1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 35 QualType ET, 36 RValue Result); 37 38 /// Given the address of a variable of pointer type, find the correct 39 /// null to store into it. 40 static llvm::Constant *getNullForVariable(Address addr) { 41 llvm::Type *type = addr.getElementType(); 42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 43 } 44 45 /// Emits an instance of NSConstantString representing the object. 46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 47 { 48 llvm::Constant *C = 49 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 50 // FIXME: This bitcast should just be made an invariant on the Runtime. 51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 52 } 53 54 /// EmitObjCBoxedExpr - This routine generates code to call 55 /// the appropriate expression boxing method. This will either be 56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 57 /// or [NSValue valueWithBytes:objCType:]. 58 /// 59 llvm::Value * 60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 61 // Generate the correct selector for this literal's concrete type. 62 // Get the method. 63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 64 const Expr *SubExpr = E->getSubExpr(); 65 assert(BoxingMethod && "BoxingMethod is null"); 66 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 67 Selector Sel = BoxingMethod->getSelector(); 68 69 // Generate a reference to the class pointer, which will be the receiver. 70 // Assumes that the method was introduced in the class that should be 71 // messaged (avoids pulling it out of the result type). 72 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 73 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 74 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 75 76 CallArgList Args; 77 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 78 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 79 80 // ObjCBoxedExpr supports boxing of structs and unions 81 // via [NSValue valueWithBytes:objCType:] 82 const QualType ValueType(SubExpr->getType().getCanonicalType()); 83 if (ValueType->isObjCBoxableRecordType()) { 84 // Emit CodeGen for first parameter 85 // and cast value to correct type 86 Address Temporary = CreateMemTemp(SubExpr->getType()); 87 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 88 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 89 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 90 91 // Create char array to store type encoding 92 std::string Str; 93 getContext().getObjCEncodingForType(ValueType, Str); 94 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 95 96 // Cast type encoding to correct type 97 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 98 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 99 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 100 101 Args.add(RValue::get(Cast), EncodingQT); 102 } else { 103 Args.add(EmitAnyExpr(SubExpr), ArgQT); 104 } 105 106 RValue result = Runtime.GenerateMessageSend( 107 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 108 Args, ClassDecl, BoxingMethod); 109 return Builder.CreateBitCast(result.getScalarVal(), 110 ConvertType(E->getType())); 111 } 112 113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 114 const ObjCMethodDecl *MethodWithObjects) { 115 ASTContext &Context = CGM.getContext(); 116 const ObjCDictionaryLiteral *DLE = nullptr; 117 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 118 if (!ALE) 119 DLE = cast<ObjCDictionaryLiteral>(E); 120 121 // Compute the type of the array we're initializing. 122 uint64_t NumElements = 123 ALE ? ALE->getNumElements() : DLE->getNumElements(); 124 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 125 NumElements); 126 QualType ElementType = Context.getObjCIdType().withConst(); 127 QualType ElementArrayType 128 = Context.getConstantArrayType(ElementType, APNumElements, 129 ArrayType::Normal, /*IndexTypeQuals=*/0); 130 131 // Allocate the temporary array(s). 132 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 133 Address Keys = Address::invalid(); 134 if (DLE) 135 Keys = CreateMemTemp(ElementArrayType, "keys"); 136 137 // In ARC, we may need to do extra work to keep all the keys and 138 // values alive until after the call. 139 SmallVector<llvm::Value *, 16> NeededObjects; 140 bool TrackNeededObjects = 141 (getLangOpts().ObjCAutoRefCount && 142 CGM.getCodeGenOpts().OptimizationLevel != 0); 143 144 // Perform the actual initialialization of the array(s). 145 for (uint64_t i = 0; i < NumElements; i++) { 146 if (ALE) { 147 // Emit the element and store it to the appropriate array slot. 148 const Expr *Rhs = ALE->getElement(i); 149 LValue LV = MakeAddrLValue( 150 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 151 ElementType, AlignmentSource::Decl); 152 153 llvm::Value *value = EmitScalarExpr(Rhs); 154 EmitStoreThroughLValue(RValue::get(value), LV, true); 155 if (TrackNeededObjects) { 156 NeededObjects.push_back(value); 157 } 158 } else { 159 // Emit the key and store it to the appropriate array slot. 160 const Expr *Key = DLE->getKeyValueElement(i).Key; 161 LValue KeyLV = MakeAddrLValue( 162 Builder.CreateConstArrayGEP(Keys, i, getPointerSize()), 163 ElementType, AlignmentSource::Decl); 164 llvm::Value *keyValue = EmitScalarExpr(Key); 165 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 166 167 // Emit the value and store it to the appropriate array slot. 168 const Expr *Value = DLE->getKeyValueElement(i).Value; 169 LValue ValueLV = MakeAddrLValue( 170 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 171 ElementType, AlignmentSource::Decl); 172 llvm::Value *valueValue = EmitScalarExpr(Value); 173 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 174 if (TrackNeededObjects) { 175 NeededObjects.push_back(keyValue); 176 NeededObjects.push_back(valueValue); 177 } 178 } 179 } 180 181 // Generate the argument list. 182 CallArgList Args; 183 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 184 const ParmVarDecl *argDecl = *PI++; 185 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 186 Args.add(RValue::get(Objects.getPointer()), ArgQT); 187 if (DLE) { 188 argDecl = *PI++; 189 ArgQT = argDecl->getType().getUnqualifiedType(); 190 Args.add(RValue::get(Keys.getPointer()), ArgQT); 191 } 192 argDecl = *PI; 193 ArgQT = argDecl->getType().getUnqualifiedType(); 194 llvm::Value *Count = 195 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 196 Args.add(RValue::get(Count), ArgQT); 197 198 // Generate a reference to the class pointer, which will be the receiver. 199 Selector Sel = MethodWithObjects->getSelector(); 200 QualType ResultType = E->getType(); 201 const ObjCObjectPointerType *InterfacePointerType 202 = ResultType->getAsObjCInterfacePointerType(); 203 ObjCInterfaceDecl *Class 204 = InterfacePointerType->getObjectType()->getInterface(); 205 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 206 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 207 208 // Generate the message send. 209 RValue result = Runtime.GenerateMessageSend( 210 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 211 Receiver, Args, Class, MethodWithObjects); 212 213 // The above message send needs these objects, but in ARC they are 214 // passed in a buffer that is essentially __unsafe_unretained. 215 // Therefore we must prevent the optimizer from releasing them until 216 // after the call. 217 if (TrackNeededObjects) { 218 EmitARCIntrinsicUse(NeededObjects); 219 } 220 221 return Builder.CreateBitCast(result.getScalarVal(), 222 ConvertType(E->getType())); 223 } 224 225 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 226 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 227 } 228 229 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 230 const ObjCDictionaryLiteral *E) { 231 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 232 } 233 234 /// Emit a selector. 235 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 236 // Untyped selector. 237 // Note that this implementation allows for non-constant strings to be passed 238 // as arguments to @selector(). Currently, the only thing preventing this 239 // behaviour is the type checking in the front end. 240 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 241 } 242 243 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 244 // FIXME: This should pass the Decl not the name. 245 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 246 } 247 248 /// \brief Adjust the type of an Objective-C object that doesn't match up due 249 /// to type erasure at various points, e.g., related result types or the use 250 /// of parameterized classes. 251 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 252 RValue Result) { 253 if (!ExpT->isObjCRetainableType()) 254 return Result; 255 256 // If the converted types are the same, we're done. 257 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 258 if (ExpLLVMTy == Result.getScalarVal()->getType()) 259 return Result; 260 261 // We have applied a substitution. Cast the rvalue appropriately. 262 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 263 ExpLLVMTy)); 264 } 265 266 /// Decide whether to extend the lifetime of the receiver of a 267 /// returns-inner-pointer message. 268 static bool 269 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 270 switch (message->getReceiverKind()) { 271 272 // For a normal instance message, we should extend unless the 273 // receiver is loaded from a variable with precise lifetime. 274 case ObjCMessageExpr::Instance: { 275 const Expr *receiver = message->getInstanceReceiver(); 276 277 // Look through OVEs. 278 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 279 if (opaque->getSourceExpr()) 280 receiver = opaque->getSourceExpr()->IgnoreParens(); 281 } 282 283 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 284 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 285 receiver = ice->getSubExpr()->IgnoreParens(); 286 287 // Look through OVEs. 288 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 289 if (opaque->getSourceExpr()) 290 receiver = opaque->getSourceExpr()->IgnoreParens(); 291 } 292 293 // Only __strong variables. 294 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 295 return true; 296 297 // All ivars and fields have precise lifetime. 298 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 299 return false; 300 301 // Otherwise, check for variables. 302 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 303 if (!declRef) return true; 304 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 305 if (!var) return true; 306 307 // All variables have precise lifetime except local variables with 308 // automatic storage duration that aren't specially marked. 309 return (var->hasLocalStorage() && 310 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 311 } 312 313 case ObjCMessageExpr::Class: 314 case ObjCMessageExpr::SuperClass: 315 // It's never necessary for class objects. 316 return false; 317 318 case ObjCMessageExpr::SuperInstance: 319 // We generally assume that 'self' lives throughout a method call. 320 return false; 321 } 322 323 llvm_unreachable("invalid receiver kind"); 324 } 325 326 /// Given an expression of ObjC pointer type, check whether it was 327 /// immediately loaded from an ARC __weak l-value. 328 static const Expr *findWeakLValue(const Expr *E) { 329 assert(E->getType()->isObjCRetainableType()); 330 E = E->IgnoreParens(); 331 if (auto CE = dyn_cast<CastExpr>(E)) { 332 if (CE->getCastKind() == CK_LValueToRValue) { 333 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 334 return CE->getSubExpr(); 335 } 336 } 337 338 return nullptr; 339 } 340 341 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 342 ReturnValueSlot Return) { 343 // Only the lookup mechanism and first two arguments of the method 344 // implementation vary between runtimes. We can get the receiver and 345 // arguments in generic code. 346 347 bool isDelegateInit = E->isDelegateInitCall(); 348 349 const ObjCMethodDecl *method = E->getMethodDecl(); 350 351 // If the method is -retain, and the receiver's being loaded from 352 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 353 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 354 method->getMethodFamily() == OMF_retain) { 355 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 356 LValue lvalue = EmitLValue(lvalueExpr); 357 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress()); 358 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 359 } 360 } 361 362 // We don't retain the receiver in delegate init calls, and this is 363 // safe because the receiver value is always loaded from 'self', 364 // which we zero out. We don't want to Block_copy block receivers, 365 // though. 366 bool retainSelf = 367 (!isDelegateInit && 368 CGM.getLangOpts().ObjCAutoRefCount && 369 method && 370 method->hasAttr<NSConsumesSelfAttr>()); 371 372 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 373 bool isSuperMessage = false; 374 bool isClassMessage = false; 375 ObjCInterfaceDecl *OID = nullptr; 376 // Find the receiver 377 QualType ReceiverType; 378 llvm::Value *Receiver = nullptr; 379 switch (E->getReceiverKind()) { 380 case ObjCMessageExpr::Instance: 381 ReceiverType = E->getInstanceReceiver()->getType(); 382 if (retainSelf) { 383 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 384 E->getInstanceReceiver()); 385 Receiver = ter.getPointer(); 386 if (ter.getInt()) retainSelf = false; 387 } else 388 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 389 break; 390 391 case ObjCMessageExpr::Class: { 392 ReceiverType = E->getClassReceiver(); 393 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 394 assert(ObjTy && "Invalid Objective-C class message send"); 395 OID = ObjTy->getInterface(); 396 assert(OID && "Invalid Objective-C class message send"); 397 Receiver = Runtime.GetClass(*this, OID); 398 isClassMessage = true; 399 break; 400 } 401 402 case ObjCMessageExpr::SuperInstance: 403 ReceiverType = E->getSuperType(); 404 Receiver = LoadObjCSelf(); 405 isSuperMessage = true; 406 break; 407 408 case ObjCMessageExpr::SuperClass: 409 ReceiverType = E->getSuperType(); 410 Receiver = LoadObjCSelf(); 411 isSuperMessage = true; 412 isClassMessage = true; 413 break; 414 } 415 416 if (retainSelf) 417 Receiver = EmitARCRetainNonBlock(Receiver); 418 419 // In ARC, we sometimes want to "extend the lifetime" 420 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 421 // messages. 422 if (getLangOpts().ObjCAutoRefCount && method && 423 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 424 shouldExtendReceiverForInnerPointerMessage(E)) 425 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 426 427 QualType ResultType = method ? method->getReturnType() : E->getType(); 428 429 CallArgList Args; 430 EmitCallArgs(Args, method, E->arguments()); 431 432 // For delegate init calls in ARC, do an unsafe store of null into 433 // self. This represents the call taking direct ownership of that 434 // value. We have to do this after emitting the other call 435 // arguments because they might also reference self, but we don't 436 // have to worry about any of them modifying self because that would 437 // be an undefined read and write of an object in unordered 438 // expressions. 439 if (isDelegateInit) { 440 assert(getLangOpts().ObjCAutoRefCount && 441 "delegate init calls should only be marked in ARC"); 442 443 // Do an unsafe store of null into self. 444 Address selfAddr = 445 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 446 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 447 } 448 449 RValue result; 450 if (isSuperMessage) { 451 // super is only valid in an Objective-C method 452 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 453 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 454 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 455 E->getSelector(), 456 OMD->getClassInterface(), 457 isCategoryImpl, 458 Receiver, 459 isClassMessage, 460 Args, 461 method); 462 } else { 463 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 464 E->getSelector(), 465 Receiver, Args, OID, 466 method); 467 } 468 469 // For delegate init calls in ARC, implicitly store the result of 470 // the call back into self. This takes ownership of the value. 471 if (isDelegateInit) { 472 Address selfAddr = 473 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 474 llvm::Value *newSelf = result.getScalarVal(); 475 476 // The delegate return type isn't necessarily a matching type; in 477 // fact, it's quite likely to be 'id'. 478 llvm::Type *selfTy = selfAddr.getElementType(); 479 newSelf = Builder.CreateBitCast(newSelf, selfTy); 480 481 Builder.CreateStore(newSelf, selfAddr); 482 } 483 484 return AdjustObjCObjectType(*this, E->getType(), result); 485 } 486 487 namespace { 488 struct FinishARCDealloc final : EHScopeStack::Cleanup { 489 void Emit(CodeGenFunction &CGF, Flags flags) override { 490 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 491 492 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 493 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 494 if (!iface->getSuperClass()) return; 495 496 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 497 498 // Call [super dealloc] if we have a superclass. 499 llvm::Value *self = CGF.LoadObjCSelf(); 500 501 CallArgList args; 502 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 503 CGF.getContext().VoidTy, 504 method->getSelector(), 505 iface, 506 isCategory, 507 self, 508 /*is class msg*/ false, 509 args, 510 method); 511 } 512 }; 513 } 514 515 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 516 /// the LLVM function and sets the other context used by 517 /// CodeGenFunction. 518 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 519 const ObjCContainerDecl *CD) { 520 SourceLocation StartLoc = OMD->getLocStart(); 521 FunctionArgList args; 522 // Check if we should generate debug info for this method. 523 if (OMD->hasAttr<NoDebugAttr>()) 524 DebugInfo = nullptr; // disable debug info indefinitely for this function 525 526 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 527 528 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 529 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 530 531 args.push_back(OMD->getSelfDecl()); 532 args.push_back(OMD->getCmdDecl()); 533 534 args.append(OMD->param_begin(), OMD->param_end()); 535 536 CurGD = OMD; 537 CurEHLocation = OMD->getLocEnd(); 538 539 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 540 OMD->getLocation(), StartLoc); 541 542 // In ARC, certain methods get an extra cleanup. 543 if (CGM.getLangOpts().ObjCAutoRefCount && 544 OMD->isInstanceMethod() && 545 OMD->getSelector().isUnarySelector()) { 546 const IdentifierInfo *ident = 547 OMD->getSelector().getIdentifierInfoForSlot(0); 548 if (ident->isStr("dealloc")) 549 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 550 } 551 } 552 553 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 554 LValue lvalue, QualType type); 555 556 /// Generate an Objective-C method. An Objective-C method is a C function with 557 /// its pointer, name, and types registered in the class struture. 558 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 559 StartObjCMethod(OMD, OMD->getClassInterface()); 560 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 561 assert(isa<CompoundStmt>(OMD->getBody())); 562 incrementProfileCounter(OMD->getBody()); 563 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 564 FinishFunction(OMD->getBodyRBrace()); 565 } 566 567 /// emitStructGetterCall - Call the runtime function to load a property 568 /// into the return value slot. 569 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 570 bool isAtomic, bool hasStrong) { 571 ASTContext &Context = CGF.getContext(); 572 573 Address src = 574 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 575 .getAddress(); 576 577 // objc_copyStruct (ReturnValue, &structIvar, 578 // sizeof (Type of Ivar), isAtomic, false); 579 CallArgList args; 580 581 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 582 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 583 584 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 585 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 586 587 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 588 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 589 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 590 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 591 592 llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 593 CGCallee callee = CGCallee::forDirect(fn); 594 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 595 callee, ReturnValueSlot(), args); 596 } 597 598 /// Determine whether the given architecture supports unaligned atomic 599 /// accesses. They don't have to be fast, just faster than a function 600 /// call and a mutex. 601 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 602 // FIXME: Allow unaligned atomic load/store on x86. (It is not 603 // currently supported by the backend.) 604 return 0; 605 } 606 607 /// Return the maximum size that permits atomic accesses for the given 608 /// architecture. 609 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 610 llvm::Triple::ArchType arch) { 611 // ARM has 8-byte atomic accesses, but it's not clear whether we 612 // want to rely on them here. 613 614 // In the default case, just assume that any size up to a pointer is 615 // fine given adequate alignment. 616 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 617 } 618 619 namespace { 620 class PropertyImplStrategy { 621 public: 622 enum StrategyKind { 623 /// The 'native' strategy is to use the architecture's provided 624 /// reads and writes. 625 Native, 626 627 /// Use objc_setProperty and objc_getProperty. 628 GetSetProperty, 629 630 /// Use objc_setProperty for the setter, but use expression 631 /// evaluation for the getter. 632 SetPropertyAndExpressionGet, 633 634 /// Use objc_copyStruct. 635 CopyStruct, 636 637 /// The 'expression' strategy is to emit normal assignment or 638 /// lvalue-to-rvalue expressions. 639 Expression 640 }; 641 642 StrategyKind getKind() const { return StrategyKind(Kind); } 643 644 bool hasStrongMember() const { return HasStrong; } 645 bool isAtomic() const { return IsAtomic; } 646 bool isCopy() const { return IsCopy; } 647 648 CharUnits getIvarSize() const { return IvarSize; } 649 CharUnits getIvarAlignment() const { return IvarAlignment; } 650 651 PropertyImplStrategy(CodeGenModule &CGM, 652 const ObjCPropertyImplDecl *propImpl); 653 654 private: 655 unsigned Kind : 8; 656 unsigned IsAtomic : 1; 657 unsigned IsCopy : 1; 658 unsigned HasStrong : 1; 659 660 CharUnits IvarSize; 661 CharUnits IvarAlignment; 662 }; 663 } 664 665 /// Pick an implementation strategy for the given property synthesis. 666 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 667 const ObjCPropertyImplDecl *propImpl) { 668 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 669 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 670 671 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 672 IsAtomic = prop->isAtomic(); 673 HasStrong = false; // doesn't matter here. 674 675 // Evaluate the ivar's size and alignment. 676 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 677 QualType ivarType = ivar->getType(); 678 std::tie(IvarSize, IvarAlignment) = 679 CGM.getContext().getTypeInfoInChars(ivarType); 680 681 // If we have a copy property, we always have to use getProperty/setProperty. 682 // TODO: we could actually use setProperty and an expression for non-atomics. 683 if (IsCopy) { 684 Kind = GetSetProperty; 685 return; 686 } 687 688 // Handle retain. 689 if (setterKind == ObjCPropertyDecl::Retain) { 690 // In GC-only, there's nothing special that needs to be done. 691 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 692 // fallthrough 693 694 // In ARC, if the property is non-atomic, use expression emission, 695 // which translates to objc_storeStrong. This isn't required, but 696 // it's slightly nicer. 697 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 698 // Using standard expression emission for the setter is only 699 // acceptable if the ivar is __strong, which won't be true if 700 // the property is annotated with __attribute__((NSObject)). 701 // TODO: falling all the way back to objc_setProperty here is 702 // just laziness, though; we could still use objc_storeStrong 703 // if we hacked it right. 704 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 705 Kind = Expression; 706 else 707 Kind = SetPropertyAndExpressionGet; 708 return; 709 710 // Otherwise, we need to at least use setProperty. However, if 711 // the property isn't atomic, we can use normal expression 712 // emission for the getter. 713 } else if (!IsAtomic) { 714 Kind = SetPropertyAndExpressionGet; 715 return; 716 717 // Otherwise, we have to use both setProperty and getProperty. 718 } else { 719 Kind = GetSetProperty; 720 return; 721 } 722 } 723 724 // If we're not atomic, just use expression accesses. 725 if (!IsAtomic) { 726 Kind = Expression; 727 return; 728 } 729 730 // Properties on bitfield ivars need to be emitted using expression 731 // accesses even if they're nominally atomic. 732 if (ivar->isBitField()) { 733 Kind = Expression; 734 return; 735 } 736 737 // GC-qualified or ARC-qualified ivars need to be emitted as 738 // expressions. This actually works out to being atomic anyway, 739 // except for ARC __strong, but that should trigger the above code. 740 if (ivarType.hasNonTrivialObjCLifetime() || 741 (CGM.getLangOpts().getGC() && 742 CGM.getContext().getObjCGCAttrKind(ivarType))) { 743 Kind = Expression; 744 return; 745 } 746 747 // Compute whether the ivar has strong members. 748 if (CGM.getLangOpts().getGC()) 749 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 750 HasStrong = recordType->getDecl()->hasObjectMember(); 751 752 // We can never access structs with object members with a native 753 // access, because we need to use write barriers. This is what 754 // objc_copyStruct is for. 755 if (HasStrong) { 756 Kind = CopyStruct; 757 return; 758 } 759 760 // Otherwise, this is target-dependent and based on the size and 761 // alignment of the ivar. 762 763 // If the size of the ivar is not a power of two, give up. We don't 764 // want to get into the business of doing compare-and-swaps. 765 if (!IvarSize.isPowerOfTwo()) { 766 Kind = CopyStruct; 767 return; 768 } 769 770 llvm::Triple::ArchType arch = 771 CGM.getTarget().getTriple().getArch(); 772 773 // Most architectures require memory to fit within a single cache 774 // line, so the alignment has to be at least the size of the access. 775 // Otherwise we have to grab a lock. 776 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 777 Kind = CopyStruct; 778 return; 779 } 780 781 // If the ivar's size exceeds the architecture's maximum atomic 782 // access size, we have to use CopyStruct. 783 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 784 Kind = CopyStruct; 785 return; 786 } 787 788 // Otherwise, we can use native loads and stores. 789 Kind = Native; 790 } 791 792 /// \brief Generate an Objective-C property getter function. 793 /// 794 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 795 /// is illegal within a category. 796 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 797 const ObjCPropertyImplDecl *PID) { 798 llvm::Constant *AtomicHelperFn = 799 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 800 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 801 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 802 assert(OMD && "Invalid call to generate getter (empty method)"); 803 StartObjCMethod(OMD, IMP->getClassInterface()); 804 805 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 806 807 FinishFunction(); 808 } 809 810 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 811 const Expr *getter = propImpl->getGetterCXXConstructor(); 812 if (!getter) return true; 813 814 // Sema only makes only of these when the ivar has a C++ class type, 815 // so the form is pretty constrained. 816 817 // If the property has a reference type, we might just be binding a 818 // reference, in which case the result will be a gl-value. We should 819 // treat this as a non-trivial operation. 820 if (getter->isGLValue()) 821 return false; 822 823 // If we selected a trivial copy-constructor, we're okay. 824 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 825 return (construct->getConstructor()->isTrivial()); 826 827 // The constructor might require cleanups (in which case it's never 828 // trivial). 829 assert(isa<ExprWithCleanups>(getter)); 830 return false; 831 } 832 833 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 834 /// copy the ivar into the resturn slot. 835 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 836 llvm::Value *returnAddr, 837 ObjCIvarDecl *ivar, 838 llvm::Constant *AtomicHelperFn) { 839 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 840 // AtomicHelperFn); 841 CallArgList args; 842 843 // The 1st argument is the return Slot. 844 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 845 846 // The 2nd argument is the address of the ivar. 847 llvm::Value *ivarAddr = 848 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 849 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 850 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 851 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 852 853 // Third argument is the helper function. 854 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 855 856 llvm::Constant *copyCppAtomicObjectFn = 857 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 858 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 859 CGF.EmitCall( 860 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 861 callee, ReturnValueSlot(), args); 862 } 863 864 void 865 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 866 const ObjCPropertyImplDecl *propImpl, 867 const ObjCMethodDecl *GetterMethodDecl, 868 llvm::Constant *AtomicHelperFn) { 869 // If there's a non-trivial 'get' expression, we just have to emit that. 870 if (!hasTrivialGetExpr(propImpl)) { 871 if (!AtomicHelperFn) { 872 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 873 /*nrvo*/ nullptr); 874 EmitReturnStmt(ret); 875 } 876 else { 877 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 878 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 879 ivar, AtomicHelperFn); 880 } 881 return; 882 } 883 884 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 885 QualType propType = prop->getType(); 886 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 887 888 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 889 890 // Pick an implementation strategy. 891 PropertyImplStrategy strategy(CGM, propImpl); 892 switch (strategy.getKind()) { 893 case PropertyImplStrategy::Native: { 894 // We don't need to do anything for a zero-size struct. 895 if (strategy.getIvarSize().isZero()) 896 return; 897 898 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 899 900 // Currently, all atomic accesses have to be through integer 901 // types, so there's no point in trying to pick a prettier type. 902 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 903 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 904 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 905 906 // Perform an atomic load. This does not impose ordering constraints. 907 Address ivarAddr = LV.getAddress(); 908 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 909 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 910 load->setAtomic(llvm::AtomicOrdering::Unordered); 911 912 // Store that value into the return address. Doing this with a 913 // bitcast is likely to produce some pretty ugly IR, but it's not 914 // the *most* terrible thing in the world. 915 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 916 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 917 llvm::Value *ivarVal = load; 918 if (ivarSize > retTySize) { 919 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 920 ivarVal = Builder.CreateTrunc(load, newTy); 921 bitcastType = newTy->getPointerTo(); 922 } 923 Builder.CreateStore(ivarVal, 924 Builder.CreateBitCast(ReturnValue, bitcastType)); 925 926 // Make sure we don't do an autorelease. 927 AutoreleaseResult = false; 928 return; 929 } 930 931 case PropertyImplStrategy::GetSetProperty: { 932 llvm::Constant *getPropertyFn = 933 CGM.getObjCRuntime().GetPropertyGetFunction(); 934 if (!getPropertyFn) { 935 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 936 return; 937 } 938 CGCallee callee = CGCallee::forDirect(getPropertyFn); 939 940 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 941 // FIXME: Can't this be simpler? This might even be worse than the 942 // corresponding gcc code. 943 llvm::Value *cmd = 944 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 945 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 946 llvm::Value *ivarOffset = 947 EmitIvarOffset(classImpl->getClassInterface(), ivar); 948 949 CallArgList args; 950 args.add(RValue::get(self), getContext().getObjCIdType()); 951 args.add(RValue::get(cmd), getContext().getObjCSelType()); 952 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 953 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 954 getContext().BoolTy); 955 956 // FIXME: We shouldn't need to get the function info here, the 957 // runtime already should have computed it to build the function. 958 llvm::Instruction *CallInstruction; 959 RValue RV = EmitCall( 960 getTypes().arrangeBuiltinFunctionCall(propType, args), 961 callee, ReturnValueSlot(), args, &CallInstruction); 962 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 963 call->setTailCall(); 964 965 // We need to fix the type here. Ivars with copy & retain are 966 // always objects so we don't need to worry about complex or 967 // aggregates. 968 RV = RValue::get(Builder.CreateBitCast( 969 RV.getScalarVal(), 970 getTypes().ConvertType(getterMethod->getReturnType()))); 971 972 EmitReturnOfRValue(RV, propType); 973 974 // objc_getProperty does an autorelease, so we should suppress ours. 975 AutoreleaseResult = false; 976 977 return; 978 } 979 980 case PropertyImplStrategy::CopyStruct: 981 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 982 strategy.hasStrongMember()); 983 return; 984 985 case PropertyImplStrategy::Expression: 986 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 987 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 988 989 QualType ivarType = ivar->getType(); 990 switch (getEvaluationKind(ivarType)) { 991 case TEK_Complex: { 992 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 993 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 994 /*init*/ true); 995 return; 996 } 997 case TEK_Aggregate: 998 // The return value slot is guaranteed to not be aliased, but 999 // that's not necessarily the same as "on the stack", so 1000 // we still potentially need objc_memmove_collectable. 1001 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 1002 return; 1003 case TEK_Scalar: { 1004 llvm::Value *value; 1005 if (propType->isReferenceType()) { 1006 value = LV.getAddress().getPointer(); 1007 } else { 1008 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1009 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1010 if (getLangOpts().ObjCAutoRefCount) { 1011 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1012 } else { 1013 value = EmitARCLoadWeak(LV.getAddress()); 1014 } 1015 1016 // Otherwise we want to do a simple load, suppressing the 1017 // final autorelease. 1018 } else { 1019 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1020 AutoreleaseResult = false; 1021 } 1022 1023 value = Builder.CreateBitCast( 1024 value, ConvertType(GetterMethodDecl->getReturnType())); 1025 } 1026 1027 EmitReturnOfRValue(RValue::get(value), propType); 1028 return; 1029 } 1030 } 1031 llvm_unreachable("bad evaluation kind"); 1032 } 1033 1034 } 1035 llvm_unreachable("bad @property implementation strategy!"); 1036 } 1037 1038 /// emitStructSetterCall - Call the runtime function to store the value 1039 /// from the first formal parameter into the given ivar. 1040 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1041 ObjCIvarDecl *ivar) { 1042 // objc_copyStruct (&structIvar, &Arg, 1043 // sizeof (struct something), true, false); 1044 CallArgList args; 1045 1046 // The first argument is the address of the ivar. 1047 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1048 CGF.LoadObjCSelf(), ivar, 0) 1049 .getPointer(); 1050 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1051 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1052 1053 // The second argument is the address of the parameter variable. 1054 ParmVarDecl *argVar = *OMD->param_begin(); 1055 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1056 VK_LValue, SourceLocation()); 1057 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1058 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1059 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1060 1061 // The third argument is the sizeof the type. 1062 llvm::Value *size = 1063 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1064 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1065 1066 // The fourth argument is the 'isAtomic' flag. 1067 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1068 1069 // The fifth argument is the 'hasStrong' flag. 1070 // FIXME: should this really always be false? 1071 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1072 1073 llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1074 CGCallee callee = CGCallee::forDirect(fn); 1075 CGF.EmitCall( 1076 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1077 callee, ReturnValueSlot(), args); 1078 } 1079 1080 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1081 /// the value from the first formal parameter into the given ivar, using 1082 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1083 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1084 ObjCMethodDecl *OMD, 1085 ObjCIvarDecl *ivar, 1086 llvm::Constant *AtomicHelperFn) { 1087 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1088 // AtomicHelperFn); 1089 CallArgList args; 1090 1091 // The first argument is the address of the ivar. 1092 llvm::Value *ivarAddr = 1093 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1094 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 1095 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1096 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1097 1098 // The second argument is the address of the parameter variable. 1099 ParmVarDecl *argVar = *OMD->param_begin(); 1100 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1101 VK_LValue, SourceLocation()); 1102 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1103 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1104 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1105 1106 // Third argument is the helper function. 1107 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1108 1109 llvm::Constant *fn = 1110 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1111 CGCallee callee = CGCallee::forDirect(fn); 1112 CGF.EmitCall( 1113 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1114 callee, ReturnValueSlot(), args); 1115 } 1116 1117 1118 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1119 Expr *setter = PID->getSetterCXXAssignment(); 1120 if (!setter) return true; 1121 1122 // Sema only makes only of these when the ivar has a C++ class type, 1123 // so the form is pretty constrained. 1124 1125 // An operator call is trivial if the function it calls is trivial. 1126 // This also implies that there's nothing non-trivial going on with 1127 // the arguments, because operator= can only be trivial if it's a 1128 // synthesized assignment operator and therefore both parameters are 1129 // references. 1130 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1131 if (const FunctionDecl *callee 1132 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1133 if (callee->isTrivial()) 1134 return true; 1135 return false; 1136 } 1137 1138 assert(isa<ExprWithCleanups>(setter)); 1139 return false; 1140 } 1141 1142 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1143 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1144 return false; 1145 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1146 } 1147 1148 void 1149 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1150 const ObjCPropertyImplDecl *propImpl, 1151 llvm::Constant *AtomicHelperFn) { 1152 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1153 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1154 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1155 1156 // Just use the setter expression if Sema gave us one and it's 1157 // non-trivial. 1158 if (!hasTrivialSetExpr(propImpl)) { 1159 if (!AtomicHelperFn) 1160 // If non-atomic, assignment is called directly. 1161 EmitStmt(propImpl->getSetterCXXAssignment()); 1162 else 1163 // If atomic, assignment is called via a locking api. 1164 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1165 AtomicHelperFn); 1166 return; 1167 } 1168 1169 PropertyImplStrategy strategy(CGM, propImpl); 1170 switch (strategy.getKind()) { 1171 case PropertyImplStrategy::Native: { 1172 // We don't need to do anything for a zero-size struct. 1173 if (strategy.getIvarSize().isZero()) 1174 return; 1175 1176 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1177 1178 LValue ivarLValue = 1179 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1180 Address ivarAddr = ivarLValue.getAddress(); 1181 1182 // Currently, all atomic accesses have to be through integer 1183 // types, so there's no point in trying to pick a prettier type. 1184 llvm::Type *bitcastType = 1185 llvm::Type::getIntNTy(getLLVMContext(), 1186 getContext().toBits(strategy.getIvarSize())); 1187 1188 // Cast both arguments to the chosen operation type. 1189 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1190 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1191 1192 // This bitcast load is likely to cause some nasty IR. 1193 llvm::Value *load = Builder.CreateLoad(argAddr); 1194 1195 // Perform an atomic store. There are no memory ordering requirements. 1196 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1197 store->setAtomic(llvm::AtomicOrdering::Unordered); 1198 return; 1199 } 1200 1201 case PropertyImplStrategy::GetSetProperty: 1202 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1203 1204 llvm::Constant *setOptimizedPropertyFn = nullptr; 1205 llvm::Constant *setPropertyFn = nullptr; 1206 if (UseOptimizedSetter(CGM)) { 1207 // 10.8 and iOS 6.0 code and GC is off 1208 setOptimizedPropertyFn = 1209 CGM.getObjCRuntime() 1210 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1211 strategy.isCopy()); 1212 if (!setOptimizedPropertyFn) { 1213 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1214 return; 1215 } 1216 } 1217 else { 1218 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1219 if (!setPropertyFn) { 1220 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1221 return; 1222 } 1223 } 1224 1225 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1226 // <is-atomic>, <is-copy>). 1227 llvm::Value *cmd = 1228 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1229 llvm::Value *self = 1230 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1231 llvm::Value *ivarOffset = 1232 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1233 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1234 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1235 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1236 1237 CallArgList args; 1238 args.add(RValue::get(self), getContext().getObjCIdType()); 1239 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1240 if (setOptimizedPropertyFn) { 1241 args.add(RValue::get(arg), getContext().getObjCIdType()); 1242 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1243 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1244 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1245 callee, ReturnValueSlot(), args); 1246 } else { 1247 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1248 args.add(RValue::get(arg), getContext().getObjCIdType()); 1249 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1250 getContext().BoolTy); 1251 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1252 getContext().BoolTy); 1253 // FIXME: We shouldn't need to get the function info here, the runtime 1254 // already should have computed it to build the function. 1255 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1256 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1257 callee, ReturnValueSlot(), args); 1258 } 1259 1260 return; 1261 } 1262 1263 case PropertyImplStrategy::CopyStruct: 1264 emitStructSetterCall(*this, setterMethod, ivar); 1265 return; 1266 1267 case PropertyImplStrategy::Expression: 1268 break; 1269 } 1270 1271 // Otherwise, fake up some ASTs and emit a normal assignment. 1272 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1273 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1274 VK_LValue, SourceLocation()); 1275 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1276 selfDecl->getType(), CK_LValueToRValue, &self, 1277 VK_RValue); 1278 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1279 SourceLocation(), SourceLocation(), 1280 &selfLoad, true, true); 1281 1282 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1283 QualType argType = argDecl->getType().getNonReferenceType(); 1284 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1285 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1286 argType.getUnqualifiedType(), CK_LValueToRValue, 1287 &arg, VK_RValue); 1288 1289 // The property type can differ from the ivar type in some situations with 1290 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1291 // The following absurdity is just to ensure well-formed IR. 1292 CastKind argCK = CK_NoOp; 1293 if (ivarRef.getType()->isObjCObjectPointerType()) { 1294 if (argLoad.getType()->isObjCObjectPointerType()) 1295 argCK = CK_BitCast; 1296 else if (argLoad.getType()->isBlockPointerType()) 1297 argCK = CK_BlockPointerToObjCPointerCast; 1298 else 1299 argCK = CK_CPointerToObjCPointerCast; 1300 } else if (ivarRef.getType()->isBlockPointerType()) { 1301 if (argLoad.getType()->isBlockPointerType()) 1302 argCK = CK_BitCast; 1303 else 1304 argCK = CK_AnyPointerToBlockPointerCast; 1305 } else if (ivarRef.getType()->isPointerType()) { 1306 argCK = CK_BitCast; 1307 } 1308 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1309 ivarRef.getType(), argCK, &argLoad, 1310 VK_RValue); 1311 Expr *finalArg = &argLoad; 1312 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1313 argLoad.getType())) 1314 finalArg = &argCast; 1315 1316 1317 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1318 ivarRef.getType(), VK_RValue, OK_Ordinary, 1319 SourceLocation(), false); 1320 EmitStmt(&assign); 1321 } 1322 1323 /// \brief Generate an Objective-C property setter function. 1324 /// 1325 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1326 /// is illegal within a category. 1327 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1328 const ObjCPropertyImplDecl *PID) { 1329 llvm::Constant *AtomicHelperFn = 1330 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1331 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1332 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1333 assert(OMD && "Invalid call to generate setter (empty method)"); 1334 StartObjCMethod(OMD, IMP->getClassInterface()); 1335 1336 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1337 1338 FinishFunction(); 1339 } 1340 1341 namespace { 1342 struct DestroyIvar final : EHScopeStack::Cleanup { 1343 private: 1344 llvm::Value *addr; 1345 const ObjCIvarDecl *ivar; 1346 CodeGenFunction::Destroyer *destroyer; 1347 bool useEHCleanupForArray; 1348 public: 1349 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1350 CodeGenFunction::Destroyer *destroyer, 1351 bool useEHCleanupForArray) 1352 : addr(addr), ivar(ivar), destroyer(destroyer), 1353 useEHCleanupForArray(useEHCleanupForArray) {} 1354 1355 void Emit(CodeGenFunction &CGF, Flags flags) override { 1356 LValue lvalue 1357 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1358 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1359 flags.isForNormalCleanup() && useEHCleanupForArray); 1360 } 1361 }; 1362 } 1363 1364 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1365 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1366 Address addr, 1367 QualType type) { 1368 llvm::Value *null = getNullForVariable(addr); 1369 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1370 } 1371 1372 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1373 ObjCImplementationDecl *impl) { 1374 CodeGenFunction::RunCleanupsScope scope(CGF); 1375 1376 llvm::Value *self = CGF.LoadObjCSelf(); 1377 1378 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1379 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1380 ivar; ivar = ivar->getNextIvar()) { 1381 QualType type = ivar->getType(); 1382 1383 // Check whether the ivar is a destructible type. 1384 QualType::DestructionKind dtorKind = type.isDestructedType(); 1385 if (!dtorKind) continue; 1386 1387 CodeGenFunction::Destroyer *destroyer = nullptr; 1388 1389 // Use a call to objc_storeStrong to destroy strong ivars, for the 1390 // general benefit of the tools. 1391 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1392 destroyer = destroyARCStrongWithStore; 1393 1394 // Otherwise use the default for the destruction kind. 1395 } else { 1396 destroyer = CGF.getDestroyer(dtorKind); 1397 } 1398 1399 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1400 1401 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1402 cleanupKind & EHCleanup); 1403 } 1404 1405 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1406 } 1407 1408 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1409 ObjCMethodDecl *MD, 1410 bool ctor) { 1411 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1412 StartObjCMethod(MD, IMP->getClassInterface()); 1413 1414 // Emit .cxx_construct. 1415 if (ctor) { 1416 // Suppress the final autorelease in ARC. 1417 AutoreleaseResult = false; 1418 1419 for (const auto *IvarInit : IMP->inits()) { 1420 FieldDecl *Field = IvarInit->getAnyMember(); 1421 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1422 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1423 LoadObjCSelf(), Ivar, 0); 1424 EmitAggExpr(IvarInit->getInit(), 1425 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1426 AggValueSlot::DoesNotNeedGCBarriers, 1427 AggValueSlot::IsNotAliased)); 1428 } 1429 // constructor returns 'self'. 1430 CodeGenTypes &Types = CGM.getTypes(); 1431 QualType IdTy(CGM.getContext().getObjCIdType()); 1432 llvm::Value *SelfAsId = 1433 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1434 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1435 1436 // Emit .cxx_destruct. 1437 } else { 1438 emitCXXDestructMethod(*this, IMP); 1439 } 1440 FinishFunction(); 1441 } 1442 1443 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1444 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1445 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1446 Self->getType(), VK_LValue, SourceLocation()); 1447 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1448 } 1449 1450 QualType CodeGenFunction::TypeOfSelfObject() { 1451 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1452 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1453 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1454 getContext().getCanonicalType(selfDecl->getType())); 1455 return PTy->getPointeeType(); 1456 } 1457 1458 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1459 llvm::Constant *EnumerationMutationFnPtr = 1460 CGM.getObjCRuntime().EnumerationMutationFunction(); 1461 if (!EnumerationMutationFnPtr) { 1462 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1463 return; 1464 } 1465 CGCallee EnumerationMutationFn = 1466 CGCallee::forDirect(EnumerationMutationFnPtr); 1467 1468 CGDebugInfo *DI = getDebugInfo(); 1469 if (DI) 1470 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1471 1472 // The local variable comes into scope immediately. 1473 AutoVarEmission variable = AutoVarEmission::invalid(); 1474 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1475 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1476 1477 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1478 1479 // Fast enumeration state. 1480 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1481 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1482 EmitNullInitialization(StatePtr, StateTy); 1483 1484 // Number of elements in the items array. 1485 static const unsigned NumItems = 16; 1486 1487 // Fetch the countByEnumeratingWithState:objects:count: selector. 1488 IdentifierInfo *II[] = { 1489 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1490 &CGM.getContext().Idents.get("objects"), 1491 &CGM.getContext().Idents.get("count") 1492 }; 1493 Selector FastEnumSel = 1494 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1495 1496 QualType ItemsTy = 1497 getContext().getConstantArrayType(getContext().getObjCIdType(), 1498 llvm::APInt(32, NumItems), 1499 ArrayType::Normal, 0); 1500 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1501 1502 RunCleanupsScope ForScope(*this); 1503 1504 // Emit the collection pointer. In ARC, we do a retain. 1505 llvm::Value *Collection; 1506 if (getLangOpts().ObjCAutoRefCount) { 1507 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1508 1509 // Enter a cleanup to do the release. 1510 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1511 } else { 1512 Collection = EmitScalarExpr(S.getCollection()); 1513 } 1514 1515 // The 'continue' label needs to appear within the cleanup for the 1516 // collection object. 1517 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1518 1519 // Send it our message: 1520 CallArgList Args; 1521 1522 // The first argument is a temporary of the enumeration-state type. 1523 Args.add(RValue::get(StatePtr.getPointer()), 1524 getContext().getPointerType(StateTy)); 1525 1526 // The second argument is a temporary array with space for NumItems 1527 // pointers. We'll actually be loading elements from the array 1528 // pointer written into the control state; this buffer is so that 1529 // collections that *aren't* backed by arrays can still queue up 1530 // batches of elements. 1531 Args.add(RValue::get(ItemsPtr.getPointer()), 1532 getContext().getPointerType(ItemsTy)); 1533 1534 // The third argument is the capacity of that temporary array. 1535 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1536 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1537 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1538 1539 // Start the enumeration. 1540 RValue CountRV = 1541 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1542 getContext().UnsignedLongTy, 1543 FastEnumSel, 1544 Collection, Args); 1545 1546 // The initial number of objects that were returned in the buffer. 1547 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1548 1549 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1550 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1551 1552 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1553 1554 // If the limit pointer was zero to begin with, the collection is 1555 // empty; skip all this. Set the branch weight assuming this has the same 1556 // probability of exiting the loop as any other loop exit. 1557 uint64_t EntryCount = getCurrentProfileCount(); 1558 Builder.CreateCondBr( 1559 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1560 LoopInitBB, 1561 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1562 1563 // Otherwise, initialize the loop. 1564 EmitBlock(LoopInitBB); 1565 1566 // Save the initial mutations value. This is the value at an 1567 // address that was written into the state object by 1568 // countByEnumeratingWithState:objects:count:. 1569 Address StateMutationsPtrPtr = Builder.CreateStructGEP( 1570 StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr"); 1571 llvm::Value *StateMutationsPtr 1572 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1573 1574 llvm::Value *initialMutations = 1575 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1576 "forcoll.initial-mutations"); 1577 1578 // Start looping. This is the point we return to whenever we have a 1579 // fresh, non-empty batch of objects. 1580 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1581 EmitBlock(LoopBodyBB); 1582 1583 // The current index into the buffer. 1584 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1585 index->addIncoming(zero, LoopInitBB); 1586 1587 // The current buffer size. 1588 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1589 count->addIncoming(initialBufferLimit, LoopInitBB); 1590 1591 incrementProfileCounter(&S); 1592 1593 // Check whether the mutations value has changed from where it was 1594 // at start. StateMutationsPtr should actually be invariant between 1595 // refreshes. 1596 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1597 llvm::Value *currentMutations 1598 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1599 "statemutations"); 1600 1601 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1602 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1603 1604 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1605 WasNotMutatedBB, WasMutatedBB); 1606 1607 // If so, call the enumeration-mutation function. 1608 EmitBlock(WasMutatedBB); 1609 llvm::Value *V = 1610 Builder.CreateBitCast(Collection, 1611 ConvertType(getContext().getObjCIdType())); 1612 CallArgList Args2; 1613 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1614 // FIXME: We shouldn't need to get the function info here, the runtime already 1615 // should have computed it to build the function. 1616 EmitCall( 1617 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1618 EnumerationMutationFn, ReturnValueSlot(), Args2); 1619 1620 // Otherwise, or if the mutation function returns, just continue. 1621 EmitBlock(WasNotMutatedBB); 1622 1623 // Initialize the element variable. 1624 RunCleanupsScope elementVariableScope(*this); 1625 bool elementIsVariable; 1626 LValue elementLValue; 1627 QualType elementType; 1628 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1629 // Initialize the variable, in case it's a __block variable or something. 1630 EmitAutoVarInit(variable); 1631 1632 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1633 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1634 VK_LValue, SourceLocation()); 1635 elementLValue = EmitLValue(&tempDRE); 1636 elementType = D->getType(); 1637 elementIsVariable = true; 1638 1639 if (D->isARCPseudoStrong()) 1640 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1641 } else { 1642 elementLValue = LValue(); // suppress warning 1643 elementType = cast<Expr>(S.getElement())->getType(); 1644 elementIsVariable = false; 1645 } 1646 llvm::Type *convertedElementType = ConvertType(elementType); 1647 1648 // Fetch the buffer out of the enumeration state. 1649 // TODO: this pointer should actually be invariant between 1650 // refreshes, which would help us do certain loop optimizations. 1651 Address StateItemsPtr = Builder.CreateStructGEP( 1652 StatePtr, 1, getPointerSize(), "stateitems.ptr"); 1653 llvm::Value *EnumStateItems = 1654 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1655 1656 // Fetch the value at the current index from the buffer. 1657 llvm::Value *CurrentItemPtr = 1658 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1659 llvm::Value *CurrentItem = 1660 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1661 1662 // Cast that value to the right type. 1663 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1664 "currentitem"); 1665 1666 // Make sure we have an l-value. Yes, this gets evaluated every 1667 // time through the loop. 1668 if (!elementIsVariable) { 1669 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1670 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1671 } else { 1672 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1673 /*isInit*/ true); 1674 } 1675 1676 // If we do have an element variable, this assignment is the end of 1677 // its initialization. 1678 if (elementIsVariable) 1679 EmitAutoVarCleanups(variable); 1680 1681 // Perform the loop body, setting up break and continue labels. 1682 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1683 { 1684 RunCleanupsScope Scope(*this); 1685 EmitStmt(S.getBody()); 1686 } 1687 BreakContinueStack.pop_back(); 1688 1689 // Destroy the element variable now. 1690 elementVariableScope.ForceCleanup(); 1691 1692 // Check whether there are more elements. 1693 EmitBlock(AfterBody.getBlock()); 1694 1695 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1696 1697 // First we check in the local buffer. 1698 llvm::Value *indexPlusOne 1699 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1700 1701 // If we haven't overrun the buffer yet, we can continue. 1702 // Set the branch weights based on the simplifying assumption that this is 1703 // like a while-loop, i.e., ignoring that the false branch fetches more 1704 // elements and then returns to the loop. 1705 Builder.CreateCondBr( 1706 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1707 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1708 1709 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1710 count->addIncoming(count, AfterBody.getBlock()); 1711 1712 // Otherwise, we have to fetch more elements. 1713 EmitBlock(FetchMoreBB); 1714 1715 CountRV = 1716 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1717 getContext().UnsignedLongTy, 1718 FastEnumSel, 1719 Collection, Args); 1720 1721 // If we got a zero count, we're done. 1722 llvm::Value *refetchCount = CountRV.getScalarVal(); 1723 1724 // (note that the message send might split FetchMoreBB) 1725 index->addIncoming(zero, Builder.GetInsertBlock()); 1726 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1727 1728 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1729 EmptyBB, LoopBodyBB); 1730 1731 // No more elements. 1732 EmitBlock(EmptyBB); 1733 1734 if (!elementIsVariable) { 1735 // If the element was not a declaration, set it to be null. 1736 1737 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1738 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1739 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1740 } 1741 1742 if (DI) 1743 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1744 1745 ForScope.ForceCleanup(); 1746 EmitBlock(LoopEnd.getBlock()); 1747 } 1748 1749 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1750 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1751 } 1752 1753 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1754 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1755 } 1756 1757 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1758 const ObjCAtSynchronizedStmt &S) { 1759 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1760 } 1761 1762 namespace { 1763 struct CallObjCRelease final : EHScopeStack::Cleanup { 1764 CallObjCRelease(llvm::Value *object) : object(object) {} 1765 llvm::Value *object; 1766 1767 void Emit(CodeGenFunction &CGF, Flags flags) override { 1768 // Releases at the end of the full-expression are imprecise. 1769 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1770 } 1771 }; 1772 } 1773 1774 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1775 /// release at the end of the full-expression. 1776 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1777 llvm::Value *object) { 1778 // If we're in a conditional branch, we need to make the cleanup 1779 // conditional. 1780 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1781 return object; 1782 } 1783 1784 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1785 llvm::Value *value) { 1786 return EmitARCRetainAutorelease(type, value); 1787 } 1788 1789 /// Given a number of pointers, inform the optimizer that they're 1790 /// being intrinsically used up until this point in the program. 1791 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1792 llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use; 1793 if (!fn) { 1794 llvm::FunctionType *fnType = 1795 llvm::FunctionType::get(CGM.VoidTy, None, true); 1796 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use"); 1797 } 1798 1799 // This isn't really a "runtime" function, but as an intrinsic it 1800 // doesn't really matter as long as we align things up. 1801 EmitNounwindRuntimeCall(fn, values); 1802 } 1803 1804 1805 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1806 llvm::FunctionType *type, 1807 StringRef fnName) { 1808 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1809 1810 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) { 1811 // If the target runtime doesn't naturally support ARC, emit weak 1812 // references to the runtime support library. We don't really 1813 // permit this to fail, but we need a particular relocation style. 1814 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 1815 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1816 } else if (fnName == "objc_retain" || fnName == "objc_release") { 1817 // If we have Native ARC, set nonlazybind attribute for these APIs for 1818 // performance. 1819 f->addFnAttr(llvm::Attribute::NonLazyBind); 1820 } 1821 } 1822 1823 return fn; 1824 } 1825 1826 /// Perform an operation having the signature 1827 /// i8* (i8*) 1828 /// where a null input causes a no-op and returns null. 1829 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1830 llvm::Value *value, 1831 llvm::Constant *&fn, 1832 StringRef fnName, 1833 bool isTailCall = false) { 1834 if (isa<llvm::ConstantPointerNull>(value)) return value; 1835 1836 if (!fn) { 1837 llvm::FunctionType *fnType = 1838 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 1839 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1840 } 1841 1842 // Cast the argument to 'id'. 1843 llvm::Type *origType = value->getType(); 1844 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1845 1846 // Call the function. 1847 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1848 if (isTailCall) 1849 call->setTailCall(); 1850 1851 // Cast the result back to the original type. 1852 return CGF.Builder.CreateBitCast(call, origType); 1853 } 1854 1855 /// Perform an operation having the following signature: 1856 /// i8* (i8**) 1857 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1858 Address addr, 1859 llvm::Constant *&fn, 1860 StringRef fnName) { 1861 if (!fn) { 1862 llvm::FunctionType *fnType = 1863 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false); 1864 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1865 } 1866 1867 // Cast the argument to 'id*'. 1868 llvm::Type *origType = addr.getElementType(); 1869 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1870 1871 // Call the function. 1872 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 1873 1874 // Cast the result back to a dereference of the original type. 1875 if (origType != CGF.Int8PtrTy) 1876 result = CGF.Builder.CreateBitCast(result, origType); 1877 1878 return result; 1879 } 1880 1881 /// Perform an operation having the following signature: 1882 /// i8* (i8**, i8*) 1883 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1884 Address addr, 1885 llvm::Value *value, 1886 llvm::Constant *&fn, 1887 StringRef fnName, 1888 bool ignored) { 1889 assert(addr.getElementType() == value->getType()); 1890 1891 if (!fn) { 1892 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1893 1894 llvm::FunctionType *fnType 1895 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1896 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1897 } 1898 1899 llvm::Type *origType = value->getType(); 1900 1901 llvm::Value *args[] = { 1902 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 1903 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 1904 }; 1905 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 1906 1907 if (ignored) return nullptr; 1908 1909 return CGF.Builder.CreateBitCast(result, origType); 1910 } 1911 1912 /// Perform an operation having the following signature: 1913 /// void (i8**, i8**) 1914 static void emitARCCopyOperation(CodeGenFunction &CGF, 1915 Address dst, 1916 Address src, 1917 llvm::Constant *&fn, 1918 StringRef fnName) { 1919 assert(dst.getType() == src.getType()); 1920 1921 if (!fn) { 1922 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy }; 1923 1924 llvm::FunctionType *fnType 1925 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1926 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1927 } 1928 1929 llvm::Value *args[] = { 1930 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 1931 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 1932 }; 1933 CGF.EmitNounwindRuntimeCall(fn, args); 1934 } 1935 1936 /// Produce the code to do a retain. Based on the type, calls one of: 1937 /// call i8* \@objc_retain(i8* %value) 1938 /// call i8* \@objc_retainBlock(i8* %value) 1939 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1940 if (type->isBlockPointerType()) 1941 return EmitARCRetainBlock(value, /*mandatory*/ false); 1942 else 1943 return EmitARCRetainNonBlock(value); 1944 } 1945 1946 /// Retain the given object, with normal retain semantics. 1947 /// call i8* \@objc_retain(i8* %value) 1948 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1949 return emitARCValueOperation(*this, value, 1950 CGM.getObjCEntrypoints().objc_retain, 1951 "objc_retain"); 1952 } 1953 1954 /// Retain the given block, with _Block_copy semantics. 1955 /// call i8* \@objc_retainBlock(i8* %value) 1956 /// 1957 /// \param mandatory - If false, emit the call with metadata 1958 /// indicating that it's okay for the optimizer to eliminate this call 1959 /// if it can prove that the block never escapes except down the stack. 1960 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1961 bool mandatory) { 1962 llvm::Value *result 1963 = emitARCValueOperation(*this, value, 1964 CGM.getObjCEntrypoints().objc_retainBlock, 1965 "objc_retainBlock"); 1966 1967 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1968 // tell the optimizer that it doesn't need to do this copy if the 1969 // block doesn't escape, where being passed as an argument doesn't 1970 // count as escaping. 1971 if (!mandatory && isa<llvm::Instruction>(result)) { 1972 llvm::CallInst *call 1973 = cast<llvm::CallInst>(result->stripPointerCasts()); 1974 assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock); 1975 1976 call->setMetadata("clang.arc.copy_on_escape", 1977 llvm::MDNode::get(Builder.getContext(), None)); 1978 } 1979 1980 return result; 1981 } 1982 1983 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 1984 // Fetch the void(void) inline asm which marks that we're going to 1985 // do something with the autoreleased return value. 1986 llvm::InlineAsm *&marker 1987 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 1988 if (!marker) { 1989 StringRef assembly 1990 = CGF.CGM.getTargetCodeGenInfo() 1991 .getARCRetainAutoreleasedReturnValueMarker(); 1992 1993 // If we have an empty assembly string, there's nothing to do. 1994 if (assembly.empty()) { 1995 1996 // Otherwise, at -O0, build an inline asm that we're going to call 1997 // in a moment. 1998 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 1999 llvm::FunctionType *type = 2000 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2001 2002 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2003 2004 // If we're at -O1 and above, we don't want to litter the code 2005 // with this marker yet, so leave a breadcrumb for the ARC 2006 // optimizer to pick up. 2007 } else { 2008 llvm::NamedMDNode *metadata = 2009 CGF.CGM.getModule().getOrInsertNamedMetadata( 2010 "clang.arc.retainAutoreleasedReturnValueMarker"); 2011 assert(metadata->getNumOperands() <= 1); 2012 if (metadata->getNumOperands() == 0) { 2013 auto &ctx = CGF.getLLVMContext(); 2014 metadata->addOperand(llvm::MDNode::get(ctx, 2015 llvm::MDString::get(ctx, assembly))); 2016 } 2017 } 2018 } 2019 2020 // Call the marker asm if we made one, which we do only at -O0. 2021 if (marker) 2022 CGF.Builder.CreateCall(marker); 2023 } 2024 2025 /// Retain the given object which is the result of a function call. 2026 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2027 /// 2028 /// Yes, this function name is one character away from a different 2029 /// call with completely different semantics. 2030 llvm::Value * 2031 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2032 emitAutoreleasedReturnValueMarker(*this); 2033 return emitARCValueOperation(*this, value, 2034 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, 2035 "objc_retainAutoreleasedReturnValue"); 2036 } 2037 2038 /// Claim a possibly-autoreleased return value at +0. This is only 2039 /// valid to do in contexts which do not rely on the retain to keep 2040 /// the object valid for for all of its uses; for example, when 2041 /// the value is ignored, or when it is being assigned to an 2042 /// __unsafe_unretained variable. 2043 /// 2044 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2045 llvm::Value * 2046 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2047 emitAutoreleasedReturnValueMarker(*this); 2048 return emitARCValueOperation(*this, value, 2049 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, 2050 "objc_unsafeClaimAutoreleasedReturnValue"); 2051 } 2052 2053 /// Release the given object. 2054 /// call void \@objc_release(i8* %value) 2055 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2056 ARCPreciseLifetime_t precise) { 2057 if (isa<llvm::ConstantPointerNull>(value)) return; 2058 2059 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release; 2060 if (!fn) { 2061 llvm::FunctionType *fnType = 2062 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2063 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 2064 } 2065 2066 // Cast the argument to 'id'. 2067 value = Builder.CreateBitCast(value, Int8PtrTy); 2068 2069 // Call objc_release. 2070 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2071 2072 if (precise == ARCImpreciseLifetime) { 2073 call->setMetadata("clang.imprecise_release", 2074 llvm::MDNode::get(Builder.getContext(), None)); 2075 } 2076 } 2077 2078 /// Destroy a __strong variable. 2079 /// 2080 /// At -O0, emit a call to store 'null' into the address; 2081 /// instrumenting tools prefer this because the address is exposed, 2082 /// but it's relatively cumbersome to optimize. 2083 /// 2084 /// At -O1 and above, just load and call objc_release. 2085 /// 2086 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2087 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2088 ARCPreciseLifetime_t precise) { 2089 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2090 llvm::Value *null = getNullForVariable(addr); 2091 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2092 return; 2093 } 2094 2095 llvm::Value *value = Builder.CreateLoad(addr); 2096 EmitARCRelease(value, precise); 2097 } 2098 2099 /// Store into a strong object. Always calls this: 2100 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2101 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2102 llvm::Value *value, 2103 bool ignored) { 2104 assert(addr.getElementType() == value->getType()); 2105 2106 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2107 if (!fn) { 2108 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 2109 llvm::FunctionType *fnType 2110 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 2111 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 2112 } 2113 2114 llvm::Value *args[] = { 2115 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2116 Builder.CreateBitCast(value, Int8PtrTy) 2117 }; 2118 EmitNounwindRuntimeCall(fn, args); 2119 2120 if (ignored) return nullptr; 2121 return value; 2122 } 2123 2124 /// Store into a strong object. Sometimes calls this: 2125 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2126 /// Other times, breaks it down into components. 2127 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2128 llvm::Value *newValue, 2129 bool ignored) { 2130 QualType type = dst.getType(); 2131 bool isBlock = type->isBlockPointerType(); 2132 2133 // Use a store barrier at -O0 unless this is a block type or the 2134 // lvalue is inadequately aligned. 2135 if (shouldUseFusedARCCalls() && 2136 !isBlock && 2137 (dst.getAlignment().isZero() || 2138 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2139 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2140 } 2141 2142 // Otherwise, split it out. 2143 2144 // Retain the new value. 2145 newValue = EmitARCRetain(type, newValue); 2146 2147 // Read the old value. 2148 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2149 2150 // Store. We do this before the release so that any deallocs won't 2151 // see the old value. 2152 EmitStoreOfScalar(newValue, dst); 2153 2154 // Finally, release the old value. 2155 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2156 2157 return newValue; 2158 } 2159 2160 /// Autorelease the given object. 2161 /// call i8* \@objc_autorelease(i8* %value) 2162 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2163 return emitARCValueOperation(*this, value, 2164 CGM.getObjCEntrypoints().objc_autorelease, 2165 "objc_autorelease"); 2166 } 2167 2168 /// Autorelease the given object. 2169 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2170 llvm::Value * 2171 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2172 return emitARCValueOperation(*this, value, 2173 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2174 "objc_autoreleaseReturnValue", 2175 /*isTailCall*/ true); 2176 } 2177 2178 /// Do a fused retain/autorelease of the given object. 2179 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2180 llvm::Value * 2181 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2182 return emitARCValueOperation(*this, value, 2183 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2184 "objc_retainAutoreleaseReturnValue", 2185 /*isTailCall*/ true); 2186 } 2187 2188 /// Do a fused retain/autorelease of the given object. 2189 /// call i8* \@objc_retainAutorelease(i8* %value) 2190 /// or 2191 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2192 /// call i8* \@objc_autorelease(i8* %retain) 2193 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2194 llvm::Value *value) { 2195 if (!type->isBlockPointerType()) 2196 return EmitARCRetainAutoreleaseNonBlock(value); 2197 2198 if (isa<llvm::ConstantPointerNull>(value)) return value; 2199 2200 llvm::Type *origType = value->getType(); 2201 value = Builder.CreateBitCast(value, Int8PtrTy); 2202 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2203 value = EmitARCAutorelease(value); 2204 return Builder.CreateBitCast(value, origType); 2205 } 2206 2207 /// Do a fused retain/autorelease of the given object. 2208 /// call i8* \@objc_retainAutorelease(i8* %value) 2209 llvm::Value * 2210 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2211 return emitARCValueOperation(*this, value, 2212 CGM.getObjCEntrypoints().objc_retainAutorelease, 2213 "objc_retainAutorelease"); 2214 } 2215 2216 /// i8* \@objc_loadWeak(i8** %addr) 2217 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2218 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2219 return emitARCLoadOperation(*this, addr, 2220 CGM.getObjCEntrypoints().objc_loadWeak, 2221 "objc_loadWeak"); 2222 } 2223 2224 /// i8* \@objc_loadWeakRetained(i8** %addr) 2225 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2226 return emitARCLoadOperation(*this, addr, 2227 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2228 "objc_loadWeakRetained"); 2229 } 2230 2231 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2232 /// Returns %value. 2233 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2234 llvm::Value *value, 2235 bool ignored) { 2236 return emitARCStoreOperation(*this, addr, value, 2237 CGM.getObjCEntrypoints().objc_storeWeak, 2238 "objc_storeWeak", ignored); 2239 } 2240 2241 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2242 /// Returns %value. %addr is known to not have a current weak entry. 2243 /// Essentially equivalent to: 2244 /// *addr = nil; objc_storeWeak(addr, value); 2245 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2246 // If we're initializing to null, just write null to memory; no need 2247 // to get the runtime involved. But don't do this if optimization 2248 // is enabled, because accounting for this would make the optimizer 2249 // much more complicated. 2250 if (isa<llvm::ConstantPointerNull>(value) && 2251 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2252 Builder.CreateStore(value, addr); 2253 return; 2254 } 2255 2256 emitARCStoreOperation(*this, addr, value, 2257 CGM.getObjCEntrypoints().objc_initWeak, 2258 "objc_initWeak", /*ignored*/ true); 2259 } 2260 2261 /// void \@objc_destroyWeak(i8** %addr) 2262 /// Essentially objc_storeWeak(addr, nil). 2263 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2264 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2265 if (!fn) { 2266 llvm::FunctionType *fnType = 2267 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false); 2268 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 2269 } 2270 2271 // Cast the argument to 'id*'. 2272 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2273 2274 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2275 } 2276 2277 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2278 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2279 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2280 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2281 emitARCCopyOperation(*this, dst, src, 2282 CGM.getObjCEntrypoints().objc_moveWeak, 2283 "objc_moveWeak"); 2284 } 2285 2286 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2287 /// Disregards the current value in %dest. Essentially 2288 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2289 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2290 emitARCCopyOperation(*this, dst, src, 2291 CGM.getObjCEntrypoints().objc_copyWeak, 2292 "objc_copyWeak"); 2293 } 2294 2295 /// Produce the code to do a objc_autoreleasepool_push. 2296 /// call i8* \@objc_autoreleasePoolPush(void) 2297 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2298 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2299 if (!fn) { 2300 llvm::FunctionType *fnType = 2301 llvm::FunctionType::get(Int8PtrTy, false); 2302 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 2303 } 2304 2305 return EmitNounwindRuntimeCall(fn); 2306 } 2307 2308 /// Produce the code to do a primitive release. 2309 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2310 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2311 assert(value->getType() == Int8PtrTy); 2312 2313 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2314 if (!fn) { 2315 llvm::FunctionType *fnType = 2316 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2317 2318 // We don't want to use a weak import here; instead we should not 2319 // fall into this path. 2320 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 2321 } 2322 2323 // objc_autoreleasePoolPop can throw. 2324 EmitRuntimeCallOrInvoke(fn, value); 2325 } 2326 2327 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2328 /// Which is: [[NSAutoreleasePool alloc] init]; 2329 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2330 /// init is declared as: - (id) init; in its NSObject super class. 2331 /// 2332 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2333 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2334 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2335 // [NSAutoreleasePool alloc] 2336 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2337 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2338 CallArgList Args; 2339 RValue AllocRV = 2340 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2341 getContext().getObjCIdType(), 2342 AllocSel, Receiver, Args); 2343 2344 // [Receiver init] 2345 Receiver = AllocRV.getScalarVal(); 2346 II = &CGM.getContext().Idents.get("init"); 2347 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2348 RValue InitRV = 2349 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2350 getContext().getObjCIdType(), 2351 InitSel, Receiver, Args); 2352 return InitRV.getScalarVal(); 2353 } 2354 2355 /// Produce the code to do a primitive release. 2356 /// [tmp drain]; 2357 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2358 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2359 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2360 CallArgList Args; 2361 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2362 getContext().VoidTy, DrainSel, Arg, Args); 2363 } 2364 2365 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2366 Address addr, 2367 QualType type) { 2368 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2369 } 2370 2371 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2372 Address addr, 2373 QualType type) { 2374 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2375 } 2376 2377 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2378 Address addr, 2379 QualType type) { 2380 CGF.EmitARCDestroyWeak(addr); 2381 } 2382 2383 namespace { 2384 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2385 llvm::Value *Token; 2386 2387 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2388 2389 void Emit(CodeGenFunction &CGF, Flags flags) override { 2390 CGF.EmitObjCAutoreleasePoolPop(Token); 2391 } 2392 }; 2393 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2394 llvm::Value *Token; 2395 2396 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2397 2398 void Emit(CodeGenFunction &CGF, Flags flags) override { 2399 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2400 } 2401 }; 2402 } 2403 2404 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2405 if (CGM.getLangOpts().ObjCAutoRefCount) 2406 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2407 else 2408 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2409 } 2410 2411 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2412 LValue lvalue, 2413 QualType type) { 2414 switch (type.getObjCLifetime()) { 2415 case Qualifiers::OCL_None: 2416 case Qualifiers::OCL_ExplicitNone: 2417 case Qualifiers::OCL_Strong: 2418 case Qualifiers::OCL_Autoreleasing: 2419 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue, 2420 SourceLocation()).getScalarVal(), 2421 false); 2422 2423 case Qualifiers::OCL_Weak: 2424 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2425 true); 2426 } 2427 2428 llvm_unreachable("impossible lifetime!"); 2429 } 2430 2431 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2432 const Expr *e) { 2433 e = e->IgnoreParens(); 2434 QualType type = e->getType(); 2435 2436 // If we're loading retained from a __strong xvalue, we can avoid 2437 // an extra retain/release pair by zeroing out the source of this 2438 // "move" operation. 2439 if (e->isXValue() && 2440 !type.isConstQualified() && 2441 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2442 // Emit the lvalue. 2443 LValue lv = CGF.EmitLValue(e); 2444 2445 // Load the object pointer. 2446 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2447 SourceLocation()).getScalarVal(); 2448 2449 // Set the source pointer to NULL. 2450 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2451 2452 return TryEmitResult(result, true); 2453 } 2454 2455 // As a very special optimization, in ARC++, if the l-value is the 2456 // result of a non-volatile assignment, do a simple retain of the 2457 // result of the call to objc_storeWeak instead of reloading. 2458 if (CGF.getLangOpts().CPlusPlus && 2459 !type.isVolatileQualified() && 2460 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2461 isa<BinaryOperator>(e) && 2462 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2463 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2464 2465 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2466 } 2467 2468 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2469 llvm::Value *value)> 2470 ValueTransform; 2471 2472 /// Insert code immediately after a call. 2473 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2474 llvm::Value *value, 2475 ValueTransform doAfterCall, 2476 ValueTransform doFallback) { 2477 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2478 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2479 2480 // Place the retain immediately following the call. 2481 CGF.Builder.SetInsertPoint(call->getParent(), 2482 ++llvm::BasicBlock::iterator(call)); 2483 value = doAfterCall(CGF, value); 2484 2485 CGF.Builder.restoreIP(ip); 2486 return value; 2487 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2488 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2489 2490 // Place the retain at the beginning of the normal destination block. 2491 llvm::BasicBlock *BB = invoke->getNormalDest(); 2492 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2493 value = doAfterCall(CGF, value); 2494 2495 CGF.Builder.restoreIP(ip); 2496 return value; 2497 2498 // Bitcasts can arise because of related-result returns. Rewrite 2499 // the operand. 2500 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2501 llvm::Value *operand = bitcast->getOperand(0); 2502 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2503 bitcast->setOperand(0, operand); 2504 return bitcast; 2505 2506 // Generic fall-back case. 2507 } else { 2508 // Retain using the non-block variant: we never need to do a copy 2509 // of a block that's been returned to us. 2510 return doFallback(CGF, value); 2511 } 2512 } 2513 2514 /// Given that the given expression is some sort of call (which does 2515 /// not return retained), emit a retain following it. 2516 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2517 const Expr *e) { 2518 llvm::Value *value = CGF.EmitScalarExpr(e); 2519 return emitARCOperationAfterCall(CGF, value, 2520 [](CodeGenFunction &CGF, llvm::Value *value) { 2521 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2522 }, 2523 [](CodeGenFunction &CGF, llvm::Value *value) { 2524 return CGF.EmitARCRetainNonBlock(value); 2525 }); 2526 } 2527 2528 /// Given that the given expression is some sort of call (which does 2529 /// not return retained), perform an unsafeClaim following it. 2530 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 2531 const Expr *e) { 2532 llvm::Value *value = CGF.EmitScalarExpr(e); 2533 return emitARCOperationAfterCall(CGF, value, 2534 [](CodeGenFunction &CGF, llvm::Value *value) { 2535 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 2536 }, 2537 [](CodeGenFunction &CGF, llvm::Value *value) { 2538 return value; 2539 }); 2540 } 2541 2542 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 2543 bool allowUnsafeClaim) { 2544 if (allowUnsafeClaim && 2545 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 2546 return emitARCUnsafeClaimCallResult(*this, E); 2547 } else { 2548 llvm::Value *value = emitARCRetainCallResult(*this, E); 2549 return EmitObjCConsumeObject(E->getType(), value); 2550 } 2551 } 2552 2553 /// Determine whether it might be important to emit a separate 2554 /// objc_retain_block on the result of the given expression, or 2555 /// whether it's okay to just emit it in a +1 context. 2556 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2557 assert(e->getType()->isBlockPointerType()); 2558 e = e->IgnoreParens(); 2559 2560 // For future goodness, emit block expressions directly in +1 2561 // contexts if we can. 2562 if (isa<BlockExpr>(e)) 2563 return false; 2564 2565 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2566 switch (cast->getCastKind()) { 2567 // Emitting these operations in +1 contexts is goodness. 2568 case CK_LValueToRValue: 2569 case CK_ARCReclaimReturnedObject: 2570 case CK_ARCConsumeObject: 2571 case CK_ARCProduceObject: 2572 return false; 2573 2574 // These operations preserve a block type. 2575 case CK_NoOp: 2576 case CK_BitCast: 2577 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2578 2579 // These operations are known to be bad (or haven't been considered). 2580 case CK_AnyPointerToBlockPointerCast: 2581 default: 2582 return true; 2583 } 2584 } 2585 2586 return true; 2587 } 2588 2589 namespace { 2590 /// A CRTP base class for emitting expressions of retainable object 2591 /// pointer type in ARC. 2592 template <typename Impl, typename Result> class ARCExprEmitter { 2593 protected: 2594 CodeGenFunction &CGF; 2595 Impl &asImpl() { return *static_cast<Impl*>(this); } 2596 2597 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 2598 2599 public: 2600 Result visit(const Expr *e); 2601 Result visitCastExpr(const CastExpr *e); 2602 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 2603 Result visitBinaryOperator(const BinaryOperator *e); 2604 Result visitBinAssign(const BinaryOperator *e); 2605 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 2606 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 2607 Result visitBinAssignWeak(const BinaryOperator *e); 2608 Result visitBinAssignStrong(const BinaryOperator *e); 2609 2610 // Minimal implementation: 2611 // Result visitLValueToRValue(const Expr *e) 2612 // Result visitConsumeObject(const Expr *e) 2613 // Result visitExtendBlockObject(const Expr *e) 2614 // Result visitReclaimReturnedObject(const Expr *e) 2615 // Result visitCall(const Expr *e) 2616 // Result visitExpr(const Expr *e) 2617 // 2618 // Result emitBitCast(Result result, llvm::Type *resultType) 2619 // llvm::Value *getValueOfResult(Result result) 2620 }; 2621 } 2622 2623 /// Try to emit a PseudoObjectExpr under special ARC rules. 2624 /// 2625 /// This massively duplicates emitPseudoObjectRValue. 2626 template <typename Impl, typename Result> 2627 Result 2628 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 2629 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2630 2631 // Find the result expression. 2632 const Expr *resultExpr = E->getResultExpr(); 2633 assert(resultExpr); 2634 Result result; 2635 2636 for (PseudoObjectExpr::const_semantics_iterator 2637 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2638 const Expr *semantic = *i; 2639 2640 // If this semantic expression is an opaque value, bind it 2641 // to the result of its source expression. 2642 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2643 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2644 OVMA opaqueData; 2645 2646 // If this semantic is the result of the pseudo-object 2647 // expression, try to evaluate the source as +1. 2648 if (ov == resultExpr) { 2649 assert(!OVMA::shouldBindAsLValue(ov)); 2650 result = asImpl().visit(ov->getSourceExpr()); 2651 opaqueData = OVMA::bind(CGF, ov, 2652 RValue::get(asImpl().getValueOfResult(result))); 2653 2654 // Otherwise, just bind it. 2655 } else { 2656 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2657 } 2658 opaques.push_back(opaqueData); 2659 2660 // Otherwise, if the expression is the result, evaluate it 2661 // and remember the result. 2662 } else if (semantic == resultExpr) { 2663 result = asImpl().visit(semantic); 2664 2665 // Otherwise, evaluate the expression in an ignored context. 2666 } else { 2667 CGF.EmitIgnoredExpr(semantic); 2668 } 2669 } 2670 2671 // Unbind all the opaques now. 2672 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2673 opaques[i].unbind(CGF); 2674 2675 return result; 2676 } 2677 2678 template <typename Impl, typename Result> 2679 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 2680 switch (e->getCastKind()) { 2681 2682 // No-op casts don't change the type, so we just ignore them. 2683 case CK_NoOp: 2684 return asImpl().visit(e->getSubExpr()); 2685 2686 // These casts can change the type. 2687 case CK_CPointerToObjCPointerCast: 2688 case CK_BlockPointerToObjCPointerCast: 2689 case CK_AnyPointerToBlockPointerCast: 2690 case CK_BitCast: { 2691 llvm::Type *resultType = CGF.ConvertType(e->getType()); 2692 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 2693 Result result = asImpl().visit(e->getSubExpr()); 2694 return asImpl().emitBitCast(result, resultType); 2695 } 2696 2697 // Handle some casts specially. 2698 case CK_LValueToRValue: 2699 return asImpl().visitLValueToRValue(e->getSubExpr()); 2700 case CK_ARCConsumeObject: 2701 return asImpl().visitConsumeObject(e->getSubExpr()); 2702 case CK_ARCExtendBlockObject: 2703 return asImpl().visitExtendBlockObject(e->getSubExpr()); 2704 case CK_ARCReclaimReturnedObject: 2705 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 2706 2707 // Otherwise, use the default logic. 2708 default: 2709 return asImpl().visitExpr(e); 2710 } 2711 } 2712 2713 template <typename Impl, typename Result> 2714 Result 2715 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 2716 switch (e->getOpcode()) { 2717 case BO_Comma: 2718 CGF.EmitIgnoredExpr(e->getLHS()); 2719 CGF.EnsureInsertPoint(); 2720 return asImpl().visit(e->getRHS()); 2721 2722 case BO_Assign: 2723 return asImpl().visitBinAssign(e); 2724 2725 default: 2726 return asImpl().visitExpr(e); 2727 } 2728 } 2729 2730 template <typename Impl, typename Result> 2731 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 2732 switch (e->getLHS()->getType().getObjCLifetime()) { 2733 case Qualifiers::OCL_ExplicitNone: 2734 return asImpl().visitBinAssignUnsafeUnretained(e); 2735 2736 case Qualifiers::OCL_Weak: 2737 return asImpl().visitBinAssignWeak(e); 2738 2739 case Qualifiers::OCL_Autoreleasing: 2740 return asImpl().visitBinAssignAutoreleasing(e); 2741 2742 case Qualifiers::OCL_Strong: 2743 return asImpl().visitBinAssignStrong(e); 2744 2745 case Qualifiers::OCL_None: 2746 return asImpl().visitExpr(e); 2747 } 2748 llvm_unreachable("bad ObjC ownership qualifier"); 2749 } 2750 2751 /// The default rule for __unsafe_unretained emits the RHS recursively, 2752 /// stores into the unsafe variable, and propagates the result outward. 2753 template <typename Impl, typename Result> 2754 Result ARCExprEmitter<Impl,Result>:: 2755 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 2756 // Recursively emit the RHS. 2757 // For __block safety, do this before emitting the LHS. 2758 Result result = asImpl().visit(e->getRHS()); 2759 2760 // Perform the store. 2761 LValue lvalue = 2762 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 2763 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 2764 lvalue); 2765 2766 return result; 2767 } 2768 2769 template <typename Impl, typename Result> 2770 Result 2771 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 2772 return asImpl().visitExpr(e); 2773 } 2774 2775 template <typename Impl, typename Result> 2776 Result 2777 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 2778 return asImpl().visitExpr(e); 2779 } 2780 2781 template <typename Impl, typename Result> 2782 Result 2783 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 2784 return asImpl().visitExpr(e); 2785 } 2786 2787 /// The general expression-emission logic. 2788 template <typename Impl, typename Result> 2789 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 2790 // We should *never* see a nested full-expression here, because if 2791 // we fail to emit at +1, our caller must not retain after we close 2792 // out the full-expression. This isn't as important in the unsafe 2793 // emitter. 2794 assert(!isa<ExprWithCleanups>(e)); 2795 2796 // Look through parens, __extension__, generic selection, etc. 2797 e = e->IgnoreParens(); 2798 2799 // Handle certain kinds of casts. 2800 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2801 return asImpl().visitCastExpr(ce); 2802 2803 // Handle the comma operator. 2804 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 2805 return asImpl().visitBinaryOperator(op); 2806 2807 // TODO: handle conditional operators here 2808 2809 // For calls and message sends, use the retained-call logic. 2810 // Delegate inits are a special case in that they're the only 2811 // returns-retained expression that *isn't* surrounded by 2812 // a consume. 2813 } else if (isa<CallExpr>(e) || 2814 (isa<ObjCMessageExpr>(e) && 2815 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2816 return asImpl().visitCall(e); 2817 2818 // Look through pseudo-object expressions. 2819 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2820 return asImpl().visitPseudoObjectExpr(pseudo); 2821 } 2822 2823 return asImpl().visitExpr(e); 2824 } 2825 2826 namespace { 2827 2828 /// An emitter for +1 results. 2829 struct ARCRetainExprEmitter : 2830 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 2831 2832 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 2833 2834 llvm::Value *getValueOfResult(TryEmitResult result) { 2835 return result.getPointer(); 2836 } 2837 2838 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 2839 llvm::Value *value = result.getPointer(); 2840 value = CGF.Builder.CreateBitCast(value, resultType); 2841 result.setPointer(value); 2842 return result; 2843 } 2844 2845 TryEmitResult visitLValueToRValue(const Expr *e) { 2846 return tryEmitARCRetainLoadOfScalar(CGF, e); 2847 } 2848 2849 /// For consumptions, just emit the subexpression and thus elide 2850 /// the retain/release pair. 2851 TryEmitResult visitConsumeObject(const Expr *e) { 2852 llvm::Value *result = CGF.EmitScalarExpr(e); 2853 return TryEmitResult(result, true); 2854 } 2855 2856 /// Block extends are net +0. Naively, we could just recurse on 2857 /// the subexpression, but actually we need to ensure that the 2858 /// value is copied as a block, so there's a little filter here. 2859 TryEmitResult visitExtendBlockObject(const Expr *e) { 2860 llvm::Value *result; // will be a +0 value 2861 2862 // If we can't safely assume the sub-expression will produce a 2863 // block-copied value, emit the sub-expression at +0. 2864 if (shouldEmitSeparateBlockRetain(e)) { 2865 result = CGF.EmitScalarExpr(e); 2866 2867 // Otherwise, try to emit the sub-expression at +1 recursively. 2868 } else { 2869 TryEmitResult subresult = asImpl().visit(e); 2870 2871 // If that produced a retained value, just use that. 2872 if (subresult.getInt()) { 2873 return subresult; 2874 } 2875 2876 // Otherwise it's +0. 2877 result = subresult.getPointer(); 2878 } 2879 2880 // Retain the object as a block. 2881 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2882 return TryEmitResult(result, true); 2883 } 2884 2885 /// For reclaims, emit the subexpression as a retained call and 2886 /// skip the consumption. 2887 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 2888 llvm::Value *result = emitARCRetainCallResult(CGF, e); 2889 return TryEmitResult(result, true); 2890 } 2891 2892 /// When we have an undecorated call, retroactively do a claim. 2893 TryEmitResult visitCall(const Expr *e) { 2894 llvm::Value *result = emitARCRetainCallResult(CGF, e); 2895 return TryEmitResult(result, true); 2896 } 2897 2898 // TODO: maybe special-case visitBinAssignWeak? 2899 2900 TryEmitResult visitExpr(const Expr *e) { 2901 // We didn't find an obvious production, so emit what we've got and 2902 // tell the caller that we didn't manage to retain. 2903 llvm::Value *result = CGF.EmitScalarExpr(e); 2904 return TryEmitResult(result, false); 2905 } 2906 }; 2907 } 2908 2909 static TryEmitResult 2910 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2911 return ARCRetainExprEmitter(CGF).visit(e); 2912 } 2913 2914 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2915 LValue lvalue, 2916 QualType type) { 2917 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2918 llvm::Value *value = result.getPointer(); 2919 if (!result.getInt()) 2920 value = CGF.EmitARCRetain(type, value); 2921 return value; 2922 } 2923 2924 /// EmitARCRetainScalarExpr - Semantically equivalent to 2925 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2926 /// best-effort attempt to peephole expressions that naturally produce 2927 /// retained objects. 2928 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2929 // The retain needs to happen within the full-expression. 2930 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2931 enterFullExpression(cleanups); 2932 RunCleanupsScope scope(*this); 2933 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 2934 } 2935 2936 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2937 llvm::Value *value = result.getPointer(); 2938 if (!result.getInt()) 2939 value = EmitARCRetain(e->getType(), value); 2940 return value; 2941 } 2942 2943 llvm::Value * 2944 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2945 // The retain needs to happen within the full-expression. 2946 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2947 enterFullExpression(cleanups); 2948 RunCleanupsScope scope(*this); 2949 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 2950 } 2951 2952 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2953 llvm::Value *value = result.getPointer(); 2954 if (result.getInt()) 2955 value = EmitARCAutorelease(value); 2956 else 2957 value = EmitARCRetainAutorelease(e->getType(), value); 2958 return value; 2959 } 2960 2961 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2962 llvm::Value *result; 2963 bool doRetain; 2964 2965 if (shouldEmitSeparateBlockRetain(e)) { 2966 result = EmitScalarExpr(e); 2967 doRetain = true; 2968 } else { 2969 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2970 result = subresult.getPointer(); 2971 doRetain = !subresult.getInt(); 2972 } 2973 2974 if (doRetain) 2975 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2976 return EmitObjCConsumeObject(e->getType(), result); 2977 } 2978 2979 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2980 // In ARC, retain and autorelease the expression. 2981 if (getLangOpts().ObjCAutoRefCount) { 2982 // Do so before running any cleanups for the full-expression. 2983 // EmitARCRetainAutoreleaseScalarExpr does this for us. 2984 return EmitARCRetainAutoreleaseScalarExpr(expr); 2985 } 2986 2987 // Otherwise, use the normal scalar-expression emission. The 2988 // exception machinery doesn't do anything special with the 2989 // exception like retaining it, so there's no safety associated with 2990 // only running cleanups after the throw has started, and when it 2991 // matters it tends to be substantially inferior code. 2992 return EmitScalarExpr(expr); 2993 } 2994 2995 namespace { 2996 2997 /// An emitter for assigning into an __unsafe_unretained context. 2998 struct ARCUnsafeUnretainedExprEmitter : 2999 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3000 3001 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3002 3003 llvm::Value *getValueOfResult(llvm::Value *value) { 3004 return value; 3005 } 3006 3007 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3008 return CGF.Builder.CreateBitCast(value, resultType); 3009 } 3010 3011 llvm::Value *visitLValueToRValue(const Expr *e) { 3012 return CGF.EmitScalarExpr(e); 3013 } 3014 3015 /// For consumptions, just emit the subexpression and perform the 3016 /// consumption like normal. 3017 llvm::Value *visitConsumeObject(const Expr *e) { 3018 llvm::Value *value = CGF.EmitScalarExpr(e); 3019 return CGF.EmitObjCConsumeObject(e->getType(), value); 3020 } 3021 3022 /// No special logic for block extensions. (This probably can't 3023 /// actually happen in this emitter, though.) 3024 llvm::Value *visitExtendBlockObject(const Expr *e) { 3025 return CGF.EmitARCExtendBlockObject(e); 3026 } 3027 3028 /// For reclaims, perform an unsafeClaim if that's enabled. 3029 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3030 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3031 } 3032 3033 /// When we have an undecorated call, just emit it without adding 3034 /// the unsafeClaim. 3035 llvm::Value *visitCall(const Expr *e) { 3036 return CGF.EmitScalarExpr(e); 3037 } 3038 3039 /// Just do normal scalar emission in the default case. 3040 llvm::Value *visitExpr(const Expr *e) { 3041 return CGF.EmitScalarExpr(e); 3042 } 3043 }; 3044 } 3045 3046 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3047 const Expr *e) { 3048 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3049 } 3050 3051 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3052 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3053 /// avoiding any spurious retains, including by performing reclaims 3054 /// with objc_unsafeClaimAutoreleasedReturnValue. 3055 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3056 // Look through full-expressions. 3057 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3058 enterFullExpression(cleanups); 3059 RunCleanupsScope scope(*this); 3060 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3061 } 3062 3063 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3064 } 3065 3066 std::pair<LValue,llvm::Value*> 3067 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3068 bool ignored) { 3069 // Evaluate the RHS first. If we're ignoring the result, assume 3070 // that we can emit at an unsafe +0. 3071 llvm::Value *value; 3072 if (ignored) { 3073 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3074 } else { 3075 value = EmitScalarExpr(e->getRHS()); 3076 } 3077 3078 // Emit the LHS and perform the store. 3079 LValue lvalue = EmitLValue(e->getLHS()); 3080 EmitStoreOfScalar(value, lvalue); 3081 3082 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3083 } 3084 3085 std::pair<LValue,llvm::Value*> 3086 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3087 bool ignored) { 3088 // Evaluate the RHS first. 3089 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3090 llvm::Value *value = result.getPointer(); 3091 3092 bool hasImmediateRetain = result.getInt(); 3093 3094 // If we didn't emit a retained object, and the l-value is of block 3095 // type, then we need to emit the block-retain immediately in case 3096 // it invalidates the l-value. 3097 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3098 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3099 hasImmediateRetain = true; 3100 } 3101 3102 LValue lvalue = EmitLValue(e->getLHS()); 3103 3104 // If the RHS was emitted retained, expand this. 3105 if (hasImmediateRetain) { 3106 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3107 EmitStoreOfScalar(value, lvalue); 3108 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3109 } else { 3110 value = EmitARCStoreStrong(lvalue, value, ignored); 3111 } 3112 3113 return std::pair<LValue,llvm::Value*>(lvalue, value); 3114 } 3115 3116 std::pair<LValue,llvm::Value*> 3117 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3118 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3119 LValue lvalue = EmitLValue(e->getLHS()); 3120 3121 EmitStoreOfScalar(value, lvalue); 3122 3123 return std::pair<LValue,llvm::Value*>(lvalue, value); 3124 } 3125 3126 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3127 const ObjCAutoreleasePoolStmt &ARPS) { 3128 const Stmt *subStmt = ARPS.getSubStmt(); 3129 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3130 3131 CGDebugInfo *DI = getDebugInfo(); 3132 if (DI) 3133 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3134 3135 // Keep track of the current cleanup stack depth. 3136 RunCleanupsScope Scope(*this); 3137 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3138 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3139 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3140 } else { 3141 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3142 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3143 } 3144 3145 for (const auto *I : S.body()) 3146 EmitStmt(I); 3147 3148 if (DI) 3149 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3150 } 3151 3152 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3153 /// make sure it survives garbage collection until this point. 3154 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3155 // We just use an inline assembly. 3156 llvm::FunctionType *extenderType 3157 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3158 llvm::Value *extender 3159 = llvm::InlineAsm::get(extenderType, 3160 /* assembly */ "", 3161 /* constraints */ "r", 3162 /* side effects */ true); 3163 3164 object = Builder.CreateBitCast(object, VoidPtrTy); 3165 EmitNounwindRuntimeCall(extender, object); 3166 } 3167 3168 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3169 /// non-trivial copy assignment function, produce following helper function. 3170 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3171 /// 3172 llvm::Constant * 3173 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3174 const ObjCPropertyImplDecl *PID) { 3175 if (!getLangOpts().CPlusPlus || 3176 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3177 return nullptr; 3178 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3179 if (!Ty->isRecordType()) 3180 return nullptr; 3181 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3182 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3183 return nullptr; 3184 llvm::Constant *HelperFn = nullptr; 3185 if (hasTrivialSetExpr(PID)) 3186 return nullptr; 3187 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3188 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3189 return HelperFn; 3190 3191 ASTContext &C = getContext(); 3192 IdentifierInfo *II 3193 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3194 FunctionDecl *FD = FunctionDecl::Create(C, 3195 C.getTranslationUnitDecl(), 3196 SourceLocation(), 3197 SourceLocation(), II, C.VoidTy, 3198 nullptr, SC_Static, 3199 false, 3200 false); 3201 3202 QualType DestTy = C.getPointerType(Ty); 3203 QualType SrcTy = Ty; 3204 SrcTy.addConst(); 3205 SrcTy = C.getPointerType(SrcTy); 3206 3207 FunctionArgList args; 3208 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 3209 args.push_back(&dstDecl); 3210 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 3211 args.push_back(&srcDecl); 3212 3213 const CGFunctionInfo &FI = 3214 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); 3215 3216 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3217 3218 llvm::Function *Fn = 3219 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3220 "__assign_helper_atomic_property_", 3221 &CGM.getModule()); 3222 3223 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 3224 3225 StartFunction(FD, C.VoidTy, Fn, FI, args); 3226 3227 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 3228 VK_RValue, SourceLocation()); 3229 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 3230 VK_LValue, OK_Ordinary, SourceLocation()); 3231 3232 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 3233 VK_RValue, SourceLocation()); 3234 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3235 VK_LValue, OK_Ordinary, SourceLocation()); 3236 3237 Expr *Args[2] = { &DST, &SRC }; 3238 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3239 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 3240 Args, DestTy->getPointeeType(), 3241 VK_LValue, SourceLocation(), false); 3242 3243 EmitStmt(&TheCall); 3244 3245 FinishFunction(); 3246 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3247 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3248 return HelperFn; 3249 } 3250 3251 llvm::Constant * 3252 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3253 const ObjCPropertyImplDecl *PID) { 3254 if (!getLangOpts().CPlusPlus || 3255 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3256 return nullptr; 3257 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3258 QualType Ty = PD->getType(); 3259 if (!Ty->isRecordType()) 3260 return nullptr; 3261 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3262 return nullptr; 3263 llvm::Constant *HelperFn = nullptr; 3264 3265 if (hasTrivialGetExpr(PID)) 3266 return nullptr; 3267 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3268 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3269 return HelperFn; 3270 3271 3272 ASTContext &C = getContext(); 3273 IdentifierInfo *II 3274 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3275 FunctionDecl *FD = FunctionDecl::Create(C, 3276 C.getTranslationUnitDecl(), 3277 SourceLocation(), 3278 SourceLocation(), II, C.VoidTy, 3279 nullptr, SC_Static, 3280 false, 3281 false); 3282 3283 QualType DestTy = C.getPointerType(Ty); 3284 QualType SrcTy = Ty; 3285 SrcTy.addConst(); 3286 SrcTy = C.getPointerType(SrcTy); 3287 3288 FunctionArgList args; 3289 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 3290 args.push_back(&dstDecl); 3291 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 3292 args.push_back(&srcDecl); 3293 3294 const CGFunctionInfo &FI = 3295 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); 3296 3297 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3298 3299 llvm::Function *Fn = 3300 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3301 "__copy_helper_atomic_property_", &CGM.getModule()); 3302 3303 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 3304 3305 StartFunction(FD, C.VoidTy, Fn, FI, args); 3306 3307 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 3308 VK_RValue, SourceLocation()); 3309 3310 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3311 VK_LValue, OK_Ordinary, SourceLocation()); 3312 3313 CXXConstructExpr *CXXConstExpr = 3314 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3315 3316 SmallVector<Expr*, 4> ConstructorArgs; 3317 ConstructorArgs.push_back(&SRC); 3318 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3319 CXXConstExpr->arg_end()); 3320 3321 CXXConstructExpr *TheCXXConstructExpr = 3322 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3323 CXXConstExpr->getConstructor(), 3324 CXXConstExpr->isElidable(), 3325 ConstructorArgs, 3326 CXXConstExpr->hadMultipleCandidates(), 3327 CXXConstExpr->isListInitialization(), 3328 CXXConstExpr->isStdInitListInitialization(), 3329 CXXConstExpr->requiresZeroInitialization(), 3330 CXXConstExpr->getConstructionKind(), 3331 SourceRange()); 3332 3333 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 3334 VK_RValue, SourceLocation()); 3335 3336 RValue DV = EmitAnyExpr(&DstExpr); 3337 CharUnits Alignment 3338 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3339 EmitAggExpr(TheCXXConstructExpr, 3340 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3341 Qualifiers(), 3342 AggValueSlot::IsDestructed, 3343 AggValueSlot::DoesNotNeedGCBarriers, 3344 AggValueSlot::IsNotAliased)); 3345 3346 FinishFunction(); 3347 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3348 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3349 return HelperFn; 3350 } 3351 3352 llvm::Value * 3353 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3354 // Get selectors for retain/autorelease. 3355 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3356 Selector CopySelector = 3357 getContext().Selectors.getNullarySelector(CopyID); 3358 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3359 Selector AutoreleaseSelector = 3360 getContext().Selectors.getNullarySelector(AutoreleaseID); 3361 3362 // Emit calls to retain/autorelease. 3363 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3364 llvm::Value *Val = Block; 3365 RValue Result; 3366 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3367 Ty, CopySelector, 3368 Val, CallArgList(), nullptr, nullptr); 3369 Val = Result.getScalarVal(); 3370 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3371 Ty, AutoreleaseSelector, 3372 Val, CallArgList(), nullptr, nullptr); 3373 Val = Result.getScalarVal(); 3374 return Val; 3375 } 3376 3377 3378 CGObjCRuntime::~CGObjCRuntime() {} 3379