1749 struct __builtin_CFString { 1750 const int *isa; // point to __CFConstantStringClassReference 1751 int flags; 1752 const char *str; 1753 long length; 1754 }; 1755 */ 1756 1757 /// or Generate a constant NSString object. 1758 /* 1759 struct __builtin_NSString { 1760 const int *isa; // point to __NSConstantStringClassReference 1761 const char *str; 1762 unsigned int length; 1763 }; 1764 */ 1765 1766 ConstantAddress CGObjCCommonMac::GenerateConstantString( 1767 const StringLiteral *SL) { 1768 return (CGM.getLangOpts().NoConstantCFStrings == 0 ? 1769 CGM.GetAddrOfConstantCFString(SL) : 1770 CGM.GetAddrOfConstantString(SL)); 1771 } 1772 1773 enum { 1774 kCFTaggedObjectID_Integer = (1 << 1) + 1 1775 }; 1776 1777 /// Generates a message send where the super is the receiver. This is 1778 /// a message send to self with special delivery semantics indicating 1779 /// which class's method should be called. 1780 CodeGen::RValue 1781 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1782 ReturnValueSlot Return, 1783 QualType ResultType, 1784 Selector Sel, 1785 const ObjCInterfaceDecl *Class, 1786 bool isCategoryImpl, 1787 llvm::Value *Receiver, 1788 bool IsClassMessage, 1789 const CodeGen::CallArgList &CallArgs, 1790 const ObjCMethodDecl *Method) { 1791 // Create and init a super structure; this is a (receiver, class) 1792 // pair we will pass to objc_msgSendSuper. 1793 Address ObjCSuper = 1794 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 1795 "objc_super"); 1796 llvm::Value *ReceiverAsObject = 1797 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 1798 CGF.Builder.CreateStore( 1799 ReceiverAsObject, 1800 CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero())); 1801 1802 // If this is a class message the metaclass is passed as the target. 1803 llvm::Value *Target; 1804 if (IsClassMessage) { 1805 if (isCategoryImpl) { 1806 // Message sent to 'super' in a class method defined in a category 1807 // implementation requires an odd treatment. 1808 // If we are in a class method, we must retrieve the 1809 // _metaclass_ for the current class, pointed at by 1810 // the class's "isa" pointer. The following assumes that 1811 // isa" is the first ivar in a class (which it must be). 1812 Target = EmitClassRef(CGF, Class->getSuperClass()); 1813 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0); 1814 Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign()); 1815 } else { 1816 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class); 1817 llvm::Value *SuperPtr = 1818 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1); 1819 llvm::Value *Super = 1820 CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign()); 1821 Target = Super; 1822 } 1823 } else if (isCategoryImpl) 1824 Target = EmitClassRef(CGF, Class->getSuperClass()); 1825 else { 1826 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 1827 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1); 1828 Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign()); 1829 } 1830 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 1831 // ObjCTypes types. 1832 llvm::Type *ClassTy = 1833 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 1834 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 1835 CGF.Builder.CreateStore(Target, 1836 CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize())); 1837 return EmitMessageSend(CGF, Return, ResultType, 1838 EmitSelector(CGF, Sel), 1839 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 1840 true, CallArgs, Method, Class, ObjCTypes); 1841 } 1842 1843 /// Generate code for a message send expression. 1844 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1845 ReturnValueSlot Return, 1846 QualType ResultType, 1847 Selector Sel, 1848 llvm::Value *Receiver, 1849 const CallArgList &CallArgs, 1850 const ObjCInterfaceDecl *Class, 1851 const ObjCMethodDecl *Method) { 1852 return EmitMessageSend(CGF, Return, ResultType, 1853 EmitSelector(CGF, Sel), 1854 Receiver, CGF.getContext().getObjCIdType(), 1855 false, CallArgs, Method, Class, ObjCTypes); 1856 } 1857 1858 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) { 1859 do { 1860 if (ID->isWeakImported()) 1861 return true; 1862 } while ((ID = ID->getSuperClass())); 1863 1864 return false; 1865 } 1866 1867 CodeGen::RValue 1868 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1869 ReturnValueSlot Return, 1870 QualType ResultType, 1871 llvm::Value *Sel, 1872 llvm::Value *Arg0, 1873 QualType Arg0Ty, 1874 bool IsSuper, 1875 const CallArgList &CallArgs, 1876 const ObjCMethodDecl *Method, 1877 const ObjCInterfaceDecl *ClassReceiver, 1878 const ObjCCommonTypesHelper &ObjCTypes) { 1879 CallArgList ActualArgs; 1880 if (!IsSuper) 1881 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 1882 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 1883 ActualArgs.add(RValue::get(Sel), CGF.getContext().getObjCSelType()); 1884 ActualArgs.addFrom(CallArgs); 1885 1886 // If we're calling a method, use the formal signature. 1887 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 1888 1889 if (Method) 1890 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) == 1891 CGM.getContext().getCanonicalType(ResultType) && 1892 "Result type mismatch!"); 1893 1894 bool ReceiverCanBeNull = true; 1895 1896 // Super dispatch assumes that self is non-null; even the messenger 1897 // doesn't have a null check internally. 1898 if (IsSuper) { 1899 ReceiverCanBeNull = false; 1900 1901 // If this is a direct dispatch of a class method, check whether the class, 1902 // or anything in its hierarchy, was weak-linked. 1903 } else if (ClassReceiver && Method && Method->isClassMethod()) { 1904 ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver); 1905 1906 // If we're emitting a method, and self is const (meaning just ARC, for now), 1907 // and the receiver is a load of self, then self is a valid object. 1908 } else if (auto CurMethod = 1909 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) { 1910 auto Self = CurMethod->getSelfDecl(); 1911 if (Self->getType().isConstQualified()) { 1912 if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) { 1913 llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer(); 1914 if (SelfAddr == LI->getPointerOperand()) { 1915 ReceiverCanBeNull = false; 1916 } 1917 } 1918 } 1919 } 1920 1921 NullReturnState nullReturn; 1922 1923 llvm::Constant *Fn = nullptr; 1924 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 1925 if (ReceiverCanBeNull) nullReturn.init(CGF, Arg0); 1926 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 1927 : ObjCTypes.getSendStretFn(IsSuper); 1928 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 1929 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 1930 : ObjCTypes.getSendFpretFn(IsSuper); 1931 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 1932 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 1933 : ObjCTypes.getSendFp2retFn(IsSuper); 1934 } else { 1935 // arm64 uses objc_msgSend for stret methods and yet null receiver check 1936 // must be made for it. 1937 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo)) 1938 nullReturn.init(CGF, Arg0); 1939 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 1940 : ObjCTypes.getSendFn(IsSuper); 1941 } 1942 1943 // Emit a null-check if there's a consumed argument other than the receiver. 1944 bool RequiresNullCheck = false; 1945 if (ReceiverCanBeNull && CGM.getLangOpts().ObjCAutoRefCount && Method) { 1946 for (const auto *ParamDecl : Method->params()) { 1947 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1948 if (!nullReturn.NullBB) 1949 nullReturn.init(CGF, Arg0); 1950 RequiresNullCheck = true; 1951 break; 1952 } 1953 } 1954 } 1955 1956 llvm::Instruction *CallSite; 1957 Fn = llvm::ConstantExpr::getBitCast(Fn, MSI.MessengerType); 1958 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Fn, Return, ActualArgs, 1959 CGCalleeInfo(), &CallSite); 1960 1961 // Mark the call as noreturn if the method is marked noreturn and the 1962 // receiver cannot be null. 1963 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) { 1964 llvm::CallSite(CallSite).setDoesNotReturn(); 1965 } 1966 1967 return nullReturn.complete(CGF, rvalue, ResultType, CallArgs, 1968 RequiresNullCheck ? Method : nullptr); 1969 } 1970 1971 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT, 1972 bool pointee = false) { 1973 // Note that GC qualification applies recursively to C pointer types 1974 // that aren't otherwise decorated. This is weird, but it's probably 1975 // an intentional workaround to the unreliable placement of GC qualifiers. 1976 if (FQT.isObjCGCStrong()) 1977 return Qualifiers::Strong; 1978 1979 if (FQT.isObjCGCWeak()) 1980 return Qualifiers::Weak; 1981 1982 if (auto ownership = FQT.getObjCLifetime()) { 1983 // Ownership does not apply recursively to C pointer types. 1984 if (pointee) return Qualifiers::GCNone; 1985 switch (ownership) { 1986 case Qualifiers::OCL_Weak: return Qualifiers::Weak; 1987 case Qualifiers::OCL_Strong: return Qualifiers::Strong; 1988 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone; 1989 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?"); 1990 case Qualifiers::OCL_None: llvm_unreachable("known nonzero"); 1991 } 1992 llvm_unreachable("bad objc ownership"); 1993 } 1994 1995 // Treat unqualified retainable pointers as strong. 1996 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 1997 return Qualifiers::Strong; 1998 1999 // Walk into C pointer types, but only in GC. 2000 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) { 2001 if (const PointerType *PT = FQT->getAs<PointerType>()) 2002 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true); 2003 } 2004 2005 return Qualifiers::GCNone; 2006 } 2007 2008 namespace { 2009 struct IvarInfo { 2010 CharUnits Offset; 2011 uint64_t SizeInWords; 2012 IvarInfo(CharUnits offset, uint64_t sizeInWords) 2013 : Offset(offset), SizeInWords(sizeInWords) {} 2014 2015 // Allow sorting based on byte pos. 2016 bool operator<(const IvarInfo &other) const { 2017 return Offset < other.Offset; 2018 } 2019 }; 2020 2021 /// A helper class for building GC layout strings. 2022 class IvarLayoutBuilder { 2023 CodeGenModule &CGM; 2024 2025 /// The start of the layout. Offsets will be relative to this value, 2026 /// and entries less than this value will be silently discarded. 2027 CharUnits InstanceBegin; 2028 2029 /// The end of the layout. Offsets will never exceed this value. 2030 CharUnits InstanceEnd; 2031 2032 /// Whether we're generating the strong layout or the weak layout. 2033 bool ForStrongLayout; 2034 2035 /// Whether the offsets in IvarsInfo might be out-of-order. 2036 bool IsDisordered = false; 2037 2038 llvm::SmallVector<IvarInfo, 8> IvarsInfo; 2039 2040 public: 2041 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin, 2042 CharUnits instanceEnd, bool forStrongLayout) 2043 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd), 2044 ForStrongLayout(forStrongLayout) { 2045 } 2046 2047 void visitRecord(const RecordType *RT, CharUnits offset); 2048 2049 template <class Iterator, class GetOffsetFn> 2050 void visitAggregate(Iterator begin, Iterator end, 2051 CharUnits aggrOffset, 2052 const GetOffsetFn &getOffset); 2053 2054 void visitField(const FieldDecl *field, CharUnits offset); 2055 2056 /// Add the layout of a block implementation. 2057 void visitBlock(const CGBlockInfo &blockInfo); 2058 2059 /// Is there any information for an interesting bitmap? 2060 bool hasBitmapData() const { return !IvarsInfo.empty(); } 2061 2062 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC, 2063 llvm::SmallVectorImpl<unsigned char> &buffer); 2064 2065 static void dump(ArrayRef<unsigned char> buffer) { 2066 const unsigned char *s = buffer.data(); 2067 for (unsigned i = 0, e = buffer.size(); i < e; i++) 2068 if (!(s[i] & 0xf0)) 2069 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2070 else 2071 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2072 printf("\n"); 2073 } 2074 }; 2075 } // end anonymous namespace 2076 2077 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 2078 const CGBlockInfo &blockInfo) { 2079 2080 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2081 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 2082 return nullPtr; 2083 2084 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize, 2085 /*for strong layout*/ true); 2086 2087 builder.visitBlock(blockInfo); 2088 2089 if (!builder.hasBitmapData()) 2090 return nullPtr; 2091 2092 llvm::SmallVector<unsigned char, 32> buffer; 2093 llvm::Constant *C = builder.buildBitmap(*this, buffer); 2094 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 2095 printf("\n block variable layout for block: "); 2096 builder.dump(buffer); 2097 } 2098 2099 return C; 2100 } 2101 2102 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) { 2103 // __isa is the first field in block descriptor and must assume by runtime's 2104 // convention that it is GC'able. 2105 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1)); 2106 2107 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2108 2109 // Ignore the optional 'this' capture: C++ objects are not assumed 2110 // to be GC'ed. 2111 2112 CharUnits lastFieldOffset; 2113 2114 // Walk the captured variables. 2115 for (const auto &CI : blockDecl->captures()) { 2116 const VarDecl *variable = CI.getVariable(); 2117 QualType type = variable->getType(); 2118 2119 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2120 2121 // Ignore constant captures. 2122 if (capture.isConstant()) continue; 2123 2124 CharUnits fieldOffset = capture.getOffset(); 2125 2126 // Block fields are not necessarily ordered; if we detect that we're 2127 // adding them out-of-order, make sure we sort later. 2128 if (fieldOffset < lastFieldOffset) 2129 IsDisordered = true; 2130 lastFieldOffset = fieldOffset; 2131 2132 // __block variables are passed by their descriptor address. 2133 if (CI.isByRef()) { 2134 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2135 continue; 2136 } 2137 2138 assert(!type->isArrayType() && "array variable should not be caught"); 2139 if (const RecordType *record = type->getAs<RecordType>()) { 2140 visitRecord(record, fieldOffset); 2141 continue; 2142 } 2143 2144 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 2145 2146 if (GCAttr == Qualifiers::Strong) { 2147 assert(CGM.getContext().getTypeSize(type) 2148 == CGM.getTarget().getPointerWidth(0)); 2149 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1)); 2150 } 2151 } 2152 } 2153 2154 /// getBlockCaptureLifetime - This routine returns life time of the captured 2155 /// block variable for the purpose of block layout meta-data generation. FQT is 2156 /// the type of the variable captured in the block. 2157 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2158 bool ByrefLayout) { 2159 // If it has an ownership qualifier, we're done. 2160 if (auto lifetime = FQT.getObjCLifetime()) 2161 return lifetime; 2162 2163 // If it doesn't, and this is ARC, it has no ownership. 2164 if (CGM.getLangOpts().ObjCAutoRefCount) 2165 return Qualifiers::OCL_None; 2166 2167 // In MRC, retainable pointers are owned by non-__block variables. 2168 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2169 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2170 2171 return Qualifiers::OCL_None; 2172 } 2173 2174 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2175 Qualifiers::ObjCLifetime LifeTime, 2176 CharUnits FieldOffset, 2177 CharUnits FieldSize) { 2178 // __block variables are passed by their descriptor address. 2179 if (IsByref) 2180 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2181 FieldSize)); 2182 else if (LifeTime == Qualifiers::OCL_Strong) 2183 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2184 FieldSize)); 2185 else if (LifeTime == Qualifiers::OCL_Weak) 2186 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2187 FieldSize)); 2188 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2189 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2190 FieldSize)); 2191 else 2192 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2193 FieldOffset, 2194 FieldSize)); 2195 } 2196 2197 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2198 const RecordDecl *RD, 2199 ArrayRef<const FieldDecl*> RecFields, 2200 CharUnits BytePos, bool &HasUnion, 2201 bool ByrefLayout) { 2202 bool IsUnion = (RD && RD->isUnion()); 2203 CharUnits MaxUnionSize = CharUnits::Zero(); 2204 const FieldDecl *MaxField = nullptr; 2205 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr; 2206 CharUnits MaxFieldOffset = CharUnits::Zero(); 2207 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2208 2209 if (RecFields.empty()) 2210 return; 2211 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2212 2213 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2214 const FieldDecl *Field = RecFields[i]; 2215 // Note that 'i' here is actually the field index inside RD of Field, 2216 // although this dependency is hidden. 2217 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2218 CharUnits FieldOffset = 2219 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2220 2221 // Skip over unnamed or bitfields 2222 if (!Field->getIdentifier() || Field->isBitField()) { 2223 LastFieldBitfieldOrUnnamed = Field; 2224 LastBitfieldOrUnnamedOffset = FieldOffset; 2225 continue; 2226 } 2227 2228 LastFieldBitfieldOrUnnamed = nullptr; 2229 QualType FQT = Field->getType(); 2230 if (FQT->isRecordType() || FQT->isUnionType()) { 2231 if (FQT->isUnionType()) 2232 HasUnion = true; 2233 2234 BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(), 2235 BytePos + FieldOffset, HasUnion); 2236 continue; 2237 } 2238 2239 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2240 const ConstantArrayType *CArray = 2241 dyn_cast_or_null<ConstantArrayType>(Array); 2242 uint64_t ElCount = CArray->getSize().getZExtValue(); 2243 assert(CArray && "only array with known element size is supported"); 2244 FQT = CArray->getElementType(); 2245 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2246 const ConstantArrayType *CArray = 2247 dyn_cast_or_null<ConstantArrayType>(Array); 2248 ElCount *= CArray->getSize().getZExtValue(); 2249 FQT = CArray->getElementType(); 2250 } 2251 if (FQT->isRecordType() && ElCount) { 2252 int OldIndex = RunSkipBlockVars.size() - 1; 2253 const RecordType *RT = FQT->getAs<RecordType>(); 2254 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, 2255 HasUnion); 2256 2257 // Replicate layout information for each array element. Note that 2258 // one element is already done. 2259 uint64_t ElIx = 1; 2260 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2261 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2262 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2263 RunSkipBlockVars.push_back( 2264 RUN_SKIP(RunSkipBlockVars[i].opcode, 2265 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2266 RunSkipBlockVars[i].block_var_size)); 2267 } 2268 continue; 2269 } 2270 } 2271 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2272 if (IsUnion) { 2273 CharUnits UnionIvarSize = FieldSize; 2274 if (UnionIvarSize > MaxUnionSize) { 2275 MaxUnionSize = UnionIvarSize; 2276 MaxField = Field; 2277 MaxFieldOffset = FieldOffset; 2278 } 2279 } else { 2280 UpdateRunSkipBlockVars(false, 2281 getBlockCaptureLifetime(FQT, ByrefLayout), 2282 BytePos + FieldOffset, 2283 FieldSize); 2284 } 2285 } 2286 2287 if (LastFieldBitfieldOrUnnamed) { 2288 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2289 // Last field was a bitfield. Must update the info. 2290 uint64_t BitFieldSize 2291 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2292 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2293 ((BitFieldSize % ByteSizeInBits) != 0); 2294 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2295 Size += LastBitfieldOrUnnamedOffset; 2296 UpdateRunSkipBlockVars(false, 2297 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2298 ByrefLayout), 2299 BytePos + LastBitfieldOrUnnamedOffset, 2300 Size); 2301 } else { 2302 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2303 // Last field was unnamed. Must update skip info. 2304 CharUnits FieldSize 2305 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2306 UpdateRunSkipBlockVars(false, 2307 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2308 ByrefLayout), 2309 BytePos + LastBitfieldOrUnnamedOffset, 2310 FieldSize); 2311 } 2312 } 2313 2314 if (MaxField) 2315 UpdateRunSkipBlockVars(false, 2316 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2317 BytePos + MaxFieldOffset, 2318 MaxUnionSize); 2319 } 2320 2321 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2322 CharUnits BytePos, 2323 bool &HasUnion, 2324 bool ByrefLayout) { 2325 const RecordDecl *RD = RT->getDecl(); 2326 SmallVector<const FieldDecl*, 16> Fields(RD->fields()); 2327 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2328 const llvm::StructLayout *RecLayout = 2329 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2330 2331 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2332 } 2333 2334 /// InlineLayoutInstruction - This routine produce an inline instruction for the 2335 /// block variable layout if it can. If not, it returns 0. Rules are as follow: 2336 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2337 /// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2338 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2339 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2340 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2341 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2342 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2343 uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2344 SmallVectorImpl<unsigned char> &Layout) { 2345 uint64_t Result = 0; 2346 if (Layout.size() <= 3) { 2347 unsigned size = Layout.size(); 2348 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2349 unsigned char inst; 2350 enum BLOCK_LAYOUT_OPCODE opcode ; 2351 switch (size) { 2352 case 3: 2353 inst = Layout[0]; 2354 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2355 if (opcode == BLOCK_LAYOUT_STRONG) 2356 strong_word_count = (inst & 0xF)+1; 2357 else 2358 return 0; 2359 inst = Layout[1]; 2360 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2361 if (opcode == BLOCK_LAYOUT_BYREF) 2362 byref_word_count = (inst & 0xF)+1; 2363 else 2364 return 0; 2365 inst = Layout[2]; 2366 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2367 if (opcode == BLOCK_LAYOUT_WEAK) 2368 weak_word_count = (inst & 0xF)+1; 2369 else 2370 return 0; 2371 break; 2372 2373 case 2: 2374 inst = Layout[0]; 2375 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2376 if (opcode == BLOCK_LAYOUT_STRONG) { 2377 strong_word_count = (inst & 0xF)+1; 2378 inst = Layout[1]; 2379 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2380 if (opcode == BLOCK_LAYOUT_BYREF) 2381 byref_word_count = (inst & 0xF)+1; 2382 else if (opcode == BLOCK_LAYOUT_WEAK) 2383 weak_word_count = (inst & 0xF)+1; 2384 else 2385 return 0; 2386 } 2387 else if (opcode == BLOCK_LAYOUT_BYREF) { 2388 byref_word_count = (inst & 0xF)+1; 2389 inst = Layout[1]; 2390 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2391 if (opcode == BLOCK_LAYOUT_WEAK) 2392 weak_word_count = (inst & 0xF)+1; 2393 else 2394 return 0; 2395 } 2396 else 2397 return 0; 2398 break; 2399 2400 case 1: 2401 inst = Layout[0]; 2402 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2403 if (opcode == BLOCK_LAYOUT_STRONG) 2404 strong_word_count = (inst & 0xF)+1; 2405 else if (opcode == BLOCK_LAYOUT_BYREF) 2406 byref_word_count = (inst & 0xF)+1; 2407 else if (opcode == BLOCK_LAYOUT_WEAK) 2408 weak_word_count = (inst & 0xF)+1; 2409 else 2410 return 0; 2411 break; 2412 2413 default: 2414 return 0; 2415 } 2416 2417 // Cannot inline when any of the word counts is 15. Because this is one less 2418 // than the actual work count (so 15 means 16 actual word counts), 2419 // and we can only display 0 thru 15 word counts. 2420 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2421 return 0; 2422 2423 unsigned count = 2424 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2425 2426 if (size == count) { 2427 if (strong_word_count) 2428 Result = strong_word_count; 2429 Result <<= 4; 2430 if (byref_word_count) 2431 Result += byref_word_count; 2432 Result <<= 4; 2433 if (weak_word_count) 2434 Result += weak_word_count; 2435 } 2436 } 2437 return Result; 2438 } 2439 2440 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2441 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2442 if (RunSkipBlockVars.empty()) 2443 return nullPtr; 2444 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2445 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2446 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2447 2448 // Sort on byte position; captures might not be allocated in order, 2449 // and unions can do funny things. 2450 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2451 SmallVector<unsigned char, 16> Layout; 2452 2453 unsigned size = RunSkipBlockVars.size(); 2454 for (unsigned i = 0; i < size; i++) { 2455 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2456 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2457 CharUnits end_byte_pos = start_byte_pos; 2458 unsigned j = i+1; 2459 while (j < size) { 2460 if (opcode == RunSkipBlockVars[j].opcode) { 2461 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2462 i++; 2463 } 2464 else 2465 break; 2466 } 2467 CharUnits size_in_bytes = 2468 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2469 if (j < size) { 2470 CharUnits gap = 2471 RunSkipBlockVars[j].block_var_bytepos - 2472 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2473 size_in_bytes += gap; 2474 } 2475 CharUnits residue_in_bytes = CharUnits::Zero(); 2476 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2477 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2478 size_in_bytes -= residue_in_bytes; 2479 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2480 } 2481 2482 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2483 while (size_in_words >= 16) { 2484 // Note that value in imm. is one less that the actual 2485 // value. So, 0xf means 16 words follow! 2486 unsigned char inst = (opcode << 4) | 0xf; 2487 Layout.push_back(inst); 2488 size_in_words -= 16; 2489 } 2490 if (size_in_words > 0) { 2491 // Note that value in imm. is one less that the actual 2492 // value. So, we subtract 1 away! 2493 unsigned char inst = (opcode << 4) | (size_in_words-1); 2494 Layout.push_back(inst); 2495 } 2496 if (residue_in_bytes > CharUnits::Zero()) { 2497 unsigned char inst = 2498 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2499 Layout.push_back(inst); 2500 } 2501 } 2502 2503 while (!Layout.empty()) { 2504 unsigned char inst = Layout.back(); 2505 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2506 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2507 Layout.pop_back(); 2508 else 2509 break; 2510 } 2511 2512 uint64_t Result = InlineLayoutInstruction(Layout); 2513 if (Result != 0) { 2514 // Block variable layout instruction has been inlined. 2515 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2516 if (ComputeByrefLayout) 2517 printf("\n Inline BYREF variable layout: "); 2518 else 2519 printf("\n Inline block variable layout: "); 2520 printf("0x0%" PRIx64 "", Result); 2521 if (auto numStrong = (Result & 0xF00) >> 8) 2522 printf(", BL_STRONG:%d", (int) numStrong); 2523 if (auto numByref = (Result & 0x0F0) >> 4) 2524 printf(", BL_BYREF:%d", (int) numByref); 2525 if (auto numWeak = (Result & 0x00F) >> 0) 2526 printf(", BL_WEAK:%d", (int) numWeak); 2527 printf(", BL_OPERATOR:0\n"); 2528 } 2529 return llvm::ConstantInt::get(CGM.IntPtrTy, Result); 2530 } 2531 2532 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2533 Layout.push_back(inst); 2534 std::string BitMap; 2535 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2536 BitMap += Layout[i]; 2537 2538 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2539 if (ComputeByrefLayout) 2540 printf("\n Byref variable layout: "); 2541 else 2542 printf("\n Block variable layout: "); 2543 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2544 unsigned char inst = BitMap[i]; 2545 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2546 unsigned delta = 1; 2547 switch (opcode) { 2548 case BLOCK_LAYOUT_OPERATOR: 2549 printf("BL_OPERATOR:"); 2550 delta = 0; 2551 break; 2552 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2553 printf("BL_NON_OBJECT_BYTES:"); 2554 break; 2555 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2556 printf("BL_NON_OBJECT_WORD:"); 2557 break; 2558 case BLOCK_LAYOUT_STRONG: 2559 printf("BL_STRONG:"); 2560 break; 2561 case BLOCK_LAYOUT_BYREF: 2562 printf("BL_BYREF:"); 2563 break; 2564 case BLOCK_LAYOUT_WEAK: 2565 printf("BL_WEAK:"); 2566 break; 2567 case BLOCK_LAYOUT_UNRETAINED: 2568 printf("BL_UNRETAINED:"); 2569 break; 2570 } 2571 // Actual value of word count is one more that what is in the imm. 2572 // field of the instruction 2573 printf("%d", (inst & 0xf) + delta); 2574 if (i < e-1) 2575 printf(", "); 2576 else 2577 printf("\n"); 2578 } 2579 } 2580 2581 llvm::GlobalVariable *Entry = CreateMetadataVar( 2582 "OBJC_CLASS_NAME_", 2583 llvm::ConstantDataArray::getString(VMContext, BitMap, false), 2584 "__TEXT,__objc_classname,cstring_literals", CharUnits::One(), true); 2585 return getConstantGEP(VMContext, Entry, 0, 0); 2586 } 2587 2588 llvm::Constant *CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2589 const CGBlockInfo &blockInfo) { 2590 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2591 2592 RunSkipBlockVars.clear(); 2593 bool hasUnion = false; 2594 2595 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2596 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2597 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2598 2599 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2600 2601 // Calculate the basic layout of the block structure. 2602 const llvm::StructLayout *layout = 2603 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2604 2605 // Ignore the optional 'this' capture: C++ objects are not assumed 2606 // to be GC'ed. 2607 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2608 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2609 blockInfo.BlockHeaderForcedGapOffset, 2610 blockInfo.BlockHeaderForcedGapSize); 2611 // Walk the captured variables. 2612 for (const auto &CI : blockDecl->captures()) { 2613 const VarDecl *variable = CI.getVariable(); 2614 QualType type = variable->getType(); 2615 2616 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2617 2618 // Ignore constant captures. 2619 if (capture.isConstant()) continue; 2620 2621 CharUnits fieldOffset = 2622 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2623 2624 assert(!type->isArrayType() && "array variable should not be caught"); 2625 if (!CI.isByRef()) 2626 if (const RecordType *record = type->getAs<RecordType>()) { 2627 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2628 continue; 2629 } 2630 CharUnits fieldSize; 2631 if (CI.isByRef()) 2632 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2633 else 2634 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2635 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false), 2636 fieldOffset, fieldSize); 2637 } 2638 return getBitmapBlockLayout(false); 2639 } 2640 2641 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2642 QualType T) { 2643 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2644 assert(!T->isArrayType() && "__block array variable should not be caught"); 2645 CharUnits fieldOffset; 2646 RunSkipBlockVars.clear(); 2647 bool hasUnion = false; 2648 if (const RecordType *record = T->getAs<RecordType>()) { 2649 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 2650 llvm::Constant *Result = getBitmapBlockLayout(true); 2651 if (isa<llvm::ConstantInt>(Result)) 2652 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy); 2653 return Result; 2654 } 2655 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2656 return nullPtr; 2657 } 2658 2659 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 2660 const ObjCProtocolDecl *PD) { 2661 // FIXME: I don't understand why gcc generates this, or where it is 2662 // resolved. Investigate. Its also wasteful to look this up over and over. 2663 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2664 2665 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 2666 ObjCTypes.getExternalProtocolPtrTy()); 2667 } 2668 2669 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 2670 // FIXME: We shouldn't need this, the protocol decl should contain enough 2671 // information to tell us whether this was a declaration or a definition. 2672 DefinedProtocols.insert(PD->getIdentifier()); 2673 2674 // If we have generated a forward reference to this protocol, emit 2675 // it now. Otherwise do nothing, the protocol objects are lazily 2676 // emitted. 2677 if (Protocols.count(PD->getIdentifier())) 2678 GetOrEmitProtocol(PD); 2679 } 2680 2681 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 2682 if (DefinedProtocols.count(PD->getIdentifier())) 2683 return GetOrEmitProtocol(PD); 2684 2685 return GetOrEmitProtocolRef(PD); 2686 } 2687 2688 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime( 2689 CodeGenFunction &CGF, 2690 const ObjCInterfaceDecl *ID, 2691 ObjCCommonTypesHelper &ObjCTypes) { 2692 llvm::Constant *lookUpClassFn = ObjCTypes.getLookUpClassFn(); 2693 2694 llvm::Value *className = 2695 CGF.CGM.GetAddrOfConstantCString(ID->getObjCRuntimeNameAsString()) 2696 .getPointer(); 2697 ASTContext &ctx = CGF.CGM.getContext(); 2698 className = 2699 CGF.Builder.CreateBitCast(className, 2700 CGF.ConvertType( 2701 ctx.getPointerType(ctx.CharTy.withConst()))); 2702 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className); 2703 call->setDoesNotThrow(); 2704 return call; 2705 } 2706 2707 /* 2708 // Objective-C 1.0 extensions 2709 struct _objc_protocol { 2710 struct _objc_protocol_extension *isa; 2711 char *protocol_name; 2712 struct _objc_protocol_list *protocol_list; 2713 struct _objc__method_prototype_list *instance_methods; 2714 struct _objc__method_prototype_list *class_methods 2715 }; 2716 2717 See EmitProtocolExtension(). 2718 */ 2719 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 2720 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 2721 2722 // Early exit if a defining object has already been generated. 2723 if (Entry && Entry->hasInitializer()) 2724 return Entry; 2725 2726 // Use the protocol definition, if there is one. 2727 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 2728 PD = Def; 2729 2730 // FIXME: I don't understand why gcc generates this, or where it is 2731 // resolved. Investigate. Its also wasteful to look this up over and over. 2732 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2733 2734 // Construct method lists. 2735 std::vector<llvm::Constant*> InstanceMethods, ClassMethods; 2736 std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods; 2737 std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt; 2738 for (const auto *MD : PD->instance_methods()) { 2739 llvm::Constant *C = GetMethodDescriptionConstant(MD); 2740 if (!C) 2741 return GetOrEmitProtocolRef(PD); 2742 2743 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 2744 OptInstanceMethods.push_back(C); 2745 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 2746 } else { 2747 InstanceMethods.push_back(C); 2748 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 2749 } 2750 } 2751 2752 for (const auto *MD : PD->class_methods()) { 2753 llvm::Constant *C = GetMethodDescriptionConstant(MD); 2754 if (!C) 2755 return GetOrEmitProtocolRef(PD); 2756 2757 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 2758 OptClassMethods.push_back(C); 2759 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 2760 } else { 2761 ClassMethods.push_back(C); 2762 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 2763 } 2764 } 2765 2766 MethodTypesExt.insert(MethodTypesExt.end(), 2767 OptMethodTypesExt.begin(), OptMethodTypesExt.end()); 2768 2769 llvm::Constant *Values[] = { 2770 EmitProtocolExtension(PD, OptInstanceMethods, OptClassMethods, 2771 MethodTypesExt), 2772 GetClassName(PD->getObjCRuntimeNameAsString()), 2773 EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(), 2774 PD->protocol_begin(), PD->protocol_end()), 2775 EmitMethodDescList("OBJC_PROTOCOL_INSTANCE_METHODS_" + PD->getName(), 2776 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 2777 InstanceMethods), 2778 EmitMethodDescList("OBJC_PROTOCOL_CLASS_METHODS_" + PD->getName(), 2779 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 2780 ClassMethods)}; 2781 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolTy, 2782 Values); 2783 2784 if (Entry) { 2785 // Already created, update the initializer. 2786 assert(Entry->hasPrivateLinkage()); 2787 Entry->setInitializer(Init); 2788 } else { 2789 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 2790 false, llvm::GlobalValue::PrivateLinkage, 2791 Init, "OBJC_PROTOCOL_" + PD->getName()); 2792 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 2793 // FIXME: Is this necessary? Why only for protocol? 2794 Entry->setAlignment(4); 2795 2796 Protocols[PD->getIdentifier()] = Entry; 2797 } 2798 CGM.addCompilerUsedGlobal(Entry); 2799 2800 return Entry; 2801 } 2802 2803 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 2804 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 2805 2806 if (!Entry) { 2807 // We use the initializer as a marker of whether this is a forward 2808 // reference or not. At module finalization we add the empty 2809 // contents for protocols which were referenced but never defined. 2810 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, 2811 false, llvm::GlobalValue::PrivateLinkage, 2812 nullptr, "OBJC_PROTOCOL_" + PD->getName()); 2813 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 2814 // FIXME: Is this necessary? Why only for protocol? 2815 Entry->setAlignment(4); 2816 } 2817 2818 return Entry; 2819 } 2820 2821 /* 2822 struct _objc_protocol_extension { 2823 uint32_t size; 2824 struct objc_method_description_list *optional_instance_methods; 2825 struct objc_method_description_list *optional_class_methods; 2826 struct objc_property_list *instance_properties; 2827 const char ** extendedMethodTypes; 2828 struct objc_property_list *class_properties; 2829 }; 2830 */ 2831 llvm::Constant * 2832 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 2833 ArrayRef<llvm::Constant*> OptInstanceMethods, 2834 ArrayRef<llvm::Constant*> OptClassMethods, 2835 ArrayRef<llvm::Constant*> MethodTypesExt) { 2836 uint64_t Size = 2837 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 2838 llvm::Constant *Values[] = { 2839 llvm::ConstantInt::get(ObjCTypes.IntTy, Size), 2840 EmitMethodDescList("OBJC_PROTOCOL_INSTANCE_METHODS_OPT_" + PD->getName(), 2841 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 2842 OptInstanceMethods), 2843 EmitMethodDescList("OBJC_PROTOCOL_CLASS_METHODS_OPT_" + PD->getName(), 2844 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 2845 OptClassMethods), 2846 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD, 2847 ObjCTypes, false), 2848 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 2849 MethodTypesExt, ObjCTypes), 2850 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr, 2851 PD, ObjCTypes, true)}; 2852 2853 // Return null if no extension bits are used. 2854 if (Values[1]->isNullValue() && Values[2]->isNullValue() && 2855 Values[3]->isNullValue() && Values[4]->isNullValue() && 2856 Values[5]->isNullValue()) 2857 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 2858 2859 llvm::Constant *Init = 2860 llvm::ConstantStruct::get(ObjCTypes.ProtocolExtensionTy, Values); 2861 2862 // No special section, but goes in llvm.used 2863 return CreateMetadataVar("\01l_OBJC_PROTOCOLEXT_" + PD->getName(), Init, 2864 StringRef(), CGM.getPointerAlign(), true); 2865 } 2866 2867 /* 2868 struct objc_protocol_list { 2869 struct objc_protocol_list *next; 2870 long count; 2871 Protocol *list[]; 2872 }; 2873 */ 2874 llvm::Constant * 2875 CGObjCMac::EmitProtocolList(Twine Name, 2876 ObjCProtocolDecl::protocol_iterator begin, 2877 ObjCProtocolDecl::protocol_iterator end) { 2878 SmallVector<llvm::Constant *, 16> ProtocolRefs; 2879 2880 for (; begin != end; ++begin) 2881 ProtocolRefs.push_back(GetProtocolRef(*begin)); 2882 2883 // Just return null for empty protocol lists 2884 if (ProtocolRefs.empty()) 2885 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 2886 2887 // This list is null terminated. 2888 ProtocolRefs.push_back(llvm::Constant::getNullValue(ObjCTypes.ProtocolPtrTy)); 2889 2890 llvm::Constant *Values[3]; 2891 // This field is only used by the runtime. 2892 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 2893 Values[1] = llvm::ConstantInt::get(ObjCTypes.LongTy, 2894 ProtocolRefs.size() - 1); 2895 Values[2] = 2896 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolPtrTy, 2897 ProtocolRefs.size()), 2898 ProtocolRefs); 2899 2900 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 2901 llvm::GlobalVariable *GV = 2902 CreateMetadataVar(Name, Init, "__OBJC,__cat_cls_meth,regular,no_dead_strip", 2903 CGM.getPointerAlign(), false); 2904 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 2905 } 2906 2907 void CGObjCCommonMac:: 2908 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 2909 SmallVectorImpl<llvm::Constant *> &Properties, 2910 const Decl *Container, 2911 const ObjCProtocolDecl *Proto, 2912 const ObjCCommonTypesHelper &ObjCTypes, 2913 bool IsClassProperty) { 2914 for (const auto *P : Proto->protocols()) 2915 PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes, 2916 IsClassProperty); 2917 2918 for (const auto *PD : Proto->properties()) { 2919 if (IsClassProperty != PD->isClassProperty()) 2920 continue; 2921 if (!PropertySet.insert(PD->getIdentifier()).second) 2922 continue; 2923 llvm::Constant *Prop[] = { 2924 GetPropertyName(PD->getIdentifier()), 2925 GetPropertyTypeString(PD, Container) 2926 }; 2927 Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, Prop)); 2928 } 2929 } 2930 2931 /* 2932 struct _objc_property { 2933 const char * const name; 2934 const char * const attributes; 2935 }; 2936 2937 struct _objc_property_list { 2938 uint32_t entsize; // sizeof (struct _objc_property) 2939 uint32_t prop_count; 2940 struct _objc_property[prop_count]; 2941 }; 2942 */ 2943 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 2944 const Decl *Container, 2945 const ObjCContainerDecl *OCD, 2946 const ObjCCommonTypesHelper &ObjCTypes, 2947 bool IsClassProperty) { 2948 if (IsClassProperty) { 2949 // Make this entry NULL for OS X with deployment target < 10.11, for iOS 2950 // with deployment target < 9.0. 2951 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 2952 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) || 2953 (Triple.isiOS() && Triple.isOSVersionLT(9))) 2954 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 2955 } 2956 2957 SmallVector<llvm::Constant *, 16> Properties; 2958 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 2959 2960 auto AddProperty = [&](const ObjCPropertyDecl *PD) { 2961 llvm::Constant *Prop[] = {GetPropertyName(PD->getIdentifier()), 2962 GetPropertyTypeString(PD, Container)}; 2963 Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, Prop)); 2964 }; 2965 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) 2966 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions()) 2967 for (auto *PD : ClassExt->properties()) { 2968 if (IsClassProperty != PD->isClassProperty()) 2969 continue; 2970 PropertySet.insert(PD->getIdentifier()); 2971 AddProperty(PD); 2972 } 2973 2974 for (const auto *PD : OCD->properties()) { 2975 if (IsClassProperty != PD->isClassProperty()) 2976 continue; 2977 // Don't emit duplicate metadata for properties that were already in a 2978 // class extension. 2979 if (!PropertySet.insert(PD->getIdentifier()).second) 2980 continue; 2981 AddProperty(PD); 2982 } 2983 2984 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 2985 for (const auto *P : OID->all_referenced_protocols()) 2986 PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes, 2987 IsClassProperty); 2988 } 2989 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 2990 for (const auto *P : CD->protocols()) 2991 PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes, 2992 IsClassProperty); 2993 } 2994 2995 // Return null for empty list. 2996 if (Properties.empty()) 2997 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 2998 2999 unsigned PropertySize = 3000 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 3001 llvm::Constant *Values[3]; 3002 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, PropertySize); 3003 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Properties.size()); 3004 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.PropertyTy, 3005 Properties.size()); 3006 Values[2] = llvm::ConstantArray::get(AT, Properties); 3007 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 3008 3009 llvm::GlobalVariable *GV = 3010 CreateMetadataVar(Name, Init, 3011 (ObjCABI == 2) ? "__DATA, __objc_const" : 3012 "__OBJC,__property,regular,no_dead_strip", 3013 CGM.getPointerAlign(), 3014 true); 3015 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 3016 } 3017 3018 llvm::Constant * 3019 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 3020 ArrayRef<llvm::Constant*> MethodTypes, 3021 const ObjCCommonTypesHelper &ObjCTypes) { 3022 // Return null for empty list. 3023 if (MethodTypes.empty()) 3024 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 3025 3026 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 3027 MethodTypes.size()); 3028 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 3029 3030 llvm::GlobalVariable *GV = CreateMetadataVar( 3031 Name, Init, (ObjCABI == 2) ? "__DATA, __objc_const" : StringRef(), 3032 CGM.getPointerAlign(), true); 3033 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 3034 } 3035 3036 /* 3037 struct objc_method_description_list { 3038 int count; 3039 struct objc_method_description list[]; 3040 }; 3041 */ 3042 llvm::Constant * 3043 CGObjCMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) { 3044 llvm::Constant *Desc[] = { 3045 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 3046 ObjCTypes.SelectorPtrTy), 3047 GetMethodVarType(MD) 3048 }; 3049 if (!Desc[1]) 3050 return nullptr; 3051 3052 return llvm::ConstantStruct::get(ObjCTypes.MethodDescriptionTy, 3053 Desc); 3054 } 3055 3056 llvm::Constant * 3057 CGObjCMac::EmitMethodDescList(Twine Name, StringRef Section, 3058 ArrayRef<llvm::Constant *> Methods) { 3059 // Return null for empty list. 3060 if (Methods.empty()) 3061 return llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy); 3062 3063 llvm::Constant *Values[2]; 3064 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 3065 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodDescriptionTy, 3066 Methods.size()); 3067 Values[1] = llvm::ConstantArray::get(AT, Methods); 3068 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 3069 3070 llvm::GlobalVariable *GV = 3071 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3072 return llvm::ConstantExpr::getBitCast(GV, 3073 ObjCTypes.MethodDescriptionListPtrTy); 3074 } 3075 3076 /* 3077 struct _objc_category { 3078 char *category_name; 3079 char *class_name; 3080 struct _objc_method_list *instance_methods; 3081 struct _objc_method_list *class_methods; 3082 struct _objc_protocol_list *protocols; 3083 uint32_t size; // <rdar://4585769> 3084 struct _objc_property_list *instance_properties; 3085 struct _objc_property_list *class_properties; 3086 }; 3087 */ 3088 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 3089 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 3090 3091 // FIXME: This is poor design, the OCD should have a pointer to the category 3092 // decl. Additionally, note that Category can be null for the @implementation 3093 // w/o an @interface case. Sema should just create one for us as it does for 3094 // @implementation so everyone else can live life under a clear blue sky. 3095 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 3096 const ObjCCategoryDecl *Category = 3097 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 3098 3099 SmallString<256> ExtName; 3100 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 3101 << OCD->getName(); 3102 3103 SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods; 3104 for (const auto *I : OCD->instance_methods()) 3105 // Instance methods should always be defined. 3106 InstanceMethods.push_back(GetMethodConstant(I)); 3107 3108 for (const auto *I : OCD->class_methods()) 3109 // Class methods should always be defined. 3110 ClassMethods.push_back(GetMethodConstant(I)); 3111 3112 llvm::Constant *Values[8]; 3113 Values[0] = GetClassName(OCD->getName()); 3114 Values[1] = GetClassName(Interface->getObjCRuntimeNameAsString()); 3115 LazySymbols.insert(Interface->getIdentifier()); 3116 Values[2] = EmitMethodList("OBJC_CATEGORY_INSTANCE_METHODS_" + ExtName.str(), 3117 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 3118 InstanceMethods); 3119 Values[3] = EmitMethodList("OBJC_CATEGORY_CLASS_METHODS_" + ExtName.str(), 3120 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 3121 ClassMethods); 3122 if (Category) { 3123 Values[4] = 3124 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 3125 Category->protocol_begin(), Category->protocol_end()); 3126 } else { 3127 Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 3128 } 3129 Values[5] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 3130 3131 // If there is no category @interface then there can be no properties. 3132 if (Category) { 3133 Values[6] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 3134 OCD, Category, ObjCTypes, false); 3135 Values[7] = EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 3136 OCD, Category, ObjCTypes, true); 3137 } else { 3138 Values[6] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3139 Values[7] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 3140 } 3141 3142 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.CategoryTy, 3143 Values); 3144 3145 llvm::GlobalVariable *GV = 3146 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Init, 3147 "__OBJC,__category,regular,no_dead_strip", 3148 CGM.getPointerAlign(), true); 3149 DefinedCategories.push_back(GV); 3150 DefinedCategoryNames.insert(ExtName.str()); 3151 // method definition entries must be clear for next implementation. 3152 MethodDefinitions.clear(); 3153 } 3154 3155 enum FragileClassFlags { 3156 /// Apparently: is not a meta-class. 3157 FragileABI_Class_Factory = 0x00001, 3158 3159 /// Is a meta-class. 3160 FragileABI_Class_Meta = 0x00002, 3161 3162 /// Has a non-trivial constructor or destructor. 3163 FragileABI_Class_HasCXXStructors = 0x02000, 3164 3165 /// Has hidden visibility. 3166 FragileABI_Class_Hidden = 0x20000, 3167 3168 /// Class implementation was compiled under ARC. 3169 FragileABI_Class_CompiledByARC = 0x04000000, 3170 3171 /// Class implementation was compiled under MRC and has MRC weak ivars. 3172 /// Exclusive with CompiledByARC. 3173 FragileABI_Class_HasMRCWeakIvars = 0x08000000, 3174 }; 3175 3176 enum NonFragileClassFlags { 3177 /// Is a meta-class. 3178 NonFragileABI_Class_Meta = 0x00001, 3179 3180 /// Is a root class. 3181 NonFragileABI_Class_Root = 0x00002, 3182 3183 /// Has a non-trivial constructor or destructor. 3184 NonFragileABI_Class_HasCXXStructors = 0x00004, 3185 3186 /// Has hidden visibility. 3187 NonFragileABI_Class_Hidden = 0x00010, 3188 3189 /// Has the exception attribute. 3190 NonFragileABI_Class_Exception = 0x00020, 3191 3192 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3193 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3194 3195 /// Class implementation was compiled under ARC. 3196 NonFragileABI_Class_CompiledByARC = 0x00080, 3197 3198 /// Class has non-trivial destructors, but zero-initialization is okay. 3199 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100, 3200 3201 /// Class implementation was compiled under MRC and has MRC weak ivars. 3202 /// Exclusive with CompiledByARC. 3203 NonFragileABI_Class_HasMRCWeakIvars = 0x00200, 3204 }; 3205 3206 static bool hasWeakMember(QualType type) { 3207 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) { 3208 return true; 3209 } 3210 3211 if (auto recType = type->getAs<RecordType>()) { 3212 for (auto field : recType->getDecl()->fields()) { 3213 if (hasWeakMember(field->getType())) 3214 return true; 3215 } 3216 } 3217 3218 return false; 3219 } 3220 3221 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag 3222 /// (and actually fill in a layout string) if we really do have any 3223 /// __weak ivars. 3224 static bool hasMRCWeakIvars(CodeGenModule &CGM, 3225 const ObjCImplementationDecl *ID) { 3226 if (!CGM.getLangOpts().ObjCWeak) return false; 3227 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 3228 3229 for (const ObjCIvarDecl *ivar = 3230 ID->getClassInterface()->all_declared_ivar_begin(); 3231 ivar; ivar = ivar->getNextIvar()) { 3232 if (hasWeakMember(ivar->getType())) 3233 return true; 3234 } 3235 3236 return false; 3237 } 3238 3239 /* 3240 struct _objc_class { 3241 Class isa; 3242 Class super_class; 3243 const char *name; 3244 long version; 3245 long info; 3246 long instance_size; 3247 struct _objc_ivar_list *ivars; 3248 struct _objc_method_list *methods; 3249 struct _objc_cache *cache; 3250 struct _objc_protocol_list *protocols; 3251 // Objective-C 1.0 extensions (<rdr://4585769>) 3252 const char *ivar_layout; 3253 struct _objc_class_ext *ext; 3254 }; 3255 3256 See EmitClassExtension(); 3257 */ 3258 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3259 DefinedSymbols.insert(ID->getIdentifier()); 3260 3261 std::string ClassName = ID->getNameAsString(); 3262 // FIXME: Gross 3263 ObjCInterfaceDecl *Interface = 3264 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3265 llvm::Constant *Protocols = 3266 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3267 Interface->all_referenced_protocol_begin(), 3268 Interface->all_referenced_protocol_end()); 3269 unsigned Flags = FragileABI_Class_Factory; 3270 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3271 Flags |= FragileABI_Class_HasCXXStructors; 3272 3273 bool hasMRCWeak = false; 3274 3275 if (CGM.getLangOpts().ObjCAutoRefCount) 3276 Flags |= FragileABI_Class_CompiledByARC; 3277 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 3278 Flags |= FragileABI_Class_HasMRCWeakIvars; 3279 3280 CharUnits Size = 3281 CGM.getContext().getASTObjCImplementationLayout(ID).getSize(); 3282 3283 // FIXME: Set CXX-structors flag. 3284 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3285 Flags |= FragileABI_Class_Hidden; 3286 3287 SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods; 3288 for (const auto *I : ID->instance_methods()) 3289 // Instance methods should always be defined. 3290 InstanceMethods.push_back(GetMethodConstant(I)); 3291 3292 for (const auto *I : ID->class_methods()) 3293 // Class methods should always be defined. 3294 ClassMethods.push_back(GetMethodConstant(I)); 3295 3296 for (const auto *PID : ID->property_impls()) { 3297 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3298 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3299 3300 if (ObjCMethodDecl *MD = PD->getGetterMethodDecl()) 3301 if (llvm::Constant *C = GetMethodConstant(MD)) 3302 InstanceMethods.push_back(C); 3303 if (ObjCMethodDecl *MD = PD->getSetterMethodDecl()) 3304 if (llvm::Constant *C = GetMethodConstant(MD)) 3305 InstanceMethods.push_back(C); 3306 } 3307 } 3308 3309 llvm::Constant *Values[12]; 3310 Values[ 0] = EmitMetaClass(ID, Protocols, ClassMethods); 3311 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3312 // Record a reference to the super class. 3313 LazySymbols.insert(Super->getIdentifier()); 3314 3315 Values[ 1] = 3316 llvm::ConstantExpr::getBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3317 ObjCTypes.ClassPtrTy); 3318 } else { 3319 Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy); 3320 } 3321 Values[ 2] = GetClassName(ID->getObjCRuntimeNameAsString()); 3322 // Version is always 0. 3323 Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 3324 Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags); 3325 Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size.getQuantity()); 3326 Values[ 6] = EmitIvarList(ID, false); 3327 Values[7] = EmitMethodList("OBJC_INSTANCE_METHODS_" + ID->getName(), 3328 "__OBJC,__inst_meth,regular,no_dead_strip", 3329 InstanceMethods); 3330 // cache is always NULL. 3331 Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy); 3332 Values[ 9] = Protocols; 3333 Values[10] = BuildStrongIvarLayout(ID, CharUnits::Zero(), Size); 3334 Values[11] = EmitClassExtension(ID, Size, hasMRCWeak, 3335 false/*isClassProperty*/); 3336 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy, 3337 Values); 3338 std::string Name("OBJC_CLASS_"); 3339 Name += ClassName; 3340 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3341 // Check for a forward reference. 3342 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3343 if (GV) { 3344 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3345 "Forward metaclass reference has incorrect type."); 3346 GV->setInitializer(Init); 3347 GV->setSection(Section); 3348 GV->setAlignment(CGM.getPointerAlign().getQuantity()); 3349 CGM.addCompilerUsedGlobal(GV); 3350 } else 3351 GV = CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3352 DefinedClasses.push_back(GV); 3353 ImplementedClasses.push_back(Interface); 3354 // method definition entries must be clear for next implementation. 3355 MethodDefinitions.clear(); 3356 } 3357 3358 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3359 llvm::Constant *Protocols, 3360 ArrayRef<llvm::Constant*> Methods) { 3361 unsigned Flags = FragileABI_Class_Meta; 3362 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3363 3364 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3365 Flags |= FragileABI_Class_Hidden; 3366 3367 llvm::Constant *Values[12]; 3368 // The isa for the metaclass is the root of the hierarchy. 3369 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3370 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3371 Root = Super; 3372 Values[ 0] = 3373 llvm::ConstantExpr::getBitCast(GetClassName(Root->getObjCRuntimeNameAsString()), 3374 ObjCTypes.ClassPtrTy); 3375 // The super class for the metaclass is emitted as the name of the 3376 // super class. The runtime fixes this up to point to the 3377 // *metaclass* for the super class. 3378 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3379 Values[ 1] = 3380 llvm::ConstantExpr::getBitCast(GetClassName(Super->getObjCRuntimeNameAsString()), 3381 ObjCTypes.ClassPtrTy); 3382 } else { 3383 Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy); 3384 } 3385 Values[ 2] = GetClassName(ID->getObjCRuntimeNameAsString()); 3386 // Version is always 0. 3387 Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 3388 Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags); 3389 Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size); 3390 Values[ 6] = EmitIvarList(ID, true); 3391 Values[7] = 3392 EmitMethodList("OBJC_CLASS_METHODS_" + ID->getNameAsString(), 3393 "__OBJC,__cls_meth,regular,no_dead_strip", Methods); 3394 // cache is always NULL. 3395 Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy); 3396 Values[ 9] = Protocols; 3397 // ivar_layout for metaclass is always NULL. 3398 Values[10] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 3399 // The class extension is used to store class properties for metaclasses. 3400 Values[11] = EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/, 3401 true/*isClassProperty*/); 3402 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy, 3403 Values); 3404 3405 std::string Name("OBJC_METACLASS_"); 3406 Name += ID->getName(); 3407 3408 // Check for a forward reference. 3409 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3410 if (GV) { 3411 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3412 "Forward metaclass reference has incorrect type."); 3413 GV->setInitializer(Init); 3414 } else { 3415 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3416 llvm::GlobalValue::PrivateLinkage, 3417 Init, Name); 3418 } 3419 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3420 GV->setAlignment(4); 3421 CGM.addCompilerUsedGlobal(GV); 3422 3423 return GV; 3424 } 3425 3426 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3427 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString(); 3428 3429 // FIXME: Should we look these up somewhere other than the module. Its a bit 3430 // silly since we only generate these while processing an implementation, so 3431 // exactly one pointer would work if know when we entered/exitted an 3432 // implementation block. 3433 3434 // Check for an existing forward reference. 3435 // Previously, metaclass with internal linkage may have been defined. 3436 // pass 'true' as 2nd argument so it is returned. 3437 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3438 if (!GV) 3439 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3440 llvm::GlobalValue::PrivateLinkage, nullptr, 3441 Name); 3442 3443 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3444 "Forward metaclass reference has incorrect type."); 3445 return GV; 3446 } 3447 3448 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3449 std::string Name = "OBJC_CLASS_" + ID->getNameAsString(); 3450 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true); 3451 3452 if (!GV) 3453 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3454 llvm::GlobalValue::PrivateLinkage, nullptr, 3455 Name); 3456 3457 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3458 "Forward class metadata reference has incorrect type."); 3459 return GV; 3460 } 3461 3462 /* 3463 Emit a "class extension", which in this specific context means extra 3464 data that doesn't fit in the normal fragile-ABI class structure, and 3465 has nothing to do with the language concept of a class extension. 3466 3467 struct objc_class_ext { 3468 uint32_t size; 3469 const char *weak_ivar_layout; 3470 struct _objc_property_list *properties; 3471 }; 3472 */ 3473 llvm::Constant * 3474 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID, 3475 CharUnits InstanceSize, bool hasMRCWeakIvars, 3476 bool isClassProperty) { 3477 uint64_t Size = 3478 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3479 3480 llvm::Constant *Values[3]; 3481 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 3482 if (isClassProperty) { 3483 llvm::Type *PtrTy = CGM.Int8PtrTy; 3484 Values[1] = llvm::Constant::getNullValue(PtrTy); 3485 } else 3486 Values[1] = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize, 3487 hasMRCWeakIvars); 3488 if (isClassProperty) 3489 Values[2] = EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ID->getName(), 3490 ID, ID->getClassInterface(), ObjCTypes, true); 3491 else 3492 Values[2] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getName(), 3493 ID, ID->getClassInterface(), ObjCTypes, false); 3494 3495 // Return null if no extension bits are used. 3496 if ((!Values[1] || Values[1]->isNullValue()) && Values[2]->isNullValue()) 3497 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3498 3499 llvm::Constant *Init = 3500 llvm::ConstantStruct::get(ObjCTypes.ClassExtensionTy, Values); 3501 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), Init, 3502 "__OBJC,__class_ext,regular,no_dead_strip", 3503 CGM.getPointerAlign(), true); 3504 } 3505 3506 /* 3507 struct objc_ivar { 3508 char *ivar_name; 3509 char *ivar_type; 3510 int ivar_offset; 3511 }; 3512 3513 struct objc_ivar_list { 3514 int ivar_count; 3515 struct objc_ivar list[count]; 3516 }; 3517 */ 3518 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3519 bool ForClass) { 3520 std::vector<llvm::Constant*> Ivars; 3521 3522 // When emitting the root class GCC emits ivar entries for the 3523 // actual class structure. It is not clear if we need to follow this 3524 // behavior; for now lets try and get away with not doing it. If so, 3525 // the cleanest solution would be to make up an ObjCInterfaceDecl 3526 // for the class. 3527 if (ForClass) 3528 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3529 3530 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3531 3532 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3533 IVD; IVD = IVD->getNextIvar()) { 3534 // Ignore unnamed bit-fields. 3535 if (!IVD->getDeclName()) 3536 continue; 3537 llvm::Constant *Ivar[] = { 3538 GetMethodVarName(IVD->getIdentifier()), 3539 GetMethodVarType(IVD), 3540 llvm::ConstantInt::get(ObjCTypes.IntTy, 3541 ComputeIvarBaseOffset(CGM, OID, IVD)) 3542 }; 3543 Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarTy, Ivar)); 3544 } 3545 3546 // Return null for empty list. 3547 if (Ivars.empty()) 3548 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3549 3550 llvm::Constant *Values[2]; 3551 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size()); 3552 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarTy, 3553 Ivars.size()); 3554 Values[1] = llvm::ConstantArray::get(AT, Ivars); 3555 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 3556 3557 llvm::GlobalVariable *GV; 3558 if (ForClass) 3559 GV = 3560 CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), Init, 3561 "__OBJC,__class_vars,regular,no_dead_strip", 3562 CGM.getPointerAlign(), true); 3563 else 3564 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), Init, 3565 "__OBJC,__instance_vars,regular,no_dead_strip", 3566 CGM.getPointerAlign(), true); 3567 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3568 } 3569 3570 /* 3571 struct objc_method { 3572 SEL method_name; 3573 char *method_types; 3574 void *method; 3575 }; 3576 3577 struct objc_method_list { 3578 struct objc_method_list *obsolete; 3579 int count; 3580 struct objc_method methods_list[count]; 3581 }; 3582 */ 3583 3584 /// GetMethodConstant - Return a struct objc_method constant for the 3585 /// given method if it has been defined. The result is null if the 3586 /// method has not been defined. The return value has type MethodPtrTy. 3587 llvm::Constant *CGObjCMac::GetMethodConstant(const ObjCMethodDecl *MD) { 3588 llvm::Function *Fn = GetMethodDefinition(MD); 3589 if (!Fn) 3590 return nullptr; 3591 3592 llvm::Constant *Method[] = { 3593 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 3594 ObjCTypes.SelectorPtrTy), 3595 GetMethodVarType(MD), 3596 llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy) 3597 }; 3598 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method); 3599 } 3600 3601 llvm::Constant *CGObjCMac::EmitMethodList(Twine Name, StringRef Section, 3602 ArrayRef<llvm::Constant *> Methods) { 3603 // Return null for empty list. 3604 if (Methods.empty()) 3605 return llvm::Constant::getNullValue(ObjCTypes.MethodListPtrTy); 3606 3607 llvm::Constant *Values[3]; 3608 Values[0] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 3609 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 3610 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy, 3611 Methods.size()); 3612 Values[2] = llvm::ConstantArray::get(AT, Methods); 3613 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 3614 3615 llvm::GlobalVariable *GV = 3616 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true); 3617 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 3618 } 3619 3620 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 3621 const ObjCContainerDecl *CD) { 3622 SmallString<256> Name; 3623 GetNameForMethod(OMD, CD, Name); 3624 3625 CodeGenTypes &Types = CGM.getTypes(); 3626 llvm::FunctionType *MethodTy = 3627 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3628 llvm::Function *Method = 3629 llvm::Function::Create(MethodTy, 3630 llvm::GlobalValue::InternalLinkage, 3631 Name.str(), 3632 &CGM.getModule()); 3633 MethodDefinitions.insert(std::make_pair(OMD, Method)); 3634 3635 return Method; 3636 } 3637 3638 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name, 3639 llvm::Constant *Init, 3640 StringRef Section, 3641 CharUnits Align, 3642 bool AddToUsed) { 3643 llvm::Type *Ty = Init->getType(); 3644 llvm::GlobalVariable *GV = 3645 new llvm::GlobalVariable(CGM.getModule(), Ty, false, 3646 llvm::GlobalValue::PrivateLinkage, Init, Name); 3647 if (!Section.empty()) 3648 GV->setSection(Section); 3649 GV->setAlignment(Align.getQuantity()); 3650 if (AddToUsed) 3651 CGM.addCompilerUsedGlobal(GV); 3652 return GV; 3653 } 3654 3655 llvm::Function *CGObjCMac::ModuleInitFunction() { 3656 // Abuse this interface function as a place to finalize. 3657 FinishModule(); 3658 return nullptr; 3659 } 3660 3661 llvm::Constant *CGObjCMac::GetPropertyGetFunction() { 3662 return ObjCTypes.getGetPropertyFn(); 3663 } 3664 3665 llvm::Constant *CGObjCMac::GetPropertySetFunction() { 3666 return ObjCTypes.getSetPropertyFn(); 3667 } 3668 3669 llvm::Constant *CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 3670 bool copy) { 3671 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 3672 } 3673 3674 llvm::Constant *CGObjCMac::GetGetStructFunction() { 3675 return ObjCTypes.getCopyStructFn(); 3676 } 3677 3678 llvm::Constant *CGObjCMac::GetSetStructFunction() { 3679 return ObjCTypes.getCopyStructFn(); 3680 } 3681 3682 llvm::Constant *CGObjCMac::GetCppAtomicObjectGetFunction() { 3683 return ObjCTypes.getCppAtomicObjectFunction(); 3684 } 3685 3686 llvm::Constant *CGObjCMac::GetCppAtomicObjectSetFunction() { 3687 return ObjCTypes.getCppAtomicObjectFunction(); 3688 } 3689 3690 llvm::Constant *CGObjCMac::EnumerationMutationFunction() { 3691 return ObjCTypes.getEnumerationMutationFn(); 3692 } 3693 3694 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 3695 return EmitTryOrSynchronizedStmt(CGF, S); 3696 } 3697 3698 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 3699 const ObjCAtSynchronizedStmt &S) { 3700 return EmitTryOrSynchronizedStmt(CGF, S); 3701 } 3702 3703 namespace { 3704 struct PerformFragileFinally final : EHScopeStack::Cleanup { 3705 const Stmt &S; 3706 Address SyncArgSlot; 3707 Address CallTryExitVar; 3708 Address ExceptionData; 3709 ObjCTypesHelper &ObjCTypes; 3710 PerformFragileFinally(const Stmt *S, 3711 Address SyncArgSlot, 3712 Address CallTryExitVar, 3713 Address ExceptionData, 3714 ObjCTypesHelper *ObjCTypes) 3715 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 3716 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 3717 3718 void Emit(CodeGenFunction &CGF, Flags flags) override { 3719 // Check whether we need to call objc_exception_try_exit. 3720 // In optimized code, this branch will always be folded. 3721 llvm::BasicBlock *FinallyCallExit = 3722 CGF.createBasicBlock("finally.call_exit"); 3723 llvm::BasicBlock *FinallyNoCallExit = 3724 CGF.createBasicBlock("finally.no_call_exit"); 3725 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 3726 FinallyCallExit, FinallyNoCallExit); 3727 3728 CGF.EmitBlock(FinallyCallExit); 3729 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 3730 ExceptionData.getPointer()); 3731 3732 CGF.EmitBlock(FinallyNoCallExit); 3733 3734 if (isa<ObjCAtTryStmt>(S)) { 3735 if (const ObjCAtFinallyStmt* FinallyStmt = 3736 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 3737 // Don't try to do the @finally if this is an EH cleanup. 3738 if (flags.isForEHCleanup()) return; 3739 3740 // Save the current cleanup destination in case there's 3741 // control flow inside the finally statement. 3742 llvm::Value *CurCleanupDest = 3743 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 3744 3745 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 3746 3747 if (CGF.HaveInsertPoint()) { 3748 CGF.Builder.CreateStore(CurCleanupDest, 3749 CGF.getNormalCleanupDestSlot()); 3750 } else { 3751 // Currently, the end of the cleanup must always exist. 3752 CGF.EnsureInsertPoint(); 3753 } 3754 } 3755 } else { 3756 // Emit objc_sync_exit(expr); as finally's sole statement for 3757 // @synchronized. 3758 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 3759 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 3760 } 3761 } 3762 }; 3763 3764 class FragileHazards { 3765 CodeGenFunction &CGF; 3766 SmallVector<llvm::Value*, 20> Locals; 3767 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 3768 3769 llvm::InlineAsm *ReadHazard; 3770 llvm::InlineAsm *WriteHazard; 3771 3772 llvm::FunctionType *GetAsmFnType(); 3773 3774 void collectLocals(); 3775 void emitReadHazard(CGBuilderTy &Builder); 3776 3777 public: 3778 FragileHazards(CodeGenFunction &CGF); 3779 3780 void emitWriteHazard(); 3781 void emitHazardsInNewBlocks(); 3782 }; 3783 } // end anonymous namespace 3784 3785 /// Create the fragile-ABI read and write hazards based on the current 3786 /// state of the function, which is presumed to be immediately prior 3787 /// to a @try block. These hazards are used to maintain correct 3788 /// semantics in the face of optimization and the fragile ABI's 3789 /// cavalier use of setjmp/longjmp. 3790 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 3791 collectLocals(); 3792 3793 if (Locals.empty()) return; 3794 3795 // Collect all the blocks in the function. 3796 for (llvm::Function::iterator 3797 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 3798 BlocksBeforeTry.insert(&*I); 3799 3800 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 3801 3802 // Create a read hazard for the allocas. This inhibits dead-store 3803 // optimizations and forces the values to memory. This hazard is 3804 // inserted before any 'throwing' calls in the protected scope to 3805 // reflect the possibility that the variables might be read from the 3806 // catch block if the call throws. 3807 { 3808 std::string Constraint; 3809 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 3810 if (I) Constraint += ','; 3811 Constraint += "*m"; 3812 } 3813 3814 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 3815 } 3816 3817 // Create a write hazard for the allocas. This inhibits folding 3818 // loads across the hazard. This hazard is inserted at the 3819 // beginning of the catch path to reflect the possibility that the 3820 // variables might have been written within the protected scope. 3821 { 3822 std::string Constraint; 3823 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 3824 if (I) Constraint += ','; 3825 Constraint += "=*m"; 3826 } 3827 3828 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 3829 } 3830 } 3831 3832 /// Emit a write hazard at the current location. 3833 void FragileHazards::emitWriteHazard() { 3834 if (Locals.empty()) return; 3835 3836 CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 3837 } 3838 3839 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 3840 assert(!Locals.empty()); 3841 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 3842 call->setDoesNotThrow(); 3843 call->setCallingConv(CGF.getRuntimeCC()); 3844 } 3845 3846 /// Emit read hazards in all the protected blocks, i.e. all the blocks 3847 /// which have been inserted since the beginning of the try. 3848 void FragileHazards::emitHazardsInNewBlocks() { 3849 if (Locals.empty()) return; 3850 3851 CGBuilderTy Builder(CGF, CGF.getLLVMContext()); 3852 3853 // Iterate through all blocks, skipping those prior to the try. 3854 for (llvm::Function::iterator 3855 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 3856 llvm::BasicBlock &BB = *FI; 3857 if (BlocksBeforeTry.count(&BB)) continue; 3858 3859 // Walk through all the calls in the block. 3860 for (llvm::BasicBlock::iterator 3861 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 3862 llvm::Instruction &I = *BI; 3863 3864 // Ignore instructions that aren't non-intrinsic calls. 3865 // These are the only calls that can possibly call longjmp. 3866 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) continue; 3867 if (isa<llvm::IntrinsicInst>(I)) 3868 continue; 3869 3870 // Ignore call sites marked nounwind. This may be questionable, 3871 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 3872 llvm::CallSite CS(&I); 3873 if (CS.doesNotThrow()) continue; 3874 3875 // Insert a read hazard before the call. This will ensure that 3876 // any writes to the locals are performed before making the 3877 // call. If the call throws, then this is sufficient to 3878 // guarantee correctness as long as it doesn't also write to any 3879 // locals. 3880 Builder.SetInsertPoint(&BB, BI); 3881 emitReadHazard(Builder); 3882 } 3883 } 3884 } 3885 3886 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, llvm::Value *V) { 3887 if (V) S.insert(V); 3888 } 3889 3890 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) { 3891 if (V.isValid()) S.insert(V.getPointer()); 3892 } 3893 3894 void FragileHazards::collectLocals() { 3895 // Compute a set of allocas to ignore. 3896 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 3897 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 3898 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 3899 3900 // Collect all the allocas currently in the function. This is 3901 // probably way too aggressive. 3902 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 3903 for (llvm::BasicBlock::iterator 3904 I = Entry.begin(), E = Entry.end(); I != E; ++I) 3905 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 3906 Locals.push_back(&*I); 3907 } 3908 3909 llvm::FunctionType *FragileHazards::GetAsmFnType() { 3910 SmallVector<llvm::Type *, 16> tys(Locals.size()); 3911 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 3912 tys[i] = Locals[i]->getType(); 3913 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 3914 } 3915 3916 /* 3917 3918 Objective-C setjmp-longjmp (sjlj) Exception Handling 3919 -- 3920 3921 A catch buffer is a setjmp buffer plus: 3922 - a pointer to the exception that was caught 3923 - a pointer to the previous exception data buffer 3924 - two pointers of reserved storage 3925 Therefore catch buffers form a stack, with a pointer to the top 3926 of the stack kept in thread-local storage. 3927 3928 objc_exception_try_enter pushes a catch buffer onto the EH stack. 3929 objc_exception_try_exit pops the given catch buffer, which is 3930 required to be the top of the EH stack. 3931 objc_exception_throw pops the top of the EH stack, writes the 3932 thrown exception into the appropriate field, and longjmps 3933 to the setjmp buffer. It crashes the process (with a printf 3934 and an abort()) if there are no catch buffers on the stack. 3935 objc_exception_extract just reads the exception pointer out of the 3936 catch buffer. 3937 3938 There's no reason an implementation couldn't use a light-weight 3939 setjmp here --- something like __builtin_setjmp, but API-compatible 3940 with the heavyweight setjmp. This will be more important if we ever 3941 want to implement correct ObjC/C++ exception interactions for the 3942 fragile ABI. 3943 3944 Note that for this use of setjmp/longjmp to be correct, we may need 3945 to mark some local variables volatile: if a non-volatile local 3946 variable is modified between the setjmp and the longjmp, it has 3947 indeterminate value. For the purposes of LLVM IR, it may be 3948 sufficient to make loads and stores within the @try (to variables 3949 declared outside the @try) volatile. This is necessary for 3950 optimized correctness, but is not currently being done; this is 3951 being tracked as rdar://problem/8160285 3952 3953 The basic framework for a @try-catch-finally is as follows: 3954 { 3955 objc_exception_data d; 3956 id _rethrow = null; 3957 bool _call_try_exit = true; 3958 3959 objc_exception_try_enter(&d); 3960 if (!setjmp(d.jmp_buf)) { 3961 ... try body ... 3962 } else { 3963 // exception path 3964 id _caught = objc_exception_extract(&d); 3965 3966 // enter new try scope for handlers 3967 if (!setjmp(d.jmp_buf)) { 3968 ... match exception and execute catch blocks ... 3969 3970 // fell off end, rethrow. 3971 _rethrow = _caught; 3972 ... jump-through-finally to finally_rethrow ... 3973 } else { 3974 // exception in catch block 3975 _rethrow = objc_exception_extract(&d); 3976 _call_try_exit = false; 3977 ... jump-through-finally to finally_rethrow ... 3978 } 3979 } 3980 ... jump-through-finally to finally_end ... 3981 3982 finally: 3983 if (_call_try_exit) 3984 objc_exception_try_exit(&d); 3985 3986 ... finally block .... 3987 ... dispatch to finally destination ... 3988 3989 finally_rethrow: 3990 objc_exception_throw(_rethrow); 3991 3992 finally_end: 3993 } 3994 3995 This framework differs slightly from the one gcc uses, in that gcc 3996 uses _rethrow to determine if objc_exception_try_exit should be called 3997 and if the object should be rethrown. This breaks in the face of 3998 throwing nil and introduces unnecessary branches. 3999 4000 We specialize this framework for a few particular circumstances: 4001 4002 - If there are no catch blocks, then we avoid emitting the second 4003 exception handling context. 4004 4005 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 4006 e)) we avoid emitting the code to rethrow an uncaught exception. 4007 4008 - FIXME: If there is no @finally block we can do a few more 4009 simplifications. 4010 4011 Rethrows and Jumps-Through-Finally 4012 -- 4013 4014 '@throw;' is supported by pushing the currently-caught exception 4015 onto ObjCEHStack while the @catch blocks are emitted. 4016 4017 Branches through the @finally block are handled with an ordinary 4018 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 4019 exceptions are not compatible with C++ exceptions, and this is 4020 hardly the only place where this will go wrong. 4021 4022 @synchronized(expr) { stmt; } is emitted as if it were: 4023 id synch_value = expr; 4024 objc_sync_enter(synch_value); 4025 @try { stmt; } @finally { objc_sync_exit(synch_value); } 4026 */ 4027 4028 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 4029 const Stmt &S) { 4030 bool isTry = isa<ObjCAtTryStmt>(S); 4031 4032 // A destination for the fall-through edges of the catch handlers to 4033 // jump to. 4034 CodeGenFunction::JumpDest FinallyEnd = 4035 CGF.getJumpDestInCurrentScope("finally.end"); 4036 4037 // A destination for the rethrow edge of the catch handlers to jump 4038 // to. 4039 CodeGenFunction::JumpDest FinallyRethrow = 4040 CGF.getJumpDestInCurrentScope("finally.rethrow"); 4041 4042 // For @synchronized, call objc_sync_enter(sync.expr). The 4043 // evaluation of the expression must occur before we enter the 4044 // @synchronized. We can't avoid a temp here because we need the 4045 // value to be preserved. If the backend ever does liveness 4046 // correctly after setjmp, this will be unnecessary. 4047 Address SyncArgSlot = Address::invalid(); 4048 if (!isTry) { 4049 llvm::Value *SyncArg = 4050 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 4051 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 4052 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 4053 4054 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), 4055 CGF.getPointerAlign(), "sync.arg"); 4056 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 4057 } 4058 4059 // Allocate memory for the setjmp buffer. This needs to be kept 4060 // live throughout the try and catch blocks. 4061 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 4062 CGF.getPointerAlign(), 4063 "exceptiondata.ptr"); 4064 4065 // Create the fragile hazards. Note that this will not capture any 4066 // of the allocas required for exception processing, but will 4067 // capture the current basic block (which extends all the way to the 4068 // setjmp call) as "before the @try". 4069 FragileHazards Hazards(CGF); 4070 4071 // Create a flag indicating whether the cleanup needs to call 4072 // objc_exception_try_exit. This is true except when 4073 // - no catches match and we're branching through the cleanup 4074 // just to rethrow the exception, or 4075 // - a catch matched and we're falling out of the catch handler. 4076 // The setjmp-safety rule here is that we should always store to this 4077 // variable in a place that dominates the branch through the cleanup 4078 // without passing through any setjmps. 4079 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 4080 CharUnits::One(), 4081 "_call_try_exit"); 4082 4083 // A slot containing the exception to rethrow. Only needed when we 4084 // have both a @catch and a @finally. 4085 Address PropagatingExnVar = Address::invalid(); 4086 4087 // Push a normal cleanup to leave the try scope. 4088 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 4089 SyncArgSlot, 4090 CallTryExitVar, 4091 ExceptionData, 4092 &ObjCTypes); 4093 4094 // Enter a try block: 4095 // - Call objc_exception_try_enter to push ExceptionData on top of 4096 // the EH stack. 4097 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4098 ExceptionData.getPointer()); 4099 4100 // - Call setjmp on the exception data buffer. 4101 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 4102 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 4103 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP( 4104 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes, 4105 "setjmp_buffer"); 4106 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall( 4107 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 4108 SetJmpResult->setCanReturnTwice(); 4109 4110 // If setjmp returned 0, enter the protected block; otherwise, 4111 // branch to the handler. 4112 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 4113 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 4114 llvm::Value *DidCatch = 4115 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4116 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 4117 4118 // Emit the protected block. 4119 CGF.EmitBlock(TryBlock); 4120 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4121 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 4122 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 4123 4124 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 4125 4126 // Emit the exception handler block. 4127 CGF.EmitBlock(TryHandler); 4128 4129 // Don't optimize loads of the in-scope locals across this point. 4130 Hazards.emitWriteHazard(); 4131 4132 // For a @synchronized (or a @try with no catches), just branch 4133 // through the cleanup to the rethrow block. 4134 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 4135 // Tell the cleanup not to re-pop the exit. 4136 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4137 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4138 4139 // Otherwise, we have to match against the caught exceptions. 4140 } else { 4141 // Retrieve the exception object. We may emit multiple blocks but 4142 // nothing can cross this so the value is already in SSA form. 4143 llvm::CallInst *Caught = 4144 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4145 ExceptionData.getPointer(), "caught"); 4146 4147 // Push the exception to rethrow onto the EH value stack for the 4148 // benefit of any @throws in the handlers. 4149 CGF.ObjCEHValueStack.push_back(Caught); 4150 4151 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 4152 4153 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr); 4154 4155 llvm::BasicBlock *CatchBlock = nullptr; 4156 llvm::BasicBlock *CatchHandler = nullptr; 4157 if (HasFinally) { 4158 // Save the currently-propagating exception before 4159 // objc_exception_try_enter clears the exception slot. 4160 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 4161 CGF.getPointerAlign(), 4162 "propagating_exception"); 4163 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 4164 4165 // Enter a new exception try block (in case a @catch block 4166 // throws an exception). 4167 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 4168 ExceptionData.getPointer()); 4169 4170 llvm::CallInst *SetJmpResult = 4171 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 4172 SetJmpBuffer, "setjmp.result"); 4173 SetJmpResult->setCanReturnTwice(); 4174 4175 llvm::Value *Threw = 4176 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 4177 4178 CatchBlock = CGF.createBasicBlock("catch"); 4179 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 4180 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 4181 4182 CGF.EmitBlock(CatchBlock); 4183 } 4184 4185 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 4186 4187 // Handle catch list. As a special case we check if everything is 4188 // matched and avoid generating code for falling off the end if 4189 // so. 4190 bool AllMatched = false; 4191 for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) { 4192 const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I); 4193 4194 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 4195 const ObjCObjectPointerType *OPT = nullptr; 4196 4197 // catch(...) always matches. 4198 if (!CatchParam) { 4199 AllMatched = true; 4200 } else { 4201 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 4202 4203 // catch(id e) always matches under this ABI, since only 4204 // ObjC exceptions end up here in the first place. 4205 // FIXME: For the time being we also match id<X>; this should 4206 // be rejected by Sema instead. 4207 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 4208 AllMatched = true; 4209 } 4210 4211 // If this is a catch-all, we don't need to test anything. 4212 if (AllMatched) { 4213 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4214 4215 if (CatchParam) { 4216 CGF.EmitAutoVarDecl(*CatchParam); 4217 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4218 4219 // These types work out because ConvertType(id) == i8*. 4220 EmitInitOfCatchParam(CGF, Caught, CatchParam); 4221 } 4222 4223 CGF.EmitStmt(CatchStmt->getCatchBody()); 4224 4225 // The scope of the catch variable ends right here. 4226 CatchVarCleanups.ForceCleanup(); 4227 4228 CGF.EmitBranchThroughCleanup(FinallyEnd); 4229 break; 4230 } 4231 4232 assert(OPT && "Unexpected non-object pointer type in @catch"); 4233 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4234 4235 // FIXME: @catch (Class c) ? 4236 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4237 assert(IDecl && "Catch parameter must have Objective-C type!"); 4238 4239 // Check if the @catch block matches the exception object. 4240 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4241 4242 llvm::Value *matchArgs[] = { Class, Caught }; 4243 llvm::CallInst *Match = 4244 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4245 matchArgs, "match"); 4246 4247 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4248 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4249 4250 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4251 MatchedBlock, NextCatchBlock); 4252 4253 // Emit the @catch block. 4254 CGF.EmitBlock(MatchedBlock); 4255 4256 // Collect any cleanups for the catch variable. The scope lasts until 4257 // the end of the catch body. 4258 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4259 4260 CGF.EmitAutoVarDecl(*CatchParam); 4261 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4262 4263 // Initialize the catch variable. 4264 llvm::Value *Tmp = 4265 CGF.Builder.CreateBitCast(Caught, 4266 CGF.ConvertType(CatchParam->getType())); 4267 EmitInitOfCatchParam(CGF, Tmp, CatchParam); 4268 4269 CGF.EmitStmt(CatchStmt->getCatchBody()); 4270 4271 // We're done with the catch variable. 4272 CatchVarCleanups.ForceCleanup(); 4273 4274 CGF.EmitBranchThroughCleanup(FinallyEnd); 4275 4276 CGF.EmitBlock(NextCatchBlock); 4277 } 4278 4279 CGF.ObjCEHValueStack.pop_back(); 4280 4281 // If nothing wanted anything to do with the caught exception, 4282 // kill the extract call. 4283 if (Caught->use_empty()) 4284 Caught->eraseFromParent(); 4285 4286 if (!AllMatched) 4287 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4288 4289 if (HasFinally) { 4290 // Emit the exception handler for the @catch blocks. 4291 CGF.EmitBlock(CatchHandler); 4292 4293 // In theory we might now need a write hazard, but actually it's 4294 // unnecessary because there's no local-accessing code between 4295 // the try's write hazard and here. 4296 //Hazards.emitWriteHazard(); 4297 4298 // Extract the new exception and save it to the 4299 // propagating-exception slot. 4300 assert(PropagatingExnVar.isValid()); 4301 llvm::CallInst *NewCaught = 4302 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4303 ExceptionData.getPointer(), "caught"); 4304 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4305 4306 // Don't pop the catch handler; the throw already did. 4307 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4308 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4309 } 4310 } 4311 4312 // Insert read hazards as required in the new blocks. 4313 Hazards.emitHazardsInNewBlocks(); 4314 4315 // Pop the cleanup. 4316 CGF.Builder.restoreIP(TryFallthroughIP); 4317 if (CGF.HaveInsertPoint()) 4318 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4319 CGF.PopCleanupBlock(); 4320 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4321 4322 // Emit the rethrow block. 4323 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4324 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4325 if (CGF.HaveInsertPoint()) { 4326 // If we have a propagating-exception variable, check it. 4327 llvm::Value *PropagatingExn; 4328 if (PropagatingExnVar.isValid()) { 4329 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4330 4331 // Otherwise, just look in the buffer for the exception to throw. 4332 } else { 4333 llvm::CallInst *Caught = 4334 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4335 ExceptionData.getPointer()); 4336 PropagatingExn = Caught; 4337 } 4338 4339 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4340 PropagatingExn); 4341 CGF.Builder.CreateUnreachable(); 4342 } 4343 4344 CGF.Builder.restoreIP(SavedIP); 4345 } 4346 4347 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4348 const ObjCAtThrowStmt &S, 4349 bool ClearInsertionPoint) { 4350 llvm::Value *ExceptionAsObject; 4351 4352 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4353 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4354 ExceptionAsObject = 4355 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4356 } else { 4357 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4358 "Unexpected rethrow outside @catch block."); 4359 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4360 } 4361 4362 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4363 ->setDoesNotReturn(); 4364 CGF.Builder.CreateUnreachable(); 4365 4366 // Clear the insertion point to indicate we are in unreachable code. 4367 if (ClearInsertionPoint) 4368 CGF.Builder.ClearInsertionPoint(); 4369 } 4370 4371 /// EmitObjCWeakRead - Code gen for loading value of a __weak 4372 /// object: objc_read_weak (id *src) 4373 /// 4374 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4375 Address AddrWeakObj) { 4376 llvm::Type* DestTy = AddrWeakObj.getElementType(); 4377 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 4378 ObjCTypes.PtrObjectPtrTy); 4379 llvm::Value *read_weak = 4380 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4381 AddrWeakObj.getPointer(), "weakread"); 4382 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4383 return read_weak; 4384 } 4385 4386 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4387 /// objc_assign_weak (id src, id *dst) 4388 /// 4389 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4390 llvm::Value *src, Address dst) { 4391 llvm::Type * SrcTy = src->getType(); 4392 if (!isa<llvm::PointerType>(SrcTy)) { 4393 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4394 assert(Size <= 8 && "does not support size > 8"); 4395 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4396 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4397 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4398 } 4399 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4400 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4401 llvm::Value *args[] = { src, dst.getPointer() }; 4402 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4403 args, "weakassign"); 4404 } 4405 4406 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4407 /// objc_assign_global (id src, id *dst) 4408 /// 4409 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4410 llvm::Value *src, Address dst, 4411 bool threadlocal) { 4412 llvm::Type * SrcTy = src->getType(); 4413 if (!isa<llvm::PointerType>(SrcTy)) { 4414 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4415 assert(Size <= 8 && "does not support size > 8"); 4416 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4417 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4418 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4419 } 4420 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4421 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4422 llvm::Value *args[] = { src, dst.getPointer() }; 4423 if (!threadlocal) 4424 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 4425 args, "globalassign"); 4426 else 4427 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 4428 args, "threadlocalassign"); 4429 } 4430 4431 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 4432 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 4433 /// 4434 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 4435 llvm::Value *src, Address dst, 4436 llvm::Value *ivarOffset) { 4437 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 4438 llvm::Type * SrcTy = src->getType(); 4439 if (!isa<llvm::PointerType>(SrcTy)) { 4440 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4441 assert(Size <= 8 && "does not support size > 8"); 4442 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4443 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4444 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4445 } 4446 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4447 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4448 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 4449 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 4450 } 4451 4452 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 4453 /// objc_assign_strongCast (id src, id *dst) 4454 /// 4455 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 4456 llvm::Value *src, Address dst) { 4457 llvm::Type * SrcTy = src->getType(); 4458 if (!isa<llvm::PointerType>(SrcTy)) { 4459 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4460 assert(Size <= 8 && "does not support size > 8"); 4461 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4462 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4463 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4464 } 4465 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4466 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4467 llvm::Value *args[] = { src, dst.getPointer() }; 4468 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 4469 args, "strongassign"); 4470 } 4471 4472 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 4473 Address DestPtr, 4474 Address SrcPtr, 4475 llvm::Value *size) { 4476 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 4477 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 4478 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size }; 4479 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 4480 } 4481 4482 /// EmitObjCValueForIvar - Code Gen for ivar reference. 4483 /// 4484 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 4485 QualType ObjectTy, 4486 llvm::Value *BaseValue, 4487 const ObjCIvarDecl *Ivar, 4488 unsigned CVRQualifiers) { 4489 const ObjCInterfaceDecl *ID = 4490 ObjectTy->getAs<ObjCObjectType>()->getInterface(); 4491 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 4492 EmitIvarOffset(CGF, ID, Ivar)); 4493 } 4494 4495 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 4496 const ObjCInterfaceDecl *Interface, 4497 const ObjCIvarDecl *Ivar) { 4498 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 4499 return llvm::ConstantInt::get( 4500 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 4501 Offset); 4502 } 4503 4504 /* *** Private Interface *** */ 4505 4506 /// EmitImageInfo - Emit the image info marker used to encode some module 4507 /// level information. 4508 /// 4509 /// See: <rdr://4810609&4810587&4810587> 4510 /// struct IMAGE_INFO { 4511 /// unsigned version; 4512 /// unsigned flags; 4513 /// }; 4514 enum ImageInfoFlags { 4515 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang. 4516 eImageInfo_GarbageCollected = (1 << 1), 4517 eImageInfo_GCOnly = (1 << 2), 4518 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache. 4519 4520 // A flag indicating that the module has no instances of a @synthesize of a 4521 // superclass variable. <rdar://problem/6803242> 4522 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang. 4523 eImageInfo_ImageIsSimulated = (1 << 5), 4524 eImageInfo_ClassProperties = (1 << 6) 4525 }; 4526 4527 void CGObjCCommonMac::EmitImageInfo() { 4528 unsigned version = 0; // Version is unused? 4529 const char *Section = (ObjCABI == 1) ? 4530 "__OBJC, __image_info,regular" : 4531 "__DATA, __objc_imageinfo, regular, no_dead_strip"; 4532 4533 // Generate module-level named metadata to convey this information to the 4534 // linker and code-gen. 4535 llvm::Module &Mod = CGM.getModule(); 4536 4537 // Add the ObjC ABI version to the module flags. 4538 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 4539 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 4540 version); 4541 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 4542 llvm::MDString::get(VMContext,Section)); 4543 4544 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 4545 // Non-GC overrides those files which specify GC. 4546 Mod.addModuleFlag(llvm::Module::Override, 4547 "Objective-C Garbage Collection", (uint32_t)0); 4548 } else { 4549 // Add the ObjC garbage collection value. 4550 Mod.addModuleFlag(llvm::Module::Error, 4551 "Objective-C Garbage Collection", 4552 eImageInfo_GarbageCollected); 4553 4554 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 4555 // Add the ObjC GC Only value. 4556 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 4557 eImageInfo_GCOnly); 4558 4559 // Require that GC be specified and set to eImageInfo_GarbageCollected. 4560 llvm::Metadata *Ops[2] = { 4561 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 4562 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 4563 llvm::Type::getInt32Ty(VMContext), eImageInfo_GarbageCollected))}; 4564 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 4565 llvm::MDNode::get(VMContext, Ops)); 4566 } 4567 } 4568 4569 // Indicate whether we're compiling this to run on a simulator. 4570 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 4571 if ((Triple.isiOS() || Triple.isWatchOS()) && 4572 (Triple.getArch() == llvm::Triple::x86 || 4573 Triple.getArch() == llvm::Triple::x86_64)) 4574 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 4575 eImageInfo_ImageIsSimulated); 4576 4577 // Indicate whether we are generating class properties. 4578 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", 4579 eImageInfo_ClassProperties); 4580 } 4581 4582 // struct objc_module { 4583 // unsigned long version; 4584 // unsigned long size; 4585 // const char *name; 4586 // Symtab symtab; 4587 // }; 4588 4589 // FIXME: Get from somewhere 4590 static const int ModuleVersion = 7; 4591 4592 void CGObjCMac::EmitModuleInfo() { 4593 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 4594 4595 llvm::Constant *Values[] = { 4596 llvm::ConstantInt::get(ObjCTypes.LongTy, ModuleVersion), 4597 llvm::ConstantInt::get(ObjCTypes.LongTy, Size), 4598 // This used to be the filename, now it is unused. <rdr://4327263> 4599 GetClassName(StringRef("")), 4600 EmitModuleSymbols() 4601 }; 4602 CreateMetadataVar("OBJC_MODULES", 4603 llvm::ConstantStruct::get(ObjCTypes.ModuleTy, Values), 4604 "__OBJC,__module_info,regular,no_dead_strip", 4605 CGM.getPointerAlign(), true); 4606 } 4607 4608 llvm::Constant *CGObjCMac::EmitModuleSymbols() { 4609 unsigned NumClasses = DefinedClasses.size(); 4610 unsigned NumCategories = DefinedCategories.size(); 4611 4612 // Return null if no symbols were defined. 4613 if (!NumClasses && !NumCategories) 4614 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 4615 4616 llvm::Constant *Values[5]; 4617 Values[0] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 4618 Values[1] = llvm::Constant::getNullValue(ObjCTypes.SelectorPtrTy); 4619 Values[2] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumClasses); 4620 Values[3] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumCategories); 4621 4622 // The runtime expects exactly the list of defined classes followed 4623 // by the list of defined categories, in a single array. 4624 SmallVector<llvm::Constant*, 8> Symbols(NumClasses + NumCategories); 4625 for (unsigned i=0; i<NumClasses; i++) { 4626 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 4627 assert(ID); 4628 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 4629 // We are implementing a weak imported interface. Give it external linkage 4630 if (ID->isWeakImported() && !IMP->isWeakImported()) 4631 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 4632 4633 Symbols[i] = llvm::ConstantExpr::getBitCast(DefinedClasses[i], 4634 ObjCTypes.Int8PtrTy); 4635 } 4636 for (unsigned i=0; i<NumCategories; i++) 4637 Symbols[NumClasses + i] = 4638 llvm::ConstantExpr::getBitCast(DefinedCategories[i], 4639 ObjCTypes.Int8PtrTy); 4640 4641 Values[4] = 4642 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 4643 Symbols.size()), 4644 Symbols); 4645 4646 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 4647 4648 llvm::GlobalVariable *GV = CreateMetadataVar( 4649 "OBJC_SYMBOLS", Init, "__OBJC,__symbols,regular,no_dead_strip", 4650 CGM.getPointerAlign(), true); 4651 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 4652 } 4653 4654 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 4655 IdentifierInfo *II) { 4656 LazySymbols.insert(II); 4657 4658 llvm::GlobalVariable *&Entry = ClassReferences[II]; 4659 4660 if (!Entry) { 4661 llvm::Constant *Casted = 4662 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()), 4663 ObjCTypes.ClassPtrTy); 4664 Entry = CreateMetadataVar( 4665 "OBJC_CLASS_REFERENCES_", Casted, 4666 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 4667 CGM.getPointerAlign(), true); 4668 } 4669 4670 return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign()); 4671 } 4672 4673 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 4674 const ObjCInterfaceDecl *ID) { 4675 // If the class has the objc_runtime_visible attribute, we need to 4676 // use the Objective-C runtime to get the class. 4677 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 4678 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 4679 4680 return EmitClassRefFromId(CGF, ID->getIdentifier()); 4681 } 4682 4683 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 4684 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 4685 return EmitClassRefFromId(CGF, II); 4686 } 4687 4688 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) { 4689 return CGF.Builder.CreateLoad(EmitSelectorAddr(CGF, Sel)); 4690 } 4691 4692 Address CGObjCMac::EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel) { 4693 CharUnits Align = CGF.getPointerAlign(); 4694 4695 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 4696 if (!Entry) { 4697 llvm::Constant *Casted = 4698 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 4699 ObjCTypes.SelectorPtrTy); 4700 Entry = CreateMetadataVar( 4701 "OBJC_SELECTOR_REFERENCES_", Casted, 4702 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true); 4703 Entry->setExternallyInitialized(true); 4704 } 4705 4706 return Address(Entry, Align); 4707 } 4708 4709 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) { 4710 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName]; 4711 if (!Entry) 4712 Entry = CreateMetadataVar( 4713 "OBJC_CLASS_NAME_", 4714 llvm::ConstantDataArray::getString(VMContext, RuntimeName), 4715 ((ObjCABI == 2) ? "__TEXT,__objc_classname,cstring_literals" 4716 : "__TEXT,__cstring,cstring_literals"), 4717 CharUnits::One(), true); 4718 return getConstantGEP(VMContext, Entry, 0, 0); 4719 } 4720 4721 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 4722 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 4723 I = MethodDefinitions.find(MD); 4724 if (I != MethodDefinitions.end()) 4725 return I->second; 4726 4727 return nullptr; 4728 } 4729 4730 /// GetIvarLayoutName - Returns a unique constant for the given 4731 /// ivar layout bitmap. 4732 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 4733 const ObjCCommonTypesHelper &ObjCTypes) { 4734 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 4735 } 4736 4737 void IvarLayoutBuilder::visitRecord(const RecordType *RT, 4738 CharUnits offset) { 4739 const RecordDecl *RD = RT->getDecl(); 4740 4741 // If this is a union, remember that we had one, because it might mess 4742 // up the ordering of layout entries. 4743 if (RD->isUnion()) 4744 IsDisordered = true; 4745 4746 const ASTRecordLayout *recLayout = nullptr; 4747 visitAggregate(RD->field_begin(), RD->field_end(), offset, 4748 [&](const FieldDecl *field) -> CharUnits { 4749 if (!recLayout) 4750 recLayout = &CGM.getContext().getASTRecordLayout(RD); 4751 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex()); 4752 return CGM.getContext().toCharUnitsFromBits(offsetInBits); 4753 }); 4754 } 4755 4756 template <class Iterator, class GetOffsetFn> 4757 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end, 4758 CharUnits aggregateOffset, 4759 const GetOffsetFn &getOffset) { 4760 for (; begin != end; ++begin) { 4761 auto field = *begin; 4762 4763 // Skip over bitfields. 4764 if (field->isBitField()) { 4765 continue; 4766 } 4767 4768 // Compute the offset of the field within the aggregate. 4769 CharUnits fieldOffset = aggregateOffset + getOffset(field); 4770 4771 visitField(field, fieldOffset); 4772 } 4773 } 4774 4775 /// Collect layout information for the given fields into IvarsInfo. 4776 void IvarLayoutBuilder::visitField(const FieldDecl *field, 4777 CharUnits fieldOffset) { 4778 QualType fieldType = field->getType(); 4779 4780 // Drill down into arrays. 4781 uint64_t numElts = 1; 4782 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) { 4783 numElts *= arrayType->getSize().getZExtValue(); 4784 fieldType = arrayType->getElementType(); 4785 } 4786 4787 assert(!fieldType->isArrayType() && "ivar of non-constant array type?"); 4788 4789 // If we ended up with a zero-sized array, we've done what we can do within 4790 // the limits of this layout encoding. 4791 if (numElts == 0) return; 4792 4793 // Recurse if the base element type is a record type. 4794 if (auto recType = fieldType->getAs<RecordType>()) { 4795 size_t oldEnd = IvarsInfo.size(); 4796 4797 visitRecord(recType, fieldOffset); 4798 4799 // If we have an array, replicate the first entry's layout information. 4800 auto numEltEntries = IvarsInfo.size() - oldEnd; 4801 if (numElts != 1 && numEltEntries != 0) { 4802 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType); 4803 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) { 4804 // Copy the last numEltEntries onto the end of the array, adjusting 4805 // each for the element size. 4806 for (size_t i = 0; i != numEltEntries; ++i) { 4807 auto firstEntry = IvarsInfo[oldEnd + i]; 4808 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize, 4809 firstEntry.SizeInWords)); 4810 } 4811 } 4812 } 4813 4814 return; 4815 } 4816 4817 // Classify the element type. 4818 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType); 4819 4820 // If it matches what we're looking for, add an entry. 4821 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 4822 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 4823 assert(CGM.getContext().getTypeSizeInChars(fieldType) 4824 == CGM.getPointerSize()); 4825 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts)); 4826 } 4827 } 4828 4829 /// buildBitmap - This routine does the horsework of taking the offsets of 4830 /// strong/weak references and creating a bitmap. The bitmap is also 4831 /// returned in the given buffer, suitable for being passed to \c dump(). 4832 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC, 4833 llvm::SmallVectorImpl<unsigned char> &buffer) { 4834 // The bitmap is a series of skip/scan instructions, aligned to word 4835 // boundaries. The skip is performed first. 4836 const unsigned char MaxNibble = 0xF; 4837 const unsigned char SkipMask = 0xF0, SkipShift = 4; 4838 const unsigned char ScanMask = 0x0F, ScanShift = 0; 4839 4840 assert(!IvarsInfo.empty() && "generating bitmap for no data"); 4841 4842 // Sort the ivar info on byte position in case we encounterred a 4843 // union nested in the ivar list. 4844 if (IsDisordered) { 4845 // This isn't a stable sort, but our algorithm should handle it fine. 4846 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 4847 } else { 4848 assert(std::is_sorted(IvarsInfo.begin(), IvarsInfo.end())); 4849 } 4850 assert(IvarsInfo.back().Offset < InstanceEnd); 4851 4852 assert(buffer.empty()); 4853 4854 // Skip the next N words. 4855 auto skip = [&](unsigned numWords) { 4856 assert(numWords > 0); 4857 4858 // Try to merge into the previous byte. Since scans happen second, we 4859 // can't do this if it includes a scan. 4860 if (!buffer.empty() && !(buffer.back() & ScanMask)) { 4861 unsigned lastSkip = buffer.back() >> SkipShift; 4862 if (lastSkip < MaxNibble) { 4863 unsigned claimed = std::min(MaxNibble - lastSkip, numWords); 4864 numWords -= claimed; 4865 lastSkip += claimed; 4866 buffer.back() = (lastSkip << SkipShift); 4867 } 4868 } 4869 4870 while (numWords >= MaxNibble) { 4871 buffer.push_back(MaxNibble << SkipShift); 4872 numWords -= MaxNibble; 4873 } 4874 if (numWords) { 4875 buffer.push_back(numWords << SkipShift); 4876 } 4877 }; 4878 4879 // Scan the next N words. 4880 auto scan = [&](unsigned numWords) { 4881 assert(numWords > 0); 4882 4883 // Try to merge into the previous byte. Since scans happen second, we can 4884 // do this even if it includes a skip. 4885 if (!buffer.empty()) { 4886 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift; 4887 if (lastScan < MaxNibble) { 4888 unsigned claimed = std::min(MaxNibble - lastScan, numWords); 4889 numWords -= claimed; 4890 lastScan += claimed; 4891 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift); 4892 } 4893 } 4894 4895 while (numWords >= MaxNibble) { 4896 buffer.push_back(MaxNibble << ScanShift); 4897 numWords -= MaxNibble; 4898 } 4899 if (numWords) { 4900 buffer.push_back(numWords << ScanShift); 4901 } 4902 }; 4903 4904 // One past the end of the last scan. 4905 unsigned endOfLastScanInWords = 0; 4906 const CharUnits WordSize = CGM.getPointerSize(); 4907 4908 // Consider all the scan requests. 4909 for (auto &request : IvarsInfo) { 4910 CharUnits beginOfScan = request.Offset - InstanceBegin; 4911 4912 // Ignore scan requests that don't start at an even multiple of the 4913 // word size. We can't encode them. 4914 if ((beginOfScan % WordSize) != 0) continue; 4915 4916 // Ignore scan requests that start before the instance start. 4917 // This assumes that scans never span that boundary. The boundary 4918 // isn't the true start of the ivars, because in the fragile-ARC case 4919 // it's rounded up to word alignment, but the test above should leave 4920 // us ignoring that possibility. 4921 if (beginOfScan.isNegative()) { 4922 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin); 4923 continue; 4924 } 4925 4926 unsigned beginOfScanInWords = beginOfScan / WordSize; 4927 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords; 4928 4929 // If the scan starts some number of words after the last one ended, 4930 // skip forward. 4931 if (beginOfScanInWords > endOfLastScanInWords) { 4932 skip(beginOfScanInWords - endOfLastScanInWords); 4933 4934 // Otherwise, start scanning where the last left off. 4935 } else { 4936 beginOfScanInWords = endOfLastScanInWords; 4937 4938 // If that leaves us with nothing to scan, ignore this request. 4939 if (beginOfScanInWords >= endOfScanInWords) continue; 4940 } 4941 4942 // Scan to the end of the request. 4943 assert(beginOfScanInWords < endOfScanInWords); 4944 scan(endOfScanInWords - beginOfScanInWords); 4945 endOfLastScanInWords = endOfScanInWords; 4946 } 4947 4948 if (buffer.empty()) 4949 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 4950 4951 // For GC layouts, emit a skip to the end of the allocation so that we 4952 // have precise information about the entire thing. This isn't useful 4953 // or necessary for the ARC-style layout strings. 4954 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 4955 unsigned lastOffsetInWords = 4956 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize; 4957 if (lastOffsetInWords > endOfLastScanInWords) { 4958 skip(lastOffsetInWords - endOfLastScanInWords); 4959 } 4960 } 4961 4962 // Null terminate the string. 4963 buffer.push_back(0); 4964 4965 bool isNonFragileABI = CGObjC.isNonFragileABI(); 4966 4967 llvm::GlobalVariable *Entry = CGObjC.CreateMetadataVar( 4968 "OBJC_CLASS_NAME_", 4969 llvm::ConstantDataArray::get(CGM.getLLVMContext(), buffer), 4970 (isNonFragileABI ? "__TEXT,__objc_classname,cstring_literals" 4971 : "__TEXT,__cstring,cstring_literals"), 4972 CharUnits::One(), true); 4973 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0); 4974 } 4975 4976 /// BuildIvarLayout - Builds ivar layout bitmap for the class 4977 /// implementation for the __strong or __weak case. 4978 /// The layout map displays which words in ivar list must be skipped 4979 /// and which must be scanned by GC (see below). String is built of bytes. 4980 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 4981 /// of words to skip and right nibble is count of words to scan. So, each 4982 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is 4983 /// represented by a 0x00 byte which also ends the string. 4984 /// 1. when ForStrongLayout is true, following ivars are scanned: 4985 /// - id, Class 4986 /// - object * 4987 /// - __strong anything 4988 /// 4989 /// 2. When ForStrongLayout is false, following ivars are scanned: 4990 /// - __weak anything 4991 /// 4992 llvm::Constant * 4993 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD, 4994 CharUnits beginOffset, CharUnits endOffset, 4995 bool ForStrongLayout, bool HasMRCWeakIvars) { 4996 // If this is MRC, and we're either building a strong layout or there 4997 // are no weak ivars, bail out early. 4998 llvm::Type *PtrTy = CGM.Int8PtrTy; 4999 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 5000 !CGM.getLangOpts().ObjCAutoRefCount && 5001 (ForStrongLayout || !HasMRCWeakIvars)) 5002 return llvm::Constant::getNullValue(PtrTy); 5003 5004 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 5005 SmallVector<const ObjCIvarDecl*, 32> ivars; 5006 5007 // GC layout strings include the complete object layout, possibly 5008 // inaccurately in the non-fragile ABI; the runtime knows how to fix this 5009 // up. 5010 // 5011 // ARC layout strings only include the class's ivars. In non-fragile 5012 // runtimes, that means starting at InstanceStart, rounded up to word 5013 // alignment. In fragile runtimes, there's no InstanceStart, so it means 5014 // starting at the offset of the first ivar, rounded up to word alignment. 5015 // 5016 // MRC weak layout strings follow the ARC style. 5017 CharUnits baseOffset; 5018 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 5019 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 5020 IVD; IVD = IVD->getNextIvar()) 5021 ivars.push_back(IVD); 5022 5023 if (isNonFragileABI()) { 5024 baseOffset = beginOffset; // InstanceStart 5025 } else if (!ivars.empty()) { 5026 baseOffset = 5027 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0])); 5028 } else { 5029 baseOffset = CharUnits::Zero(); 5030 } 5031 5032 baseOffset = baseOffset.alignTo(CGM.getPointerAlign()); 5033 } 5034 else { 5035 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars); 5036 5037 baseOffset = CharUnits::Zero(); 5038 } 5039 5040 if (ivars.empty()) 5041 return llvm::Constant::getNullValue(PtrTy); 5042 5043 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout); 5044 5045 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(), 5046 [&](const ObjCIvarDecl *ivar) -> CharUnits { 5047 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar)); 5048 }); 5049 5050 if (!builder.hasBitmapData()) 5051 return llvm::Constant::getNullValue(PtrTy); 5052 5053 llvm::SmallVector<unsigned char, 4> buffer; 5054 llvm::Constant *C = builder.buildBitmap(*this, buffer); 5055 5056 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) { 5057 printf("\n%s ivar layout for class '%s': ", 5058 ForStrongLayout ? "strong" : "weak", 5059 OMD->getClassInterface()->getName().str().c_str()); 5060 builder.dump(buffer); 5061 } 5062 return C; 5063 } 5064 5065 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 5066 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 5067 5068 // FIXME: Avoid std::string in "Sel.getAsString()" 5069 if (!Entry) 5070 Entry = CreateMetadataVar( 5071 "OBJC_METH_VAR_NAME_", 5072 llvm::ConstantDataArray::getString(VMContext, Sel.getAsString()), 5073 ((ObjCABI == 2) ? "__TEXT,__objc_methname,cstring_literals" 5074 : "__TEXT,__cstring,cstring_literals"), 5075 CharUnits::One(), true); 5076 5077 return getConstantGEP(VMContext, Entry, 0, 0); 5078 } 5079 5080 // FIXME: Merge into a single cstring creation function. 5081 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 5082 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 5083 } 5084 5085 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 5086 std::string TypeStr; 5087 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 5088 5089 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5090 5091 if (!Entry) 5092 Entry = CreateMetadataVar( 5093 "OBJC_METH_VAR_TYPE_", 5094 llvm::ConstantDataArray::getString(VMContext, TypeStr), 5095 ((ObjCABI == 2) ? "__TEXT,__objc_methtype,cstring_literals" 5096 : "__TEXT,__cstring,cstring_literals"), 5097 CharUnits::One(), true); 5098 5099 return getConstantGEP(VMContext, Entry, 0, 0); 5100 } 5101 5102 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 5103 bool Extended) { 5104 std::string TypeStr; 5105 if (CGM.getContext().getObjCEncodingForMethodDecl(D, TypeStr, Extended)) 5106 return nullptr; 5107 5108 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 5109 5110 if (!Entry) 5111 Entry = CreateMetadataVar( 5112 "OBJC_METH_VAR_TYPE_", 5113 llvm::ConstantDataArray::getString(VMContext, TypeStr), 5114 ((ObjCABI == 2) ? "__TEXT,__objc_methtype,cstring_literals" 5115 : "__TEXT,__cstring,cstring_literals"), 5116 CharUnits::One(), true); 5117 5118 return getConstantGEP(VMContext, Entry, 0, 0); 5119 } 5120 5121 // FIXME: Merge into a single cstring creation function. 5122 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 5123 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 5124 5125 if (!Entry) 5126 Entry = CreateMetadataVar( 5127 "OBJC_PROP_NAME_ATTR_", 5128 llvm::ConstantDataArray::getString(VMContext, Ident->getName()), 5129 "__TEXT,__cstring,cstring_literals", CharUnits::One(), true); 5130 5131 return getConstantGEP(VMContext, Entry, 0, 0); 5132 } 5133 5134 // FIXME: Merge into a single cstring creation function. 5135 // FIXME: This Decl should be more precise. 5136 llvm::Constant * 5137 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 5138 const Decl *Container) { 5139 std::string TypeStr; 5140 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr); 5141 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 5142 } 5143 5144 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D, 5145 const ObjCContainerDecl *CD, 5146 SmallVectorImpl<char> &Name) { 5147 llvm::raw_svector_ostream OS(Name); 5148 assert (CD && "Missing container decl in GetNameForMethod"); 5149 OS << '\01' << (D->isInstanceMethod() ? '-' : '+') 5150 << '[' << CD->getName(); 5151 if (const ObjCCategoryImplDecl *CID = 5152 dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext())) 5153 OS << '(' << *CID << ')'; 5154 OS << ' ' << D->getSelector().getAsString() << ']'; 5155 } 5156 5157 void CGObjCMac::FinishModule() { 5158 EmitModuleInfo(); 5159 5160 // Emit the dummy bodies for any protocols which were referenced but 5161 // never defined. 5162 for (llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*>::iterator 5163 I = Protocols.begin(), e = Protocols.end(); I != e; ++I) { 5164 if (I->second->hasInitializer()) 5165 continue; 5166 5167 llvm::Constant *Values[5]; 5168 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 5169 Values[1] = GetClassName(I->first->getName()); 5170 Values[2] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 5171 Values[3] = Values[4] = 5172 llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy); 5173 I->second->setInitializer(llvm::ConstantStruct::get(ObjCTypes.ProtocolTy, 5174 Values)); 5175 CGM.addCompilerUsedGlobal(I->second); 5176 } 5177 5178 // Add assembler directives to add lazy undefined symbol references 5179 // for classes which are referenced but not defined. This is 5180 // important for correct linker interaction. 5181 // 5182 // FIXME: It would be nice if we had an LLVM construct for this. 5183 if (!LazySymbols.empty() || !DefinedSymbols.empty()) { 5184 SmallString<256> Asm; 5185 Asm += CGM.getModule().getModuleInlineAsm(); 5186 if (!Asm.empty() && Asm.back() != '\n') 5187 Asm += '\n'; 5188 5189 llvm::raw_svector_ostream OS(Asm); 5190 for (llvm::SetVector<IdentifierInfo*>::iterator I = DefinedSymbols.begin(), 5191 e = DefinedSymbols.end(); I != e; ++I) 5192 OS << "\t.objc_class_name_" << (*I)->getName() << "=0\n" 5193 << "\t.globl .objc_class_name_" << (*I)->getName() << "\n"; 5194 for (llvm::SetVector<IdentifierInfo*>::iterator I = LazySymbols.begin(), 5195 e = LazySymbols.end(); I != e; ++I) { 5196 OS << "\t.lazy_reference .objc_class_name_" << (*I)->getName() << "\n"; 5197 } 5198 5199 for (size_t i = 0, e = DefinedCategoryNames.size(); i < e; ++i) { 5200 OS << "\t.objc_category_name_" << DefinedCategoryNames[i] << "=0\n" 5201 << "\t.globl .objc_category_name_" << DefinedCategoryNames[i] << "\n"; 5202 } 5203 5204 CGM.getModule().setModuleInlineAsm(OS.str()); 5205 } 5206 } 5207 5208 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5209 : CGObjCCommonMac(cgm), 5210 ObjCTypes(cgm) { 5211 ObjCEmptyCacheVar = ObjCEmptyVtableVar = nullptr; 5212 ObjCABI = 2; 5213 } 5214 5215 /* *** */ 5216 5217 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5218 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr) 5219 { 5220 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5221 ASTContext &Ctx = CGM.getContext(); 5222 5223 ShortTy = Types.ConvertType(Ctx.ShortTy); 5224 IntTy = Types.ConvertType(Ctx.IntTy); 5225 LongTy = Types.ConvertType(Ctx.LongTy); 5226 LongLongTy = Types.ConvertType(Ctx.LongLongTy); 5227 Int8PtrTy = CGM.Int8PtrTy; 5228 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5229 5230 // arm64 targets use "int" ivar offset variables. All others, 5231 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets. 5232 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64) 5233 IvarOffsetVarTy = IntTy; 5234 else 5235 IvarOffsetVarTy = LongTy; 5236 5237 ObjectPtrTy = Types.ConvertType(Ctx.getObjCIdType()); 5238 PtrObjectPtrTy = llvm::PointerType::getUnqual(ObjectPtrTy); 5239 SelectorPtrTy = Types.ConvertType(Ctx.getObjCSelType()); 5240 5241 // I'm not sure I like this. The implicit coordination is a bit 5242 // gross. We should solve this in a reasonable fashion because this 5243 // is a pretty common task (match some runtime data structure with 5244 // an LLVM data structure). 5245 5246 // FIXME: This is leaked. 5247 // FIXME: Merge with rewriter code? 5248 5249 // struct _objc_super { 5250 // id self; 5251 // Class cls; 5252 // } 5253 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5254 Ctx.getTranslationUnitDecl(), 5255 SourceLocation(), SourceLocation(), 5256 &Ctx.Idents.get("_objc_super")); 5257 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5258 nullptr, Ctx.getObjCIdType(), nullptr, nullptr, 5259 false, ICIS_NoInit)); 5260 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5261 nullptr, Ctx.getObjCClassType(), nullptr, 5262 nullptr, false, ICIS_NoInit)); 5263 RD->completeDefinition(); 5264 5265 SuperCTy = Ctx.getTagDeclType(RD); 5266 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5267 5268 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5269 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5270 5271 // struct _prop_t { 5272 // char *name; 5273 // char *attributes; 5274 // } 5275 PropertyTy = llvm::StructType::create("struct._prop_t", 5276 Int8PtrTy, Int8PtrTy, nullptr); 5277 5278 // struct _prop_list_t { 5279 // uint32_t entsize; // sizeof(struct _prop_t) 5280 // uint32_t count_of_properties; 5281 // struct _prop_t prop_list[count_of_properties]; 5282 // } 5283 PropertyListTy = 5284 llvm::StructType::create("struct._prop_list_t", IntTy, IntTy, 5285 llvm::ArrayType::get(PropertyTy, 0), nullptr); 5286 // struct _prop_list_t * 5287 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5288 5289 // struct _objc_method { 5290 // SEL _cmd; 5291 // char *method_type; 5292 // char *_imp; 5293 // } 5294 MethodTy = llvm::StructType::create("struct._objc_method", 5295 SelectorPtrTy, Int8PtrTy, Int8PtrTy, 5296 nullptr); 5297 5298 // struct _objc_cache * 5299 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5300 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5301 } 5302 5303 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5304 : ObjCCommonTypesHelper(cgm) { 5305 // struct _objc_method_description { 5306 // SEL name; 5307 // char *types; 5308 // } 5309 MethodDescriptionTy = 5310 llvm::StructType::create("struct._objc_method_description", 5311 SelectorPtrTy, Int8PtrTy, nullptr); 5312 5313 // struct _objc_method_description_list { 5314 // int count; 5315 // struct _objc_method_description[1]; 5316 // } 5317 MethodDescriptionListTy = llvm::StructType::create( 5318 "struct._objc_method_description_list", IntTy, 5319 llvm::ArrayType::get(MethodDescriptionTy, 0), nullptr); 5320 5321 // struct _objc_method_description_list * 5322 MethodDescriptionListPtrTy = 5323 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5324 5325 // Protocol description structures 5326 5327 // struct _objc_protocol_extension { 5328 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5329 // struct _objc_method_description_list *optional_instance_methods; 5330 // struct _objc_method_description_list *optional_class_methods; 5331 // struct _objc_property_list *instance_properties; 5332 // const char ** extendedMethodTypes; 5333 // struct _objc_property_list *class_properties; 5334 // } 5335 ProtocolExtensionTy = 5336 llvm::StructType::create("struct._objc_protocol_extension", 5337 IntTy, MethodDescriptionListPtrTy, 5338 MethodDescriptionListPtrTy, PropertyListPtrTy, 5339 Int8PtrPtrTy, PropertyListPtrTy, nullptr); 5340 5341 // struct _objc_protocol_extension * 5342 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5343 5344 // Handle recursive construction of Protocol and ProtocolList types 5345 5346 ProtocolTy = 5347 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5348 5349 ProtocolListTy = 5350 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5351 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), 5352 LongTy, 5353 llvm::ArrayType::get(ProtocolTy, 0), 5354 nullptr); 5355 5356 // struct _objc_protocol { 5357 // struct _objc_protocol_extension *isa; 5358 // char *protocol_name; 5359 // struct _objc_protocol **_objc_protocol_list; 5360 // struct _objc_method_description_list *instance_methods; 5361 // struct _objc_method_description_list *class_methods; 5362 // } 5363 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5364 llvm::PointerType::getUnqual(ProtocolListTy), 5365 MethodDescriptionListPtrTy, 5366 MethodDescriptionListPtrTy, 5367 nullptr); 5368 5369 // struct _objc_protocol_list * 5370 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5371 5372 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5373 5374 // Class description structures 5375 5376 // struct _objc_ivar { 5377 // char *ivar_name; 5378 // char *ivar_type; 5379 // int ivar_offset; 5380 // } 5381 IvarTy = llvm::StructType::create("struct._objc_ivar", 5382 Int8PtrTy, Int8PtrTy, IntTy, nullptr); 5383 5384 // struct _objc_ivar_list * 5385 IvarListTy = 5386 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5387 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5388 5389 // struct _objc_method_list * 5390 MethodListTy = 5391 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5392 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5393 5394 // struct _objc_class_extension * 5395 ClassExtensionTy = 5396 llvm::StructType::create("struct._objc_class_extension", 5397 IntTy, Int8PtrTy, PropertyListPtrTy, nullptr); 5398 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5399 5400 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5401 5402 // struct _objc_class { 5403 // Class isa; 5404 // Class super_class; 5405 // char *name; 5406 // long version; 5407 // long info; 5408 // long instance_size; 5409 // struct _objc_ivar_list *ivars; 5410 // struct _objc_method_list *methods; 5411 // struct _objc_cache *cache; 5412 // struct _objc_protocol_list *protocols; 5413 // char *ivar_layout; 5414 // struct _objc_class_ext *ext; 5415 // }; 5416 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5417 llvm::PointerType::getUnqual(ClassTy), 5418 Int8PtrTy, 5419 LongTy, 5420 LongTy, 5421 LongTy, 5422 IvarListPtrTy, 5423 MethodListPtrTy, 5424 CachePtrTy, 5425 ProtocolListPtrTy, 5426 Int8PtrTy, 5427 ClassExtensionPtrTy, 5428 nullptr); 5429 5430 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5431 5432 // struct _objc_category { 5433 // char *category_name; 5434 // char *class_name; 5435 // struct _objc_method_list *instance_method; 5436 // struct _objc_method_list *class_method; 5437 // struct _objc_protocol_list *protocols; 5438 // uint32_t size; // sizeof(struct _objc_category) 5439 // struct _objc_property_list *instance_properties;// category's @property 5440 // struct _objc_property_list *class_properties; 5441 // } 5442 CategoryTy = 5443 llvm::StructType::create("struct._objc_category", 5444 Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5445 MethodListPtrTy, ProtocolListPtrTy, 5446 IntTy, PropertyListPtrTy, PropertyListPtrTy, 5447 nullptr); 5448 5449 // Global metadata structures 5450 5451 // struct _objc_symtab { 5452 // long sel_ref_cnt; 5453 // SEL *refs; 5454 // short cls_def_cnt; 5455 // short cat_def_cnt; 5456 // char *defs[cls_def_cnt + cat_def_cnt]; 5457 // } 5458 SymtabTy = 5459 llvm::StructType::create("struct._objc_symtab", 5460 LongTy, SelectorPtrTy, ShortTy, ShortTy, 5461 llvm::ArrayType::get(Int8PtrTy, 0), nullptr); 5462 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 5463 5464 // struct _objc_module { 5465 // long version; 5466 // long size; // sizeof(struct _objc_module) 5467 // char *name; 5468 // struct _objc_symtab* symtab; 5469 // } 5470 ModuleTy = 5471 llvm::StructType::create("struct._objc_module", 5472 LongTy, LongTy, Int8PtrTy, SymtabPtrTy, nullptr); 5473 5474 5475 // FIXME: This is the size of the setjmp buffer and should be target 5476 // specific. 18 is what's used on 32-bit X86. 5477 uint64_t SetJmpBufferSize = 18; 5478 5479 // Exceptions 5480 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 5481 5482 ExceptionDataTy = 5483 llvm::StructType::create("struct._objc_exception_data", 5484 llvm::ArrayType::get(CGM.Int32Ty,SetJmpBufferSize), 5485 StackPtrTy, nullptr); 5486 } 5487 5488 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 5489 : ObjCCommonTypesHelper(cgm) { 5490 // struct _method_list_t { 5491 // uint32_t entsize; // sizeof(struct _objc_method) 5492 // uint32_t method_count; 5493 // struct _objc_method method_list[method_count]; 5494 // } 5495 MethodListnfABITy = 5496 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 5497 llvm::ArrayType::get(MethodTy, 0), nullptr); 5498 // struct method_list_t * 5499 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 5500 5501 // struct _protocol_t { 5502 // id isa; // NULL 5503 // const char * const protocol_name; 5504 // const struct _protocol_list_t * protocol_list; // super protocols 5505 // const struct method_list_t * const instance_methods; 5506 // const struct method_list_t * const class_methods; 5507 // const struct method_list_t *optionalInstanceMethods; 5508 // const struct method_list_t *optionalClassMethods; 5509 // const struct _prop_list_t * properties; 5510 // const uint32_t size; // sizeof(struct _protocol_t) 5511 // const uint32_t flags; // = 0 5512 // const char ** extendedMethodTypes; 5513 // const char *demangledName; 5514 // const struct _prop_list_t * class_properties; 5515 // } 5516 5517 // Holder for struct _protocol_list_t * 5518 ProtocolListnfABITy = 5519 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5520 5521 ProtocolnfABITy = 5522 llvm::StructType::create("struct._protocol_t", ObjectPtrTy, Int8PtrTy, 5523 llvm::PointerType::getUnqual(ProtocolListnfABITy), 5524 MethodListnfABIPtrTy, MethodListnfABIPtrTy, 5525 MethodListnfABIPtrTy, MethodListnfABIPtrTy, 5526 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, 5527 Int8PtrTy, PropertyListPtrTy, 5528 nullptr); 5529 5530 // struct _protocol_t* 5531 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 5532 5533 // struct _protocol_list_t { 5534 // long protocol_count; // Note, this is 32/64 bit 5535 // struct _protocol_t *[protocol_count]; 5536 // } 5537 ProtocolListnfABITy->setBody(LongTy, 5538 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0), 5539 nullptr); 5540 5541 // struct _objc_protocol_list* 5542 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 5543 5544 // struct _ivar_t { 5545 // unsigned [long] int *offset; // pointer to ivar offset location 5546 // char *name; 5547 // char *type; 5548 // uint32_t alignment; 5549 // uint32_t size; 5550 // } 5551 IvarnfABITy = llvm::StructType::create( 5552 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy), 5553 Int8PtrTy, Int8PtrTy, IntTy, IntTy, nullptr); 5554 5555 // struct _ivar_list_t { 5556 // uint32 entsize; // sizeof(struct _ivar_t) 5557 // uint32 count; 5558 // struct _iver_t list[count]; 5559 // } 5560 IvarListnfABITy = 5561 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 5562 llvm::ArrayType::get(IvarnfABITy, 0), nullptr); 5563 5564 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 5565 5566 // struct _class_ro_t { 5567 // uint32_t const flags; 5568 // uint32_t const instanceStart; 5569 // uint32_t const instanceSize; 5570 // uint32_t const reserved; // only when building for 64bit targets 5571 // const uint8_t * const ivarLayout; 5572 // const char *const name; 5573 // const struct _method_list_t * const baseMethods; 5574 // const struct _objc_protocol_list *const baseProtocols; 5575 // const struct _ivar_list_t *const ivars; 5576 // const uint8_t * const weakIvarLayout; 5577 // const struct _prop_list_t * const properties; 5578 // } 5579 5580 // FIXME. Add 'reserved' field in 64bit abi mode! 5581 ClassRonfABITy = llvm::StructType::create("struct._class_ro_t", 5582 IntTy, IntTy, IntTy, Int8PtrTy, 5583 Int8PtrTy, MethodListnfABIPtrTy, 5584 ProtocolListnfABIPtrTy, 5585 IvarListnfABIPtrTy, 5586 Int8PtrTy, PropertyListPtrTy, 5587 nullptr); 5588 5589 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 5590 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 5591 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 5592 ->getPointerTo(); 5593 5594 // struct _class_t { 5595 // struct _class_t *isa; 5596 // struct _class_t * const superclass; 5597 // void *cache; 5598 // IMP *vtable; 5599 // struct class_ro_t *ro; 5600 // } 5601 5602 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 5603 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 5604 llvm::PointerType::getUnqual(ClassnfABITy), 5605 CachePtrTy, 5606 llvm::PointerType::getUnqual(ImpnfABITy), 5607 llvm::PointerType::getUnqual(ClassRonfABITy), 5608 nullptr); 5609 5610 // LLVM for struct _class_t * 5611 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 5612 5613 // struct _category_t { 5614 // const char * const name; 5615 // struct _class_t *const cls; 5616 // const struct _method_list_t * const instance_methods; 5617 // const struct _method_list_t * const class_methods; 5618 // const struct _protocol_list_t * const protocols; 5619 // const struct _prop_list_t * const properties; 5620 // const struct _prop_list_t * const class_properties; 5621 // const uint32_t size; 5622 // } 5623 CategorynfABITy = llvm::StructType::create("struct._category_t", 5624 Int8PtrTy, ClassnfABIPtrTy, 5625 MethodListnfABIPtrTy, 5626 MethodListnfABIPtrTy, 5627 ProtocolListnfABIPtrTy, 5628 PropertyListPtrTy, 5629 PropertyListPtrTy, 5630 IntTy, 5631 nullptr); 5632 5633 // New types for nonfragile abi messaging. 5634 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5635 ASTContext &Ctx = CGM.getContext(); 5636 5637 // MessageRefTy - LLVM for: 5638 // struct _message_ref_t { 5639 // IMP messenger; 5640 // SEL name; 5641 // }; 5642 5643 // First the clang type for struct _message_ref_t 5644 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5645 Ctx.getTranslationUnitDecl(), 5646 SourceLocation(), SourceLocation(), 5647 &Ctx.Idents.get("_message_ref_t")); 5648 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5649 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false, 5650 ICIS_NoInit)); 5651 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 5652 nullptr, Ctx.getObjCSelType(), nullptr, nullptr, 5653 false, ICIS_NoInit)); 5654 RD->completeDefinition(); 5655 5656 MessageRefCTy = Ctx.getTagDeclType(RD); 5657 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 5658 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 5659 5660 // MessageRefPtrTy - LLVM for struct _message_ref_t* 5661 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 5662 5663 // SuperMessageRefTy - LLVM for: 5664 // struct _super_message_ref_t { 5665 // SUPER_IMP messenger; 5666 // SEL name; 5667 // }; 5668 SuperMessageRefTy = 5669 llvm::StructType::create("struct._super_message_ref_t", 5670 ImpnfABITy, SelectorPtrTy, nullptr); 5671 5672 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 5673 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 5674 5675 5676 // struct objc_typeinfo { 5677 // const void** vtable; // objc_ehtype_vtable + 2 5678 // const char* name; // c++ typeinfo string 5679 // Class cls; 5680 // }; 5681 EHTypeTy = 5682 llvm::StructType::create("struct._objc_typeinfo", 5683 llvm::PointerType::getUnqual(Int8PtrTy), 5684 Int8PtrTy, ClassnfABIPtrTy, nullptr); 5685 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 5686 } 5687 5688 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 5689 FinishNonFragileABIModule(); 5690 5691 return nullptr; 5692 } 5693 5694 void CGObjCNonFragileABIMac::AddModuleClassList( 5695 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName, 5696 StringRef SectionName) { 5697 unsigned NumClasses = Container.size(); 5698 5699 if (!NumClasses) 5700 return; 5701 5702 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 5703 for (unsigned i=0; i<NumClasses; i++) 5704 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 5705 ObjCTypes.Int8PtrTy); 5706 llvm::Constant *Init = 5707 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 5708 Symbols.size()), 5709 Symbols); 5710 5711 llvm::GlobalVariable *GV = 5712 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 5713 llvm::GlobalValue::PrivateLinkage, 5714 Init, 5715 SymbolName); 5716 GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType())); 5717 GV->setSection(SectionName); 5718 CGM.addCompilerUsedGlobal(GV); 5719 } 5720 5721 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 5722 // nonfragile abi has no module definition. 5723 5724 // Build list of all implemented class addresses in array 5725 // L_OBJC_LABEL_CLASS_$. 5726 5727 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) { 5728 const ObjCInterfaceDecl *ID = ImplementedClasses[i]; 5729 assert(ID); 5730 if (ObjCImplementationDecl *IMP = ID->getImplementation()) 5731 // We are implementing a weak imported interface. Give it external linkage 5732 if (ID->isWeakImported() && !IMP->isWeakImported()) { 5733 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5734 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage); 5735 } 5736 } 5737 5738 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$", 5739 "__DATA, __objc_classlist, regular, no_dead_strip"); 5740 5741 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$", 5742 "__DATA, __objc_nlclslist, regular, no_dead_strip"); 5743 5744 // Build list of all implemented category addresses in array 5745 // L_OBJC_LABEL_CATEGORY_$. 5746 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$", 5747 "__DATA, __objc_catlist, regular, no_dead_strip"); 5748 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$", 5749 "__DATA, __objc_nlcatlist, regular, no_dead_strip"); 5750 5751 EmitImageInfo(); 5752 } 5753 5754 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of 5755 /// VTableDispatchMethods; false otherwise. What this means is that 5756 /// except for the 19 selectors in the list, we generate 32bit-style 5757 /// message dispatch call for all the rest. 5758 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 5759 // At various points we've experimented with using vtable-based 5760 // dispatch for all methods. 5761 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 5762 case CodeGenOptions::Legacy: 5763 return false; 5764 case CodeGenOptions::NonLegacy: 5765 return true; 5766 case CodeGenOptions::Mixed: 5767 break; 5768 } 5769 5770 // If so, see whether this selector is in the white-list of things which must 5771 // use the new dispatch convention. We lazily build a dense set for this. 5772 if (VTableDispatchMethods.empty()) { 5773 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 5774 VTableDispatchMethods.insert(GetNullarySelector("class")); 5775 VTableDispatchMethods.insert(GetNullarySelector("self")); 5776 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 5777 VTableDispatchMethods.insert(GetNullarySelector("length")); 5778 VTableDispatchMethods.insert(GetNullarySelector("count")); 5779 5780 // These are vtable-based if GC is disabled. 5781 // Optimistically use vtable dispatch for hybrid compiles. 5782 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 5783 VTableDispatchMethods.insert(GetNullarySelector("retain")); 5784 VTableDispatchMethods.insert(GetNullarySelector("release")); 5785 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 5786 } 5787 5788 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 5789 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 5790 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 5791 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 5792 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 5793 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 5794 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 5795 5796 // These are vtable-based if GC is enabled. 5797 // Optimistically use vtable dispatch for hybrid compiles. 5798 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5799 VTableDispatchMethods.insert(GetNullarySelector("hash")); 5800 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 5801 5802 // "countByEnumeratingWithState:objects:count" 5803 IdentifierInfo *KeyIdents[] = { 5804 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 5805 &CGM.getContext().Idents.get("objects"), 5806 &CGM.getContext().Idents.get("count") 5807 }; 5808 VTableDispatchMethods.insert( 5809 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 5810 } 5811 } 5812 5813 return VTableDispatchMethods.count(Sel); 5814 } 5815 5816 /// BuildClassRoTInitializer - generate meta-data for: 5817 /// struct _class_ro_t { 5818 /// uint32_t const flags; 5819 /// uint32_t const instanceStart; 5820 /// uint32_t const instanceSize; 5821 /// uint32_t const reserved; // only when building for 64bit targets 5822 /// const uint8_t * const ivarLayout; 5823 /// const char *const name; 5824 /// const struct _method_list_t * const baseMethods; 5825 /// const struct _protocol_list_t *const baseProtocols; 5826 /// const struct _ivar_list_t *const ivars; 5827 /// const uint8_t * const weakIvarLayout; 5828 /// const struct _prop_list_t * const properties; 5829 /// } 5830 /// 5831 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 5832 unsigned flags, 5833 unsigned InstanceStart, 5834 unsigned InstanceSize, 5835 const ObjCImplementationDecl *ID) { 5836 std::string ClassName = ID->getObjCRuntimeNameAsString(); 5837 llvm::Constant *Values[10]; // 11 for 64bit targets! 5838 5839 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart); 5840 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize); 5841 5842 bool hasMRCWeak = false; 5843 if (CGM.getLangOpts().ObjCAutoRefCount) 5844 flags |= NonFragileABI_Class_CompiledByARC; 5845 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID))) 5846 flags |= NonFragileABI_Class_HasMRCWeakIvars; 5847 5848 Values[ 0] = llvm::ConstantInt::get(ObjCTypes.IntTy, flags); 5849 Values[ 1] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceStart); 5850 Values[ 2] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceSize); 5851 // FIXME. For 64bit targets add 0 here. 5852 Values[ 3] = (flags & NonFragileABI_Class_Meta) 5853 ? GetIvarLayoutName(nullptr, ObjCTypes) 5854 : BuildStrongIvarLayout(ID, beginInstance, endInstance); 5855 Values[ 4] = GetClassName(ID->getObjCRuntimeNameAsString()); 5856 // const struct _method_list_t * const baseMethods; 5857 std::vector<llvm::Constant*> Methods; 5858 std::string MethodListName("\01l_OBJC_$_"); 5859 if (flags & NonFragileABI_Class_Meta) { 5860 MethodListName += "CLASS_METHODS_"; 5861 MethodListName += ID->getObjCRuntimeNameAsString(); 5862 for (const auto *I : ID->class_methods()) 5863 // Class methods should always be defined. 5864 Methods.push_back(GetMethodConstant(I)); 5865 } else { 5866 MethodListName += "INSTANCE_METHODS_"; 5867 MethodListName += ID->getObjCRuntimeNameAsString(); 5868 for (const auto *I : ID->instance_methods()) 5869 // Instance methods should always be defined. 5870 Methods.push_back(GetMethodConstant(I)); 5871 5872 for (const auto *PID : ID->property_impls()) { 5873 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize){ 5874 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5875 5876 if (ObjCMethodDecl *MD = PD->getGetterMethodDecl()) 5877 if (llvm::Constant *C = GetMethodConstant(MD)) 5878 Methods.push_back(C); 5879 if (ObjCMethodDecl *MD = PD->getSetterMethodDecl()) 5880 if (llvm::Constant *C = GetMethodConstant(MD)) 5881 Methods.push_back(C); 5882 } 5883 } 5884 } 5885 Values[ 5] = EmitMethodList(MethodListName, 5886 "__DATA, __objc_const", Methods); 5887 5888 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 5889 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 5890 Values[ 6] = EmitProtocolList("\01l_OBJC_CLASS_PROTOCOLS_$_" 5891 + OID->getObjCRuntimeNameAsString(), 5892 OID->all_referenced_protocol_begin(), 5893 OID->all_referenced_protocol_end()); 5894 5895 if (flags & NonFragileABI_Class_Meta) { 5896 Values[ 7] = llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 5897 Values[ 8] = GetIvarLayoutName(nullptr, ObjCTypes); 5898 Values[ 9] = EmitPropertyList( 5899 "\01l_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 5900 ID, ID->getClassInterface(), ObjCTypes, true); 5901 } else { 5902 Values[ 7] = EmitIvarList(ID); 5903 Values[ 8] = BuildWeakIvarLayout(ID, beginInstance, endInstance, 5904 hasMRCWeak); 5905 Values[ 9] = EmitPropertyList( 5906 "\01l_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(), 5907 ID, ID->getClassInterface(), ObjCTypes, false); 5908 } 5909 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassRonfABITy, 5910 Values); 5911 llvm::GlobalVariable *CLASS_RO_GV = 5912 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassRonfABITy, false, 5913 llvm::GlobalValue::PrivateLinkage, 5914 Init, 5915 (flags & NonFragileABI_Class_Meta) ? 5916 std::string("\01l_OBJC_METACLASS_RO_$_")+ClassName : 5917 std::string("\01l_OBJC_CLASS_RO_$_")+ClassName); 5918 CLASS_RO_GV->setAlignment( 5919 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassRonfABITy)); 5920 CLASS_RO_GV->setSection("__DATA, __objc_const"); 5921 return CLASS_RO_GV; 5922 5923 } 5924 5925 /// BuildClassMetaData - This routine defines that to-level meta-data 5926 /// for the given ClassName for: 5927 /// struct _class_t { 5928 /// struct _class_t *isa; 5929 /// struct _class_t * const superclass; 5930 /// void *cache; 5931 /// IMP *vtable; 5932 /// struct class_ro_t *ro; 5933 /// } 5934 /// 5935 llvm::GlobalVariable *CGObjCNonFragileABIMac::BuildClassMetaData( 5936 const std::string &ClassName, llvm::Constant *IsAGV, llvm::Constant *SuperClassGV, 5937 llvm::Constant *ClassRoGV, bool HiddenVisibility, bool Weak) { 5938 llvm::Constant *Values[] = { 5939 IsAGV, 5940 SuperClassGV, 5941 ObjCEmptyCacheVar, // &ObjCEmptyCacheVar 5942 ObjCEmptyVtableVar, // &ObjCEmptyVtableVar 5943 ClassRoGV // &CLASS_RO_GV 5944 }; 5945 if (!Values[1]) 5946 Values[1] = llvm::Constant::getNullValue(ObjCTypes.ClassnfABIPtrTy); 5947 if (!Values[3]) 5948 Values[3] = llvm::Constant::getNullValue( 5949 llvm::PointerType::getUnqual(ObjCTypes.ImpnfABITy)); 5950 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassnfABITy, 5951 Values); 5952 llvm::GlobalVariable *GV = GetClassGlobal(ClassName, Weak); 5953 GV->setInitializer(Init); 5954 GV->setSection("__DATA, __objc_data"); 5955 GV->setAlignment( 5956 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy)); 5957 if (HiddenVisibility) 5958 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 5959 return GV; 5960 } 5961 5962 bool 5963 CGObjCNonFragileABIMac::ImplementationIsNonLazy(const ObjCImplDecl *OD) const { 5964 return OD->getClassMethod(GetNullarySelector("load")) != nullptr; 5965 } 5966 5967 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 5968 uint32_t &InstanceStart, 5969 uint32_t &InstanceSize) { 5970 const ASTRecordLayout &RL = 5971 CGM.getContext().getASTObjCImplementationLayout(OID); 5972 5973 // InstanceSize is really instance end. 5974 InstanceSize = RL.getDataSize().getQuantity(); 5975 5976 // If there are no fields, the start is the same as the end. 5977 if (!RL.getFieldCount()) 5978 InstanceStart = InstanceSize; 5979 else 5980 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 5981 } 5982 5983 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 5984 std::string ClassName = ID->getObjCRuntimeNameAsString(); 5985 if (!ObjCEmptyCacheVar) { 5986 ObjCEmptyCacheVar = new llvm::GlobalVariable( 5987 CGM.getModule(), 5988 ObjCTypes.CacheTy, 5989 false, 5990 llvm::GlobalValue::ExternalLinkage, 5991 nullptr, 5992 "_objc_empty_cache"); 5993 5994 // Make this entry NULL for any iOS device target, any iOS simulator target, 5995 // OS X with deployment target 10.9 or later. 5996 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 5997 if (Triple.isiOS() || Triple.isWatchOS() || 5998 (Triple.isMacOSX() && !Triple.isMacOSXVersionLT(10, 9))) 5999 // This entry will be null. 6000 ObjCEmptyVtableVar = nullptr; 6001 else 6002 ObjCEmptyVtableVar = new llvm::GlobalVariable( 6003 CGM.getModule(), 6004 ObjCTypes.ImpnfABITy, 6005 false, 6006 llvm::GlobalValue::ExternalLinkage, 6007 nullptr, 6008 "_objc_empty_vtable"); 6009 } 6010 assert(ID->getClassInterface() && 6011 "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 6012 // FIXME: Is this correct (that meta class size is never computed)? 6013 uint32_t InstanceStart = 6014 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 6015 uint32_t InstanceSize = InstanceStart; 6016 uint32_t flags = NonFragileABI_Class_Meta; 6017 llvm::SmallString<64> ObjCMetaClassName(getMetaclassSymbolPrefix()); 6018 llvm::SmallString<64> ObjCClassName(getClassSymbolPrefix()); 6019 llvm::SmallString<64> TClassName; 6020 6021 llvm::GlobalVariable *SuperClassGV, *IsAGV; 6022 6023 // Build the flags for the metaclass. 6024 bool classIsHidden = 6025 ID->getClassInterface()->getVisibility() == HiddenVisibility; 6026 if (classIsHidden) 6027 flags |= NonFragileABI_Class_Hidden; 6028 6029 // FIXME: why is this flag set on the metaclass? 6030 // ObjC metaclasses have no fields and don't really get constructed. 6031 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6032 flags |= NonFragileABI_Class_HasCXXStructors; 6033 if (!ID->hasNonZeroConstructors()) 6034 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6035 } 6036 6037 if (!ID->getClassInterface()->getSuperClass()) { 6038 // class is root 6039 flags |= NonFragileABI_Class_Root; 6040 TClassName = ObjCClassName; 6041 TClassName += ClassName; 6042 SuperClassGV = GetClassGlobal(TClassName.str(), 6043 ID->getClassInterface()->isWeakImported()); 6044 TClassName = ObjCMetaClassName; 6045 TClassName += ClassName; 6046 IsAGV = GetClassGlobal(TClassName.str(), 6047 ID->getClassInterface()->isWeakImported()); 6048 } else { 6049 // Has a root. Current class is not a root. 6050 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 6051 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 6052 Root = Super; 6053 TClassName = ObjCMetaClassName ; 6054 TClassName += Root->getObjCRuntimeNameAsString(); 6055 IsAGV = GetClassGlobal(TClassName.str(), 6056 Root->isWeakImported()); 6057 6058 // work on super class metadata symbol. 6059 TClassName = ObjCMetaClassName; 6060 TClassName += ID->getClassInterface()->getSuperClass()->getObjCRuntimeNameAsString(); 6061 SuperClassGV = GetClassGlobal( 6062 TClassName.str(), 6063 ID->getClassInterface()->getSuperClass()->isWeakImported()); 6064 } 6065 llvm::GlobalVariable *CLASS_RO_GV = BuildClassRoTInitializer(flags, 6066 InstanceStart, 6067 InstanceSize,ID); 6068 TClassName = ObjCMetaClassName; 6069 TClassName += ClassName; 6070 llvm::GlobalVariable *MetaTClass = BuildClassMetaData( 6071 TClassName.str(), IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden, 6072 ID->getClassInterface()->isWeakImported()); 6073 DefinedMetaClasses.push_back(MetaTClass); 6074 6075 // Metadata for the class 6076 flags = 0; 6077 if (classIsHidden) 6078 flags |= NonFragileABI_Class_Hidden; 6079 6080 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 6081 flags |= NonFragileABI_Class_HasCXXStructors; 6082 6083 // Set a flag to enable a runtime optimization when a class has 6084 // fields that require destruction but which don't require 6085 // anything except zero-initialization during construction. This 6086 // is most notably true of __strong and __weak types, but you can 6087 // also imagine there being C++ types with non-trivial default 6088 // constructors that merely set all fields to null. 6089 if (!ID->hasNonZeroConstructors()) 6090 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 6091 } 6092 6093 if (hasObjCExceptionAttribute(CGM.getContext(), ID->getClassInterface())) 6094 flags |= NonFragileABI_Class_Exception; 6095 6096 if (!ID->getClassInterface()->getSuperClass()) { 6097 flags |= NonFragileABI_Class_Root; 6098 SuperClassGV = nullptr; 6099 } else { 6100 // Has a root. Current class is not a root. 6101 TClassName = ObjCClassName; 6102 TClassName += ID->getClassInterface()->getSuperClass()->getObjCRuntimeNameAsString(); 6103 SuperClassGV = GetClassGlobal( 6104 TClassName.str(), 6105 ID->getClassInterface()->getSuperClass()->isWeakImported()); 6106 } 6107 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 6108 CLASS_RO_GV = BuildClassRoTInitializer(flags, 6109 InstanceStart, 6110 InstanceSize, 6111 ID); 6112 6113 TClassName = ObjCClassName; 6114 TClassName += ClassName; 6115 llvm::GlobalVariable *ClassMD = 6116 BuildClassMetaData(TClassName.str(), MetaTClass, SuperClassGV, CLASS_RO_GV, 6117 classIsHidden, 6118 ID->getClassInterface()->isWeakImported()); 6119 DefinedClasses.push_back(ClassMD); 6120 ImplementedClasses.push_back(ID->getClassInterface()); 6121 6122 // Determine if this class is also "non-lazy". 6123 if (ImplementationIsNonLazy(ID)) 6124 DefinedNonLazyClasses.push_back(ClassMD); 6125 6126 // Force the definition of the EHType if necessary. 6127 if (flags & NonFragileABI_Class_Exception) 6128 GetInterfaceEHType(ID->getClassInterface(), true); 6129 // Make sure method definition entries are all clear for next implementation. 6130 MethodDefinitions.clear(); 6131 } 6132 6133 /// GenerateProtocolRef - This routine is called to generate code for 6134 /// a protocol reference expression; as in: 6135 /// @code 6136 /// @protocol(Proto1); 6137 /// @endcode 6138 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 6139 /// which will hold address of the protocol meta-data. 6140 /// 6141 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 6142 const ObjCProtocolDecl *PD) { 6143 6144 // This routine is called for @protocol only. So, we must build definition 6145 // of protocol's meta-data (not a reference to it!) 6146 // 6147 llvm::Constant *Init = 6148 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 6149 ObjCTypes.getExternalProtocolPtrTy()); 6150 6151 std::string ProtocolName("\01l_OBJC_PROTOCOL_REFERENCE_$_"); 6152 ProtocolName += PD->getObjCRuntimeNameAsString(); 6153 6154 CharUnits Align = CGF.getPointerAlign(); 6155 6156 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 6157 if (PTGV) 6158 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6159 PTGV = new llvm::GlobalVariable( 6160 CGM.getModule(), 6161 Init->getType(), false, 6162 llvm::GlobalValue::WeakAnyLinkage, 6163 Init, 6164 ProtocolName); 6165 PTGV->setSection("__DATA, __objc_protorefs, coalesced, no_dead_strip"); 6166 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6167 PTGV->setAlignment(Align.getQuantity()); 6168 CGM.addCompilerUsedGlobal(PTGV); 6169 return CGF.Builder.CreateAlignedLoad(PTGV, Align); 6170 } 6171 6172 /// GenerateCategory - Build metadata for a category implementation. 6173 /// struct _category_t { 6174 /// const char * const name; 6175 /// struct _class_t *const cls; 6176 /// const struct _method_list_t * const instance_methods; 6177 /// const struct _method_list_t * const class_methods; 6178 /// const struct _protocol_list_t * const protocols; 6179 /// const struct _prop_list_t * const properties; 6180 /// const struct _prop_list_t * const class_properties; 6181 /// const uint32_t size; 6182 /// } 6183 /// 6184 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 6185 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 6186 const char *Prefix = "\01l_OBJC_$_CATEGORY_"; 6187 6188 llvm::SmallString<64> ExtCatName(Prefix); 6189 ExtCatName += Interface->getObjCRuntimeNameAsString(); 6190 ExtCatName += "_$_"; 6191 ExtCatName += OCD->getNameAsString(); 6192 6193 llvm::SmallString<64> ExtClassName(getClassSymbolPrefix()); 6194 ExtClassName += Interface->getObjCRuntimeNameAsString(); 6195 6196 llvm::Constant *Values[8]; 6197 Values[0] = GetClassName(OCD->getIdentifier()->getName()); 6198 // meta-class entry symbol 6199 llvm::GlobalVariable *ClassGV = 6200 GetClassGlobal(ExtClassName.str(), Interface->isWeakImported()); 6201 6202 Values[1] = ClassGV; 6203 std::vector<llvm::Constant*> Methods; 6204 llvm::SmallString<64> MethodListName(Prefix); 6205 6206 MethodListName += "INSTANCE_METHODS_"; 6207 MethodListName += Interface->getObjCRuntimeNameAsString(); 6208 MethodListName += "_$_"; 6209 MethodListName += OCD->getName(); 6210 6211 for (const auto *I : OCD->instance_methods()) 6212 // Instance methods should always be defined. 6213 Methods.push_back(GetMethodConstant(I)); 6214 6215 Values[2] = EmitMethodList(MethodListName.str(), 6216 "__DATA, __objc_const", 6217 Methods); 6218 6219 MethodListName = Prefix; 6220 MethodListName += "CLASS_METHODS_"; 6221 MethodListName += Interface->getObjCRuntimeNameAsString(); 6222 MethodListName += "_$_"; 6223 MethodListName += OCD->getNameAsString(); 6224 6225 Methods.clear(); 6226 for (const auto *I : OCD->class_methods()) 6227 // Class methods should always be defined. 6228 Methods.push_back(GetMethodConstant(I)); 6229 6230 Values[3] = EmitMethodList(MethodListName.str(), 6231 "__DATA, __objc_const", 6232 Methods); 6233 const ObjCCategoryDecl *Category = 6234 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6235 if (Category) { 6236 SmallString<256> ExtName; 6237 llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_" 6238 << OCD->getName(); 6239 Values[4] = EmitProtocolList("\01l_OBJC_CATEGORY_PROTOCOLS_$_" 6240 + Interface->getObjCRuntimeNameAsString() + "_$_" 6241 + Category->getName(), 6242 Category->protocol_begin(), 6243 Category->protocol_end()); 6244 Values[5] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 6245 OCD, Category, ObjCTypes, false); 6246 Values[6] = EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), 6247 OCD, Category, ObjCTypes, true); 6248 } else { 6249 Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 6250 Values[5] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 6251 Values[6] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 6252 } 6253 6254 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy); 6255 Values[7] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6256 6257 llvm::Constant *Init = 6258 llvm::ConstantStruct::get(ObjCTypes.CategorynfABITy, 6259 Values); 6260 llvm::GlobalVariable *GCATV 6261 = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CategorynfABITy, 6262 false, 6263 llvm::GlobalValue::PrivateLinkage, 6264 Init, 6265 ExtCatName.str()); 6266 GCATV->setAlignment( 6267 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.CategorynfABITy)); 6268 GCATV->setSection("__DATA, __objc_const"); 6269 CGM.addCompilerUsedGlobal(GCATV); 6270 DefinedCategories.push_back(GCATV); 6271 6272 // Determine if this category is also "non-lazy". 6273 if (ImplementationIsNonLazy(OCD)) 6274 DefinedNonLazyCategories.push_back(GCATV); 6275 // method definition entries must be clear for next implementation. 6276 MethodDefinitions.clear(); 6277 } 6278 6279 /// GetMethodConstant - Return a struct objc_method constant for the 6280 /// given method if it has been defined. The result is null if the 6281 /// method has not been defined. The return value has type MethodPtrTy. 6282 llvm::Constant *CGObjCNonFragileABIMac::GetMethodConstant( 6283 const ObjCMethodDecl *MD) { 6284 llvm::Function *Fn = GetMethodDefinition(MD); 6285 if (!Fn) 6286 return nullptr; 6287 6288 llvm::Constant *Method[] = { 6289 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 6290 ObjCTypes.SelectorPtrTy), 6291 GetMethodVarType(MD), 6292 llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy) 6293 }; 6294 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method); 6295 } 6296 6297 /// EmitMethodList - Build meta-data for method declarations 6298 /// struct _method_list_t { 6299 /// uint32_t entsize; // sizeof(struct _objc_method) 6300 /// uint32_t method_count; 6301 /// struct _objc_method method_list[method_count]; 6302 /// } 6303 /// 6304 llvm::Constant * 6305 CGObjCNonFragileABIMac::EmitMethodList(Twine Name, StringRef Section, 6306 ArrayRef<llvm::Constant *> Methods) { 6307 // Return null for empty list. 6308 if (Methods.empty()) 6309 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6310 6311 llvm::Constant *Values[3]; 6312 // sizeof(struct _objc_method) 6313 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6314 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6315 // method_count 6316 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 6317 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy, 6318 Methods.size()); 6319 Values[2] = llvm::ConstantArray::get(AT, Methods); 6320 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 6321 6322 llvm::GlobalVariable *GV = 6323 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6324 llvm::GlobalValue::PrivateLinkage, Init, Name); 6325 GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType())); 6326 GV->setSection(Section); 6327 CGM.addCompilerUsedGlobal(GV); 6328 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6329 } 6330 6331 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6332 /// the given ivar. 6333 llvm::GlobalVariable * 6334 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6335 const ObjCIvarDecl *Ivar) { 6336 6337 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6338 llvm::SmallString<64> Name("OBJC_IVAR_$_"); 6339 Name += Container->getObjCRuntimeNameAsString(); 6340 Name += "."; 6341 Name += Ivar->getName(); 6342 llvm::GlobalVariable *IvarOffsetGV = 6343 CGM.getModule().getGlobalVariable(Name); 6344 if (!IvarOffsetGV) 6345 IvarOffsetGV = new llvm::GlobalVariable( 6346 CGM.getModule(), ObjCTypes.IvarOffsetVarTy, false, 6347 llvm::GlobalValue::ExternalLinkage, nullptr, Name.str()); 6348 return IvarOffsetGV; 6349 } 6350 6351 llvm::Constant * 6352 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6353 const ObjCIvarDecl *Ivar, 6354 unsigned long int Offset) { 6355 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6356 IvarOffsetGV->setInitializer( 6357 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset)); 6358 IvarOffsetGV->setAlignment( 6359 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy)); 6360 6361 // FIXME: This matches gcc, but shouldn't the visibility be set on the use as 6362 // well (i.e., in ObjCIvarOffsetVariable). 6363 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6364 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6365 ID->getVisibility() == HiddenVisibility) 6366 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6367 else 6368 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6369 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6370 return IvarOffsetGV; 6371 } 6372 6373 /// EmitIvarList - Emit the ivar list for the given 6374 /// implementation. The return value has type 6375 /// IvarListnfABIPtrTy. 6376 /// struct _ivar_t { 6377 /// unsigned [long] int *offset; // pointer to ivar offset location 6378 /// char *name; 6379 /// char *type; 6380 /// uint32_t alignment; 6381 /// uint32_t size; 6382 /// } 6383 /// struct _ivar_list_t { 6384 /// uint32 entsize; // sizeof(struct _ivar_t) 6385 /// uint32 count; 6386 /// struct _iver_t list[count]; 6387 /// } 6388 /// 6389 6390 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6391 const ObjCImplementationDecl *ID) { 6392 6393 std::vector<llvm::Constant*> Ivars; 6394 6395 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6396 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6397 6398 // FIXME. Consolidate this with similar code in GenerateClass. 6399 6400 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6401 IVD; IVD = IVD->getNextIvar()) { 6402 // Ignore unnamed bit-fields. 6403 if (!IVD->getDeclName()) 6404 continue; 6405 llvm::Constant *Ivar[5]; 6406 Ivar[0] = EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6407 ComputeIvarBaseOffset(CGM, ID, IVD)); 6408 Ivar[1] = GetMethodVarName(IVD->getIdentifier()); 6409 Ivar[2] = GetMethodVarType(IVD); 6410 llvm::Type *FieldTy = 6411 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6412 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6413 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6414 IVD->getType().getTypePtr()) >> 3; 6415 Align = llvm::Log2_32(Align); 6416 Ivar[3] = llvm::ConstantInt::get(ObjCTypes.IntTy, Align); 6417 // NOTE. Size of a bitfield does not match gcc's, because of the 6418 // way bitfields are treated special in each. But I am told that 6419 // 'size' for bitfield ivars is ignored by the runtime so it does 6420 // not matter. If it matters, there is enough info to get the 6421 // bitfield right! 6422 Ivar[4] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6423 Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarnfABITy, Ivar)); 6424 } 6425 // Return null for empty list. 6426 if (Ivars.empty()) 6427 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 6428 6429 llvm::Constant *Values[3]; 6430 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy); 6431 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6432 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size()); 6433 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarnfABITy, 6434 Ivars.size()); 6435 Values[2] = llvm::ConstantArray::get(AT, Ivars); 6436 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 6437 const char *Prefix = "\01l_OBJC_$_INSTANCE_VARIABLES_"; 6438 llvm::GlobalVariable *GV = 6439 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6440 llvm::GlobalValue::PrivateLinkage, 6441 Init, 6442 Prefix + OID->getObjCRuntimeNameAsString()); 6443 GV->setAlignment( 6444 CGM.getDataLayout().getABITypeAlignment(Init->getType())); 6445 GV->setSection("__DATA, __objc_const"); 6446 6447 CGM.addCompilerUsedGlobal(GV); 6448 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 6449 } 6450 6451 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 6452 const ObjCProtocolDecl *PD) { 6453 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 6454 6455 if (!Entry) 6456 // We use the initializer as a marker of whether this is a forward 6457 // reference or not. At module finalization we add the empty 6458 // contents for protocols which were referenced but never defined. 6459 Entry = 6460 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 6461 false, llvm::GlobalValue::ExternalLinkage, 6462 nullptr, 6463 "\01l_OBJC_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString()); 6464 6465 return Entry; 6466 } 6467 6468 /// GetOrEmitProtocol - Generate the protocol meta-data: 6469 /// @code 6470 /// struct _protocol_t { 6471 /// id isa; // NULL 6472 /// const char * const protocol_name; 6473 /// const struct _protocol_list_t * protocol_list; // super protocols 6474 /// const struct method_list_t * const instance_methods; 6475 /// const struct method_list_t * const class_methods; 6476 /// const struct method_list_t *optionalInstanceMethods; 6477 /// const struct method_list_t *optionalClassMethods; 6478 /// const struct _prop_list_t * properties; 6479 /// const uint32_t size; // sizeof(struct _protocol_t) 6480 /// const uint32_t flags; // = 0 6481 /// const char ** extendedMethodTypes; 6482 /// const char *demangledName; 6483 /// const struct _prop_list_t * class_properties; 6484 /// } 6485 /// @endcode 6486 /// 6487 6488 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 6489 const ObjCProtocolDecl *PD) { 6490 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 6491 6492 // Early exit if a defining object has already been generated. 6493 if (Entry && Entry->hasInitializer()) 6494 return Entry; 6495 6496 // Use the protocol definition, if there is one. 6497 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 6498 PD = Def; 6499 6500 // Construct method lists. 6501 std::vector<llvm::Constant*> InstanceMethods, ClassMethods; 6502 std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods; 6503 std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt; 6504 for (const auto *MD : PD->instance_methods()) { 6505 llvm::Constant *C = GetMethodDescriptionConstant(MD); 6506 if (!C) 6507 return GetOrEmitProtocolRef(PD); 6508 6509 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 6510 OptInstanceMethods.push_back(C); 6511 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 6512 } else { 6513 InstanceMethods.push_back(C); 6514 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 6515 } 6516 } 6517 6518 for (const auto *MD : PD->class_methods()) { 6519 llvm::Constant *C = GetMethodDescriptionConstant(MD); 6520 if (!C) 6521 return GetOrEmitProtocolRef(PD); 6522 6523 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 6524 OptClassMethods.push_back(C); 6525 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 6526 } else { 6527 ClassMethods.push_back(C); 6528 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 6529 } 6530 } 6531 6532 MethodTypesExt.insert(MethodTypesExt.end(), 6533 OptMethodTypesExt.begin(), OptMethodTypesExt.end()); 6534 6535 llvm::Constant *Values[13]; 6536 // isa is NULL 6537 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ObjectPtrTy); 6538 Values[1] = GetClassName(PD->getObjCRuntimeNameAsString()); 6539 Values[2] = EmitProtocolList("\01l_OBJC_$_PROTOCOL_REFS_" + PD->getObjCRuntimeNameAsString(), 6540 PD->protocol_begin(), 6541 PD->protocol_end()); 6542 6543 Values[3] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_" 6544 + PD->getObjCRuntimeNameAsString(), 6545 "__DATA, __objc_const", 6546 InstanceMethods); 6547 Values[4] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_" 6548 + PD->getObjCRuntimeNameAsString(), 6549 "__DATA, __objc_const", 6550 ClassMethods); 6551 Values[5] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_" 6552 + PD->getObjCRuntimeNameAsString(), 6553 "__DATA, __objc_const", 6554 OptInstanceMethods); 6555 Values[6] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_" 6556 + PD->getObjCRuntimeNameAsString(), 6557 "__DATA, __objc_const", 6558 OptClassMethods); 6559 Values[7] = EmitPropertyList( 6560 "\01l_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 6561 nullptr, PD, ObjCTypes, false); 6562 uint32_t Size = 6563 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 6564 Values[8] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6565 Values[9] = llvm::Constant::getNullValue(ObjCTypes.IntTy); 6566 Values[10] = EmitProtocolMethodTypes("\01l_OBJC_$_PROTOCOL_METHOD_TYPES_" 6567 + PD->getObjCRuntimeNameAsString(), 6568 MethodTypesExt, ObjCTypes); 6569 // const char *demangledName; 6570 Values[11] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 6571 6572 Values[12] = EmitPropertyList( 6573 "\01l_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(), 6574 nullptr, PD, ObjCTypes, true); 6575 6576 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolnfABITy, 6577 Values); 6578 6579 if (Entry) { 6580 // Already created, fix the linkage and update the initializer. 6581 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 6582 Entry->setInitializer(Init); 6583 } else { 6584 Entry = 6585 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 6586 false, llvm::GlobalValue::WeakAnyLinkage, Init, 6587 "\01l_OBJC_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString()); 6588 Entry->setAlignment( 6589 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABITy)); 6590 6591 Protocols[PD->getIdentifier()] = Entry; 6592 } 6593 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 6594 CGM.addCompilerUsedGlobal(Entry); 6595 6596 // Use this protocol meta-data to build protocol list table in section 6597 // __DATA, __objc_protolist 6598 llvm::GlobalVariable *PTGV = 6599 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 6600 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 6601 "\01l_OBJC_LABEL_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString()); 6602 PTGV->setAlignment( 6603 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy)); 6604 PTGV->setSection("__DATA, __objc_protolist, coalesced, no_dead_strip"); 6605 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6606 CGM.addCompilerUsedGlobal(PTGV); 6607 return Entry; 6608 } 6609 6610 /// EmitProtocolList - Generate protocol list meta-data: 6611 /// @code 6612 /// struct _protocol_list_t { 6613 /// long protocol_count; // Note, this is 32/64 bit 6614 /// struct _protocol_t[protocol_count]; 6615 /// } 6616 /// @endcode 6617 /// 6618 llvm::Constant * 6619 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 6620 ObjCProtocolDecl::protocol_iterator begin, 6621 ObjCProtocolDecl::protocol_iterator end) { 6622 SmallVector<llvm::Constant *, 16> ProtocolRefs; 6623 6624 // Just return null for empty protocol lists 6625 if (begin == end) 6626 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 6627 6628 // FIXME: We shouldn't need to do this lookup here, should we? 6629 SmallString<256> TmpName; 6630 Name.toVector(TmpName); 6631 llvm::GlobalVariable *GV = 6632 CGM.getModule().getGlobalVariable(TmpName.str(), true); 6633 if (GV) 6634 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 6635 6636 for (; begin != end; ++begin) 6637 ProtocolRefs.push_back(GetProtocolRef(*begin)); // Implemented??? 6638 6639 // This list is null terminated. 6640 ProtocolRefs.push_back(llvm::Constant::getNullValue( 6641 ObjCTypes.ProtocolnfABIPtrTy)); 6642 6643 llvm::Constant *Values[2]; 6644 Values[0] = 6645 llvm::ConstantInt::get(ObjCTypes.LongTy, ProtocolRefs.size() - 1); 6646 Values[1] = 6647 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolnfABIPtrTy, 6648 ProtocolRefs.size()), 6649 ProtocolRefs); 6650 6651 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 6652 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6653 llvm::GlobalValue::PrivateLinkage, 6654 Init, Name); 6655 GV->setSection("__DATA, __objc_const"); 6656 GV->setAlignment( 6657 CGM.getDataLayout().getABITypeAlignment(Init->getType())); 6658 CGM.addCompilerUsedGlobal(GV); 6659 return llvm::ConstantExpr::getBitCast(GV, 6660 ObjCTypes.ProtocolListnfABIPtrTy); 6661 } 6662 6663 /// GetMethodDescriptionConstant - This routine build following meta-data: 6664 /// struct _objc_method { 6665 /// SEL _cmd; 6666 /// char *method_type; 6667 /// char *_imp; 6668 /// } 6669 6670 llvm::Constant * 6671 CGObjCNonFragileABIMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) { 6672 llvm::Constant *Desc[3]; 6673 Desc[0] = 6674 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 6675 ObjCTypes.SelectorPtrTy); 6676 Desc[1] = GetMethodVarType(MD); 6677 if (!Desc[1]) 6678 return nullptr; 6679 6680 // Protocol methods have no implementation. So, this entry is always NULL. 6681 Desc[2] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 6682 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Desc); 6683 } 6684 6685 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 6686 /// This code gen. amounts to generating code for: 6687 /// @code 6688 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 6689 /// @encode 6690 /// 6691 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 6692 CodeGen::CodeGenFunction &CGF, 6693 QualType ObjectTy, 6694 llvm::Value *BaseValue, 6695 const ObjCIvarDecl *Ivar, 6696 unsigned CVRQualifiers) { 6697 ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCObjectType>()->getInterface(); 6698 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 6699 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 6700 Offset); 6701 } 6702 6703 llvm::Value *CGObjCNonFragileABIMac::EmitIvarOffset( 6704 CodeGen::CodeGenFunction &CGF, 6705 const ObjCInterfaceDecl *Interface, 6706 const ObjCIvarDecl *Ivar) { 6707 llvm::Value *IvarOffsetValue = ObjCIvarOffsetVariable(Interface, Ivar); 6708 IvarOffsetValue = CGF.Builder.CreateAlignedLoad(IvarOffsetValue, 6709 CGF.getSizeAlign(), "ivar"); 6710 if (IsIvarOffsetKnownIdempotent(CGF, Ivar)) 6711 cast<llvm::LoadInst>(IvarOffsetValue) 6712 ->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 6713 llvm::MDNode::get(VMContext, None)); 6714 6715 // This could be 32bit int or 64bit integer depending on the architecture. 6716 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value 6717 // as this is what caller always expectes. 6718 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy) 6719 IvarOffsetValue = CGF.Builder.CreateIntCast( 6720 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv"); 6721 return IvarOffsetValue; 6722 } 6723 6724 static void appendSelectorForMessageRefTable(std::string &buffer, 6725 Selector selector) { 6726 if (selector.isUnarySelector()) { 6727 buffer += selector.getNameForSlot(0); 6728 return; 6729 } 6730 6731 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 6732 buffer += selector.getNameForSlot(i); 6733 buffer += '_'; 6734 } 6735 } 6736 6737 /// Emit a "vtable" message send. We emit a weak hidden-visibility 6738 /// struct, initially containing the selector pointer and a pointer to 6739 /// a "fixup" variant of the appropriate objc_msgSend. To call, we 6740 /// load and call the function pointer, passing the address of the 6741 /// struct as the second parameter. The runtime determines whether 6742 /// the selector is currently emitted using vtable dispatch; if so, it 6743 /// substitutes a stub function which simply tail-calls through the 6744 /// appropriate vtable slot, and if not, it substitues a stub function 6745 /// which tail-calls objc_msgSend. Both stubs adjust the selector 6746 /// argument to correctly point to the selector. 6747 RValue 6748 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 6749 ReturnValueSlot returnSlot, 6750 QualType resultType, 6751 Selector selector, 6752 llvm::Value *arg0, 6753 QualType arg0Type, 6754 bool isSuper, 6755 const CallArgList &formalArgs, 6756 const ObjCMethodDecl *method) { 6757 // Compute the actual arguments. 6758 CallArgList args; 6759 6760 // First argument: the receiver / super-call structure. 6761 if (!isSuper) 6762 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 6763 args.add(RValue::get(arg0), arg0Type); 6764 6765 // Second argument: a pointer to the message ref structure. Leave 6766 // the actual argument value blank for now. 6767 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy); 6768 6769 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 6770 6771 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 6772 6773 NullReturnState nullReturn; 6774 6775 // Find the function to call and the mangled name for the message 6776 // ref structure. Using a different mangled name wouldn't actually 6777 // be a problem; it would just be a waste. 6778 // 6779 // The runtime currently never uses vtable dispatch for anything 6780 // except normal, non-super message-sends. 6781 // FIXME: don't use this for that. 6782 llvm::Constant *fn = nullptr; 6783 std::string messageRefName("\01l_"); 6784 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) { 6785 if (isSuper) { 6786 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 6787 messageRefName += "objc_msgSendSuper2_stret_fixup"; 6788 } else { 6789 nullReturn.init(CGF, arg0); 6790 fn = ObjCTypes.getMessageSendStretFixupFn(); 6791 messageRefName += "objc_msgSend_stret_fixup"; 6792 } 6793 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 6794 fn = ObjCTypes.getMessageSendFpretFixupFn(); 6795 messageRefName += "objc_msgSend_fpret_fixup"; 6796 } else { 6797 if (isSuper) { 6798 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 6799 messageRefName += "objc_msgSendSuper2_fixup"; 6800 } else { 6801 fn = ObjCTypes.getMessageSendFixupFn(); 6802 messageRefName += "objc_msgSend_fixup"; 6803 } 6804 } 6805 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 6806 messageRefName += '_'; 6807 6808 // Append the selector name, except use underscores anywhere we 6809 // would have used colons. 6810 appendSelectorForMessageRefTable(messageRefName, selector); 6811 6812 llvm::GlobalVariable *messageRef 6813 = CGM.getModule().getGlobalVariable(messageRefName); 6814 if (!messageRef) { 6815 // Build the message ref structure. 6816 llvm::Constant *values[] = { fn, GetMethodVarName(selector) }; 6817 llvm::Constant *init = llvm::ConstantStruct::getAnon(values); 6818 messageRef = new llvm::GlobalVariable(CGM.getModule(), 6819 init->getType(), 6820 /*constant*/ false, 6821 llvm::GlobalValue::WeakAnyLinkage, 6822 init, 6823 messageRefName); 6824 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 6825 messageRef->setAlignment(16); 6826 messageRef->setSection("__DATA, __objc_msgrefs, coalesced"); 6827 } 6828 6829 bool requiresnullCheck = false; 6830 if (CGM.getLangOpts().ObjCAutoRefCount && method) 6831 for (const auto *ParamDecl : method->params()) { 6832 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 6833 if (!nullReturn.NullBB) 6834 nullReturn.init(CGF, arg0); 6835 requiresnullCheck = true; 6836 break; 6837 } 6838 } 6839 6840 Address mref = 6841 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy), 6842 CGF.getPointerAlign()); 6843 6844 // Update the message ref argument. 6845 args[1].RV = RValue::get(mref.getPointer()); 6846 6847 // Load the function to call from the message ref table. 6848 Address calleeAddr = 6849 CGF.Builder.CreateStructGEP(mref, 0, CharUnits::Zero()); 6850 llvm::Value *callee = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn"); 6851 6852 callee = CGF.Builder.CreateBitCast(callee, MSI.MessengerType); 6853 6854 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 6855 return nullReturn.complete(CGF, result, resultType, formalArgs, 6856 requiresnullCheck ? method : nullptr); 6857 } 6858 6859 /// Generate code for a message send expression in the nonfragile abi. 6860 CodeGen::RValue 6861 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 6862 ReturnValueSlot Return, 6863 QualType ResultType, 6864 Selector Sel, 6865 llvm::Value *Receiver, 6866 const CallArgList &CallArgs, 6867 const ObjCInterfaceDecl *Class, 6868 const ObjCMethodDecl *Method) { 6869 return isVTableDispatchedSelector(Sel) 6870 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 6871 Receiver, CGF.getContext().getObjCIdType(), 6872 false, CallArgs, Method) 6873 : EmitMessageSend(CGF, Return, ResultType, 6874 EmitSelector(CGF, Sel), 6875 Receiver, CGF.getContext().getObjCIdType(), 6876 false, CallArgs, Method, Class, ObjCTypes); 6877 } 6878 6879 llvm::GlobalVariable * 6880 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, bool Weak) { 6881 llvm::GlobalValue::LinkageTypes L = 6882 Weak ? llvm::GlobalValue::ExternalWeakLinkage 6883 : llvm::GlobalValue::ExternalLinkage; 6884 6885 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 6886 6887 if (!GV) 6888 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABITy, 6889 false, L, nullptr, Name); 6890 6891 assert(GV->getLinkage() == L); 6892 return GV; 6893 } 6894 6895 llvm::Value *CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 6896 IdentifierInfo *II, 6897 bool Weak, 6898 const ObjCInterfaceDecl *ID) { 6899 CharUnits Align = CGF.getPointerAlign(); 6900 llvm::GlobalVariable *&Entry = ClassReferences[II]; 6901 6902 if (!Entry) { 6903 StringRef Name = ID ? ID->getObjCRuntimeNameAsString() : II->getName(); 6904 std::string ClassName = (getClassSymbolPrefix() + Name).str(); 6905 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName, Weak); 6906 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 6907 false, llvm::GlobalValue::PrivateLinkage, 6908 ClassGV, "OBJC_CLASSLIST_REFERENCES_$_"); 6909 Entry->setAlignment(Align.getQuantity()); 6910 Entry->setSection("__DATA, __objc_classrefs, regular, no_dead_strip"); 6911 CGM.addCompilerUsedGlobal(Entry); 6912 } 6913 return CGF.Builder.CreateAlignedLoad(Entry, Align); 6914 } 6915 6916 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 6917 const ObjCInterfaceDecl *ID) { 6918 // If the class has the objc_runtime_visible attribute, we need to 6919 // use the Objective-C runtime to get the class. 6920 if (ID->hasAttr<ObjCRuntimeVisibleAttr>()) 6921 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes); 6922 6923 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID->isWeakImported(), ID); 6924 } 6925 6926 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 6927 CodeGenFunction &CGF) { 6928 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 6929 return EmitClassRefFromId(CGF, II, false, nullptr); 6930 } 6931 6932 llvm::Value * 6933 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 6934 const ObjCInterfaceDecl *ID) { 6935 CharUnits Align = CGF.getPointerAlign(); 6936 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 6937 6938 if (!Entry) { 6939 llvm::SmallString<64> ClassName(getClassSymbolPrefix()); 6940 ClassName += ID->getObjCRuntimeNameAsString(); 6941 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName.str(), 6942 ID->isWeakImported()); 6943 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 6944 false, llvm::GlobalValue::PrivateLinkage, 6945 ClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 6946 Entry->setAlignment(Align.getQuantity()); 6947 Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip"); 6948 CGM.addCompilerUsedGlobal(Entry); 6949 } 6950 return CGF.Builder.CreateAlignedLoad(Entry, Align); 6951 } 6952 6953 /// EmitMetaClassRef - Return a Value * of the address of _class_t 6954 /// meta-data 6955 /// 6956 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 6957 const ObjCInterfaceDecl *ID, 6958 bool Weak) { 6959 CharUnits Align = CGF.getPointerAlign(); 6960 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 6961 if (!Entry) { 6962 llvm::SmallString<64> MetaClassName(getMetaclassSymbolPrefix()); 6963 MetaClassName += ID->getObjCRuntimeNameAsString(); 6964 llvm::GlobalVariable *MetaClassGV = 6965 GetClassGlobal(MetaClassName.str(), Weak); 6966 6967 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 6968 false, llvm::GlobalValue::PrivateLinkage, 6969 MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_"); 6970 Entry->setAlignment(Align.getQuantity()); 6971 6972 Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip"); 6973 CGM.addCompilerUsedGlobal(Entry); 6974 } 6975 6976 return CGF.Builder.CreateAlignedLoad(Entry, Align); 6977 } 6978 6979 /// GetClass - Return a reference to the class for the given interface 6980 /// decl. 6981 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 6982 const ObjCInterfaceDecl *ID) { 6983 if (ID->isWeakImported()) { 6984 llvm::SmallString<64> ClassName(getClassSymbolPrefix()); 6985 ClassName += ID->getObjCRuntimeNameAsString(); 6986 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName.str(), true); 6987 (void)ClassGV; 6988 assert(ClassGV->hasExternalWeakLinkage()); 6989 } 6990 6991 return EmitClassRef(CGF, ID); 6992 } 6993 6994 /// Generates a message send where the super is the receiver. This is 6995 /// a message send to self with special delivery semantics indicating 6996 /// which class's method should be called. 6997 CodeGen::RValue 6998 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 6999 ReturnValueSlot Return, 7000 QualType ResultType, 7001 Selector Sel, 7002 const ObjCInterfaceDecl *Class, 7003 bool isCategoryImpl, 7004 llvm::Value *Receiver, 7005 bool IsClassMessage, 7006 const CodeGen::CallArgList &CallArgs, 7007 const ObjCMethodDecl *Method) { 7008 // ... 7009 // Create and init a super structure; this is a (receiver, class) 7010 // pair we will pass to objc_msgSendSuper. 7011 Address ObjCSuper = 7012 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(), 7013 "objc_super"); 7014 7015 llvm::Value *ReceiverAsObject = 7016 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 7017 CGF.Builder.CreateStore( 7018 ReceiverAsObject, 7019 CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero())); 7020 7021 // If this is a class message the metaclass is passed as the target. 7022 llvm::Value *Target; 7023 if (IsClassMessage) 7024 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported()); 7025 else 7026 Target = EmitSuperClassRef(CGF, Class); 7027 7028 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 7029 // ObjCTypes types. 7030 llvm::Type *ClassTy = 7031 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 7032 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 7033 CGF.Builder.CreateStore( 7034 Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize())); 7035 7036 return (isVTableDispatchedSelector(Sel)) 7037 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 7038 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7039 true, CallArgs, Method) 7040 : EmitMessageSend(CGF, Return, ResultType, 7041 EmitSelector(CGF, Sel), 7042 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy, 7043 true, CallArgs, Method, Class, ObjCTypes); 7044 } 7045 7046 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 7047 Selector Sel) { 7048 Address Addr = EmitSelectorAddr(CGF, Sel); 7049 7050 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr); 7051 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 7052 llvm::MDNode::get(VMContext, None)); 7053 return LI; 7054 } 7055 7056 Address CGObjCNonFragileABIMac::EmitSelectorAddr(CodeGenFunction &CGF, 7057 Selector Sel) { 7058 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 7059 7060 CharUnits Align = CGF.getPointerAlign(); 7061 if (!Entry) { 7062 llvm::Constant *Casted = 7063 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 7064 ObjCTypes.SelectorPtrTy); 7065 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.SelectorPtrTy, 7066 false, llvm::GlobalValue::PrivateLinkage, 7067 Casted, "OBJC_SELECTOR_REFERENCES_"); 7068 Entry->setExternallyInitialized(true); 7069 Entry->setSection("__DATA, __objc_selrefs, literal_pointers, no_dead_strip"); 7070 Entry->setAlignment(Align.getQuantity()); 7071 CGM.addCompilerUsedGlobal(Entry); 7072 } 7073 7074 return Address(Entry, Align); 7075 } 7076 7077 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 7078 /// objc_assign_ivar (id src, id *dst, ptrdiff_t) 7079 /// 7080 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 7081 llvm::Value *src, 7082 Address dst, 7083 llvm::Value *ivarOffset) { 7084 llvm::Type * SrcTy = src->getType(); 7085 if (!isa<llvm::PointerType>(SrcTy)) { 7086 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7087 assert(Size <= 8 && "does not support size > 8"); 7088 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7089 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7090 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7091 } 7092 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7093 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7094 llvm::Value *args[] = { src, dst.getPointer(), ivarOffset }; 7095 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 7096 } 7097 7098 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 7099 /// objc_assign_strongCast (id src, id *dst) 7100 /// 7101 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 7102 CodeGen::CodeGenFunction &CGF, 7103 llvm::Value *src, Address dst) { 7104 llvm::Type * SrcTy = src->getType(); 7105 if (!isa<llvm::PointerType>(SrcTy)) { 7106 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7107 assert(Size <= 8 && "does not support size > 8"); 7108 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7109 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7110 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7111 } 7112 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7113 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7114 llvm::Value *args[] = { src, dst.getPointer() }; 7115 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 7116 args, "weakassign"); 7117 } 7118 7119 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 7120 CodeGen::CodeGenFunction &CGF, 7121 Address DestPtr, 7122 Address SrcPtr, 7123 llvm::Value *Size) { 7124 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 7125 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 7126 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size }; 7127 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 7128 } 7129 7130 /// EmitObjCWeakRead - Code gen for loading value of a __weak 7131 /// object: objc_read_weak (id *src) 7132 /// 7133 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 7134 CodeGen::CodeGenFunction &CGF, 7135 Address AddrWeakObj) { 7136 llvm::Type *DestTy = AddrWeakObj.getElementType(); 7137 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 7138 llvm::Value *read_weak = 7139 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 7140 AddrWeakObj.getPointer(), "weakread"); 7141 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 7142 return read_weak; 7143 } 7144 7145 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 7146 /// objc_assign_weak (id src, id *dst) 7147 /// 7148 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 7149 llvm::Value *src, Address dst) { 7150 llvm::Type * SrcTy = src->getType(); 7151 if (!isa<llvm::PointerType>(SrcTy)) { 7152 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7153 assert(Size <= 8 && "does not support size > 8"); 7154 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7155 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7156 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7157 } 7158 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7159 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7160 llvm::Value *args[] = { src, dst.getPointer() }; 7161 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 7162 args, "weakassign"); 7163 } 7164 7165 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 7166 /// objc_assign_global (id src, id *dst) 7167 /// 7168 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 7169 llvm::Value *src, Address dst, 7170 bool threadlocal) { 7171 llvm::Type * SrcTy = src->getType(); 7172 if (!isa<llvm::PointerType>(SrcTy)) { 7173 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 7174 assert(Size <= 8 && "does not support size > 8"); 7175 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 7176 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 7177 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 7178 } 7179 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 7180 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 7181 llvm::Value *args[] = { src, dst.getPointer() }; 7182 if (!threadlocal) 7183 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 7184 args, "globalassign"); 7185 else 7186 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 7187 args, "threadlocalassign"); 7188 } 7189 7190 void 7191 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 7192 const ObjCAtSynchronizedStmt &S) { 7193 EmitAtSynchronizedStmt(CGF, S, 7194 cast<llvm::Function>(ObjCTypes.getSyncEnterFn()), 7195 cast<llvm::Function>(ObjCTypes.getSyncExitFn())); 7196 } 7197 7198 llvm::Constant * 7199 CGObjCNonFragileABIMac::GetEHType(QualType T) { 7200 // There's a particular fixed type info for 'id'. 7201 if (T->isObjCIdType() || 7202 T->isObjCQualifiedIdType()) { 7203 llvm::Constant *IDEHType = 7204 CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 7205 if (!IDEHType) 7206 IDEHType = 7207 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 7208 false, 7209 llvm::GlobalValue::ExternalLinkage, 7210 nullptr, "OBJC_EHTYPE_id"); 7211 return IDEHType; 7212 } 7213 7214 // All other types should be Objective-C interface pointer types. 7215 const ObjCObjectPointerType *PT = 7216 T->getAs<ObjCObjectPointerType>(); 7217 assert(PT && "Invalid @catch type."); 7218 const ObjCInterfaceType *IT = PT->getInterfaceType(); 7219 assert(IT && "Invalid @catch type."); 7220 return GetInterfaceEHType(IT->getDecl(), false); 7221 } 7222 7223 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 7224 const ObjCAtTryStmt &S) { 7225 EmitTryCatchStmt(CGF, S, 7226 cast<llvm::Function>(ObjCTypes.getObjCBeginCatchFn()), 7227 cast<llvm::Function>(ObjCTypes.getObjCEndCatchFn()), 7228 cast<llvm::Function>(ObjCTypes.getExceptionRethrowFn())); 7229 } 7230 7231 /// EmitThrowStmt - Generate code for a throw statement. 7232 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 7233 const ObjCAtThrowStmt &S, 7234 bool ClearInsertionPoint) { 7235 if (const Expr *ThrowExpr = S.getThrowExpr()) { 7236 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 7237 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7238 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception) 7239 .setDoesNotReturn(); 7240 } else { 7241 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()) 7242 .setDoesNotReturn(); 7243 } 7244 7245 CGF.Builder.CreateUnreachable(); 7246 if (ClearInsertionPoint) 7247 CGF.Builder.ClearInsertionPoint(); 7248 } 7249 7250 llvm::Constant * 7251 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7252 bool ForDefinition) { 7253 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7254 7255 // If we don't need a definition, return the entry if found or check 7256 // if we use an external reference. 7257 if (!ForDefinition) { 7258 if (Entry) 7259 return Entry; 7260 7261 // If this type (or a super class) has the __objc_exception__ 7262 // attribute, emit an external reference. 7263 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7264 return Entry = 7265 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7266 llvm::GlobalValue::ExternalLinkage, 7267 nullptr, 7268 ("OBJC_EHTYPE_$_" + 7269 ID->getObjCRuntimeNameAsString())); 7270 } 7271 7272 // Otherwise we need to either make a new entry or fill in the 7273 // initializer. 7274 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7275 llvm::SmallString<64> ClassName(getClassSymbolPrefix()); 7276 ClassName += ID->getObjCRuntimeNameAsString(); 7277 std::string VTableName = "objc_ehtype_vtable"; 7278 llvm::GlobalVariable *VTableGV = 7279 CGM.getModule().getGlobalVariable(VTableName); 7280 if (!VTableGV) 7281 VTableGV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, 7282 false, 7283 llvm::GlobalValue::ExternalLinkage, 7284 nullptr, VTableName); 7285 7286 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7287 7288 llvm::Constant *Values[] = { 7289 llvm::ConstantExpr::getGetElementPtr(VTableGV->getValueType(), VTableGV, 7290 VTableIdx), 7291 GetClassName(ID->getObjCRuntimeNameAsString()), 7292 GetClassGlobal(ClassName.str())}; 7293 llvm::Constant *Init = 7294 llvm::ConstantStruct::get(ObjCTypes.EHTypeTy, Values); 7295 7296 llvm::GlobalValue::LinkageTypes L = ForDefinition 7297 ? llvm::GlobalValue::ExternalLinkage 7298 : llvm::GlobalValue::WeakAnyLinkage; 7299 if (Entry) { 7300 Entry->setInitializer(Init); 7301 } else { 7302 llvm::SmallString<64> EHTYPEName("OBJC_EHTYPE_$_"); 7303 EHTYPEName += ID->getObjCRuntimeNameAsString(); 7304 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7305 L, 7306 Init, 7307 EHTYPEName.str()); 7308 } 7309 assert(Entry->getLinkage() == L); 7310 7311 if (ID->getVisibility() == HiddenVisibility) 7312 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7313 Entry->setAlignment(CGM.getDataLayout().getABITypeAlignment( 7314 ObjCTypes.EHTypeTy)); 7315 7316 if (ForDefinition) 7317 Entry->setSection("__DATA,__objc_const"); 7318 7319 return Entry; 7320 } 7321 7322 /* *** */ 7323 7324 CodeGen::CGObjCRuntime * 7325 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7326 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7327 case ObjCRuntime::FragileMacOSX: 7328 return new CGObjCMac(CGM); 7329 7330 case ObjCRuntime::MacOSX: 7331 case ObjCRuntime::iOS: 7332 case ObjCRuntime::WatchOS: 7333 return new CGObjCNonFragileABIMac(CGM); 7334 7335 case ObjCRuntime::GNUstep: 7336 case ObjCRuntime::GCC: 7337 case ObjCRuntime::ObjFW: 7338 llvm_unreachable("these runtimes are not Mac runtimes"); 7339 } 7340 llvm_unreachable("bad runtime"); 7341 } 7342