1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides Objective-C code generation targeting the Apple runtime.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGObjCRuntime.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtObjC.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/CodeGen/CGFunctionInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <cstdio>
40 
41 using namespace clang;
42 using namespace CodeGen;
43 
44 namespace {
45 
46 // FIXME: We should find a nicer way to make the labels for metadata, string
47 // concatenation is lame.
48 
49 class ObjCCommonTypesHelper {
50 protected:
51   llvm::LLVMContext &VMContext;
52 
53 private:
54   // The types of these functions don't really matter because we
55   // should always bitcast before calling them.
56 
57   /// id objc_msgSend (id, SEL, ...)
58   ///
59   /// The default messenger, used for sends whose ABI is unchanged from
60   /// the all-integer/pointer case.
61   llvm::Constant *getMessageSendFn() const {
62     // Add the non-lazy-bind attribute, since objc_msgSend is likely to
63     // be called a lot.
64     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
65     return
66       CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
67                                                         params, true),
68                                 "objc_msgSend",
69                                 llvm::AttributeSet::get(CGM.getLLVMContext(),
70                                               llvm::AttributeSet::FunctionIndex,
71                                                  llvm::Attribute::NonLazyBind));
72   }
73 
74   /// void objc_msgSend_stret (id, SEL, ...)
75   ///
76   /// The messenger used when the return value is an aggregate returned
77   /// by indirect reference in the first argument, and therefore the
78   /// self and selector parameters are shifted over by one.
79   llvm::Constant *getMessageSendStretFn() const {
80     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
81     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy,
82                                                              params, true),
83                                      "objc_msgSend_stret");
84 
85   }
86 
87   /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...)
88   ///
89   /// The messenger used when the return value is returned on the x87
90   /// floating-point stack; without a special entrypoint, the nil case
91   /// would be unbalanced.
92   llvm::Constant *getMessageSendFpretFn() const {
93     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
94     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy,
95                                                              params, true),
96                                      "objc_msgSend_fpret");
97 
98   }
99 
100   /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...)
101   ///
102   /// The messenger used when the return value is returned in two values on the
103   /// x87 floating point stack; without a special entrypoint, the nil case
104   /// would be unbalanced. Only used on 64-bit X86.
105   llvm::Constant *getMessageSendFp2retFn() const {
106     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
107     llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext);
108     llvm::Type *resultType =
109       llvm::StructType::get(longDoubleType, longDoubleType, nullptr);
110 
111     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType,
112                                                              params, true),
113                                      "objc_msgSend_fp2ret");
114   }
115 
116   /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...)
117   ///
118   /// The messenger used for super calls, which have different dispatch
119   /// semantics.  The class passed is the superclass of the current
120   /// class.
121   llvm::Constant *getMessageSendSuperFn() const {
122     llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
123     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
124                                                              params, true),
125                                      "objc_msgSendSuper");
126   }
127 
128   /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...)
129   ///
130   /// A slightly different messenger used for super calls.  The class
131   /// passed is the current class.
132   llvm::Constant *getMessageSendSuperFn2() const {
133     llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
134     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
135                                                              params, true),
136                                      "objc_msgSendSuper2");
137   }
138 
139   /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super,
140   ///                              SEL op, ...)
141   ///
142   /// The messenger used for super calls which return an aggregate indirectly.
143   llvm::Constant *getMessageSendSuperStretFn() const {
144     llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
145     return CGM.CreateRuntimeFunction(
146       llvm::FunctionType::get(CGM.VoidTy, params, true),
147       "objc_msgSendSuper_stret");
148   }
149 
150   /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super,
151   ///                               SEL op, ...)
152   ///
153   /// objc_msgSendSuper_stret with the super2 semantics.
154   llvm::Constant *getMessageSendSuperStretFn2() const {
155     llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
156     return CGM.CreateRuntimeFunction(
157       llvm::FunctionType::get(CGM.VoidTy, params, true),
158       "objc_msgSendSuper2_stret");
159   }
160 
161   llvm::Constant *getMessageSendSuperFpretFn() const {
162     // There is no objc_msgSendSuper_fpret? How can that work?
163     return getMessageSendSuperFn();
164   }
165 
166   llvm::Constant *getMessageSendSuperFpretFn2() const {
167     // There is no objc_msgSendSuper_fpret? How can that work?
168     return getMessageSendSuperFn2();
169   }
170 
171 protected:
172   CodeGen::CodeGenModule &CGM;
173 
174 public:
175   llvm::Type *ShortTy, *IntTy, *LongTy, *LongLongTy;
176   llvm::Type *Int8PtrTy, *Int8PtrPtrTy;
177   llvm::Type *IvarOffsetVarTy;
178 
179   /// ObjectPtrTy - LLVM type for object handles (typeof(id))
180   llvm::Type *ObjectPtrTy;
181 
182   /// PtrObjectPtrTy - LLVM type for id *
183   llvm::Type *PtrObjectPtrTy;
184 
185   /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL))
186   llvm::Type *SelectorPtrTy;
187 
188 private:
189   /// ProtocolPtrTy - LLVM type for external protocol handles
190   /// (typeof(Protocol))
191   llvm::Type *ExternalProtocolPtrTy;
192 
193 public:
194   llvm::Type *getExternalProtocolPtrTy() {
195     if (!ExternalProtocolPtrTy) {
196       // FIXME: It would be nice to unify this with the opaque type, so that the
197       // IR comes out a bit cleaner.
198       CodeGen::CodeGenTypes &Types = CGM.getTypes();
199       ASTContext &Ctx = CGM.getContext();
200       llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType());
201       ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T);
202     }
203 
204     return ExternalProtocolPtrTy;
205   }
206 
207   // SuperCTy - clang type for struct objc_super.
208   QualType SuperCTy;
209   // SuperPtrCTy - clang type for struct objc_super *.
210   QualType SuperPtrCTy;
211 
212   /// SuperTy - LLVM type for struct objc_super.
213   llvm::StructType *SuperTy;
214   /// SuperPtrTy - LLVM type for struct objc_super *.
215   llvm::Type *SuperPtrTy;
216 
217   /// PropertyTy - LLVM type for struct objc_property (struct _prop_t
218   /// in GCC parlance).
219   llvm::StructType *PropertyTy;
220 
221   /// PropertyListTy - LLVM type for struct objc_property_list
222   /// (_prop_list_t in GCC parlance).
223   llvm::StructType *PropertyListTy;
224   /// PropertyListPtrTy - LLVM type for struct objc_property_list*.
225   llvm::Type *PropertyListPtrTy;
226 
227   // MethodTy - LLVM type for struct objc_method.
228   llvm::StructType *MethodTy;
229 
230   /// CacheTy - LLVM type for struct objc_cache.
231   llvm::Type *CacheTy;
232   /// CachePtrTy - LLVM type for struct objc_cache *.
233   llvm::Type *CachePtrTy;
234 
235   llvm::Constant *getGetPropertyFn() {
236     CodeGen::CodeGenTypes &Types = CGM.getTypes();
237     ASTContext &Ctx = CGM.getContext();
238     // id objc_getProperty (id, SEL, ptrdiff_t, bool)
239     SmallVector<CanQualType,4> Params;
240     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
241     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
242     Params.push_back(IdType);
243     Params.push_back(SelType);
244     Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified());
245     Params.push_back(Ctx.BoolTy);
246     llvm::FunctionType *FTy =
247         Types.GetFunctionType(
248           Types.arrangeBuiltinFunctionDeclaration(IdType, Params));
249     return CGM.CreateRuntimeFunction(FTy, "objc_getProperty");
250   }
251 
252   llvm::Constant *getSetPropertyFn() {
253     CodeGen::CodeGenTypes &Types = CGM.getTypes();
254     ASTContext &Ctx = CGM.getContext();
255     // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool)
256     SmallVector<CanQualType,6> Params;
257     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
258     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
259     Params.push_back(IdType);
260     Params.push_back(SelType);
261     Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified());
262     Params.push_back(IdType);
263     Params.push_back(Ctx.BoolTy);
264     Params.push_back(Ctx.BoolTy);
265     llvm::FunctionType *FTy =
266         Types.GetFunctionType(
267           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
268     return CGM.CreateRuntimeFunction(FTy, "objc_setProperty");
269   }
270 
271   llvm::Constant *getOptimizedSetPropertyFn(bool atomic, bool copy) {
272     CodeGen::CodeGenTypes &Types = CGM.getTypes();
273     ASTContext &Ctx = CGM.getContext();
274     // void objc_setProperty_atomic(id self, SEL _cmd,
275     //                              id newValue, ptrdiff_t offset);
276     // void objc_setProperty_nonatomic(id self, SEL _cmd,
277     //                                 id newValue, ptrdiff_t offset);
278     // void objc_setProperty_atomic_copy(id self, SEL _cmd,
279     //                                   id newValue, ptrdiff_t offset);
280     // void objc_setProperty_nonatomic_copy(id self, SEL _cmd,
281     //                                      id newValue, ptrdiff_t offset);
282 
283     SmallVector<CanQualType,4> Params;
284     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
285     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
286     Params.push_back(IdType);
287     Params.push_back(SelType);
288     Params.push_back(IdType);
289     Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified());
290     llvm::FunctionType *FTy =
291         Types.GetFunctionType(
292           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
293     const char *name;
294     if (atomic && copy)
295       name = "objc_setProperty_atomic_copy";
296     else if (atomic && !copy)
297       name = "objc_setProperty_atomic";
298     else if (!atomic && copy)
299       name = "objc_setProperty_nonatomic_copy";
300     else
301       name = "objc_setProperty_nonatomic";
302 
303     return CGM.CreateRuntimeFunction(FTy, name);
304   }
305 
306   llvm::Constant *getCopyStructFn() {
307     CodeGen::CodeGenTypes &Types = CGM.getTypes();
308     ASTContext &Ctx = CGM.getContext();
309     // void objc_copyStruct (void *, const void *, size_t, bool, bool)
310     SmallVector<CanQualType,5> Params;
311     Params.push_back(Ctx.VoidPtrTy);
312     Params.push_back(Ctx.VoidPtrTy);
313     Params.push_back(Ctx.LongTy);
314     Params.push_back(Ctx.BoolTy);
315     Params.push_back(Ctx.BoolTy);
316     llvm::FunctionType *FTy =
317         Types.GetFunctionType(
318           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
319     return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct");
320   }
321 
322   /// This routine declares and returns address of:
323   /// void objc_copyCppObjectAtomic(
324   ///         void *dest, const void *src,
325   ///         void (*copyHelper) (void *dest, const void *source));
326   llvm::Constant *getCppAtomicObjectFunction() {
327     CodeGen::CodeGenTypes &Types = CGM.getTypes();
328     ASTContext &Ctx = CGM.getContext();
329     /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper);
330     SmallVector<CanQualType,3> Params;
331     Params.push_back(Ctx.VoidPtrTy);
332     Params.push_back(Ctx.VoidPtrTy);
333     Params.push_back(Ctx.VoidPtrTy);
334     llvm::FunctionType *FTy =
335         Types.GetFunctionType(
336           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
337     return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic");
338   }
339 
340   llvm::Constant *getEnumerationMutationFn() {
341     CodeGen::CodeGenTypes &Types = CGM.getTypes();
342     ASTContext &Ctx = CGM.getContext();
343     // void objc_enumerationMutation (id)
344     SmallVector<CanQualType,1> Params;
345     Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType()));
346     llvm::FunctionType *FTy =
347         Types.GetFunctionType(
348           Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
349     return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation");
350   }
351 
352   llvm::Constant *getLookUpClassFn() {
353     CodeGen::CodeGenTypes &Types = CGM.getTypes();
354     ASTContext &Ctx = CGM.getContext();
355     // Class objc_lookUpClass (const char *)
356     SmallVector<CanQualType,1> Params;
357     Params.push_back(
358       Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst())));
359     llvm::FunctionType *FTy =
360         Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration(
361                                 Ctx.getCanonicalType(Ctx.getObjCClassType()),
362                                 Params));
363     return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass");
364   }
365 
366   /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function.
367   llvm::Constant *getGcReadWeakFn() {
368     // id objc_read_weak (id *)
369     llvm::Type *args[] = { ObjectPtrTy->getPointerTo() };
370     llvm::FunctionType *FTy =
371       llvm::FunctionType::get(ObjectPtrTy, args, false);
372     return CGM.CreateRuntimeFunction(FTy, "objc_read_weak");
373   }
374 
375   /// GcAssignWeakFn -- LLVM objc_assign_weak function.
376   llvm::Constant *getGcAssignWeakFn() {
377     // id objc_assign_weak (id, id *)
378     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
379     llvm::FunctionType *FTy =
380       llvm::FunctionType::get(ObjectPtrTy, args, false);
381     return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak");
382   }
383 
384   /// GcAssignGlobalFn -- LLVM objc_assign_global function.
385   llvm::Constant *getGcAssignGlobalFn() {
386     // id objc_assign_global(id, id *)
387     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
388     llvm::FunctionType *FTy =
389       llvm::FunctionType::get(ObjectPtrTy, args, false);
390     return CGM.CreateRuntimeFunction(FTy, "objc_assign_global");
391   }
392 
393   /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function.
394   llvm::Constant *getGcAssignThreadLocalFn() {
395     // id objc_assign_threadlocal(id src, id * dest)
396     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
397     llvm::FunctionType *FTy =
398       llvm::FunctionType::get(ObjectPtrTy, args, false);
399     return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal");
400   }
401 
402   /// GcAssignIvarFn -- LLVM objc_assign_ivar function.
403   llvm::Constant *getGcAssignIvarFn() {
404     // id objc_assign_ivar(id, id *, ptrdiff_t)
405     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(),
406                            CGM.PtrDiffTy };
407     llvm::FunctionType *FTy =
408       llvm::FunctionType::get(ObjectPtrTy, args, false);
409     return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar");
410   }
411 
412   /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function.
413   llvm::Constant *GcMemmoveCollectableFn() {
414     // void *objc_memmove_collectable(void *dst, const void *src, size_t size)
415     llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy };
416     llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false);
417     return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable");
418   }
419 
420   /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function.
421   llvm::Constant *getGcAssignStrongCastFn() {
422     // id objc_assign_strongCast(id, id *)
423     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
424     llvm::FunctionType *FTy =
425       llvm::FunctionType::get(ObjectPtrTy, args, false);
426     return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast");
427   }
428 
429   /// ExceptionThrowFn - LLVM objc_exception_throw function.
430   llvm::Constant *getExceptionThrowFn() {
431     // void objc_exception_throw(id)
432     llvm::Type *args[] = { ObjectPtrTy };
433     llvm::FunctionType *FTy =
434       llvm::FunctionType::get(CGM.VoidTy, args, false);
435     return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw");
436   }
437 
438   /// ExceptionRethrowFn - LLVM objc_exception_rethrow function.
439   llvm::Constant *getExceptionRethrowFn() {
440     // void objc_exception_rethrow(void)
441     llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false);
442     return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow");
443   }
444 
445   /// SyncEnterFn - LLVM object_sync_enter function.
446   llvm::Constant *getSyncEnterFn() {
447     // int objc_sync_enter (id)
448     llvm::Type *args[] = { ObjectPtrTy };
449     llvm::FunctionType *FTy =
450       llvm::FunctionType::get(CGM.IntTy, args, false);
451     return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter");
452   }
453 
454   /// SyncExitFn - LLVM object_sync_exit function.
455   llvm::Constant *getSyncExitFn() {
456     // int objc_sync_exit (id)
457     llvm::Type *args[] = { ObjectPtrTy };
458     llvm::FunctionType *FTy =
459       llvm::FunctionType::get(CGM.IntTy, args, false);
460     return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit");
461   }
462 
463   llvm::Constant *getSendFn(bool IsSuper) const {
464     return IsSuper ? getMessageSendSuperFn() : getMessageSendFn();
465   }
466 
467   llvm::Constant *getSendFn2(bool IsSuper) const {
468     return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn();
469   }
470 
471   llvm::Constant *getSendStretFn(bool IsSuper) const {
472     return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn();
473   }
474 
475   llvm::Constant *getSendStretFn2(bool IsSuper) const {
476     return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn();
477   }
478 
479   llvm::Constant *getSendFpretFn(bool IsSuper) const {
480     return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn();
481   }
482 
483   llvm::Constant *getSendFpretFn2(bool IsSuper) const {
484     return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn();
485   }
486 
487   llvm::Constant *getSendFp2retFn(bool IsSuper) const {
488     return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn();
489   }
490 
491   llvm::Constant *getSendFp2RetFn2(bool IsSuper) const {
492     return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn();
493   }
494 
495   ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm);
496 };
497 
498 /// ObjCTypesHelper - Helper class that encapsulates lazy
499 /// construction of varies types used during ObjC generation.
500 class ObjCTypesHelper : public ObjCCommonTypesHelper {
501 public:
502   /// SymtabTy - LLVM type for struct objc_symtab.
503   llvm::StructType *SymtabTy;
504   /// SymtabPtrTy - LLVM type for struct objc_symtab *.
505   llvm::Type *SymtabPtrTy;
506   /// ModuleTy - LLVM type for struct objc_module.
507   llvm::StructType *ModuleTy;
508 
509   /// ProtocolTy - LLVM type for struct objc_protocol.
510   llvm::StructType *ProtocolTy;
511   /// ProtocolPtrTy - LLVM type for struct objc_protocol *.
512   llvm::Type *ProtocolPtrTy;
513   /// ProtocolExtensionTy - LLVM type for struct
514   /// objc_protocol_extension.
515   llvm::StructType *ProtocolExtensionTy;
516   /// ProtocolExtensionTy - LLVM type for struct
517   /// objc_protocol_extension *.
518   llvm::Type *ProtocolExtensionPtrTy;
519   /// MethodDescriptionTy - LLVM type for struct
520   /// objc_method_description.
521   llvm::StructType *MethodDescriptionTy;
522   /// MethodDescriptionListTy - LLVM type for struct
523   /// objc_method_description_list.
524   llvm::StructType *MethodDescriptionListTy;
525   /// MethodDescriptionListPtrTy - LLVM type for struct
526   /// objc_method_description_list *.
527   llvm::Type *MethodDescriptionListPtrTy;
528   /// ProtocolListTy - LLVM type for struct objc_property_list.
529   llvm::StructType *ProtocolListTy;
530   /// ProtocolListPtrTy - LLVM type for struct objc_property_list*.
531   llvm::Type *ProtocolListPtrTy;
532   /// CategoryTy - LLVM type for struct objc_category.
533   llvm::StructType *CategoryTy;
534   /// ClassTy - LLVM type for struct objc_class.
535   llvm::StructType *ClassTy;
536   /// ClassPtrTy - LLVM type for struct objc_class *.
537   llvm::Type *ClassPtrTy;
538   /// ClassExtensionTy - LLVM type for struct objc_class_ext.
539   llvm::StructType *ClassExtensionTy;
540   /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *.
541   llvm::Type *ClassExtensionPtrTy;
542   // IvarTy - LLVM type for struct objc_ivar.
543   llvm::StructType *IvarTy;
544   /// IvarListTy - LLVM type for struct objc_ivar_list.
545   llvm::Type *IvarListTy;
546   /// IvarListPtrTy - LLVM type for struct objc_ivar_list *.
547   llvm::Type *IvarListPtrTy;
548   /// MethodListTy - LLVM type for struct objc_method_list.
549   llvm::Type *MethodListTy;
550   /// MethodListPtrTy - LLVM type for struct objc_method_list *.
551   llvm::Type *MethodListPtrTy;
552 
553   /// ExceptionDataTy - LLVM type for struct _objc_exception_data.
554   llvm::Type *ExceptionDataTy;
555 
556   /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function.
557   llvm::Constant *getExceptionTryEnterFn() {
558     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
559     return CGM.CreateRuntimeFunction(
560       llvm::FunctionType::get(CGM.VoidTy, params, false),
561       "objc_exception_try_enter");
562   }
563 
564   /// ExceptionTryExitFn - LLVM objc_exception_try_exit function.
565   llvm::Constant *getExceptionTryExitFn() {
566     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
567     return CGM.CreateRuntimeFunction(
568       llvm::FunctionType::get(CGM.VoidTy, params, false),
569       "objc_exception_try_exit");
570   }
571 
572   /// ExceptionExtractFn - LLVM objc_exception_extract function.
573   llvm::Constant *getExceptionExtractFn() {
574     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
575     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
576                                                              params, false),
577                                      "objc_exception_extract");
578   }
579 
580   /// ExceptionMatchFn - LLVM objc_exception_match function.
581   llvm::Constant *getExceptionMatchFn() {
582     llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy };
583     return CGM.CreateRuntimeFunction(
584       llvm::FunctionType::get(CGM.Int32Ty, params, false),
585       "objc_exception_match");
586   }
587 
588   /// SetJmpFn - LLVM _setjmp function.
589   llvm::Constant *getSetJmpFn() {
590     // This is specifically the prototype for x86.
591     llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() };
592     return
593       CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty,
594                                                         params, false),
595                                 "_setjmp",
596                                 llvm::AttributeSet::get(CGM.getLLVMContext(),
597                                               llvm::AttributeSet::FunctionIndex,
598                                                  llvm::Attribute::NonLazyBind));
599   }
600 
601 public:
602   ObjCTypesHelper(CodeGen::CodeGenModule &cgm);
603 };
604 
605 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's
606 /// modern abi
607 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper {
608 public:
609   // MethodListnfABITy - LLVM for struct _method_list_t
610   llvm::StructType *MethodListnfABITy;
611 
612   // MethodListnfABIPtrTy - LLVM for struct _method_list_t*
613   llvm::Type *MethodListnfABIPtrTy;
614 
615   // ProtocolnfABITy = LLVM for struct _protocol_t
616   llvm::StructType *ProtocolnfABITy;
617 
618   // ProtocolnfABIPtrTy = LLVM for struct _protocol_t*
619   llvm::Type *ProtocolnfABIPtrTy;
620 
621   // ProtocolListnfABITy - LLVM for struct _objc_protocol_list
622   llvm::StructType *ProtocolListnfABITy;
623 
624   // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list*
625   llvm::Type *ProtocolListnfABIPtrTy;
626 
627   // ClassnfABITy - LLVM for struct _class_t
628   llvm::StructType *ClassnfABITy;
629 
630   // ClassnfABIPtrTy - LLVM for struct _class_t*
631   llvm::Type *ClassnfABIPtrTy;
632 
633   // IvarnfABITy - LLVM for struct _ivar_t
634   llvm::StructType *IvarnfABITy;
635 
636   // IvarListnfABITy - LLVM for struct _ivar_list_t
637   llvm::StructType *IvarListnfABITy;
638 
639   // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t*
640   llvm::Type *IvarListnfABIPtrTy;
641 
642   // ClassRonfABITy - LLVM for struct _class_ro_t
643   llvm::StructType *ClassRonfABITy;
644 
645   // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
646   llvm::Type *ImpnfABITy;
647 
648   // CategorynfABITy - LLVM for struct _category_t
649   llvm::StructType *CategorynfABITy;
650 
651   // New types for nonfragile abi messaging.
652 
653   // MessageRefTy - LLVM for:
654   // struct _message_ref_t {
655   //   IMP messenger;
656   //   SEL name;
657   // };
658   llvm::StructType *MessageRefTy;
659   // MessageRefCTy - clang type for struct _message_ref_t
660   QualType MessageRefCTy;
661 
662   // MessageRefPtrTy - LLVM for struct _message_ref_t*
663   llvm::Type *MessageRefPtrTy;
664   // MessageRefCPtrTy - clang type for struct _message_ref_t*
665   QualType MessageRefCPtrTy;
666 
667   // SuperMessageRefTy - LLVM for:
668   // struct _super_message_ref_t {
669   //   SUPER_IMP messenger;
670   //   SEL name;
671   // };
672   llvm::StructType *SuperMessageRefTy;
673 
674   // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
675   llvm::Type *SuperMessageRefPtrTy;
676 
677   llvm::Constant *getMessageSendFixupFn() {
678     // id objc_msgSend_fixup(id, struct message_ref_t*, ...)
679     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
680     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
681                                                              params, true),
682                                      "objc_msgSend_fixup");
683   }
684 
685   llvm::Constant *getMessageSendFpretFixupFn() {
686     // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...)
687     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
688     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
689                                                              params, true),
690                                      "objc_msgSend_fpret_fixup");
691   }
692 
693   llvm::Constant *getMessageSendStretFixupFn() {
694     // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...)
695     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
696     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
697                                                              params, true),
698                                      "objc_msgSend_stret_fixup");
699   }
700 
701   llvm::Constant *getMessageSendSuper2FixupFn() {
702     // id objc_msgSendSuper2_fixup (struct objc_super *,
703     //                              struct _super_message_ref_t*, ...)
704     llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
705     return  CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
706                                                               params, true),
707                                       "objc_msgSendSuper2_fixup");
708   }
709 
710   llvm::Constant *getMessageSendSuper2StretFixupFn() {
711     // id objc_msgSendSuper2_stret_fixup(struct objc_super *,
712     //                                   struct _super_message_ref_t*, ...)
713     llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
714     return  CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
715                                                               params, true),
716                                       "objc_msgSendSuper2_stret_fixup");
717   }
718 
719   llvm::Constant *getObjCEndCatchFn() {
720     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false),
721                                      "objc_end_catch");
722 
723   }
724 
725   llvm::Constant *getObjCBeginCatchFn() {
726     llvm::Type *params[] = { Int8PtrTy };
727     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy,
728                                                              params, false),
729                                      "objc_begin_catch");
730   }
731 
732   llvm::StructType *EHTypeTy;
733   llvm::Type *EHTypePtrTy;
734 
735   ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm);
736 };
737 
738 class CGObjCCommonMac : public CodeGen::CGObjCRuntime {
739 public:
740   class SKIP_SCAN {
741   public:
742     unsigned skip;
743     unsigned scan;
744     SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0)
745       : skip(_skip), scan(_scan) {}
746   };
747 
748   /// opcode for captured block variables layout 'instructions'.
749   /// In the following descriptions, 'I' is the value of the immediate field.
750   /// (field following the opcode).
751   ///
752   enum BLOCK_LAYOUT_OPCODE {
753     /// An operator which affects how the following layout should be
754     /// interpreted.
755     ///   I == 0: Halt interpretation and treat everything else as
756     ///           a non-pointer.  Note that this instruction is equal
757     ///           to '\0'.
758     ///   I != 0: Currently unused.
759     BLOCK_LAYOUT_OPERATOR            = 0,
760 
761     /// The next I+1 bytes do not contain a value of object pointer type.
762     /// Note that this can leave the stream unaligned, meaning that
763     /// subsequent word-size instructions do not begin at a multiple of
764     /// the pointer size.
765     BLOCK_LAYOUT_NON_OBJECT_BYTES    = 1,
766 
767     /// The next I+1 words do not contain a value of object pointer type.
768     /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for
769     /// when the required skip quantity is a multiple of the pointer size.
770     BLOCK_LAYOUT_NON_OBJECT_WORDS    = 2,
771 
772     /// The next I+1 words are __strong pointers to Objective-C
773     /// objects or blocks.
774     BLOCK_LAYOUT_STRONG              = 3,
775 
776     /// The next I+1 words are pointers to __block variables.
777     BLOCK_LAYOUT_BYREF               = 4,
778 
779     /// The next I+1 words are __weak pointers to Objective-C
780     /// objects or blocks.
781     BLOCK_LAYOUT_WEAK                = 5,
782 
783     /// The next I+1 words are __unsafe_unretained pointers to
784     /// Objective-C objects or blocks.
785     BLOCK_LAYOUT_UNRETAINED          = 6
786 
787     /// The next I+1 words are block or object pointers with some
788     /// as-yet-unspecified ownership semantics.  If we add more
789     /// flavors of ownership semantics, values will be taken from
790     /// this range.
791     ///
792     /// This is included so that older tools can at least continue
793     /// processing the layout past such things.
794     //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10,
795 
796     /// All other opcodes are reserved.  Halt interpretation and
797     /// treat everything else as opaque.
798   };
799 
800   class RUN_SKIP {
801   public:
802     enum BLOCK_LAYOUT_OPCODE opcode;
803     CharUnits block_var_bytepos;
804     CharUnits block_var_size;
805     RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR,
806              CharUnits BytePos = CharUnits::Zero(),
807              CharUnits Size = CharUnits::Zero())
808     : opcode(Opcode), block_var_bytepos(BytePos),  block_var_size(Size) {}
809 
810     // Allow sorting based on byte pos.
811     bool operator<(const RUN_SKIP &b) const {
812       return block_var_bytepos < b.block_var_bytepos;
813     }
814   };
815 
816 protected:
817   llvm::LLVMContext &VMContext;
818   // FIXME! May not be needing this after all.
819   unsigned ObjCABI;
820 
821   // arc/mrr layout of captured block literal variables.
822   SmallVector<RUN_SKIP, 16> RunSkipBlockVars;
823 
824   /// LazySymbols - Symbols to generate a lazy reference for. See
825   /// DefinedSymbols and FinishModule().
826   llvm::SetVector<IdentifierInfo*> LazySymbols;
827 
828   /// DefinedSymbols - External symbols which are defined by this
829   /// module. The symbols in this list and LazySymbols are used to add
830   /// special linker symbols which ensure that Objective-C modules are
831   /// linked properly.
832   llvm::SetVector<IdentifierInfo*> DefinedSymbols;
833 
834   /// ClassNames - uniqued class names.
835   llvm::StringMap<llvm::GlobalVariable*> ClassNames;
836 
837   /// MethodVarNames - uniqued method variable names.
838   llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames;
839 
840   /// DefinedCategoryNames - list of category names in form Class_Category.
841   llvm::SmallSetVector<std::string, 16> DefinedCategoryNames;
842 
843   /// MethodVarTypes - uniqued method type signatures. We have to use
844   /// a StringMap here because have no other unique reference.
845   llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes;
846 
847   /// MethodDefinitions - map of methods which have been defined in
848   /// this translation unit.
849   llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions;
850 
851   /// PropertyNames - uniqued method variable names.
852   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames;
853 
854   /// ClassReferences - uniqued class references.
855   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences;
856 
857   /// SelectorReferences - uniqued selector references.
858   llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences;
859 
860   /// Protocols - Protocols for which an objc_protocol structure has
861   /// been emitted. Forward declarations are handled by creating an
862   /// empty structure whose initializer is filled in when/if defined.
863   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols;
864 
865   /// DefinedProtocols - Protocols which have actually been
866   /// defined. We should not need this, see FIXME in GenerateProtocol.
867   llvm::DenseSet<IdentifierInfo*> DefinedProtocols;
868 
869   /// DefinedClasses - List of defined classes.
870   SmallVector<llvm::GlobalValue*, 16> DefinedClasses;
871 
872   /// ImplementedClasses - List of @implemented classes.
873   SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses;
874 
875   /// DefinedNonLazyClasses - List of defined "non-lazy" classes.
876   SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses;
877 
878   /// DefinedCategories - List of defined categories.
879   SmallVector<llvm::GlobalValue*, 16> DefinedCategories;
880 
881   /// DefinedNonLazyCategories - List of defined "non-lazy" categories.
882   SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories;
883 
884   /// GetNameForMethod - Return a name for the given method.
885   /// \param[out] NameOut - The return value.
886   void GetNameForMethod(const ObjCMethodDecl *OMD,
887                         const ObjCContainerDecl *CD,
888                         SmallVectorImpl<char> &NameOut);
889 
890   /// GetMethodVarName - Return a unique constant for the given
891   /// selector's name. The return value has type char *.
892   llvm::Constant *GetMethodVarName(Selector Sel);
893   llvm::Constant *GetMethodVarName(IdentifierInfo *Ident);
894 
895   /// GetMethodVarType - Return a unique constant for the given
896   /// method's type encoding string. The return value has type char *.
897 
898   // FIXME: This is a horrible name.
899   llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D,
900                                    bool Extended = false);
901   llvm::Constant *GetMethodVarType(const FieldDecl *D);
902 
903   /// GetPropertyName - Return a unique constant for the given
904   /// name. The return value has type char *.
905   llvm::Constant *GetPropertyName(IdentifierInfo *Ident);
906 
907   // FIXME: This can be dropped once string functions are unified.
908   llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD,
909                                         const Decl *Container);
910 
911   /// GetClassName - Return a unique constant for the given selector's
912   /// runtime name (which may change via use of objc_runtime_name attribute on
913   /// class or protocol definition. The return value has type char *.
914   llvm::Constant *GetClassName(StringRef RuntimeName);
915 
916   llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD);
917 
918   /// BuildIvarLayout - Builds ivar layout bitmap for the class
919   /// implementation for the __strong or __weak case.
920   ///
921   /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there
922   ///   are any weak ivars defined directly in the class.  Meaningless unless
923   ///   building a weak layout.  Does not guarantee that the layout will
924   ///   actually have any entries, because the ivar might be under-aligned.
925   llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI,
926                                   CharUnits beginOffset,
927                                   CharUnits endOffset,
928                                   bool forStrongLayout,
929                                   bool hasMRCWeakIvars);
930 
931   llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI,
932                                         CharUnits beginOffset,
933                                         CharUnits endOffset) {
934     return BuildIvarLayout(OI, beginOffset, endOffset, true, false);
935   }
936 
937   llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI,
938                                       CharUnits beginOffset,
939                                       CharUnits endOffset,
940                                       bool hasMRCWeakIvars) {
941     return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars);
942   }
943 
944   Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout);
945 
946   void UpdateRunSkipBlockVars(bool IsByref,
947                               Qualifiers::ObjCLifetime LifeTime,
948                               CharUnits FieldOffset,
949                               CharUnits FieldSize);
950 
951   void BuildRCBlockVarRecordLayout(const RecordType *RT,
952                                    CharUnits BytePos, bool &HasUnion,
953                                    bool ByrefLayout=false);
954 
955   void BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
956                            const RecordDecl *RD,
957                            ArrayRef<const FieldDecl*> RecFields,
958                            CharUnits BytePos, bool &HasUnion,
959                            bool ByrefLayout);
960 
961   uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout);
962 
963   llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout);
964 
965   /// GetIvarLayoutName - Returns a unique constant for the given
966   /// ivar layout bitmap.
967   llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident,
968                                     const ObjCCommonTypesHelper &ObjCTypes);
969 
970   /// EmitPropertyList - Emit the given property list. The return
971   /// value has type PropertyListPtrTy.
972   llvm::Constant *EmitPropertyList(Twine Name,
973                                    const Decl *Container,
974                                    const ObjCContainerDecl *OCD,
975                                    const ObjCCommonTypesHelper &ObjCTypes,
976                                    bool IsClassProperty);
977 
978   /// EmitProtocolMethodTypes - Generate the array of extended method type
979   /// strings. The return value has type Int8PtrPtrTy.
980   llvm::Constant *EmitProtocolMethodTypes(Twine Name,
981                                           ArrayRef<llvm::Constant*> MethodTypes,
982                                        const ObjCCommonTypesHelper &ObjCTypes);
983 
984   /// PushProtocolProperties - Push protocol's property on the input stack.
985   void PushProtocolProperties(
986     llvm::SmallPtrSet<const IdentifierInfo*, 16> &PropertySet,
987     SmallVectorImpl<llvm::Constant*> &Properties,
988     const Decl *Container,
989     const ObjCProtocolDecl *Proto,
990     const ObjCCommonTypesHelper &ObjCTypes,
991     bool IsClassProperty);
992 
993   /// GetProtocolRef - Return a reference to the internal protocol
994   /// description, creating an empty one if it has not been
995   /// defined. The return value has type ProtocolPtrTy.
996   llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD);
997 
998   /// Return a reference to the given Class using runtime calls rather than
999   /// by a symbol reference.
1000   llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF,
1001                                       const ObjCInterfaceDecl *ID,
1002                                       ObjCCommonTypesHelper &ObjCTypes);
1003 
1004 public:
1005   /// CreateMetadataVar - Create a global variable with internal
1006   /// linkage for use by the Objective-C runtime.
1007   ///
1008   /// This is a convenience wrapper which not only creates the
1009   /// variable, but also sets the section and alignment and adds the
1010   /// global to the "llvm.used" list.
1011   ///
1012   /// \param Name - The variable name.
1013   /// \param Init - The variable initializer; this is also used to
1014   /// define the type of the variable.
1015   /// \param Section - The section the variable should go into, or empty.
1016   /// \param Align - The alignment for the variable, or 0.
1017   /// \param AddToUsed - Whether the variable should be added to
1018   /// "llvm.used".
1019   llvm::GlobalVariable *CreateMetadataVar(Twine Name, llvm::Constant *Init,
1020                                           StringRef Section, CharUnits Align,
1021                                           bool AddToUsed);
1022 
1023 protected:
1024   CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF,
1025                                   ReturnValueSlot Return,
1026                                   QualType ResultType,
1027                                   llvm::Value *Sel,
1028                                   llvm::Value *Arg0,
1029                                   QualType Arg0Ty,
1030                                   bool IsSuper,
1031                                   const CallArgList &CallArgs,
1032                                   const ObjCMethodDecl *OMD,
1033                                   const ObjCInterfaceDecl *ClassReceiver,
1034                                   const ObjCCommonTypesHelper &ObjCTypes);
1035 
1036   /// EmitImageInfo - Emit the image info marker used to encode some module
1037   /// level information.
1038   void EmitImageInfo();
1039 
1040 public:
1041   CGObjCCommonMac(CodeGen::CodeGenModule &cgm) :
1042     CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { }
1043 
1044   bool isNonFragileABI() const {
1045     return ObjCABI == 2;
1046   }
1047 
1048   ConstantAddress GenerateConstantString(const StringLiteral *SL) override;
1049 
1050   llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
1051                                  const ObjCContainerDecl *CD=nullptr) override;
1052 
1053   void GenerateProtocol(const ObjCProtocolDecl *PD) override;
1054 
1055   /// GetOrEmitProtocol - Get the protocol object for the given
1056   /// declaration, emitting it if necessary. The return value has type
1057   /// ProtocolPtrTy.
1058   virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0;
1059 
1060   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1061   /// object for the given declaration, emitting it if needed. These
1062   /// forward references will be filled in with empty bodies if no
1063   /// definition is seen. The return value has type ProtocolPtrTy.
1064   virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0;
1065   llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM,
1066                                      const CGBlockInfo &blockInfo) override;
1067   llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM,
1068                                      const CGBlockInfo &blockInfo) override;
1069 
1070   llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM,
1071                                    QualType T) override;
1072 };
1073 
1074 class CGObjCMac : public CGObjCCommonMac {
1075 private:
1076   ObjCTypesHelper ObjCTypes;
1077 
1078   /// EmitModuleInfo - Another marker encoding module level
1079   /// information.
1080   void EmitModuleInfo();
1081 
1082   /// EmitModuleSymols - Emit module symbols, the list of defined
1083   /// classes and categories. The result has type SymtabPtrTy.
1084   llvm::Constant *EmitModuleSymbols();
1085 
1086   /// FinishModule - Write out global data structures at the end of
1087   /// processing a translation unit.
1088   void FinishModule();
1089 
1090   /// EmitClassExtension - Generate the class extension structure used
1091   /// to store the weak ivar layout and properties. The return value
1092   /// has type ClassExtensionPtrTy.
1093   llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID,
1094                                      CharUnits instanceSize,
1095                                      bool hasMRCWeakIvars,
1096                                      bool isClassProperty);
1097 
1098   /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1099   /// for the given class.
1100   llvm::Value *EmitClassRef(CodeGenFunction &CGF,
1101                             const ObjCInterfaceDecl *ID);
1102 
1103   llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
1104                                   IdentifierInfo *II);
1105 
1106   llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
1107 
1108   /// EmitSuperClassRef - Emits reference to class's main metadata class.
1109   llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID);
1110 
1111   /// EmitIvarList - Emit the ivar list for the given
1112   /// implementation. If ForClass is true the list of class ivars
1113   /// (i.e. metaclass ivars) is emitted, otherwise the list of
1114   /// interface ivars will be emitted. The return value has type
1115   /// IvarListPtrTy.
1116   llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID,
1117                                bool ForClass);
1118 
1119   /// EmitMetaClass - Emit a forward reference to the class structure
1120   /// for the metaclass of the given interface. The return value has
1121   /// type ClassPtrTy.
1122   llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID);
1123 
1124   /// EmitMetaClass - Emit a class structure for the metaclass of the
1125   /// given implementation. The return value has type ClassPtrTy.
1126   llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID,
1127                                 llvm::Constant *Protocols,
1128                                 ArrayRef<llvm::Constant*> Methods);
1129 
1130   llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD);
1131 
1132   llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD);
1133 
1134   /// EmitMethodList - Emit the method list for the given
1135   /// implementation. The return value has type MethodListPtrTy.
1136   llvm::Constant *EmitMethodList(Twine Name, StringRef Section,
1137                                  ArrayRef<llvm::Constant *> Methods);
1138 
1139   /// EmitMethodDescList - Emit a method description list for a list of
1140   /// method declarations.
1141   ///  - TypeName: The name for the type containing the methods.
1142   ///  - IsProtocol: True iff these methods are for a protocol.
1143   ///  - ClassMethds: True iff these are class methods.
1144   ///  - Required: When true, only "required" methods are
1145   ///    listed. Similarly, when false only "optional" methods are
1146   ///    listed. For classes this should always be true.
1147   ///  - begin, end: The method list to output.
1148   ///
1149   /// The return value has type MethodDescriptionListPtrTy.
1150   llvm::Constant *EmitMethodDescList(Twine Name, StringRef Section,
1151                                      ArrayRef<llvm::Constant *> Methods);
1152 
1153   /// GetOrEmitProtocol - Get the protocol object for the given
1154   /// declaration, emitting it if necessary. The return value has type
1155   /// ProtocolPtrTy.
1156   llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
1157 
1158   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1159   /// object for the given declaration, emitting it if needed. These
1160   /// forward references will be filled in with empty bodies if no
1161   /// definition is seen. The return value has type ProtocolPtrTy.
1162   llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
1163 
1164   /// EmitProtocolExtension - Generate the protocol extension
1165   /// structure used to store optional instance and class methods, and
1166   /// protocol properties. The return value has type
1167   /// ProtocolExtensionPtrTy.
1168   llvm::Constant *
1169   EmitProtocolExtension(const ObjCProtocolDecl *PD,
1170                         ArrayRef<llvm::Constant*> OptInstanceMethods,
1171                         ArrayRef<llvm::Constant*> OptClassMethods,
1172                         ArrayRef<llvm::Constant*> MethodTypesExt);
1173 
1174   /// EmitProtocolList - Generate the list of referenced
1175   /// protocols. The return value has type ProtocolListPtrTy.
1176   llvm::Constant *EmitProtocolList(Twine Name,
1177                                    ObjCProtocolDecl::protocol_iterator begin,
1178                                    ObjCProtocolDecl::protocol_iterator end);
1179 
1180   /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
1181   /// for the given selector.
1182   llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel);
1183   Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel);
1184 
1185 public:
1186   CGObjCMac(CodeGen::CodeGenModule &cgm);
1187 
1188   llvm::Function *ModuleInitFunction() override;
1189 
1190   CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1191                                       ReturnValueSlot Return,
1192                                       QualType ResultType,
1193                                       Selector Sel, llvm::Value *Receiver,
1194                                       const CallArgList &CallArgs,
1195                                       const ObjCInterfaceDecl *Class,
1196                                       const ObjCMethodDecl *Method) override;
1197 
1198   CodeGen::RValue
1199   GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1200                            ReturnValueSlot Return, QualType ResultType,
1201                            Selector Sel, const ObjCInterfaceDecl *Class,
1202                            bool isCategoryImpl, llvm::Value *Receiver,
1203                            bool IsClassMessage, const CallArgList &CallArgs,
1204                            const ObjCMethodDecl *Method) override;
1205 
1206   llvm::Value *GetClass(CodeGenFunction &CGF,
1207                         const ObjCInterfaceDecl *ID) override;
1208 
1209   llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
1210   Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
1211 
1212   /// The NeXT/Apple runtimes do not support typed selectors; just emit an
1213   /// untyped one.
1214   llvm::Value *GetSelector(CodeGenFunction &CGF,
1215                            const ObjCMethodDecl *Method) override;
1216 
1217   llvm::Constant *GetEHType(QualType T) override;
1218 
1219   void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
1220 
1221   void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
1222 
1223   void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
1224 
1225   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1226                                    const ObjCProtocolDecl *PD) override;
1227 
1228   llvm::Constant *GetPropertyGetFunction() override;
1229   llvm::Constant *GetPropertySetFunction() override;
1230   llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
1231                                                   bool copy) override;
1232   llvm::Constant *GetGetStructFunction() override;
1233   llvm::Constant *GetSetStructFunction() override;
1234   llvm::Constant *GetCppAtomicObjectGetFunction() override;
1235   llvm::Constant *GetCppAtomicObjectSetFunction() override;
1236   llvm::Constant *EnumerationMutationFunction() override;
1237 
1238   void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
1239                    const ObjCAtTryStmt &S) override;
1240   void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
1241                             const ObjCAtSynchronizedStmt &S) override;
1242   void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S);
1243   void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
1244                      bool ClearInsertionPoint=true) override;
1245   llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
1246                                  Address AddrWeakObj) override;
1247   void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
1248                           llvm::Value *src, Address dst) override;
1249   void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
1250                             llvm::Value *src, Address dest,
1251                             bool threadlocal = false) override;
1252   void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
1253                           llvm::Value *src, Address dest,
1254                           llvm::Value *ivarOffset) override;
1255   void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
1256                                 llvm::Value *src, Address dest) override;
1257   void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
1258                                 Address dest, Address src,
1259                                 llvm::Value *size) override;
1260 
1261   LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
1262                               llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
1263                               unsigned CVRQualifiers) override;
1264   llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
1265                               const ObjCInterfaceDecl *Interface,
1266                               const ObjCIvarDecl *Ivar) override;
1267 
1268   /// GetClassGlobal - Return the global variable for the Objective-C
1269   /// class of the given name.
1270   llvm::GlobalVariable *GetClassGlobal(StringRef Name,
1271                                        bool Weak = false) override {
1272     llvm_unreachable("CGObjCMac::GetClassGlobal");
1273   }
1274 };
1275 
1276 class CGObjCNonFragileABIMac : public CGObjCCommonMac {
1277 private:
1278   ObjCNonFragileABITypesHelper ObjCTypes;
1279   llvm::GlobalVariable* ObjCEmptyCacheVar;
1280   llvm::GlobalVariable* ObjCEmptyVtableVar;
1281 
1282   /// SuperClassReferences - uniqued super class references.
1283   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences;
1284 
1285   /// MetaClassReferences - uniqued meta class references.
1286   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences;
1287 
1288   /// EHTypeReferences - uniqued class ehtype references.
1289   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences;
1290 
1291   /// VTableDispatchMethods - List of methods for which we generate
1292   /// vtable-based message dispatch.
1293   llvm::DenseSet<Selector> VTableDispatchMethods;
1294 
1295   /// DefinedMetaClasses - List of defined meta-classes.
1296   std::vector<llvm::GlobalValue*> DefinedMetaClasses;
1297 
1298   /// isVTableDispatchedSelector - Returns true if SEL is a
1299   /// vtable-based selector.
1300   bool isVTableDispatchedSelector(Selector Sel);
1301 
1302   /// FinishNonFragileABIModule - Write out global data structures at the end of
1303   /// processing a translation unit.
1304   void FinishNonFragileABIModule();
1305 
1306   /// AddModuleClassList - Add the given list of class pointers to the
1307   /// module with the provided symbol and section names.
1308   void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container,
1309                           StringRef SymbolName, StringRef SectionName);
1310 
1311   llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags,
1312                                               unsigned InstanceStart,
1313                                               unsigned InstanceSize,
1314                                               const ObjCImplementationDecl *ID);
1315   llvm::GlobalVariable * BuildClassMetaData(const std::string &ClassName,
1316                                             llvm::Constant *IsAGV,
1317                                             llvm::Constant *SuperClassGV,
1318                                             llvm::Constant *ClassRoGV,
1319                                             bool HiddenVisibility,
1320                                             bool Weak);
1321 
1322   llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD);
1323 
1324   llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD);
1325 
1326   /// EmitMethodList - Emit the method list for the given
1327   /// implementation. The return value has type MethodListnfABITy.
1328   llvm::Constant *EmitMethodList(Twine Name, StringRef Section,
1329                                  ArrayRef<llvm::Constant *> Methods);
1330   /// EmitIvarList - Emit the ivar list for the given
1331   /// implementation. If ForClass is true the list of class ivars
1332   /// (i.e. metaclass ivars) is emitted, otherwise the list of
1333   /// interface ivars will be emitted. The return value has type
1334   /// IvarListnfABIPtrTy.
1335   llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID);
1336 
1337   llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
1338                                     const ObjCIvarDecl *Ivar,
1339                                     unsigned long int offset);
1340 
1341   /// GetOrEmitProtocol - Get the protocol object for the given
1342   /// declaration, emitting it if necessary. The return value has type
1343   /// ProtocolPtrTy.
1344   llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
1345 
1346   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1347   /// object for the given declaration, emitting it if needed. These
1348   /// forward references will be filled in with empty bodies if no
1349   /// definition is seen. The return value has type ProtocolPtrTy.
1350   llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
1351 
1352   /// EmitProtocolList - Generate the list of referenced
1353   /// protocols. The return value has type ProtocolListPtrTy.
1354   llvm::Constant *EmitProtocolList(Twine Name,
1355                                    ObjCProtocolDecl::protocol_iterator begin,
1356                                    ObjCProtocolDecl::protocol_iterator end);
1357 
1358   CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF,
1359                                         ReturnValueSlot Return,
1360                                         QualType ResultType,
1361                                         Selector Sel,
1362                                         llvm::Value *Receiver,
1363                                         QualType Arg0Ty,
1364                                         bool IsSuper,
1365                                         const CallArgList &CallArgs,
1366                                         const ObjCMethodDecl *Method);
1367 
1368   /// GetClassGlobal - Return the global variable for the Objective-C
1369   /// class of the given name.
1370   llvm::GlobalVariable *GetClassGlobal(StringRef Name,
1371                                        bool Weak = false) override;
1372 
1373   /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1374   /// for the given class reference.
1375   llvm::Value *EmitClassRef(CodeGenFunction &CGF,
1376                             const ObjCInterfaceDecl *ID);
1377 
1378   llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
1379                                   IdentifierInfo *II, bool Weak,
1380                                   const ObjCInterfaceDecl *ID);
1381 
1382   llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
1383 
1384   /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1385   /// for the given super class reference.
1386   llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF,
1387                                  const ObjCInterfaceDecl *ID);
1388 
1389   /// EmitMetaClassRef - Return a Value * of the address of _class_t
1390   /// meta-data
1391   llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF,
1392                                 const ObjCInterfaceDecl *ID, bool Weak);
1393 
1394   /// ObjCIvarOffsetVariable - Returns the ivar offset variable for
1395   /// the given ivar.
1396   ///
1397   llvm::GlobalVariable * ObjCIvarOffsetVariable(
1398     const ObjCInterfaceDecl *ID,
1399     const ObjCIvarDecl *Ivar);
1400 
1401   /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
1402   /// for the given selector.
1403   llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel);
1404   Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel);
1405 
1406   /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C
1407   /// interface. The return value has type EHTypePtrTy.
1408   llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID,
1409                                   bool ForDefinition);
1410 
1411   StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; }
1412 
1413   StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; }
1414 
1415   void GetClassSizeInfo(const ObjCImplementationDecl *OID,
1416                         uint32_t &InstanceStart,
1417                         uint32_t &InstanceSize);
1418 
1419   // Shamelessly stolen from Analysis/CFRefCount.cpp
1420   Selector GetNullarySelector(const char* name) const {
1421     IdentifierInfo* II = &CGM.getContext().Idents.get(name);
1422     return CGM.getContext().Selectors.getSelector(0, &II);
1423   }
1424 
1425   Selector GetUnarySelector(const char* name) const {
1426     IdentifierInfo* II = &CGM.getContext().Idents.get(name);
1427     return CGM.getContext().Selectors.getSelector(1, &II);
1428   }
1429 
1430   /// ImplementationIsNonLazy - Check whether the given category or
1431   /// class implementation is "non-lazy".
1432   bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const;
1433 
1434   bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF,
1435                                    const ObjCIvarDecl *IV) {
1436     // Annotate the load as an invariant load iff inside an instance method
1437     // and ivar belongs to instance method's class and one of its super class.
1438     // This check is needed because the ivar offset is a lazily
1439     // initialised value that may depend on objc_msgSend to perform a fixup on
1440     // the first message dispatch.
1441     //
1442     // An additional opportunity to mark the load as invariant arises when the
1443     // base of the ivar access is a parameter to an Objective C method.
1444     // However, because the parameters are not available in the current
1445     // interface, we cannot perform this check.
1446     if (const ObjCMethodDecl *MD =
1447           dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl))
1448       if (MD->isInstanceMethod())
1449         if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
1450           return IV->getContainingInterface()->isSuperClassOf(ID);
1451     return false;
1452   }
1453 
1454 public:
1455   CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm);
1456   // FIXME. All stubs for now!
1457   llvm::Function *ModuleInitFunction() override;
1458 
1459   CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1460                                       ReturnValueSlot Return,
1461                                       QualType ResultType, Selector Sel,
1462                                       llvm::Value *Receiver,
1463                                       const CallArgList &CallArgs,
1464                                       const ObjCInterfaceDecl *Class,
1465                                       const ObjCMethodDecl *Method) override;
1466 
1467   CodeGen::RValue
1468   GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1469                            ReturnValueSlot Return, QualType ResultType,
1470                            Selector Sel, const ObjCInterfaceDecl *Class,
1471                            bool isCategoryImpl, llvm::Value *Receiver,
1472                            bool IsClassMessage, const CallArgList &CallArgs,
1473                            const ObjCMethodDecl *Method) override;
1474 
1475   llvm::Value *GetClass(CodeGenFunction &CGF,
1476                         const ObjCInterfaceDecl *ID) override;
1477 
1478   llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override
1479     { return EmitSelector(CGF, Sel); }
1480   Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override
1481     { return EmitSelectorAddr(CGF, Sel); }
1482 
1483   /// The NeXT/Apple runtimes do not support typed selectors; just emit an
1484   /// untyped one.
1485   llvm::Value *GetSelector(CodeGenFunction &CGF,
1486                            const ObjCMethodDecl *Method) override
1487     { return EmitSelector(CGF, Method->getSelector()); }
1488 
1489   void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
1490 
1491   void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
1492 
1493   void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
1494 
1495   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1496                                    const ObjCProtocolDecl *PD) override;
1497 
1498   llvm::Constant *GetEHType(QualType T) override;
1499 
1500   llvm::Constant *GetPropertyGetFunction() override {
1501     return ObjCTypes.getGetPropertyFn();
1502   }
1503   llvm::Constant *GetPropertySetFunction() override {
1504     return ObjCTypes.getSetPropertyFn();
1505   }
1506 
1507   llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
1508                                                   bool copy) override {
1509     return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
1510   }
1511 
1512   llvm::Constant *GetSetStructFunction() override {
1513     return ObjCTypes.getCopyStructFn();
1514   }
1515 
1516   llvm::Constant *GetGetStructFunction() override {
1517     return ObjCTypes.getCopyStructFn();
1518   }
1519 
1520   llvm::Constant *GetCppAtomicObjectSetFunction() override {
1521     return ObjCTypes.getCppAtomicObjectFunction();
1522   }
1523 
1524   llvm::Constant *GetCppAtomicObjectGetFunction() override {
1525     return ObjCTypes.getCppAtomicObjectFunction();
1526   }
1527 
1528   llvm::Constant *EnumerationMutationFunction() override {
1529     return ObjCTypes.getEnumerationMutationFn();
1530   }
1531 
1532   void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
1533                    const ObjCAtTryStmt &S) override;
1534   void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
1535                             const ObjCAtSynchronizedStmt &S) override;
1536   void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
1537                      bool ClearInsertionPoint=true) override;
1538   llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
1539                                  Address AddrWeakObj) override;
1540   void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
1541                           llvm::Value *src, Address edst) override;
1542   void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
1543                             llvm::Value *src, Address dest,
1544                             bool threadlocal = false) override;
1545   void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
1546                           llvm::Value *src, Address dest,
1547                           llvm::Value *ivarOffset) override;
1548   void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
1549                                 llvm::Value *src, Address dest) override;
1550   void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
1551                                 Address dest, Address src,
1552                                 llvm::Value *size) override;
1553   LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
1554                               llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
1555                               unsigned CVRQualifiers) override;
1556   llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
1557                               const ObjCInterfaceDecl *Interface,
1558                               const ObjCIvarDecl *Ivar) override;
1559 };
1560 
1561 /// A helper class for performing the null-initialization of a return
1562 /// value.
1563 struct NullReturnState {
1564   llvm::BasicBlock *NullBB;
1565   NullReturnState() : NullBB(nullptr) {}
1566 
1567   /// Perform a null-check of the given receiver.
1568   void init(CodeGenFunction &CGF, llvm::Value *receiver) {
1569     // Make blocks for the null-receiver and call edges.
1570     NullBB = CGF.createBasicBlock("msgSend.null-receiver");
1571     llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call");
1572 
1573     // Check for a null receiver and, if there is one, jump to the
1574     // null-receiver block.  There's no point in trying to avoid it:
1575     // we're always going to put *something* there, because otherwise
1576     // we shouldn't have done this null-check in the first place.
1577     llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver);
1578     CGF.Builder.CreateCondBr(isNull, NullBB, callBB);
1579 
1580     // Otherwise, start performing the call.
1581     CGF.EmitBlock(callBB);
1582   }
1583 
1584   /// Complete the null-return operation.  It is valid to call this
1585   /// regardless of whether 'init' has been called.
1586   RValue complete(CodeGenFunction &CGF, RValue result, QualType resultType,
1587                   const CallArgList &CallArgs,
1588                   const ObjCMethodDecl *Method) {
1589     // If we never had to do a null-check, just use the raw result.
1590     if (!NullBB) return result;
1591 
1592     // The continuation block.  This will be left null if we don't have an
1593     // IP, which can happen if the method we're calling is marked noreturn.
1594     llvm::BasicBlock *contBB = nullptr;
1595 
1596     // Finish the call path.
1597     llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock();
1598     if (callBB) {
1599       contBB = CGF.createBasicBlock("msgSend.cont");
1600       CGF.Builder.CreateBr(contBB);
1601     }
1602 
1603     // Okay, start emitting the null-receiver block.
1604     CGF.EmitBlock(NullBB);
1605 
1606     // Release any consumed arguments we've got.
1607     if (Method) {
1608       CallArgList::const_iterator I = CallArgs.begin();
1609       for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(),
1610            e = Method->param_end(); i != e; ++i, ++I) {
1611         const ParmVarDecl *ParamDecl = (*i);
1612         if (ParamDecl->hasAttr<NSConsumedAttr>()) {
1613           RValue RV = I->RV;
1614           assert(RV.isScalar() &&
1615                  "NullReturnState::complete - arg not on object");
1616           CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime);
1617         }
1618       }
1619     }
1620 
1621     // The phi code below assumes that we haven't needed any control flow yet.
1622     assert(CGF.Builder.GetInsertBlock() == NullBB);
1623 
1624     // If we've got a void return, just jump to the continuation block.
1625     if (result.isScalar() && resultType->isVoidType()) {
1626       // No jumps required if the message-send was noreturn.
1627       if (contBB) CGF.EmitBlock(contBB);
1628       return result;
1629     }
1630 
1631     // If we've got a scalar return, build a phi.
1632     if (result.isScalar()) {
1633       // Derive the null-initialization value.
1634       llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType);
1635 
1636       // If no join is necessary, just flow out.
1637       if (!contBB) return RValue::get(null);
1638 
1639       // Otherwise, build a phi.
1640       CGF.EmitBlock(contBB);
1641       llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2);
1642       phi->addIncoming(result.getScalarVal(), callBB);
1643       phi->addIncoming(null, NullBB);
1644       return RValue::get(phi);
1645     }
1646 
1647     // If we've got an aggregate return, null the buffer out.
1648     // FIXME: maybe we should be doing things differently for all the
1649     // cases where the ABI has us returning (1) non-agg values in
1650     // memory or (2) agg values in registers.
1651     if (result.isAggregate()) {
1652       assert(result.isAggregate() && "null init of non-aggregate result?");
1653       CGF.EmitNullInitialization(result.getAggregateAddress(), resultType);
1654       if (contBB) CGF.EmitBlock(contBB);
1655       return result;
1656     }
1657 
1658     // Complex types.
1659     CGF.EmitBlock(contBB);
1660     CodeGenFunction::ComplexPairTy callResult = result.getComplexVal();
1661 
1662     // Find the scalar type and its zero value.
1663     llvm::Type *scalarTy = callResult.first->getType();
1664     llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy);
1665 
1666     // Build phis for both coordinates.
1667     llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2);
1668     real->addIncoming(callResult.first, callBB);
1669     real->addIncoming(scalarZero, NullBB);
1670     llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2);
1671     imag->addIncoming(callResult.second, callBB);
1672     imag->addIncoming(scalarZero, NullBB);
1673     return RValue::getComplex(real, imag);
1674   }
1675 };
1676 
1677 } // end anonymous namespace
1678 
1679 /* *** Helper Functions *** */
1680 
1681 /// getConstantGEP() - Help routine to construct simple GEPs.
1682 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext,
1683                                       llvm::GlobalVariable *C, unsigned idx0,
1684                                       unsigned idx1) {
1685   llvm::Value *Idxs[] = {
1686     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0),
1687     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1)
1688   };
1689   return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs);
1690 }
1691 
1692 /// hasObjCExceptionAttribute - Return true if this class or any super
1693 /// class has the __objc_exception__ attribute.
1694 static bool hasObjCExceptionAttribute(ASTContext &Context,
1695                                       const ObjCInterfaceDecl *OID) {
1696   if (OID->hasAttr<ObjCExceptionAttr>())
1697     return true;
1698   if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
1699     return hasObjCExceptionAttribute(Context, Super);
1700   return false;
1701 }
1702 
1703 /* *** CGObjCMac Public Interface *** */
1704 
1705 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm),
1706                                                     ObjCTypes(cgm) {
1707   ObjCABI = 1;
1708   EmitImageInfo();
1709 }
1710 
1711 /// GetClass - Return a reference to the class for the given interface
1712 /// decl.
1713 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF,
1714                                  const ObjCInterfaceDecl *ID) {
1715   return EmitClassRef(CGF, ID);
1716 }
1717 
1718 /// GetSelector - Return the pointer to the unique'd string for this selector.
1719 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) {
1720   return EmitSelector(CGF, Sel);
1721 }
1722 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
1723   return EmitSelectorAddr(CGF, Sel);
1724 }
1725 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl
1726                                     *Method) {
1727   return EmitSelector(CGF, Method->getSelector());
1728 }
1729 
1730 llvm::Constant *CGObjCMac::GetEHType(QualType T) {
1731   if (T->isObjCIdType() ||
1732       T->isObjCQualifiedIdType()) {
1733     return CGM.GetAddrOfRTTIDescriptor(
1734               CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true);
1735   }
1736   if (T->isObjCClassType() ||
1737       T->isObjCQualifiedClassType()) {
1738     return CGM.GetAddrOfRTTIDescriptor(
1739              CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true);
1740   }
1741   if (T->isObjCObjectPointerType())
1742     return CGM.GetAddrOfRTTIDescriptor(T,  /*ForEH=*/true);
1743 
1744   llvm_unreachable("asking for catch type for ObjC type in fragile runtime");
1745 }
1746 
1747 /// Generate a constant CFString object.
1748 /*
1749   struct __builtin_CFString {
1750   const int *isa; // point to __CFConstantStringClassReference
1751   int flags;
1752   const char *str;
1753   long length;
1754   };
1755 */
1756 
1757 /// or Generate a constant NSString object.
1758 /*
1759    struct __builtin_NSString {
1760      const int *isa; // point to __NSConstantStringClassReference
1761      const char *str;
1762      unsigned int length;
1763    };
1764 */
1765 
1766 ConstantAddress CGObjCCommonMac::GenerateConstantString(
1767   const StringLiteral *SL) {
1768   return (CGM.getLangOpts().NoConstantCFStrings == 0 ?
1769           CGM.GetAddrOfConstantCFString(SL) :
1770           CGM.GetAddrOfConstantString(SL));
1771 }
1772 
1773 enum {
1774   kCFTaggedObjectID_Integer = (1 << 1) + 1
1775 };
1776 
1777 /// Generates a message send where the super is the receiver.  This is
1778 /// a message send to self with special delivery semantics indicating
1779 /// which class's method should be called.
1780 CodeGen::RValue
1781 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1782                                     ReturnValueSlot Return,
1783                                     QualType ResultType,
1784                                     Selector Sel,
1785                                     const ObjCInterfaceDecl *Class,
1786                                     bool isCategoryImpl,
1787                                     llvm::Value *Receiver,
1788                                     bool IsClassMessage,
1789                                     const CodeGen::CallArgList &CallArgs,
1790                                     const ObjCMethodDecl *Method) {
1791   // Create and init a super structure; this is a (receiver, class)
1792   // pair we will pass to objc_msgSendSuper.
1793   Address ObjCSuper =
1794     CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(),
1795                          "objc_super");
1796   llvm::Value *ReceiverAsObject =
1797     CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
1798   CGF.Builder.CreateStore(
1799       ReceiverAsObject,
1800       CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero()));
1801 
1802   // If this is a class message the metaclass is passed as the target.
1803   llvm::Value *Target;
1804   if (IsClassMessage) {
1805     if (isCategoryImpl) {
1806       // Message sent to 'super' in a class method defined in a category
1807       // implementation requires an odd treatment.
1808       // If we are in a class method, we must retrieve the
1809       // _metaclass_ for the current class, pointed at by
1810       // the class's "isa" pointer.  The following assumes that
1811       // isa" is the first ivar in a class (which it must be).
1812       Target = EmitClassRef(CGF, Class->getSuperClass());
1813       Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0);
1814       Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign());
1815     } else {
1816       llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class);
1817       llvm::Value *SuperPtr =
1818           CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1);
1819       llvm::Value *Super =
1820         CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign());
1821       Target = Super;
1822     }
1823   } else if (isCategoryImpl)
1824     Target = EmitClassRef(CGF, Class->getSuperClass());
1825   else {
1826     llvm::Value *ClassPtr = EmitSuperClassRef(Class);
1827     ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1);
1828     Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign());
1829   }
1830   // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
1831   // ObjCTypes types.
1832   llvm::Type *ClassTy =
1833     CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
1834   Target = CGF.Builder.CreateBitCast(Target, ClassTy);
1835   CGF.Builder.CreateStore(Target,
1836           CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize()));
1837   return EmitMessageSend(CGF, Return, ResultType,
1838                          EmitSelector(CGF, Sel),
1839                          ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
1840                          true, CallArgs, Method, Class, ObjCTypes);
1841 }
1842 
1843 /// Generate code for a message send expression.
1844 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1845                                                ReturnValueSlot Return,
1846                                                QualType ResultType,
1847                                                Selector Sel,
1848                                                llvm::Value *Receiver,
1849                                                const CallArgList &CallArgs,
1850                                                const ObjCInterfaceDecl *Class,
1851                                                const ObjCMethodDecl *Method) {
1852   return EmitMessageSend(CGF, Return, ResultType,
1853                          EmitSelector(CGF, Sel),
1854                          Receiver, CGF.getContext().getObjCIdType(),
1855                          false, CallArgs, Method, Class, ObjCTypes);
1856 }
1857 
1858 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) {
1859   do {
1860     if (ID->isWeakImported())
1861       return true;
1862   } while ((ID = ID->getSuperClass()));
1863 
1864   return false;
1865 }
1866 
1867 CodeGen::RValue
1868 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF,
1869                                  ReturnValueSlot Return,
1870                                  QualType ResultType,
1871                                  llvm::Value *Sel,
1872                                  llvm::Value *Arg0,
1873                                  QualType Arg0Ty,
1874                                  bool IsSuper,
1875                                  const CallArgList &CallArgs,
1876                                  const ObjCMethodDecl *Method,
1877                                  const ObjCInterfaceDecl *ClassReceiver,
1878                                  const ObjCCommonTypesHelper &ObjCTypes) {
1879   CallArgList ActualArgs;
1880   if (!IsSuper)
1881     Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy);
1882   ActualArgs.add(RValue::get(Arg0), Arg0Ty);
1883   ActualArgs.add(RValue::get(Sel), CGF.getContext().getObjCSelType());
1884   ActualArgs.addFrom(CallArgs);
1885 
1886   // If we're calling a method, use the formal signature.
1887   MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1888 
1889   if (Method)
1890     assert(CGM.getContext().getCanonicalType(Method->getReturnType()) ==
1891                CGM.getContext().getCanonicalType(ResultType) &&
1892            "Result type mismatch!");
1893 
1894   bool ReceiverCanBeNull = true;
1895 
1896   // Super dispatch assumes that self is non-null; even the messenger
1897   // doesn't have a null check internally.
1898   if (IsSuper) {
1899     ReceiverCanBeNull = false;
1900 
1901   // If this is a direct dispatch of a class method, check whether the class,
1902   // or anything in its hierarchy, was weak-linked.
1903   } else if (ClassReceiver && Method && Method->isClassMethod()) {
1904     ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver);
1905 
1906   // If we're emitting a method, and self is const (meaning just ARC, for now),
1907   // and the receiver is a load of self, then self is a valid object.
1908   } else if (auto CurMethod =
1909                dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) {
1910     auto Self = CurMethod->getSelfDecl();
1911     if (Self->getType().isConstQualified()) {
1912       if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) {
1913         llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer();
1914         if (SelfAddr == LI->getPointerOperand()) {
1915           ReceiverCanBeNull = false;
1916         }
1917       }
1918     }
1919   }
1920 
1921   NullReturnState nullReturn;
1922 
1923   llvm::Constant *Fn = nullptr;
1924   if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) {
1925     if (ReceiverCanBeNull) nullReturn.init(CGF, Arg0);
1926     Fn = (ObjCABI == 2) ?  ObjCTypes.getSendStretFn2(IsSuper)
1927       : ObjCTypes.getSendStretFn(IsSuper);
1928   } else if (CGM.ReturnTypeUsesFPRet(ResultType)) {
1929     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper)
1930       : ObjCTypes.getSendFpretFn(IsSuper);
1931   } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) {
1932     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper)
1933       : ObjCTypes.getSendFp2retFn(IsSuper);
1934   } else {
1935     // arm64 uses objc_msgSend for stret methods and yet null receiver check
1936     // must be made for it.
1937     if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo))
1938       nullReturn.init(CGF, Arg0);
1939     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper)
1940       : ObjCTypes.getSendFn(IsSuper);
1941   }
1942 
1943   // Emit a null-check if there's a consumed argument other than the receiver.
1944   bool RequiresNullCheck = false;
1945   if (ReceiverCanBeNull && CGM.getLangOpts().ObjCAutoRefCount && Method) {
1946     for (const auto *ParamDecl : Method->params()) {
1947       if (ParamDecl->hasAttr<NSConsumedAttr>()) {
1948         if (!nullReturn.NullBB)
1949           nullReturn.init(CGF, Arg0);
1950         RequiresNullCheck = true;
1951         break;
1952       }
1953     }
1954   }
1955 
1956   llvm::Instruction *CallSite;
1957   Fn = llvm::ConstantExpr::getBitCast(Fn, MSI.MessengerType);
1958   RValue rvalue = CGF.EmitCall(MSI.CallInfo, Fn, Return, ActualArgs,
1959                                CGCalleeInfo(), &CallSite);
1960 
1961   // Mark the call as noreturn if the method is marked noreturn and the
1962   // receiver cannot be null.
1963   if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) {
1964     llvm::CallSite(CallSite).setDoesNotReturn();
1965   }
1966 
1967   return nullReturn.complete(CGF, rvalue, ResultType, CallArgs,
1968                              RequiresNullCheck ? Method : nullptr);
1969 }
1970 
1971 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT,
1972                                            bool pointee = false) {
1973   // Note that GC qualification applies recursively to C pointer types
1974   // that aren't otherwise decorated.  This is weird, but it's probably
1975   // an intentional workaround to the unreliable placement of GC qualifiers.
1976   if (FQT.isObjCGCStrong())
1977     return Qualifiers::Strong;
1978 
1979   if (FQT.isObjCGCWeak())
1980     return Qualifiers::Weak;
1981 
1982   if (auto ownership = FQT.getObjCLifetime()) {
1983     // Ownership does not apply recursively to C pointer types.
1984     if (pointee) return Qualifiers::GCNone;
1985     switch (ownership) {
1986     case Qualifiers::OCL_Weak: return Qualifiers::Weak;
1987     case Qualifiers::OCL_Strong: return Qualifiers::Strong;
1988     case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone;
1989     case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?");
1990     case Qualifiers::OCL_None: llvm_unreachable("known nonzero");
1991     }
1992     llvm_unreachable("bad objc ownership");
1993   }
1994 
1995   // Treat unqualified retainable pointers as strong.
1996   if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
1997     return Qualifiers::Strong;
1998 
1999   // Walk into C pointer types, but only in GC.
2000   if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) {
2001     if (const PointerType *PT = FQT->getAs<PointerType>())
2002       return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true);
2003   }
2004 
2005   return Qualifiers::GCNone;
2006 }
2007 
2008 namespace {
2009   struct IvarInfo {
2010     CharUnits Offset;
2011     uint64_t SizeInWords;
2012     IvarInfo(CharUnits offset, uint64_t sizeInWords)
2013       : Offset(offset), SizeInWords(sizeInWords) {}
2014 
2015     // Allow sorting based on byte pos.
2016     bool operator<(const IvarInfo &other) const {
2017       return Offset < other.Offset;
2018     }
2019   };
2020 
2021   /// A helper class for building GC layout strings.
2022   class IvarLayoutBuilder {
2023     CodeGenModule &CGM;
2024 
2025     /// The start of the layout.  Offsets will be relative to this value,
2026     /// and entries less than this value will be silently discarded.
2027     CharUnits InstanceBegin;
2028 
2029     /// The end of the layout.  Offsets will never exceed this value.
2030     CharUnits InstanceEnd;
2031 
2032     /// Whether we're generating the strong layout or the weak layout.
2033     bool ForStrongLayout;
2034 
2035     /// Whether the offsets in IvarsInfo might be out-of-order.
2036     bool IsDisordered = false;
2037 
2038     llvm::SmallVector<IvarInfo, 8> IvarsInfo;
2039 
2040   public:
2041     IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin,
2042                       CharUnits instanceEnd, bool forStrongLayout)
2043       : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd),
2044         ForStrongLayout(forStrongLayout) {
2045     }
2046 
2047     void visitRecord(const RecordType *RT, CharUnits offset);
2048 
2049     template <class Iterator, class GetOffsetFn>
2050     void visitAggregate(Iterator begin, Iterator end,
2051                         CharUnits aggrOffset,
2052                         const GetOffsetFn &getOffset);
2053 
2054     void visitField(const FieldDecl *field, CharUnits offset);
2055 
2056     /// Add the layout of a block implementation.
2057     void visitBlock(const CGBlockInfo &blockInfo);
2058 
2059     /// Is there any information for an interesting bitmap?
2060     bool hasBitmapData() const { return !IvarsInfo.empty(); }
2061 
2062     llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC,
2063                                 llvm::SmallVectorImpl<unsigned char> &buffer);
2064 
2065     static void dump(ArrayRef<unsigned char> buffer) {
2066       const unsigned char *s = buffer.data();
2067       for (unsigned i = 0, e = buffer.size(); i < e; i++)
2068         if (!(s[i] & 0xf0))
2069           printf("0x0%x%s", s[i], s[i] != 0 ? ", " : "");
2070         else
2071           printf("0x%x%s",  s[i], s[i] != 0 ? ", " : "");
2072       printf("\n");
2073     }
2074   };
2075 } // end anonymous namespace
2076 
2077 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM,
2078                                                 const CGBlockInfo &blockInfo) {
2079 
2080   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2081   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
2082     return nullPtr;
2083 
2084   IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize,
2085                             /*for strong layout*/ true);
2086 
2087   builder.visitBlock(blockInfo);
2088 
2089   if (!builder.hasBitmapData())
2090     return nullPtr;
2091 
2092   llvm::SmallVector<unsigned char, 32> buffer;
2093   llvm::Constant *C = builder.buildBitmap(*this, buffer);
2094   if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) {
2095     printf("\n block variable layout for block: ");
2096     builder.dump(buffer);
2097   }
2098 
2099   return C;
2100 }
2101 
2102 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) {
2103   // __isa is the first field in block descriptor and must assume by runtime's
2104   // convention that it is GC'able.
2105   IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1));
2106 
2107   const BlockDecl *blockDecl = blockInfo.getBlockDecl();
2108 
2109   // Ignore the optional 'this' capture: C++ objects are not assumed
2110   // to be GC'ed.
2111 
2112   CharUnits lastFieldOffset;
2113 
2114   // Walk the captured variables.
2115   for (const auto &CI : blockDecl->captures()) {
2116     const VarDecl *variable = CI.getVariable();
2117     QualType type = variable->getType();
2118 
2119     const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
2120 
2121     // Ignore constant captures.
2122     if (capture.isConstant()) continue;
2123 
2124     CharUnits fieldOffset = capture.getOffset();
2125 
2126     // Block fields are not necessarily ordered; if we detect that we're
2127     // adding them out-of-order, make sure we sort later.
2128     if (fieldOffset < lastFieldOffset)
2129       IsDisordered = true;
2130     lastFieldOffset = fieldOffset;
2131 
2132     // __block variables are passed by their descriptor address.
2133     if (CI.isByRef()) {
2134       IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1));
2135       continue;
2136     }
2137 
2138     assert(!type->isArrayType() && "array variable should not be caught");
2139     if (const RecordType *record = type->getAs<RecordType>()) {
2140       visitRecord(record, fieldOffset);
2141       continue;
2142     }
2143 
2144     Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type);
2145 
2146     if (GCAttr == Qualifiers::Strong) {
2147       assert(CGM.getContext().getTypeSize(type)
2148                 == CGM.getTarget().getPointerWidth(0));
2149       IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1));
2150     }
2151   }
2152 }
2153 
2154 /// getBlockCaptureLifetime - This routine returns life time of the captured
2155 /// block variable for the purpose of block layout meta-data generation. FQT is
2156 /// the type of the variable captured in the block.
2157 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT,
2158                                                                   bool ByrefLayout) {
2159   // If it has an ownership qualifier, we're done.
2160   if (auto lifetime = FQT.getObjCLifetime())
2161     return lifetime;
2162 
2163   // If it doesn't, and this is ARC, it has no ownership.
2164   if (CGM.getLangOpts().ObjCAutoRefCount)
2165     return Qualifiers::OCL_None;
2166 
2167   // In MRC, retainable pointers are owned by non-__block variables.
2168   if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
2169     return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong;
2170 
2171   return Qualifiers::OCL_None;
2172 }
2173 
2174 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref,
2175                                              Qualifiers::ObjCLifetime LifeTime,
2176                                              CharUnits FieldOffset,
2177                                              CharUnits FieldSize) {
2178   // __block variables are passed by their descriptor address.
2179   if (IsByref)
2180     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset,
2181                                         FieldSize));
2182   else if (LifeTime == Qualifiers::OCL_Strong)
2183     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset,
2184                                         FieldSize));
2185   else if (LifeTime == Qualifiers::OCL_Weak)
2186     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset,
2187                                         FieldSize));
2188   else if (LifeTime == Qualifiers::OCL_ExplicitNone)
2189     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset,
2190                                         FieldSize));
2191   else
2192     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES,
2193                                         FieldOffset,
2194                                         FieldSize));
2195 }
2196 
2197 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
2198                                           const RecordDecl *RD,
2199                                           ArrayRef<const FieldDecl*> RecFields,
2200                                           CharUnits BytePos, bool &HasUnion,
2201                                           bool ByrefLayout) {
2202   bool IsUnion = (RD && RD->isUnion());
2203   CharUnits MaxUnionSize = CharUnits::Zero();
2204   const FieldDecl *MaxField = nullptr;
2205   const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr;
2206   CharUnits MaxFieldOffset = CharUnits::Zero();
2207   CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero();
2208 
2209   if (RecFields.empty())
2210     return;
2211   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2212 
2213   for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2214     const FieldDecl *Field = RecFields[i];
2215     // Note that 'i' here is actually the field index inside RD of Field,
2216     // although this dependency is hidden.
2217     const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
2218     CharUnits FieldOffset =
2219       CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i));
2220 
2221     // Skip over unnamed or bitfields
2222     if (!Field->getIdentifier() || Field->isBitField()) {
2223       LastFieldBitfieldOrUnnamed = Field;
2224       LastBitfieldOrUnnamedOffset = FieldOffset;
2225       continue;
2226     }
2227 
2228     LastFieldBitfieldOrUnnamed = nullptr;
2229     QualType FQT = Field->getType();
2230     if (FQT->isRecordType() || FQT->isUnionType()) {
2231       if (FQT->isUnionType())
2232         HasUnion = true;
2233 
2234       BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(),
2235                                   BytePos + FieldOffset, HasUnion);
2236       continue;
2237     }
2238 
2239     if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
2240       const ConstantArrayType *CArray =
2241         dyn_cast_or_null<ConstantArrayType>(Array);
2242       uint64_t ElCount = CArray->getSize().getZExtValue();
2243       assert(CArray && "only array with known element size is supported");
2244       FQT = CArray->getElementType();
2245       while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
2246         const ConstantArrayType *CArray =
2247           dyn_cast_or_null<ConstantArrayType>(Array);
2248         ElCount *= CArray->getSize().getZExtValue();
2249         FQT = CArray->getElementType();
2250       }
2251       if (FQT->isRecordType() && ElCount) {
2252         int OldIndex = RunSkipBlockVars.size() - 1;
2253         const RecordType *RT = FQT->getAs<RecordType>();
2254         BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset,
2255                                     HasUnion);
2256 
2257         // Replicate layout information for each array element. Note that
2258         // one element is already done.
2259         uint64_t ElIx = 1;
2260         for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) {
2261           CharUnits Size = CGM.getContext().getTypeSizeInChars(RT);
2262           for (int i = OldIndex+1; i <= FirstIndex; ++i)
2263             RunSkipBlockVars.push_back(
2264               RUN_SKIP(RunSkipBlockVars[i].opcode,
2265               RunSkipBlockVars[i].block_var_bytepos + Size*ElIx,
2266               RunSkipBlockVars[i].block_var_size));
2267         }
2268         continue;
2269       }
2270     }
2271     CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType());
2272     if (IsUnion) {
2273       CharUnits UnionIvarSize = FieldSize;
2274       if (UnionIvarSize > MaxUnionSize) {
2275         MaxUnionSize = UnionIvarSize;
2276         MaxField = Field;
2277         MaxFieldOffset = FieldOffset;
2278       }
2279     } else {
2280       UpdateRunSkipBlockVars(false,
2281                              getBlockCaptureLifetime(FQT, ByrefLayout),
2282                              BytePos + FieldOffset,
2283                              FieldSize);
2284     }
2285   }
2286 
2287   if (LastFieldBitfieldOrUnnamed) {
2288     if (LastFieldBitfieldOrUnnamed->isBitField()) {
2289       // Last field was a bitfield. Must update the info.
2290       uint64_t BitFieldSize
2291         = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext());
2292       unsigned UnsSize = (BitFieldSize / ByteSizeInBits) +
2293                         ((BitFieldSize % ByteSizeInBits) != 0);
2294       CharUnits Size = CharUnits::fromQuantity(UnsSize);
2295       Size += LastBitfieldOrUnnamedOffset;
2296       UpdateRunSkipBlockVars(false,
2297                              getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(),
2298                                                      ByrefLayout),
2299                              BytePos + LastBitfieldOrUnnamedOffset,
2300                              Size);
2301     } else {
2302       assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed");
2303       // Last field was unnamed. Must update skip info.
2304       CharUnits FieldSize
2305         = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType());
2306       UpdateRunSkipBlockVars(false,
2307                              getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(),
2308                                                      ByrefLayout),
2309                              BytePos + LastBitfieldOrUnnamedOffset,
2310                              FieldSize);
2311     }
2312   }
2313 
2314   if (MaxField)
2315     UpdateRunSkipBlockVars(false,
2316                            getBlockCaptureLifetime(MaxField->getType(), ByrefLayout),
2317                            BytePos + MaxFieldOffset,
2318                            MaxUnionSize);
2319 }
2320 
2321 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT,
2322                                                   CharUnits BytePos,
2323                                                   bool &HasUnion,
2324                                                   bool ByrefLayout) {
2325   const RecordDecl *RD = RT->getDecl();
2326   SmallVector<const FieldDecl*, 16> Fields(RD->fields());
2327   llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0));
2328   const llvm::StructLayout *RecLayout =
2329     CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty));
2330 
2331   BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout);
2332 }
2333 
2334 /// InlineLayoutInstruction - This routine produce an inline instruction for the
2335 /// block variable layout if it can. If not, it returns 0. Rules are as follow:
2336 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world,
2337 /// an inline layout of value 0x0000000000000xyz is interpreted as follows:
2338 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by
2339 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by
2340 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero
2341 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no
2342 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured.
2343 uint64_t CGObjCCommonMac::InlineLayoutInstruction(
2344                                     SmallVectorImpl<unsigned char> &Layout) {
2345   uint64_t Result = 0;
2346   if (Layout.size() <= 3) {
2347     unsigned size = Layout.size();
2348     unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0;
2349     unsigned char inst;
2350     enum BLOCK_LAYOUT_OPCODE opcode ;
2351     switch (size) {
2352       case 3:
2353         inst = Layout[0];
2354         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2355         if (opcode == BLOCK_LAYOUT_STRONG)
2356           strong_word_count = (inst & 0xF)+1;
2357         else
2358           return 0;
2359         inst = Layout[1];
2360         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2361         if (opcode == BLOCK_LAYOUT_BYREF)
2362           byref_word_count = (inst & 0xF)+1;
2363         else
2364           return 0;
2365         inst = Layout[2];
2366         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2367         if (opcode == BLOCK_LAYOUT_WEAK)
2368           weak_word_count = (inst & 0xF)+1;
2369         else
2370           return 0;
2371         break;
2372 
2373       case 2:
2374         inst = Layout[0];
2375         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2376         if (opcode == BLOCK_LAYOUT_STRONG) {
2377           strong_word_count = (inst & 0xF)+1;
2378           inst = Layout[1];
2379           opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2380           if (opcode == BLOCK_LAYOUT_BYREF)
2381             byref_word_count = (inst & 0xF)+1;
2382           else if (opcode == BLOCK_LAYOUT_WEAK)
2383             weak_word_count = (inst & 0xF)+1;
2384           else
2385             return 0;
2386         }
2387         else if (opcode == BLOCK_LAYOUT_BYREF) {
2388           byref_word_count = (inst & 0xF)+1;
2389           inst = Layout[1];
2390           opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2391           if (opcode == BLOCK_LAYOUT_WEAK)
2392             weak_word_count = (inst & 0xF)+1;
2393           else
2394             return 0;
2395         }
2396         else
2397           return 0;
2398         break;
2399 
2400       case 1:
2401         inst = Layout[0];
2402         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2403         if (opcode == BLOCK_LAYOUT_STRONG)
2404           strong_word_count = (inst & 0xF)+1;
2405         else if (opcode == BLOCK_LAYOUT_BYREF)
2406           byref_word_count = (inst & 0xF)+1;
2407         else if (opcode == BLOCK_LAYOUT_WEAK)
2408           weak_word_count = (inst & 0xF)+1;
2409         else
2410           return 0;
2411         break;
2412 
2413       default:
2414         return 0;
2415     }
2416 
2417     // Cannot inline when any of the word counts is 15. Because this is one less
2418     // than the actual work count (so 15 means 16 actual word counts),
2419     // and we can only display 0 thru 15 word counts.
2420     if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16)
2421       return 0;
2422 
2423     unsigned count =
2424       (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0);
2425 
2426     if (size == count) {
2427       if (strong_word_count)
2428         Result = strong_word_count;
2429       Result <<= 4;
2430       if (byref_word_count)
2431         Result += byref_word_count;
2432       Result <<= 4;
2433       if (weak_word_count)
2434         Result += weak_word_count;
2435     }
2436   }
2437   return Result;
2438 }
2439 
2440 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) {
2441   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2442   if (RunSkipBlockVars.empty())
2443     return nullPtr;
2444   unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0);
2445   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2446   unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
2447 
2448   // Sort on byte position; captures might not be allocated in order,
2449   // and unions can do funny things.
2450   llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end());
2451   SmallVector<unsigned char, 16> Layout;
2452 
2453   unsigned size = RunSkipBlockVars.size();
2454   for (unsigned i = 0; i < size; i++) {
2455     enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode;
2456     CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos;
2457     CharUnits end_byte_pos = start_byte_pos;
2458     unsigned j = i+1;
2459     while (j < size) {
2460       if (opcode == RunSkipBlockVars[j].opcode) {
2461         end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos;
2462         i++;
2463       }
2464       else
2465         break;
2466     }
2467     CharUnits size_in_bytes =
2468     end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size;
2469     if (j < size) {
2470       CharUnits gap =
2471       RunSkipBlockVars[j].block_var_bytepos -
2472       RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size;
2473       size_in_bytes += gap;
2474     }
2475     CharUnits residue_in_bytes = CharUnits::Zero();
2476     if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) {
2477       residue_in_bytes = size_in_bytes % WordSizeInBytes;
2478       size_in_bytes -= residue_in_bytes;
2479       opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS;
2480     }
2481 
2482     unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes;
2483     while (size_in_words >= 16) {
2484       // Note that value in imm. is one less that the actual
2485       // value. So, 0xf means 16 words follow!
2486       unsigned char inst = (opcode << 4) | 0xf;
2487       Layout.push_back(inst);
2488       size_in_words -= 16;
2489     }
2490     if (size_in_words > 0) {
2491       // Note that value in imm. is one less that the actual
2492       // value. So, we subtract 1 away!
2493       unsigned char inst = (opcode << 4) | (size_in_words-1);
2494       Layout.push_back(inst);
2495     }
2496     if (residue_in_bytes > CharUnits::Zero()) {
2497       unsigned char inst =
2498       (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1);
2499       Layout.push_back(inst);
2500     }
2501   }
2502 
2503   while (!Layout.empty()) {
2504     unsigned char inst = Layout.back();
2505     enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2506     if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS)
2507       Layout.pop_back();
2508     else
2509       break;
2510   }
2511 
2512   uint64_t Result = InlineLayoutInstruction(Layout);
2513   if (Result != 0) {
2514     // Block variable layout instruction has been inlined.
2515     if (CGM.getLangOpts().ObjCGCBitmapPrint) {
2516       if (ComputeByrefLayout)
2517         printf("\n Inline BYREF variable layout: ");
2518       else
2519         printf("\n Inline block variable layout: ");
2520       printf("0x0%" PRIx64 "", Result);
2521       if (auto numStrong = (Result & 0xF00) >> 8)
2522         printf(", BL_STRONG:%d", (int) numStrong);
2523       if (auto numByref = (Result & 0x0F0) >> 4)
2524         printf(", BL_BYREF:%d", (int) numByref);
2525       if (auto numWeak = (Result & 0x00F) >> 0)
2526         printf(", BL_WEAK:%d", (int) numWeak);
2527       printf(", BL_OPERATOR:0\n");
2528     }
2529     return llvm::ConstantInt::get(CGM.IntPtrTy, Result);
2530   }
2531 
2532   unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0;
2533   Layout.push_back(inst);
2534   std::string BitMap;
2535   for (unsigned i = 0, e = Layout.size(); i != e; i++)
2536     BitMap += Layout[i];
2537 
2538   if (CGM.getLangOpts().ObjCGCBitmapPrint) {
2539     if (ComputeByrefLayout)
2540       printf("\n Byref variable layout: ");
2541     else
2542       printf("\n Block variable layout: ");
2543     for (unsigned i = 0, e = BitMap.size(); i != e; i++) {
2544       unsigned char inst = BitMap[i];
2545       enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2546       unsigned delta = 1;
2547       switch (opcode) {
2548         case BLOCK_LAYOUT_OPERATOR:
2549           printf("BL_OPERATOR:");
2550           delta = 0;
2551           break;
2552         case BLOCK_LAYOUT_NON_OBJECT_BYTES:
2553           printf("BL_NON_OBJECT_BYTES:");
2554           break;
2555         case BLOCK_LAYOUT_NON_OBJECT_WORDS:
2556           printf("BL_NON_OBJECT_WORD:");
2557           break;
2558         case BLOCK_LAYOUT_STRONG:
2559           printf("BL_STRONG:");
2560           break;
2561         case BLOCK_LAYOUT_BYREF:
2562           printf("BL_BYREF:");
2563           break;
2564         case BLOCK_LAYOUT_WEAK:
2565           printf("BL_WEAK:");
2566           break;
2567         case BLOCK_LAYOUT_UNRETAINED:
2568           printf("BL_UNRETAINED:");
2569           break;
2570       }
2571       // Actual value of word count is one more that what is in the imm.
2572       // field of the instruction
2573       printf("%d", (inst & 0xf) + delta);
2574       if (i < e-1)
2575         printf(", ");
2576       else
2577         printf("\n");
2578     }
2579   }
2580 
2581   llvm::GlobalVariable *Entry = CreateMetadataVar(
2582       "OBJC_CLASS_NAME_",
2583       llvm::ConstantDataArray::getString(VMContext, BitMap, false),
2584       "__TEXT,__objc_classname,cstring_literals", CharUnits::One(), true);
2585   return getConstantGEP(VMContext, Entry, 0, 0);
2586 }
2587 
2588 llvm::Constant *CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM,
2589                                                     const CGBlockInfo &blockInfo) {
2590   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
2591 
2592   RunSkipBlockVars.clear();
2593   bool hasUnion = false;
2594 
2595   unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0);
2596   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2597   unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
2598 
2599   const BlockDecl *blockDecl = blockInfo.getBlockDecl();
2600 
2601   // Calculate the basic layout of the block structure.
2602   const llvm::StructLayout *layout =
2603   CGM.getDataLayout().getStructLayout(blockInfo.StructureType);
2604 
2605   // Ignore the optional 'this' capture: C++ objects are not assumed
2606   // to be GC'ed.
2607   if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero())
2608     UpdateRunSkipBlockVars(false, Qualifiers::OCL_None,
2609                            blockInfo.BlockHeaderForcedGapOffset,
2610                            blockInfo.BlockHeaderForcedGapSize);
2611   // Walk the captured variables.
2612   for (const auto &CI : blockDecl->captures()) {
2613     const VarDecl *variable = CI.getVariable();
2614     QualType type = variable->getType();
2615 
2616     const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
2617 
2618     // Ignore constant captures.
2619     if (capture.isConstant()) continue;
2620 
2621     CharUnits fieldOffset =
2622        CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex()));
2623 
2624     assert(!type->isArrayType() && "array variable should not be caught");
2625     if (!CI.isByRef())
2626       if (const RecordType *record = type->getAs<RecordType>()) {
2627         BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion);
2628         continue;
2629       }
2630     CharUnits fieldSize;
2631     if (CI.isByRef())
2632       fieldSize = CharUnits::fromQuantity(WordSizeInBytes);
2633     else
2634       fieldSize = CGM.getContext().getTypeSizeInChars(type);
2635     UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false),
2636                            fieldOffset, fieldSize);
2637   }
2638   return getBitmapBlockLayout(false);
2639 }
2640 
2641 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM,
2642                                                   QualType T) {
2643   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
2644   assert(!T->isArrayType() && "__block array variable should not be caught");
2645   CharUnits fieldOffset;
2646   RunSkipBlockVars.clear();
2647   bool hasUnion = false;
2648   if (const RecordType *record = T->getAs<RecordType>()) {
2649     BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */);
2650     llvm::Constant *Result = getBitmapBlockLayout(true);
2651     if (isa<llvm::ConstantInt>(Result))
2652       Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy);
2653     return Result;
2654   }
2655   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2656   return nullPtr;
2657 }
2658 
2659 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF,
2660                                             const ObjCProtocolDecl *PD) {
2661   // FIXME: I don't understand why gcc generates this, or where it is
2662   // resolved. Investigate. Its also wasteful to look this up over and over.
2663   LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
2664 
2665   return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD),
2666                                         ObjCTypes.getExternalProtocolPtrTy());
2667 }
2668 
2669 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) {
2670   // FIXME: We shouldn't need this, the protocol decl should contain enough
2671   // information to tell us whether this was a declaration or a definition.
2672   DefinedProtocols.insert(PD->getIdentifier());
2673 
2674   // If we have generated a forward reference to this protocol, emit
2675   // it now. Otherwise do nothing, the protocol objects are lazily
2676   // emitted.
2677   if (Protocols.count(PD->getIdentifier()))
2678     GetOrEmitProtocol(PD);
2679 }
2680 
2681 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) {
2682   if (DefinedProtocols.count(PD->getIdentifier()))
2683     return GetOrEmitProtocol(PD);
2684 
2685   return GetOrEmitProtocolRef(PD);
2686 }
2687 
2688 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime(
2689                CodeGenFunction &CGF,
2690                const ObjCInterfaceDecl *ID,
2691                ObjCCommonTypesHelper &ObjCTypes) {
2692   llvm::Constant *lookUpClassFn = ObjCTypes.getLookUpClassFn();
2693 
2694   llvm::Value *className =
2695       CGF.CGM.GetAddrOfConstantCString(ID->getObjCRuntimeNameAsString())
2696         .getPointer();
2697   ASTContext &ctx = CGF.CGM.getContext();
2698   className =
2699       CGF.Builder.CreateBitCast(className,
2700                                 CGF.ConvertType(
2701                                   ctx.getPointerType(ctx.CharTy.withConst())));
2702   llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className);
2703   call->setDoesNotThrow();
2704   return call;
2705 }
2706 
2707 /*
2708 // Objective-C 1.0 extensions
2709 struct _objc_protocol {
2710 struct _objc_protocol_extension *isa;
2711 char *protocol_name;
2712 struct _objc_protocol_list *protocol_list;
2713 struct _objc__method_prototype_list *instance_methods;
2714 struct _objc__method_prototype_list *class_methods
2715 };
2716 
2717 See EmitProtocolExtension().
2718 */
2719 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) {
2720   llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
2721 
2722   // Early exit if a defining object has already been generated.
2723   if (Entry && Entry->hasInitializer())
2724     return Entry;
2725 
2726   // Use the protocol definition, if there is one.
2727   if (const ObjCProtocolDecl *Def = PD->getDefinition())
2728     PD = Def;
2729 
2730   // FIXME: I don't understand why gcc generates this, or where it is
2731   // resolved. Investigate. Its also wasteful to look this up over and over.
2732   LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
2733 
2734   // Construct method lists.
2735   std::vector<llvm::Constant*> InstanceMethods, ClassMethods;
2736   std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods;
2737   std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt;
2738   for (const auto *MD : PD->instance_methods()) {
2739     llvm::Constant *C = GetMethodDescriptionConstant(MD);
2740     if (!C)
2741       return GetOrEmitProtocolRef(PD);
2742 
2743     if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
2744       OptInstanceMethods.push_back(C);
2745       OptMethodTypesExt.push_back(GetMethodVarType(MD, true));
2746     } else {
2747       InstanceMethods.push_back(C);
2748       MethodTypesExt.push_back(GetMethodVarType(MD, true));
2749     }
2750   }
2751 
2752   for (const auto *MD : PD->class_methods()) {
2753     llvm::Constant *C = GetMethodDescriptionConstant(MD);
2754     if (!C)
2755       return GetOrEmitProtocolRef(PD);
2756 
2757     if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
2758       OptClassMethods.push_back(C);
2759       OptMethodTypesExt.push_back(GetMethodVarType(MD, true));
2760     } else {
2761       ClassMethods.push_back(C);
2762       MethodTypesExt.push_back(GetMethodVarType(MD, true));
2763     }
2764   }
2765 
2766   MethodTypesExt.insert(MethodTypesExt.end(),
2767                         OptMethodTypesExt.begin(), OptMethodTypesExt.end());
2768 
2769   llvm::Constant *Values[] = {
2770       EmitProtocolExtension(PD, OptInstanceMethods, OptClassMethods,
2771                             MethodTypesExt),
2772       GetClassName(PD->getObjCRuntimeNameAsString()),
2773       EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(),
2774                        PD->protocol_begin(), PD->protocol_end()),
2775       EmitMethodDescList("OBJC_PROTOCOL_INSTANCE_METHODS_" + PD->getName(),
2776                          "__OBJC,__cat_inst_meth,regular,no_dead_strip",
2777                          InstanceMethods),
2778       EmitMethodDescList("OBJC_PROTOCOL_CLASS_METHODS_" + PD->getName(),
2779                          "__OBJC,__cat_cls_meth,regular,no_dead_strip",
2780                          ClassMethods)};
2781   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolTy,
2782                                                    Values);
2783 
2784   if (Entry) {
2785     // Already created, update the initializer.
2786     assert(Entry->hasPrivateLinkage());
2787     Entry->setInitializer(Init);
2788   } else {
2789     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy,
2790                                      false, llvm::GlobalValue::PrivateLinkage,
2791                                      Init, "OBJC_PROTOCOL_" + PD->getName());
2792     Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
2793     // FIXME: Is this necessary? Why only for protocol?
2794     Entry->setAlignment(4);
2795 
2796     Protocols[PD->getIdentifier()] = Entry;
2797   }
2798   CGM.addCompilerUsedGlobal(Entry);
2799 
2800   return Entry;
2801 }
2802 
2803 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) {
2804   llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
2805 
2806   if (!Entry) {
2807     // We use the initializer as a marker of whether this is a forward
2808     // reference or not. At module finalization we add the empty
2809     // contents for protocols which were referenced but never defined.
2810     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy,
2811                                      false, llvm::GlobalValue::PrivateLinkage,
2812                                      nullptr, "OBJC_PROTOCOL_" + PD->getName());
2813     Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
2814     // FIXME: Is this necessary? Why only for protocol?
2815     Entry->setAlignment(4);
2816   }
2817 
2818   return Entry;
2819 }
2820 
2821 /*
2822   struct _objc_protocol_extension {
2823   uint32_t size;
2824   struct objc_method_description_list *optional_instance_methods;
2825   struct objc_method_description_list *optional_class_methods;
2826   struct objc_property_list *instance_properties;
2827   const char ** extendedMethodTypes;
2828   struct objc_property_list *class_properties;
2829   };
2830 */
2831 llvm::Constant *
2832 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD,
2833                                  ArrayRef<llvm::Constant*> OptInstanceMethods,
2834                                  ArrayRef<llvm::Constant*> OptClassMethods,
2835                                  ArrayRef<llvm::Constant*> MethodTypesExt) {
2836   uint64_t Size =
2837     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy);
2838   llvm::Constant *Values[] = {
2839       llvm::ConstantInt::get(ObjCTypes.IntTy, Size),
2840       EmitMethodDescList("OBJC_PROTOCOL_INSTANCE_METHODS_OPT_" + PD->getName(),
2841                          "__OBJC,__cat_inst_meth,regular,no_dead_strip",
2842                          OptInstanceMethods),
2843       EmitMethodDescList("OBJC_PROTOCOL_CLASS_METHODS_OPT_" + PD->getName(),
2844                          "__OBJC,__cat_cls_meth,regular,no_dead_strip",
2845                          OptClassMethods),
2846       EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD,
2847                        ObjCTypes, false),
2848       EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(),
2849                               MethodTypesExt, ObjCTypes),
2850       EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr,
2851                        PD, ObjCTypes, true)};
2852 
2853   // Return null if no extension bits are used.
2854   if (Values[1]->isNullValue() && Values[2]->isNullValue() &&
2855       Values[3]->isNullValue() && Values[4]->isNullValue() &&
2856       Values[5]->isNullValue())
2857     return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy);
2858 
2859   llvm::Constant *Init =
2860     llvm::ConstantStruct::get(ObjCTypes.ProtocolExtensionTy, Values);
2861 
2862   // No special section, but goes in llvm.used
2863   return CreateMetadataVar("\01l_OBJC_PROTOCOLEXT_" + PD->getName(), Init,
2864                            StringRef(), CGM.getPointerAlign(), true);
2865 }
2866 
2867 /*
2868   struct objc_protocol_list {
2869     struct objc_protocol_list *next;
2870     long count;
2871     Protocol *list[];
2872   };
2873 */
2874 llvm::Constant *
2875 CGObjCMac::EmitProtocolList(Twine Name,
2876                             ObjCProtocolDecl::protocol_iterator begin,
2877                             ObjCProtocolDecl::protocol_iterator end) {
2878   SmallVector<llvm::Constant *, 16> ProtocolRefs;
2879 
2880   for (; begin != end; ++begin)
2881     ProtocolRefs.push_back(GetProtocolRef(*begin));
2882 
2883   // Just return null for empty protocol lists
2884   if (ProtocolRefs.empty())
2885     return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
2886 
2887   // This list is null terminated.
2888   ProtocolRefs.push_back(llvm::Constant::getNullValue(ObjCTypes.ProtocolPtrTy));
2889 
2890   llvm::Constant *Values[3];
2891   // This field is only used by the runtime.
2892   Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
2893   Values[1] = llvm::ConstantInt::get(ObjCTypes.LongTy,
2894                                      ProtocolRefs.size() - 1);
2895   Values[2] =
2896     llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolPtrTy,
2897                                                   ProtocolRefs.size()),
2898                              ProtocolRefs);
2899 
2900   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
2901   llvm::GlobalVariable *GV =
2902     CreateMetadataVar(Name, Init, "__OBJC,__cat_cls_meth,regular,no_dead_strip",
2903                       CGM.getPointerAlign(), false);
2904   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy);
2905 }
2906 
2907 void CGObjCCommonMac::
2908 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet,
2909                        SmallVectorImpl<llvm::Constant *> &Properties,
2910                        const Decl *Container,
2911                        const ObjCProtocolDecl *Proto,
2912                        const ObjCCommonTypesHelper &ObjCTypes,
2913                        bool IsClassProperty) {
2914   for (const auto *P : Proto->protocols())
2915     PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes,
2916                            IsClassProperty);
2917 
2918   for (const auto *PD : Proto->properties()) {
2919     if (IsClassProperty != PD->isClassProperty())
2920       continue;
2921     if (!PropertySet.insert(PD->getIdentifier()).second)
2922       continue;
2923     llvm::Constant *Prop[] = {
2924       GetPropertyName(PD->getIdentifier()),
2925       GetPropertyTypeString(PD, Container)
2926     };
2927     Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, Prop));
2928   }
2929 }
2930 
2931 /*
2932   struct _objc_property {
2933     const char * const name;
2934     const char * const attributes;
2935   };
2936 
2937   struct _objc_property_list {
2938     uint32_t entsize; // sizeof (struct _objc_property)
2939     uint32_t prop_count;
2940     struct _objc_property[prop_count];
2941   };
2942 */
2943 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name,
2944                                        const Decl *Container,
2945                                        const ObjCContainerDecl *OCD,
2946                                        const ObjCCommonTypesHelper &ObjCTypes,
2947                                        bool IsClassProperty) {
2948   if (IsClassProperty) {
2949     // Make this entry NULL for OS X with deployment target < 10.11, for iOS
2950     // with deployment target < 9.0.
2951     const llvm::Triple &Triple = CGM.getTarget().getTriple();
2952     if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) ||
2953         (Triple.isiOS() && Triple.isOSVersionLT(9)))
2954       return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
2955   }
2956 
2957   SmallVector<llvm::Constant *, 16> Properties;
2958   llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
2959 
2960   auto AddProperty = [&](const ObjCPropertyDecl *PD) {
2961     llvm::Constant *Prop[] = {GetPropertyName(PD->getIdentifier()),
2962                               GetPropertyTypeString(PD, Container)};
2963     Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, Prop));
2964   };
2965   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
2966     for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
2967       for (auto *PD : ClassExt->properties()) {
2968         if (IsClassProperty != PD->isClassProperty())
2969           continue;
2970         PropertySet.insert(PD->getIdentifier());
2971         AddProperty(PD);
2972       }
2973 
2974   for (const auto *PD : OCD->properties()) {
2975     if (IsClassProperty != PD->isClassProperty())
2976       continue;
2977     // Don't emit duplicate metadata for properties that were already in a
2978     // class extension.
2979     if (!PropertySet.insert(PD->getIdentifier()).second)
2980       continue;
2981     AddProperty(PD);
2982   }
2983 
2984   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) {
2985     for (const auto *P : OID->all_referenced_protocols())
2986       PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes,
2987                              IsClassProperty);
2988   }
2989   else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) {
2990     for (const auto *P : CD->protocols())
2991       PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes,
2992                              IsClassProperty);
2993   }
2994 
2995   // Return null for empty list.
2996   if (Properties.empty())
2997     return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
2998 
2999   unsigned PropertySize =
3000     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy);
3001   llvm::Constant *Values[3];
3002   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, PropertySize);
3003   Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Properties.size());
3004   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.PropertyTy,
3005                                              Properties.size());
3006   Values[2] = llvm::ConstantArray::get(AT, Properties);
3007   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
3008 
3009   llvm::GlobalVariable *GV =
3010     CreateMetadataVar(Name, Init,
3011                       (ObjCABI == 2) ? "__DATA, __objc_const" :
3012                       "__OBJC,__property,regular,no_dead_strip",
3013                       CGM.getPointerAlign(),
3014                       true);
3015   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy);
3016 }
3017 
3018 llvm::Constant *
3019 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name,
3020                                          ArrayRef<llvm::Constant*> MethodTypes,
3021                                          const ObjCCommonTypesHelper &ObjCTypes) {
3022   // Return null for empty list.
3023   if (MethodTypes.empty())
3024     return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy);
3025 
3026   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
3027                                              MethodTypes.size());
3028   llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes);
3029 
3030   llvm::GlobalVariable *GV = CreateMetadataVar(
3031       Name, Init, (ObjCABI == 2) ? "__DATA, __objc_const" : StringRef(),
3032       CGM.getPointerAlign(), true);
3033   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy);
3034 }
3035 
3036 /*
3037   struct objc_method_description_list {
3038   int count;
3039   struct objc_method_description list[];
3040   };
3041 */
3042 llvm::Constant *
3043 CGObjCMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) {
3044   llvm::Constant *Desc[] = {
3045     llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
3046                                    ObjCTypes.SelectorPtrTy),
3047     GetMethodVarType(MD)
3048   };
3049   if (!Desc[1])
3050     return nullptr;
3051 
3052   return llvm::ConstantStruct::get(ObjCTypes.MethodDescriptionTy,
3053                                    Desc);
3054 }
3055 
3056 llvm::Constant *
3057 CGObjCMac::EmitMethodDescList(Twine Name, StringRef Section,
3058                               ArrayRef<llvm::Constant *> Methods) {
3059   // Return null for empty list.
3060   if (Methods.empty())
3061     return llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy);
3062 
3063   llvm::Constant *Values[2];
3064   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size());
3065   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodDescriptionTy,
3066                                              Methods.size());
3067   Values[1] = llvm::ConstantArray::get(AT, Methods);
3068   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
3069 
3070   llvm::GlobalVariable *GV =
3071     CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true);
3072   return llvm::ConstantExpr::getBitCast(GV,
3073                                         ObjCTypes.MethodDescriptionListPtrTy);
3074 }
3075 
3076 /*
3077   struct _objc_category {
3078   char *category_name;
3079   char *class_name;
3080   struct _objc_method_list *instance_methods;
3081   struct _objc_method_list *class_methods;
3082   struct _objc_protocol_list *protocols;
3083   uint32_t size; // <rdar://4585769>
3084   struct _objc_property_list *instance_properties;
3085   struct _objc_property_list *class_properties;
3086   };
3087 */
3088 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3089   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy);
3090 
3091   // FIXME: This is poor design, the OCD should have a pointer to the category
3092   // decl. Additionally, note that Category can be null for the @implementation
3093   // w/o an @interface case. Sema should just create one for us as it does for
3094   // @implementation so everyone else can live life under a clear blue sky.
3095   const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
3096   const ObjCCategoryDecl *Category =
3097     Interface->FindCategoryDeclaration(OCD->getIdentifier());
3098 
3099   SmallString<256> ExtName;
3100   llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_'
3101                                      << OCD->getName();
3102 
3103   SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods;
3104   for (const auto *I : OCD->instance_methods())
3105     // Instance methods should always be defined.
3106     InstanceMethods.push_back(GetMethodConstant(I));
3107 
3108   for (const auto *I : OCD->class_methods())
3109     // Class methods should always be defined.
3110     ClassMethods.push_back(GetMethodConstant(I));
3111 
3112   llvm::Constant *Values[8];
3113   Values[0] = GetClassName(OCD->getName());
3114   Values[1] = GetClassName(Interface->getObjCRuntimeNameAsString());
3115   LazySymbols.insert(Interface->getIdentifier());
3116   Values[2] = EmitMethodList("OBJC_CATEGORY_INSTANCE_METHODS_" + ExtName.str(),
3117                              "__OBJC,__cat_inst_meth,regular,no_dead_strip",
3118                              InstanceMethods);
3119   Values[3] = EmitMethodList("OBJC_CATEGORY_CLASS_METHODS_" + ExtName.str(),
3120                              "__OBJC,__cat_cls_meth,regular,no_dead_strip",
3121                              ClassMethods);
3122   if (Category) {
3123     Values[4] =
3124         EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(),
3125                          Category->protocol_begin(), Category->protocol_end());
3126   } else {
3127     Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
3128   }
3129   Values[5] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
3130 
3131   // If there is no category @interface then there can be no properties.
3132   if (Category) {
3133     Values[6] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(),
3134                                  OCD, Category, ObjCTypes, false);
3135     Values[7] = EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(),
3136                                  OCD, Category, ObjCTypes, true);
3137   } else {
3138     Values[6] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
3139     Values[7] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
3140   }
3141 
3142   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.CategoryTy,
3143                                                    Values);
3144 
3145   llvm::GlobalVariable *GV =
3146       CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Init,
3147                         "__OBJC,__category,regular,no_dead_strip",
3148                         CGM.getPointerAlign(), true);
3149   DefinedCategories.push_back(GV);
3150   DefinedCategoryNames.insert(ExtName.str());
3151   // method definition entries must be clear for next implementation.
3152   MethodDefinitions.clear();
3153 }
3154 
3155 enum FragileClassFlags {
3156   /// Apparently: is not a meta-class.
3157   FragileABI_Class_Factory                 = 0x00001,
3158 
3159   /// Is a meta-class.
3160   FragileABI_Class_Meta                    = 0x00002,
3161 
3162   /// Has a non-trivial constructor or destructor.
3163   FragileABI_Class_HasCXXStructors         = 0x02000,
3164 
3165   /// Has hidden visibility.
3166   FragileABI_Class_Hidden                  = 0x20000,
3167 
3168   /// Class implementation was compiled under ARC.
3169   FragileABI_Class_CompiledByARC           = 0x04000000,
3170 
3171   /// Class implementation was compiled under MRC and has MRC weak ivars.
3172   /// Exclusive with CompiledByARC.
3173   FragileABI_Class_HasMRCWeakIvars         = 0x08000000,
3174 };
3175 
3176 enum NonFragileClassFlags {
3177   /// Is a meta-class.
3178   NonFragileABI_Class_Meta                 = 0x00001,
3179 
3180   /// Is a root class.
3181   NonFragileABI_Class_Root                 = 0x00002,
3182 
3183   /// Has a non-trivial constructor or destructor.
3184   NonFragileABI_Class_HasCXXStructors      = 0x00004,
3185 
3186   /// Has hidden visibility.
3187   NonFragileABI_Class_Hidden               = 0x00010,
3188 
3189   /// Has the exception attribute.
3190   NonFragileABI_Class_Exception            = 0x00020,
3191 
3192   /// (Obsolete) ARC-specific: this class has a .release_ivars method
3193   NonFragileABI_Class_HasIvarReleaser      = 0x00040,
3194 
3195   /// Class implementation was compiled under ARC.
3196   NonFragileABI_Class_CompiledByARC        = 0x00080,
3197 
3198   /// Class has non-trivial destructors, but zero-initialization is okay.
3199   NonFragileABI_Class_HasCXXDestructorOnly = 0x00100,
3200 
3201   /// Class implementation was compiled under MRC and has MRC weak ivars.
3202   /// Exclusive with CompiledByARC.
3203   NonFragileABI_Class_HasMRCWeakIvars      = 0x00200,
3204 };
3205 
3206 static bool hasWeakMember(QualType type) {
3207   if (type.getObjCLifetime() == Qualifiers::OCL_Weak) {
3208     return true;
3209   }
3210 
3211   if (auto recType = type->getAs<RecordType>()) {
3212     for (auto field : recType->getDecl()->fields()) {
3213       if (hasWeakMember(field->getType()))
3214         return true;
3215     }
3216   }
3217 
3218   return false;
3219 }
3220 
3221 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag
3222 /// (and actually fill in a layout string) if we really do have any
3223 /// __weak ivars.
3224 static bool hasMRCWeakIvars(CodeGenModule &CGM,
3225                             const ObjCImplementationDecl *ID) {
3226   if (!CGM.getLangOpts().ObjCWeak) return false;
3227   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
3228 
3229   for (const ObjCIvarDecl *ivar =
3230          ID->getClassInterface()->all_declared_ivar_begin();
3231        ivar; ivar = ivar->getNextIvar()) {
3232     if (hasWeakMember(ivar->getType()))
3233       return true;
3234   }
3235 
3236   return false;
3237 }
3238 
3239 /*
3240   struct _objc_class {
3241   Class isa;
3242   Class super_class;
3243   const char *name;
3244   long version;
3245   long info;
3246   long instance_size;
3247   struct _objc_ivar_list *ivars;
3248   struct _objc_method_list *methods;
3249   struct _objc_cache *cache;
3250   struct _objc_protocol_list *protocols;
3251   // Objective-C 1.0 extensions (<rdr://4585769>)
3252   const char *ivar_layout;
3253   struct _objc_class_ext *ext;
3254   };
3255 
3256   See EmitClassExtension();
3257 */
3258 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) {
3259   DefinedSymbols.insert(ID->getIdentifier());
3260 
3261   std::string ClassName = ID->getNameAsString();
3262   // FIXME: Gross
3263   ObjCInterfaceDecl *Interface =
3264     const_cast<ObjCInterfaceDecl*>(ID->getClassInterface());
3265   llvm::Constant *Protocols =
3266       EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(),
3267                        Interface->all_referenced_protocol_begin(),
3268                        Interface->all_referenced_protocol_end());
3269   unsigned Flags = FragileABI_Class_Factory;
3270   if (ID->hasNonZeroConstructors() || ID->hasDestructors())
3271     Flags |= FragileABI_Class_HasCXXStructors;
3272 
3273   bool hasMRCWeak = false;
3274 
3275   if (CGM.getLangOpts().ObjCAutoRefCount)
3276     Flags |= FragileABI_Class_CompiledByARC;
3277   else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID)))
3278     Flags |= FragileABI_Class_HasMRCWeakIvars;
3279 
3280   CharUnits Size =
3281     CGM.getContext().getASTObjCImplementationLayout(ID).getSize();
3282 
3283   // FIXME: Set CXX-structors flag.
3284   if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
3285     Flags |= FragileABI_Class_Hidden;
3286 
3287   SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods;
3288   for (const auto *I : ID->instance_methods())
3289     // Instance methods should always be defined.
3290     InstanceMethods.push_back(GetMethodConstant(I));
3291 
3292   for (const auto *I : ID->class_methods())
3293     // Class methods should always be defined.
3294     ClassMethods.push_back(GetMethodConstant(I));
3295 
3296   for (const auto *PID : ID->property_impls()) {
3297     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3298       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3299 
3300       if (ObjCMethodDecl *MD = PD->getGetterMethodDecl())
3301         if (llvm::Constant *C = GetMethodConstant(MD))
3302           InstanceMethods.push_back(C);
3303       if (ObjCMethodDecl *MD = PD->getSetterMethodDecl())
3304         if (llvm::Constant *C = GetMethodConstant(MD))
3305           InstanceMethods.push_back(C);
3306     }
3307   }
3308 
3309   llvm::Constant *Values[12];
3310   Values[ 0] = EmitMetaClass(ID, Protocols, ClassMethods);
3311   if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) {
3312     // Record a reference to the super class.
3313     LazySymbols.insert(Super->getIdentifier());
3314 
3315     Values[ 1] =
3316       llvm::ConstantExpr::getBitCast(GetClassName(Super->getObjCRuntimeNameAsString()),
3317                                      ObjCTypes.ClassPtrTy);
3318   } else {
3319     Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy);
3320   }
3321   Values[ 2] = GetClassName(ID->getObjCRuntimeNameAsString());
3322   // Version is always 0.
3323   Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0);
3324   Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags);
3325   Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size.getQuantity());
3326   Values[ 6] = EmitIvarList(ID, false);
3327   Values[7] = EmitMethodList("OBJC_INSTANCE_METHODS_" + ID->getName(),
3328                              "__OBJC,__inst_meth,regular,no_dead_strip",
3329                              InstanceMethods);
3330   // cache is always NULL.
3331   Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy);
3332   Values[ 9] = Protocols;
3333   Values[10] = BuildStrongIvarLayout(ID, CharUnits::Zero(), Size);
3334   Values[11] = EmitClassExtension(ID, Size, hasMRCWeak,
3335                                   false/*isClassProperty*/);
3336   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy,
3337                                                    Values);
3338   std::string Name("OBJC_CLASS_");
3339   Name += ClassName;
3340   const char *Section = "__OBJC,__class,regular,no_dead_strip";
3341   // Check for a forward reference.
3342   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3343   if (GV) {
3344     assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3345            "Forward metaclass reference has incorrect type.");
3346     GV->setInitializer(Init);
3347     GV->setSection(Section);
3348     GV->setAlignment(CGM.getPointerAlign().getQuantity());
3349     CGM.addCompilerUsedGlobal(GV);
3350   } else
3351     GV = CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true);
3352   DefinedClasses.push_back(GV);
3353   ImplementedClasses.push_back(Interface);
3354   // method definition entries must be clear for next implementation.
3355   MethodDefinitions.clear();
3356 }
3357 
3358 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID,
3359                                          llvm::Constant *Protocols,
3360                                          ArrayRef<llvm::Constant*> Methods) {
3361   unsigned Flags = FragileABI_Class_Meta;
3362   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy);
3363 
3364   if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
3365     Flags |= FragileABI_Class_Hidden;
3366 
3367   llvm::Constant *Values[12];
3368   // The isa for the metaclass is the root of the hierarchy.
3369   const ObjCInterfaceDecl *Root = ID->getClassInterface();
3370   while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
3371     Root = Super;
3372   Values[ 0] =
3373     llvm::ConstantExpr::getBitCast(GetClassName(Root->getObjCRuntimeNameAsString()),
3374                                    ObjCTypes.ClassPtrTy);
3375   // The super class for the metaclass is emitted as the name of the
3376   // super class. The runtime fixes this up to point to the
3377   // *metaclass* for the super class.
3378   if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) {
3379     Values[ 1] =
3380       llvm::ConstantExpr::getBitCast(GetClassName(Super->getObjCRuntimeNameAsString()),
3381                                      ObjCTypes.ClassPtrTy);
3382   } else {
3383     Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy);
3384   }
3385   Values[ 2] = GetClassName(ID->getObjCRuntimeNameAsString());
3386   // Version is always 0.
3387   Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0);
3388   Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags);
3389   Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size);
3390   Values[ 6] = EmitIvarList(ID, true);
3391   Values[7] =
3392       EmitMethodList("OBJC_CLASS_METHODS_" + ID->getNameAsString(),
3393                      "__OBJC,__cls_meth,regular,no_dead_strip", Methods);
3394   // cache is always NULL.
3395   Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy);
3396   Values[ 9] = Protocols;
3397   // ivar_layout for metaclass is always NULL.
3398   Values[10] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
3399   // The class extension is used to store class properties for metaclasses.
3400   Values[11] = EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/,
3401                                   true/*isClassProperty*/);
3402   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy,
3403                                                    Values);
3404 
3405   std::string Name("OBJC_METACLASS_");
3406   Name += ID->getName();
3407 
3408   // Check for a forward reference.
3409   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3410   if (GV) {
3411     assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3412            "Forward metaclass reference has incorrect type.");
3413     GV->setInitializer(Init);
3414   } else {
3415     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3416                                   llvm::GlobalValue::PrivateLinkage,
3417                                   Init, Name);
3418   }
3419   GV->setSection("__OBJC,__meta_class,regular,no_dead_strip");
3420   GV->setAlignment(4);
3421   CGM.addCompilerUsedGlobal(GV);
3422 
3423   return GV;
3424 }
3425 
3426 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) {
3427   std::string Name = "OBJC_METACLASS_" + ID->getNameAsString();
3428 
3429   // FIXME: Should we look these up somewhere other than the module. Its a bit
3430   // silly since we only generate these while processing an implementation, so
3431   // exactly one pointer would work if know when we entered/exitted an
3432   // implementation block.
3433 
3434   // Check for an existing forward reference.
3435   // Previously, metaclass with internal linkage may have been defined.
3436   // pass 'true' as 2nd argument so it is returned.
3437   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3438   if (!GV)
3439     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3440                                   llvm::GlobalValue::PrivateLinkage, nullptr,
3441                                   Name);
3442 
3443   assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3444          "Forward metaclass reference has incorrect type.");
3445   return GV;
3446 }
3447 
3448 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) {
3449   std::string Name = "OBJC_CLASS_" + ID->getNameAsString();
3450   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3451 
3452   if (!GV)
3453     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3454                                   llvm::GlobalValue::PrivateLinkage, nullptr,
3455                                   Name);
3456 
3457   assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3458          "Forward class metadata reference has incorrect type.");
3459   return GV;
3460 }
3461 
3462 /*
3463   Emit a "class extension", which in this specific context means extra
3464   data that doesn't fit in the normal fragile-ABI class structure, and
3465   has nothing to do with the language concept of a class extension.
3466 
3467   struct objc_class_ext {
3468   uint32_t size;
3469   const char *weak_ivar_layout;
3470   struct _objc_property_list *properties;
3471   };
3472 */
3473 llvm::Constant *
3474 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID,
3475                               CharUnits InstanceSize, bool hasMRCWeakIvars,
3476                               bool isClassProperty) {
3477   uint64_t Size =
3478     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy);
3479 
3480   llvm::Constant *Values[3];
3481   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
3482   if (isClassProperty) {
3483     llvm::Type *PtrTy = CGM.Int8PtrTy;
3484     Values[1] = llvm::Constant::getNullValue(PtrTy);
3485   } else
3486     Values[1] = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize,
3487                                     hasMRCWeakIvars);
3488   if (isClassProperty)
3489     Values[2] = EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ID->getName(),
3490                                  ID, ID->getClassInterface(), ObjCTypes, true);
3491   else
3492     Values[2] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getName(),
3493                                  ID, ID->getClassInterface(), ObjCTypes, false);
3494 
3495   // Return null if no extension bits are used.
3496   if ((!Values[1] || Values[1]->isNullValue()) && Values[2]->isNullValue())
3497     return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy);
3498 
3499   llvm::Constant *Init =
3500     llvm::ConstantStruct::get(ObjCTypes.ClassExtensionTy, Values);
3501   return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), Init,
3502                            "__OBJC,__class_ext,regular,no_dead_strip",
3503                            CGM.getPointerAlign(), true);
3504 }
3505 
3506 /*
3507   struct objc_ivar {
3508     char *ivar_name;
3509     char *ivar_type;
3510     int ivar_offset;
3511   };
3512 
3513   struct objc_ivar_list {
3514     int ivar_count;
3515     struct objc_ivar list[count];
3516   };
3517 */
3518 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID,
3519                                         bool ForClass) {
3520   std::vector<llvm::Constant*> Ivars;
3521 
3522   // When emitting the root class GCC emits ivar entries for the
3523   // actual class structure. It is not clear if we need to follow this
3524   // behavior; for now lets try and get away with not doing it. If so,
3525   // the cleanest solution would be to make up an ObjCInterfaceDecl
3526   // for the class.
3527   if (ForClass)
3528     return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
3529 
3530   const ObjCInterfaceDecl *OID = ID->getClassInterface();
3531 
3532   for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
3533        IVD; IVD = IVD->getNextIvar()) {
3534     // Ignore unnamed bit-fields.
3535     if (!IVD->getDeclName())
3536       continue;
3537     llvm::Constant *Ivar[] = {
3538       GetMethodVarName(IVD->getIdentifier()),
3539       GetMethodVarType(IVD),
3540       llvm::ConstantInt::get(ObjCTypes.IntTy,
3541                              ComputeIvarBaseOffset(CGM, OID, IVD))
3542     };
3543     Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarTy, Ivar));
3544   }
3545 
3546   // Return null for empty list.
3547   if (Ivars.empty())
3548     return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
3549 
3550   llvm::Constant *Values[2];
3551   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size());
3552   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarTy,
3553                                              Ivars.size());
3554   Values[1] = llvm::ConstantArray::get(AT, Ivars);
3555   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
3556 
3557   llvm::GlobalVariable *GV;
3558   if (ForClass)
3559     GV =
3560         CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), Init,
3561                           "__OBJC,__class_vars,regular,no_dead_strip",
3562                           CGM.getPointerAlign(), true);
3563   else
3564     GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), Init,
3565                            "__OBJC,__instance_vars,regular,no_dead_strip",
3566                            CGM.getPointerAlign(), true);
3567   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy);
3568 }
3569 
3570 /*
3571   struct objc_method {
3572   SEL method_name;
3573   char *method_types;
3574   void *method;
3575   };
3576 
3577   struct objc_method_list {
3578   struct objc_method_list *obsolete;
3579   int count;
3580   struct objc_method methods_list[count];
3581   };
3582 */
3583 
3584 /// GetMethodConstant - Return a struct objc_method constant for the
3585 /// given method if it has been defined. The result is null if the
3586 /// method has not been defined. The return value has type MethodPtrTy.
3587 llvm::Constant *CGObjCMac::GetMethodConstant(const ObjCMethodDecl *MD) {
3588   llvm::Function *Fn = GetMethodDefinition(MD);
3589   if (!Fn)
3590     return nullptr;
3591 
3592   llvm::Constant *Method[] = {
3593     llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
3594                                    ObjCTypes.SelectorPtrTy),
3595     GetMethodVarType(MD),
3596     llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy)
3597   };
3598   return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method);
3599 }
3600 
3601 llvm::Constant *CGObjCMac::EmitMethodList(Twine Name, StringRef Section,
3602                                           ArrayRef<llvm::Constant *> Methods) {
3603   // Return null for empty list.
3604   if (Methods.empty())
3605     return llvm::Constant::getNullValue(ObjCTypes.MethodListPtrTy);
3606 
3607   llvm::Constant *Values[3];
3608   Values[0] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
3609   Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size());
3610   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy,
3611                                              Methods.size());
3612   Values[2] = llvm::ConstantArray::get(AT, Methods);
3613   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
3614 
3615   llvm::GlobalVariable *GV =
3616     CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true);
3617   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy);
3618 }
3619 
3620 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD,
3621                                                 const ObjCContainerDecl *CD) {
3622   SmallString<256> Name;
3623   GetNameForMethod(OMD, CD, Name);
3624 
3625   CodeGenTypes &Types = CGM.getTypes();
3626   llvm::FunctionType *MethodTy =
3627     Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
3628   llvm::Function *Method =
3629     llvm::Function::Create(MethodTy,
3630                            llvm::GlobalValue::InternalLinkage,
3631                            Name.str(),
3632                            &CGM.getModule());
3633   MethodDefinitions.insert(std::make_pair(OMD, Method));
3634 
3635   return Method;
3636 }
3637 
3638 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name,
3639                                                          llvm::Constant *Init,
3640                                                          StringRef Section,
3641                                                          CharUnits Align,
3642                                                          bool AddToUsed) {
3643   llvm::Type *Ty = Init->getType();
3644   llvm::GlobalVariable *GV =
3645     new llvm::GlobalVariable(CGM.getModule(), Ty, false,
3646                              llvm::GlobalValue::PrivateLinkage, Init, Name);
3647   if (!Section.empty())
3648     GV->setSection(Section);
3649   GV->setAlignment(Align.getQuantity());
3650   if (AddToUsed)
3651     CGM.addCompilerUsedGlobal(GV);
3652   return GV;
3653 }
3654 
3655 llvm::Function *CGObjCMac::ModuleInitFunction() {
3656   // Abuse this interface function as a place to finalize.
3657   FinishModule();
3658   return nullptr;
3659 }
3660 
3661 llvm::Constant *CGObjCMac::GetPropertyGetFunction() {
3662   return ObjCTypes.getGetPropertyFn();
3663 }
3664 
3665 llvm::Constant *CGObjCMac::GetPropertySetFunction() {
3666   return ObjCTypes.getSetPropertyFn();
3667 }
3668 
3669 llvm::Constant *CGObjCMac::GetOptimizedPropertySetFunction(bool atomic,
3670                                                            bool copy) {
3671   return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
3672 }
3673 
3674 llvm::Constant *CGObjCMac::GetGetStructFunction() {
3675   return ObjCTypes.getCopyStructFn();
3676 }
3677 
3678 llvm::Constant *CGObjCMac::GetSetStructFunction() {
3679   return ObjCTypes.getCopyStructFn();
3680 }
3681 
3682 llvm::Constant *CGObjCMac::GetCppAtomicObjectGetFunction() {
3683   return ObjCTypes.getCppAtomicObjectFunction();
3684 }
3685 
3686 llvm::Constant *CGObjCMac::GetCppAtomicObjectSetFunction() {
3687   return ObjCTypes.getCppAtomicObjectFunction();
3688 }
3689 
3690 llvm::Constant *CGObjCMac::EnumerationMutationFunction() {
3691   return ObjCTypes.getEnumerationMutationFn();
3692 }
3693 
3694 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) {
3695   return EmitTryOrSynchronizedStmt(CGF, S);
3696 }
3697 
3698 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF,
3699                                      const ObjCAtSynchronizedStmt &S) {
3700   return EmitTryOrSynchronizedStmt(CGF, S);
3701 }
3702 
3703 namespace {
3704   struct PerformFragileFinally final : EHScopeStack::Cleanup {
3705     const Stmt &S;
3706     Address SyncArgSlot;
3707     Address CallTryExitVar;
3708     Address ExceptionData;
3709     ObjCTypesHelper &ObjCTypes;
3710     PerformFragileFinally(const Stmt *S,
3711                           Address SyncArgSlot,
3712                           Address CallTryExitVar,
3713                           Address ExceptionData,
3714                           ObjCTypesHelper *ObjCTypes)
3715       : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar),
3716         ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {}
3717 
3718     void Emit(CodeGenFunction &CGF, Flags flags) override {
3719       // Check whether we need to call objc_exception_try_exit.
3720       // In optimized code, this branch will always be folded.
3721       llvm::BasicBlock *FinallyCallExit =
3722         CGF.createBasicBlock("finally.call_exit");
3723       llvm::BasicBlock *FinallyNoCallExit =
3724         CGF.createBasicBlock("finally.no_call_exit");
3725       CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar),
3726                                FinallyCallExit, FinallyNoCallExit);
3727 
3728       CGF.EmitBlock(FinallyCallExit);
3729       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(),
3730                                   ExceptionData.getPointer());
3731 
3732       CGF.EmitBlock(FinallyNoCallExit);
3733 
3734       if (isa<ObjCAtTryStmt>(S)) {
3735         if (const ObjCAtFinallyStmt* FinallyStmt =
3736               cast<ObjCAtTryStmt>(S).getFinallyStmt()) {
3737           // Don't try to do the @finally if this is an EH cleanup.
3738           if (flags.isForEHCleanup()) return;
3739 
3740           // Save the current cleanup destination in case there's
3741           // control flow inside the finally statement.
3742           llvm::Value *CurCleanupDest =
3743             CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot());
3744 
3745           CGF.EmitStmt(FinallyStmt->getFinallyBody());
3746 
3747           if (CGF.HaveInsertPoint()) {
3748             CGF.Builder.CreateStore(CurCleanupDest,
3749                                     CGF.getNormalCleanupDestSlot());
3750           } else {
3751             // Currently, the end of the cleanup must always exist.
3752             CGF.EnsureInsertPoint();
3753           }
3754         }
3755       } else {
3756         // Emit objc_sync_exit(expr); as finally's sole statement for
3757         // @synchronized.
3758         llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot);
3759         CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg);
3760       }
3761     }
3762   };
3763 
3764   class FragileHazards {
3765     CodeGenFunction &CGF;
3766     SmallVector<llvm::Value*, 20> Locals;
3767     llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry;
3768 
3769     llvm::InlineAsm *ReadHazard;
3770     llvm::InlineAsm *WriteHazard;
3771 
3772     llvm::FunctionType *GetAsmFnType();
3773 
3774     void collectLocals();
3775     void emitReadHazard(CGBuilderTy &Builder);
3776 
3777   public:
3778     FragileHazards(CodeGenFunction &CGF);
3779 
3780     void emitWriteHazard();
3781     void emitHazardsInNewBlocks();
3782   };
3783 } // end anonymous namespace
3784 
3785 /// Create the fragile-ABI read and write hazards based on the current
3786 /// state of the function, which is presumed to be immediately prior
3787 /// to a @try block.  These hazards are used to maintain correct
3788 /// semantics in the face of optimization and the fragile ABI's
3789 /// cavalier use of setjmp/longjmp.
3790 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) {
3791   collectLocals();
3792 
3793   if (Locals.empty()) return;
3794 
3795   // Collect all the blocks in the function.
3796   for (llvm::Function::iterator
3797          I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I)
3798     BlocksBeforeTry.insert(&*I);
3799 
3800   llvm::FunctionType *AsmFnTy = GetAsmFnType();
3801 
3802   // Create a read hazard for the allocas.  This inhibits dead-store
3803   // optimizations and forces the values to memory.  This hazard is
3804   // inserted before any 'throwing' calls in the protected scope to
3805   // reflect the possibility that the variables might be read from the
3806   // catch block if the call throws.
3807   {
3808     std::string Constraint;
3809     for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
3810       if (I) Constraint += ',';
3811       Constraint += "*m";
3812     }
3813 
3814     ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false);
3815   }
3816 
3817   // Create a write hazard for the allocas.  This inhibits folding
3818   // loads across the hazard.  This hazard is inserted at the
3819   // beginning of the catch path to reflect the possibility that the
3820   // variables might have been written within the protected scope.
3821   {
3822     std::string Constraint;
3823     for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
3824       if (I) Constraint += ',';
3825       Constraint += "=*m";
3826     }
3827 
3828     WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false);
3829   }
3830 }
3831 
3832 /// Emit a write hazard at the current location.
3833 void FragileHazards::emitWriteHazard() {
3834   if (Locals.empty()) return;
3835 
3836   CGF.EmitNounwindRuntimeCall(WriteHazard, Locals);
3837 }
3838 
3839 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) {
3840   assert(!Locals.empty());
3841   llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals);
3842   call->setDoesNotThrow();
3843   call->setCallingConv(CGF.getRuntimeCC());
3844 }
3845 
3846 /// Emit read hazards in all the protected blocks, i.e. all the blocks
3847 /// which have been inserted since the beginning of the try.
3848 void FragileHazards::emitHazardsInNewBlocks() {
3849   if (Locals.empty()) return;
3850 
3851   CGBuilderTy Builder(CGF, CGF.getLLVMContext());
3852 
3853   // Iterate through all blocks, skipping those prior to the try.
3854   for (llvm::Function::iterator
3855          FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) {
3856     llvm::BasicBlock &BB = *FI;
3857     if (BlocksBeforeTry.count(&BB)) continue;
3858 
3859     // Walk through all the calls in the block.
3860     for (llvm::BasicBlock::iterator
3861            BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) {
3862       llvm::Instruction &I = *BI;
3863 
3864       // Ignore instructions that aren't non-intrinsic calls.
3865       // These are the only calls that can possibly call longjmp.
3866       if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) continue;
3867       if (isa<llvm::IntrinsicInst>(I))
3868         continue;
3869 
3870       // Ignore call sites marked nounwind.  This may be questionable,
3871       // since 'nounwind' doesn't necessarily mean 'does not call longjmp'.
3872       llvm::CallSite CS(&I);
3873       if (CS.doesNotThrow()) continue;
3874 
3875       // Insert a read hazard before the call.  This will ensure that
3876       // any writes to the locals are performed before making the
3877       // call.  If the call throws, then this is sufficient to
3878       // guarantee correctness as long as it doesn't also write to any
3879       // locals.
3880       Builder.SetInsertPoint(&BB, BI);
3881       emitReadHazard(Builder);
3882     }
3883   }
3884 }
3885 
3886 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, llvm::Value *V) {
3887   if (V) S.insert(V);
3888 }
3889 
3890 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) {
3891   if (V.isValid()) S.insert(V.getPointer());
3892 }
3893 
3894 void FragileHazards::collectLocals() {
3895   // Compute a set of allocas to ignore.
3896   llvm::DenseSet<llvm::Value*> AllocasToIgnore;
3897   addIfPresent(AllocasToIgnore, CGF.ReturnValue);
3898   addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest);
3899 
3900   // Collect all the allocas currently in the function.  This is
3901   // probably way too aggressive.
3902   llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock();
3903   for (llvm::BasicBlock::iterator
3904          I = Entry.begin(), E = Entry.end(); I != E; ++I)
3905     if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I))
3906       Locals.push_back(&*I);
3907 }
3908 
3909 llvm::FunctionType *FragileHazards::GetAsmFnType() {
3910   SmallVector<llvm::Type *, 16> tys(Locals.size());
3911   for (unsigned i = 0, e = Locals.size(); i != e; ++i)
3912     tys[i] = Locals[i]->getType();
3913   return llvm::FunctionType::get(CGF.VoidTy, tys, false);
3914 }
3915 
3916 /*
3917 
3918   Objective-C setjmp-longjmp (sjlj) Exception Handling
3919   --
3920 
3921   A catch buffer is a setjmp buffer plus:
3922     - a pointer to the exception that was caught
3923     - a pointer to the previous exception data buffer
3924     - two pointers of reserved storage
3925   Therefore catch buffers form a stack, with a pointer to the top
3926   of the stack kept in thread-local storage.
3927 
3928   objc_exception_try_enter pushes a catch buffer onto the EH stack.
3929   objc_exception_try_exit pops the given catch buffer, which is
3930     required to be the top of the EH stack.
3931   objc_exception_throw pops the top of the EH stack, writes the
3932     thrown exception into the appropriate field, and longjmps
3933     to the setjmp buffer.  It crashes the process (with a printf
3934     and an abort()) if there are no catch buffers on the stack.
3935   objc_exception_extract just reads the exception pointer out of the
3936     catch buffer.
3937 
3938   There's no reason an implementation couldn't use a light-weight
3939   setjmp here --- something like __builtin_setjmp, but API-compatible
3940   with the heavyweight setjmp.  This will be more important if we ever
3941   want to implement correct ObjC/C++ exception interactions for the
3942   fragile ABI.
3943 
3944   Note that for this use of setjmp/longjmp to be correct, we may need
3945   to mark some local variables volatile: if a non-volatile local
3946   variable is modified between the setjmp and the longjmp, it has
3947   indeterminate value.  For the purposes of LLVM IR, it may be
3948   sufficient to make loads and stores within the @try (to variables
3949   declared outside the @try) volatile.  This is necessary for
3950   optimized correctness, but is not currently being done; this is
3951   being tracked as rdar://problem/8160285
3952 
3953   The basic framework for a @try-catch-finally is as follows:
3954   {
3955   objc_exception_data d;
3956   id _rethrow = null;
3957   bool _call_try_exit = true;
3958 
3959   objc_exception_try_enter(&d);
3960   if (!setjmp(d.jmp_buf)) {
3961   ... try body ...
3962   } else {
3963   // exception path
3964   id _caught = objc_exception_extract(&d);
3965 
3966   // enter new try scope for handlers
3967   if (!setjmp(d.jmp_buf)) {
3968   ... match exception and execute catch blocks ...
3969 
3970   // fell off end, rethrow.
3971   _rethrow = _caught;
3972   ... jump-through-finally to finally_rethrow ...
3973   } else {
3974   // exception in catch block
3975   _rethrow = objc_exception_extract(&d);
3976   _call_try_exit = false;
3977   ... jump-through-finally to finally_rethrow ...
3978   }
3979   }
3980   ... jump-through-finally to finally_end ...
3981 
3982   finally:
3983   if (_call_try_exit)
3984   objc_exception_try_exit(&d);
3985 
3986   ... finally block ....
3987   ... dispatch to finally destination ...
3988 
3989   finally_rethrow:
3990   objc_exception_throw(_rethrow);
3991 
3992   finally_end:
3993   }
3994 
3995   This framework differs slightly from the one gcc uses, in that gcc
3996   uses _rethrow to determine if objc_exception_try_exit should be called
3997   and if the object should be rethrown. This breaks in the face of
3998   throwing nil and introduces unnecessary branches.
3999 
4000   We specialize this framework for a few particular circumstances:
4001 
4002   - If there are no catch blocks, then we avoid emitting the second
4003   exception handling context.
4004 
4005   - If there is a catch-all catch block (i.e. @catch(...) or @catch(id
4006   e)) we avoid emitting the code to rethrow an uncaught exception.
4007 
4008   - FIXME: If there is no @finally block we can do a few more
4009   simplifications.
4010 
4011   Rethrows and Jumps-Through-Finally
4012   --
4013 
4014   '@throw;' is supported by pushing the currently-caught exception
4015   onto ObjCEHStack while the @catch blocks are emitted.
4016 
4017   Branches through the @finally block are handled with an ordinary
4018   normal cleanup.  We do not register an EH cleanup; fragile-ABI ObjC
4019   exceptions are not compatible with C++ exceptions, and this is
4020   hardly the only place where this will go wrong.
4021 
4022   @synchronized(expr) { stmt; } is emitted as if it were:
4023     id synch_value = expr;
4024     objc_sync_enter(synch_value);
4025     @try { stmt; } @finally { objc_sync_exit(synch_value); }
4026 */
4027 
4028 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
4029                                           const Stmt &S) {
4030   bool isTry = isa<ObjCAtTryStmt>(S);
4031 
4032   // A destination for the fall-through edges of the catch handlers to
4033   // jump to.
4034   CodeGenFunction::JumpDest FinallyEnd =
4035     CGF.getJumpDestInCurrentScope("finally.end");
4036 
4037   // A destination for the rethrow edge of the catch handlers to jump
4038   // to.
4039   CodeGenFunction::JumpDest FinallyRethrow =
4040     CGF.getJumpDestInCurrentScope("finally.rethrow");
4041 
4042   // For @synchronized, call objc_sync_enter(sync.expr). The
4043   // evaluation of the expression must occur before we enter the
4044   // @synchronized.  We can't avoid a temp here because we need the
4045   // value to be preserved.  If the backend ever does liveness
4046   // correctly after setjmp, this will be unnecessary.
4047   Address SyncArgSlot = Address::invalid();
4048   if (!isTry) {
4049     llvm::Value *SyncArg =
4050       CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr());
4051     SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy);
4052     CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg);
4053 
4054     SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(),
4055                                        CGF.getPointerAlign(), "sync.arg");
4056     CGF.Builder.CreateStore(SyncArg, SyncArgSlot);
4057   }
4058 
4059   // Allocate memory for the setjmp buffer.  This needs to be kept
4060   // live throughout the try and catch blocks.
4061   Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy,
4062                                                CGF.getPointerAlign(),
4063                                                "exceptiondata.ptr");
4064 
4065   // Create the fragile hazards.  Note that this will not capture any
4066   // of the allocas required for exception processing, but will
4067   // capture the current basic block (which extends all the way to the
4068   // setjmp call) as "before the @try".
4069   FragileHazards Hazards(CGF);
4070 
4071   // Create a flag indicating whether the cleanup needs to call
4072   // objc_exception_try_exit.  This is true except when
4073   //   - no catches match and we're branching through the cleanup
4074   //     just to rethrow the exception, or
4075   //   - a catch matched and we're falling out of the catch handler.
4076   // The setjmp-safety rule here is that we should always store to this
4077   // variable in a place that dominates the branch through the cleanup
4078   // without passing through any setjmps.
4079   Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(),
4080                                                 CharUnits::One(),
4081                                                 "_call_try_exit");
4082 
4083   // A slot containing the exception to rethrow.  Only needed when we
4084   // have both a @catch and a @finally.
4085   Address PropagatingExnVar = Address::invalid();
4086 
4087   // Push a normal cleanup to leave the try scope.
4088   CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S,
4089                                                  SyncArgSlot,
4090                                                  CallTryExitVar,
4091                                                  ExceptionData,
4092                                                  &ObjCTypes);
4093 
4094   // Enter a try block:
4095   //  - Call objc_exception_try_enter to push ExceptionData on top of
4096   //    the EH stack.
4097   CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
4098                               ExceptionData.getPointer());
4099 
4100   //  - Call setjmp on the exception data buffer.
4101   llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0);
4102   llvm::Value *GEPIndexes[] = { Zero, Zero, Zero };
4103   llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP(
4104       ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes,
4105       "setjmp_buffer");
4106   llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall(
4107       ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result");
4108   SetJmpResult->setCanReturnTwice();
4109 
4110   // If setjmp returned 0, enter the protected block; otherwise,
4111   // branch to the handler.
4112   llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try");
4113   llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler");
4114   llvm::Value *DidCatch =
4115     CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception");
4116   CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock);
4117 
4118   // Emit the protected block.
4119   CGF.EmitBlock(TryBlock);
4120   CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar);
4121   CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody()
4122                      : cast<ObjCAtSynchronizedStmt>(S).getSynchBody());
4123 
4124   CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP();
4125 
4126   // Emit the exception handler block.
4127   CGF.EmitBlock(TryHandler);
4128 
4129   // Don't optimize loads of the in-scope locals across this point.
4130   Hazards.emitWriteHazard();
4131 
4132   // For a @synchronized (or a @try with no catches), just branch
4133   // through the cleanup to the rethrow block.
4134   if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) {
4135     // Tell the cleanup not to re-pop the exit.
4136     CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar);
4137     CGF.EmitBranchThroughCleanup(FinallyRethrow);
4138 
4139   // Otherwise, we have to match against the caught exceptions.
4140   } else {
4141     // Retrieve the exception object.  We may emit multiple blocks but
4142     // nothing can cross this so the value is already in SSA form.
4143     llvm::CallInst *Caught =
4144       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4145                                   ExceptionData.getPointer(), "caught");
4146 
4147     // Push the exception to rethrow onto the EH value stack for the
4148     // benefit of any @throws in the handlers.
4149     CGF.ObjCEHValueStack.push_back(Caught);
4150 
4151     const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S);
4152 
4153     bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr);
4154 
4155     llvm::BasicBlock *CatchBlock = nullptr;
4156     llvm::BasicBlock *CatchHandler = nullptr;
4157     if (HasFinally) {
4158       // Save the currently-propagating exception before
4159       // objc_exception_try_enter clears the exception slot.
4160       PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(),
4161                                                CGF.getPointerAlign(),
4162                                                "propagating_exception");
4163       CGF.Builder.CreateStore(Caught, PropagatingExnVar);
4164 
4165       // Enter a new exception try block (in case a @catch block
4166       // throws an exception).
4167       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
4168                                   ExceptionData.getPointer());
4169 
4170       llvm::CallInst *SetJmpResult =
4171         CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(),
4172                                     SetJmpBuffer, "setjmp.result");
4173       SetJmpResult->setCanReturnTwice();
4174 
4175       llvm::Value *Threw =
4176         CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception");
4177 
4178       CatchBlock = CGF.createBasicBlock("catch");
4179       CatchHandler = CGF.createBasicBlock("catch_for_catch");
4180       CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock);
4181 
4182       CGF.EmitBlock(CatchBlock);
4183     }
4184 
4185     CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar);
4186 
4187     // Handle catch list. As a special case we check if everything is
4188     // matched and avoid generating code for falling off the end if
4189     // so.
4190     bool AllMatched = false;
4191     for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) {
4192       const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I);
4193 
4194       const VarDecl *CatchParam = CatchStmt->getCatchParamDecl();
4195       const ObjCObjectPointerType *OPT = nullptr;
4196 
4197       // catch(...) always matches.
4198       if (!CatchParam) {
4199         AllMatched = true;
4200       } else {
4201         OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>();
4202 
4203         // catch(id e) always matches under this ABI, since only
4204         // ObjC exceptions end up here in the first place.
4205         // FIXME: For the time being we also match id<X>; this should
4206         // be rejected by Sema instead.
4207         if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType()))
4208           AllMatched = true;
4209       }
4210 
4211       // If this is a catch-all, we don't need to test anything.
4212       if (AllMatched) {
4213         CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
4214 
4215         if (CatchParam) {
4216           CGF.EmitAutoVarDecl(*CatchParam);
4217           assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
4218 
4219           // These types work out because ConvertType(id) == i8*.
4220           EmitInitOfCatchParam(CGF, Caught, CatchParam);
4221         }
4222 
4223         CGF.EmitStmt(CatchStmt->getCatchBody());
4224 
4225         // The scope of the catch variable ends right here.
4226         CatchVarCleanups.ForceCleanup();
4227 
4228         CGF.EmitBranchThroughCleanup(FinallyEnd);
4229         break;
4230       }
4231 
4232       assert(OPT && "Unexpected non-object pointer type in @catch");
4233       const ObjCObjectType *ObjTy = OPT->getObjectType();
4234 
4235       // FIXME: @catch (Class c) ?
4236       ObjCInterfaceDecl *IDecl = ObjTy->getInterface();
4237       assert(IDecl && "Catch parameter must have Objective-C type!");
4238 
4239       // Check if the @catch block matches the exception object.
4240       llvm::Value *Class = EmitClassRef(CGF, IDecl);
4241 
4242       llvm::Value *matchArgs[] = { Class, Caught };
4243       llvm::CallInst *Match =
4244         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(),
4245                                     matchArgs, "match");
4246 
4247       llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match");
4248       llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next");
4249 
4250       CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"),
4251                                MatchedBlock, NextCatchBlock);
4252 
4253       // Emit the @catch block.
4254       CGF.EmitBlock(MatchedBlock);
4255 
4256       // Collect any cleanups for the catch variable.  The scope lasts until
4257       // the end of the catch body.
4258       CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
4259 
4260       CGF.EmitAutoVarDecl(*CatchParam);
4261       assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
4262 
4263       // Initialize the catch variable.
4264       llvm::Value *Tmp =
4265         CGF.Builder.CreateBitCast(Caught,
4266                                   CGF.ConvertType(CatchParam->getType()));
4267       EmitInitOfCatchParam(CGF, Tmp, CatchParam);
4268 
4269       CGF.EmitStmt(CatchStmt->getCatchBody());
4270 
4271       // We're done with the catch variable.
4272       CatchVarCleanups.ForceCleanup();
4273 
4274       CGF.EmitBranchThroughCleanup(FinallyEnd);
4275 
4276       CGF.EmitBlock(NextCatchBlock);
4277     }
4278 
4279     CGF.ObjCEHValueStack.pop_back();
4280 
4281     // If nothing wanted anything to do with the caught exception,
4282     // kill the extract call.
4283     if (Caught->use_empty())
4284       Caught->eraseFromParent();
4285 
4286     if (!AllMatched)
4287       CGF.EmitBranchThroughCleanup(FinallyRethrow);
4288 
4289     if (HasFinally) {
4290       // Emit the exception handler for the @catch blocks.
4291       CGF.EmitBlock(CatchHandler);
4292 
4293       // In theory we might now need a write hazard, but actually it's
4294       // unnecessary because there's no local-accessing code between
4295       // the try's write hazard and here.
4296       //Hazards.emitWriteHazard();
4297 
4298       // Extract the new exception and save it to the
4299       // propagating-exception slot.
4300       assert(PropagatingExnVar.isValid());
4301       llvm::CallInst *NewCaught =
4302         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4303                                     ExceptionData.getPointer(), "caught");
4304       CGF.Builder.CreateStore(NewCaught, PropagatingExnVar);
4305 
4306       // Don't pop the catch handler; the throw already did.
4307       CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar);
4308       CGF.EmitBranchThroughCleanup(FinallyRethrow);
4309     }
4310   }
4311 
4312   // Insert read hazards as required in the new blocks.
4313   Hazards.emitHazardsInNewBlocks();
4314 
4315   // Pop the cleanup.
4316   CGF.Builder.restoreIP(TryFallthroughIP);
4317   if (CGF.HaveInsertPoint())
4318     CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar);
4319   CGF.PopCleanupBlock();
4320   CGF.EmitBlock(FinallyEnd.getBlock(), true);
4321 
4322   // Emit the rethrow block.
4323   CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
4324   CGF.EmitBlock(FinallyRethrow.getBlock(), true);
4325   if (CGF.HaveInsertPoint()) {
4326     // If we have a propagating-exception variable, check it.
4327     llvm::Value *PropagatingExn;
4328     if (PropagatingExnVar.isValid()) {
4329       PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar);
4330 
4331     // Otherwise, just look in the buffer for the exception to throw.
4332     } else {
4333       llvm::CallInst *Caught =
4334         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4335                                     ExceptionData.getPointer());
4336       PropagatingExn = Caught;
4337     }
4338 
4339     CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(),
4340                                 PropagatingExn);
4341     CGF.Builder.CreateUnreachable();
4342   }
4343 
4344   CGF.Builder.restoreIP(SavedIP);
4345 }
4346 
4347 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
4348                               const ObjCAtThrowStmt &S,
4349                               bool ClearInsertionPoint) {
4350   llvm::Value *ExceptionAsObject;
4351 
4352   if (const Expr *ThrowExpr = S.getThrowExpr()) {
4353     llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
4354     ExceptionAsObject =
4355       CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
4356   } else {
4357     assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
4358            "Unexpected rethrow outside @catch block.");
4359     ExceptionAsObject = CGF.ObjCEHValueStack.back();
4360   }
4361 
4362   CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject)
4363     ->setDoesNotReturn();
4364   CGF.Builder.CreateUnreachable();
4365 
4366   // Clear the insertion point to indicate we are in unreachable code.
4367   if (ClearInsertionPoint)
4368     CGF.Builder.ClearInsertionPoint();
4369 }
4370 
4371 /// EmitObjCWeakRead - Code gen for loading value of a __weak
4372 /// object: objc_read_weak (id *src)
4373 ///
4374 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
4375                                           Address AddrWeakObj) {
4376   llvm::Type* DestTy = AddrWeakObj.getElementType();
4377   AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj,
4378                                           ObjCTypes.PtrObjectPtrTy);
4379   llvm::Value *read_weak =
4380     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
4381                                 AddrWeakObj.getPointer(), "weakread");
4382   read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
4383   return read_weak;
4384 }
4385 
4386 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
4387 /// objc_assign_weak (id src, id *dst)
4388 ///
4389 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
4390                                    llvm::Value *src, Address dst) {
4391   llvm::Type * SrcTy = src->getType();
4392   if (!isa<llvm::PointerType>(SrcTy)) {
4393     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4394     assert(Size <= 8 && "does not support size > 8");
4395     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
4396       : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
4397     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4398   }
4399   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4400   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4401   llvm::Value *args[] = { src, dst.getPointer() };
4402   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
4403                               args, "weakassign");
4404 }
4405 
4406 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
4407 /// objc_assign_global (id src, id *dst)
4408 ///
4409 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
4410                                      llvm::Value *src, Address dst,
4411                                      bool threadlocal) {
4412   llvm::Type * SrcTy = src->getType();
4413   if (!isa<llvm::PointerType>(SrcTy)) {
4414     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4415     assert(Size <= 8 && "does not support size > 8");
4416     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
4417       : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
4418     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4419   }
4420   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4421   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4422   llvm::Value *args[] = { src, dst.getPointer() };
4423   if (!threadlocal)
4424     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
4425                                 args, "globalassign");
4426   else
4427     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
4428                                 args, "threadlocalassign");
4429 }
4430 
4431 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
4432 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset)
4433 ///
4434 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
4435                                    llvm::Value *src, Address dst,
4436                                    llvm::Value *ivarOffset) {
4437   assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL");
4438   llvm::Type * SrcTy = src->getType();
4439   if (!isa<llvm::PointerType>(SrcTy)) {
4440     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4441     assert(Size <= 8 && "does not support size > 8");
4442     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
4443       : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
4444     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4445   }
4446   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4447   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4448   llvm::Value *args[] = { src, dst.getPointer(), ivarOffset };
4449   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
4450 }
4451 
4452 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
4453 /// objc_assign_strongCast (id src, id *dst)
4454 ///
4455 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
4456                                          llvm::Value *src, Address dst) {
4457   llvm::Type * SrcTy = src->getType();
4458   if (!isa<llvm::PointerType>(SrcTy)) {
4459     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4460     assert(Size <= 8 && "does not support size > 8");
4461     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
4462       : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
4463     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4464   }
4465   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4466   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4467   llvm::Value *args[] = { src, dst.getPointer() };
4468   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
4469                               args, "strongassign");
4470 }
4471 
4472 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
4473                                          Address DestPtr,
4474                                          Address SrcPtr,
4475                                          llvm::Value *size) {
4476   SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy);
4477   DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy);
4478   llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size };
4479   CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
4480 }
4481 
4482 /// EmitObjCValueForIvar - Code Gen for ivar reference.
4483 ///
4484 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF,
4485                                        QualType ObjectTy,
4486                                        llvm::Value *BaseValue,
4487                                        const ObjCIvarDecl *Ivar,
4488                                        unsigned CVRQualifiers) {
4489   const ObjCInterfaceDecl *ID =
4490     ObjectTy->getAs<ObjCObjectType>()->getInterface();
4491   return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
4492                                   EmitIvarOffset(CGF, ID, Ivar));
4493 }
4494 
4495 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
4496                                        const ObjCInterfaceDecl *Interface,
4497                                        const ObjCIvarDecl *Ivar) {
4498   uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar);
4499   return llvm::ConstantInt::get(
4500     CGM.getTypes().ConvertType(CGM.getContext().LongTy),
4501     Offset);
4502 }
4503 
4504 /* *** Private Interface *** */
4505 
4506 /// EmitImageInfo - Emit the image info marker used to encode some module
4507 /// level information.
4508 ///
4509 /// See: <rdr://4810609&4810587&4810587>
4510 /// struct IMAGE_INFO {
4511 ///   unsigned version;
4512 ///   unsigned flags;
4513 /// };
4514 enum ImageInfoFlags {
4515   eImageInfo_FixAndContinue      = (1 << 0), // This flag is no longer set by clang.
4516   eImageInfo_GarbageCollected    = (1 << 1),
4517   eImageInfo_GCOnly              = (1 << 2),
4518   eImageInfo_OptimizedByDyld     = (1 << 3), // This flag is set by the dyld shared cache.
4519 
4520   // A flag indicating that the module has no instances of a @synthesize of a
4521   // superclass variable. <rdar://problem/6803242>
4522   eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang.
4523   eImageInfo_ImageIsSimulated    = (1 << 5),
4524   eImageInfo_ClassProperties     = (1 << 6)
4525 };
4526 
4527 void CGObjCCommonMac::EmitImageInfo() {
4528   unsigned version = 0; // Version is unused?
4529   const char *Section = (ObjCABI == 1) ?
4530     "__OBJC, __image_info,regular" :
4531     "__DATA, __objc_imageinfo, regular, no_dead_strip";
4532 
4533   // Generate module-level named metadata to convey this information to the
4534   // linker and code-gen.
4535   llvm::Module &Mod = CGM.getModule();
4536 
4537   // Add the ObjC ABI version to the module flags.
4538   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI);
4539   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version",
4540                     version);
4541   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section",
4542                     llvm::MDString::get(VMContext,Section));
4543 
4544   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
4545     // Non-GC overrides those files which specify GC.
4546     Mod.addModuleFlag(llvm::Module::Override,
4547                       "Objective-C Garbage Collection", (uint32_t)0);
4548   } else {
4549     // Add the ObjC garbage collection value.
4550     Mod.addModuleFlag(llvm::Module::Error,
4551                       "Objective-C Garbage Collection",
4552                       eImageInfo_GarbageCollected);
4553 
4554     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
4555       // Add the ObjC GC Only value.
4556       Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only",
4557                         eImageInfo_GCOnly);
4558 
4559       // Require that GC be specified and set to eImageInfo_GarbageCollected.
4560       llvm::Metadata *Ops[2] = {
4561           llvm::MDString::get(VMContext, "Objective-C Garbage Collection"),
4562           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
4563               llvm::Type::getInt32Ty(VMContext), eImageInfo_GarbageCollected))};
4564       Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only",
4565                         llvm::MDNode::get(VMContext, Ops));
4566     }
4567   }
4568 
4569   // Indicate whether we're compiling this to run on a simulator.
4570   const llvm::Triple &Triple = CGM.getTarget().getTriple();
4571   if ((Triple.isiOS() || Triple.isWatchOS()) &&
4572       (Triple.getArch() == llvm::Triple::x86 ||
4573        Triple.getArch() == llvm::Triple::x86_64))
4574     Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated",
4575                       eImageInfo_ImageIsSimulated);
4576 
4577   // Indicate whether we are generating class properties.
4578   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties",
4579                     eImageInfo_ClassProperties);
4580 }
4581 
4582 // struct objc_module {
4583 //   unsigned long version;
4584 //   unsigned long size;
4585 //   const char *name;
4586 //   Symtab symtab;
4587 // };
4588 
4589 // FIXME: Get from somewhere
4590 static const int ModuleVersion = 7;
4591 
4592 void CGObjCMac::EmitModuleInfo() {
4593   uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy);
4594 
4595   llvm::Constant *Values[] = {
4596     llvm::ConstantInt::get(ObjCTypes.LongTy, ModuleVersion),
4597     llvm::ConstantInt::get(ObjCTypes.LongTy, Size),
4598     // This used to be the filename, now it is unused. <rdr://4327263>
4599     GetClassName(StringRef("")),
4600     EmitModuleSymbols()
4601   };
4602   CreateMetadataVar("OBJC_MODULES",
4603                     llvm::ConstantStruct::get(ObjCTypes.ModuleTy, Values),
4604                     "__OBJC,__module_info,regular,no_dead_strip",
4605                     CGM.getPointerAlign(), true);
4606 }
4607 
4608 llvm::Constant *CGObjCMac::EmitModuleSymbols() {
4609   unsigned NumClasses = DefinedClasses.size();
4610   unsigned NumCategories = DefinedCategories.size();
4611 
4612   // Return null if no symbols were defined.
4613   if (!NumClasses && !NumCategories)
4614     return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy);
4615 
4616   llvm::Constant *Values[5];
4617   Values[0] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0);
4618   Values[1] = llvm::Constant::getNullValue(ObjCTypes.SelectorPtrTy);
4619   Values[2] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumClasses);
4620   Values[3] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumCategories);
4621 
4622   // The runtime expects exactly the list of defined classes followed
4623   // by the list of defined categories, in a single array.
4624   SmallVector<llvm::Constant*, 8> Symbols(NumClasses + NumCategories);
4625   for (unsigned i=0; i<NumClasses; i++) {
4626     const ObjCInterfaceDecl *ID = ImplementedClasses[i];
4627     assert(ID);
4628     if (ObjCImplementationDecl *IMP = ID->getImplementation())
4629       // We are implementing a weak imported interface. Give it external linkage
4630       if (ID->isWeakImported() && !IMP->isWeakImported())
4631         DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
4632 
4633     Symbols[i] = llvm::ConstantExpr::getBitCast(DefinedClasses[i],
4634                                                 ObjCTypes.Int8PtrTy);
4635   }
4636   for (unsigned i=0; i<NumCategories; i++)
4637     Symbols[NumClasses + i] =
4638       llvm::ConstantExpr::getBitCast(DefinedCategories[i],
4639                                      ObjCTypes.Int8PtrTy);
4640 
4641   Values[4] =
4642     llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
4643                                                   Symbols.size()),
4644                              Symbols);
4645 
4646   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
4647 
4648   llvm::GlobalVariable *GV = CreateMetadataVar(
4649       "OBJC_SYMBOLS", Init, "__OBJC,__symbols,regular,no_dead_strip",
4650       CGM.getPointerAlign(), true);
4651   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy);
4652 }
4653 
4654 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF,
4655                                            IdentifierInfo *II) {
4656   LazySymbols.insert(II);
4657 
4658   llvm::GlobalVariable *&Entry = ClassReferences[II];
4659 
4660   if (!Entry) {
4661     llvm::Constant *Casted =
4662     llvm::ConstantExpr::getBitCast(GetClassName(II->getName()),
4663                                    ObjCTypes.ClassPtrTy);
4664     Entry = CreateMetadataVar(
4665         "OBJC_CLASS_REFERENCES_", Casted,
4666         "__OBJC,__cls_refs,literal_pointers,no_dead_strip",
4667         CGM.getPointerAlign(), true);
4668   }
4669 
4670   return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign());
4671 }
4672 
4673 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF,
4674                                      const ObjCInterfaceDecl *ID) {
4675   // If the class has the objc_runtime_visible attribute, we need to
4676   // use the Objective-C runtime to get the class.
4677   if (ID->hasAttr<ObjCRuntimeVisibleAttr>())
4678     return EmitClassRefViaRuntime(CGF, ID, ObjCTypes);
4679 
4680   return EmitClassRefFromId(CGF, ID->getIdentifier());
4681 }
4682 
4683 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
4684   IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool");
4685   return EmitClassRefFromId(CGF, II);
4686 }
4687 
4688 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) {
4689   return CGF.Builder.CreateLoad(EmitSelectorAddr(CGF, Sel));
4690 }
4691 
4692 Address CGObjCMac::EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel) {
4693   CharUnits Align = CGF.getPointerAlign();
4694 
4695   llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
4696   if (!Entry) {
4697     llvm::Constant *Casted =
4698       llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
4699                                      ObjCTypes.SelectorPtrTy);
4700     Entry = CreateMetadataVar(
4701         "OBJC_SELECTOR_REFERENCES_", Casted,
4702         "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true);
4703     Entry->setExternallyInitialized(true);
4704   }
4705 
4706   return Address(Entry, Align);
4707 }
4708 
4709 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) {
4710     llvm::GlobalVariable *&Entry = ClassNames[RuntimeName];
4711     if (!Entry)
4712       Entry = CreateMetadataVar(
4713           "OBJC_CLASS_NAME_",
4714           llvm::ConstantDataArray::getString(VMContext, RuntimeName),
4715           ((ObjCABI == 2) ? "__TEXT,__objc_classname,cstring_literals"
4716                           : "__TEXT,__cstring,cstring_literals"),
4717           CharUnits::One(), true);
4718     return getConstantGEP(VMContext, Entry, 0, 0);
4719 }
4720 
4721 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) {
4722   llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator
4723       I = MethodDefinitions.find(MD);
4724   if (I != MethodDefinitions.end())
4725     return I->second;
4726 
4727   return nullptr;
4728 }
4729 
4730 /// GetIvarLayoutName - Returns a unique constant for the given
4731 /// ivar layout bitmap.
4732 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident,
4733                                        const ObjCCommonTypesHelper &ObjCTypes) {
4734   return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
4735 }
4736 
4737 void IvarLayoutBuilder::visitRecord(const RecordType *RT,
4738                                     CharUnits offset) {
4739   const RecordDecl *RD = RT->getDecl();
4740 
4741   // If this is a union, remember that we had one, because it might mess
4742   // up the ordering of layout entries.
4743   if (RD->isUnion())
4744     IsDisordered = true;
4745 
4746   const ASTRecordLayout *recLayout = nullptr;
4747   visitAggregate(RD->field_begin(), RD->field_end(), offset,
4748                  [&](const FieldDecl *field) -> CharUnits {
4749     if (!recLayout)
4750       recLayout = &CGM.getContext().getASTRecordLayout(RD);
4751     auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex());
4752     return CGM.getContext().toCharUnitsFromBits(offsetInBits);
4753   });
4754 }
4755 
4756 template <class Iterator, class GetOffsetFn>
4757 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end,
4758                                        CharUnits aggregateOffset,
4759                                        const GetOffsetFn &getOffset) {
4760   for (; begin != end; ++begin) {
4761     auto field = *begin;
4762 
4763     // Skip over bitfields.
4764     if (field->isBitField()) {
4765       continue;
4766     }
4767 
4768     // Compute the offset of the field within the aggregate.
4769     CharUnits fieldOffset = aggregateOffset + getOffset(field);
4770 
4771     visitField(field, fieldOffset);
4772   }
4773 }
4774 
4775 /// Collect layout information for the given fields into IvarsInfo.
4776 void IvarLayoutBuilder::visitField(const FieldDecl *field,
4777                                    CharUnits fieldOffset) {
4778   QualType fieldType = field->getType();
4779 
4780   // Drill down into arrays.
4781   uint64_t numElts = 1;
4782   while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) {
4783     numElts *= arrayType->getSize().getZExtValue();
4784     fieldType = arrayType->getElementType();
4785   }
4786 
4787   assert(!fieldType->isArrayType() && "ivar of non-constant array type?");
4788 
4789   // If we ended up with a zero-sized array, we've done what we can do within
4790   // the limits of this layout encoding.
4791   if (numElts == 0) return;
4792 
4793   // Recurse if the base element type is a record type.
4794   if (auto recType = fieldType->getAs<RecordType>()) {
4795     size_t oldEnd = IvarsInfo.size();
4796 
4797     visitRecord(recType, fieldOffset);
4798 
4799     // If we have an array, replicate the first entry's layout information.
4800     auto numEltEntries = IvarsInfo.size() - oldEnd;
4801     if (numElts != 1 && numEltEntries != 0) {
4802       CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType);
4803       for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) {
4804         // Copy the last numEltEntries onto the end of the array, adjusting
4805         // each for the element size.
4806         for (size_t i = 0; i != numEltEntries; ++i) {
4807           auto firstEntry = IvarsInfo[oldEnd + i];
4808           IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize,
4809                                        firstEntry.SizeInWords));
4810         }
4811       }
4812     }
4813 
4814     return;
4815   }
4816 
4817   // Classify the element type.
4818   Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType);
4819 
4820   // If it matches what we're looking for, add an entry.
4821   if ((ForStrongLayout && GCAttr == Qualifiers::Strong)
4822       || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) {
4823     assert(CGM.getContext().getTypeSizeInChars(fieldType)
4824              == CGM.getPointerSize());
4825     IvarsInfo.push_back(IvarInfo(fieldOffset, numElts));
4826   }
4827 }
4828 
4829 /// buildBitmap - This routine does the horsework of taking the offsets of
4830 /// strong/weak references and creating a bitmap.  The bitmap is also
4831 /// returned in the given buffer, suitable for being passed to \c dump().
4832 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC,
4833                                 llvm::SmallVectorImpl<unsigned char> &buffer) {
4834   // The bitmap is a series of skip/scan instructions, aligned to word
4835   // boundaries.  The skip is performed first.
4836   const unsigned char MaxNibble = 0xF;
4837   const unsigned char SkipMask = 0xF0, SkipShift = 4;
4838   const unsigned char ScanMask = 0x0F, ScanShift = 0;
4839 
4840   assert(!IvarsInfo.empty() && "generating bitmap for no data");
4841 
4842   // Sort the ivar info on byte position in case we encounterred a
4843   // union nested in the ivar list.
4844   if (IsDisordered) {
4845     // This isn't a stable sort, but our algorithm should handle it fine.
4846     llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end());
4847   } else {
4848     assert(std::is_sorted(IvarsInfo.begin(), IvarsInfo.end()));
4849   }
4850   assert(IvarsInfo.back().Offset < InstanceEnd);
4851 
4852   assert(buffer.empty());
4853 
4854   // Skip the next N words.
4855   auto skip = [&](unsigned numWords) {
4856     assert(numWords > 0);
4857 
4858     // Try to merge into the previous byte.  Since scans happen second, we
4859     // can't do this if it includes a scan.
4860     if (!buffer.empty() && !(buffer.back() & ScanMask)) {
4861       unsigned lastSkip = buffer.back() >> SkipShift;
4862       if (lastSkip < MaxNibble) {
4863         unsigned claimed = std::min(MaxNibble - lastSkip, numWords);
4864         numWords -= claimed;
4865         lastSkip += claimed;
4866         buffer.back() = (lastSkip << SkipShift);
4867       }
4868     }
4869 
4870     while (numWords >= MaxNibble) {
4871       buffer.push_back(MaxNibble << SkipShift);
4872       numWords -= MaxNibble;
4873     }
4874     if (numWords) {
4875       buffer.push_back(numWords << SkipShift);
4876     }
4877   };
4878 
4879   // Scan the next N words.
4880   auto scan = [&](unsigned numWords) {
4881     assert(numWords > 0);
4882 
4883     // Try to merge into the previous byte.  Since scans happen second, we can
4884     // do this even if it includes a skip.
4885     if (!buffer.empty()) {
4886       unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift;
4887       if (lastScan < MaxNibble) {
4888         unsigned claimed = std::min(MaxNibble - lastScan, numWords);
4889         numWords -= claimed;
4890         lastScan += claimed;
4891         buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift);
4892       }
4893     }
4894 
4895     while (numWords >= MaxNibble) {
4896       buffer.push_back(MaxNibble << ScanShift);
4897       numWords -= MaxNibble;
4898     }
4899     if (numWords) {
4900       buffer.push_back(numWords << ScanShift);
4901     }
4902   };
4903 
4904   // One past the end of the last scan.
4905   unsigned endOfLastScanInWords = 0;
4906   const CharUnits WordSize = CGM.getPointerSize();
4907 
4908   // Consider all the scan requests.
4909   for (auto &request : IvarsInfo) {
4910     CharUnits beginOfScan = request.Offset - InstanceBegin;
4911 
4912     // Ignore scan requests that don't start at an even multiple of the
4913     // word size.  We can't encode them.
4914     if ((beginOfScan % WordSize) != 0) continue;
4915 
4916     // Ignore scan requests that start before the instance start.
4917     // This assumes that scans never span that boundary.  The boundary
4918     // isn't the true start of the ivars, because in the fragile-ARC case
4919     // it's rounded up to word alignment, but the test above should leave
4920     // us ignoring that possibility.
4921     if (beginOfScan.isNegative()) {
4922       assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin);
4923       continue;
4924     }
4925 
4926     unsigned beginOfScanInWords = beginOfScan / WordSize;
4927     unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords;
4928 
4929     // If the scan starts some number of words after the last one ended,
4930     // skip forward.
4931     if (beginOfScanInWords > endOfLastScanInWords) {
4932       skip(beginOfScanInWords - endOfLastScanInWords);
4933 
4934     // Otherwise, start scanning where the last left off.
4935     } else {
4936       beginOfScanInWords = endOfLastScanInWords;
4937 
4938       // If that leaves us with nothing to scan, ignore this request.
4939       if (beginOfScanInWords >= endOfScanInWords) continue;
4940     }
4941 
4942     // Scan to the end of the request.
4943     assert(beginOfScanInWords < endOfScanInWords);
4944     scan(endOfScanInWords - beginOfScanInWords);
4945     endOfLastScanInWords = endOfScanInWords;
4946   }
4947 
4948   if (buffer.empty())
4949     return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
4950 
4951   // For GC layouts, emit a skip to the end of the allocation so that we
4952   // have precise information about the entire thing.  This isn't useful
4953   // or necessary for the ARC-style layout strings.
4954   if (CGM.getLangOpts().getGC() != LangOptions::NonGC) {
4955     unsigned lastOffsetInWords =
4956       (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize;
4957     if (lastOffsetInWords > endOfLastScanInWords) {
4958       skip(lastOffsetInWords - endOfLastScanInWords);
4959     }
4960   }
4961 
4962   // Null terminate the string.
4963   buffer.push_back(0);
4964 
4965   bool isNonFragileABI = CGObjC.isNonFragileABI();
4966 
4967   llvm::GlobalVariable *Entry = CGObjC.CreateMetadataVar(
4968       "OBJC_CLASS_NAME_",
4969       llvm::ConstantDataArray::get(CGM.getLLVMContext(), buffer),
4970       (isNonFragileABI ? "__TEXT,__objc_classname,cstring_literals"
4971                        : "__TEXT,__cstring,cstring_literals"),
4972       CharUnits::One(), true);
4973   return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0);
4974 }
4975 
4976 /// BuildIvarLayout - Builds ivar layout bitmap for the class
4977 /// implementation for the __strong or __weak case.
4978 /// The layout map displays which words in ivar list must be skipped
4979 /// and which must be scanned by GC (see below). String is built of bytes.
4980 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count
4981 /// of words to skip and right nibble is count of words to scan. So, each
4982 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is
4983 /// represented by a 0x00 byte which also ends the string.
4984 /// 1. when ForStrongLayout is true, following ivars are scanned:
4985 /// - id, Class
4986 /// - object *
4987 /// - __strong anything
4988 ///
4989 /// 2. When ForStrongLayout is false, following ivars are scanned:
4990 /// - __weak anything
4991 ///
4992 llvm::Constant *
4993 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD,
4994                                  CharUnits beginOffset, CharUnits endOffset,
4995                                  bool ForStrongLayout, bool HasMRCWeakIvars) {
4996   // If this is MRC, and we're either building a strong layout or there
4997   // are no weak ivars, bail out early.
4998   llvm::Type *PtrTy = CGM.Int8PtrTy;
4999   if (CGM.getLangOpts().getGC() == LangOptions::NonGC &&
5000       !CGM.getLangOpts().ObjCAutoRefCount &&
5001       (ForStrongLayout || !HasMRCWeakIvars))
5002     return llvm::Constant::getNullValue(PtrTy);
5003 
5004   const ObjCInterfaceDecl *OI = OMD->getClassInterface();
5005   SmallVector<const ObjCIvarDecl*, 32> ivars;
5006 
5007   // GC layout strings include the complete object layout, possibly
5008   // inaccurately in the non-fragile ABI; the runtime knows how to fix this
5009   // up.
5010   //
5011   // ARC layout strings only include the class's ivars.  In non-fragile
5012   // runtimes, that means starting at InstanceStart, rounded up to word
5013   // alignment.  In fragile runtimes, there's no InstanceStart, so it means
5014   // starting at the offset of the first ivar, rounded up to word alignment.
5015   //
5016   // MRC weak layout strings follow the ARC style.
5017   CharUnits baseOffset;
5018   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
5019     for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin();
5020          IVD; IVD = IVD->getNextIvar())
5021       ivars.push_back(IVD);
5022 
5023     if (isNonFragileABI()) {
5024       baseOffset = beginOffset; // InstanceStart
5025     } else if (!ivars.empty()) {
5026       baseOffset =
5027         CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0]));
5028     } else {
5029       baseOffset = CharUnits::Zero();
5030     }
5031 
5032     baseOffset = baseOffset.alignTo(CGM.getPointerAlign());
5033   }
5034   else {
5035     CGM.getContext().DeepCollectObjCIvars(OI, true, ivars);
5036 
5037     baseOffset = CharUnits::Zero();
5038   }
5039 
5040   if (ivars.empty())
5041     return llvm::Constant::getNullValue(PtrTy);
5042 
5043   IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout);
5044 
5045   builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(),
5046                          [&](const ObjCIvarDecl *ivar) -> CharUnits {
5047       return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar));
5048   });
5049 
5050   if (!builder.hasBitmapData())
5051     return llvm::Constant::getNullValue(PtrTy);
5052 
5053   llvm::SmallVector<unsigned char, 4> buffer;
5054   llvm::Constant *C = builder.buildBitmap(*this, buffer);
5055 
5056    if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) {
5057     printf("\n%s ivar layout for class '%s': ",
5058            ForStrongLayout ? "strong" : "weak",
5059            OMD->getClassInterface()->getName().str().c_str());
5060     builder.dump(buffer);
5061   }
5062   return C;
5063 }
5064 
5065 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) {
5066   llvm::GlobalVariable *&Entry = MethodVarNames[Sel];
5067 
5068   // FIXME: Avoid std::string in "Sel.getAsString()"
5069   if (!Entry)
5070     Entry = CreateMetadataVar(
5071         "OBJC_METH_VAR_NAME_",
5072         llvm::ConstantDataArray::getString(VMContext, Sel.getAsString()),
5073         ((ObjCABI == 2) ? "__TEXT,__objc_methname,cstring_literals"
5074                         : "__TEXT,__cstring,cstring_literals"),
5075         CharUnits::One(), true);
5076 
5077   return getConstantGEP(VMContext, Entry, 0, 0);
5078 }
5079 
5080 // FIXME: Merge into a single cstring creation function.
5081 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) {
5082   return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID));
5083 }
5084 
5085 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) {
5086   std::string TypeStr;
5087   CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field);
5088 
5089   llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
5090 
5091   if (!Entry)
5092     Entry = CreateMetadataVar(
5093         "OBJC_METH_VAR_TYPE_",
5094         llvm::ConstantDataArray::getString(VMContext, TypeStr),
5095         ((ObjCABI == 2) ? "__TEXT,__objc_methtype,cstring_literals"
5096                         : "__TEXT,__cstring,cstring_literals"),
5097         CharUnits::One(), true);
5098 
5099   return getConstantGEP(VMContext, Entry, 0, 0);
5100 }
5101 
5102 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D,
5103                                                   bool Extended) {
5104   std::string TypeStr;
5105   if (CGM.getContext().getObjCEncodingForMethodDecl(D, TypeStr, Extended))
5106     return nullptr;
5107 
5108   llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
5109 
5110   if (!Entry)
5111     Entry = CreateMetadataVar(
5112         "OBJC_METH_VAR_TYPE_",
5113         llvm::ConstantDataArray::getString(VMContext, TypeStr),
5114         ((ObjCABI == 2) ? "__TEXT,__objc_methtype,cstring_literals"
5115                         : "__TEXT,__cstring,cstring_literals"),
5116         CharUnits::One(), true);
5117 
5118   return getConstantGEP(VMContext, Entry, 0, 0);
5119 }
5120 
5121 // FIXME: Merge into a single cstring creation function.
5122 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) {
5123   llvm::GlobalVariable *&Entry = PropertyNames[Ident];
5124 
5125   if (!Entry)
5126     Entry = CreateMetadataVar(
5127         "OBJC_PROP_NAME_ATTR_",
5128         llvm::ConstantDataArray::getString(VMContext, Ident->getName()),
5129         "__TEXT,__cstring,cstring_literals", CharUnits::One(), true);
5130 
5131   return getConstantGEP(VMContext, Entry, 0, 0);
5132 }
5133 
5134 // FIXME: Merge into a single cstring creation function.
5135 // FIXME: This Decl should be more precise.
5136 llvm::Constant *
5137 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD,
5138                                        const Decl *Container) {
5139   std::string TypeStr;
5140   CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr);
5141   return GetPropertyName(&CGM.getContext().Idents.get(TypeStr));
5142 }
5143 
5144 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D,
5145                                        const ObjCContainerDecl *CD,
5146                                        SmallVectorImpl<char> &Name) {
5147   llvm::raw_svector_ostream OS(Name);
5148   assert (CD && "Missing container decl in GetNameForMethod");
5149   OS << '\01' << (D->isInstanceMethod() ? '-' : '+')
5150      << '[' << CD->getName();
5151   if (const ObjCCategoryImplDecl *CID =
5152       dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext()))
5153     OS << '(' << *CID << ')';
5154   OS << ' ' << D->getSelector().getAsString() << ']';
5155 }
5156 
5157 void CGObjCMac::FinishModule() {
5158   EmitModuleInfo();
5159 
5160   // Emit the dummy bodies for any protocols which were referenced but
5161   // never defined.
5162   for (llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*>::iterator
5163          I = Protocols.begin(), e = Protocols.end(); I != e; ++I) {
5164     if (I->second->hasInitializer())
5165       continue;
5166 
5167     llvm::Constant *Values[5];
5168     Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy);
5169     Values[1] = GetClassName(I->first->getName());
5170     Values[2] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
5171     Values[3] = Values[4] =
5172       llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy);
5173     I->second->setInitializer(llvm::ConstantStruct::get(ObjCTypes.ProtocolTy,
5174                                                         Values));
5175     CGM.addCompilerUsedGlobal(I->second);
5176   }
5177 
5178   // Add assembler directives to add lazy undefined symbol references
5179   // for classes which are referenced but not defined. This is
5180   // important for correct linker interaction.
5181   //
5182   // FIXME: It would be nice if we had an LLVM construct for this.
5183   if (!LazySymbols.empty() || !DefinedSymbols.empty()) {
5184     SmallString<256> Asm;
5185     Asm += CGM.getModule().getModuleInlineAsm();
5186     if (!Asm.empty() && Asm.back() != '\n')
5187       Asm += '\n';
5188 
5189     llvm::raw_svector_ostream OS(Asm);
5190     for (llvm::SetVector<IdentifierInfo*>::iterator I = DefinedSymbols.begin(),
5191            e = DefinedSymbols.end(); I != e; ++I)
5192       OS << "\t.objc_class_name_" << (*I)->getName() << "=0\n"
5193          << "\t.globl .objc_class_name_" << (*I)->getName() << "\n";
5194     for (llvm::SetVector<IdentifierInfo*>::iterator I = LazySymbols.begin(),
5195          e = LazySymbols.end(); I != e; ++I) {
5196       OS << "\t.lazy_reference .objc_class_name_" << (*I)->getName() << "\n";
5197     }
5198 
5199     for (size_t i = 0, e = DefinedCategoryNames.size(); i < e; ++i) {
5200       OS << "\t.objc_category_name_" << DefinedCategoryNames[i] << "=0\n"
5201          << "\t.globl .objc_category_name_" << DefinedCategoryNames[i] << "\n";
5202     }
5203 
5204     CGM.getModule().setModuleInlineAsm(OS.str());
5205   }
5206 }
5207 
5208 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm)
5209   : CGObjCCommonMac(cgm),
5210     ObjCTypes(cgm) {
5211   ObjCEmptyCacheVar = ObjCEmptyVtableVar = nullptr;
5212   ObjCABI = 2;
5213 }
5214 
5215 /* *** */
5216 
5217 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm)
5218   : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr)
5219 {
5220   CodeGen::CodeGenTypes &Types = CGM.getTypes();
5221   ASTContext &Ctx = CGM.getContext();
5222 
5223   ShortTy = Types.ConvertType(Ctx.ShortTy);
5224   IntTy = Types.ConvertType(Ctx.IntTy);
5225   LongTy = Types.ConvertType(Ctx.LongTy);
5226   LongLongTy = Types.ConvertType(Ctx.LongLongTy);
5227   Int8PtrTy = CGM.Int8PtrTy;
5228   Int8PtrPtrTy = CGM.Int8PtrPtrTy;
5229 
5230   // arm64 targets use "int" ivar offset variables. All others,
5231   // including OS X x86_64 and Windows x86_64, use "long" ivar offsets.
5232   if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64)
5233     IvarOffsetVarTy = IntTy;
5234   else
5235     IvarOffsetVarTy = LongTy;
5236 
5237   ObjectPtrTy = Types.ConvertType(Ctx.getObjCIdType());
5238   PtrObjectPtrTy = llvm::PointerType::getUnqual(ObjectPtrTy);
5239   SelectorPtrTy = Types.ConvertType(Ctx.getObjCSelType());
5240 
5241   // I'm not sure I like this. The implicit coordination is a bit
5242   // gross. We should solve this in a reasonable fashion because this
5243   // is a pretty common task (match some runtime data structure with
5244   // an LLVM data structure).
5245 
5246   // FIXME: This is leaked.
5247   // FIXME: Merge with rewriter code?
5248 
5249   // struct _objc_super {
5250   //   id self;
5251   //   Class cls;
5252   // }
5253   RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct,
5254                                       Ctx.getTranslationUnitDecl(),
5255                                       SourceLocation(), SourceLocation(),
5256                                       &Ctx.Idents.get("_objc_super"));
5257   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5258                                 nullptr, Ctx.getObjCIdType(), nullptr, nullptr,
5259                                 false, ICIS_NoInit));
5260   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5261                                 nullptr, Ctx.getObjCClassType(), nullptr,
5262                                 nullptr, false, ICIS_NoInit));
5263   RD->completeDefinition();
5264 
5265   SuperCTy = Ctx.getTagDeclType(RD);
5266   SuperPtrCTy = Ctx.getPointerType(SuperCTy);
5267 
5268   SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy));
5269   SuperPtrTy = llvm::PointerType::getUnqual(SuperTy);
5270 
5271   // struct _prop_t {
5272   //   char *name;
5273   //   char *attributes;
5274   // }
5275   PropertyTy = llvm::StructType::create("struct._prop_t",
5276                                         Int8PtrTy, Int8PtrTy, nullptr);
5277 
5278   // struct _prop_list_t {
5279   //   uint32_t entsize;      // sizeof(struct _prop_t)
5280   //   uint32_t count_of_properties;
5281   //   struct _prop_t prop_list[count_of_properties];
5282   // }
5283   PropertyListTy =
5284     llvm::StructType::create("struct._prop_list_t", IntTy, IntTy,
5285                              llvm::ArrayType::get(PropertyTy, 0), nullptr);
5286   // struct _prop_list_t *
5287   PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy);
5288 
5289   // struct _objc_method {
5290   //   SEL _cmd;
5291   //   char *method_type;
5292   //   char *_imp;
5293   // }
5294   MethodTy = llvm::StructType::create("struct._objc_method",
5295                                       SelectorPtrTy, Int8PtrTy, Int8PtrTy,
5296                                       nullptr);
5297 
5298   // struct _objc_cache *
5299   CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache");
5300   CachePtrTy = llvm::PointerType::getUnqual(CacheTy);
5301 }
5302 
5303 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm)
5304   : ObjCCommonTypesHelper(cgm) {
5305   // struct _objc_method_description {
5306   //   SEL name;
5307   //   char *types;
5308   // }
5309   MethodDescriptionTy =
5310     llvm::StructType::create("struct._objc_method_description",
5311                              SelectorPtrTy, Int8PtrTy, nullptr);
5312 
5313   // struct _objc_method_description_list {
5314   //   int count;
5315   //   struct _objc_method_description[1];
5316   // }
5317   MethodDescriptionListTy = llvm::StructType::create(
5318       "struct._objc_method_description_list", IntTy,
5319       llvm::ArrayType::get(MethodDescriptionTy, 0), nullptr);
5320 
5321   // struct _objc_method_description_list *
5322   MethodDescriptionListPtrTy =
5323     llvm::PointerType::getUnqual(MethodDescriptionListTy);
5324 
5325   // Protocol description structures
5326 
5327   // struct _objc_protocol_extension {
5328   //   uint32_t size;  // sizeof(struct _objc_protocol_extension)
5329   //   struct _objc_method_description_list *optional_instance_methods;
5330   //   struct _objc_method_description_list *optional_class_methods;
5331   //   struct _objc_property_list *instance_properties;
5332   //   const char ** extendedMethodTypes;
5333   //   struct _objc_property_list *class_properties;
5334   // }
5335   ProtocolExtensionTy =
5336     llvm::StructType::create("struct._objc_protocol_extension",
5337                              IntTy, MethodDescriptionListPtrTy,
5338                              MethodDescriptionListPtrTy, PropertyListPtrTy,
5339                              Int8PtrPtrTy, PropertyListPtrTy, nullptr);
5340 
5341   // struct _objc_protocol_extension *
5342   ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy);
5343 
5344   // Handle recursive construction of Protocol and ProtocolList types
5345 
5346   ProtocolTy =
5347     llvm::StructType::create(VMContext, "struct._objc_protocol");
5348 
5349   ProtocolListTy =
5350     llvm::StructType::create(VMContext, "struct._objc_protocol_list");
5351   ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy),
5352                           LongTy,
5353                           llvm::ArrayType::get(ProtocolTy, 0),
5354                           nullptr);
5355 
5356   // struct _objc_protocol {
5357   //   struct _objc_protocol_extension *isa;
5358   //   char *protocol_name;
5359   //   struct _objc_protocol **_objc_protocol_list;
5360   //   struct _objc_method_description_list *instance_methods;
5361   //   struct _objc_method_description_list *class_methods;
5362   // }
5363   ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy,
5364                       llvm::PointerType::getUnqual(ProtocolListTy),
5365                       MethodDescriptionListPtrTy,
5366                       MethodDescriptionListPtrTy,
5367                       nullptr);
5368 
5369   // struct _objc_protocol_list *
5370   ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy);
5371 
5372   ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy);
5373 
5374   // Class description structures
5375 
5376   // struct _objc_ivar {
5377   //   char *ivar_name;
5378   //   char *ivar_type;
5379   //   int  ivar_offset;
5380   // }
5381   IvarTy = llvm::StructType::create("struct._objc_ivar",
5382                                     Int8PtrTy, Int8PtrTy, IntTy, nullptr);
5383 
5384   // struct _objc_ivar_list *
5385   IvarListTy =
5386     llvm::StructType::create(VMContext, "struct._objc_ivar_list");
5387   IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy);
5388 
5389   // struct _objc_method_list *
5390   MethodListTy =
5391     llvm::StructType::create(VMContext, "struct._objc_method_list");
5392   MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy);
5393 
5394   // struct _objc_class_extension *
5395   ClassExtensionTy =
5396     llvm::StructType::create("struct._objc_class_extension",
5397                              IntTy, Int8PtrTy, PropertyListPtrTy, nullptr);
5398   ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy);
5399 
5400   ClassTy = llvm::StructType::create(VMContext, "struct._objc_class");
5401 
5402   // struct _objc_class {
5403   //   Class isa;
5404   //   Class super_class;
5405   //   char *name;
5406   //   long version;
5407   //   long info;
5408   //   long instance_size;
5409   //   struct _objc_ivar_list *ivars;
5410   //   struct _objc_method_list *methods;
5411   //   struct _objc_cache *cache;
5412   //   struct _objc_protocol_list *protocols;
5413   //   char *ivar_layout;
5414   //   struct _objc_class_ext *ext;
5415   // };
5416   ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy),
5417                    llvm::PointerType::getUnqual(ClassTy),
5418                    Int8PtrTy,
5419                    LongTy,
5420                    LongTy,
5421                    LongTy,
5422                    IvarListPtrTy,
5423                    MethodListPtrTy,
5424                    CachePtrTy,
5425                    ProtocolListPtrTy,
5426                    Int8PtrTy,
5427                    ClassExtensionPtrTy,
5428                    nullptr);
5429 
5430   ClassPtrTy = llvm::PointerType::getUnqual(ClassTy);
5431 
5432   // struct _objc_category {
5433   //   char *category_name;
5434   //   char *class_name;
5435   //   struct _objc_method_list *instance_method;
5436   //   struct _objc_method_list *class_method;
5437   //   struct _objc_protocol_list *protocols;
5438   //   uint32_t size;  // sizeof(struct _objc_category)
5439   //   struct _objc_property_list *instance_properties;// category's @property
5440   //   struct _objc_property_list *class_properties;
5441   // }
5442   CategoryTy =
5443     llvm::StructType::create("struct._objc_category",
5444                              Int8PtrTy, Int8PtrTy, MethodListPtrTy,
5445                              MethodListPtrTy, ProtocolListPtrTy,
5446                              IntTy, PropertyListPtrTy, PropertyListPtrTy,
5447                              nullptr);
5448 
5449   // Global metadata structures
5450 
5451   // struct _objc_symtab {
5452   //   long sel_ref_cnt;
5453   //   SEL *refs;
5454   //   short cls_def_cnt;
5455   //   short cat_def_cnt;
5456   //   char *defs[cls_def_cnt + cat_def_cnt];
5457   // }
5458   SymtabTy =
5459     llvm::StructType::create("struct._objc_symtab",
5460                              LongTy, SelectorPtrTy, ShortTy, ShortTy,
5461                              llvm::ArrayType::get(Int8PtrTy, 0), nullptr);
5462   SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy);
5463 
5464   // struct _objc_module {
5465   //   long version;
5466   //   long size;   // sizeof(struct _objc_module)
5467   //   char *name;
5468   //   struct _objc_symtab* symtab;
5469   //  }
5470   ModuleTy =
5471     llvm::StructType::create("struct._objc_module",
5472                              LongTy, LongTy, Int8PtrTy, SymtabPtrTy, nullptr);
5473 
5474 
5475   // FIXME: This is the size of the setjmp buffer and should be target
5476   // specific. 18 is what's used on 32-bit X86.
5477   uint64_t SetJmpBufferSize = 18;
5478 
5479   // Exceptions
5480   llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4);
5481 
5482   ExceptionDataTy =
5483     llvm::StructType::create("struct._objc_exception_data",
5484                              llvm::ArrayType::get(CGM.Int32Ty,SetJmpBufferSize),
5485                              StackPtrTy, nullptr);
5486 }
5487 
5488 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm)
5489   : ObjCCommonTypesHelper(cgm) {
5490   // struct _method_list_t {
5491   //   uint32_t entsize;  // sizeof(struct _objc_method)
5492   //   uint32_t method_count;
5493   //   struct _objc_method method_list[method_count];
5494   // }
5495   MethodListnfABITy =
5496     llvm::StructType::create("struct.__method_list_t", IntTy, IntTy,
5497                              llvm::ArrayType::get(MethodTy, 0), nullptr);
5498   // struct method_list_t *
5499   MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy);
5500 
5501   // struct _protocol_t {
5502   //   id isa;  // NULL
5503   //   const char * const protocol_name;
5504   //   const struct _protocol_list_t * protocol_list; // super protocols
5505   //   const struct method_list_t * const instance_methods;
5506   //   const struct method_list_t * const class_methods;
5507   //   const struct method_list_t *optionalInstanceMethods;
5508   //   const struct method_list_t *optionalClassMethods;
5509   //   const struct _prop_list_t * properties;
5510   //   const uint32_t size;  // sizeof(struct _protocol_t)
5511   //   const uint32_t flags;  // = 0
5512   //   const char ** extendedMethodTypes;
5513   //   const char *demangledName;
5514   //   const struct _prop_list_t * class_properties;
5515   // }
5516 
5517   // Holder for struct _protocol_list_t *
5518   ProtocolListnfABITy =
5519     llvm::StructType::create(VMContext, "struct._objc_protocol_list");
5520 
5521   ProtocolnfABITy =
5522     llvm::StructType::create("struct._protocol_t", ObjectPtrTy, Int8PtrTy,
5523                              llvm::PointerType::getUnqual(ProtocolListnfABITy),
5524                              MethodListnfABIPtrTy, MethodListnfABIPtrTy,
5525                              MethodListnfABIPtrTy, MethodListnfABIPtrTy,
5526                              PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy,
5527                              Int8PtrTy, PropertyListPtrTy,
5528                              nullptr);
5529 
5530   // struct _protocol_t*
5531   ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy);
5532 
5533   // struct _protocol_list_t {
5534   //   long protocol_count;   // Note, this is 32/64 bit
5535   //   struct _protocol_t *[protocol_count];
5536   // }
5537   ProtocolListnfABITy->setBody(LongTy,
5538                                llvm::ArrayType::get(ProtocolnfABIPtrTy, 0),
5539                                nullptr);
5540 
5541   // struct _objc_protocol_list*
5542   ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy);
5543 
5544   // struct _ivar_t {
5545   //   unsigned [long] int *offset;  // pointer to ivar offset location
5546   //   char *name;
5547   //   char *type;
5548   //   uint32_t alignment;
5549   //   uint32_t size;
5550   // }
5551   IvarnfABITy = llvm::StructType::create(
5552       "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy),
5553       Int8PtrTy, Int8PtrTy, IntTy, IntTy, nullptr);
5554 
5555   // struct _ivar_list_t {
5556   //   uint32 entsize;  // sizeof(struct _ivar_t)
5557   //   uint32 count;
5558   //   struct _iver_t list[count];
5559   // }
5560   IvarListnfABITy =
5561     llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy,
5562                              llvm::ArrayType::get(IvarnfABITy, 0), nullptr);
5563 
5564   IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy);
5565 
5566   // struct _class_ro_t {
5567   //   uint32_t const flags;
5568   //   uint32_t const instanceStart;
5569   //   uint32_t const instanceSize;
5570   //   uint32_t const reserved;  // only when building for 64bit targets
5571   //   const uint8_t * const ivarLayout;
5572   //   const char *const name;
5573   //   const struct _method_list_t * const baseMethods;
5574   //   const struct _objc_protocol_list *const baseProtocols;
5575   //   const struct _ivar_list_t *const ivars;
5576   //   const uint8_t * const weakIvarLayout;
5577   //   const struct _prop_list_t * const properties;
5578   // }
5579 
5580   // FIXME. Add 'reserved' field in 64bit abi mode!
5581   ClassRonfABITy = llvm::StructType::create("struct._class_ro_t",
5582                                             IntTy, IntTy, IntTy, Int8PtrTy,
5583                                             Int8PtrTy, MethodListnfABIPtrTy,
5584                                             ProtocolListnfABIPtrTy,
5585                                             IvarListnfABIPtrTy,
5586                                             Int8PtrTy, PropertyListPtrTy,
5587                                             nullptr);
5588 
5589   // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
5590   llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
5591   ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false)
5592                  ->getPointerTo();
5593 
5594   // struct _class_t {
5595   //   struct _class_t *isa;
5596   //   struct _class_t * const superclass;
5597   //   void *cache;
5598   //   IMP *vtable;
5599   //   struct class_ro_t *ro;
5600   // }
5601 
5602   ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t");
5603   ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy),
5604                         llvm::PointerType::getUnqual(ClassnfABITy),
5605                         CachePtrTy,
5606                         llvm::PointerType::getUnqual(ImpnfABITy),
5607                         llvm::PointerType::getUnqual(ClassRonfABITy),
5608                         nullptr);
5609 
5610   // LLVM for struct _class_t *
5611   ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy);
5612 
5613   // struct _category_t {
5614   //   const char * const name;
5615   //   struct _class_t *const cls;
5616   //   const struct _method_list_t * const instance_methods;
5617   //   const struct _method_list_t * const class_methods;
5618   //   const struct _protocol_list_t * const protocols;
5619   //   const struct _prop_list_t * const properties;
5620   //   const struct _prop_list_t * const class_properties;
5621   //   const uint32_t size;
5622   // }
5623   CategorynfABITy = llvm::StructType::create("struct._category_t",
5624                                              Int8PtrTy, ClassnfABIPtrTy,
5625                                              MethodListnfABIPtrTy,
5626                                              MethodListnfABIPtrTy,
5627                                              ProtocolListnfABIPtrTy,
5628                                              PropertyListPtrTy,
5629                                              PropertyListPtrTy,
5630                                              IntTy,
5631                                              nullptr);
5632 
5633   // New types for nonfragile abi messaging.
5634   CodeGen::CodeGenTypes &Types = CGM.getTypes();
5635   ASTContext &Ctx = CGM.getContext();
5636 
5637   // MessageRefTy - LLVM for:
5638   // struct _message_ref_t {
5639   //   IMP messenger;
5640   //   SEL name;
5641   // };
5642 
5643   // First the clang type for struct _message_ref_t
5644   RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct,
5645                                       Ctx.getTranslationUnitDecl(),
5646                                       SourceLocation(), SourceLocation(),
5647                                       &Ctx.Idents.get("_message_ref_t"));
5648   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5649                                 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false,
5650                                 ICIS_NoInit));
5651   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5652                                 nullptr, Ctx.getObjCSelType(), nullptr, nullptr,
5653                                 false, ICIS_NoInit));
5654   RD->completeDefinition();
5655 
5656   MessageRefCTy = Ctx.getTagDeclType(RD);
5657   MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy);
5658   MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy));
5659 
5660   // MessageRefPtrTy - LLVM for struct _message_ref_t*
5661   MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy);
5662 
5663   // SuperMessageRefTy - LLVM for:
5664   // struct _super_message_ref_t {
5665   //   SUPER_IMP messenger;
5666   //   SEL name;
5667   // };
5668   SuperMessageRefTy =
5669     llvm::StructType::create("struct._super_message_ref_t",
5670                              ImpnfABITy, SelectorPtrTy, nullptr);
5671 
5672   // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
5673   SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy);
5674 
5675 
5676   // struct objc_typeinfo {
5677   //   const void** vtable; // objc_ehtype_vtable + 2
5678   //   const char*  name;    // c++ typeinfo string
5679   //   Class        cls;
5680   // };
5681   EHTypeTy =
5682     llvm::StructType::create("struct._objc_typeinfo",
5683                              llvm::PointerType::getUnqual(Int8PtrTy),
5684                              Int8PtrTy, ClassnfABIPtrTy, nullptr);
5685   EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy);
5686 }
5687 
5688 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() {
5689   FinishNonFragileABIModule();
5690 
5691   return nullptr;
5692 }
5693 
5694 void CGObjCNonFragileABIMac::AddModuleClassList(
5695     ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName,
5696     StringRef SectionName) {
5697   unsigned NumClasses = Container.size();
5698 
5699   if (!NumClasses)
5700     return;
5701 
5702   SmallVector<llvm::Constant*, 8> Symbols(NumClasses);
5703   for (unsigned i=0; i<NumClasses; i++)
5704     Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i],
5705                                                 ObjCTypes.Int8PtrTy);
5706   llvm::Constant *Init =
5707     llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
5708                                                   Symbols.size()),
5709                              Symbols);
5710 
5711   llvm::GlobalVariable *GV =
5712     new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
5713                              llvm::GlobalValue::PrivateLinkage,
5714                              Init,
5715                              SymbolName);
5716   GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType()));
5717   GV->setSection(SectionName);
5718   CGM.addCompilerUsedGlobal(GV);
5719 }
5720 
5721 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() {
5722   // nonfragile abi has no module definition.
5723 
5724   // Build list of all implemented class addresses in array
5725   // L_OBJC_LABEL_CLASS_$.
5726 
5727   for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) {
5728     const ObjCInterfaceDecl *ID = ImplementedClasses[i];
5729     assert(ID);
5730     if (ObjCImplementationDecl *IMP = ID->getImplementation())
5731       // We are implementing a weak imported interface. Give it external linkage
5732       if (ID->isWeakImported() && !IMP->isWeakImported()) {
5733         DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
5734         DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
5735       }
5736   }
5737 
5738   AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$",
5739                      "__DATA, __objc_classlist, regular, no_dead_strip");
5740 
5741   AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$",
5742                      "__DATA, __objc_nlclslist, regular, no_dead_strip");
5743 
5744   // Build list of all implemented category addresses in array
5745   // L_OBJC_LABEL_CATEGORY_$.
5746   AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$",
5747                      "__DATA, __objc_catlist, regular, no_dead_strip");
5748   AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$",
5749                      "__DATA, __objc_nlcatlist, regular, no_dead_strip");
5750 
5751   EmitImageInfo();
5752 }
5753 
5754 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of
5755 /// VTableDispatchMethods; false otherwise. What this means is that
5756 /// except for the 19 selectors in the list, we generate 32bit-style
5757 /// message dispatch call for all the rest.
5758 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) {
5759   // At various points we've experimented with using vtable-based
5760   // dispatch for all methods.
5761   switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
5762   case CodeGenOptions::Legacy:
5763     return false;
5764   case CodeGenOptions::NonLegacy:
5765     return true;
5766   case CodeGenOptions::Mixed:
5767     break;
5768   }
5769 
5770   // If so, see whether this selector is in the white-list of things which must
5771   // use the new dispatch convention. We lazily build a dense set for this.
5772   if (VTableDispatchMethods.empty()) {
5773     VTableDispatchMethods.insert(GetNullarySelector("alloc"));
5774     VTableDispatchMethods.insert(GetNullarySelector("class"));
5775     VTableDispatchMethods.insert(GetNullarySelector("self"));
5776     VTableDispatchMethods.insert(GetNullarySelector("isFlipped"));
5777     VTableDispatchMethods.insert(GetNullarySelector("length"));
5778     VTableDispatchMethods.insert(GetNullarySelector("count"));
5779 
5780     // These are vtable-based if GC is disabled.
5781     // Optimistically use vtable dispatch for hybrid compiles.
5782     if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
5783       VTableDispatchMethods.insert(GetNullarySelector("retain"));
5784       VTableDispatchMethods.insert(GetNullarySelector("release"));
5785       VTableDispatchMethods.insert(GetNullarySelector("autorelease"));
5786     }
5787 
5788     VTableDispatchMethods.insert(GetUnarySelector("allocWithZone"));
5789     VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass"));
5790     VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector"));
5791     VTableDispatchMethods.insert(GetUnarySelector("objectForKey"));
5792     VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex"));
5793     VTableDispatchMethods.insert(GetUnarySelector("isEqualToString"));
5794     VTableDispatchMethods.insert(GetUnarySelector("isEqual"));
5795 
5796     // These are vtable-based if GC is enabled.
5797     // Optimistically use vtable dispatch for hybrid compiles.
5798     if (CGM.getLangOpts().getGC() != LangOptions::NonGC) {
5799       VTableDispatchMethods.insert(GetNullarySelector("hash"));
5800       VTableDispatchMethods.insert(GetUnarySelector("addObject"));
5801 
5802       // "countByEnumeratingWithState:objects:count"
5803       IdentifierInfo *KeyIdents[] = {
5804         &CGM.getContext().Idents.get("countByEnumeratingWithState"),
5805         &CGM.getContext().Idents.get("objects"),
5806         &CGM.getContext().Idents.get("count")
5807       };
5808       VTableDispatchMethods.insert(
5809         CGM.getContext().Selectors.getSelector(3, KeyIdents));
5810     }
5811   }
5812 
5813   return VTableDispatchMethods.count(Sel);
5814 }
5815 
5816 /// BuildClassRoTInitializer - generate meta-data for:
5817 /// struct _class_ro_t {
5818 ///   uint32_t const flags;
5819 ///   uint32_t const instanceStart;
5820 ///   uint32_t const instanceSize;
5821 ///   uint32_t const reserved;  // only when building for 64bit targets
5822 ///   const uint8_t * const ivarLayout;
5823 ///   const char *const name;
5824 ///   const struct _method_list_t * const baseMethods;
5825 ///   const struct _protocol_list_t *const baseProtocols;
5826 ///   const struct _ivar_list_t *const ivars;
5827 ///   const uint8_t * const weakIvarLayout;
5828 ///   const struct _prop_list_t * const properties;
5829 /// }
5830 ///
5831 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer(
5832   unsigned flags,
5833   unsigned InstanceStart,
5834   unsigned InstanceSize,
5835   const ObjCImplementationDecl *ID) {
5836   std::string ClassName = ID->getObjCRuntimeNameAsString();
5837   llvm::Constant *Values[10]; // 11 for 64bit targets!
5838 
5839   CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart);
5840   CharUnits endInstance = CharUnits::fromQuantity(InstanceSize);
5841 
5842   bool hasMRCWeak = false;
5843   if (CGM.getLangOpts().ObjCAutoRefCount)
5844     flags |= NonFragileABI_Class_CompiledByARC;
5845   else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID)))
5846     flags |= NonFragileABI_Class_HasMRCWeakIvars;
5847 
5848   Values[ 0] = llvm::ConstantInt::get(ObjCTypes.IntTy, flags);
5849   Values[ 1] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceStart);
5850   Values[ 2] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceSize);
5851   // FIXME. For 64bit targets add 0 here.
5852   Values[ 3] = (flags & NonFragileABI_Class_Meta)
5853     ? GetIvarLayoutName(nullptr, ObjCTypes)
5854     : BuildStrongIvarLayout(ID, beginInstance, endInstance);
5855   Values[ 4] = GetClassName(ID->getObjCRuntimeNameAsString());
5856   // const struct _method_list_t * const baseMethods;
5857   std::vector<llvm::Constant*> Methods;
5858   std::string MethodListName("\01l_OBJC_$_");
5859   if (flags & NonFragileABI_Class_Meta) {
5860     MethodListName += "CLASS_METHODS_";
5861     MethodListName += ID->getObjCRuntimeNameAsString();
5862     for (const auto *I : ID->class_methods())
5863       // Class methods should always be defined.
5864       Methods.push_back(GetMethodConstant(I));
5865   } else {
5866     MethodListName += "INSTANCE_METHODS_";
5867     MethodListName += ID->getObjCRuntimeNameAsString();
5868     for (const auto *I : ID->instance_methods())
5869       // Instance methods should always be defined.
5870       Methods.push_back(GetMethodConstant(I));
5871 
5872     for (const auto *PID : ID->property_impls()) {
5873       if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize){
5874         ObjCPropertyDecl *PD = PID->getPropertyDecl();
5875 
5876         if (ObjCMethodDecl *MD = PD->getGetterMethodDecl())
5877           if (llvm::Constant *C = GetMethodConstant(MD))
5878             Methods.push_back(C);
5879         if (ObjCMethodDecl *MD = PD->getSetterMethodDecl())
5880           if (llvm::Constant *C = GetMethodConstant(MD))
5881             Methods.push_back(C);
5882       }
5883     }
5884   }
5885   Values[ 5] = EmitMethodList(MethodListName,
5886                               "__DATA, __objc_const", Methods);
5887 
5888   const ObjCInterfaceDecl *OID = ID->getClassInterface();
5889   assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer");
5890   Values[ 6] = EmitProtocolList("\01l_OBJC_CLASS_PROTOCOLS_$_"
5891                                 + OID->getObjCRuntimeNameAsString(),
5892                                 OID->all_referenced_protocol_begin(),
5893                                 OID->all_referenced_protocol_end());
5894 
5895   if (flags & NonFragileABI_Class_Meta) {
5896     Values[ 7] = llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy);
5897     Values[ 8] = GetIvarLayoutName(nullptr, ObjCTypes);
5898     Values[ 9] = EmitPropertyList(
5899         "\01l_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(),
5900         ID, ID->getClassInterface(), ObjCTypes, true);
5901   } else {
5902     Values[ 7] = EmitIvarList(ID);
5903     Values[ 8] = BuildWeakIvarLayout(ID, beginInstance, endInstance,
5904                                      hasMRCWeak);
5905     Values[ 9] = EmitPropertyList(
5906         "\01l_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(),
5907         ID, ID->getClassInterface(), ObjCTypes, false);
5908   }
5909   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassRonfABITy,
5910                                                    Values);
5911   llvm::GlobalVariable *CLASS_RO_GV =
5912     new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassRonfABITy, false,
5913                              llvm::GlobalValue::PrivateLinkage,
5914                              Init,
5915                              (flags & NonFragileABI_Class_Meta) ?
5916                              std::string("\01l_OBJC_METACLASS_RO_$_")+ClassName :
5917                              std::string("\01l_OBJC_CLASS_RO_$_")+ClassName);
5918   CLASS_RO_GV->setAlignment(
5919     CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassRonfABITy));
5920   CLASS_RO_GV->setSection("__DATA, __objc_const");
5921   return CLASS_RO_GV;
5922 
5923 }
5924 
5925 /// BuildClassMetaData - This routine defines that to-level meta-data
5926 /// for the given ClassName for:
5927 /// struct _class_t {
5928 ///   struct _class_t *isa;
5929 ///   struct _class_t * const superclass;
5930 ///   void *cache;
5931 ///   IMP *vtable;
5932 ///   struct class_ro_t *ro;
5933 /// }
5934 ///
5935 llvm::GlobalVariable *CGObjCNonFragileABIMac::BuildClassMetaData(
5936     const std::string &ClassName, llvm::Constant *IsAGV, llvm::Constant *SuperClassGV,
5937     llvm::Constant *ClassRoGV, bool HiddenVisibility, bool Weak) {
5938   llvm::Constant *Values[] = {
5939     IsAGV,
5940     SuperClassGV,
5941     ObjCEmptyCacheVar,  // &ObjCEmptyCacheVar
5942     ObjCEmptyVtableVar, // &ObjCEmptyVtableVar
5943     ClassRoGV           // &CLASS_RO_GV
5944   };
5945   if (!Values[1])
5946     Values[1] = llvm::Constant::getNullValue(ObjCTypes.ClassnfABIPtrTy);
5947   if (!Values[3])
5948     Values[3] = llvm::Constant::getNullValue(
5949                   llvm::PointerType::getUnqual(ObjCTypes.ImpnfABITy));
5950   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassnfABITy,
5951                                                    Values);
5952   llvm::GlobalVariable *GV = GetClassGlobal(ClassName, Weak);
5953   GV->setInitializer(Init);
5954   GV->setSection("__DATA, __objc_data");
5955   GV->setAlignment(
5956     CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy));
5957   if (HiddenVisibility)
5958     GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
5959   return GV;
5960 }
5961 
5962 bool
5963 CGObjCNonFragileABIMac::ImplementationIsNonLazy(const ObjCImplDecl *OD) const {
5964   return OD->getClassMethod(GetNullarySelector("load")) != nullptr;
5965 }
5966 
5967 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID,
5968                                               uint32_t &InstanceStart,
5969                                               uint32_t &InstanceSize) {
5970   const ASTRecordLayout &RL =
5971     CGM.getContext().getASTObjCImplementationLayout(OID);
5972 
5973   // InstanceSize is really instance end.
5974   InstanceSize = RL.getDataSize().getQuantity();
5975 
5976   // If there are no fields, the start is the same as the end.
5977   if (!RL.getFieldCount())
5978     InstanceStart = InstanceSize;
5979   else
5980     InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth();
5981 }
5982 
5983 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) {
5984   std::string ClassName = ID->getObjCRuntimeNameAsString();
5985   if (!ObjCEmptyCacheVar) {
5986     ObjCEmptyCacheVar = new llvm::GlobalVariable(
5987       CGM.getModule(),
5988       ObjCTypes.CacheTy,
5989       false,
5990       llvm::GlobalValue::ExternalLinkage,
5991       nullptr,
5992       "_objc_empty_cache");
5993 
5994     // Make this entry NULL for any iOS device target, any iOS simulator target,
5995     // OS X with deployment target 10.9 or later.
5996     const llvm::Triple &Triple = CGM.getTarget().getTriple();
5997     if (Triple.isiOS() || Triple.isWatchOS() ||
5998         (Triple.isMacOSX() && !Triple.isMacOSXVersionLT(10, 9)))
5999       // This entry will be null.
6000       ObjCEmptyVtableVar = nullptr;
6001     else
6002       ObjCEmptyVtableVar = new llvm::GlobalVariable(
6003                                                     CGM.getModule(),
6004                                                     ObjCTypes.ImpnfABITy,
6005                                                     false,
6006                                                     llvm::GlobalValue::ExternalLinkage,
6007                                                     nullptr,
6008                                                     "_objc_empty_vtable");
6009   }
6010   assert(ID->getClassInterface() &&
6011          "CGObjCNonFragileABIMac::GenerateClass - class is 0");
6012   // FIXME: Is this correct (that meta class size is never computed)?
6013   uint32_t InstanceStart =
6014     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy);
6015   uint32_t InstanceSize = InstanceStart;
6016   uint32_t flags = NonFragileABI_Class_Meta;
6017   llvm::SmallString<64> ObjCMetaClassName(getMetaclassSymbolPrefix());
6018   llvm::SmallString<64> ObjCClassName(getClassSymbolPrefix());
6019   llvm::SmallString<64> TClassName;
6020 
6021   llvm::GlobalVariable *SuperClassGV, *IsAGV;
6022 
6023   // Build the flags for the metaclass.
6024   bool classIsHidden =
6025     ID->getClassInterface()->getVisibility() == HiddenVisibility;
6026   if (classIsHidden)
6027     flags |= NonFragileABI_Class_Hidden;
6028 
6029   // FIXME: why is this flag set on the metaclass?
6030   // ObjC metaclasses have no fields and don't really get constructed.
6031   if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
6032     flags |= NonFragileABI_Class_HasCXXStructors;
6033     if (!ID->hasNonZeroConstructors())
6034       flags |= NonFragileABI_Class_HasCXXDestructorOnly;
6035   }
6036 
6037   if (!ID->getClassInterface()->getSuperClass()) {
6038     // class is root
6039     flags |= NonFragileABI_Class_Root;
6040     TClassName = ObjCClassName;
6041     TClassName += ClassName;
6042     SuperClassGV = GetClassGlobal(TClassName.str(),
6043                                   ID->getClassInterface()->isWeakImported());
6044     TClassName = ObjCMetaClassName;
6045     TClassName += ClassName;
6046     IsAGV = GetClassGlobal(TClassName.str(),
6047                            ID->getClassInterface()->isWeakImported());
6048   } else {
6049     // Has a root. Current class is not a root.
6050     const ObjCInterfaceDecl *Root = ID->getClassInterface();
6051     while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
6052       Root = Super;
6053     TClassName = ObjCMetaClassName ;
6054     TClassName += Root->getObjCRuntimeNameAsString();
6055     IsAGV = GetClassGlobal(TClassName.str(),
6056                            Root->isWeakImported());
6057 
6058     // work on super class metadata symbol.
6059     TClassName = ObjCMetaClassName;
6060     TClassName += ID->getClassInterface()->getSuperClass()->getObjCRuntimeNameAsString();
6061     SuperClassGV = GetClassGlobal(
6062                                   TClassName.str(),
6063                                   ID->getClassInterface()->getSuperClass()->isWeakImported());
6064   }
6065   llvm::GlobalVariable *CLASS_RO_GV = BuildClassRoTInitializer(flags,
6066                                                                InstanceStart,
6067                                                                InstanceSize,ID);
6068   TClassName = ObjCMetaClassName;
6069   TClassName += ClassName;
6070   llvm::GlobalVariable *MetaTClass = BuildClassMetaData(
6071       TClassName.str(), IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden,
6072       ID->getClassInterface()->isWeakImported());
6073   DefinedMetaClasses.push_back(MetaTClass);
6074 
6075   // Metadata for the class
6076   flags = 0;
6077   if (classIsHidden)
6078     flags |= NonFragileABI_Class_Hidden;
6079 
6080   if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
6081     flags |= NonFragileABI_Class_HasCXXStructors;
6082 
6083     // Set a flag to enable a runtime optimization when a class has
6084     // fields that require destruction but which don't require
6085     // anything except zero-initialization during construction.  This
6086     // is most notably true of __strong and __weak types, but you can
6087     // also imagine there being C++ types with non-trivial default
6088     // constructors that merely set all fields to null.
6089     if (!ID->hasNonZeroConstructors())
6090       flags |= NonFragileABI_Class_HasCXXDestructorOnly;
6091   }
6092 
6093   if (hasObjCExceptionAttribute(CGM.getContext(), ID->getClassInterface()))
6094     flags |= NonFragileABI_Class_Exception;
6095 
6096   if (!ID->getClassInterface()->getSuperClass()) {
6097     flags |= NonFragileABI_Class_Root;
6098     SuperClassGV = nullptr;
6099   } else {
6100     // Has a root. Current class is not a root.
6101     TClassName = ObjCClassName;
6102     TClassName += ID->getClassInterface()->getSuperClass()->getObjCRuntimeNameAsString();
6103     SuperClassGV = GetClassGlobal(
6104                                   TClassName.str(),
6105                                   ID->getClassInterface()->getSuperClass()->isWeakImported());
6106   }
6107   GetClassSizeInfo(ID, InstanceStart, InstanceSize);
6108   CLASS_RO_GV = BuildClassRoTInitializer(flags,
6109                                          InstanceStart,
6110                                          InstanceSize,
6111                                          ID);
6112 
6113   TClassName = ObjCClassName;
6114   TClassName += ClassName;
6115   llvm::GlobalVariable *ClassMD =
6116     BuildClassMetaData(TClassName.str(), MetaTClass, SuperClassGV, CLASS_RO_GV,
6117                        classIsHidden,
6118                        ID->getClassInterface()->isWeakImported());
6119   DefinedClasses.push_back(ClassMD);
6120   ImplementedClasses.push_back(ID->getClassInterface());
6121 
6122   // Determine if this class is also "non-lazy".
6123   if (ImplementationIsNonLazy(ID))
6124     DefinedNonLazyClasses.push_back(ClassMD);
6125 
6126   // Force the definition of the EHType if necessary.
6127   if (flags & NonFragileABI_Class_Exception)
6128     GetInterfaceEHType(ID->getClassInterface(), true);
6129   // Make sure method definition entries are all clear for next implementation.
6130   MethodDefinitions.clear();
6131 }
6132 
6133 /// GenerateProtocolRef - This routine is called to generate code for
6134 /// a protocol reference expression; as in:
6135 /// @code
6136 ///   @protocol(Proto1);
6137 /// @endcode
6138 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1
6139 /// which will hold address of the protocol meta-data.
6140 ///
6141 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF,
6142                                                          const ObjCProtocolDecl *PD) {
6143 
6144   // This routine is called for @protocol only. So, we must build definition
6145   // of protocol's meta-data (not a reference to it!)
6146   //
6147   llvm::Constant *Init =
6148     llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD),
6149                                    ObjCTypes.getExternalProtocolPtrTy());
6150 
6151   std::string ProtocolName("\01l_OBJC_PROTOCOL_REFERENCE_$_");
6152   ProtocolName += PD->getObjCRuntimeNameAsString();
6153 
6154   CharUnits Align = CGF.getPointerAlign();
6155 
6156   llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName);
6157   if (PTGV)
6158     return CGF.Builder.CreateAlignedLoad(PTGV, Align);
6159   PTGV = new llvm::GlobalVariable(
6160     CGM.getModule(),
6161     Init->getType(), false,
6162     llvm::GlobalValue::WeakAnyLinkage,
6163     Init,
6164     ProtocolName);
6165   PTGV->setSection("__DATA, __objc_protorefs, coalesced, no_dead_strip");
6166   PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6167   PTGV->setAlignment(Align.getQuantity());
6168   CGM.addCompilerUsedGlobal(PTGV);
6169   return CGF.Builder.CreateAlignedLoad(PTGV, Align);
6170 }
6171 
6172 /// GenerateCategory - Build metadata for a category implementation.
6173 /// struct _category_t {
6174 ///   const char * const name;
6175 ///   struct _class_t *const cls;
6176 ///   const struct _method_list_t * const instance_methods;
6177 ///   const struct _method_list_t * const class_methods;
6178 ///   const struct _protocol_list_t * const protocols;
6179 ///   const struct _prop_list_t * const properties;
6180 ///   const struct _prop_list_t * const class_properties;
6181 ///   const uint32_t size;
6182 /// }
6183 ///
6184 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
6185   const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
6186   const char *Prefix = "\01l_OBJC_$_CATEGORY_";
6187 
6188   llvm::SmallString<64> ExtCatName(Prefix);
6189   ExtCatName += Interface->getObjCRuntimeNameAsString();
6190   ExtCatName += "_$_";
6191   ExtCatName += OCD->getNameAsString();
6192 
6193   llvm::SmallString<64> ExtClassName(getClassSymbolPrefix());
6194   ExtClassName += Interface->getObjCRuntimeNameAsString();
6195 
6196   llvm::Constant *Values[8];
6197   Values[0] = GetClassName(OCD->getIdentifier()->getName());
6198   // meta-class entry symbol
6199   llvm::GlobalVariable *ClassGV =
6200       GetClassGlobal(ExtClassName.str(), Interface->isWeakImported());
6201 
6202   Values[1] = ClassGV;
6203   std::vector<llvm::Constant*> Methods;
6204   llvm::SmallString<64> MethodListName(Prefix);
6205 
6206   MethodListName += "INSTANCE_METHODS_";
6207   MethodListName += Interface->getObjCRuntimeNameAsString();
6208   MethodListName += "_$_";
6209   MethodListName += OCD->getName();
6210 
6211   for (const auto *I : OCD->instance_methods())
6212     // Instance methods should always be defined.
6213     Methods.push_back(GetMethodConstant(I));
6214 
6215   Values[2] = EmitMethodList(MethodListName.str(),
6216                              "__DATA, __objc_const",
6217                              Methods);
6218 
6219   MethodListName = Prefix;
6220   MethodListName += "CLASS_METHODS_";
6221   MethodListName += Interface->getObjCRuntimeNameAsString();
6222   MethodListName += "_$_";
6223   MethodListName += OCD->getNameAsString();
6224 
6225   Methods.clear();
6226   for (const auto *I : OCD->class_methods())
6227     // Class methods should always be defined.
6228     Methods.push_back(GetMethodConstant(I));
6229 
6230   Values[3] = EmitMethodList(MethodListName.str(),
6231                              "__DATA, __objc_const",
6232                              Methods);
6233   const ObjCCategoryDecl *Category =
6234     Interface->FindCategoryDeclaration(OCD->getIdentifier());
6235   if (Category) {
6236     SmallString<256> ExtName;
6237     llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_"
6238                                        << OCD->getName();
6239     Values[4] = EmitProtocolList("\01l_OBJC_CATEGORY_PROTOCOLS_$_"
6240                                    + Interface->getObjCRuntimeNameAsString() + "_$_"
6241                                    + Category->getName(),
6242                                    Category->protocol_begin(),
6243                                    Category->protocol_end());
6244     Values[5] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(),
6245                                  OCD, Category, ObjCTypes, false);
6246     Values[6] = EmitPropertyList("\01l_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(),
6247                                  OCD, Category, ObjCTypes, true);
6248   } else {
6249     Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
6250     Values[5] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
6251     Values[6] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
6252   }
6253 
6254   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy);
6255   Values[7] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
6256 
6257   llvm::Constant *Init =
6258     llvm::ConstantStruct::get(ObjCTypes.CategorynfABITy,
6259                               Values);
6260   llvm::GlobalVariable *GCATV
6261     = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CategorynfABITy,
6262                                false,
6263                                llvm::GlobalValue::PrivateLinkage,
6264                                Init,
6265                                ExtCatName.str());
6266   GCATV->setAlignment(
6267     CGM.getDataLayout().getABITypeAlignment(ObjCTypes.CategorynfABITy));
6268   GCATV->setSection("__DATA, __objc_const");
6269   CGM.addCompilerUsedGlobal(GCATV);
6270   DefinedCategories.push_back(GCATV);
6271 
6272   // Determine if this category is also "non-lazy".
6273   if (ImplementationIsNonLazy(OCD))
6274     DefinedNonLazyCategories.push_back(GCATV);
6275   // method definition entries must be clear for next implementation.
6276   MethodDefinitions.clear();
6277 }
6278 
6279 /// GetMethodConstant - Return a struct objc_method constant for the
6280 /// given method if it has been defined. The result is null if the
6281 /// method has not been defined. The return value has type MethodPtrTy.
6282 llvm::Constant *CGObjCNonFragileABIMac::GetMethodConstant(
6283   const ObjCMethodDecl *MD) {
6284   llvm::Function *Fn = GetMethodDefinition(MD);
6285   if (!Fn)
6286     return nullptr;
6287 
6288   llvm::Constant *Method[] = {
6289     llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
6290                                    ObjCTypes.SelectorPtrTy),
6291     GetMethodVarType(MD),
6292     llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy)
6293   };
6294   return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method);
6295 }
6296 
6297 /// EmitMethodList - Build meta-data for method declarations
6298 /// struct _method_list_t {
6299 ///   uint32_t entsize;  // sizeof(struct _objc_method)
6300 ///   uint32_t method_count;
6301 ///   struct _objc_method method_list[method_count];
6302 /// }
6303 ///
6304 llvm::Constant *
6305 CGObjCNonFragileABIMac::EmitMethodList(Twine Name, StringRef Section,
6306                                        ArrayRef<llvm::Constant *> Methods) {
6307   // Return null for empty list.
6308   if (Methods.empty())
6309     return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy);
6310 
6311   llvm::Constant *Values[3];
6312   // sizeof(struct _objc_method)
6313   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy);
6314   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
6315   // method_count
6316   Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size());
6317   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy,
6318                                              Methods.size());
6319   Values[2] = llvm::ConstantArray::get(AT, Methods);
6320   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
6321 
6322   llvm::GlobalVariable *GV =
6323     new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
6324                              llvm::GlobalValue::PrivateLinkage, Init, Name);
6325   GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType()));
6326   GV->setSection(Section);
6327   CGM.addCompilerUsedGlobal(GV);
6328   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy);
6329 }
6330 
6331 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for
6332 /// the given ivar.
6333 llvm::GlobalVariable *
6334 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
6335                                                const ObjCIvarDecl *Ivar) {
6336 
6337   const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
6338   llvm::SmallString<64> Name("OBJC_IVAR_$_");
6339   Name += Container->getObjCRuntimeNameAsString();
6340   Name += ".";
6341   Name += Ivar->getName();
6342   llvm::GlobalVariable *IvarOffsetGV =
6343     CGM.getModule().getGlobalVariable(Name);
6344   if (!IvarOffsetGV)
6345     IvarOffsetGV = new llvm::GlobalVariable(
6346       CGM.getModule(), ObjCTypes.IvarOffsetVarTy, false,
6347       llvm::GlobalValue::ExternalLinkage, nullptr, Name.str());
6348   return IvarOffsetGV;
6349 }
6350 
6351 llvm::Constant *
6352 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
6353                                           const ObjCIvarDecl *Ivar,
6354                                           unsigned long int Offset) {
6355   llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar);
6356   IvarOffsetGV->setInitializer(
6357       llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset));
6358   IvarOffsetGV->setAlignment(
6359       CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy));
6360 
6361   // FIXME: This matches gcc, but shouldn't the visibility be set on the use as
6362   // well (i.e., in ObjCIvarOffsetVariable).
6363   if (Ivar->getAccessControl() == ObjCIvarDecl::Private ||
6364       Ivar->getAccessControl() == ObjCIvarDecl::Package ||
6365       ID->getVisibility() == HiddenVisibility)
6366     IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6367   else
6368     IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility);
6369   IvarOffsetGV->setSection("__DATA, __objc_ivar");
6370   return IvarOffsetGV;
6371 }
6372 
6373 /// EmitIvarList - Emit the ivar list for the given
6374 /// implementation. The return value has type
6375 /// IvarListnfABIPtrTy.
6376 ///  struct _ivar_t {
6377 ///   unsigned [long] int *offset;  // pointer to ivar offset location
6378 ///   char *name;
6379 ///   char *type;
6380 ///   uint32_t alignment;
6381 ///   uint32_t size;
6382 /// }
6383 /// struct _ivar_list_t {
6384 ///   uint32 entsize;  // sizeof(struct _ivar_t)
6385 ///   uint32 count;
6386 ///   struct _iver_t list[count];
6387 /// }
6388 ///
6389 
6390 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList(
6391   const ObjCImplementationDecl *ID) {
6392 
6393   std::vector<llvm::Constant*> Ivars;
6394 
6395   const ObjCInterfaceDecl *OID = ID->getClassInterface();
6396   assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface");
6397 
6398   // FIXME. Consolidate this with similar code in GenerateClass.
6399 
6400   for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
6401        IVD; IVD = IVD->getNextIvar()) {
6402     // Ignore unnamed bit-fields.
6403     if (!IVD->getDeclName())
6404       continue;
6405     llvm::Constant *Ivar[5];
6406     Ivar[0] = EmitIvarOffsetVar(ID->getClassInterface(), IVD,
6407                                 ComputeIvarBaseOffset(CGM, ID, IVD));
6408     Ivar[1] = GetMethodVarName(IVD->getIdentifier());
6409     Ivar[2] = GetMethodVarType(IVD);
6410     llvm::Type *FieldTy =
6411       CGM.getTypes().ConvertTypeForMem(IVD->getType());
6412     unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy);
6413     unsigned Align = CGM.getContext().getPreferredTypeAlign(
6414       IVD->getType().getTypePtr()) >> 3;
6415     Align = llvm::Log2_32(Align);
6416     Ivar[3] = llvm::ConstantInt::get(ObjCTypes.IntTy, Align);
6417     // NOTE. Size of a bitfield does not match gcc's, because of the
6418     // way bitfields are treated special in each. But I am told that
6419     // 'size' for bitfield ivars is ignored by the runtime so it does
6420     // not matter.  If it matters, there is enough info to get the
6421     // bitfield right!
6422     Ivar[4] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
6423     Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarnfABITy, Ivar));
6424   }
6425   // Return null for empty list.
6426   if (Ivars.empty())
6427     return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy);
6428 
6429   llvm::Constant *Values[3];
6430   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy);
6431   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
6432   Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size());
6433   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarnfABITy,
6434                                              Ivars.size());
6435   Values[2] = llvm::ConstantArray::get(AT, Ivars);
6436   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
6437   const char *Prefix = "\01l_OBJC_$_INSTANCE_VARIABLES_";
6438   llvm::GlobalVariable *GV =
6439     new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
6440                              llvm::GlobalValue::PrivateLinkage,
6441                              Init,
6442                              Prefix + OID->getObjCRuntimeNameAsString());
6443   GV->setAlignment(
6444     CGM.getDataLayout().getABITypeAlignment(Init->getType()));
6445   GV->setSection("__DATA, __objc_const");
6446 
6447   CGM.addCompilerUsedGlobal(GV);
6448   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy);
6449 }
6450 
6451 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef(
6452   const ObjCProtocolDecl *PD) {
6453   llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
6454 
6455   if (!Entry)
6456     // We use the initializer as a marker of whether this is a forward
6457     // reference or not. At module finalization we add the empty
6458     // contents for protocols which were referenced but never defined.
6459     Entry =
6460         new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy,
6461                                  false, llvm::GlobalValue::ExternalLinkage,
6462                                  nullptr,
6463                                  "\01l_OBJC_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString());
6464 
6465   return Entry;
6466 }
6467 
6468 /// GetOrEmitProtocol - Generate the protocol meta-data:
6469 /// @code
6470 /// struct _protocol_t {
6471 ///   id isa;  // NULL
6472 ///   const char * const protocol_name;
6473 ///   const struct _protocol_list_t * protocol_list; // super protocols
6474 ///   const struct method_list_t * const instance_methods;
6475 ///   const struct method_list_t * const class_methods;
6476 ///   const struct method_list_t *optionalInstanceMethods;
6477 ///   const struct method_list_t *optionalClassMethods;
6478 ///   const struct _prop_list_t * properties;
6479 ///   const uint32_t size;  // sizeof(struct _protocol_t)
6480 ///   const uint32_t flags;  // = 0
6481 ///   const char ** extendedMethodTypes;
6482 ///   const char *demangledName;
6483 ///   const struct _prop_list_t * class_properties;
6484 /// }
6485 /// @endcode
6486 ///
6487 
6488 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol(
6489   const ObjCProtocolDecl *PD) {
6490   llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
6491 
6492   // Early exit if a defining object has already been generated.
6493   if (Entry && Entry->hasInitializer())
6494     return Entry;
6495 
6496   // Use the protocol definition, if there is one.
6497   if (const ObjCProtocolDecl *Def = PD->getDefinition())
6498     PD = Def;
6499 
6500   // Construct method lists.
6501   std::vector<llvm::Constant*> InstanceMethods, ClassMethods;
6502   std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods;
6503   std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt;
6504   for (const auto *MD : PD->instance_methods()) {
6505     llvm::Constant *C = GetMethodDescriptionConstant(MD);
6506     if (!C)
6507       return GetOrEmitProtocolRef(PD);
6508 
6509     if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
6510       OptInstanceMethods.push_back(C);
6511       OptMethodTypesExt.push_back(GetMethodVarType(MD, true));
6512     } else {
6513       InstanceMethods.push_back(C);
6514       MethodTypesExt.push_back(GetMethodVarType(MD, true));
6515     }
6516   }
6517 
6518   for (const auto *MD : PD->class_methods()) {
6519     llvm::Constant *C = GetMethodDescriptionConstant(MD);
6520     if (!C)
6521       return GetOrEmitProtocolRef(PD);
6522 
6523     if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
6524       OptClassMethods.push_back(C);
6525       OptMethodTypesExt.push_back(GetMethodVarType(MD, true));
6526     } else {
6527       ClassMethods.push_back(C);
6528       MethodTypesExt.push_back(GetMethodVarType(MD, true));
6529     }
6530   }
6531 
6532   MethodTypesExt.insert(MethodTypesExt.end(),
6533                         OptMethodTypesExt.begin(), OptMethodTypesExt.end());
6534 
6535   llvm::Constant *Values[13];
6536   // isa is NULL
6537   Values[0] = llvm::Constant::getNullValue(ObjCTypes.ObjectPtrTy);
6538   Values[1] = GetClassName(PD->getObjCRuntimeNameAsString());
6539   Values[2] = EmitProtocolList("\01l_OBJC_$_PROTOCOL_REFS_" + PD->getObjCRuntimeNameAsString(),
6540                                PD->protocol_begin(),
6541                                PD->protocol_end());
6542 
6543   Values[3] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_"
6544                              + PD->getObjCRuntimeNameAsString(),
6545                              "__DATA, __objc_const",
6546                              InstanceMethods);
6547   Values[4] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_"
6548                              + PD->getObjCRuntimeNameAsString(),
6549                              "__DATA, __objc_const",
6550                              ClassMethods);
6551   Values[5] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"
6552                              + PD->getObjCRuntimeNameAsString(),
6553                              "__DATA, __objc_const",
6554                              OptInstanceMethods);
6555   Values[6] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"
6556                              + PD->getObjCRuntimeNameAsString(),
6557                              "__DATA, __objc_const",
6558                              OptClassMethods);
6559   Values[7] = EmitPropertyList(
6560       "\01l_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(),
6561       nullptr, PD, ObjCTypes, false);
6562   uint32_t Size =
6563     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy);
6564   Values[8] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
6565   Values[9] = llvm::Constant::getNullValue(ObjCTypes.IntTy);
6566   Values[10] = EmitProtocolMethodTypes("\01l_OBJC_$_PROTOCOL_METHOD_TYPES_"
6567                                        + PD->getObjCRuntimeNameAsString(),
6568                                        MethodTypesExt, ObjCTypes);
6569   // const char *demangledName;
6570   Values[11] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
6571 
6572   Values[12] = EmitPropertyList(
6573       "\01l_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(),
6574       nullptr, PD, ObjCTypes, true);
6575 
6576   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolnfABITy,
6577                                                    Values);
6578 
6579   if (Entry) {
6580     // Already created, fix the linkage and update the initializer.
6581     Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
6582     Entry->setInitializer(Init);
6583   } else {
6584     Entry =
6585       new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy,
6586                                false, llvm::GlobalValue::WeakAnyLinkage, Init,
6587                                "\01l_OBJC_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString());
6588     Entry->setAlignment(
6589       CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABITy));
6590 
6591     Protocols[PD->getIdentifier()] = Entry;
6592   }
6593   Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
6594   CGM.addCompilerUsedGlobal(Entry);
6595 
6596   // Use this protocol meta-data to build protocol list table in section
6597   // __DATA, __objc_protolist
6598   llvm::GlobalVariable *PTGV =
6599     new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy,
6600                              false, llvm::GlobalValue::WeakAnyLinkage, Entry,
6601                              "\01l_OBJC_LABEL_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString());
6602   PTGV->setAlignment(
6603     CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy));
6604   PTGV->setSection("__DATA, __objc_protolist, coalesced, no_dead_strip");
6605   PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6606   CGM.addCompilerUsedGlobal(PTGV);
6607   return Entry;
6608 }
6609 
6610 /// EmitProtocolList - Generate protocol list meta-data:
6611 /// @code
6612 /// struct _protocol_list_t {
6613 ///   long protocol_count;   // Note, this is 32/64 bit
6614 ///   struct _protocol_t[protocol_count];
6615 /// }
6616 /// @endcode
6617 ///
6618 llvm::Constant *
6619 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name,
6620                                       ObjCProtocolDecl::protocol_iterator begin,
6621                                       ObjCProtocolDecl::protocol_iterator end) {
6622   SmallVector<llvm::Constant *, 16> ProtocolRefs;
6623 
6624   // Just return null for empty protocol lists
6625   if (begin == end)
6626     return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
6627 
6628   // FIXME: We shouldn't need to do this lookup here, should we?
6629   SmallString<256> TmpName;
6630   Name.toVector(TmpName);
6631   llvm::GlobalVariable *GV =
6632     CGM.getModule().getGlobalVariable(TmpName.str(), true);
6633   if (GV)
6634     return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy);
6635 
6636   for (; begin != end; ++begin)
6637     ProtocolRefs.push_back(GetProtocolRef(*begin));  // Implemented???
6638 
6639   // This list is null terminated.
6640   ProtocolRefs.push_back(llvm::Constant::getNullValue(
6641                            ObjCTypes.ProtocolnfABIPtrTy));
6642 
6643   llvm::Constant *Values[2];
6644   Values[0] =
6645     llvm::ConstantInt::get(ObjCTypes.LongTy, ProtocolRefs.size() - 1);
6646   Values[1] =
6647     llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolnfABIPtrTy,
6648                                                   ProtocolRefs.size()),
6649                              ProtocolRefs);
6650 
6651   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
6652   GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
6653                                 llvm::GlobalValue::PrivateLinkage,
6654                                 Init, Name);
6655   GV->setSection("__DATA, __objc_const");
6656   GV->setAlignment(
6657     CGM.getDataLayout().getABITypeAlignment(Init->getType()));
6658   CGM.addCompilerUsedGlobal(GV);
6659   return llvm::ConstantExpr::getBitCast(GV,
6660                                         ObjCTypes.ProtocolListnfABIPtrTy);
6661 }
6662 
6663 /// GetMethodDescriptionConstant - This routine build following meta-data:
6664 /// struct _objc_method {
6665 ///   SEL _cmd;
6666 ///   char *method_type;
6667 ///   char *_imp;
6668 /// }
6669 
6670 llvm::Constant *
6671 CGObjCNonFragileABIMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) {
6672   llvm::Constant *Desc[3];
6673   Desc[0] =
6674     llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
6675                                    ObjCTypes.SelectorPtrTy);
6676   Desc[1] = GetMethodVarType(MD);
6677   if (!Desc[1])
6678     return nullptr;
6679 
6680   // Protocol methods have no implementation. So, this entry is always NULL.
6681   Desc[2] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
6682   return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Desc);
6683 }
6684 
6685 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference.
6686 /// This code gen. amounts to generating code for:
6687 /// @code
6688 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar;
6689 /// @encode
6690 ///
6691 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar(
6692                                                CodeGen::CodeGenFunction &CGF,
6693                                                QualType ObjectTy,
6694                                                llvm::Value *BaseValue,
6695                                                const ObjCIvarDecl *Ivar,
6696                                                unsigned CVRQualifiers) {
6697   ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCObjectType>()->getInterface();
6698   llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar);
6699   return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
6700                                   Offset);
6701 }
6702 
6703 llvm::Value *CGObjCNonFragileABIMac::EmitIvarOffset(
6704   CodeGen::CodeGenFunction &CGF,
6705   const ObjCInterfaceDecl *Interface,
6706   const ObjCIvarDecl *Ivar) {
6707   llvm::Value *IvarOffsetValue = ObjCIvarOffsetVariable(Interface, Ivar);
6708   IvarOffsetValue = CGF.Builder.CreateAlignedLoad(IvarOffsetValue,
6709                                                   CGF.getSizeAlign(), "ivar");
6710   if (IsIvarOffsetKnownIdempotent(CGF, Ivar))
6711     cast<llvm::LoadInst>(IvarOffsetValue)
6712         ->setMetadata(CGM.getModule().getMDKindID("invariant.load"),
6713                       llvm::MDNode::get(VMContext, None));
6714 
6715   // This could be 32bit int or 64bit integer depending on the architecture.
6716   // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value
6717   //  as this is what caller always expectes.
6718   if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy)
6719     IvarOffsetValue = CGF.Builder.CreateIntCast(
6720         IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv");
6721   return IvarOffsetValue;
6722 }
6723 
6724 static void appendSelectorForMessageRefTable(std::string &buffer,
6725                                              Selector selector) {
6726   if (selector.isUnarySelector()) {
6727     buffer += selector.getNameForSlot(0);
6728     return;
6729   }
6730 
6731   for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) {
6732     buffer += selector.getNameForSlot(i);
6733     buffer += '_';
6734   }
6735 }
6736 
6737 /// Emit a "vtable" message send.  We emit a weak hidden-visibility
6738 /// struct, initially containing the selector pointer and a pointer to
6739 /// a "fixup" variant of the appropriate objc_msgSend.  To call, we
6740 /// load and call the function pointer, passing the address of the
6741 /// struct as the second parameter.  The runtime determines whether
6742 /// the selector is currently emitted using vtable dispatch; if so, it
6743 /// substitutes a stub function which simply tail-calls through the
6744 /// appropriate vtable slot, and if not, it substitues a stub function
6745 /// which tail-calls objc_msgSend.  Both stubs adjust the selector
6746 /// argument to correctly point to the selector.
6747 RValue
6748 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF,
6749                                               ReturnValueSlot returnSlot,
6750                                               QualType resultType,
6751                                               Selector selector,
6752                                               llvm::Value *arg0,
6753                                               QualType arg0Type,
6754                                               bool isSuper,
6755                                               const CallArgList &formalArgs,
6756                                               const ObjCMethodDecl *method) {
6757   // Compute the actual arguments.
6758   CallArgList args;
6759 
6760   // First argument: the receiver / super-call structure.
6761   if (!isSuper)
6762     arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy);
6763   args.add(RValue::get(arg0), arg0Type);
6764 
6765   // Second argument: a pointer to the message ref structure.  Leave
6766   // the actual argument value blank for now.
6767   args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy);
6768 
6769   args.insert(args.end(), formalArgs.begin(), formalArgs.end());
6770 
6771   MessageSendInfo MSI = getMessageSendInfo(method, resultType, args);
6772 
6773   NullReturnState nullReturn;
6774 
6775   // Find the function to call and the mangled name for the message
6776   // ref structure.  Using a different mangled name wouldn't actually
6777   // be a problem; it would just be a waste.
6778   //
6779   // The runtime currently never uses vtable dispatch for anything
6780   // except normal, non-super message-sends.
6781   // FIXME: don't use this for that.
6782   llvm::Constant *fn = nullptr;
6783   std::string messageRefName("\01l_");
6784   if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) {
6785     if (isSuper) {
6786       fn = ObjCTypes.getMessageSendSuper2StretFixupFn();
6787       messageRefName += "objc_msgSendSuper2_stret_fixup";
6788     } else {
6789       nullReturn.init(CGF, arg0);
6790       fn = ObjCTypes.getMessageSendStretFixupFn();
6791       messageRefName += "objc_msgSend_stret_fixup";
6792     }
6793   } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) {
6794     fn = ObjCTypes.getMessageSendFpretFixupFn();
6795     messageRefName += "objc_msgSend_fpret_fixup";
6796   } else {
6797     if (isSuper) {
6798       fn = ObjCTypes.getMessageSendSuper2FixupFn();
6799       messageRefName += "objc_msgSendSuper2_fixup";
6800     } else {
6801       fn = ObjCTypes.getMessageSendFixupFn();
6802       messageRefName += "objc_msgSend_fixup";
6803     }
6804   }
6805   assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend");
6806   messageRefName += '_';
6807 
6808   // Append the selector name, except use underscores anywhere we
6809   // would have used colons.
6810   appendSelectorForMessageRefTable(messageRefName, selector);
6811 
6812   llvm::GlobalVariable *messageRef
6813     = CGM.getModule().getGlobalVariable(messageRefName);
6814   if (!messageRef) {
6815     // Build the message ref structure.
6816     llvm::Constant *values[] = { fn, GetMethodVarName(selector) };
6817     llvm::Constant *init = llvm::ConstantStruct::getAnon(values);
6818     messageRef = new llvm::GlobalVariable(CGM.getModule(),
6819                                           init->getType(),
6820                                           /*constant*/ false,
6821                                           llvm::GlobalValue::WeakAnyLinkage,
6822                                           init,
6823                                           messageRefName);
6824     messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility);
6825     messageRef->setAlignment(16);
6826     messageRef->setSection("__DATA, __objc_msgrefs, coalesced");
6827   }
6828 
6829   bool requiresnullCheck = false;
6830   if (CGM.getLangOpts().ObjCAutoRefCount && method)
6831     for (const auto *ParamDecl : method->params()) {
6832       if (ParamDecl->hasAttr<NSConsumedAttr>()) {
6833         if (!nullReturn.NullBB)
6834           nullReturn.init(CGF, arg0);
6835         requiresnullCheck = true;
6836         break;
6837       }
6838     }
6839 
6840   Address mref =
6841     Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy),
6842             CGF.getPointerAlign());
6843 
6844   // Update the message ref argument.
6845   args[1].RV = RValue::get(mref.getPointer());
6846 
6847   // Load the function to call from the message ref table.
6848   Address calleeAddr =
6849       CGF.Builder.CreateStructGEP(mref, 0, CharUnits::Zero());
6850   llvm::Value *callee = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn");
6851 
6852   callee = CGF.Builder.CreateBitCast(callee, MSI.MessengerType);
6853 
6854   RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args);
6855   return nullReturn.complete(CGF, result, resultType, formalArgs,
6856                              requiresnullCheck ? method : nullptr);
6857 }
6858 
6859 /// Generate code for a message send expression in the nonfragile abi.
6860 CodeGen::RValue
6861 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
6862                                             ReturnValueSlot Return,
6863                                             QualType ResultType,
6864                                             Selector Sel,
6865                                             llvm::Value *Receiver,
6866                                             const CallArgList &CallArgs,
6867                                             const ObjCInterfaceDecl *Class,
6868                                             const ObjCMethodDecl *Method) {
6869   return isVTableDispatchedSelector(Sel)
6870     ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
6871                             Receiver, CGF.getContext().getObjCIdType(),
6872                             false, CallArgs, Method)
6873     : EmitMessageSend(CGF, Return, ResultType,
6874                       EmitSelector(CGF, Sel),
6875                       Receiver, CGF.getContext().getObjCIdType(),
6876                       false, CallArgs, Method, Class, ObjCTypes);
6877 }
6878 
6879 llvm::GlobalVariable *
6880 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name, bool Weak) {
6881   llvm::GlobalValue::LinkageTypes L =
6882       Weak ? llvm::GlobalValue::ExternalWeakLinkage
6883            : llvm::GlobalValue::ExternalLinkage;
6884 
6885   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name);
6886 
6887   if (!GV)
6888     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABITy,
6889                                   false, L, nullptr, Name);
6890 
6891   assert(GV->getLinkage() == L);
6892   return GV;
6893 }
6894 
6895 llvm::Value *CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF,
6896                                                         IdentifierInfo *II,
6897                                                         bool Weak,
6898                                                         const ObjCInterfaceDecl *ID) {
6899   CharUnits Align = CGF.getPointerAlign();
6900   llvm::GlobalVariable *&Entry = ClassReferences[II];
6901 
6902   if (!Entry) {
6903     StringRef Name = ID ? ID->getObjCRuntimeNameAsString() : II->getName();
6904     std::string ClassName = (getClassSymbolPrefix() + Name).str();
6905     llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName, Weak);
6906     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
6907                                      false, llvm::GlobalValue::PrivateLinkage,
6908                                      ClassGV, "OBJC_CLASSLIST_REFERENCES_$_");
6909     Entry->setAlignment(Align.getQuantity());
6910     Entry->setSection("__DATA, __objc_classrefs, regular, no_dead_strip");
6911     CGM.addCompilerUsedGlobal(Entry);
6912   }
6913   return CGF.Builder.CreateAlignedLoad(Entry, Align);
6914 }
6915 
6916 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF,
6917                                                   const ObjCInterfaceDecl *ID) {
6918   // If the class has the objc_runtime_visible attribute, we need to
6919   // use the Objective-C runtime to get the class.
6920   if (ID->hasAttr<ObjCRuntimeVisibleAttr>())
6921     return EmitClassRefViaRuntime(CGF, ID, ObjCTypes);
6922 
6923   return EmitClassRefFromId(CGF, ID->getIdentifier(), ID->isWeakImported(), ID);
6924 }
6925 
6926 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef(
6927                                                     CodeGenFunction &CGF) {
6928   IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool");
6929   return EmitClassRefFromId(CGF, II, false, nullptr);
6930 }
6931 
6932 llvm::Value *
6933 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF,
6934                                           const ObjCInterfaceDecl *ID) {
6935   CharUnits Align = CGF.getPointerAlign();
6936   llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()];
6937 
6938   if (!Entry) {
6939     llvm::SmallString<64> ClassName(getClassSymbolPrefix());
6940     ClassName += ID->getObjCRuntimeNameAsString();
6941     llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName.str(),
6942                                                    ID->isWeakImported());
6943     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
6944                                      false, llvm::GlobalValue::PrivateLinkage,
6945                                      ClassGV, "OBJC_CLASSLIST_SUP_REFS_$_");
6946     Entry->setAlignment(Align.getQuantity());
6947     Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip");
6948     CGM.addCompilerUsedGlobal(Entry);
6949   }
6950   return CGF.Builder.CreateAlignedLoad(Entry, Align);
6951 }
6952 
6953 /// EmitMetaClassRef - Return a Value * of the address of _class_t
6954 /// meta-data
6955 ///
6956 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF,
6957                                                       const ObjCInterfaceDecl *ID,
6958                                                       bool Weak) {
6959   CharUnits Align = CGF.getPointerAlign();
6960   llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()];
6961   if (!Entry) {
6962     llvm::SmallString<64> MetaClassName(getMetaclassSymbolPrefix());
6963     MetaClassName += ID->getObjCRuntimeNameAsString();
6964     llvm::GlobalVariable *MetaClassGV =
6965       GetClassGlobal(MetaClassName.str(), Weak);
6966 
6967     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
6968                                      false, llvm::GlobalValue::PrivateLinkage,
6969                                      MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_");
6970     Entry->setAlignment(Align.getQuantity());
6971 
6972     Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip");
6973     CGM.addCompilerUsedGlobal(Entry);
6974   }
6975 
6976   return CGF.Builder.CreateAlignedLoad(Entry, Align);
6977 }
6978 
6979 /// GetClass - Return a reference to the class for the given interface
6980 /// decl.
6981 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF,
6982                                               const ObjCInterfaceDecl *ID) {
6983   if (ID->isWeakImported()) {
6984     llvm::SmallString<64> ClassName(getClassSymbolPrefix());
6985     ClassName += ID->getObjCRuntimeNameAsString();
6986     llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName.str(), true);
6987     (void)ClassGV;
6988     assert(ClassGV->hasExternalWeakLinkage());
6989   }
6990 
6991   return EmitClassRef(CGF, ID);
6992 }
6993 
6994 /// Generates a message send where the super is the receiver.  This is
6995 /// a message send to self with special delivery semantics indicating
6996 /// which class's method should be called.
6997 CodeGen::RValue
6998 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
6999                                                  ReturnValueSlot Return,
7000                                                  QualType ResultType,
7001                                                  Selector Sel,
7002                                                  const ObjCInterfaceDecl *Class,
7003                                                  bool isCategoryImpl,
7004                                                  llvm::Value *Receiver,
7005                                                  bool IsClassMessage,
7006                                                  const CodeGen::CallArgList &CallArgs,
7007                                                  const ObjCMethodDecl *Method) {
7008   // ...
7009   // Create and init a super structure; this is a (receiver, class)
7010   // pair we will pass to objc_msgSendSuper.
7011   Address ObjCSuper =
7012     CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(),
7013                          "objc_super");
7014 
7015   llvm::Value *ReceiverAsObject =
7016     CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
7017   CGF.Builder.CreateStore(
7018       ReceiverAsObject,
7019       CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero()));
7020 
7021   // If this is a class message the metaclass is passed as the target.
7022   llvm::Value *Target;
7023   if (IsClassMessage)
7024       Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported());
7025   else
7026     Target = EmitSuperClassRef(CGF, Class);
7027 
7028   // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
7029   // ObjCTypes types.
7030   llvm::Type *ClassTy =
7031     CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
7032   Target = CGF.Builder.CreateBitCast(Target, ClassTy);
7033   CGF.Builder.CreateStore(
7034       Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize()));
7035 
7036   return (isVTableDispatchedSelector(Sel))
7037     ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
7038                             ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
7039                             true, CallArgs, Method)
7040     : EmitMessageSend(CGF, Return, ResultType,
7041                       EmitSelector(CGF, Sel),
7042                       ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
7043                       true, CallArgs, Method, Class, ObjCTypes);
7044 }
7045 
7046 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF,
7047                                                   Selector Sel) {
7048   Address Addr = EmitSelectorAddr(CGF, Sel);
7049 
7050   llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr);
7051   LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"),
7052                   llvm::MDNode::get(VMContext, None));
7053   return LI;
7054 }
7055 
7056 Address CGObjCNonFragileABIMac::EmitSelectorAddr(CodeGenFunction &CGF,
7057                                                  Selector Sel) {
7058   llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
7059 
7060   CharUnits Align = CGF.getPointerAlign();
7061   if (!Entry) {
7062     llvm::Constant *Casted =
7063       llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
7064                                      ObjCTypes.SelectorPtrTy);
7065     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.SelectorPtrTy,
7066                                      false, llvm::GlobalValue::PrivateLinkage,
7067                                      Casted, "OBJC_SELECTOR_REFERENCES_");
7068     Entry->setExternallyInitialized(true);
7069     Entry->setSection("__DATA, __objc_selrefs, literal_pointers, no_dead_strip");
7070     Entry->setAlignment(Align.getQuantity());
7071     CGM.addCompilerUsedGlobal(Entry);
7072   }
7073 
7074   return Address(Entry, Align);
7075 }
7076 
7077 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
7078 /// objc_assign_ivar (id src, id *dst, ptrdiff_t)
7079 ///
7080 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
7081                                                 llvm::Value *src,
7082                                                 Address dst,
7083                                                 llvm::Value *ivarOffset) {
7084   llvm::Type * SrcTy = src->getType();
7085   if (!isa<llvm::PointerType>(SrcTy)) {
7086     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7087     assert(Size <= 8 && "does not support size > 8");
7088     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7089            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7090     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7091   }
7092   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7093   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7094   llvm::Value *args[] = { src, dst.getPointer(), ivarOffset };
7095   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
7096 }
7097 
7098 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
7099 /// objc_assign_strongCast (id src, id *dst)
7100 ///
7101 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign(
7102   CodeGen::CodeGenFunction &CGF,
7103   llvm::Value *src, Address dst) {
7104   llvm::Type * SrcTy = src->getType();
7105   if (!isa<llvm::PointerType>(SrcTy)) {
7106     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7107     assert(Size <= 8 && "does not support size > 8");
7108     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7109            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7110     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7111   }
7112   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7113   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7114   llvm::Value *args[] = { src, dst.getPointer() };
7115   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
7116                               args, "weakassign");
7117 }
7118 
7119 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable(
7120   CodeGen::CodeGenFunction &CGF,
7121   Address DestPtr,
7122   Address SrcPtr,
7123   llvm::Value *Size) {
7124   SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy);
7125   DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy);
7126   llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size };
7127   CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
7128 }
7129 
7130 /// EmitObjCWeakRead - Code gen for loading value of a __weak
7131 /// object: objc_read_weak (id *src)
7132 ///
7133 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead(
7134   CodeGen::CodeGenFunction &CGF,
7135   Address AddrWeakObj) {
7136   llvm::Type *DestTy = AddrWeakObj.getElementType();
7137   AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy);
7138   llvm::Value *read_weak =
7139     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
7140                                 AddrWeakObj.getPointer(), "weakread");
7141   read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
7142   return read_weak;
7143 }
7144 
7145 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
7146 /// objc_assign_weak (id src, id *dst)
7147 ///
7148 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
7149                                                 llvm::Value *src, Address dst) {
7150   llvm::Type * SrcTy = src->getType();
7151   if (!isa<llvm::PointerType>(SrcTy)) {
7152     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7153     assert(Size <= 8 && "does not support size > 8");
7154     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7155            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7156     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7157   }
7158   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7159   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7160   llvm::Value *args[] = { src, dst.getPointer() };
7161   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
7162                               args, "weakassign");
7163 }
7164 
7165 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
7166 /// objc_assign_global (id src, id *dst)
7167 ///
7168 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
7169                                           llvm::Value *src, Address dst,
7170                                           bool threadlocal) {
7171   llvm::Type * SrcTy = src->getType();
7172   if (!isa<llvm::PointerType>(SrcTy)) {
7173     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7174     assert(Size <= 8 && "does not support size > 8");
7175     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7176            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7177     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7178   }
7179   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7180   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7181   llvm::Value *args[] = { src, dst.getPointer() };
7182   if (!threadlocal)
7183     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
7184                                 args, "globalassign");
7185   else
7186     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
7187                                 args, "threadlocalassign");
7188 }
7189 
7190 void
7191 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
7192                                              const ObjCAtSynchronizedStmt &S) {
7193   EmitAtSynchronizedStmt(CGF, S,
7194       cast<llvm::Function>(ObjCTypes.getSyncEnterFn()),
7195       cast<llvm::Function>(ObjCTypes.getSyncExitFn()));
7196 }
7197 
7198 llvm::Constant *
7199 CGObjCNonFragileABIMac::GetEHType(QualType T) {
7200   // There's a particular fixed type info for 'id'.
7201   if (T->isObjCIdType() ||
7202       T->isObjCQualifiedIdType()) {
7203     llvm::Constant *IDEHType =
7204       CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id");
7205     if (!IDEHType)
7206       IDEHType =
7207         new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy,
7208                                  false,
7209                                  llvm::GlobalValue::ExternalLinkage,
7210                                  nullptr, "OBJC_EHTYPE_id");
7211     return IDEHType;
7212   }
7213 
7214   // All other types should be Objective-C interface pointer types.
7215   const ObjCObjectPointerType *PT =
7216     T->getAs<ObjCObjectPointerType>();
7217   assert(PT && "Invalid @catch type.");
7218   const ObjCInterfaceType *IT = PT->getInterfaceType();
7219   assert(IT && "Invalid @catch type.");
7220   return GetInterfaceEHType(IT->getDecl(), false);
7221 }
7222 
7223 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF,
7224                                          const ObjCAtTryStmt &S) {
7225   EmitTryCatchStmt(CGF, S,
7226       cast<llvm::Function>(ObjCTypes.getObjCBeginCatchFn()),
7227       cast<llvm::Function>(ObjCTypes.getObjCEndCatchFn()),
7228       cast<llvm::Function>(ObjCTypes.getExceptionRethrowFn()));
7229 }
7230 
7231 /// EmitThrowStmt - Generate code for a throw statement.
7232 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
7233                                            const ObjCAtThrowStmt &S,
7234                                            bool ClearInsertionPoint) {
7235   if (const Expr *ThrowExpr = S.getThrowExpr()) {
7236     llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
7237     Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
7238     CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception)
7239       .setDoesNotReturn();
7240   } else {
7241     CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn())
7242       .setDoesNotReturn();
7243   }
7244 
7245   CGF.Builder.CreateUnreachable();
7246   if (ClearInsertionPoint)
7247     CGF.Builder.ClearInsertionPoint();
7248 }
7249 
7250 llvm::Constant *
7251 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID,
7252                                            bool ForDefinition) {
7253   llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()];
7254 
7255   // If we don't need a definition, return the entry if found or check
7256   // if we use an external reference.
7257   if (!ForDefinition) {
7258     if (Entry)
7259       return Entry;
7260 
7261     // If this type (or a super class) has the __objc_exception__
7262     // attribute, emit an external reference.
7263     if (hasObjCExceptionAttribute(CGM.getContext(), ID))
7264       return Entry =
7265           new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false,
7266                                    llvm::GlobalValue::ExternalLinkage,
7267                                    nullptr,
7268                                    ("OBJC_EHTYPE_$_" +
7269                                     ID->getObjCRuntimeNameAsString()));
7270   }
7271 
7272   // Otherwise we need to either make a new entry or fill in the
7273   // initializer.
7274   assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition");
7275   llvm::SmallString<64> ClassName(getClassSymbolPrefix());
7276   ClassName += ID->getObjCRuntimeNameAsString();
7277   std::string VTableName = "objc_ehtype_vtable";
7278   llvm::GlobalVariable *VTableGV =
7279     CGM.getModule().getGlobalVariable(VTableName);
7280   if (!VTableGV)
7281     VTableGV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy,
7282                                         false,
7283                                         llvm::GlobalValue::ExternalLinkage,
7284                                         nullptr, VTableName);
7285 
7286   llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2);
7287 
7288   llvm::Constant *Values[] = {
7289       llvm::ConstantExpr::getGetElementPtr(VTableGV->getValueType(), VTableGV,
7290                                            VTableIdx),
7291       GetClassName(ID->getObjCRuntimeNameAsString()),
7292       GetClassGlobal(ClassName.str())};
7293   llvm::Constant *Init =
7294     llvm::ConstantStruct::get(ObjCTypes.EHTypeTy, Values);
7295 
7296   llvm::GlobalValue::LinkageTypes L = ForDefinition
7297                                           ? llvm::GlobalValue::ExternalLinkage
7298                                           : llvm::GlobalValue::WeakAnyLinkage;
7299   if (Entry) {
7300     Entry->setInitializer(Init);
7301   } else {
7302     llvm::SmallString<64> EHTYPEName("OBJC_EHTYPE_$_");
7303     EHTYPEName += ID->getObjCRuntimeNameAsString();
7304     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false,
7305                                      L,
7306                                      Init,
7307                                      EHTYPEName.str());
7308   }
7309   assert(Entry->getLinkage() == L);
7310 
7311   if (ID->getVisibility() == HiddenVisibility)
7312     Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
7313   Entry->setAlignment(CGM.getDataLayout().getABITypeAlignment(
7314       ObjCTypes.EHTypeTy));
7315 
7316   if (ForDefinition)
7317     Entry->setSection("__DATA,__objc_const");
7318 
7319   return Entry;
7320 }
7321 
7322 /* *** */
7323 
7324 CodeGen::CGObjCRuntime *
7325 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) {
7326   switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
7327   case ObjCRuntime::FragileMacOSX:
7328   return new CGObjCMac(CGM);
7329 
7330   case ObjCRuntime::MacOSX:
7331   case ObjCRuntime::iOS:
7332   case ObjCRuntime::WatchOS:
7333     return new CGObjCNonFragileABIMac(CGM);
7334 
7335   case ObjCRuntime::GNUstep:
7336   case ObjCRuntime::GCC:
7337   case ObjCRuntime::ObjFW:
7338     llvm_unreachable("these runtimes are not Mac runtimes");
7339   }
7340   llvm_unreachable("bad runtime");
7341 }
7342