1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/InlineAsm.h" 26 using namespace clang; 27 using namespace CodeGen; 28 29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 30 static TryEmitResult 31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 32 33 /// Given the address of a variable of pointer type, find the correct 34 /// null to store into it. 35 static llvm::Constant *getNullForVariable(llvm::Value *addr) { 36 llvm::Type *type = 37 cast<llvm::PointerType>(addr->getType())->getElementType(); 38 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 39 } 40 41 /// Emits an instance of NSConstantString representing the object. 42 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 43 { 44 llvm::Constant *C = 45 CGM.getObjCRuntime().GenerateConstantString(E->getString()); 46 // FIXME: This bitcast should just be made an invariant on the Runtime. 47 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 48 } 49 50 /// Emit a selector. 51 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 52 // Untyped selector. 53 // Note that this implementation allows for non-constant strings to be passed 54 // as arguments to @selector(). Currently, the only thing preventing this 55 // behaviour is the type checking in the front end. 56 return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector()); 57 } 58 59 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 60 // FIXME: This should pass the Decl not the name. 61 return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol()); 62 } 63 64 /// \brief Adjust the type of the result of an Objective-C message send 65 /// expression when the method has a related result type. 66 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 67 const Expr *E, 68 const ObjCMethodDecl *Method, 69 RValue Result) { 70 if (!Method) 71 return Result; 72 73 if (!Method->hasRelatedResultType() || 74 CGF.getContext().hasSameType(E->getType(), Method->getResultType()) || 75 !Result.isScalar()) 76 return Result; 77 78 // We have applied a related result type. Cast the rvalue appropriately. 79 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 80 CGF.ConvertType(E->getType()))); 81 } 82 83 /// Decide whether to extend the lifetime of the receiver of a 84 /// returns-inner-pointer message. 85 static bool 86 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 87 switch (message->getReceiverKind()) { 88 89 // For a normal instance message, we should extend unless the 90 // receiver is loaded from a variable with precise lifetime. 91 case ObjCMessageExpr::Instance: { 92 const Expr *receiver = message->getInstanceReceiver(); 93 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 94 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 95 receiver = ice->getSubExpr()->IgnoreParens(); 96 97 // Only __strong variables. 98 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 99 return true; 100 101 // All ivars and fields have precise lifetime. 102 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 103 return false; 104 105 // Otherwise, check for variables. 106 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 107 if (!declRef) return true; 108 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 109 if (!var) return true; 110 111 // All variables have precise lifetime except local variables with 112 // automatic storage duration that aren't specially marked. 113 return (var->hasLocalStorage() && 114 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 115 } 116 117 case ObjCMessageExpr::Class: 118 case ObjCMessageExpr::SuperClass: 119 // It's never necessary for class objects. 120 return false; 121 122 case ObjCMessageExpr::SuperInstance: 123 // We generally assume that 'self' lives throughout a method call. 124 return false; 125 } 126 127 llvm_unreachable("invalid receiver kind"); 128 } 129 130 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 131 ReturnValueSlot Return) { 132 // Only the lookup mechanism and first two arguments of the method 133 // implementation vary between runtimes. We can get the receiver and 134 // arguments in generic code. 135 136 bool isDelegateInit = E->isDelegateInitCall(); 137 138 const ObjCMethodDecl *method = E->getMethodDecl(); 139 140 // We don't retain the receiver in delegate init calls, and this is 141 // safe because the receiver value is always loaded from 'self', 142 // which we zero out. We don't want to Block_copy block receivers, 143 // though. 144 bool retainSelf = 145 (!isDelegateInit && 146 CGM.getLangOptions().ObjCAutoRefCount && 147 method && 148 method->hasAttr<NSConsumesSelfAttr>()); 149 150 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 151 bool isSuperMessage = false; 152 bool isClassMessage = false; 153 ObjCInterfaceDecl *OID = 0; 154 // Find the receiver 155 QualType ReceiverType; 156 llvm::Value *Receiver = 0; 157 switch (E->getReceiverKind()) { 158 case ObjCMessageExpr::Instance: 159 ReceiverType = E->getInstanceReceiver()->getType(); 160 if (retainSelf) { 161 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 162 E->getInstanceReceiver()); 163 Receiver = ter.getPointer(); 164 if (ter.getInt()) retainSelf = false; 165 } else 166 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 167 break; 168 169 case ObjCMessageExpr::Class: { 170 ReceiverType = E->getClassReceiver(); 171 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 172 assert(ObjTy && "Invalid Objective-C class message send"); 173 OID = ObjTy->getInterface(); 174 assert(OID && "Invalid Objective-C class message send"); 175 Receiver = Runtime.GetClass(Builder, OID); 176 isClassMessage = true; 177 break; 178 } 179 180 case ObjCMessageExpr::SuperInstance: 181 ReceiverType = E->getSuperType(); 182 Receiver = LoadObjCSelf(); 183 isSuperMessage = true; 184 break; 185 186 case ObjCMessageExpr::SuperClass: 187 ReceiverType = E->getSuperType(); 188 Receiver = LoadObjCSelf(); 189 isSuperMessage = true; 190 isClassMessage = true; 191 break; 192 } 193 194 if (retainSelf) 195 Receiver = EmitARCRetainNonBlock(Receiver); 196 197 // In ARC, we sometimes want to "extend the lifetime" 198 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 199 // messages. 200 if (getLangOptions().ObjCAutoRefCount && method && 201 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 202 shouldExtendReceiverForInnerPointerMessage(E)) 203 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 204 205 QualType ResultType = 206 method ? method->getResultType() : E->getType(); 207 208 CallArgList Args; 209 EmitCallArgs(Args, method, E->arg_begin(), E->arg_end()); 210 211 // For delegate init calls in ARC, do an unsafe store of null into 212 // self. This represents the call taking direct ownership of that 213 // value. We have to do this after emitting the other call 214 // arguments because they might also reference self, but we don't 215 // have to worry about any of them modifying self because that would 216 // be an undefined read and write of an object in unordered 217 // expressions. 218 if (isDelegateInit) { 219 assert(getLangOptions().ObjCAutoRefCount && 220 "delegate init calls should only be marked in ARC"); 221 222 // Do an unsafe store of null into self. 223 llvm::Value *selfAddr = 224 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 225 assert(selfAddr && "no self entry for a delegate init call?"); 226 227 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 228 } 229 230 RValue result; 231 if (isSuperMessage) { 232 // super is only valid in an Objective-C method 233 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 234 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 235 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 236 E->getSelector(), 237 OMD->getClassInterface(), 238 isCategoryImpl, 239 Receiver, 240 isClassMessage, 241 Args, 242 method); 243 } else { 244 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 245 E->getSelector(), 246 Receiver, Args, OID, 247 method); 248 } 249 250 // For delegate init calls in ARC, implicitly store the result of 251 // the call back into self. This takes ownership of the value. 252 if (isDelegateInit) { 253 llvm::Value *selfAddr = 254 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 255 llvm::Value *newSelf = result.getScalarVal(); 256 257 // The delegate return type isn't necessarily a matching type; in 258 // fact, it's quite likely to be 'id'. 259 llvm::Type *selfTy = 260 cast<llvm::PointerType>(selfAddr->getType())->getElementType(); 261 newSelf = Builder.CreateBitCast(newSelf, selfTy); 262 263 Builder.CreateStore(newSelf, selfAddr); 264 } 265 266 return AdjustRelatedResultType(*this, E, method, result); 267 } 268 269 namespace { 270 struct FinishARCDealloc : EHScopeStack::Cleanup { 271 void Emit(CodeGenFunction &CGF, Flags flags) { 272 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 273 274 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 275 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 276 if (!iface->getSuperClass()) return; 277 278 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 279 280 // Call [super dealloc] if we have a superclass. 281 llvm::Value *self = CGF.LoadObjCSelf(); 282 283 CallArgList args; 284 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 285 CGF.getContext().VoidTy, 286 method->getSelector(), 287 iface, 288 isCategory, 289 self, 290 /*is class msg*/ false, 291 args, 292 method); 293 } 294 }; 295 } 296 297 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 298 /// the LLVM function and sets the other context used by 299 /// CodeGenFunction. 300 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 301 const ObjCContainerDecl *CD, 302 SourceLocation StartLoc) { 303 FunctionArgList args; 304 // Check if we should generate debug info for this method. 305 if (CGM.getModuleDebugInfo() && !OMD->hasAttr<NoDebugAttr>()) 306 DebugInfo = CGM.getModuleDebugInfo(); 307 308 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 309 310 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 311 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 312 313 args.push_back(OMD->getSelfDecl()); 314 args.push_back(OMD->getCmdDecl()); 315 316 for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(), 317 E = OMD->param_end(); PI != E; ++PI) 318 args.push_back(*PI); 319 320 CurGD = OMD; 321 322 StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc); 323 324 // In ARC, certain methods get an extra cleanup. 325 if (CGM.getLangOptions().ObjCAutoRefCount && 326 OMD->isInstanceMethod() && 327 OMD->getSelector().isUnarySelector()) { 328 const IdentifierInfo *ident = 329 OMD->getSelector().getIdentifierInfoForSlot(0); 330 if (ident->isStr("dealloc")) 331 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 332 } 333 } 334 335 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 336 LValue lvalue, QualType type); 337 338 /// Generate an Objective-C method. An Objective-C method is a C function with 339 /// its pointer, name, and types registered in the class struture. 340 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 341 StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart()); 342 EmitStmt(OMD->getBody()); 343 FinishFunction(OMD->getBodyRBrace()); 344 } 345 346 /// emitStructGetterCall - Call the runtime function to load a property 347 /// into the return value slot. 348 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 349 bool isAtomic, bool hasStrong) { 350 ASTContext &Context = CGF.getContext(); 351 352 llvm::Value *src = 353 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), 354 ivar, 0).getAddress(); 355 356 // objc_copyStruct (ReturnValue, &structIvar, 357 // sizeof (Type of Ivar), isAtomic, false); 358 CallArgList args; 359 360 llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 361 args.add(RValue::get(dest), Context.VoidPtrTy); 362 363 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 364 args.add(RValue::get(src), Context.VoidPtrTy); 365 366 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 367 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 368 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 369 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 370 371 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 372 CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(Context.VoidTy, args, 373 FunctionType::ExtInfo(), 374 RequiredArgs::All), 375 fn, ReturnValueSlot(), args); 376 } 377 378 /// Determine whether the given architecture supports unaligned atomic 379 /// accesses. They don't have to be fast, just faster than a function 380 /// call and a mutex. 381 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 382 // FIXME: Allow unaligned atomic load/store on x86. (It is not 383 // currently supported by the backend.) 384 return 0; 385 } 386 387 /// Return the maximum size that permits atomic accesses for the given 388 /// architecture. 389 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 390 llvm::Triple::ArchType arch) { 391 // ARM has 8-byte atomic accesses, but it's not clear whether we 392 // want to rely on them here. 393 394 // In the default case, just assume that any size up to a pointer is 395 // fine given adequate alignment. 396 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 397 } 398 399 namespace { 400 class PropertyImplStrategy { 401 public: 402 enum StrategyKind { 403 /// The 'native' strategy is to use the architecture's provided 404 /// reads and writes. 405 Native, 406 407 /// Use objc_setProperty and objc_getProperty. 408 GetSetProperty, 409 410 /// Use objc_setProperty for the setter, but use expression 411 /// evaluation for the getter. 412 SetPropertyAndExpressionGet, 413 414 /// Use objc_copyStruct. 415 CopyStruct, 416 417 /// The 'expression' strategy is to emit normal assignment or 418 /// lvalue-to-rvalue expressions. 419 Expression 420 }; 421 422 StrategyKind getKind() const { return StrategyKind(Kind); } 423 424 bool hasStrongMember() const { return HasStrong; } 425 bool isAtomic() const { return IsAtomic; } 426 bool isCopy() const { return IsCopy; } 427 428 CharUnits getIvarSize() const { return IvarSize; } 429 CharUnits getIvarAlignment() const { return IvarAlignment; } 430 431 PropertyImplStrategy(CodeGenModule &CGM, 432 const ObjCPropertyImplDecl *propImpl); 433 434 private: 435 unsigned Kind : 8; 436 unsigned IsAtomic : 1; 437 unsigned IsCopy : 1; 438 unsigned HasStrong : 1; 439 440 CharUnits IvarSize; 441 CharUnits IvarAlignment; 442 }; 443 } 444 445 /// Pick an implementation strategy for the the given property synthesis. 446 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 447 const ObjCPropertyImplDecl *propImpl) { 448 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 449 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 450 451 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 452 IsAtomic = prop->isAtomic(); 453 HasStrong = false; // doesn't matter here. 454 455 // Evaluate the ivar's size and alignment. 456 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 457 QualType ivarType = ivar->getType(); 458 llvm::tie(IvarSize, IvarAlignment) 459 = CGM.getContext().getTypeInfoInChars(ivarType); 460 461 // If we have a copy property, we always have to use getProperty/setProperty. 462 // TODO: we could actually use setProperty and an expression for non-atomics. 463 if (IsCopy) { 464 Kind = GetSetProperty; 465 return; 466 } 467 468 // Handle retain. 469 if (setterKind == ObjCPropertyDecl::Retain) { 470 // In GC-only, there's nothing special that needs to be done. 471 if (CGM.getLangOptions().getGC() == LangOptions::GCOnly) { 472 // fallthrough 473 474 // In ARC, if the property is non-atomic, use expression emission, 475 // which translates to objc_storeStrong. This isn't required, but 476 // it's slightly nicer. 477 } else if (CGM.getLangOptions().ObjCAutoRefCount && !IsAtomic) { 478 Kind = Expression; 479 return; 480 481 // Otherwise, we need to at least use setProperty. However, if 482 // the property isn't atomic, we can use normal expression 483 // emission for the getter. 484 } else if (!IsAtomic) { 485 Kind = SetPropertyAndExpressionGet; 486 return; 487 488 // Otherwise, we have to use both setProperty and getProperty. 489 } else { 490 Kind = GetSetProperty; 491 return; 492 } 493 } 494 495 // If we're not atomic, just use expression accesses. 496 if (!IsAtomic) { 497 Kind = Expression; 498 return; 499 } 500 501 // Properties on bitfield ivars need to be emitted using expression 502 // accesses even if they're nominally atomic. 503 if (ivar->isBitField()) { 504 Kind = Expression; 505 return; 506 } 507 508 // GC-qualified or ARC-qualified ivars need to be emitted as 509 // expressions. This actually works out to being atomic anyway, 510 // except for ARC __strong, but that should trigger the above code. 511 if (ivarType.hasNonTrivialObjCLifetime() || 512 (CGM.getLangOptions().getGC() && 513 CGM.getContext().getObjCGCAttrKind(ivarType))) { 514 Kind = Expression; 515 return; 516 } 517 518 // Compute whether the ivar has strong members. 519 if (CGM.getLangOptions().getGC()) 520 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 521 HasStrong = recordType->getDecl()->hasObjectMember(); 522 523 // We can never access structs with object members with a native 524 // access, because we need to use write barriers. This is what 525 // objc_copyStruct is for. 526 if (HasStrong) { 527 Kind = CopyStruct; 528 return; 529 } 530 531 // Otherwise, this is target-dependent and based on the size and 532 // alignment of the ivar. 533 534 // If the size of the ivar is not a power of two, give up. We don't 535 // want to get into the business of doing compare-and-swaps. 536 if (!IvarSize.isPowerOfTwo()) { 537 Kind = CopyStruct; 538 return; 539 } 540 541 llvm::Triple::ArchType arch = 542 CGM.getContext().getTargetInfo().getTriple().getArch(); 543 544 // Most architectures require memory to fit within a single cache 545 // line, so the alignment has to be at least the size of the access. 546 // Otherwise we have to grab a lock. 547 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 548 Kind = CopyStruct; 549 return; 550 } 551 552 // If the ivar's size exceeds the architecture's maximum atomic 553 // access size, we have to use CopyStruct. 554 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 555 Kind = CopyStruct; 556 return; 557 } 558 559 // Otherwise, we can use native loads and stores. 560 Kind = Native; 561 } 562 563 /// GenerateObjCGetter - Generate an Objective-C property getter 564 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize 565 /// is illegal within a category. 566 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 567 const ObjCPropertyImplDecl *PID) { 568 llvm::Constant *AtomicHelperFn = 569 GenerateObjCAtomicGetterCopyHelperFunction(PID); 570 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 571 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 572 assert(OMD && "Invalid call to generate getter (empty method)"); 573 StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart()); 574 575 generateObjCGetterBody(IMP, PID, AtomicHelperFn); 576 577 FinishFunction(); 578 } 579 580 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 581 const Expr *getter = propImpl->getGetterCXXConstructor(); 582 if (!getter) return true; 583 584 // Sema only makes only of these when the ivar has a C++ class type, 585 // so the form is pretty constrained. 586 587 // If the property has a reference type, we might just be binding a 588 // reference, in which case the result will be a gl-value. We should 589 // treat this as a non-trivial operation. 590 if (getter->isGLValue()) 591 return false; 592 593 // If we selected a trivial copy-constructor, we're okay. 594 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 595 return (construct->getConstructor()->isTrivial()); 596 597 // The constructor might require cleanups (in which case it's never 598 // trivial). 599 assert(isa<ExprWithCleanups>(getter)); 600 return false; 601 } 602 603 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 604 /// copy the ivar into the resturn slot. 605 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 606 llvm::Value *returnAddr, 607 ObjCIvarDecl *ivar, 608 llvm::Constant *AtomicHelperFn) { 609 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 610 // AtomicHelperFn); 611 CallArgList args; 612 613 // The 1st argument is the return Slot. 614 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 615 616 // The 2nd argument is the address of the ivar. 617 llvm::Value *ivarAddr = 618 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 619 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 620 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 621 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 622 623 // Third argument is the helper function. 624 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 625 626 llvm::Value *copyCppAtomicObjectFn = 627 CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction(); 628 CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args, 629 FunctionType::ExtInfo(), 630 RequiredArgs::All), 631 copyCppAtomicObjectFn, ReturnValueSlot(), args); 632 } 633 634 void 635 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 636 const ObjCPropertyImplDecl *propImpl, 637 llvm::Constant *AtomicHelperFn) { 638 // If there's a non-trivial 'get' expression, we just have to emit that. 639 if (!hasTrivialGetExpr(propImpl)) { 640 if (!AtomicHelperFn) { 641 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 642 /*nrvo*/ 0); 643 EmitReturnStmt(ret); 644 } 645 else { 646 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 647 emitCPPObjectAtomicGetterCall(*this, ReturnValue, 648 ivar, AtomicHelperFn); 649 } 650 return; 651 } 652 653 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 654 QualType propType = prop->getType(); 655 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 656 657 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 658 659 // Pick an implementation strategy. 660 PropertyImplStrategy strategy(CGM, propImpl); 661 switch (strategy.getKind()) { 662 case PropertyImplStrategy::Native: { 663 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 664 665 // Currently, all atomic accesses have to be through integer 666 // types, so there's no point in trying to pick a prettier type. 667 llvm::Type *bitcastType = 668 llvm::Type::getIntNTy(getLLVMContext(), 669 getContext().toBits(strategy.getIvarSize())); 670 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 671 672 // Perform an atomic load. This does not impose ordering constraints. 673 llvm::Value *ivarAddr = LV.getAddress(); 674 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 675 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 676 load->setAlignment(strategy.getIvarAlignment().getQuantity()); 677 load->setAtomic(llvm::Unordered); 678 679 // Store that value into the return address. Doing this with a 680 // bitcast is likely to produce some pretty ugly IR, but it's not 681 // the *most* terrible thing in the world. 682 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType)); 683 684 // Make sure we don't do an autorelease. 685 AutoreleaseResult = false; 686 return; 687 } 688 689 case PropertyImplStrategy::GetSetProperty: { 690 llvm::Value *getPropertyFn = 691 CGM.getObjCRuntime().GetPropertyGetFunction(); 692 if (!getPropertyFn) { 693 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 694 return; 695 } 696 697 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 698 // FIXME: Can't this be simpler? This might even be worse than the 699 // corresponding gcc code. 700 llvm::Value *cmd = 701 Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd"); 702 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 703 llvm::Value *ivarOffset = 704 EmitIvarOffset(classImpl->getClassInterface(), ivar); 705 706 CallArgList args; 707 args.add(RValue::get(self), getContext().getObjCIdType()); 708 args.add(RValue::get(cmd), getContext().getObjCSelType()); 709 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 710 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 711 getContext().BoolTy); 712 713 // FIXME: We shouldn't need to get the function info here, the 714 // runtime already should have computed it to build the function. 715 RValue RV = EmitCall(getTypes().arrangeFunctionCall(propType, args, 716 FunctionType::ExtInfo(), 717 RequiredArgs::All), 718 getPropertyFn, ReturnValueSlot(), args); 719 720 // We need to fix the type here. Ivars with copy & retain are 721 // always objects so we don't need to worry about complex or 722 // aggregates. 723 RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(), 724 getTypes().ConvertType(propType))); 725 726 EmitReturnOfRValue(RV, propType); 727 728 // objc_getProperty does an autorelease, so we should suppress ours. 729 AutoreleaseResult = false; 730 731 return; 732 } 733 734 case PropertyImplStrategy::CopyStruct: 735 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 736 strategy.hasStrongMember()); 737 return; 738 739 case PropertyImplStrategy::Expression: 740 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 741 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 742 743 QualType ivarType = ivar->getType(); 744 if (ivarType->isAnyComplexType()) { 745 ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(), 746 LV.isVolatileQualified()); 747 StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified()); 748 } else if (hasAggregateLLVMType(ivarType)) { 749 // The return value slot is guaranteed to not be aliased, but 750 // that's not necessarily the same as "on the stack", so 751 // we still potentially need objc_memmove_collectable. 752 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 753 } else { 754 llvm::Value *value; 755 if (propType->isReferenceType()) { 756 value = LV.getAddress(); 757 } else { 758 // We want to load and autoreleaseReturnValue ARC __weak ivars. 759 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 760 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 761 762 // Otherwise we want to do a simple load, suppressing the 763 // final autorelease. 764 } else { 765 value = EmitLoadOfLValue(LV).getScalarVal(); 766 AutoreleaseResult = false; 767 } 768 769 value = Builder.CreateBitCast(value, ConvertType(propType)); 770 } 771 772 EmitReturnOfRValue(RValue::get(value), propType); 773 } 774 return; 775 } 776 777 } 778 llvm_unreachable("bad @property implementation strategy!"); 779 } 780 781 /// emitStructSetterCall - Call the runtime function to store the value 782 /// from the first formal parameter into the given ivar. 783 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 784 ObjCIvarDecl *ivar) { 785 // objc_copyStruct (&structIvar, &Arg, 786 // sizeof (struct something), true, false); 787 CallArgList args; 788 789 // The first argument is the address of the ivar. 790 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 791 CGF.LoadObjCSelf(), ivar, 0) 792 .getAddress(); 793 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 794 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 795 796 // The second argument is the address of the parameter variable. 797 ParmVarDecl *argVar = *OMD->param_begin(); 798 DeclRefExpr argRef(argVar, argVar->getType().getNonReferenceType(), 799 VK_LValue, SourceLocation()); 800 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 801 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 802 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 803 804 // The third argument is the sizeof the type. 805 llvm::Value *size = 806 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 807 args.add(RValue::get(size), CGF.getContext().getSizeType()); 808 809 // The fourth argument is the 'isAtomic' flag. 810 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 811 812 // The fifth argument is the 'hasStrong' flag. 813 // FIXME: should this really always be false? 814 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 815 816 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 817 CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args, 818 FunctionType::ExtInfo(), 819 RequiredArgs::All), 820 copyStructFn, ReturnValueSlot(), args); 821 } 822 823 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 824 /// the value from the first formal parameter into the given ivar, using 825 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 826 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 827 ObjCMethodDecl *OMD, 828 ObjCIvarDecl *ivar, 829 llvm::Constant *AtomicHelperFn) { 830 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 831 // AtomicHelperFn); 832 CallArgList args; 833 834 // The first argument is the address of the ivar. 835 llvm::Value *ivarAddr = 836 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 837 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 838 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 839 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 840 841 // The second argument is the address of the parameter variable. 842 ParmVarDecl *argVar = *OMD->param_begin(); 843 DeclRefExpr argRef(argVar, argVar->getType().getNonReferenceType(), 844 VK_LValue, SourceLocation()); 845 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 846 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 847 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 848 849 // Third argument is the helper function. 850 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 851 852 llvm::Value *copyCppAtomicObjectFn = 853 CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction(); 854 CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args, 855 FunctionType::ExtInfo(), 856 RequiredArgs::All), 857 copyCppAtomicObjectFn, ReturnValueSlot(), args); 858 859 860 } 861 862 863 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 864 Expr *setter = PID->getSetterCXXAssignment(); 865 if (!setter) return true; 866 867 // Sema only makes only of these when the ivar has a C++ class type, 868 // so the form is pretty constrained. 869 870 // An operator call is trivial if the function it calls is trivial. 871 // This also implies that there's nothing non-trivial going on with 872 // the arguments, because operator= can only be trivial if it's a 873 // synthesized assignment operator and therefore both parameters are 874 // references. 875 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 876 if (const FunctionDecl *callee 877 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 878 if (callee->isTrivial()) 879 return true; 880 return false; 881 } 882 883 assert(isa<ExprWithCleanups>(setter)); 884 return false; 885 } 886 887 void 888 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 889 const ObjCPropertyImplDecl *propImpl, 890 llvm::Constant *AtomicHelperFn) { 891 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 892 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 893 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 894 895 // Just use the setter expression if Sema gave us one and it's 896 // non-trivial. 897 if (!hasTrivialSetExpr(propImpl)) { 898 if (!AtomicHelperFn) 899 // If non-atomic, assignment is called directly. 900 EmitStmt(propImpl->getSetterCXXAssignment()); 901 else 902 // If atomic, assignment is called via a locking api. 903 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 904 AtomicHelperFn); 905 return; 906 } 907 908 PropertyImplStrategy strategy(CGM, propImpl); 909 switch (strategy.getKind()) { 910 case PropertyImplStrategy::Native: { 911 llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()]; 912 913 LValue ivarLValue = 914 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 915 llvm::Value *ivarAddr = ivarLValue.getAddress(); 916 917 // Currently, all atomic accesses have to be through integer 918 // types, so there's no point in trying to pick a prettier type. 919 llvm::Type *bitcastType = 920 llvm::Type::getIntNTy(getLLVMContext(), 921 getContext().toBits(strategy.getIvarSize())); 922 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 923 924 // Cast both arguments to the chosen operation type. 925 argAddr = Builder.CreateBitCast(argAddr, bitcastType); 926 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 927 928 // This bitcast load is likely to cause some nasty IR. 929 llvm::Value *load = Builder.CreateLoad(argAddr); 930 931 // Perform an atomic store. There are no memory ordering requirements. 932 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 933 store->setAlignment(strategy.getIvarAlignment().getQuantity()); 934 store->setAtomic(llvm::Unordered); 935 return; 936 } 937 938 case PropertyImplStrategy::GetSetProperty: 939 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 940 llvm::Value *setPropertyFn = 941 CGM.getObjCRuntime().GetPropertySetFunction(); 942 if (!setPropertyFn) { 943 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 944 return; 945 } 946 947 // Emit objc_setProperty((id) self, _cmd, offset, arg, 948 // <is-atomic>, <is-copy>). 949 llvm::Value *cmd = 950 Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]); 951 llvm::Value *self = 952 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 953 llvm::Value *ivarOffset = 954 EmitIvarOffset(classImpl->getClassInterface(), ivar); 955 llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()]; 956 arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy); 957 958 CallArgList args; 959 args.add(RValue::get(self), getContext().getObjCIdType()); 960 args.add(RValue::get(cmd), getContext().getObjCSelType()); 961 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 962 args.add(RValue::get(arg), getContext().getObjCIdType()); 963 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 964 getContext().BoolTy); 965 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 966 getContext().BoolTy); 967 // FIXME: We shouldn't need to get the function info here, the runtime 968 // already should have computed it to build the function. 969 EmitCall(getTypes().arrangeFunctionCall(getContext().VoidTy, args, 970 FunctionType::ExtInfo(), 971 RequiredArgs::All), 972 setPropertyFn, ReturnValueSlot(), args); 973 return; 974 } 975 976 case PropertyImplStrategy::CopyStruct: 977 emitStructSetterCall(*this, setterMethod, ivar); 978 return; 979 980 case PropertyImplStrategy::Expression: 981 break; 982 } 983 984 // Otherwise, fake up some ASTs and emit a normal assignment. 985 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 986 DeclRefExpr self(selfDecl, selfDecl->getType(), VK_LValue, SourceLocation()); 987 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 988 selfDecl->getType(), CK_LValueToRValue, &self, 989 VK_RValue); 990 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 991 SourceLocation(), &selfLoad, true, true); 992 993 ParmVarDecl *argDecl = *setterMethod->param_begin(); 994 QualType argType = argDecl->getType().getNonReferenceType(); 995 DeclRefExpr arg(argDecl, argType, VK_LValue, SourceLocation()); 996 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 997 argType.getUnqualifiedType(), CK_LValueToRValue, 998 &arg, VK_RValue); 999 1000 // The property type can differ from the ivar type in some situations with 1001 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1002 // The following absurdity is just to ensure well-formed IR. 1003 CastKind argCK = CK_NoOp; 1004 if (ivarRef.getType()->isObjCObjectPointerType()) { 1005 if (argLoad.getType()->isObjCObjectPointerType()) 1006 argCK = CK_BitCast; 1007 else if (argLoad.getType()->isBlockPointerType()) 1008 argCK = CK_BlockPointerToObjCPointerCast; 1009 else 1010 argCK = CK_CPointerToObjCPointerCast; 1011 } else if (ivarRef.getType()->isBlockPointerType()) { 1012 if (argLoad.getType()->isBlockPointerType()) 1013 argCK = CK_BitCast; 1014 else 1015 argCK = CK_AnyPointerToBlockPointerCast; 1016 } else if (ivarRef.getType()->isPointerType()) { 1017 argCK = CK_BitCast; 1018 } 1019 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1020 ivarRef.getType(), argCK, &argLoad, 1021 VK_RValue); 1022 Expr *finalArg = &argLoad; 1023 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1024 argLoad.getType())) 1025 finalArg = &argCast; 1026 1027 1028 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1029 ivarRef.getType(), VK_RValue, OK_Ordinary, 1030 SourceLocation()); 1031 EmitStmt(&assign); 1032 } 1033 1034 /// GenerateObjCSetter - Generate an Objective-C property setter 1035 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize 1036 /// is illegal within a category. 1037 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1038 const ObjCPropertyImplDecl *PID) { 1039 llvm::Constant *AtomicHelperFn = 1040 GenerateObjCAtomicSetterCopyHelperFunction(PID); 1041 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1042 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1043 assert(OMD && "Invalid call to generate setter (empty method)"); 1044 StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart()); 1045 1046 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1047 1048 FinishFunction(); 1049 } 1050 1051 namespace { 1052 struct DestroyIvar : EHScopeStack::Cleanup { 1053 private: 1054 llvm::Value *addr; 1055 const ObjCIvarDecl *ivar; 1056 CodeGenFunction::Destroyer *destroyer; 1057 bool useEHCleanupForArray; 1058 public: 1059 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1060 CodeGenFunction::Destroyer *destroyer, 1061 bool useEHCleanupForArray) 1062 : addr(addr), ivar(ivar), destroyer(destroyer), 1063 useEHCleanupForArray(useEHCleanupForArray) {} 1064 1065 void Emit(CodeGenFunction &CGF, Flags flags) { 1066 LValue lvalue 1067 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1068 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1069 flags.isForNormalCleanup() && useEHCleanupForArray); 1070 } 1071 }; 1072 } 1073 1074 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1075 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1076 llvm::Value *addr, 1077 QualType type) { 1078 llvm::Value *null = getNullForVariable(addr); 1079 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1080 } 1081 1082 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1083 ObjCImplementationDecl *impl) { 1084 CodeGenFunction::RunCleanupsScope scope(CGF); 1085 1086 llvm::Value *self = CGF.LoadObjCSelf(); 1087 1088 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1089 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1090 ivar; ivar = ivar->getNextIvar()) { 1091 QualType type = ivar->getType(); 1092 1093 // Check whether the ivar is a destructible type. 1094 QualType::DestructionKind dtorKind = type.isDestructedType(); 1095 if (!dtorKind) continue; 1096 1097 CodeGenFunction::Destroyer *destroyer = 0; 1098 1099 // Use a call to objc_storeStrong to destroy strong ivars, for the 1100 // general benefit of the tools. 1101 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1102 destroyer = destroyARCStrongWithStore; 1103 1104 // Otherwise use the default for the destruction kind. 1105 } else { 1106 destroyer = CGF.getDestroyer(dtorKind); 1107 } 1108 1109 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1110 1111 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1112 cleanupKind & EHCleanup); 1113 } 1114 1115 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1116 } 1117 1118 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1119 ObjCMethodDecl *MD, 1120 bool ctor) { 1121 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1122 StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart()); 1123 1124 // Emit .cxx_construct. 1125 if (ctor) { 1126 // Suppress the final autorelease in ARC. 1127 AutoreleaseResult = false; 1128 1129 SmallVector<CXXCtorInitializer *, 8> IvarInitializers; 1130 for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(), 1131 E = IMP->init_end(); B != E; ++B) { 1132 CXXCtorInitializer *IvarInit = (*B); 1133 FieldDecl *Field = IvarInit->getAnyMember(); 1134 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1135 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1136 LoadObjCSelf(), Ivar, 0); 1137 EmitAggExpr(IvarInit->getInit(), 1138 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1139 AggValueSlot::DoesNotNeedGCBarriers, 1140 AggValueSlot::IsNotAliased)); 1141 } 1142 // constructor returns 'self'. 1143 CodeGenTypes &Types = CGM.getTypes(); 1144 QualType IdTy(CGM.getContext().getObjCIdType()); 1145 llvm::Value *SelfAsId = 1146 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1147 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1148 1149 // Emit .cxx_destruct. 1150 } else { 1151 emitCXXDestructMethod(*this, IMP); 1152 } 1153 FinishFunction(); 1154 } 1155 1156 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) { 1157 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(); 1158 it++; it++; 1159 const ABIArgInfo &AI = it->info; 1160 // FIXME. Is this sufficient check? 1161 return (AI.getKind() == ABIArgInfo::Indirect); 1162 } 1163 1164 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) { 1165 if (CGM.getLangOptions().getGC() == LangOptions::NonGC) 1166 return false; 1167 if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>()) 1168 return FDTTy->getDecl()->hasObjectMember(); 1169 return false; 1170 } 1171 1172 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1173 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1174 return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self"); 1175 } 1176 1177 QualType CodeGenFunction::TypeOfSelfObject() { 1178 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1179 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1180 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1181 getContext().getCanonicalType(selfDecl->getType())); 1182 return PTy->getPointeeType(); 1183 } 1184 1185 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1186 llvm::Constant *EnumerationMutationFn = 1187 CGM.getObjCRuntime().EnumerationMutationFunction(); 1188 1189 if (!EnumerationMutationFn) { 1190 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1191 return; 1192 } 1193 1194 CGDebugInfo *DI = getDebugInfo(); 1195 if (DI) 1196 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1197 1198 // The local variable comes into scope immediately. 1199 AutoVarEmission variable = AutoVarEmission::invalid(); 1200 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1201 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1202 1203 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1204 1205 // Fast enumeration state. 1206 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1207 llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1208 EmitNullInitialization(StatePtr, StateTy); 1209 1210 // Number of elements in the items array. 1211 static const unsigned NumItems = 16; 1212 1213 // Fetch the countByEnumeratingWithState:objects:count: selector. 1214 IdentifierInfo *II[] = { 1215 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1216 &CGM.getContext().Idents.get("objects"), 1217 &CGM.getContext().Idents.get("count") 1218 }; 1219 Selector FastEnumSel = 1220 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1221 1222 QualType ItemsTy = 1223 getContext().getConstantArrayType(getContext().getObjCIdType(), 1224 llvm::APInt(32, NumItems), 1225 ArrayType::Normal, 0); 1226 llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1227 1228 // Emit the collection pointer. In ARC, we do a retain. 1229 llvm::Value *Collection; 1230 if (getLangOptions().ObjCAutoRefCount) { 1231 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1232 1233 // Enter a cleanup to do the release. 1234 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1235 } else { 1236 Collection = EmitScalarExpr(S.getCollection()); 1237 } 1238 1239 // The 'continue' label needs to appear within the cleanup for the 1240 // collection object. 1241 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1242 1243 // Send it our message: 1244 CallArgList Args; 1245 1246 // The first argument is a temporary of the enumeration-state type. 1247 Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy)); 1248 1249 // The second argument is a temporary array with space for NumItems 1250 // pointers. We'll actually be loading elements from the array 1251 // pointer written into the control state; this buffer is so that 1252 // collections that *aren't* backed by arrays can still queue up 1253 // batches of elements. 1254 Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy)); 1255 1256 // The third argument is the capacity of that temporary array. 1257 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1258 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1259 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1260 1261 // Start the enumeration. 1262 RValue CountRV = 1263 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1264 getContext().UnsignedLongTy, 1265 FastEnumSel, 1266 Collection, Args); 1267 1268 // The initial number of objects that were returned in the buffer. 1269 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1270 1271 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1272 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1273 1274 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1275 1276 // If the limit pointer was zero to begin with, the collection is 1277 // empty; skip all this. 1278 Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), 1279 EmptyBB, LoopInitBB); 1280 1281 // Otherwise, initialize the loop. 1282 EmitBlock(LoopInitBB); 1283 1284 // Save the initial mutations value. This is the value at an 1285 // address that was written into the state object by 1286 // countByEnumeratingWithState:objects:count:. 1287 llvm::Value *StateMutationsPtrPtr = 1288 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1289 llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, 1290 "mutationsptr"); 1291 1292 llvm::Value *initialMutations = 1293 Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations"); 1294 1295 // Start looping. This is the point we return to whenever we have a 1296 // fresh, non-empty batch of objects. 1297 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1298 EmitBlock(LoopBodyBB); 1299 1300 // The current index into the buffer. 1301 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1302 index->addIncoming(zero, LoopInitBB); 1303 1304 // The current buffer size. 1305 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1306 count->addIncoming(initialBufferLimit, LoopInitBB); 1307 1308 // Check whether the mutations value has changed from where it was 1309 // at start. StateMutationsPtr should actually be invariant between 1310 // refreshes. 1311 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1312 llvm::Value *currentMutations 1313 = Builder.CreateLoad(StateMutationsPtr, "statemutations"); 1314 1315 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1316 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1317 1318 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1319 WasNotMutatedBB, WasMutatedBB); 1320 1321 // If so, call the enumeration-mutation function. 1322 EmitBlock(WasMutatedBB); 1323 llvm::Value *V = 1324 Builder.CreateBitCast(Collection, 1325 ConvertType(getContext().getObjCIdType())); 1326 CallArgList Args2; 1327 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1328 // FIXME: We shouldn't need to get the function info here, the runtime already 1329 // should have computed it to build the function. 1330 EmitCall(CGM.getTypes().arrangeFunctionCall(getContext().VoidTy, Args2, 1331 FunctionType::ExtInfo(), 1332 RequiredArgs::All), 1333 EnumerationMutationFn, ReturnValueSlot(), Args2); 1334 1335 // Otherwise, or if the mutation function returns, just continue. 1336 EmitBlock(WasNotMutatedBB); 1337 1338 // Initialize the element variable. 1339 RunCleanupsScope elementVariableScope(*this); 1340 bool elementIsVariable; 1341 LValue elementLValue; 1342 QualType elementType; 1343 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1344 // Initialize the variable, in case it's a __block variable or something. 1345 EmitAutoVarInit(variable); 1346 1347 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1348 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), D->getType(), 1349 VK_LValue, SourceLocation()); 1350 elementLValue = EmitLValue(&tempDRE); 1351 elementType = D->getType(); 1352 elementIsVariable = true; 1353 1354 if (D->isARCPseudoStrong()) 1355 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1356 } else { 1357 elementLValue = LValue(); // suppress warning 1358 elementType = cast<Expr>(S.getElement())->getType(); 1359 elementIsVariable = false; 1360 } 1361 llvm::Type *convertedElementType = ConvertType(elementType); 1362 1363 // Fetch the buffer out of the enumeration state. 1364 // TODO: this pointer should actually be invariant between 1365 // refreshes, which would help us do certain loop optimizations. 1366 llvm::Value *StateItemsPtr = 1367 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1368 llvm::Value *EnumStateItems = 1369 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1370 1371 // Fetch the value at the current index from the buffer. 1372 llvm::Value *CurrentItemPtr = 1373 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1374 llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr); 1375 1376 // Cast that value to the right type. 1377 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1378 "currentitem"); 1379 1380 // Make sure we have an l-value. Yes, this gets evaluated every 1381 // time through the loop. 1382 if (!elementIsVariable) { 1383 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1384 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1385 } else { 1386 EmitScalarInit(CurrentItem, elementLValue); 1387 } 1388 1389 // If we do have an element variable, this assignment is the end of 1390 // its initialization. 1391 if (elementIsVariable) 1392 EmitAutoVarCleanups(variable); 1393 1394 // Perform the loop body, setting up break and continue labels. 1395 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1396 { 1397 RunCleanupsScope Scope(*this); 1398 EmitStmt(S.getBody()); 1399 } 1400 BreakContinueStack.pop_back(); 1401 1402 // Destroy the element variable now. 1403 elementVariableScope.ForceCleanup(); 1404 1405 // Check whether there are more elements. 1406 EmitBlock(AfterBody.getBlock()); 1407 1408 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1409 1410 // First we check in the local buffer. 1411 llvm::Value *indexPlusOne 1412 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1413 1414 // If we haven't overrun the buffer yet, we can continue. 1415 Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count), 1416 LoopBodyBB, FetchMoreBB); 1417 1418 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1419 count->addIncoming(count, AfterBody.getBlock()); 1420 1421 // Otherwise, we have to fetch more elements. 1422 EmitBlock(FetchMoreBB); 1423 1424 CountRV = 1425 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1426 getContext().UnsignedLongTy, 1427 FastEnumSel, 1428 Collection, Args); 1429 1430 // If we got a zero count, we're done. 1431 llvm::Value *refetchCount = CountRV.getScalarVal(); 1432 1433 // (note that the message send might split FetchMoreBB) 1434 index->addIncoming(zero, Builder.GetInsertBlock()); 1435 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1436 1437 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1438 EmptyBB, LoopBodyBB); 1439 1440 // No more elements. 1441 EmitBlock(EmptyBB); 1442 1443 if (!elementIsVariable) { 1444 // If the element was not a declaration, set it to be null. 1445 1446 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1447 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1448 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1449 } 1450 1451 if (DI) 1452 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1453 1454 // Leave the cleanup we entered in ARC. 1455 if (getLangOptions().ObjCAutoRefCount) 1456 PopCleanupBlock(); 1457 1458 EmitBlock(LoopEnd.getBlock()); 1459 } 1460 1461 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1462 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1463 } 1464 1465 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1466 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1467 } 1468 1469 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1470 const ObjCAtSynchronizedStmt &S) { 1471 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1472 } 1473 1474 /// Produce the code for a CK_ARCProduceObject. Just does a 1475 /// primitive retain. 1476 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type, 1477 llvm::Value *value) { 1478 return EmitARCRetain(type, value); 1479 } 1480 1481 namespace { 1482 struct CallObjCRelease : EHScopeStack::Cleanup { 1483 CallObjCRelease(llvm::Value *object) : object(object) {} 1484 llvm::Value *object; 1485 1486 void Emit(CodeGenFunction &CGF, Flags flags) { 1487 CGF.EmitARCRelease(object, /*precise*/ true); 1488 } 1489 }; 1490 } 1491 1492 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1493 /// release at the end of the full-expression. 1494 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1495 llvm::Value *object) { 1496 // If we're in a conditional branch, we need to make the cleanup 1497 // conditional. 1498 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1499 return object; 1500 } 1501 1502 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1503 llvm::Value *value) { 1504 return EmitARCRetainAutorelease(type, value); 1505 } 1506 1507 1508 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1509 llvm::FunctionType *type, 1510 StringRef fnName) { 1511 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1512 1513 // In -fobjc-no-arc-runtime, emit weak references to the runtime 1514 // support library. 1515 if (!CGM.getCodeGenOpts().ObjCRuntimeHasARC) 1516 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) 1517 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1518 1519 return fn; 1520 } 1521 1522 /// Perform an operation having the signature 1523 /// i8* (i8*) 1524 /// where a null input causes a no-op and returns null. 1525 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1526 llvm::Value *value, 1527 llvm::Constant *&fn, 1528 StringRef fnName) { 1529 if (isa<llvm::ConstantPointerNull>(value)) return value; 1530 1531 if (!fn) { 1532 std::vector<llvm::Type*> args(1, CGF.Int8PtrTy); 1533 llvm::FunctionType *fnType = 1534 llvm::FunctionType::get(CGF.Int8PtrTy, args, false); 1535 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1536 } 1537 1538 // Cast the argument to 'id'. 1539 llvm::Type *origType = value->getType(); 1540 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1541 1542 // Call the function. 1543 llvm::CallInst *call = CGF.Builder.CreateCall(fn, value); 1544 call->setDoesNotThrow(); 1545 1546 // Cast the result back to the original type. 1547 return CGF.Builder.CreateBitCast(call, origType); 1548 } 1549 1550 /// Perform an operation having the following signature: 1551 /// i8* (i8**) 1552 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1553 llvm::Value *addr, 1554 llvm::Constant *&fn, 1555 StringRef fnName) { 1556 if (!fn) { 1557 std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy); 1558 llvm::FunctionType *fnType = 1559 llvm::FunctionType::get(CGF.Int8PtrTy, args, false); 1560 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1561 } 1562 1563 // Cast the argument to 'id*'. 1564 llvm::Type *origType = addr->getType(); 1565 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1566 1567 // Call the function. 1568 llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr); 1569 call->setDoesNotThrow(); 1570 1571 // Cast the result back to a dereference of the original type. 1572 llvm::Value *result = call; 1573 if (origType != CGF.Int8PtrPtrTy) 1574 result = CGF.Builder.CreateBitCast(result, 1575 cast<llvm::PointerType>(origType)->getElementType()); 1576 1577 return result; 1578 } 1579 1580 /// Perform an operation having the following signature: 1581 /// i8* (i8**, i8*) 1582 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1583 llvm::Value *addr, 1584 llvm::Value *value, 1585 llvm::Constant *&fn, 1586 StringRef fnName, 1587 bool ignored) { 1588 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 1589 == value->getType()); 1590 1591 if (!fn) { 1592 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1593 1594 llvm::FunctionType *fnType 1595 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1596 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1597 } 1598 1599 llvm::Type *origType = value->getType(); 1600 1601 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1602 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1603 1604 llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value); 1605 result->setDoesNotThrow(); 1606 1607 if (ignored) return 0; 1608 1609 return CGF.Builder.CreateBitCast(result, origType); 1610 } 1611 1612 /// Perform an operation having the following signature: 1613 /// void (i8**, i8**) 1614 static void emitARCCopyOperation(CodeGenFunction &CGF, 1615 llvm::Value *dst, 1616 llvm::Value *src, 1617 llvm::Constant *&fn, 1618 StringRef fnName) { 1619 assert(dst->getType() == src->getType()); 1620 1621 if (!fn) { 1622 std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy); 1623 llvm::FunctionType *fnType 1624 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1625 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1626 } 1627 1628 dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy); 1629 src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy); 1630 1631 llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src); 1632 result->setDoesNotThrow(); 1633 } 1634 1635 /// Produce the code to do a retain. Based on the type, calls one of: 1636 /// call i8* @objc_retain(i8* %value) 1637 /// call i8* @objc_retainBlock(i8* %value) 1638 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1639 if (type->isBlockPointerType()) 1640 return EmitARCRetainBlock(value, /*mandatory*/ false); 1641 else 1642 return EmitARCRetainNonBlock(value); 1643 } 1644 1645 /// Retain the given object, with normal retain semantics. 1646 /// call i8* @objc_retain(i8* %value) 1647 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1648 return emitARCValueOperation(*this, value, 1649 CGM.getARCEntrypoints().objc_retain, 1650 "objc_retain"); 1651 } 1652 1653 /// Retain the given block, with _Block_copy semantics. 1654 /// call i8* @objc_retainBlock(i8* %value) 1655 /// 1656 /// \param mandatory - If false, emit the call with metadata 1657 /// indicating that it's okay for the optimizer to eliminate this call 1658 /// if it can prove that the block never escapes except down the stack. 1659 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1660 bool mandatory) { 1661 llvm::Value *result 1662 = emitARCValueOperation(*this, value, 1663 CGM.getARCEntrypoints().objc_retainBlock, 1664 "objc_retainBlock"); 1665 1666 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1667 // tell the optimizer that it doesn't need to do this copy if the 1668 // block doesn't escape, where being passed as an argument doesn't 1669 // count as escaping. 1670 if (!mandatory && isa<llvm::Instruction>(result)) { 1671 llvm::CallInst *call 1672 = cast<llvm::CallInst>(result->stripPointerCasts()); 1673 assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock); 1674 1675 SmallVector<llvm::Value*,1> args; 1676 call->setMetadata("clang.arc.copy_on_escape", 1677 llvm::MDNode::get(Builder.getContext(), args)); 1678 } 1679 1680 return result; 1681 } 1682 1683 /// Retain the given object which is the result of a function call. 1684 /// call i8* @objc_retainAutoreleasedReturnValue(i8* %value) 1685 /// 1686 /// Yes, this function name is one character away from a different 1687 /// call with completely different semantics. 1688 llvm::Value * 1689 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 1690 // Fetch the void(void) inline asm which marks that we're going to 1691 // retain the autoreleased return value. 1692 llvm::InlineAsm *&marker 1693 = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker; 1694 if (!marker) { 1695 StringRef assembly 1696 = CGM.getTargetCodeGenInfo() 1697 .getARCRetainAutoreleasedReturnValueMarker(); 1698 1699 // If we have an empty assembly string, there's nothing to do. 1700 if (assembly.empty()) { 1701 1702 // Otherwise, at -O0, build an inline asm that we're going to call 1703 // in a moment. 1704 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1705 llvm::FunctionType *type = 1706 llvm::FunctionType::get(VoidTy, /*variadic*/false); 1707 1708 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 1709 1710 // If we're at -O1 and above, we don't want to litter the code 1711 // with this marker yet, so leave a breadcrumb for the ARC 1712 // optimizer to pick up. 1713 } else { 1714 llvm::NamedMDNode *metadata = 1715 CGM.getModule().getOrInsertNamedMetadata( 1716 "clang.arc.retainAutoreleasedReturnValueMarker"); 1717 assert(metadata->getNumOperands() <= 1); 1718 if (metadata->getNumOperands() == 0) { 1719 llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly); 1720 metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string)); 1721 } 1722 } 1723 } 1724 1725 // Call the marker asm if we made one, which we do only at -O0. 1726 if (marker) Builder.CreateCall(marker); 1727 1728 return emitARCValueOperation(*this, value, 1729 CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue, 1730 "objc_retainAutoreleasedReturnValue"); 1731 } 1732 1733 /// Release the given object. 1734 /// call void @objc_release(i8* %value) 1735 void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) { 1736 if (isa<llvm::ConstantPointerNull>(value)) return; 1737 1738 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release; 1739 if (!fn) { 1740 std::vector<llvm::Type*> args(1, Int8PtrTy); 1741 llvm::FunctionType *fnType = 1742 llvm::FunctionType::get(Builder.getVoidTy(), args, false); 1743 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 1744 } 1745 1746 // Cast the argument to 'id'. 1747 value = Builder.CreateBitCast(value, Int8PtrTy); 1748 1749 // Call objc_release. 1750 llvm::CallInst *call = Builder.CreateCall(fn, value); 1751 call->setDoesNotThrow(); 1752 1753 if (!precise) { 1754 SmallVector<llvm::Value*,1> args; 1755 call->setMetadata("clang.imprecise_release", 1756 llvm::MDNode::get(Builder.getContext(), args)); 1757 } 1758 } 1759 1760 /// Store into a strong object. Always calls this: 1761 /// call void @objc_storeStrong(i8** %addr, i8* %value) 1762 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr, 1763 llvm::Value *value, 1764 bool ignored) { 1765 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 1766 == value->getType()); 1767 1768 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong; 1769 if (!fn) { 1770 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 1771 llvm::FunctionType *fnType 1772 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 1773 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 1774 } 1775 1776 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 1777 llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy); 1778 1779 Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow(); 1780 1781 if (ignored) return 0; 1782 return value; 1783 } 1784 1785 /// Store into a strong object. Sometimes calls this: 1786 /// call void @objc_storeStrong(i8** %addr, i8* %value) 1787 /// Other times, breaks it down into components. 1788 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 1789 llvm::Value *newValue, 1790 bool ignored) { 1791 QualType type = dst.getType(); 1792 bool isBlock = type->isBlockPointerType(); 1793 1794 // Use a store barrier at -O0 unless this is a block type or the 1795 // lvalue is inadequately aligned. 1796 if (shouldUseFusedARCCalls() && 1797 !isBlock && 1798 (dst.getAlignment().isZero() || 1799 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 1800 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 1801 } 1802 1803 // Otherwise, split it out. 1804 1805 // Retain the new value. 1806 newValue = EmitARCRetain(type, newValue); 1807 1808 // Read the old value. 1809 llvm::Value *oldValue = EmitLoadOfScalar(dst); 1810 1811 // Store. We do this before the release so that any deallocs won't 1812 // see the old value. 1813 EmitStoreOfScalar(newValue, dst); 1814 1815 // Finally, release the old value. 1816 EmitARCRelease(oldValue, /*precise*/ false); 1817 1818 return newValue; 1819 } 1820 1821 /// Autorelease the given object. 1822 /// call i8* @objc_autorelease(i8* %value) 1823 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 1824 return emitARCValueOperation(*this, value, 1825 CGM.getARCEntrypoints().objc_autorelease, 1826 "objc_autorelease"); 1827 } 1828 1829 /// Autorelease the given object. 1830 /// call i8* @objc_autoreleaseReturnValue(i8* %value) 1831 llvm::Value * 1832 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 1833 return emitARCValueOperation(*this, value, 1834 CGM.getARCEntrypoints().objc_autoreleaseReturnValue, 1835 "objc_autoreleaseReturnValue"); 1836 } 1837 1838 /// Do a fused retain/autorelease of the given object. 1839 /// call i8* @objc_retainAutoreleaseReturnValue(i8* %value) 1840 llvm::Value * 1841 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 1842 return emitARCValueOperation(*this, value, 1843 CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue, 1844 "objc_retainAutoreleaseReturnValue"); 1845 } 1846 1847 /// Do a fused retain/autorelease of the given object. 1848 /// call i8* @objc_retainAutorelease(i8* %value) 1849 /// or 1850 /// %retain = call i8* @objc_retainBlock(i8* %value) 1851 /// call i8* @objc_autorelease(i8* %retain) 1852 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 1853 llvm::Value *value) { 1854 if (!type->isBlockPointerType()) 1855 return EmitARCRetainAutoreleaseNonBlock(value); 1856 1857 if (isa<llvm::ConstantPointerNull>(value)) return value; 1858 1859 llvm::Type *origType = value->getType(); 1860 value = Builder.CreateBitCast(value, Int8PtrTy); 1861 value = EmitARCRetainBlock(value, /*mandatory*/ true); 1862 value = EmitARCAutorelease(value); 1863 return Builder.CreateBitCast(value, origType); 1864 } 1865 1866 /// Do a fused retain/autorelease of the given object. 1867 /// call i8* @objc_retainAutorelease(i8* %value) 1868 llvm::Value * 1869 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 1870 return emitARCValueOperation(*this, value, 1871 CGM.getARCEntrypoints().objc_retainAutorelease, 1872 "objc_retainAutorelease"); 1873 } 1874 1875 /// i8* @objc_loadWeak(i8** %addr) 1876 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 1877 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) { 1878 return emitARCLoadOperation(*this, addr, 1879 CGM.getARCEntrypoints().objc_loadWeak, 1880 "objc_loadWeak"); 1881 } 1882 1883 /// i8* @objc_loadWeakRetained(i8** %addr) 1884 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) { 1885 return emitARCLoadOperation(*this, addr, 1886 CGM.getARCEntrypoints().objc_loadWeakRetained, 1887 "objc_loadWeakRetained"); 1888 } 1889 1890 /// i8* @objc_storeWeak(i8** %addr, i8* %value) 1891 /// Returns %value. 1892 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr, 1893 llvm::Value *value, 1894 bool ignored) { 1895 return emitARCStoreOperation(*this, addr, value, 1896 CGM.getARCEntrypoints().objc_storeWeak, 1897 "objc_storeWeak", ignored); 1898 } 1899 1900 /// i8* @objc_initWeak(i8** %addr, i8* %value) 1901 /// Returns %value. %addr is known to not have a current weak entry. 1902 /// Essentially equivalent to: 1903 /// *addr = nil; objc_storeWeak(addr, value); 1904 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) { 1905 // If we're initializing to null, just write null to memory; no need 1906 // to get the runtime involved. But don't do this if optimization 1907 // is enabled, because accounting for this would make the optimizer 1908 // much more complicated. 1909 if (isa<llvm::ConstantPointerNull>(value) && 1910 CGM.getCodeGenOpts().OptimizationLevel == 0) { 1911 Builder.CreateStore(value, addr); 1912 return; 1913 } 1914 1915 emitARCStoreOperation(*this, addr, value, 1916 CGM.getARCEntrypoints().objc_initWeak, 1917 "objc_initWeak", /*ignored*/ true); 1918 } 1919 1920 /// void @objc_destroyWeak(i8** %addr) 1921 /// Essentially objc_storeWeak(addr, nil). 1922 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) { 1923 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak; 1924 if (!fn) { 1925 std::vector<llvm::Type*> args(1, Int8PtrPtrTy); 1926 llvm::FunctionType *fnType = 1927 llvm::FunctionType::get(Builder.getVoidTy(), args, false); 1928 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 1929 } 1930 1931 // Cast the argument to 'id*'. 1932 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 1933 1934 llvm::CallInst *call = Builder.CreateCall(fn, addr); 1935 call->setDoesNotThrow(); 1936 } 1937 1938 /// void @objc_moveWeak(i8** %dest, i8** %src) 1939 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 1940 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 1941 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) { 1942 emitARCCopyOperation(*this, dst, src, 1943 CGM.getARCEntrypoints().objc_moveWeak, 1944 "objc_moveWeak"); 1945 } 1946 1947 /// void @objc_copyWeak(i8** %dest, i8** %src) 1948 /// Disregards the current value in %dest. Essentially 1949 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 1950 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) { 1951 emitARCCopyOperation(*this, dst, src, 1952 CGM.getARCEntrypoints().objc_copyWeak, 1953 "objc_copyWeak"); 1954 } 1955 1956 /// Produce the code to do a objc_autoreleasepool_push. 1957 /// call i8* @objc_autoreleasePoolPush(void) 1958 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 1959 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush; 1960 if (!fn) { 1961 llvm::FunctionType *fnType = 1962 llvm::FunctionType::get(Int8PtrTy, false); 1963 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 1964 } 1965 1966 llvm::CallInst *call = Builder.CreateCall(fn); 1967 call->setDoesNotThrow(); 1968 1969 return call; 1970 } 1971 1972 /// Produce the code to do a primitive release. 1973 /// call void @objc_autoreleasePoolPop(i8* %ptr) 1974 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 1975 assert(value->getType() == Int8PtrTy); 1976 1977 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop; 1978 if (!fn) { 1979 std::vector<llvm::Type*> args(1, Int8PtrTy); 1980 llvm::FunctionType *fnType = 1981 llvm::FunctionType::get(Builder.getVoidTy(), args, false); 1982 1983 // We don't want to use a weak import here; instead we should not 1984 // fall into this path. 1985 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 1986 } 1987 1988 llvm::CallInst *call = Builder.CreateCall(fn, value); 1989 call->setDoesNotThrow(); 1990 } 1991 1992 /// Produce the code to do an MRR version objc_autoreleasepool_push. 1993 /// Which is: [[NSAutoreleasePool alloc] init]; 1994 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 1995 /// init is declared as: - (id) init; in its NSObject super class. 1996 /// 1997 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 1998 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 1999 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder); 2000 // [NSAutoreleasePool alloc] 2001 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2002 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2003 CallArgList Args; 2004 RValue AllocRV = 2005 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2006 getContext().getObjCIdType(), 2007 AllocSel, Receiver, Args); 2008 2009 // [Receiver init] 2010 Receiver = AllocRV.getScalarVal(); 2011 II = &CGM.getContext().Idents.get("init"); 2012 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2013 RValue InitRV = 2014 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2015 getContext().getObjCIdType(), 2016 InitSel, Receiver, Args); 2017 return InitRV.getScalarVal(); 2018 } 2019 2020 /// Produce the code to do a primitive release. 2021 /// [tmp drain]; 2022 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2023 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2024 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2025 CallArgList Args; 2026 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2027 getContext().VoidTy, DrainSel, Arg, Args); 2028 } 2029 2030 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2031 llvm::Value *addr, 2032 QualType type) { 2033 llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy"); 2034 CGF.EmitARCRelease(ptr, /*precise*/ true); 2035 } 2036 2037 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2038 llvm::Value *addr, 2039 QualType type) { 2040 llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy"); 2041 CGF.EmitARCRelease(ptr, /*precise*/ false); 2042 } 2043 2044 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2045 llvm::Value *addr, 2046 QualType type) { 2047 CGF.EmitARCDestroyWeak(addr); 2048 } 2049 2050 namespace { 2051 struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup { 2052 llvm::Value *Token; 2053 2054 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2055 2056 void Emit(CodeGenFunction &CGF, Flags flags) { 2057 CGF.EmitObjCAutoreleasePoolPop(Token); 2058 } 2059 }; 2060 struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup { 2061 llvm::Value *Token; 2062 2063 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2064 2065 void Emit(CodeGenFunction &CGF, Flags flags) { 2066 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2067 } 2068 }; 2069 } 2070 2071 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2072 if (CGM.getLangOptions().ObjCAutoRefCount) 2073 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2074 else 2075 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2076 } 2077 2078 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2079 LValue lvalue, 2080 QualType type) { 2081 switch (type.getObjCLifetime()) { 2082 case Qualifiers::OCL_None: 2083 case Qualifiers::OCL_ExplicitNone: 2084 case Qualifiers::OCL_Strong: 2085 case Qualifiers::OCL_Autoreleasing: 2086 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(), 2087 false); 2088 2089 case Qualifiers::OCL_Weak: 2090 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2091 true); 2092 } 2093 2094 llvm_unreachable("impossible lifetime!"); 2095 } 2096 2097 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2098 const Expr *e) { 2099 e = e->IgnoreParens(); 2100 QualType type = e->getType(); 2101 2102 // If we're loading retained from a __strong xvalue, we can avoid 2103 // an extra retain/release pair by zeroing out the source of this 2104 // "move" operation. 2105 if (e->isXValue() && 2106 !type.isConstQualified() && 2107 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2108 // Emit the lvalue. 2109 LValue lv = CGF.EmitLValue(e); 2110 2111 // Load the object pointer. 2112 llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal(); 2113 2114 // Set the source pointer to NULL. 2115 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2116 2117 return TryEmitResult(result, true); 2118 } 2119 2120 // As a very special optimization, in ARC++, if the l-value is the 2121 // result of a non-volatile assignment, do a simple retain of the 2122 // result of the call to objc_storeWeak instead of reloading. 2123 if (CGF.getLangOptions().CPlusPlus && 2124 !type.isVolatileQualified() && 2125 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2126 isa<BinaryOperator>(e) && 2127 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2128 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2129 2130 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2131 } 2132 2133 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2134 llvm::Value *value); 2135 2136 /// Given that the given expression is some sort of call (which does 2137 /// not return retained), emit a retain following it. 2138 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) { 2139 llvm::Value *value = CGF.EmitScalarExpr(e); 2140 return emitARCRetainAfterCall(CGF, value); 2141 } 2142 2143 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2144 llvm::Value *value) { 2145 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2146 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2147 2148 // Place the retain immediately following the call. 2149 CGF.Builder.SetInsertPoint(call->getParent(), 2150 ++llvm::BasicBlock::iterator(call)); 2151 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2152 2153 CGF.Builder.restoreIP(ip); 2154 return value; 2155 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2156 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2157 2158 // Place the retain at the beginning of the normal destination block. 2159 llvm::BasicBlock *BB = invoke->getNormalDest(); 2160 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2161 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2162 2163 CGF.Builder.restoreIP(ip); 2164 return value; 2165 2166 // Bitcasts can arise because of related-result returns. Rewrite 2167 // the operand. 2168 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2169 llvm::Value *operand = bitcast->getOperand(0); 2170 operand = emitARCRetainAfterCall(CGF, operand); 2171 bitcast->setOperand(0, operand); 2172 return bitcast; 2173 2174 // Generic fall-back case. 2175 } else { 2176 // Retain using the non-block variant: we never need to do a copy 2177 // of a block that's been returned to us. 2178 return CGF.EmitARCRetainNonBlock(value); 2179 } 2180 } 2181 2182 /// Determine whether it might be important to emit a separate 2183 /// objc_retain_block on the result of the given expression, or 2184 /// whether it's okay to just emit it in a +1 context. 2185 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2186 assert(e->getType()->isBlockPointerType()); 2187 e = e->IgnoreParens(); 2188 2189 // For future goodness, emit block expressions directly in +1 2190 // contexts if we can. 2191 if (isa<BlockExpr>(e)) 2192 return false; 2193 2194 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2195 switch (cast->getCastKind()) { 2196 // Emitting these operations in +1 contexts is goodness. 2197 case CK_LValueToRValue: 2198 case CK_ARCReclaimReturnedObject: 2199 case CK_ARCConsumeObject: 2200 case CK_ARCProduceObject: 2201 return false; 2202 2203 // These operations preserve a block type. 2204 case CK_NoOp: 2205 case CK_BitCast: 2206 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2207 2208 // These operations are known to be bad (or haven't been considered). 2209 case CK_AnyPointerToBlockPointerCast: 2210 default: 2211 return true; 2212 } 2213 } 2214 2215 return true; 2216 } 2217 2218 /// Try to emit a PseudoObjectExpr at +1. 2219 /// 2220 /// This massively duplicates emitPseudoObjectRValue. 2221 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF, 2222 const PseudoObjectExpr *E) { 2223 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2224 2225 // Find the result expression. 2226 const Expr *resultExpr = E->getResultExpr(); 2227 assert(resultExpr); 2228 TryEmitResult result; 2229 2230 for (PseudoObjectExpr::const_semantics_iterator 2231 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2232 const Expr *semantic = *i; 2233 2234 // If this semantic expression is an opaque value, bind it 2235 // to the result of its source expression. 2236 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2237 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2238 OVMA opaqueData; 2239 2240 // If this semantic is the result of the pseudo-object 2241 // expression, try to evaluate the source as +1. 2242 if (ov == resultExpr) { 2243 assert(!OVMA::shouldBindAsLValue(ov)); 2244 result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr()); 2245 opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer())); 2246 2247 // Otherwise, just bind it. 2248 } else { 2249 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2250 } 2251 opaques.push_back(opaqueData); 2252 2253 // Otherwise, if the expression is the result, evaluate it 2254 // and remember the result. 2255 } else if (semantic == resultExpr) { 2256 result = tryEmitARCRetainScalarExpr(CGF, semantic); 2257 2258 // Otherwise, evaluate the expression in an ignored context. 2259 } else { 2260 CGF.EmitIgnoredExpr(semantic); 2261 } 2262 } 2263 2264 // Unbind all the opaques now. 2265 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2266 opaques[i].unbind(CGF); 2267 2268 return result; 2269 } 2270 2271 static TryEmitResult 2272 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2273 // Look through cleanups. 2274 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2275 CGF.enterFullExpression(cleanups); 2276 CodeGenFunction::RunCleanupsScope scope(CGF); 2277 return tryEmitARCRetainScalarExpr(CGF, cleanups->getSubExpr()); 2278 } 2279 2280 // The desired result type, if it differs from the type of the 2281 // ultimate opaque expression. 2282 llvm::Type *resultType = 0; 2283 2284 while (true) { 2285 e = e->IgnoreParens(); 2286 2287 // There's a break at the end of this if-chain; anything 2288 // that wants to keep looping has to explicitly continue. 2289 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2290 switch (ce->getCastKind()) { 2291 // No-op casts don't change the type, so we just ignore them. 2292 case CK_NoOp: 2293 e = ce->getSubExpr(); 2294 continue; 2295 2296 case CK_LValueToRValue: { 2297 TryEmitResult loadResult 2298 = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr()); 2299 if (resultType) { 2300 llvm::Value *value = loadResult.getPointer(); 2301 value = CGF.Builder.CreateBitCast(value, resultType); 2302 loadResult.setPointer(value); 2303 } 2304 return loadResult; 2305 } 2306 2307 // These casts can change the type, so remember that and 2308 // soldier on. We only need to remember the outermost such 2309 // cast, though. 2310 case CK_CPointerToObjCPointerCast: 2311 case CK_BlockPointerToObjCPointerCast: 2312 case CK_AnyPointerToBlockPointerCast: 2313 case CK_BitCast: 2314 if (!resultType) 2315 resultType = CGF.ConvertType(ce->getType()); 2316 e = ce->getSubExpr(); 2317 assert(e->getType()->hasPointerRepresentation()); 2318 continue; 2319 2320 // For consumptions, just emit the subexpression and thus elide 2321 // the retain/release pair. 2322 case CK_ARCConsumeObject: { 2323 llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr()); 2324 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2325 return TryEmitResult(result, true); 2326 } 2327 2328 // Block extends are net +0. Naively, we could just recurse on 2329 // the subexpression, but actually we need to ensure that the 2330 // value is copied as a block, so there's a little filter here. 2331 case CK_ARCExtendBlockObject: { 2332 llvm::Value *result; // will be a +0 value 2333 2334 // If we can't safely assume the sub-expression will produce a 2335 // block-copied value, emit the sub-expression at +0. 2336 if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) { 2337 result = CGF.EmitScalarExpr(ce->getSubExpr()); 2338 2339 // Otherwise, try to emit the sub-expression at +1 recursively. 2340 } else { 2341 TryEmitResult subresult 2342 = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr()); 2343 result = subresult.getPointer(); 2344 2345 // If that produced a retained value, just use that, 2346 // possibly casting down. 2347 if (subresult.getInt()) { 2348 if (resultType) 2349 result = CGF.Builder.CreateBitCast(result, resultType); 2350 return TryEmitResult(result, true); 2351 } 2352 2353 // Otherwise it's +0. 2354 } 2355 2356 // Retain the object as a block, then cast down. 2357 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2358 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2359 return TryEmitResult(result, true); 2360 } 2361 2362 // For reclaims, emit the subexpression as a retained call and 2363 // skip the consumption. 2364 case CK_ARCReclaimReturnedObject: { 2365 llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr()); 2366 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2367 return TryEmitResult(result, true); 2368 } 2369 2370 default: 2371 break; 2372 } 2373 2374 // Skip __extension__. 2375 } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 2376 if (op->getOpcode() == UO_Extension) { 2377 e = op->getSubExpr(); 2378 continue; 2379 } 2380 2381 // For calls and message sends, use the retained-call logic. 2382 // Delegate inits are a special case in that they're the only 2383 // returns-retained expression that *isn't* surrounded by 2384 // a consume. 2385 } else if (isa<CallExpr>(e) || 2386 (isa<ObjCMessageExpr>(e) && 2387 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2388 llvm::Value *result = emitARCRetainCall(CGF, e); 2389 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2390 return TryEmitResult(result, true); 2391 2392 // Look through pseudo-object expressions. 2393 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2394 TryEmitResult result 2395 = tryEmitARCRetainPseudoObject(CGF, pseudo); 2396 if (resultType) { 2397 llvm::Value *value = result.getPointer(); 2398 value = CGF.Builder.CreateBitCast(value, resultType); 2399 result.setPointer(value); 2400 } 2401 return result; 2402 } 2403 2404 // Conservatively halt the search at any other expression kind. 2405 break; 2406 } 2407 2408 // We didn't find an obvious production, so emit what we've got and 2409 // tell the caller that we didn't manage to retain. 2410 llvm::Value *result = CGF.EmitScalarExpr(e); 2411 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2412 return TryEmitResult(result, false); 2413 } 2414 2415 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2416 LValue lvalue, 2417 QualType type) { 2418 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2419 llvm::Value *value = result.getPointer(); 2420 if (!result.getInt()) 2421 value = CGF.EmitARCRetain(type, value); 2422 return value; 2423 } 2424 2425 /// EmitARCRetainScalarExpr - Semantically equivalent to 2426 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2427 /// best-effort attempt to peephole expressions that naturally produce 2428 /// retained objects. 2429 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2430 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2431 llvm::Value *value = result.getPointer(); 2432 if (!result.getInt()) 2433 value = EmitARCRetain(e->getType(), value); 2434 return value; 2435 } 2436 2437 llvm::Value * 2438 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2439 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2440 llvm::Value *value = result.getPointer(); 2441 if (result.getInt()) 2442 value = EmitARCAutorelease(value); 2443 else 2444 value = EmitARCRetainAutorelease(e->getType(), value); 2445 return value; 2446 } 2447 2448 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2449 llvm::Value *result; 2450 bool doRetain; 2451 2452 if (shouldEmitSeparateBlockRetain(e)) { 2453 result = EmitScalarExpr(e); 2454 doRetain = true; 2455 } else { 2456 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2457 result = subresult.getPointer(); 2458 doRetain = !subresult.getInt(); 2459 } 2460 2461 if (doRetain) 2462 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2463 return EmitObjCConsumeObject(e->getType(), result); 2464 } 2465 2466 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2467 // In ARC, retain and autorelease the expression. 2468 if (getLangOptions().ObjCAutoRefCount) { 2469 // Do so before running any cleanups for the full-expression. 2470 // tryEmitARCRetainScalarExpr does make an effort to do things 2471 // inside cleanups, but there are crazy cases like 2472 // @throw A().foo; 2473 // where a full retain+autorelease is required and would 2474 // otherwise happen after the destructor for the temporary. 2475 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(expr)) { 2476 enterFullExpression(ewc); 2477 expr = ewc->getSubExpr(); 2478 } 2479 2480 CodeGenFunction::RunCleanupsScope cleanups(*this); 2481 return EmitARCRetainAutoreleaseScalarExpr(expr); 2482 } 2483 2484 // Otherwise, use the normal scalar-expression emission. The 2485 // exception machinery doesn't do anything special with the 2486 // exception like retaining it, so there's no safety associated with 2487 // only running cleanups after the throw has started, and when it 2488 // matters it tends to be substantially inferior code. 2489 return EmitScalarExpr(expr); 2490 } 2491 2492 std::pair<LValue,llvm::Value*> 2493 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 2494 bool ignored) { 2495 // Evaluate the RHS first. 2496 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 2497 llvm::Value *value = result.getPointer(); 2498 2499 bool hasImmediateRetain = result.getInt(); 2500 2501 // If we didn't emit a retained object, and the l-value is of block 2502 // type, then we need to emit the block-retain immediately in case 2503 // it invalidates the l-value. 2504 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 2505 value = EmitARCRetainBlock(value, /*mandatory*/ false); 2506 hasImmediateRetain = true; 2507 } 2508 2509 LValue lvalue = EmitLValue(e->getLHS()); 2510 2511 // If the RHS was emitted retained, expand this. 2512 if (hasImmediateRetain) { 2513 llvm::Value *oldValue = 2514 EmitLoadOfScalar(lvalue); 2515 EmitStoreOfScalar(value, lvalue); 2516 EmitARCRelease(oldValue, /*precise*/ false); 2517 } else { 2518 value = EmitARCStoreStrong(lvalue, value, ignored); 2519 } 2520 2521 return std::pair<LValue,llvm::Value*>(lvalue, value); 2522 } 2523 2524 std::pair<LValue,llvm::Value*> 2525 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 2526 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 2527 LValue lvalue = EmitLValue(e->getLHS()); 2528 2529 EmitStoreOfScalar(value, lvalue); 2530 2531 return std::pair<LValue,llvm::Value*>(lvalue, value); 2532 } 2533 2534 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 2535 const ObjCAutoreleasePoolStmt &ARPS) { 2536 const Stmt *subStmt = ARPS.getSubStmt(); 2537 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 2538 2539 CGDebugInfo *DI = getDebugInfo(); 2540 if (DI) 2541 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 2542 2543 // Keep track of the current cleanup stack depth. 2544 RunCleanupsScope Scope(*this); 2545 if (CGM.getCodeGenOpts().ObjCRuntimeHasARC) { 2546 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 2547 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 2548 } else { 2549 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 2550 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 2551 } 2552 2553 for (CompoundStmt::const_body_iterator I = S.body_begin(), 2554 E = S.body_end(); I != E; ++I) 2555 EmitStmt(*I); 2556 2557 if (DI) 2558 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 2559 } 2560 2561 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2562 /// make sure it survives garbage collection until this point. 2563 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 2564 // We just use an inline assembly. 2565 llvm::FunctionType *extenderType 2566 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 2567 llvm::Value *extender 2568 = llvm::InlineAsm::get(extenderType, 2569 /* assembly */ "", 2570 /* constraints */ "r", 2571 /* side effects */ true); 2572 2573 object = Builder.CreateBitCast(object, VoidPtrTy); 2574 Builder.CreateCall(extender, object)->setDoesNotThrow(); 2575 } 2576 2577 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 2578 /// non-trivial copy assignment function, produce following helper function. 2579 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 2580 /// 2581 llvm::Constant * 2582 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 2583 const ObjCPropertyImplDecl *PID) { 2584 // FIXME. This api is for NeXt runtime only for now. 2585 if (!getLangOptions().CPlusPlus || !getLangOptions().NeXTRuntime) 2586 return 0; 2587 QualType Ty = PID->getPropertyIvarDecl()->getType(); 2588 if (!Ty->isRecordType()) 2589 return 0; 2590 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2591 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2592 return 0; 2593 llvm::Constant * HelperFn = 0; 2594 if (hasTrivialSetExpr(PID)) 2595 return 0; 2596 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 2597 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 2598 return HelperFn; 2599 2600 ASTContext &C = getContext(); 2601 IdentifierInfo *II 2602 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 2603 FunctionDecl *FD = FunctionDecl::Create(C, 2604 C.getTranslationUnitDecl(), 2605 SourceLocation(), 2606 SourceLocation(), II, C.VoidTy, 0, 2607 SC_Static, 2608 SC_None, 2609 false, 2610 true); 2611 2612 QualType DestTy = C.getPointerType(Ty); 2613 QualType SrcTy = Ty; 2614 SrcTy.addConst(); 2615 SrcTy = C.getPointerType(SrcTy); 2616 2617 FunctionArgList args; 2618 ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy); 2619 args.push_back(&dstDecl); 2620 ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy); 2621 args.push_back(&srcDecl); 2622 2623 const CGFunctionInfo &FI = 2624 CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args, 2625 FunctionType::ExtInfo(), 2626 RequiredArgs::All); 2627 2628 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2629 2630 llvm::Function *Fn = 2631 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2632 "__assign_helper_atomic_property_", &CGM.getModule()); 2633 2634 if (CGM.getModuleDebugInfo()) 2635 DebugInfo = CGM.getModuleDebugInfo(); 2636 2637 2638 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation()); 2639 2640 DeclRefExpr *DstExpr = 2641 new (C) DeclRefExpr(&dstDecl, DestTy, 2642 VK_RValue, SourceLocation()); 2643 2644 Expr* DST = new (C) UnaryOperator(DstExpr, UO_Deref, DestTy->getPointeeType(), 2645 VK_LValue, OK_Ordinary, SourceLocation()); 2646 2647 DeclRefExpr *SrcExpr = 2648 new (C) DeclRefExpr(&srcDecl, SrcTy, 2649 VK_RValue, SourceLocation()); 2650 2651 Expr* SRC = new (C) UnaryOperator(SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2652 VK_LValue, OK_Ordinary, SourceLocation()); 2653 2654 Expr *Args[2] = { DST, SRC }; 2655 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 2656 CXXOperatorCallExpr *TheCall = 2657 new (C) CXXOperatorCallExpr(C, OO_Equal, CalleeExp->getCallee(), 2658 Args, 2, DestTy->getPointeeType(), 2659 VK_LValue, SourceLocation()); 2660 2661 EmitStmt(TheCall); 2662 2663 FinishFunction(); 2664 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 2665 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 2666 return HelperFn; 2667 } 2668 2669 llvm::Constant * 2670 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 2671 const ObjCPropertyImplDecl *PID) { 2672 // FIXME. This api is for NeXt runtime only for now. 2673 if (!getLangOptions().CPlusPlus || !getLangOptions().NeXTRuntime) 2674 return 0; 2675 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2676 QualType Ty = PD->getType(); 2677 if (!Ty->isRecordType()) 2678 return 0; 2679 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2680 return 0; 2681 llvm::Constant * HelperFn = 0; 2682 2683 if (hasTrivialGetExpr(PID)) 2684 return 0; 2685 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 2686 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 2687 return HelperFn; 2688 2689 2690 ASTContext &C = getContext(); 2691 IdentifierInfo *II 2692 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 2693 FunctionDecl *FD = FunctionDecl::Create(C, 2694 C.getTranslationUnitDecl(), 2695 SourceLocation(), 2696 SourceLocation(), II, C.VoidTy, 0, 2697 SC_Static, 2698 SC_None, 2699 false, 2700 true); 2701 2702 QualType DestTy = C.getPointerType(Ty); 2703 QualType SrcTy = Ty; 2704 SrcTy.addConst(); 2705 SrcTy = C.getPointerType(SrcTy); 2706 2707 FunctionArgList args; 2708 ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy); 2709 args.push_back(&dstDecl); 2710 ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy); 2711 args.push_back(&srcDecl); 2712 2713 const CGFunctionInfo &FI = 2714 CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args, 2715 FunctionType::ExtInfo(), 2716 RequiredArgs::All); 2717 2718 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2719 2720 llvm::Function *Fn = 2721 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2722 "__copy_helper_atomic_property_", &CGM.getModule()); 2723 2724 if (CGM.getModuleDebugInfo()) 2725 DebugInfo = CGM.getModuleDebugInfo(); 2726 2727 2728 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation()); 2729 2730 DeclRefExpr *SrcExpr = 2731 new (C) DeclRefExpr(&srcDecl, SrcTy, 2732 VK_RValue, SourceLocation()); 2733 2734 Expr* SRC = new (C) UnaryOperator(SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2735 VK_LValue, OK_Ordinary, SourceLocation()); 2736 2737 CXXConstructExpr *CXXConstExpr = 2738 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 2739 2740 SmallVector<Expr*, 4> ConstructorArgs; 2741 ConstructorArgs.push_back(SRC); 2742 CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin(); 2743 ++A; 2744 2745 for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end(); 2746 A != AEnd; ++A) 2747 ConstructorArgs.push_back(*A); 2748 2749 CXXConstructExpr *TheCXXConstructExpr = 2750 CXXConstructExpr::Create(C, Ty, SourceLocation(), 2751 CXXConstExpr->getConstructor(), 2752 CXXConstExpr->isElidable(), 2753 &ConstructorArgs[0], ConstructorArgs.size(), 2754 CXXConstExpr->hadMultipleCandidates(), 2755 CXXConstExpr->isListInitialization(), 2756 CXXConstExpr->requiresZeroInitialization(), 2757 CXXConstExpr->getConstructionKind(), SourceRange()); 2758 2759 DeclRefExpr *DstExpr = 2760 new (C) DeclRefExpr(&dstDecl, DestTy, 2761 VK_RValue, SourceLocation()); 2762 2763 RValue DV = EmitAnyExpr(DstExpr); 2764 CharUnits Alignment = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 2765 EmitAggExpr(TheCXXConstructExpr, 2766 AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(), 2767 AggValueSlot::IsDestructed, 2768 AggValueSlot::DoesNotNeedGCBarriers, 2769 AggValueSlot::IsNotAliased)); 2770 2771 FinishFunction(); 2772 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 2773 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 2774 return HelperFn; 2775 } 2776 2777 2778 CGObjCRuntime::~CGObjCRuntime() {} 2779