1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
35                                    QualType ET,
36                                    RValue Result);
37 
38 /// Given the address of a variable of pointer type, find the correct
39 /// null to store into it.
40 static llvm::Constant *getNullForVariable(Address addr) {
41   llvm::Type *type = addr.getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57 /// or [NSValue valueWithBytes:objCType:].
58 ///
59 llvm::Value *
60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61   // Generate the correct selector for this literal's concrete type.
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   const Expr *SubExpr = E->getSubExpr();
65   assert(BoxingMethod && "BoxingMethod is null");
66   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
67   Selector Sel = BoxingMethod->getSelector();
68 
69   // Generate a reference to the class pointer, which will be the receiver.
70   // Assumes that the method was introduced in the class that should be
71   // messaged (avoids pulling it out of the result type).
72   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
73   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
74   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
75 
76   CallArgList Args;
77   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
78   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
79 
80   // ObjCBoxedExpr supports boxing of structs and unions
81   // via [NSValue valueWithBytes:objCType:]
82   const QualType ValueType(SubExpr->getType().getCanonicalType());
83   if (ValueType->isObjCBoxableRecordType()) {
84     // Emit CodeGen for first parameter
85     // and cast value to correct type
86     Address Temporary = CreateMemTemp(SubExpr->getType());
87     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
88     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
89     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
90 
91     // Create char array to store type encoding
92     std::string Str;
93     getContext().getObjCEncodingForType(ValueType, Str);
94     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
95 
96     // Cast type encoding to correct type
97     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
98     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
99     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
100 
101     Args.add(RValue::get(Cast), EncodingQT);
102   } else {
103     Args.add(EmitAnyExpr(SubExpr), ArgQT);
104   }
105 
106   RValue result = Runtime.GenerateMessageSend(
107       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
108       Args, ClassDecl, BoxingMethod);
109   return Builder.CreateBitCast(result.getScalarVal(),
110                                ConvertType(E->getType()));
111 }
112 
113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
114                                     const ObjCMethodDecl *MethodWithObjects) {
115   ASTContext &Context = CGM.getContext();
116   const ObjCDictionaryLiteral *DLE = nullptr;
117   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
118   if (!ALE)
119     DLE = cast<ObjCDictionaryLiteral>(E);
120 
121   // Compute the type of the array we're initializing.
122   uint64_t NumElements =
123     ALE ? ALE->getNumElements() : DLE->getNumElements();
124   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
125                             NumElements);
126   QualType ElementType = Context.getObjCIdType().withConst();
127   QualType ElementArrayType
128     = Context.getConstantArrayType(ElementType, APNumElements,
129                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
130 
131   // Allocate the temporary array(s).
132   Address Objects = CreateMemTemp(ElementArrayType, "objects");
133   Address Keys = Address::invalid();
134   if (DLE)
135     Keys = CreateMemTemp(ElementArrayType, "keys");
136 
137   // In ARC, we may need to do extra work to keep all the keys and
138   // values alive until after the call.
139   SmallVector<llvm::Value *, 16> NeededObjects;
140   bool TrackNeededObjects =
141     (getLangOpts().ObjCAutoRefCount &&
142     CGM.getCodeGenOpts().OptimizationLevel != 0);
143 
144   // Perform the actual initialialization of the array(s).
145   for (uint64_t i = 0; i < NumElements; i++) {
146     if (ALE) {
147       // Emit the element and store it to the appropriate array slot.
148       const Expr *Rhs = ALE->getElement(i);
149       LValue LV = MakeAddrLValue(
150           Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
151           ElementType, AlignmentSource::Decl);
152 
153       llvm::Value *value = EmitScalarExpr(Rhs);
154       EmitStoreThroughLValue(RValue::get(value), LV, true);
155       if (TrackNeededObjects) {
156         NeededObjects.push_back(value);
157       }
158     } else {
159       // Emit the key and store it to the appropriate array slot.
160       const Expr *Key = DLE->getKeyValueElement(i).Key;
161       LValue KeyLV = MakeAddrLValue(
162           Builder.CreateConstArrayGEP(Keys, i, getPointerSize()),
163           ElementType, AlignmentSource::Decl);
164       llvm::Value *keyValue = EmitScalarExpr(Key);
165       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
166 
167       // Emit the value and store it to the appropriate array slot.
168       const Expr *Value = DLE->getKeyValueElement(i).Value;
169       LValue ValueLV = MakeAddrLValue(
170           Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
171           ElementType, AlignmentSource::Decl);
172       llvm::Value *valueValue = EmitScalarExpr(Value);
173       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
174       if (TrackNeededObjects) {
175         NeededObjects.push_back(keyValue);
176         NeededObjects.push_back(valueValue);
177       }
178     }
179   }
180 
181   // Generate the argument list.
182   CallArgList Args;
183   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
184   const ParmVarDecl *argDecl = *PI++;
185   QualType ArgQT = argDecl->getType().getUnqualifiedType();
186   Args.add(RValue::get(Objects.getPointer()), ArgQT);
187   if (DLE) {
188     argDecl = *PI++;
189     ArgQT = argDecl->getType().getUnqualifiedType();
190     Args.add(RValue::get(Keys.getPointer()), ArgQT);
191   }
192   argDecl = *PI;
193   ArgQT = argDecl->getType().getUnqualifiedType();
194   llvm::Value *Count =
195     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
196   Args.add(RValue::get(Count), ArgQT);
197 
198   // Generate a reference to the class pointer, which will be the receiver.
199   Selector Sel = MethodWithObjects->getSelector();
200   QualType ResultType = E->getType();
201   const ObjCObjectPointerType *InterfacePointerType
202     = ResultType->getAsObjCInterfacePointerType();
203   ObjCInterfaceDecl *Class
204     = InterfacePointerType->getObjectType()->getInterface();
205   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
206   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
207 
208   // Generate the message send.
209   RValue result = Runtime.GenerateMessageSend(
210       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
211       Receiver, Args, Class, MethodWithObjects);
212 
213   // The above message send needs these objects, but in ARC they are
214   // passed in a buffer that is essentially __unsafe_unretained.
215   // Therefore we must prevent the optimizer from releasing them until
216   // after the call.
217   if (TrackNeededObjects) {
218     EmitARCIntrinsicUse(NeededObjects);
219   }
220 
221   return Builder.CreateBitCast(result.getScalarVal(),
222                                ConvertType(E->getType()));
223 }
224 
225 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
226   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
227 }
228 
229 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
230                                             const ObjCDictionaryLiteral *E) {
231   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
232 }
233 
234 /// Emit a selector.
235 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
236   // Untyped selector.
237   // Note that this implementation allows for non-constant strings to be passed
238   // as arguments to @selector().  Currently, the only thing preventing this
239   // behaviour is the type checking in the front end.
240   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
241 }
242 
243 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
244   // FIXME: This should pass the Decl not the name.
245   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
246 }
247 
248 /// \brief Adjust the type of an Objective-C object that doesn't match up due
249 /// to type erasure at various points, e.g., related result types or the use
250 /// of parameterized classes.
251 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
252                                    RValue Result) {
253   if (!ExpT->isObjCRetainableType())
254     return Result;
255 
256   // If the converted types are the same, we're done.
257   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
258   if (ExpLLVMTy == Result.getScalarVal()->getType())
259     return Result;
260 
261   // We have applied a substitution. Cast the rvalue appropriately.
262   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
263                                                ExpLLVMTy));
264 }
265 
266 /// Decide whether to extend the lifetime of the receiver of a
267 /// returns-inner-pointer message.
268 static bool
269 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
270   switch (message->getReceiverKind()) {
271 
272   // For a normal instance message, we should extend unless the
273   // receiver is loaded from a variable with precise lifetime.
274   case ObjCMessageExpr::Instance: {
275     const Expr *receiver = message->getInstanceReceiver();
276 
277     // Look through OVEs.
278     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
279       if (opaque->getSourceExpr())
280         receiver = opaque->getSourceExpr()->IgnoreParens();
281     }
282 
283     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
284     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
285     receiver = ice->getSubExpr()->IgnoreParens();
286 
287     // Look through OVEs.
288     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
289       if (opaque->getSourceExpr())
290         receiver = opaque->getSourceExpr()->IgnoreParens();
291     }
292 
293     // Only __strong variables.
294     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
295       return true;
296 
297     // All ivars and fields have precise lifetime.
298     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
299       return false;
300 
301     // Otherwise, check for variables.
302     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
303     if (!declRef) return true;
304     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
305     if (!var) return true;
306 
307     // All variables have precise lifetime except local variables with
308     // automatic storage duration that aren't specially marked.
309     return (var->hasLocalStorage() &&
310             !var->hasAttr<ObjCPreciseLifetimeAttr>());
311   }
312 
313   case ObjCMessageExpr::Class:
314   case ObjCMessageExpr::SuperClass:
315     // It's never necessary for class objects.
316     return false;
317 
318   case ObjCMessageExpr::SuperInstance:
319     // We generally assume that 'self' lives throughout a method call.
320     return false;
321   }
322 
323   llvm_unreachable("invalid receiver kind");
324 }
325 
326 /// Given an expression of ObjC pointer type, check whether it was
327 /// immediately loaded from an ARC __weak l-value.
328 static const Expr *findWeakLValue(const Expr *E) {
329   assert(E->getType()->isObjCRetainableType());
330   E = E->IgnoreParens();
331   if (auto CE = dyn_cast<CastExpr>(E)) {
332     if (CE->getCastKind() == CK_LValueToRValue) {
333       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
334         return CE->getSubExpr();
335     }
336   }
337 
338   return nullptr;
339 }
340 
341 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
342                                             ReturnValueSlot Return) {
343   // Only the lookup mechanism and first two arguments of the method
344   // implementation vary between runtimes.  We can get the receiver and
345   // arguments in generic code.
346 
347   bool isDelegateInit = E->isDelegateInitCall();
348 
349   const ObjCMethodDecl *method = E->getMethodDecl();
350 
351   // If the method is -retain, and the receiver's being loaded from
352   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
353   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
354       method->getMethodFamily() == OMF_retain) {
355     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
356       LValue lvalue = EmitLValue(lvalueExpr);
357       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
358       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
359     }
360   }
361 
362   // We don't retain the receiver in delegate init calls, and this is
363   // safe because the receiver value is always loaded from 'self',
364   // which we zero out.  We don't want to Block_copy block receivers,
365   // though.
366   bool retainSelf =
367     (!isDelegateInit &&
368      CGM.getLangOpts().ObjCAutoRefCount &&
369      method &&
370      method->hasAttr<NSConsumesSelfAttr>());
371 
372   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
373   bool isSuperMessage = false;
374   bool isClassMessage = false;
375   ObjCInterfaceDecl *OID = nullptr;
376   // Find the receiver
377   QualType ReceiverType;
378   llvm::Value *Receiver = nullptr;
379   switch (E->getReceiverKind()) {
380   case ObjCMessageExpr::Instance:
381     ReceiverType = E->getInstanceReceiver()->getType();
382     if (retainSelf) {
383       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
384                                                    E->getInstanceReceiver());
385       Receiver = ter.getPointer();
386       if (ter.getInt()) retainSelf = false;
387     } else
388       Receiver = EmitScalarExpr(E->getInstanceReceiver());
389     break;
390 
391   case ObjCMessageExpr::Class: {
392     ReceiverType = E->getClassReceiver();
393     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
394     assert(ObjTy && "Invalid Objective-C class message send");
395     OID = ObjTy->getInterface();
396     assert(OID && "Invalid Objective-C class message send");
397     Receiver = Runtime.GetClass(*this, OID);
398     isClassMessage = true;
399     break;
400   }
401 
402   case ObjCMessageExpr::SuperInstance:
403     ReceiverType = E->getSuperType();
404     Receiver = LoadObjCSelf();
405     isSuperMessage = true;
406     break;
407 
408   case ObjCMessageExpr::SuperClass:
409     ReceiverType = E->getSuperType();
410     Receiver = LoadObjCSelf();
411     isSuperMessage = true;
412     isClassMessage = true;
413     break;
414   }
415 
416   if (retainSelf)
417     Receiver = EmitARCRetainNonBlock(Receiver);
418 
419   // In ARC, we sometimes want to "extend the lifetime"
420   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
421   // messages.
422   if (getLangOpts().ObjCAutoRefCount && method &&
423       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
424       shouldExtendReceiverForInnerPointerMessage(E))
425     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
426 
427   QualType ResultType = method ? method->getReturnType() : E->getType();
428 
429   CallArgList Args;
430   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
431 
432   // For delegate init calls in ARC, do an unsafe store of null into
433   // self.  This represents the call taking direct ownership of that
434   // value.  We have to do this after emitting the other call
435   // arguments because they might also reference self, but we don't
436   // have to worry about any of them modifying self because that would
437   // be an undefined read and write of an object in unordered
438   // expressions.
439   if (isDelegateInit) {
440     assert(getLangOpts().ObjCAutoRefCount &&
441            "delegate init calls should only be marked in ARC");
442 
443     // Do an unsafe store of null into self.
444     Address selfAddr =
445       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
446     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
447   }
448 
449   RValue result;
450   if (isSuperMessage) {
451     // super is only valid in an Objective-C method
452     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
453     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
454     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
455                                               E->getSelector(),
456                                               OMD->getClassInterface(),
457                                               isCategoryImpl,
458                                               Receiver,
459                                               isClassMessage,
460                                               Args,
461                                               method);
462   } else {
463     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
464                                          E->getSelector(),
465                                          Receiver, Args, OID,
466                                          method);
467   }
468 
469   // For delegate init calls in ARC, implicitly store the result of
470   // the call back into self.  This takes ownership of the value.
471   if (isDelegateInit) {
472     Address selfAddr =
473       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
474     llvm::Value *newSelf = result.getScalarVal();
475 
476     // The delegate return type isn't necessarily a matching type; in
477     // fact, it's quite likely to be 'id'.
478     llvm::Type *selfTy = selfAddr.getElementType();
479     newSelf = Builder.CreateBitCast(newSelf, selfTy);
480 
481     Builder.CreateStore(newSelf, selfAddr);
482   }
483 
484   return AdjustObjCObjectType(*this, E->getType(), result);
485 }
486 
487 namespace {
488 struct FinishARCDealloc final : EHScopeStack::Cleanup {
489   void Emit(CodeGenFunction &CGF, Flags flags) override {
490     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
491 
492     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
493     const ObjCInterfaceDecl *iface = impl->getClassInterface();
494     if (!iface->getSuperClass()) return;
495 
496     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
497 
498     // Call [super dealloc] if we have a superclass.
499     llvm::Value *self = CGF.LoadObjCSelf();
500 
501     CallArgList args;
502     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
503                                                       CGF.getContext().VoidTy,
504                                                       method->getSelector(),
505                                                       iface,
506                                                       isCategory,
507                                                       self,
508                                                       /*is class msg*/ false,
509                                                       args,
510                                                       method);
511   }
512 };
513 }
514 
515 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
516 /// the LLVM function and sets the other context used by
517 /// CodeGenFunction.
518 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
519                                       const ObjCContainerDecl *CD) {
520   SourceLocation StartLoc = OMD->getLocStart();
521   FunctionArgList args;
522   // Check if we should generate debug info for this method.
523   if (OMD->hasAttr<NoDebugAttr>())
524     DebugInfo = nullptr; // disable debug info indefinitely for this function
525 
526   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
527 
528   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
529   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
530 
531   args.push_back(OMD->getSelfDecl());
532   args.push_back(OMD->getCmdDecl());
533 
534   args.append(OMD->param_begin(), OMD->param_end());
535 
536   CurGD = OMD;
537   CurEHLocation = OMD->getLocEnd();
538 
539   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
540                 OMD->getLocation(), StartLoc);
541 
542   // In ARC, certain methods get an extra cleanup.
543   if (CGM.getLangOpts().ObjCAutoRefCount &&
544       OMD->isInstanceMethod() &&
545       OMD->getSelector().isUnarySelector()) {
546     const IdentifierInfo *ident =
547       OMD->getSelector().getIdentifierInfoForSlot(0);
548     if (ident->isStr("dealloc"))
549       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
550   }
551 }
552 
553 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
554                                               LValue lvalue, QualType type);
555 
556 /// Generate an Objective-C method.  An Objective-C method is a C function with
557 /// its pointer, name, and types registered in the class struture.
558 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
559   StartObjCMethod(OMD, OMD->getClassInterface());
560   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
561   assert(isa<CompoundStmt>(OMD->getBody()));
562   incrementProfileCounter(OMD->getBody());
563   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
564   FinishFunction(OMD->getBodyRBrace());
565 }
566 
567 /// emitStructGetterCall - Call the runtime function to load a property
568 /// into the return value slot.
569 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
570                                  bool isAtomic, bool hasStrong) {
571   ASTContext &Context = CGF.getContext();
572 
573   Address src =
574     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
575        .getAddress();
576 
577   // objc_copyStruct (ReturnValue, &structIvar,
578   //                  sizeof (Type of Ivar), isAtomic, false);
579   CallArgList args;
580 
581   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
582   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
583 
584   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
585   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
586 
587   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
588   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
589   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
590   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
591 
592   llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
593   CGCallee callee = CGCallee::forDirect(fn);
594   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
595                callee, ReturnValueSlot(), args);
596 }
597 
598 /// Determine whether the given architecture supports unaligned atomic
599 /// accesses.  They don't have to be fast, just faster than a function
600 /// call and a mutex.
601 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
602   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
603   // currently supported by the backend.)
604   return 0;
605 }
606 
607 /// Return the maximum size that permits atomic accesses for the given
608 /// architecture.
609 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
610                                         llvm::Triple::ArchType arch) {
611   // ARM has 8-byte atomic accesses, but it's not clear whether we
612   // want to rely on them here.
613 
614   // In the default case, just assume that any size up to a pointer is
615   // fine given adequate alignment.
616   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
617 }
618 
619 namespace {
620   class PropertyImplStrategy {
621   public:
622     enum StrategyKind {
623       /// The 'native' strategy is to use the architecture's provided
624       /// reads and writes.
625       Native,
626 
627       /// Use objc_setProperty and objc_getProperty.
628       GetSetProperty,
629 
630       /// Use objc_setProperty for the setter, but use expression
631       /// evaluation for the getter.
632       SetPropertyAndExpressionGet,
633 
634       /// Use objc_copyStruct.
635       CopyStruct,
636 
637       /// The 'expression' strategy is to emit normal assignment or
638       /// lvalue-to-rvalue expressions.
639       Expression
640     };
641 
642     StrategyKind getKind() const { return StrategyKind(Kind); }
643 
644     bool hasStrongMember() const { return HasStrong; }
645     bool isAtomic() const { return IsAtomic; }
646     bool isCopy() const { return IsCopy; }
647 
648     CharUnits getIvarSize() const { return IvarSize; }
649     CharUnits getIvarAlignment() const { return IvarAlignment; }
650 
651     PropertyImplStrategy(CodeGenModule &CGM,
652                          const ObjCPropertyImplDecl *propImpl);
653 
654   private:
655     unsigned Kind : 8;
656     unsigned IsAtomic : 1;
657     unsigned IsCopy : 1;
658     unsigned HasStrong : 1;
659 
660     CharUnits IvarSize;
661     CharUnits IvarAlignment;
662   };
663 }
664 
665 /// Pick an implementation strategy for the given property synthesis.
666 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
667                                      const ObjCPropertyImplDecl *propImpl) {
668   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
669   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
670 
671   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
672   IsAtomic = prop->isAtomic();
673   HasStrong = false; // doesn't matter here.
674 
675   // Evaluate the ivar's size and alignment.
676   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
677   QualType ivarType = ivar->getType();
678   std::tie(IvarSize, IvarAlignment) =
679       CGM.getContext().getTypeInfoInChars(ivarType);
680 
681   // If we have a copy property, we always have to use getProperty/setProperty.
682   // TODO: we could actually use setProperty and an expression for non-atomics.
683   if (IsCopy) {
684     Kind = GetSetProperty;
685     return;
686   }
687 
688   // Handle retain.
689   if (setterKind == ObjCPropertyDecl::Retain) {
690     // In GC-only, there's nothing special that needs to be done.
691     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
692       // fallthrough
693 
694     // In ARC, if the property is non-atomic, use expression emission,
695     // which translates to objc_storeStrong.  This isn't required, but
696     // it's slightly nicer.
697     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
698       // Using standard expression emission for the setter is only
699       // acceptable if the ivar is __strong, which won't be true if
700       // the property is annotated with __attribute__((NSObject)).
701       // TODO: falling all the way back to objc_setProperty here is
702       // just laziness, though;  we could still use objc_storeStrong
703       // if we hacked it right.
704       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
705         Kind = Expression;
706       else
707         Kind = SetPropertyAndExpressionGet;
708       return;
709 
710     // Otherwise, we need to at least use setProperty.  However, if
711     // the property isn't atomic, we can use normal expression
712     // emission for the getter.
713     } else if (!IsAtomic) {
714       Kind = SetPropertyAndExpressionGet;
715       return;
716 
717     // Otherwise, we have to use both setProperty and getProperty.
718     } else {
719       Kind = GetSetProperty;
720       return;
721     }
722   }
723 
724   // If we're not atomic, just use expression accesses.
725   if (!IsAtomic) {
726     Kind = Expression;
727     return;
728   }
729 
730   // Properties on bitfield ivars need to be emitted using expression
731   // accesses even if they're nominally atomic.
732   if (ivar->isBitField()) {
733     Kind = Expression;
734     return;
735   }
736 
737   // GC-qualified or ARC-qualified ivars need to be emitted as
738   // expressions.  This actually works out to being atomic anyway,
739   // except for ARC __strong, but that should trigger the above code.
740   if (ivarType.hasNonTrivialObjCLifetime() ||
741       (CGM.getLangOpts().getGC() &&
742        CGM.getContext().getObjCGCAttrKind(ivarType))) {
743     Kind = Expression;
744     return;
745   }
746 
747   // Compute whether the ivar has strong members.
748   if (CGM.getLangOpts().getGC())
749     if (const RecordType *recordType = ivarType->getAs<RecordType>())
750       HasStrong = recordType->getDecl()->hasObjectMember();
751 
752   // We can never access structs with object members with a native
753   // access, because we need to use write barriers.  This is what
754   // objc_copyStruct is for.
755   if (HasStrong) {
756     Kind = CopyStruct;
757     return;
758   }
759 
760   // Otherwise, this is target-dependent and based on the size and
761   // alignment of the ivar.
762 
763   // If the size of the ivar is not a power of two, give up.  We don't
764   // want to get into the business of doing compare-and-swaps.
765   if (!IvarSize.isPowerOfTwo()) {
766     Kind = CopyStruct;
767     return;
768   }
769 
770   llvm::Triple::ArchType arch =
771     CGM.getTarget().getTriple().getArch();
772 
773   // Most architectures require memory to fit within a single cache
774   // line, so the alignment has to be at least the size of the access.
775   // Otherwise we have to grab a lock.
776   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
777     Kind = CopyStruct;
778     return;
779   }
780 
781   // If the ivar's size exceeds the architecture's maximum atomic
782   // access size, we have to use CopyStruct.
783   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
784     Kind = CopyStruct;
785     return;
786   }
787 
788   // Otherwise, we can use native loads and stores.
789   Kind = Native;
790 }
791 
792 /// \brief Generate an Objective-C property getter function.
793 ///
794 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
795 /// is illegal within a category.
796 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
797                                          const ObjCPropertyImplDecl *PID) {
798   llvm::Constant *AtomicHelperFn =
799       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
800   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
801   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
802   assert(OMD && "Invalid call to generate getter (empty method)");
803   StartObjCMethod(OMD, IMP->getClassInterface());
804 
805   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
806 
807   FinishFunction();
808 }
809 
810 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
811   const Expr *getter = propImpl->getGetterCXXConstructor();
812   if (!getter) return true;
813 
814   // Sema only makes only of these when the ivar has a C++ class type,
815   // so the form is pretty constrained.
816 
817   // If the property has a reference type, we might just be binding a
818   // reference, in which case the result will be a gl-value.  We should
819   // treat this as a non-trivial operation.
820   if (getter->isGLValue())
821     return false;
822 
823   // If we selected a trivial copy-constructor, we're okay.
824   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
825     return (construct->getConstructor()->isTrivial());
826 
827   // The constructor might require cleanups (in which case it's never
828   // trivial).
829   assert(isa<ExprWithCleanups>(getter));
830   return false;
831 }
832 
833 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
834 /// copy the ivar into the resturn slot.
835 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
836                                           llvm::Value *returnAddr,
837                                           ObjCIvarDecl *ivar,
838                                           llvm::Constant *AtomicHelperFn) {
839   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
840   //                           AtomicHelperFn);
841   CallArgList args;
842 
843   // The 1st argument is the return Slot.
844   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
845 
846   // The 2nd argument is the address of the ivar.
847   llvm::Value *ivarAddr =
848     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
849                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
850   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
851   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
852 
853   // Third argument is the helper function.
854   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
855 
856   llvm::Constant *copyCppAtomicObjectFn =
857     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
858   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
859   CGF.EmitCall(
860       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
861                callee, ReturnValueSlot(), args);
862 }
863 
864 void
865 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
866                                         const ObjCPropertyImplDecl *propImpl,
867                                         const ObjCMethodDecl *GetterMethodDecl,
868                                         llvm::Constant *AtomicHelperFn) {
869   // If there's a non-trivial 'get' expression, we just have to emit that.
870   if (!hasTrivialGetExpr(propImpl)) {
871     if (!AtomicHelperFn) {
872       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
873                      /*nrvo*/ nullptr);
874       EmitReturnStmt(ret);
875     }
876     else {
877       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
878       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
879                                     ivar, AtomicHelperFn);
880     }
881     return;
882   }
883 
884   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
885   QualType propType = prop->getType();
886   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
887 
888   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
889 
890   // Pick an implementation strategy.
891   PropertyImplStrategy strategy(CGM, propImpl);
892   switch (strategy.getKind()) {
893   case PropertyImplStrategy::Native: {
894     // We don't need to do anything for a zero-size struct.
895     if (strategy.getIvarSize().isZero())
896       return;
897 
898     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
899 
900     // Currently, all atomic accesses have to be through integer
901     // types, so there's no point in trying to pick a prettier type.
902     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
903     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
904     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
905 
906     // Perform an atomic load.  This does not impose ordering constraints.
907     Address ivarAddr = LV.getAddress();
908     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
909     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
910     load->setAtomic(llvm::AtomicOrdering::Unordered);
911 
912     // Store that value into the return address.  Doing this with a
913     // bitcast is likely to produce some pretty ugly IR, but it's not
914     // the *most* terrible thing in the world.
915     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
916     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
917     llvm::Value *ivarVal = load;
918     if (ivarSize > retTySize) {
919       llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
920       ivarVal = Builder.CreateTrunc(load, newTy);
921       bitcastType = newTy->getPointerTo();
922     }
923     Builder.CreateStore(ivarVal,
924                         Builder.CreateBitCast(ReturnValue, bitcastType));
925 
926     // Make sure we don't do an autorelease.
927     AutoreleaseResult = false;
928     return;
929   }
930 
931   case PropertyImplStrategy::GetSetProperty: {
932     llvm::Constant *getPropertyFn =
933       CGM.getObjCRuntime().GetPropertyGetFunction();
934     if (!getPropertyFn) {
935       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
936       return;
937     }
938     CGCallee callee = CGCallee::forDirect(getPropertyFn);
939 
940     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
941     // FIXME: Can't this be simpler? This might even be worse than the
942     // corresponding gcc code.
943     llvm::Value *cmd =
944       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
945     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
946     llvm::Value *ivarOffset =
947       EmitIvarOffset(classImpl->getClassInterface(), ivar);
948 
949     CallArgList args;
950     args.add(RValue::get(self), getContext().getObjCIdType());
951     args.add(RValue::get(cmd), getContext().getObjCSelType());
952     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
953     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
954              getContext().BoolTy);
955 
956     // FIXME: We shouldn't need to get the function info here, the
957     // runtime already should have computed it to build the function.
958     llvm::Instruction *CallInstruction;
959     RValue RV = EmitCall(
960         getTypes().arrangeBuiltinFunctionCall(propType, args),
961         callee, ReturnValueSlot(), args, &CallInstruction);
962     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
963       call->setTailCall();
964 
965     // We need to fix the type here. Ivars with copy & retain are
966     // always objects so we don't need to worry about complex or
967     // aggregates.
968     RV = RValue::get(Builder.CreateBitCast(
969         RV.getScalarVal(),
970         getTypes().ConvertType(getterMethod->getReturnType())));
971 
972     EmitReturnOfRValue(RV, propType);
973 
974     // objc_getProperty does an autorelease, so we should suppress ours.
975     AutoreleaseResult = false;
976 
977     return;
978   }
979 
980   case PropertyImplStrategy::CopyStruct:
981     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
982                          strategy.hasStrongMember());
983     return;
984 
985   case PropertyImplStrategy::Expression:
986   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
987     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
988 
989     QualType ivarType = ivar->getType();
990     switch (getEvaluationKind(ivarType)) {
991     case TEK_Complex: {
992       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
993       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
994                          /*init*/ true);
995       return;
996     }
997     case TEK_Aggregate:
998       // The return value slot is guaranteed to not be aliased, but
999       // that's not necessarily the same as "on the stack", so
1000       // we still potentially need objc_memmove_collectable.
1001       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
1002       return;
1003     case TEK_Scalar: {
1004       llvm::Value *value;
1005       if (propType->isReferenceType()) {
1006         value = LV.getAddress().getPointer();
1007       } else {
1008         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1009         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1010           if (getLangOpts().ObjCAutoRefCount) {
1011             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1012           } else {
1013             value = EmitARCLoadWeak(LV.getAddress());
1014           }
1015 
1016         // Otherwise we want to do a simple load, suppressing the
1017         // final autorelease.
1018         } else {
1019           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1020           AutoreleaseResult = false;
1021         }
1022 
1023         value = Builder.CreateBitCast(
1024             value, ConvertType(GetterMethodDecl->getReturnType()));
1025       }
1026 
1027       EmitReturnOfRValue(RValue::get(value), propType);
1028       return;
1029     }
1030     }
1031     llvm_unreachable("bad evaluation kind");
1032   }
1033 
1034   }
1035   llvm_unreachable("bad @property implementation strategy!");
1036 }
1037 
1038 /// emitStructSetterCall - Call the runtime function to store the value
1039 /// from the first formal parameter into the given ivar.
1040 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1041                                  ObjCIvarDecl *ivar) {
1042   // objc_copyStruct (&structIvar, &Arg,
1043   //                  sizeof (struct something), true, false);
1044   CallArgList args;
1045 
1046   // The first argument is the address of the ivar.
1047   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1048                                                 CGF.LoadObjCSelf(), ivar, 0)
1049     .getPointer();
1050   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1051   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1052 
1053   // The second argument is the address of the parameter variable.
1054   ParmVarDecl *argVar = *OMD->param_begin();
1055   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1056                      VK_LValue, SourceLocation());
1057   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1058   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1059   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1060 
1061   // The third argument is the sizeof the type.
1062   llvm::Value *size =
1063     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1064   args.add(RValue::get(size), CGF.getContext().getSizeType());
1065 
1066   // The fourth argument is the 'isAtomic' flag.
1067   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1068 
1069   // The fifth argument is the 'hasStrong' flag.
1070   // FIXME: should this really always be false?
1071   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1072 
1073   llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1074   CGCallee callee = CGCallee::forDirect(fn);
1075   CGF.EmitCall(
1076       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1077                callee, ReturnValueSlot(), args);
1078 }
1079 
1080 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1081 /// the value from the first formal parameter into the given ivar, using
1082 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1083 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1084                                           ObjCMethodDecl *OMD,
1085                                           ObjCIvarDecl *ivar,
1086                                           llvm::Constant *AtomicHelperFn) {
1087   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1088   //                           AtomicHelperFn);
1089   CallArgList args;
1090 
1091   // The first argument is the address of the ivar.
1092   llvm::Value *ivarAddr =
1093     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1094                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
1095   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1096   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1097 
1098   // The second argument is the address of the parameter variable.
1099   ParmVarDecl *argVar = *OMD->param_begin();
1100   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1101                      VK_LValue, SourceLocation());
1102   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1103   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1104   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1105 
1106   // Third argument is the helper function.
1107   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1108 
1109   llvm::Constant *fn =
1110     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1111   CGCallee callee = CGCallee::forDirect(fn);
1112   CGF.EmitCall(
1113       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1114                callee, ReturnValueSlot(), args);
1115 }
1116 
1117 
1118 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1119   Expr *setter = PID->getSetterCXXAssignment();
1120   if (!setter) return true;
1121 
1122   // Sema only makes only of these when the ivar has a C++ class type,
1123   // so the form is pretty constrained.
1124 
1125   // An operator call is trivial if the function it calls is trivial.
1126   // This also implies that there's nothing non-trivial going on with
1127   // the arguments, because operator= can only be trivial if it's a
1128   // synthesized assignment operator and therefore both parameters are
1129   // references.
1130   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1131     if (const FunctionDecl *callee
1132           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1133       if (callee->isTrivial())
1134         return true;
1135     return false;
1136   }
1137 
1138   assert(isa<ExprWithCleanups>(setter));
1139   return false;
1140 }
1141 
1142 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1143   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1144     return false;
1145   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1146 }
1147 
1148 void
1149 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1150                                         const ObjCPropertyImplDecl *propImpl,
1151                                         llvm::Constant *AtomicHelperFn) {
1152   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1153   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1154   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1155 
1156   // Just use the setter expression if Sema gave us one and it's
1157   // non-trivial.
1158   if (!hasTrivialSetExpr(propImpl)) {
1159     if (!AtomicHelperFn)
1160       // If non-atomic, assignment is called directly.
1161       EmitStmt(propImpl->getSetterCXXAssignment());
1162     else
1163       // If atomic, assignment is called via a locking api.
1164       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1165                                     AtomicHelperFn);
1166     return;
1167   }
1168 
1169   PropertyImplStrategy strategy(CGM, propImpl);
1170   switch (strategy.getKind()) {
1171   case PropertyImplStrategy::Native: {
1172     // We don't need to do anything for a zero-size struct.
1173     if (strategy.getIvarSize().isZero())
1174       return;
1175 
1176     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1177 
1178     LValue ivarLValue =
1179       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1180     Address ivarAddr = ivarLValue.getAddress();
1181 
1182     // Currently, all atomic accesses have to be through integer
1183     // types, so there's no point in trying to pick a prettier type.
1184     llvm::Type *bitcastType =
1185       llvm::Type::getIntNTy(getLLVMContext(),
1186                             getContext().toBits(strategy.getIvarSize()));
1187 
1188     // Cast both arguments to the chosen operation type.
1189     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1190     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1191 
1192     // This bitcast load is likely to cause some nasty IR.
1193     llvm::Value *load = Builder.CreateLoad(argAddr);
1194 
1195     // Perform an atomic store.  There are no memory ordering requirements.
1196     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1197     store->setAtomic(llvm::AtomicOrdering::Unordered);
1198     return;
1199   }
1200 
1201   case PropertyImplStrategy::GetSetProperty:
1202   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1203 
1204     llvm::Constant *setOptimizedPropertyFn = nullptr;
1205     llvm::Constant *setPropertyFn = nullptr;
1206     if (UseOptimizedSetter(CGM)) {
1207       // 10.8 and iOS 6.0 code and GC is off
1208       setOptimizedPropertyFn =
1209         CGM.getObjCRuntime()
1210            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1211                                             strategy.isCopy());
1212       if (!setOptimizedPropertyFn) {
1213         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1214         return;
1215       }
1216     }
1217     else {
1218       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1219       if (!setPropertyFn) {
1220         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1221         return;
1222       }
1223     }
1224 
1225     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1226     //                       <is-atomic>, <is-copy>).
1227     llvm::Value *cmd =
1228       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1229     llvm::Value *self =
1230       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1231     llvm::Value *ivarOffset =
1232       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1233     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1234     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1235     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1236 
1237     CallArgList args;
1238     args.add(RValue::get(self), getContext().getObjCIdType());
1239     args.add(RValue::get(cmd), getContext().getObjCSelType());
1240     if (setOptimizedPropertyFn) {
1241       args.add(RValue::get(arg), getContext().getObjCIdType());
1242       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1243       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1244       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1245                callee, ReturnValueSlot(), args);
1246     } else {
1247       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1248       args.add(RValue::get(arg), getContext().getObjCIdType());
1249       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1250                getContext().BoolTy);
1251       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1252                getContext().BoolTy);
1253       // FIXME: We shouldn't need to get the function info here, the runtime
1254       // already should have computed it to build the function.
1255       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1256       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1257                callee, ReturnValueSlot(), args);
1258     }
1259 
1260     return;
1261   }
1262 
1263   case PropertyImplStrategy::CopyStruct:
1264     emitStructSetterCall(*this, setterMethod, ivar);
1265     return;
1266 
1267   case PropertyImplStrategy::Expression:
1268     break;
1269   }
1270 
1271   // Otherwise, fake up some ASTs and emit a normal assignment.
1272   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1273   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1274                    VK_LValue, SourceLocation());
1275   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1276                             selfDecl->getType(), CK_LValueToRValue, &self,
1277                             VK_RValue);
1278   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1279                           SourceLocation(), SourceLocation(),
1280                           &selfLoad, true, true);
1281 
1282   ParmVarDecl *argDecl = *setterMethod->param_begin();
1283   QualType argType = argDecl->getType().getNonReferenceType();
1284   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1285   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1286                            argType.getUnqualifiedType(), CK_LValueToRValue,
1287                            &arg, VK_RValue);
1288 
1289   // The property type can differ from the ivar type in some situations with
1290   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1291   // The following absurdity is just to ensure well-formed IR.
1292   CastKind argCK = CK_NoOp;
1293   if (ivarRef.getType()->isObjCObjectPointerType()) {
1294     if (argLoad.getType()->isObjCObjectPointerType())
1295       argCK = CK_BitCast;
1296     else if (argLoad.getType()->isBlockPointerType())
1297       argCK = CK_BlockPointerToObjCPointerCast;
1298     else
1299       argCK = CK_CPointerToObjCPointerCast;
1300   } else if (ivarRef.getType()->isBlockPointerType()) {
1301      if (argLoad.getType()->isBlockPointerType())
1302       argCK = CK_BitCast;
1303     else
1304       argCK = CK_AnyPointerToBlockPointerCast;
1305   } else if (ivarRef.getType()->isPointerType()) {
1306     argCK = CK_BitCast;
1307   }
1308   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1309                            ivarRef.getType(), argCK, &argLoad,
1310                            VK_RValue);
1311   Expr *finalArg = &argLoad;
1312   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1313                                            argLoad.getType()))
1314     finalArg = &argCast;
1315 
1316 
1317   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1318                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1319                         SourceLocation(), false);
1320   EmitStmt(&assign);
1321 }
1322 
1323 /// \brief Generate an Objective-C property setter function.
1324 ///
1325 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1326 /// is illegal within a category.
1327 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1328                                          const ObjCPropertyImplDecl *PID) {
1329   llvm::Constant *AtomicHelperFn =
1330       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1331   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1332   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1333   assert(OMD && "Invalid call to generate setter (empty method)");
1334   StartObjCMethod(OMD, IMP->getClassInterface());
1335 
1336   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1337 
1338   FinishFunction();
1339 }
1340 
1341 namespace {
1342   struct DestroyIvar final : EHScopeStack::Cleanup {
1343   private:
1344     llvm::Value *addr;
1345     const ObjCIvarDecl *ivar;
1346     CodeGenFunction::Destroyer *destroyer;
1347     bool useEHCleanupForArray;
1348   public:
1349     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1350                 CodeGenFunction::Destroyer *destroyer,
1351                 bool useEHCleanupForArray)
1352       : addr(addr), ivar(ivar), destroyer(destroyer),
1353         useEHCleanupForArray(useEHCleanupForArray) {}
1354 
1355     void Emit(CodeGenFunction &CGF, Flags flags) override {
1356       LValue lvalue
1357         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1358       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1359                       flags.isForNormalCleanup() && useEHCleanupForArray);
1360     }
1361   };
1362 }
1363 
1364 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1365 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1366                                       Address addr,
1367                                       QualType type) {
1368   llvm::Value *null = getNullForVariable(addr);
1369   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1370 }
1371 
1372 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1373                                   ObjCImplementationDecl *impl) {
1374   CodeGenFunction::RunCleanupsScope scope(CGF);
1375 
1376   llvm::Value *self = CGF.LoadObjCSelf();
1377 
1378   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1379   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1380        ivar; ivar = ivar->getNextIvar()) {
1381     QualType type = ivar->getType();
1382 
1383     // Check whether the ivar is a destructible type.
1384     QualType::DestructionKind dtorKind = type.isDestructedType();
1385     if (!dtorKind) continue;
1386 
1387     CodeGenFunction::Destroyer *destroyer = nullptr;
1388 
1389     // Use a call to objc_storeStrong to destroy strong ivars, for the
1390     // general benefit of the tools.
1391     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1392       destroyer = destroyARCStrongWithStore;
1393 
1394     // Otherwise use the default for the destruction kind.
1395     } else {
1396       destroyer = CGF.getDestroyer(dtorKind);
1397     }
1398 
1399     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1400 
1401     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1402                                          cleanupKind & EHCleanup);
1403   }
1404 
1405   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1406 }
1407 
1408 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1409                                                  ObjCMethodDecl *MD,
1410                                                  bool ctor) {
1411   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1412   StartObjCMethod(MD, IMP->getClassInterface());
1413 
1414   // Emit .cxx_construct.
1415   if (ctor) {
1416     // Suppress the final autorelease in ARC.
1417     AutoreleaseResult = false;
1418 
1419     for (const auto *IvarInit : IMP->inits()) {
1420       FieldDecl *Field = IvarInit->getAnyMember();
1421       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1422       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1423                                     LoadObjCSelf(), Ivar, 0);
1424       EmitAggExpr(IvarInit->getInit(),
1425                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1426                                           AggValueSlot::DoesNotNeedGCBarriers,
1427                                           AggValueSlot::IsNotAliased));
1428     }
1429     // constructor returns 'self'.
1430     CodeGenTypes &Types = CGM.getTypes();
1431     QualType IdTy(CGM.getContext().getObjCIdType());
1432     llvm::Value *SelfAsId =
1433       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1434     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1435 
1436   // Emit .cxx_destruct.
1437   } else {
1438     emitCXXDestructMethod(*this, IMP);
1439   }
1440   FinishFunction();
1441 }
1442 
1443 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1444   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1445   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1446                   Self->getType(), VK_LValue, SourceLocation());
1447   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1448 }
1449 
1450 QualType CodeGenFunction::TypeOfSelfObject() {
1451   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1452   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1453   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1454     getContext().getCanonicalType(selfDecl->getType()));
1455   return PTy->getPointeeType();
1456 }
1457 
1458 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1459   llvm::Constant *EnumerationMutationFnPtr =
1460     CGM.getObjCRuntime().EnumerationMutationFunction();
1461   if (!EnumerationMutationFnPtr) {
1462     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1463     return;
1464   }
1465   CGCallee EnumerationMutationFn =
1466     CGCallee::forDirect(EnumerationMutationFnPtr);
1467 
1468   CGDebugInfo *DI = getDebugInfo();
1469   if (DI)
1470     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1471 
1472   // The local variable comes into scope immediately.
1473   AutoVarEmission variable = AutoVarEmission::invalid();
1474   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1475     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1476 
1477   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1478 
1479   // Fast enumeration state.
1480   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1481   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1482   EmitNullInitialization(StatePtr, StateTy);
1483 
1484   // Number of elements in the items array.
1485   static const unsigned NumItems = 16;
1486 
1487   // Fetch the countByEnumeratingWithState:objects:count: selector.
1488   IdentifierInfo *II[] = {
1489     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1490     &CGM.getContext().Idents.get("objects"),
1491     &CGM.getContext().Idents.get("count")
1492   };
1493   Selector FastEnumSel =
1494     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1495 
1496   QualType ItemsTy =
1497     getContext().getConstantArrayType(getContext().getObjCIdType(),
1498                                       llvm::APInt(32, NumItems),
1499                                       ArrayType::Normal, 0);
1500   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1501 
1502   RunCleanupsScope ForScope(*this);
1503 
1504   // Emit the collection pointer.  In ARC, we do a retain.
1505   llvm::Value *Collection;
1506   if (getLangOpts().ObjCAutoRefCount) {
1507     Collection = EmitARCRetainScalarExpr(S.getCollection());
1508 
1509     // Enter a cleanup to do the release.
1510     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1511   } else {
1512     Collection = EmitScalarExpr(S.getCollection());
1513   }
1514 
1515   // The 'continue' label needs to appear within the cleanup for the
1516   // collection object.
1517   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1518 
1519   // Send it our message:
1520   CallArgList Args;
1521 
1522   // The first argument is a temporary of the enumeration-state type.
1523   Args.add(RValue::get(StatePtr.getPointer()),
1524            getContext().getPointerType(StateTy));
1525 
1526   // The second argument is a temporary array with space for NumItems
1527   // pointers.  We'll actually be loading elements from the array
1528   // pointer written into the control state; this buffer is so that
1529   // collections that *aren't* backed by arrays can still queue up
1530   // batches of elements.
1531   Args.add(RValue::get(ItemsPtr.getPointer()),
1532            getContext().getPointerType(ItemsTy));
1533 
1534   // The third argument is the capacity of that temporary array.
1535   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1536   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1537   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1538 
1539   // Start the enumeration.
1540   RValue CountRV =
1541     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1542                                              getContext().UnsignedLongTy,
1543                                              FastEnumSel,
1544                                              Collection, Args);
1545 
1546   // The initial number of objects that were returned in the buffer.
1547   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1548 
1549   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1550   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1551 
1552   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1553 
1554   // If the limit pointer was zero to begin with, the collection is
1555   // empty; skip all this. Set the branch weight assuming this has the same
1556   // probability of exiting the loop as any other loop exit.
1557   uint64_t EntryCount = getCurrentProfileCount();
1558   Builder.CreateCondBr(
1559       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1560       LoopInitBB,
1561       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1562 
1563   // Otherwise, initialize the loop.
1564   EmitBlock(LoopInitBB);
1565 
1566   // Save the initial mutations value.  This is the value at an
1567   // address that was written into the state object by
1568   // countByEnumeratingWithState:objects:count:.
1569   Address StateMutationsPtrPtr = Builder.CreateStructGEP(
1570       StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr");
1571   llvm::Value *StateMutationsPtr
1572     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1573 
1574   llvm::Value *initialMutations =
1575     Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1576                               "forcoll.initial-mutations");
1577 
1578   // Start looping.  This is the point we return to whenever we have a
1579   // fresh, non-empty batch of objects.
1580   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1581   EmitBlock(LoopBodyBB);
1582 
1583   // The current index into the buffer.
1584   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1585   index->addIncoming(zero, LoopInitBB);
1586 
1587   // The current buffer size.
1588   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1589   count->addIncoming(initialBufferLimit, LoopInitBB);
1590 
1591   incrementProfileCounter(&S);
1592 
1593   // Check whether the mutations value has changed from where it was
1594   // at start.  StateMutationsPtr should actually be invariant between
1595   // refreshes.
1596   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1597   llvm::Value *currentMutations
1598     = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1599                                 "statemutations");
1600 
1601   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1602   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1603 
1604   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1605                        WasNotMutatedBB, WasMutatedBB);
1606 
1607   // If so, call the enumeration-mutation function.
1608   EmitBlock(WasMutatedBB);
1609   llvm::Value *V =
1610     Builder.CreateBitCast(Collection,
1611                           ConvertType(getContext().getObjCIdType()));
1612   CallArgList Args2;
1613   Args2.add(RValue::get(V), getContext().getObjCIdType());
1614   // FIXME: We shouldn't need to get the function info here, the runtime already
1615   // should have computed it to build the function.
1616   EmitCall(
1617           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1618            EnumerationMutationFn, ReturnValueSlot(), Args2);
1619 
1620   // Otherwise, or if the mutation function returns, just continue.
1621   EmitBlock(WasNotMutatedBB);
1622 
1623   // Initialize the element variable.
1624   RunCleanupsScope elementVariableScope(*this);
1625   bool elementIsVariable;
1626   LValue elementLValue;
1627   QualType elementType;
1628   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1629     // Initialize the variable, in case it's a __block variable or something.
1630     EmitAutoVarInit(variable);
1631 
1632     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1633     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1634                         VK_LValue, SourceLocation());
1635     elementLValue = EmitLValue(&tempDRE);
1636     elementType = D->getType();
1637     elementIsVariable = true;
1638 
1639     if (D->isARCPseudoStrong())
1640       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1641   } else {
1642     elementLValue = LValue(); // suppress warning
1643     elementType = cast<Expr>(S.getElement())->getType();
1644     elementIsVariable = false;
1645   }
1646   llvm::Type *convertedElementType = ConvertType(elementType);
1647 
1648   // Fetch the buffer out of the enumeration state.
1649   // TODO: this pointer should actually be invariant between
1650   // refreshes, which would help us do certain loop optimizations.
1651   Address StateItemsPtr = Builder.CreateStructGEP(
1652       StatePtr, 1, getPointerSize(), "stateitems.ptr");
1653   llvm::Value *EnumStateItems =
1654     Builder.CreateLoad(StateItemsPtr, "stateitems");
1655 
1656   // Fetch the value at the current index from the buffer.
1657   llvm::Value *CurrentItemPtr =
1658     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1659   llvm::Value *CurrentItem =
1660     Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1661 
1662   // Cast that value to the right type.
1663   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1664                                       "currentitem");
1665 
1666   // Make sure we have an l-value.  Yes, this gets evaluated every
1667   // time through the loop.
1668   if (!elementIsVariable) {
1669     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1670     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1671   } else {
1672     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1673                            /*isInit*/ true);
1674   }
1675 
1676   // If we do have an element variable, this assignment is the end of
1677   // its initialization.
1678   if (elementIsVariable)
1679     EmitAutoVarCleanups(variable);
1680 
1681   // Perform the loop body, setting up break and continue labels.
1682   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1683   {
1684     RunCleanupsScope Scope(*this);
1685     EmitStmt(S.getBody());
1686   }
1687   BreakContinueStack.pop_back();
1688 
1689   // Destroy the element variable now.
1690   elementVariableScope.ForceCleanup();
1691 
1692   // Check whether there are more elements.
1693   EmitBlock(AfterBody.getBlock());
1694 
1695   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1696 
1697   // First we check in the local buffer.
1698   llvm::Value *indexPlusOne
1699     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1700 
1701   // If we haven't overrun the buffer yet, we can continue.
1702   // Set the branch weights based on the simplifying assumption that this is
1703   // like a while-loop, i.e., ignoring that the false branch fetches more
1704   // elements and then returns to the loop.
1705   Builder.CreateCondBr(
1706       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1707       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1708 
1709   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1710   count->addIncoming(count, AfterBody.getBlock());
1711 
1712   // Otherwise, we have to fetch more elements.
1713   EmitBlock(FetchMoreBB);
1714 
1715   CountRV =
1716     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1717                                              getContext().UnsignedLongTy,
1718                                              FastEnumSel,
1719                                              Collection, Args);
1720 
1721   // If we got a zero count, we're done.
1722   llvm::Value *refetchCount = CountRV.getScalarVal();
1723 
1724   // (note that the message send might split FetchMoreBB)
1725   index->addIncoming(zero, Builder.GetInsertBlock());
1726   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1727 
1728   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1729                        EmptyBB, LoopBodyBB);
1730 
1731   // No more elements.
1732   EmitBlock(EmptyBB);
1733 
1734   if (!elementIsVariable) {
1735     // If the element was not a declaration, set it to be null.
1736 
1737     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1738     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1739     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1740   }
1741 
1742   if (DI)
1743     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1744 
1745   ForScope.ForceCleanup();
1746   EmitBlock(LoopEnd.getBlock());
1747 }
1748 
1749 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1750   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1751 }
1752 
1753 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1754   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1755 }
1756 
1757 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1758                                               const ObjCAtSynchronizedStmt &S) {
1759   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1760 }
1761 
1762 namespace {
1763   struct CallObjCRelease final : EHScopeStack::Cleanup {
1764     CallObjCRelease(llvm::Value *object) : object(object) {}
1765     llvm::Value *object;
1766 
1767     void Emit(CodeGenFunction &CGF, Flags flags) override {
1768       // Releases at the end of the full-expression are imprecise.
1769       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1770     }
1771   };
1772 }
1773 
1774 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1775 /// release at the end of the full-expression.
1776 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1777                                                     llvm::Value *object) {
1778   // If we're in a conditional branch, we need to make the cleanup
1779   // conditional.
1780   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1781   return object;
1782 }
1783 
1784 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1785                                                            llvm::Value *value) {
1786   return EmitARCRetainAutorelease(type, value);
1787 }
1788 
1789 /// Given a number of pointers, inform the optimizer that they're
1790 /// being intrinsically used up until this point in the program.
1791 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1792   llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1793   if (!fn) {
1794     llvm::FunctionType *fnType =
1795       llvm::FunctionType::get(CGM.VoidTy, None, true);
1796     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1797   }
1798 
1799   // This isn't really a "runtime" function, but as an intrinsic it
1800   // doesn't really matter as long as we align things up.
1801   EmitNounwindRuntimeCall(fn, values);
1802 }
1803 
1804 
1805 static bool IsForwarding(StringRef Name) {
1806   return llvm::StringSwitch<bool>(Name)
1807       .Cases("objc_autoreleaseReturnValue",             // ARCInstKind::AutoreleaseRV
1808              "objc_autorelease",                        // ARCInstKind::Autorelease
1809              "objc_retainAutoreleaseReturnValue",       // ARCInstKind::FusedRetainAutoreleaseRV
1810              "objc_retainAutoreleasedReturnValue",      // ARCInstKind::RetainRV
1811              "objc_retainAutorelease",                  // ARCInstKind::FusedRetainAutorelease
1812              "objc_retainedObject",                     // ARCInstKind::NoopCast
1813              "objc_retain",                             // ARCInstKind::Retain
1814              "objc_unretainedObject",                   // ARCInstKind::NoopCast
1815              "objc_unretainedPointer",                  // ARCInstKind::NoopCast
1816              "objc_unsafeClaimAutoreleasedReturnValue", // ARCInstKind::ClaimRV
1817              true)
1818       .Default(false);
1819 }
1820 
1821 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1822                                                 llvm::FunctionType *FTy,
1823                                                 StringRef Name) {
1824   llvm::Constant *RTF = CGM.CreateRuntimeFunction(FTy, Name);
1825 
1826   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
1827     // If the target runtime doesn't naturally support ARC, emit weak
1828     // references to the runtime support library.  We don't really
1829     // permit this to fail, but we need a particular relocation style.
1830     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
1831         !CGM.getTriple().isOSBinFormatCOFF()) {
1832       F->setLinkage(llvm::Function::ExternalWeakLinkage);
1833     } else if (Name == "objc_retain" || Name  == "objc_release") {
1834       // If we have Native ARC, set nonlazybind attribute for these APIs for
1835       // performance.
1836       F->addFnAttr(llvm::Attribute::NonLazyBind);
1837     }
1838 
1839     if (IsForwarding(Name)) {
1840       llvm::AttrBuilder B;
1841       B.addAttribute(llvm::Attribute::Returned);
1842 
1843       F->arg_begin()->addAttr(llvm::AttributeSet::get(F->getContext(), 1, B));
1844     }
1845   }
1846 
1847   return RTF;
1848 }
1849 
1850 /// Perform an operation having the signature
1851 ///   i8* (i8*)
1852 /// where a null input causes a no-op and returns null.
1853 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1854                                           llvm::Value *value,
1855                                           llvm::Constant *&fn,
1856                                           StringRef fnName,
1857                                           bool isTailCall = false) {
1858   if (isa<llvm::ConstantPointerNull>(value))
1859     return value;
1860 
1861   if (!fn) {
1862     llvm::FunctionType *fnType =
1863       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1864     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1865   }
1866 
1867   // Cast the argument to 'id'.
1868   llvm::Type *origType = value->getType();
1869   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1870 
1871   // Call the function.
1872   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1873   if (isTailCall)
1874     call->setTailCall();
1875 
1876   // Cast the result back to the original type.
1877   return CGF.Builder.CreateBitCast(call, origType);
1878 }
1879 
1880 /// Perform an operation having the following signature:
1881 ///   i8* (i8**)
1882 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1883                                          Address addr,
1884                                          llvm::Constant *&fn,
1885                                          StringRef fnName) {
1886   if (!fn) {
1887     llvm::FunctionType *fnType =
1888       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1889     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1890   }
1891 
1892   // Cast the argument to 'id*'.
1893   llvm::Type *origType = addr.getElementType();
1894   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1895 
1896   // Call the function.
1897   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
1898 
1899   // Cast the result back to a dereference of the original type.
1900   if (origType != CGF.Int8PtrTy)
1901     result = CGF.Builder.CreateBitCast(result, origType);
1902 
1903   return result;
1904 }
1905 
1906 /// Perform an operation having the following signature:
1907 ///   i8* (i8**, i8*)
1908 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1909                                           Address addr,
1910                                           llvm::Value *value,
1911                                           llvm::Constant *&fn,
1912                                           StringRef fnName,
1913                                           bool ignored) {
1914   assert(addr.getElementType() == value->getType());
1915 
1916   if (!fn) {
1917     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1918 
1919     llvm::FunctionType *fnType
1920       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1921     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1922   }
1923 
1924   llvm::Type *origType = value->getType();
1925 
1926   llvm::Value *args[] = {
1927     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
1928     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1929   };
1930   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1931 
1932   if (ignored) return nullptr;
1933 
1934   return CGF.Builder.CreateBitCast(result, origType);
1935 }
1936 
1937 /// Perform an operation having the following signature:
1938 ///   void (i8**, i8**)
1939 static void emitARCCopyOperation(CodeGenFunction &CGF,
1940                                  Address dst,
1941                                  Address src,
1942                                  llvm::Constant *&fn,
1943                                  StringRef fnName) {
1944   assert(dst.getType() == src.getType());
1945 
1946   if (!fn) {
1947     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1948 
1949     llvm::FunctionType *fnType
1950       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1951     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1952   }
1953 
1954   llvm::Value *args[] = {
1955     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
1956     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
1957   };
1958   CGF.EmitNounwindRuntimeCall(fn, args);
1959 }
1960 
1961 /// Produce the code to do a retain.  Based on the type, calls one of:
1962 ///   call i8* \@objc_retain(i8* %value)
1963 ///   call i8* \@objc_retainBlock(i8* %value)
1964 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1965   if (type->isBlockPointerType())
1966     return EmitARCRetainBlock(value, /*mandatory*/ false);
1967   else
1968     return EmitARCRetainNonBlock(value);
1969 }
1970 
1971 /// Retain the given object, with normal retain semantics.
1972 ///   call i8* \@objc_retain(i8* %value)
1973 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1974   return emitARCValueOperation(*this, value,
1975                                CGM.getObjCEntrypoints().objc_retain,
1976                                "objc_retain");
1977 }
1978 
1979 /// Retain the given block, with _Block_copy semantics.
1980 ///   call i8* \@objc_retainBlock(i8* %value)
1981 ///
1982 /// \param mandatory - If false, emit the call with metadata
1983 /// indicating that it's okay for the optimizer to eliminate this call
1984 /// if it can prove that the block never escapes except down the stack.
1985 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1986                                                  bool mandatory) {
1987   llvm::Value *result
1988     = emitARCValueOperation(*this, value,
1989                             CGM.getObjCEntrypoints().objc_retainBlock,
1990                             "objc_retainBlock");
1991 
1992   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1993   // tell the optimizer that it doesn't need to do this copy if the
1994   // block doesn't escape, where being passed as an argument doesn't
1995   // count as escaping.
1996   if (!mandatory && isa<llvm::Instruction>(result)) {
1997     llvm::CallInst *call
1998       = cast<llvm::CallInst>(result->stripPointerCasts());
1999     assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock);
2000 
2001     call->setMetadata("clang.arc.copy_on_escape",
2002                       llvm::MDNode::get(Builder.getContext(), None));
2003   }
2004 
2005   return result;
2006 }
2007 
2008 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2009   // Fetch the void(void) inline asm which marks that we're going to
2010   // do something with the autoreleased return value.
2011   llvm::InlineAsm *&marker
2012     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2013   if (!marker) {
2014     StringRef assembly
2015       = CGF.CGM.getTargetCodeGenInfo()
2016            .getARCRetainAutoreleasedReturnValueMarker();
2017 
2018     // If we have an empty assembly string, there's nothing to do.
2019     if (assembly.empty()) {
2020 
2021     // Otherwise, at -O0, build an inline asm that we're going to call
2022     // in a moment.
2023     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2024       llvm::FunctionType *type =
2025         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2026 
2027       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2028 
2029     // If we're at -O1 and above, we don't want to litter the code
2030     // with this marker yet, so leave a breadcrumb for the ARC
2031     // optimizer to pick up.
2032     } else {
2033       llvm::NamedMDNode *metadata =
2034         CGF.CGM.getModule().getOrInsertNamedMetadata(
2035                             "clang.arc.retainAutoreleasedReturnValueMarker");
2036       assert(metadata->getNumOperands() <= 1);
2037       if (metadata->getNumOperands() == 0) {
2038         auto &ctx = CGF.getLLVMContext();
2039         metadata->addOperand(llvm::MDNode::get(ctx,
2040                                      llvm::MDString::get(ctx, assembly)));
2041       }
2042     }
2043   }
2044 
2045   // Call the marker asm if we made one, which we do only at -O0.
2046   if (marker)
2047     CGF.Builder.CreateCall(marker);
2048 }
2049 
2050 /// Retain the given object which is the result of a function call.
2051 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2052 ///
2053 /// Yes, this function name is one character away from a different
2054 /// call with completely different semantics.
2055 llvm::Value *
2056 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2057   emitAutoreleasedReturnValueMarker(*this);
2058   return emitARCValueOperation(*this, value,
2059               CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2060                                "objc_retainAutoreleasedReturnValue");
2061 }
2062 
2063 /// Claim a possibly-autoreleased return value at +0.  This is only
2064 /// valid to do in contexts which do not rely on the retain to keep
2065 /// the object valid for for all of its uses; for example, when
2066 /// the value is ignored, or when it is being assigned to an
2067 /// __unsafe_unretained variable.
2068 ///
2069 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2070 llvm::Value *
2071 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2072   emitAutoreleasedReturnValueMarker(*this);
2073   return emitARCValueOperation(*this, value,
2074               CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2075                                "objc_unsafeClaimAutoreleasedReturnValue");
2076 }
2077 
2078 /// Release the given object.
2079 ///   call void \@objc_release(i8* %value)
2080 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2081                                      ARCPreciseLifetime_t precise) {
2082   if (isa<llvm::ConstantPointerNull>(value)) return;
2083 
2084   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release;
2085   if (!fn) {
2086     llvm::FunctionType *fnType =
2087       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2088     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
2089   }
2090 
2091   // Cast the argument to 'id'.
2092   value = Builder.CreateBitCast(value, Int8PtrTy);
2093 
2094   // Call objc_release.
2095   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2096 
2097   if (precise == ARCImpreciseLifetime) {
2098     call->setMetadata("clang.imprecise_release",
2099                       llvm::MDNode::get(Builder.getContext(), None));
2100   }
2101 }
2102 
2103 /// Destroy a __strong variable.
2104 ///
2105 /// At -O0, emit a call to store 'null' into the address;
2106 /// instrumenting tools prefer this because the address is exposed,
2107 /// but it's relatively cumbersome to optimize.
2108 ///
2109 /// At -O1 and above, just load and call objc_release.
2110 ///
2111 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2112 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2113                                            ARCPreciseLifetime_t precise) {
2114   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2115     llvm::Value *null = getNullForVariable(addr);
2116     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2117     return;
2118   }
2119 
2120   llvm::Value *value = Builder.CreateLoad(addr);
2121   EmitARCRelease(value, precise);
2122 }
2123 
2124 /// Store into a strong object.  Always calls this:
2125 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2126 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2127                                                      llvm::Value *value,
2128                                                      bool ignored) {
2129   assert(addr.getElementType() == value->getType());
2130 
2131   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2132   if (!fn) {
2133     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2134     llvm::FunctionType *fnType
2135       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2136     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2137   }
2138 
2139   llvm::Value *args[] = {
2140     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2141     Builder.CreateBitCast(value, Int8PtrTy)
2142   };
2143   EmitNounwindRuntimeCall(fn, args);
2144 
2145   if (ignored) return nullptr;
2146   return value;
2147 }
2148 
2149 /// Store into a strong object.  Sometimes calls this:
2150 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2151 /// Other times, breaks it down into components.
2152 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2153                                                  llvm::Value *newValue,
2154                                                  bool ignored) {
2155   QualType type = dst.getType();
2156   bool isBlock = type->isBlockPointerType();
2157 
2158   // Use a store barrier at -O0 unless this is a block type or the
2159   // lvalue is inadequately aligned.
2160   if (shouldUseFusedARCCalls() &&
2161       !isBlock &&
2162       (dst.getAlignment().isZero() ||
2163        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2164     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2165   }
2166 
2167   // Otherwise, split it out.
2168 
2169   // Retain the new value.
2170   newValue = EmitARCRetain(type, newValue);
2171 
2172   // Read the old value.
2173   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2174 
2175   // Store.  We do this before the release so that any deallocs won't
2176   // see the old value.
2177   EmitStoreOfScalar(newValue, dst);
2178 
2179   // Finally, release the old value.
2180   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2181 
2182   return newValue;
2183 }
2184 
2185 /// Autorelease the given object.
2186 ///   call i8* \@objc_autorelease(i8* %value)
2187 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2188   return emitARCValueOperation(*this, value,
2189                                CGM.getObjCEntrypoints().objc_autorelease,
2190                                "objc_autorelease");
2191 }
2192 
2193 /// Autorelease the given object.
2194 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2195 llvm::Value *
2196 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2197   return emitARCValueOperation(*this, value,
2198                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2199                                "objc_autoreleaseReturnValue",
2200                                /*isTailCall*/ true);
2201 }
2202 
2203 /// Do a fused retain/autorelease of the given object.
2204 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2205 llvm::Value *
2206 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2207   return emitARCValueOperation(*this, value,
2208                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2209                                "objc_retainAutoreleaseReturnValue",
2210                                /*isTailCall*/ true);
2211 }
2212 
2213 /// Do a fused retain/autorelease of the given object.
2214 ///   call i8* \@objc_retainAutorelease(i8* %value)
2215 /// or
2216 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2217 ///   call i8* \@objc_autorelease(i8* %retain)
2218 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2219                                                        llvm::Value *value) {
2220   if (!type->isBlockPointerType())
2221     return EmitARCRetainAutoreleaseNonBlock(value);
2222 
2223   if (isa<llvm::ConstantPointerNull>(value)) return value;
2224 
2225   llvm::Type *origType = value->getType();
2226   value = Builder.CreateBitCast(value, Int8PtrTy);
2227   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2228   value = EmitARCAutorelease(value);
2229   return Builder.CreateBitCast(value, origType);
2230 }
2231 
2232 /// Do a fused retain/autorelease of the given object.
2233 ///   call i8* \@objc_retainAutorelease(i8* %value)
2234 llvm::Value *
2235 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2236   return emitARCValueOperation(*this, value,
2237                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2238                                "objc_retainAutorelease");
2239 }
2240 
2241 /// i8* \@objc_loadWeak(i8** %addr)
2242 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2243 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2244   return emitARCLoadOperation(*this, addr,
2245                               CGM.getObjCEntrypoints().objc_loadWeak,
2246                               "objc_loadWeak");
2247 }
2248 
2249 /// i8* \@objc_loadWeakRetained(i8** %addr)
2250 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2251   return emitARCLoadOperation(*this, addr,
2252                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2253                               "objc_loadWeakRetained");
2254 }
2255 
2256 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2257 /// Returns %value.
2258 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2259                                                llvm::Value *value,
2260                                                bool ignored) {
2261   return emitARCStoreOperation(*this, addr, value,
2262                                CGM.getObjCEntrypoints().objc_storeWeak,
2263                                "objc_storeWeak", ignored);
2264 }
2265 
2266 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2267 /// Returns %value.  %addr is known to not have a current weak entry.
2268 /// Essentially equivalent to:
2269 ///   *addr = nil; objc_storeWeak(addr, value);
2270 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2271   // If we're initializing to null, just write null to memory; no need
2272   // to get the runtime involved.  But don't do this if optimization
2273   // is enabled, because accounting for this would make the optimizer
2274   // much more complicated.
2275   if (isa<llvm::ConstantPointerNull>(value) &&
2276       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2277     Builder.CreateStore(value, addr);
2278     return;
2279   }
2280 
2281   emitARCStoreOperation(*this, addr, value,
2282                         CGM.getObjCEntrypoints().objc_initWeak,
2283                         "objc_initWeak", /*ignored*/ true);
2284 }
2285 
2286 /// void \@objc_destroyWeak(i8** %addr)
2287 /// Essentially objc_storeWeak(addr, nil).
2288 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2289   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2290   if (!fn) {
2291     llvm::FunctionType *fnType =
2292       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2293     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2294   }
2295 
2296   // Cast the argument to 'id*'.
2297   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2298 
2299   EmitNounwindRuntimeCall(fn, addr.getPointer());
2300 }
2301 
2302 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2303 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2304 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2305 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2306   emitARCCopyOperation(*this, dst, src,
2307                        CGM.getObjCEntrypoints().objc_moveWeak,
2308                        "objc_moveWeak");
2309 }
2310 
2311 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2312 /// Disregards the current value in %dest.  Essentially
2313 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2314 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2315   emitARCCopyOperation(*this, dst, src,
2316                        CGM.getObjCEntrypoints().objc_copyWeak,
2317                        "objc_copyWeak");
2318 }
2319 
2320 /// Produce the code to do a objc_autoreleasepool_push.
2321 ///   call i8* \@objc_autoreleasePoolPush(void)
2322 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2323   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2324   if (!fn) {
2325     llvm::FunctionType *fnType =
2326       llvm::FunctionType::get(Int8PtrTy, false);
2327     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2328   }
2329 
2330   return EmitNounwindRuntimeCall(fn);
2331 }
2332 
2333 /// Produce the code to do a primitive release.
2334 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2335 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2336   assert(value->getType() == Int8PtrTy);
2337 
2338   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2339   if (!fn) {
2340     llvm::FunctionType *fnType =
2341       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2342 
2343     // We don't want to use a weak import here; instead we should not
2344     // fall into this path.
2345     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2346   }
2347 
2348   // objc_autoreleasePoolPop can throw.
2349   EmitRuntimeCallOrInvoke(fn, value);
2350 }
2351 
2352 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2353 /// Which is: [[NSAutoreleasePool alloc] init];
2354 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2355 /// init is declared as: - (id) init; in its NSObject super class.
2356 ///
2357 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2358   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2359   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2360   // [NSAutoreleasePool alloc]
2361   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2362   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2363   CallArgList Args;
2364   RValue AllocRV =
2365     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2366                                 getContext().getObjCIdType(),
2367                                 AllocSel, Receiver, Args);
2368 
2369   // [Receiver init]
2370   Receiver = AllocRV.getScalarVal();
2371   II = &CGM.getContext().Idents.get("init");
2372   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2373   RValue InitRV =
2374     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2375                                 getContext().getObjCIdType(),
2376                                 InitSel, Receiver, Args);
2377   return InitRV.getScalarVal();
2378 }
2379 
2380 /// Produce the code to do a primitive release.
2381 /// [tmp drain];
2382 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2383   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2384   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2385   CallArgList Args;
2386   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2387                               getContext().VoidTy, DrainSel, Arg, Args);
2388 }
2389 
2390 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2391                                               Address addr,
2392                                               QualType type) {
2393   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2394 }
2395 
2396 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2397                                                 Address addr,
2398                                                 QualType type) {
2399   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2400 }
2401 
2402 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2403                                      Address addr,
2404                                      QualType type) {
2405   CGF.EmitARCDestroyWeak(addr);
2406 }
2407 
2408 namespace {
2409   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2410     llvm::Value *Token;
2411 
2412     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2413 
2414     void Emit(CodeGenFunction &CGF, Flags flags) override {
2415       CGF.EmitObjCAutoreleasePoolPop(Token);
2416     }
2417   };
2418   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2419     llvm::Value *Token;
2420 
2421     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2422 
2423     void Emit(CodeGenFunction &CGF, Flags flags) override {
2424       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2425     }
2426   };
2427 }
2428 
2429 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2430   if (CGM.getLangOpts().ObjCAutoRefCount)
2431     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2432   else
2433     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2434 }
2435 
2436 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2437                                                   LValue lvalue,
2438                                                   QualType type) {
2439   switch (type.getObjCLifetime()) {
2440   case Qualifiers::OCL_None:
2441   case Qualifiers::OCL_ExplicitNone:
2442   case Qualifiers::OCL_Strong:
2443   case Qualifiers::OCL_Autoreleasing:
2444     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2445                                               SourceLocation()).getScalarVal(),
2446                          false);
2447 
2448   case Qualifiers::OCL_Weak:
2449     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2450                          true);
2451   }
2452 
2453   llvm_unreachable("impossible lifetime!");
2454 }
2455 
2456 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2457                                                   const Expr *e) {
2458   e = e->IgnoreParens();
2459   QualType type = e->getType();
2460 
2461   // If we're loading retained from a __strong xvalue, we can avoid
2462   // an extra retain/release pair by zeroing out the source of this
2463   // "move" operation.
2464   if (e->isXValue() &&
2465       !type.isConstQualified() &&
2466       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2467     // Emit the lvalue.
2468     LValue lv = CGF.EmitLValue(e);
2469 
2470     // Load the object pointer.
2471     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2472                                                SourceLocation()).getScalarVal();
2473 
2474     // Set the source pointer to NULL.
2475     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2476 
2477     return TryEmitResult(result, true);
2478   }
2479 
2480   // As a very special optimization, in ARC++, if the l-value is the
2481   // result of a non-volatile assignment, do a simple retain of the
2482   // result of the call to objc_storeWeak instead of reloading.
2483   if (CGF.getLangOpts().CPlusPlus &&
2484       !type.isVolatileQualified() &&
2485       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2486       isa<BinaryOperator>(e) &&
2487       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2488     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2489 
2490   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2491 }
2492 
2493 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2494                                          llvm::Value *value)>
2495   ValueTransform;
2496 
2497 /// Insert code immediately after a call.
2498 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2499                                               llvm::Value *value,
2500                                               ValueTransform doAfterCall,
2501                                               ValueTransform doFallback) {
2502   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2503     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2504 
2505     // Place the retain immediately following the call.
2506     CGF.Builder.SetInsertPoint(call->getParent(),
2507                                ++llvm::BasicBlock::iterator(call));
2508     value = doAfterCall(CGF, value);
2509 
2510     CGF.Builder.restoreIP(ip);
2511     return value;
2512   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2513     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2514 
2515     // Place the retain at the beginning of the normal destination block.
2516     llvm::BasicBlock *BB = invoke->getNormalDest();
2517     CGF.Builder.SetInsertPoint(BB, BB->begin());
2518     value = doAfterCall(CGF, value);
2519 
2520     CGF.Builder.restoreIP(ip);
2521     return value;
2522 
2523   // Bitcasts can arise because of related-result returns.  Rewrite
2524   // the operand.
2525   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2526     llvm::Value *operand = bitcast->getOperand(0);
2527     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2528     bitcast->setOperand(0, operand);
2529     return bitcast;
2530 
2531   // Generic fall-back case.
2532   } else {
2533     // Retain using the non-block variant: we never need to do a copy
2534     // of a block that's been returned to us.
2535     return doFallback(CGF, value);
2536   }
2537 }
2538 
2539 /// Given that the given expression is some sort of call (which does
2540 /// not return retained), emit a retain following it.
2541 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2542                                             const Expr *e) {
2543   llvm::Value *value = CGF.EmitScalarExpr(e);
2544   return emitARCOperationAfterCall(CGF, value,
2545            [](CodeGenFunction &CGF, llvm::Value *value) {
2546              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2547            },
2548            [](CodeGenFunction &CGF, llvm::Value *value) {
2549              return CGF.EmitARCRetainNonBlock(value);
2550            });
2551 }
2552 
2553 /// Given that the given expression is some sort of call (which does
2554 /// not return retained), perform an unsafeClaim following it.
2555 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2556                                                  const Expr *e) {
2557   llvm::Value *value = CGF.EmitScalarExpr(e);
2558   return emitARCOperationAfterCall(CGF, value,
2559            [](CodeGenFunction &CGF, llvm::Value *value) {
2560              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2561            },
2562            [](CodeGenFunction &CGF, llvm::Value *value) {
2563              return value;
2564            });
2565 }
2566 
2567 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2568                                                       bool allowUnsafeClaim) {
2569   if (allowUnsafeClaim &&
2570       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2571     return emitARCUnsafeClaimCallResult(*this, E);
2572   } else {
2573     llvm::Value *value = emitARCRetainCallResult(*this, E);
2574     return EmitObjCConsumeObject(E->getType(), value);
2575   }
2576 }
2577 
2578 /// Determine whether it might be important to emit a separate
2579 /// objc_retain_block on the result of the given expression, or
2580 /// whether it's okay to just emit it in a +1 context.
2581 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2582   assert(e->getType()->isBlockPointerType());
2583   e = e->IgnoreParens();
2584 
2585   // For future goodness, emit block expressions directly in +1
2586   // contexts if we can.
2587   if (isa<BlockExpr>(e))
2588     return false;
2589 
2590   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2591     switch (cast->getCastKind()) {
2592     // Emitting these operations in +1 contexts is goodness.
2593     case CK_LValueToRValue:
2594     case CK_ARCReclaimReturnedObject:
2595     case CK_ARCConsumeObject:
2596     case CK_ARCProduceObject:
2597       return false;
2598 
2599     // These operations preserve a block type.
2600     case CK_NoOp:
2601     case CK_BitCast:
2602       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2603 
2604     // These operations are known to be bad (or haven't been considered).
2605     case CK_AnyPointerToBlockPointerCast:
2606     default:
2607       return true;
2608     }
2609   }
2610 
2611   return true;
2612 }
2613 
2614 namespace {
2615 /// A CRTP base class for emitting expressions of retainable object
2616 /// pointer type in ARC.
2617 template <typename Impl, typename Result> class ARCExprEmitter {
2618 protected:
2619   CodeGenFunction &CGF;
2620   Impl &asImpl() { return *static_cast<Impl*>(this); }
2621 
2622   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2623 
2624 public:
2625   Result visit(const Expr *e);
2626   Result visitCastExpr(const CastExpr *e);
2627   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2628   Result visitBinaryOperator(const BinaryOperator *e);
2629   Result visitBinAssign(const BinaryOperator *e);
2630   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2631   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2632   Result visitBinAssignWeak(const BinaryOperator *e);
2633   Result visitBinAssignStrong(const BinaryOperator *e);
2634 
2635   // Minimal implementation:
2636   //   Result visitLValueToRValue(const Expr *e)
2637   //   Result visitConsumeObject(const Expr *e)
2638   //   Result visitExtendBlockObject(const Expr *e)
2639   //   Result visitReclaimReturnedObject(const Expr *e)
2640   //   Result visitCall(const Expr *e)
2641   //   Result visitExpr(const Expr *e)
2642   //
2643   //   Result emitBitCast(Result result, llvm::Type *resultType)
2644   //   llvm::Value *getValueOfResult(Result result)
2645 };
2646 }
2647 
2648 /// Try to emit a PseudoObjectExpr under special ARC rules.
2649 ///
2650 /// This massively duplicates emitPseudoObjectRValue.
2651 template <typename Impl, typename Result>
2652 Result
2653 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2654   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2655 
2656   // Find the result expression.
2657   const Expr *resultExpr = E->getResultExpr();
2658   assert(resultExpr);
2659   Result result;
2660 
2661   for (PseudoObjectExpr::const_semantics_iterator
2662          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2663     const Expr *semantic = *i;
2664 
2665     // If this semantic expression is an opaque value, bind it
2666     // to the result of its source expression.
2667     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2668       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2669       OVMA opaqueData;
2670 
2671       // If this semantic is the result of the pseudo-object
2672       // expression, try to evaluate the source as +1.
2673       if (ov == resultExpr) {
2674         assert(!OVMA::shouldBindAsLValue(ov));
2675         result = asImpl().visit(ov->getSourceExpr());
2676         opaqueData = OVMA::bind(CGF, ov,
2677                             RValue::get(asImpl().getValueOfResult(result)));
2678 
2679       // Otherwise, just bind it.
2680       } else {
2681         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2682       }
2683       opaques.push_back(opaqueData);
2684 
2685     // Otherwise, if the expression is the result, evaluate it
2686     // and remember the result.
2687     } else if (semantic == resultExpr) {
2688       result = asImpl().visit(semantic);
2689 
2690     // Otherwise, evaluate the expression in an ignored context.
2691     } else {
2692       CGF.EmitIgnoredExpr(semantic);
2693     }
2694   }
2695 
2696   // Unbind all the opaques now.
2697   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2698     opaques[i].unbind(CGF);
2699 
2700   return result;
2701 }
2702 
2703 template <typename Impl, typename Result>
2704 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
2705   switch (e->getCastKind()) {
2706 
2707   // No-op casts don't change the type, so we just ignore them.
2708   case CK_NoOp:
2709     return asImpl().visit(e->getSubExpr());
2710 
2711   // These casts can change the type.
2712   case CK_CPointerToObjCPointerCast:
2713   case CK_BlockPointerToObjCPointerCast:
2714   case CK_AnyPointerToBlockPointerCast:
2715   case CK_BitCast: {
2716     llvm::Type *resultType = CGF.ConvertType(e->getType());
2717     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
2718     Result result = asImpl().visit(e->getSubExpr());
2719     return asImpl().emitBitCast(result, resultType);
2720   }
2721 
2722   // Handle some casts specially.
2723   case CK_LValueToRValue:
2724     return asImpl().visitLValueToRValue(e->getSubExpr());
2725   case CK_ARCConsumeObject:
2726     return asImpl().visitConsumeObject(e->getSubExpr());
2727   case CK_ARCExtendBlockObject:
2728     return asImpl().visitExtendBlockObject(e->getSubExpr());
2729   case CK_ARCReclaimReturnedObject:
2730     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
2731 
2732   // Otherwise, use the default logic.
2733   default:
2734     return asImpl().visitExpr(e);
2735   }
2736 }
2737 
2738 template <typename Impl, typename Result>
2739 Result
2740 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
2741   switch (e->getOpcode()) {
2742   case BO_Comma:
2743     CGF.EmitIgnoredExpr(e->getLHS());
2744     CGF.EnsureInsertPoint();
2745     return asImpl().visit(e->getRHS());
2746 
2747   case BO_Assign:
2748     return asImpl().visitBinAssign(e);
2749 
2750   default:
2751     return asImpl().visitExpr(e);
2752   }
2753 }
2754 
2755 template <typename Impl, typename Result>
2756 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
2757   switch (e->getLHS()->getType().getObjCLifetime()) {
2758   case Qualifiers::OCL_ExplicitNone:
2759     return asImpl().visitBinAssignUnsafeUnretained(e);
2760 
2761   case Qualifiers::OCL_Weak:
2762     return asImpl().visitBinAssignWeak(e);
2763 
2764   case Qualifiers::OCL_Autoreleasing:
2765     return asImpl().visitBinAssignAutoreleasing(e);
2766 
2767   case Qualifiers::OCL_Strong:
2768     return asImpl().visitBinAssignStrong(e);
2769 
2770   case Qualifiers::OCL_None:
2771     return asImpl().visitExpr(e);
2772   }
2773   llvm_unreachable("bad ObjC ownership qualifier");
2774 }
2775 
2776 /// The default rule for __unsafe_unretained emits the RHS recursively,
2777 /// stores into the unsafe variable, and propagates the result outward.
2778 template <typename Impl, typename Result>
2779 Result ARCExprEmitter<Impl,Result>::
2780                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
2781   // Recursively emit the RHS.
2782   // For __block safety, do this before emitting the LHS.
2783   Result result = asImpl().visit(e->getRHS());
2784 
2785   // Perform the store.
2786   LValue lvalue =
2787     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
2788   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
2789                              lvalue);
2790 
2791   return result;
2792 }
2793 
2794 template <typename Impl, typename Result>
2795 Result
2796 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
2797   return asImpl().visitExpr(e);
2798 }
2799 
2800 template <typename Impl, typename Result>
2801 Result
2802 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
2803   return asImpl().visitExpr(e);
2804 }
2805 
2806 template <typename Impl, typename Result>
2807 Result
2808 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
2809   return asImpl().visitExpr(e);
2810 }
2811 
2812 /// The general expression-emission logic.
2813 template <typename Impl, typename Result>
2814 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
2815   // We should *never* see a nested full-expression here, because if
2816   // we fail to emit at +1, our caller must not retain after we close
2817   // out the full-expression.  This isn't as important in the unsafe
2818   // emitter.
2819   assert(!isa<ExprWithCleanups>(e));
2820 
2821   // Look through parens, __extension__, generic selection, etc.
2822   e = e->IgnoreParens();
2823 
2824   // Handle certain kinds of casts.
2825   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2826     return asImpl().visitCastExpr(ce);
2827 
2828   // Handle the comma operator.
2829   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
2830     return asImpl().visitBinaryOperator(op);
2831 
2832   // TODO: handle conditional operators here
2833 
2834   // For calls and message sends, use the retained-call logic.
2835   // Delegate inits are a special case in that they're the only
2836   // returns-retained expression that *isn't* surrounded by
2837   // a consume.
2838   } else if (isa<CallExpr>(e) ||
2839              (isa<ObjCMessageExpr>(e) &&
2840               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2841     return asImpl().visitCall(e);
2842 
2843   // Look through pseudo-object expressions.
2844   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2845     return asImpl().visitPseudoObjectExpr(pseudo);
2846   }
2847 
2848   return asImpl().visitExpr(e);
2849 }
2850 
2851 namespace {
2852 
2853 /// An emitter for +1 results.
2854 struct ARCRetainExprEmitter :
2855   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
2856 
2857   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
2858 
2859   llvm::Value *getValueOfResult(TryEmitResult result) {
2860     return result.getPointer();
2861   }
2862 
2863   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
2864     llvm::Value *value = result.getPointer();
2865     value = CGF.Builder.CreateBitCast(value, resultType);
2866     result.setPointer(value);
2867     return result;
2868   }
2869 
2870   TryEmitResult visitLValueToRValue(const Expr *e) {
2871     return tryEmitARCRetainLoadOfScalar(CGF, e);
2872   }
2873 
2874   /// For consumptions, just emit the subexpression and thus elide
2875   /// the retain/release pair.
2876   TryEmitResult visitConsumeObject(const Expr *e) {
2877     llvm::Value *result = CGF.EmitScalarExpr(e);
2878     return TryEmitResult(result, true);
2879   }
2880 
2881   /// Block extends are net +0.  Naively, we could just recurse on
2882   /// the subexpression, but actually we need to ensure that the
2883   /// value is copied as a block, so there's a little filter here.
2884   TryEmitResult visitExtendBlockObject(const Expr *e) {
2885     llvm::Value *result; // will be a +0 value
2886 
2887     // If we can't safely assume the sub-expression will produce a
2888     // block-copied value, emit the sub-expression at +0.
2889     if (shouldEmitSeparateBlockRetain(e)) {
2890       result = CGF.EmitScalarExpr(e);
2891 
2892     // Otherwise, try to emit the sub-expression at +1 recursively.
2893     } else {
2894       TryEmitResult subresult = asImpl().visit(e);
2895 
2896       // If that produced a retained value, just use that.
2897       if (subresult.getInt()) {
2898         return subresult;
2899       }
2900 
2901       // Otherwise it's +0.
2902       result = subresult.getPointer();
2903     }
2904 
2905     // Retain the object as a block.
2906     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2907     return TryEmitResult(result, true);
2908   }
2909 
2910   /// For reclaims, emit the subexpression as a retained call and
2911   /// skip the consumption.
2912   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
2913     llvm::Value *result = emitARCRetainCallResult(CGF, e);
2914     return TryEmitResult(result, true);
2915   }
2916 
2917   /// When we have an undecorated call, retroactively do a claim.
2918   TryEmitResult visitCall(const Expr *e) {
2919     llvm::Value *result = emitARCRetainCallResult(CGF, e);
2920     return TryEmitResult(result, true);
2921   }
2922 
2923   // TODO: maybe special-case visitBinAssignWeak?
2924 
2925   TryEmitResult visitExpr(const Expr *e) {
2926     // We didn't find an obvious production, so emit what we've got and
2927     // tell the caller that we didn't manage to retain.
2928     llvm::Value *result = CGF.EmitScalarExpr(e);
2929     return TryEmitResult(result, false);
2930   }
2931 };
2932 }
2933 
2934 static TryEmitResult
2935 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2936   return ARCRetainExprEmitter(CGF).visit(e);
2937 }
2938 
2939 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2940                                                 LValue lvalue,
2941                                                 QualType type) {
2942   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2943   llvm::Value *value = result.getPointer();
2944   if (!result.getInt())
2945     value = CGF.EmitARCRetain(type, value);
2946   return value;
2947 }
2948 
2949 /// EmitARCRetainScalarExpr - Semantically equivalent to
2950 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2951 /// best-effort attempt to peephole expressions that naturally produce
2952 /// retained objects.
2953 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2954   // The retain needs to happen within the full-expression.
2955   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2956     enterFullExpression(cleanups);
2957     RunCleanupsScope scope(*this);
2958     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2959   }
2960 
2961   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2962   llvm::Value *value = result.getPointer();
2963   if (!result.getInt())
2964     value = EmitARCRetain(e->getType(), value);
2965   return value;
2966 }
2967 
2968 llvm::Value *
2969 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2970   // The retain needs to happen within the full-expression.
2971   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2972     enterFullExpression(cleanups);
2973     RunCleanupsScope scope(*this);
2974     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2975   }
2976 
2977   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2978   llvm::Value *value = result.getPointer();
2979   if (result.getInt())
2980     value = EmitARCAutorelease(value);
2981   else
2982     value = EmitARCRetainAutorelease(e->getType(), value);
2983   return value;
2984 }
2985 
2986 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2987   llvm::Value *result;
2988   bool doRetain;
2989 
2990   if (shouldEmitSeparateBlockRetain(e)) {
2991     result = EmitScalarExpr(e);
2992     doRetain = true;
2993   } else {
2994     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2995     result = subresult.getPointer();
2996     doRetain = !subresult.getInt();
2997   }
2998 
2999   if (doRetain)
3000     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3001   return EmitObjCConsumeObject(e->getType(), result);
3002 }
3003 
3004 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3005   // In ARC, retain and autorelease the expression.
3006   if (getLangOpts().ObjCAutoRefCount) {
3007     // Do so before running any cleanups for the full-expression.
3008     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3009     return EmitARCRetainAutoreleaseScalarExpr(expr);
3010   }
3011 
3012   // Otherwise, use the normal scalar-expression emission.  The
3013   // exception machinery doesn't do anything special with the
3014   // exception like retaining it, so there's no safety associated with
3015   // only running cleanups after the throw has started, and when it
3016   // matters it tends to be substantially inferior code.
3017   return EmitScalarExpr(expr);
3018 }
3019 
3020 namespace {
3021 
3022 /// An emitter for assigning into an __unsafe_unretained context.
3023 struct ARCUnsafeUnretainedExprEmitter :
3024   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3025 
3026   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3027 
3028   llvm::Value *getValueOfResult(llvm::Value *value) {
3029     return value;
3030   }
3031 
3032   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3033     return CGF.Builder.CreateBitCast(value, resultType);
3034   }
3035 
3036   llvm::Value *visitLValueToRValue(const Expr *e) {
3037     return CGF.EmitScalarExpr(e);
3038   }
3039 
3040   /// For consumptions, just emit the subexpression and perform the
3041   /// consumption like normal.
3042   llvm::Value *visitConsumeObject(const Expr *e) {
3043     llvm::Value *value = CGF.EmitScalarExpr(e);
3044     return CGF.EmitObjCConsumeObject(e->getType(), value);
3045   }
3046 
3047   /// No special logic for block extensions.  (This probably can't
3048   /// actually happen in this emitter, though.)
3049   llvm::Value *visitExtendBlockObject(const Expr *e) {
3050     return CGF.EmitARCExtendBlockObject(e);
3051   }
3052 
3053   /// For reclaims, perform an unsafeClaim if that's enabled.
3054   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3055     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3056   }
3057 
3058   /// When we have an undecorated call, just emit it without adding
3059   /// the unsafeClaim.
3060   llvm::Value *visitCall(const Expr *e) {
3061     return CGF.EmitScalarExpr(e);
3062   }
3063 
3064   /// Just do normal scalar emission in the default case.
3065   llvm::Value *visitExpr(const Expr *e) {
3066     return CGF.EmitScalarExpr(e);
3067   }
3068 };
3069 }
3070 
3071 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3072                                                       const Expr *e) {
3073   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3074 }
3075 
3076 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3077 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3078 /// avoiding any spurious retains, including by performing reclaims
3079 /// with objc_unsafeClaimAutoreleasedReturnValue.
3080 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3081   // Look through full-expressions.
3082   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3083     enterFullExpression(cleanups);
3084     RunCleanupsScope scope(*this);
3085     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3086   }
3087 
3088   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3089 }
3090 
3091 std::pair<LValue,llvm::Value*>
3092 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3093                                               bool ignored) {
3094   // Evaluate the RHS first.  If we're ignoring the result, assume
3095   // that we can emit at an unsafe +0.
3096   llvm::Value *value;
3097   if (ignored) {
3098     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3099   } else {
3100     value = EmitScalarExpr(e->getRHS());
3101   }
3102 
3103   // Emit the LHS and perform the store.
3104   LValue lvalue = EmitLValue(e->getLHS());
3105   EmitStoreOfScalar(value, lvalue);
3106 
3107   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3108 }
3109 
3110 std::pair<LValue,llvm::Value*>
3111 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3112                                     bool ignored) {
3113   // Evaluate the RHS first.
3114   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3115   llvm::Value *value = result.getPointer();
3116 
3117   bool hasImmediateRetain = result.getInt();
3118 
3119   // If we didn't emit a retained object, and the l-value is of block
3120   // type, then we need to emit the block-retain immediately in case
3121   // it invalidates the l-value.
3122   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3123     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3124     hasImmediateRetain = true;
3125   }
3126 
3127   LValue lvalue = EmitLValue(e->getLHS());
3128 
3129   // If the RHS was emitted retained, expand this.
3130   if (hasImmediateRetain) {
3131     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3132     EmitStoreOfScalar(value, lvalue);
3133     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3134   } else {
3135     value = EmitARCStoreStrong(lvalue, value, ignored);
3136   }
3137 
3138   return std::pair<LValue,llvm::Value*>(lvalue, value);
3139 }
3140 
3141 std::pair<LValue,llvm::Value*>
3142 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3143   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3144   LValue lvalue = EmitLValue(e->getLHS());
3145 
3146   EmitStoreOfScalar(value, lvalue);
3147 
3148   return std::pair<LValue,llvm::Value*>(lvalue, value);
3149 }
3150 
3151 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3152                                           const ObjCAutoreleasePoolStmt &ARPS) {
3153   const Stmt *subStmt = ARPS.getSubStmt();
3154   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3155 
3156   CGDebugInfo *DI = getDebugInfo();
3157   if (DI)
3158     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3159 
3160   // Keep track of the current cleanup stack depth.
3161   RunCleanupsScope Scope(*this);
3162   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3163     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3164     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3165   } else {
3166     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3167     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3168   }
3169 
3170   for (const auto *I : S.body())
3171     EmitStmt(I);
3172 
3173   if (DI)
3174     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3175 }
3176 
3177 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3178 /// make sure it survives garbage collection until this point.
3179 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3180   // We just use an inline assembly.
3181   llvm::FunctionType *extenderType
3182     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3183   llvm::Value *extender
3184     = llvm::InlineAsm::get(extenderType,
3185                            /* assembly */ "",
3186                            /* constraints */ "r",
3187                            /* side effects */ true);
3188 
3189   object = Builder.CreateBitCast(object, VoidPtrTy);
3190   EmitNounwindRuntimeCall(extender, object);
3191 }
3192 
3193 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3194 /// non-trivial copy assignment function, produce following helper function.
3195 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3196 ///
3197 llvm::Constant *
3198 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3199                                         const ObjCPropertyImplDecl *PID) {
3200   if (!getLangOpts().CPlusPlus ||
3201       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3202     return nullptr;
3203   QualType Ty = PID->getPropertyIvarDecl()->getType();
3204   if (!Ty->isRecordType())
3205     return nullptr;
3206   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3207   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3208     return nullptr;
3209   llvm::Constant *HelperFn = nullptr;
3210   if (hasTrivialSetExpr(PID))
3211     return nullptr;
3212   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3213   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3214     return HelperFn;
3215 
3216   ASTContext &C = getContext();
3217   IdentifierInfo *II
3218     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3219   FunctionDecl *FD = FunctionDecl::Create(C,
3220                                           C.getTranslationUnitDecl(),
3221                                           SourceLocation(),
3222                                           SourceLocation(), II, C.VoidTy,
3223                                           nullptr, SC_Static,
3224                                           false,
3225                                           false);
3226 
3227   QualType DestTy = C.getPointerType(Ty);
3228   QualType SrcTy = Ty;
3229   SrcTy.addConst();
3230   SrcTy = C.getPointerType(SrcTy);
3231 
3232   FunctionArgList args;
3233   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
3234   args.push_back(&dstDecl);
3235   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
3236   args.push_back(&srcDecl);
3237 
3238   const CGFunctionInfo &FI =
3239     CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args);
3240 
3241   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3242 
3243   llvm::Function *Fn =
3244     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3245                            "__assign_helper_atomic_property_",
3246                            &CGM.getModule());
3247 
3248   CGM.SetInternalFunctionAttributes(nullptr, Fn, FI);
3249 
3250   StartFunction(FD, C.VoidTy, Fn, FI, args);
3251 
3252   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3253                       VK_RValue, SourceLocation());
3254   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
3255                     VK_LValue, OK_Ordinary, SourceLocation());
3256 
3257   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
3258                       VK_RValue, SourceLocation());
3259   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3260                     VK_LValue, OK_Ordinary, SourceLocation());
3261 
3262   Expr *Args[2] = { &DST, &SRC };
3263   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3264   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
3265                               Args, DestTy->getPointeeType(),
3266                               VK_LValue, SourceLocation(), false);
3267 
3268   EmitStmt(&TheCall);
3269 
3270   FinishFunction();
3271   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3272   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3273   return HelperFn;
3274 }
3275 
3276 llvm::Constant *
3277 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3278                                             const ObjCPropertyImplDecl *PID) {
3279   if (!getLangOpts().CPlusPlus ||
3280       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3281     return nullptr;
3282   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3283   QualType Ty = PD->getType();
3284   if (!Ty->isRecordType())
3285     return nullptr;
3286   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3287     return nullptr;
3288   llvm::Constant *HelperFn = nullptr;
3289 
3290   if (hasTrivialGetExpr(PID))
3291     return nullptr;
3292   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3293   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3294     return HelperFn;
3295 
3296 
3297   ASTContext &C = getContext();
3298   IdentifierInfo *II
3299   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3300   FunctionDecl *FD = FunctionDecl::Create(C,
3301                                           C.getTranslationUnitDecl(),
3302                                           SourceLocation(),
3303                                           SourceLocation(), II, C.VoidTy,
3304                                           nullptr, SC_Static,
3305                                           false,
3306                                           false);
3307 
3308   QualType DestTy = C.getPointerType(Ty);
3309   QualType SrcTy = Ty;
3310   SrcTy.addConst();
3311   SrcTy = C.getPointerType(SrcTy);
3312 
3313   FunctionArgList args;
3314   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
3315   args.push_back(&dstDecl);
3316   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
3317   args.push_back(&srcDecl);
3318 
3319   const CGFunctionInfo &FI =
3320     CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args);
3321 
3322   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3323 
3324   llvm::Function *Fn =
3325   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3326                          "__copy_helper_atomic_property_", &CGM.getModule());
3327 
3328   CGM.SetInternalFunctionAttributes(nullptr, Fn, FI);
3329 
3330   StartFunction(FD, C.VoidTy, Fn, FI, args);
3331 
3332   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
3333                       VK_RValue, SourceLocation());
3334 
3335   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3336                     VK_LValue, OK_Ordinary, SourceLocation());
3337 
3338   CXXConstructExpr *CXXConstExpr =
3339     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3340 
3341   SmallVector<Expr*, 4> ConstructorArgs;
3342   ConstructorArgs.push_back(&SRC);
3343   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3344                          CXXConstExpr->arg_end());
3345 
3346   CXXConstructExpr *TheCXXConstructExpr =
3347     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3348                              CXXConstExpr->getConstructor(),
3349                              CXXConstExpr->isElidable(),
3350                              ConstructorArgs,
3351                              CXXConstExpr->hadMultipleCandidates(),
3352                              CXXConstExpr->isListInitialization(),
3353                              CXXConstExpr->isStdInitListInitialization(),
3354                              CXXConstExpr->requiresZeroInitialization(),
3355                              CXXConstExpr->getConstructionKind(),
3356                              SourceRange());
3357 
3358   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3359                       VK_RValue, SourceLocation());
3360 
3361   RValue DV = EmitAnyExpr(&DstExpr);
3362   CharUnits Alignment
3363     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3364   EmitAggExpr(TheCXXConstructExpr,
3365               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3366                                     Qualifiers(),
3367                                     AggValueSlot::IsDestructed,
3368                                     AggValueSlot::DoesNotNeedGCBarriers,
3369                                     AggValueSlot::IsNotAliased));
3370 
3371   FinishFunction();
3372   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3373   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3374   return HelperFn;
3375 }
3376 
3377 llvm::Value *
3378 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3379   // Get selectors for retain/autorelease.
3380   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3381   Selector CopySelector =
3382       getContext().Selectors.getNullarySelector(CopyID);
3383   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3384   Selector AutoreleaseSelector =
3385       getContext().Selectors.getNullarySelector(AutoreleaseID);
3386 
3387   // Emit calls to retain/autorelease.
3388   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3389   llvm::Value *Val = Block;
3390   RValue Result;
3391   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3392                                        Ty, CopySelector,
3393                                        Val, CallArgList(), nullptr, nullptr);
3394   Val = Result.getScalarVal();
3395   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3396                                        Ty, AutoreleaseSelector,
3397                                        Val, CallArgList(), nullptr, nullptr);
3398   Val = Result.getScalarVal();
3399   return Val;
3400 }
3401 
3402 llvm::Value *
3403 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) {
3404   assert(Args.size() == 3 && "Expected 3 argument here!");
3405 
3406   if (!CGM.IsOSVersionAtLeastFn) {
3407     llvm::FunctionType *FTy =
3408         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3409     CGM.IsOSVersionAtLeastFn =
3410         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3411   }
3412 
3413   llvm::Value *CallRes =
3414       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3415 
3416   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3417 }
3418 
3419 CGObjCRuntime::~CGObjCRuntime() {}
3420