1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 35 QualType ET, 36 RValue Result); 37 38 /// Given the address of a variable of pointer type, find the correct 39 /// null to store into it. 40 static llvm::Constant *getNullForVariable(Address addr) { 41 llvm::Type *type = addr.getElementType(); 42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 43 } 44 45 /// Emits an instance of NSConstantString representing the object. 46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 47 { 48 llvm::Constant *C = 49 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 50 // FIXME: This bitcast should just be made an invariant on the Runtime. 51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 52 } 53 54 /// EmitObjCBoxedExpr - This routine generates code to call 55 /// the appropriate expression boxing method. This will either be 56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 57 /// or [NSValue valueWithBytes:objCType:]. 58 /// 59 llvm::Value * 60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 61 // Generate the correct selector for this literal's concrete type. 62 // Get the method. 63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 64 const Expr *SubExpr = E->getSubExpr(); 65 assert(BoxingMethod && "BoxingMethod is null"); 66 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 67 Selector Sel = BoxingMethod->getSelector(); 68 69 // Generate a reference to the class pointer, which will be the receiver. 70 // Assumes that the method was introduced in the class that should be 71 // messaged (avoids pulling it out of the result type). 72 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 73 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 74 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 75 76 CallArgList Args; 77 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 78 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 79 80 // ObjCBoxedExpr supports boxing of structs and unions 81 // via [NSValue valueWithBytes:objCType:] 82 const QualType ValueType(SubExpr->getType().getCanonicalType()); 83 if (ValueType->isObjCBoxableRecordType()) { 84 // Emit CodeGen for first parameter 85 // and cast value to correct type 86 Address Temporary = CreateMemTemp(SubExpr->getType()); 87 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 88 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 89 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 90 91 // Create char array to store type encoding 92 std::string Str; 93 getContext().getObjCEncodingForType(ValueType, Str); 94 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 95 96 // Cast type encoding to correct type 97 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 98 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 99 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 100 101 Args.add(RValue::get(Cast), EncodingQT); 102 } else { 103 Args.add(EmitAnyExpr(SubExpr), ArgQT); 104 } 105 106 RValue result = Runtime.GenerateMessageSend( 107 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 108 Args, ClassDecl, BoxingMethod); 109 return Builder.CreateBitCast(result.getScalarVal(), 110 ConvertType(E->getType())); 111 } 112 113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 114 const ObjCMethodDecl *MethodWithObjects) { 115 ASTContext &Context = CGM.getContext(); 116 const ObjCDictionaryLiteral *DLE = nullptr; 117 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 118 if (!ALE) 119 DLE = cast<ObjCDictionaryLiteral>(E); 120 121 // Compute the type of the array we're initializing. 122 uint64_t NumElements = 123 ALE ? ALE->getNumElements() : DLE->getNumElements(); 124 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 125 NumElements); 126 QualType ElementType = Context.getObjCIdType().withConst(); 127 QualType ElementArrayType 128 = Context.getConstantArrayType(ElementType, APNumElements, 129 ArrayType::Normal, /*IndexTypeQuals=*/0); 130 131 // Allocate the temporary array(s). 132 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 133 Address Keys = Address::invalid(); 134 if (DLE) 135 Keys = CreateMemTemp(ElementArrayType, "keys"); 136 137 // In ARC, we may need to do extra work to keep all the keys and 138 // values alive until after the call. 139 SmallVector<llvm::Value *, 16> NeededObjects; 140 bool TrackNeededObjects = 141 (getLangOpts().ObjCAutoRefCount && 142 CGM.getCodeGenOpts().OptimizationLevel != 0); 143 144 // Perform the actual initialialization of the array(s). 145 for (uint64_t i = 0; i < NumElements; i++) { 146 if (ALE) { 147 // Emit the element and store it to the appropriate array slot. 148 const Expr *Rhs = ALE->getElement(i); 149 LValue LV = MakeAddrLValue( 150 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 151 ElementType, AlignmentSource::Decl); 152 153 llvm::Value *value = EmitScalarExpr(Rhs); 154 EmitStoreThroughLValue(RValue::get(value), LV, true); 155 if (TrackNeededObjects) { 156 NeededObjects.push_back(value); 157 } 158 } else { 159 // Emit the key and store it to the appropriate array slot. 160 const Expr *Key = DLE->getKeyValueElement(i).Key; 161 LValue KeyLV = MakeAddrLValue( 162 Builder.CreateConstArrayGEP(Keys, i, getPointerSize()), 163 ElementType, AlignmentSource::Decl); 164 llvm::Value *keyValue = EmitScalarExpr(Key); 165 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 166 167 // Emit the value and store it to the appropriate array slot. 168 const Expr *Value = DLE->getKeyValueElement(i).Value; 169 LValue ValueLV = MakeAddrLValue( 170 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 171 ElementType, AlignmentSource::Decl); 172 llvm::Value *valueValue = EmitScalarExpr(Value); 173 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 174 if (TrackNeededObjects) { 175 NeededObjects.push_back(keyValue); 176 NeededObjects.push_back(valueValue); 177 } 178 } 179 } 180 181 // Generate the argument list. 182 CallArgList Args; 183 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 184 const ParmVarDecl *argDecl = *PI++; 185 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 186 Args.add(RValue::get(Objects.getPointer()), ArgQT); 187 if (DLE) { 188 argDecl = *PI++; 189 ArgQT = argDecl->getType().getUnqualifiedType(); 190 Args.add(RValue::get(Keys.getPointer()), ArgQT); 191 } 192 argDecl = *PI; 193 ArgQT = argDecl->getType().getUnqualifiedType(); 194 llvm::Value *Count = 195 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 196 Args.add(RValue::get(Count), ArgQT); 197 198 // Generate a reference to the class pointer, which will be the receiver. 199 Selector Sel = MethodWithObjects->getSelector(); 200 QualType ResultType = E->getType(); 201 const ObjCObjectPointerType *InterfacePointerType 202 = ResultType->getAsObjCInterfacePointerType(); 203 ObjCInterfaceDecl *Class 204 = InterfacePointerType->getObjectType()->getInterface(); 205 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 206 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 207 208 // Generate the message send. 209 RValue result = Runtime.GenerateMessageSend( 210 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 211 Receiver, Args, Class, MethodWithObjects); 212 213 // The above message send needs these objects, but in ARC they are 214 // passed in a buffer that is essentially __unsafe_unretained. 215 // Therefore we must prevent the optimizer from releasing them until 216 // after the call. 217 if (TrackNeededObjects) { 218 EmitARCIntrinsicUse(NeededObjects); 219 } 220 221 return Builder.CreateBitCast(result.getScalarVal(), 222 ConvertType(E->getType())); 223 } 224 225 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 226 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 227 } 228 229 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 230 const ObjCDictionaryLiteral *E) { 231 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 232 } 233 234 /// Emit a selector. 235 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 236 // Untyped selector. 237 // Note that this implementation allows for non-constant strings to be passed 238 // as arguments to @selector(). Currently, the only thing preventing this 239 // behaviour is the type checking in the front end. 240 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 241 } 242 243 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 244 // FIXME: This should pass the Decl not the name. 245 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 246 } 247 248 /// \brief Adjust the type of an Objective-C object that doesn't match up due 249 /// to type erasure at various points, e.g., related result types or the use 250 /// of parameterized classes. 251 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 252 RValue Result) { 253 if (!ExpT->isObjCRetainableType()) 254 return Result; 255 256 // If the converted types are the same, we're done. 257 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 258 if (ExpLLVMTy == Result.getScalarVal()->getType()) 259 return Result; 260 261 // We have applied a substitution. Cast the rvalue appropriately. 262 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 263 ExpLLVMTy)); 264 } 265 266 /// Decide whether to extend the lifetime of the receiver of a 267 /// returns-inner-pointer message. 268 static bool 269 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 270 switch (message->getReceiverKind()) { 271 272 // For a normal instance message, we should extend unless the 273 // receiver is loaded from a variable with precise lifetime. 274 case ObjCMessageExpr::Instance: { 275 const Expr *receiver = message->getInstanceReceiver(); 276 277 // Look through OVEs. 278 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 279 if (opaque->getSourceExpr()) 280 receiver = opaque->getSourceExpr()->IgnoreParens(); 281 } 282 283 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 284 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 285 receiver = ice->getSubExpr()->IgnoreParens(); 286 287 // Look through OVEs. 288 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 289 if (opaque->getSourceExpr()) 290 receiver = opaque->getSourceExpr()->IgnoreParens(); 291 } 292 293 // Only __strong variables. 294 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 295 return true; 296 297 // All ivars and fields have precise lifetime. 298 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 299 return false; 300 301 // Otherwise, check for variables. 302 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 303 if (!declRef) return true; 304 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 305 if (!var) return true; 306 307 // All variables have precise lifetime except local variables with 308 // automatic storage duration that aren't specially marked. 309 return (var->hasLocalStorage() && 310 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 311 } 312 313 case ObjCMessageExpr::Class: 314 case ObjCMessageExpr::SuperClass: 315 // It's never necessary for class objects. 316 return false; 317 318 case ObjCMessageExpr::SuperInstance: 319 // We generally assume that 'self' lives throughout a method call. 320 return false; 321 } 322 323 llvm_unreachable("invalid receiver kind"); 324 } 325 326 /// Given an expression of ObjC pointer type, check whether it was 327 /// immediately loaded from an ARC __weak l-value. 328 static const Expr *findWeakLValue(const Expr *E) { 329 assert(E->getType()->isObjCRetainableType()); 330 E = E->IgnoreParens(); 331 if (auto CE = dyn_cast<CastExpr>(E)) { 332 if (CE->getCastKind() == CK_LValueToRValue) { 333 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 334 return CE->getSubExpr(); 335 } 336 } 337 338 return nullptr; 339 } 340 341 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 342 ReturnValueSlot Return) { 343 // Only the lookup mechanism and first two arguments of the method 344 // implementation vary between runtimes. We can get the receiver and 345 // arguments in generic code. 346 347 bool isDelegateInit = E->isDelegateInitCall(); 348 349 const ObjCMethodDecl *method = E->getMethodDecl(); 350 351 // If the method is -retain, and the receiver's being loaded from 352 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 353 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 354 method->getMethodFamily() == OMF_retain) { 355 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 356 LValue lvalue = EmitLValue(lvalueExpr); 357 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress()); 358 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 359 } 360 } 361 362 // We don't retain the receiver in delegate init calls, and this is 363 // safe because the receiver value is always loaded from 'self', 364 // which we zero out. We don't want to Block_copy block receivers, 365 // though. 366 bool retainSelf = 367 (!isDelegateInit && 368 CGM.getLangOpts().ObjCAutoRefCount && 369 method && 370 method->hasAttr<NSConsumesSelfAttr>()); 371 372 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 373 bool isSuperMessage = false; 374 bool isClassMessage = false; 375 ObjCInterfaceDecl *OID = nullptr; 376 // Find the receiver 377 QualType ReceiverType; 378 llvm::Value *Receiver = nullptr; 379 switch (E->getReceiverKind()) { 380 case ObjCMessageExpr::Instance: 381 ReceiverType = E->getInstanceReceiver()->getType(); 382 if (retainSelf) { 383 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 384 E->getInstanceReceiver()); 385 Receiver = ter.getPointer(); 386 if (ter.getInt()) retainSelf = false; 387 } else 388 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 389 break; 390 391 case ObjCMessageExpr::Class: { 392 ReceiverType = E->getClassReceiver(); 393 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 394 assert(ObjTy && "Invalid Objective-C class message send"); 395 OID = ObjTy->getInterface(); 396 assert(OID && "Invalid Objective-C class message send"); 397 Receiver = Runtime.GetClass(*this, OID); 398 isClassMessage = true; 399 break; 400 } 401 402 case ObjCMessageExpr::SuperInstance: 403 ReceiverType = E->getSuperType(); 404 Receiver = LoadObjCSelf(); 405 isSuperMessage = true; 406 break; 407 408 case ObjCMessageExpr::SuperClass: 409 ReceiverType = E->getSuperType(); 410 Receiver = LoadObjCSelf(); 411 isSuperMessage = true; 412 isClassMessage = true; 413 break; 414 } 415 416 if (retainSelf) 417 Receiver = EmitARCRetainNonBlock(Receiver); 418 419 // In ARC, we sometimes want to "extend the lifetime" 420 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 421 // messages. 422 if (getLangOpts().ObjCAutoRefCount && method && 423 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 424 shouldExtendReceiverForInnerPointerMessage(E)) 425 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 426 427 QualType ResultType = method ? method->getReturnType() : E->getType(); 428 429 CallArgList Args; 430 EmitCallArgs(Args, method, E->arguments()); 431 432 // For delegate init calls in ARC, do an unsafe store of null into 433 // self. This represents the call taking direct ownership of that 434 // value. We have to do this after emitting the other call 435 // arguments because they might also reference self, but we don't 436 // have to worry about any of them modifying self because that would 437 // be an undefined read and write of an object in unordered 438 // expressions. 439 if (isDelegateInit) { 440 assert(getLangOpts().ObjCAutoRefCount && 441 "delegate init calls should only be marked in ARC"); 442 443 // Do an unsafe store of null into self. 444 Address selfAddr = 445 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 446 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 447 } 448 449 RValue result; 450 if (isSuperMessage) { 451 // super is only valid in an Objective-C method 452 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 453 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 454 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 455 E->getSelector(), 456 OMD->getClassInterface(), 457 isCategoryImpl, 458 Receiver, 459 isClassMessage, 460 Args, 461 method); 462 } else { 463 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 464 E->getSelector(), 465 Receiver, Args, OID, 466 method); 467 } 468 469 // For delegate init calls in ARC, implicitly store the result of 470 // the call back into self. This takes ownership of the value. 471 if (isDelegateInit) { 472 Address selfAddr = 473 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 474 llvm::Value *newSelf = result.getScalarVal(); 475 476 // The delegate return type isn't necessarily a matching type; in 477 // fact, it's quite likely to be 'id'. 478 llvm::Type *selfTy = selfAddr.getElementType(); 479 newSelf = Builder.CreateBitCast(newSelf, selfTy); 480 481 Builder.CreateStore(newSelf, selfAddr); 482 } 483 484 return AdjustObjCObjectType(*this, E->getType(), result); 485 } 486 487 namespace { 488 struct FinishARCDealloc final : EHScopeStack::Cleanup { 489 void Emit(CodeGenFunction &CGF, Flags flags) override { 490 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 491 492 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 493 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 494 if (!iface->getSuperClass()) return; 495 496 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 497 498 // Call [super dealloc] if we have a superclass. 499 llvm::Value *self = CGF.LoadObjCSelf(); 500 501 CallArgList args; 502 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 503 CGF.getContext().VoidTy, 504 method->getSelector(), 505 iface, 506 isCategory, 507 self, 508 /*is class msg*/ false, 509 args, 510 method); 511 } 512 }; 513 } 514 515 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 516 /// the LLVM function and sets the other context used by 517 /// CodeGenFunction. 518 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 519 const ObjCContainerDecl *CD) { 520 SourceLocation StartLoc = OMD->getLocStart(); 521 FunctionArgList args; 522 // Check if we should generate debug info for this method. 523 if (OMD->hasAttr<NoDebugAttr>()) 524 DebugInfo = nullptr; // disable debug info indefinitely for this function 525 526 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 527 528 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 529 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 530 531 args.push_back(OMD->getSelfDecl()); 532 args.push_back(OMD->getCmdDecl()); 533 534 args.append(OMD->param_begin(), OMD->param_end()); 535 536 CurGD = OMD; 537 CurEHLocation = OMD->getLocEnd(); 538 539 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 540 OMD->getLocation(), StartLoc); 541 542 // In ARC, certain methods get an extra cleanup. 543 if (CGM.getLangOpts().ObjCAutoRefCount && 544 OMD->isInstanceMethod() && 545 OMD->getSelector().isUnarySelector()) { 546 const IdentifierInfo *ident = 547 OMD->getSelector().getIdentifierInfoForSlot(0); 548 if (ident->isStr("dealloc")) 549 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 550 } 551 } 552 553 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 554 LValue lvalue, QualType type); 555 556 /// Generate an Objective-C method. An Objective-C method is a C function with 557 /// its pointer, name, and types registered in the class struture. 558 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 559 StartObjCMethod(OMD, OMD->getClassInterface()); 560 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 561 assert(isa<CompoundStmt>(OMD->getBody())); 562 incrementProfileCounter(OMD->getBody()); 563 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 564 FinishFunction(OMD->getBodyRBrace()); 565 } 566 567 /// emitStructGetterCall - Call the runtime function to load a property 568 /// into the return value slot. 569 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 570 bool isAtomic, bool hasStrong) { 571 ASTContext &Context = CGF.getContext(); 572 573 Address src = 574 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 575 .getAddress(); 576 577 // objc_copyStruct (ReturnValue, &structIvar, 578 // sizeof (Type of Ivar), isAtomic, false); 579 CallArgList args; 580 581 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 582 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 583 584 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 585 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 586 587 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 588 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 589 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 590 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 591 592 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 593 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 594 fn, ReturnValueSlot(), args); 595 } 596 597 /// Determine whether the given architecture supports unaligned atomic 598 /// accesses. They don't have to be fast, just faster than a function 599 /// call and a mutex. 600 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 601 // FIXME: Allow unaligned atomic load/store on x86. (It is not 602 // currently supported by the backend.) 603 return 0; 604 } 605 606 /// Return the maximum size that permits atomic accesses for the given 607 /// architecture. 608 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 609 llvm::Triple::ArchType arch) { 610 // ARM has 8-byte atomic accesses, but it's not clear whether we 611 // want to rely on them here. 612 613 // In the default case, just assume that any size up to a pointer is 614 // fine given adequate alignment. 615 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 616 } 617 618 namespace { 619 class PropertyImplStrategy { 620 public: 621 enum StrategyKind { 622 /// The 'native' strategy is to use the architecture's provided 623 /// reads and writes. 624 Native, 625 626 /// Use objc_setProperty and objc_getProperty. 627 GetSetProperty, 628 629 /// Use objc_setProperty for the setter, but use expression 630 /// evaluation for the getter. 631 SetPropertyAndExpressionGet, 632 633 /// Use objc_copyStruct. 634 CopyStruct, 635 636 /// The 'expression' strategy is to emit normal assignment or 637 /// lvalue-to-rvalue expressions. 638 Expression 639 }; 640 641 StrategyKind getKind() const { return StrategyKind(Kind); } 642 643 bool hasStrongMember() const { return HasStrong; } 644 bool isAtomic() const { return IsAtomic; } 645 bool isCopy() const { return IsCopy; } 646 647 CharUnits getIvarSize() const { return IvarSize; } 648 CharUnits getIvarAlignment() const { return IvarAlignment; } 649 650 PropertyImplStrategy(CodeGenModule &CGM, 651 const ObjCPropertyImplDecl *propImpl); 652 653 private: 654 unsigned Kind : 8; 655 unsigned IsAtomic : 1; 656 unsigned IsCopy : 1; 657 unsigned HasStrong : 1; 658 659 CharUnits IvarSize; 660 CharUnits IvarAlignment; 661 }; 662 } 663 664 /// Pick an implementation strategy for the given property synthesis. 665 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 666 const ObjCPropertyImplDecl *propImpl) { 667 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 668 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 669 670 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 671 IsAtomic = prop->isAtomic(); 672 HasStrong = false; // doesn't matter here. 673 674 // Evaluate the ivar's size and alignment. 675 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 676 QualType ivarType = ivar->getType(); 677 std::tie(IvarSize, IvarAlignment) = 678 CGM.getContext().getTypeInfoInChars(ivarType); 679 680 // If we have a copy property, we always have to use getProperty/setProperty. 681 // TODO: we could actually use setProperty and an expression for non-atomics. 682 if (IsCopy) { 683 Kind = GetSetProperty; 684 return; 685 } 686 687 // Handle retain. 688 if (setterKind == ObjCPropertyDecl::Retain) { 689 // In GC-only, there's nothing special that needs to be done. 690 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 691 // fallthrough 692 693 // In ARC, if the property is non-atomic, use expression emission, 694 // which translates to objc_storeStrong. This isn't required, but 695 // it's slightly nicer. 696 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 697 // Using standard expression emission for the setter is only 698 // acceptable if the ivar is __strong, which won't be true if 699 // the property is annotated with __attribute__((NSObject)). 700 // TODO: falling all the way back to objc_setProperty here is 701 // just laziness, though; we could still use objc_storeStrong 702 // if we hacked it right. 703 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 704 Kind = Expression; 705 else 706 Kind = SetPropertyAndExpressionGet; 707 return; 708 709 // Otherwise, we need to at least use setProperty. However, if 710 // the property isn't atomic, we can use normal expression 711 // emission for the getter. 712 } else if (!IsAtomic) { 713 Kind = SetPropertyAndExpressionGet; 714 return; 715 716 // Otherwise, we have to use both setProperty and getProperty. 717 } else { 718 Kind = GetSetProperty; 719 return; 720 } 721 } 722 723 // If we're not atomic, just use expression accesses. 724 if (!IsAtomic) { 725 Kind = Expression; 726 return; 727 } 728 729 // Properties on bitfield ivars need to be emitted using expression 730 // accesses even if they're nominally atomic. 731 if (ivar->isBitField()) { 732 Kind = Expression; 733 return; 734 } 735 736 // GC-qualified or ARC-qualified ivars need to be emitted as 737 // expressions. This actually works out to being atomic anyway, 738 // except for ARC __strong, but that should trigger the above code. 739 if (ivarType.hasNonTrivialObjCLifetime() || 740 (CGM.getLangOpts().getGC() && 741 CGM.getContext().getObjCGCAttrKind(ivarType))) { 742 Kind = Expression; 743 return; 744 } 745 746 // Compute whether the ivar has strong members. 747 if (CGM.getLangOpts().getGC()) 748 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 749 HasStrong = recordType->getDecl()->hasObjectMember(); 750 751 // We can never access structs with object members with a native 752 // access, because we need to use write barriers. This is what 753 // objc_copyStruct is for. 754 if (HasStrong) { 755 Kind = CopyStruct; 756 return; 757 } 758 759 // Otherwise, this is target-dependent and based on the size and 760 // alignment of the ivar. 761 762 // If the size of the ivar is not a power of two, give up. We don't 763 // want to get into the business of doing compare-and-swaps. 764 if (!IvarSize.isPowerOfTwo()) { 765 Kind = CopyStruct; 766 return; 767 } 768 769 llvm::Triple::ArchType arch = 770 CGM.getTarget().getTriple().getArch(); 771 772 // Most architectures require memory to fit within a single cache 773 // line, so the alignment has to be at least the size of the access. 774 // Otherwise we have to grab a lock. 775 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 776 Kind = CopyStruct; 777 return; 778 } 779 780 // If the ivar's size exceeds the architecture's maximum atomic 781 // access size, we have to use CopyStruct. 782 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 783 Kind = CopyStruct; 784 return; 785 } 786 787 // Otherwise, we can use native loads and stores. 788 Kind = Native; 789 } 790 791 /// \brief Generate an Objective-C property getter function. 792 /// 793 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 794 /// is illegal within a category. 795 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 796 const ObjCPropertyImplDecl *PID) { 797 llvm::Constant *AtomicHelperFn = 798 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 799 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 800 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 801 assert(OMD && "Invalid call to generate getter (empty method)"); 802 StartObjCMethod(OMD, IMP->getClassInterface()); 803 804 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 805 806 FinishFunction(); 807 } 808 809 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 810 const Expr *getter = propImpl->getGetterCXXConstructor(); 811 if (!getter) return true; 812 813 // Sema only makes only of these when the ivar has a C++ class type, 814 // so the form is pretty constrained. 815 816 // If the property has a reference type, we might just be binding a 817 // reference, in which case the result will be a gl-value. We should 818 // treat this as a non-trivial operation. 819 if (getter->isGLValue()) 820 return false; 821 822 // If we selected a trivial copy-constructor, we're okay. 823 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 824 return (construct->getConstructor()->isTrivial()); 825 826 // The constructor might require cleanups (in which case it's never 827 // trivial). 828 assert(isa<ExprWithCleanups>(getter)); 829 return false; 830 } 831 832 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 833 /// copy the ivar into the resturn slot. 834 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 835 llvm::Value *returnAddr, 836 ObjCIvarDecl *ivar, 837 llvm::Constant *AtomicHelperFn) { 838 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 839 // AtomicHelperFn); 840 CallArgList args; 841 842 // The 1st argument is the return Slot. 843 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 844 845 // The 2nd argument is the address of the ivar. 846 llvm::Value *ivarAddr = 847 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 848 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 849 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 850 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 851 852 // Third argument is the helper function. 853 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 854 855 llvm::Value *copyCppAtomicObjectFn = 856 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 857 CGF.EmitCall( 858 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 859 copyCppAtomicObjectFn, ReturnValueSlot(), args); 860 } 861 862 void 863 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 864 const ObjCPropertyImplDecl *propImpl, 865 const ObjCMethodDecl *GetterMethodDecl, 866 llvm::Constant *AtomicHelperFn) { 867 // If there's a non-trivial 'get' expression, we just have to emit that. 868 if (!hasTrivialGetExpr(propImpl)) { 869 if (!AtomicHelperFn) { 870 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 871 /*nrvo*/ nullptr); 872 EmitReturnStmt(ret); 873 } 874 else { 875 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 876 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 877 ivar, AtomicHelperFn); 878 } 879 return; 880 } 881 882 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 883 QualType propType = prop->getType(); 884 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 885 886 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 887 888 // Pick an implementation strategy. 889 PropertyImplStrategy strategy(CGM, propImpl); 890 switch (strategy.getKind()) { 891 case PropertyImplStrategy::Native: { 892 // We don't need to do anything for a zero-size struct. 893 if (strategy.getIvarSize().isZero()) 894 return; 895 896 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 897 898 // Currently, all atomic accesses have to be through integer 899 // types, so there's no point in trying to pick a prettier type. 900 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 901 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 902 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 903 904 // Perform an atomic load. This does not impose ordering constraints. 905 Address ivarAddr = LV.getAddress(); 906 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 907 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 908 load->setAtomic(llvm::AtomicOrdering::Unordered); 909 910 // Store that value into the return address. Doing this with a 911 // bitcast is likely to produce some pretty ugly IR, but it's not 912 // the *most* terrible thing in the world. 913 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 914 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 915 llvm::Value *ivarVal = load; 916 if (ivarSize > retTySize) { 917 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 918 ivarVal = Builder.CreateTrunc(load, newTy); 919 bitcastType = newTy->getPointerTo(); 920 } 921 Builder.CreateStore(ivarVal, 922 Builder.CreateBitCast(ReturnValue, bitcastType)); 923 924 // Make sure we don't do an autorelease. 925 AutoreleaseResult = false; 926 return; 927 } 928 929 case PropertyImplStrategy::GetSetProperty: { 930 llvm::Value *getPropertyFn = 931 CGM.getObjCRuntime().GetPropertyGetFunction(); 932 if (!getPropertyFn) { 933 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 934 return; 935 } 936 937 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 938 // FIXME: Can't this be simpler? This might even be worse than the 939 // corresponding gcc code. 940 llvm::Value *cmd = 941 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 942 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 943 llvm::Value *ivarOffset = 944 EmitIvarOffset(classImpl->getClassInterface(), ivar); 945 946 CallArgList args; 947 args.add(RValue::get(self), getContext().getObjCIdType()); 948 args.add(RValue::get(cmd), getContext().getObjCSelType()); 949 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 950 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 951 getContext().BoolTy); 952 953 // FIXME: We shouldn't need to get the function info here, the 954 // runtime already should have computed it to build the function. 955 llvm::Instruction *CallInstruction; 956 RValue RV = EmitCall( 957 getTypes().arrangeBuiltinFunctionCall(propType, args), 958 getPropertyFn, ReturnValueSlot(), args, CGCalleeInfo(), 959 &CallInstruction); 960 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 961 call->setTailCall(); 962 963 // We need to fix the type here. Ivars with copy & retain are 964 // always objects so we don't need to worry about complex or 965 // aggregates. 966 RV = RValue::get(Builder.CreateBitCast( 967 RV.getScalarVal(), 968 getTypes().ConvertType(getterMethod->getReturnType()))); 969 970 EmitReturnOfRValue(RV, propType); 971 972 // objc_getProperty does an autorelease, so we should suppress ours. 973 AutoreleaseResult = false; 974 975 return; 976 } 977 978 case PropertyImplStrategy::CopyStruct: 979 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 980 strategy.hasStrongMember()); 981 return; 982 983 case PropertyImplStrategy::Expression: 984 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 985 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 986 987 QualType ivarType = ivar->getType(); 988 switch (getEvaluationKind(ivarType)) { 989 case TEK_Complex: { 990 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 991 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 992 /*init*/ true); 993 return; 994 } 995 case TEK_Aggregate: 996 // The return value slot is guaranteed to not be aliased, but 997 // that's not necessarily the same as "on the stack", so 998 // we still potentially need objc_memmove_collectable. 999 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 1000 return; 1001 case TEK_Scalar: { 1002 llvm::Value *value; 1003 if (propType->isReferenceType()) { 1004 value = LV.getAddress().getPointer(); 1005 } else { 1006 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1007 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1008 if (getLangOpts().ObjCAutoRefCount) { 1009 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1010 } else { 1011 value = EmitARCLoadWeak(LV.getAddress()); 1012 } 1013 1014 // Otherwise we want to do a simple load, suppressing the 1015 // final autorelease. 1016 } else { 1017 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1018 AutoreleaseResult = false; 1019 } 1020 1021 value = Builder.CreateBitCast( 1022 value, ConvertType(GetterMethodDecl->getReturnType())); 1023 } 1024 1025 EmitReturnOfRValue(RValue::get(value), propType); 1026 return; 1027 } 1028 } 1029 llvm_unreachable("bad evaluation kind"); 1030 } 1031 1032 } 1033 llvm_unreachable("bad @property implementation strategy!"); 1034 } 1035 1036 /// emitStructSetterCall - Call the runtime function to store the value 1037 /// from the first formal parameter into the given ivar. 1038 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1039 ObjCIvarDecl *ivar) { 1040 // objc_copyStruct (&structIvar, &Arg, 1041 // sizeof (struct something), true, false); 1042 CallArgList args; 1043 1044 // The first argument is the address of the ivar. 1045 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1046 CGF.LoadObjCSelf(), ivar, 0) 1047 .getPointer(); 1048 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1049 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1050 1051 // The second argument is the address of the parameter variable. 1052 ParmVarDecl *argVar = *OMD->param_begin(); 1053 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1054 VK_LValue, SourceLocation()); 1055 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1056 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1057 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1058 1059 // The third argument is the sizeof the type. 1060 llvm::Value *size = 1061 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1062 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1063 1064 // The fourth argument is the 'isAtomic' flag. 1065 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1066 1067 // The fifth argument is the 'hasStrong' flag. 1068 // FIXME: should this really always be false? 1069 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1070 1071 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1072 CGF.EmitCall( 1073 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1074 copyStructFn, ReturnValueSlot(), args); 1075 } 1076 1077 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1078 /// the value from the first formal parameter into the given ivar, using 1079 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1080 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1081 ObjCMethodDecl *OMD, 1082 ObjCIvarDecl *ivar, 1083 llvm::Constant *AtomicHelperFn) { 1084 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1085 // AtomicHelperFn); 1086 CallArgList args; 1087 1088 // The first argument is the address of the ivar. 1089 llvm::Value *ivarAddr = 1090 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1091 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 1092 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1093 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1094 1095 // The second argument is the address of the parameter variable. 1096 ParmVarDecl *argVar = *OMD->param_begin(); 1097 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1098 VK_LValue, SourceLocation()); 1099 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1100 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1101 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1102 1103 // Third argument is the helper function. 1104 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1105 1106 llvm::Value *copyCppAtomicObjectFn = 1107 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1108 CGF.EmitCall( 1109 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1110 copyCppAtomicObjectFn, ReturnValueSlot(), args); 1111 } 1112 1113 1114 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1115 Expr *setter = PID->getSetterCXXAssignment(); 1116 if (!setter) return true; 1117 1118 // Sema only makes only of these when the ivar has a C++ class type, 1119 // so the form is pretty constrained. 1120 1121 // An operator call is trivial if the function it calls is trivial. 1122 // This also implies that there's nothing non-trivial going on with 1123 // the arguments, because operator= can only be trivial if it's a 1124 // synthesized assignment operator and therefore both parameters are 1125 // references. 1126 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1127 if (const FunctionDecl *callee 1128 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1129 if (callee->isTrivial()) 1130 return true; 1131 return false; 1132 } 1133 1134 assert(isa<ExprWithCleanups>(setter)); 1135 return false; 1136 } 1137 1138 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1139 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1140 return false; 1141 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1142 } 1143 1144 void 1145 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1146 const ObjCPropertyImplDecl *propImpl, 1147 llvm::Constant *AtomicHelperFn) { 1148 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1149 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1150 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1151 1152 // Just use the setter expression if Sema gave us one and it's 1153 // non-trivial. 1154 if (!hasTrivialSetExpr(propImpl)) { 1155 if (!AtomicHelperFn) 1156 // If non-atomic, assignment is called directly. 1157 EmitStmt(propImpl->getSetterCXXAssignment()); 1158 else 1159 // If atomic, assignment is called via a locking api. 1160 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1161 AtomicHelperFn); 1162 return; 1163 } 1164 1165 PropertyImplStrategy strategy(CGM, propImpl); 1166 switch (strategy.getKind()) { 1167 case PropertyImplStrategy::Native: { 1168 // We don't need to do anything for a zero-size struct. 1169 if (strategy.getIvarSize().isZero()) 1170 return; 1171 1172 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1173 1174 LValue ivarLValue = 1175 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1176 Address ivarAddr = ivarLValue.getAddress(); 1177 1178 // Currently, all atomic accesses have to be through integer 1179 // types, so there's no point in trying to pick a prettier type. 1180 llvm::Type *bitcastType = 1181 llvm::Type::getIntNTy(getLLVMContext(), 1182 getContext().toBits(strategy.getIvarSize())); 1183 1184 // Cast both arguments to the chosen operation type. 1185 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1186 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1187 1188 // This bitcast load is likely to cause some nasty IR. 1189 llvm::Value *load = Builder.CreateLoad(argAddr); 1190 1191 // Perform an atomic store. There are no memory ordering requirements. 1192 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1193 store->setAtomic(llvm::AtomicOrdering::Unordered); 1194 return; 1195 } 1196 1197 case PropertyImplStrategy::GetSetProperty: 1198 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1199 1200 llvm::Value *setOptimizedPropertyFn = nullptr; 1201 llvm::Value *setPropertyFn = nullptr; 1202 if (UseOptimizedSetter(CGM)) { 1203 // 10.8 and iOS 6.0 code and GC is off 1204 setOptimizedPropertyFn = 1205 CGM.getObjCRuntime() 1206 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1207 strategy.isCopy()); 1208 if (!setOptimizedPropertyFn) { 1209 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1210 return; 1211 } 1212 } 1213 else { 1214 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1215 if (!setPropertyFn) { 1216 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1217 return; 1218 } 1219 } 1220 1221 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1222 // <is-atomic>, <is-copy>). 1223 llvm::Value *cmd = 1224 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1225 llvm::Value *self = 1226 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1227 llvm::Value *ivarOffset = 1228 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1229 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1230 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1231 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1232 1233 CallArgList args; 1234 args.add(RValue::get(self), getContext().getObjCIdType()); 1235 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1236 if (setOptimizedPropertyFn) { 1237 args.add(RValue::get(arg), getContext().getObjCIdType()); 1238 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1239 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1240 setOptimizedPropertyFn, ReturnValueSlot(), args); 1241 } else { 1242 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1243 args.add(RValue::get(arg), getContext().getObjCIdType()); 1244 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1245 getContext().BoolTy); 1246 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1247 getContext().BoolTy); 1248 // FIXME: We shouldn't need to get the function info here, the runtime 1249 // already should have computed it to build the function. 1250 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1251 setPropertyFn, ReturnValueSlot(), args); 1252 } 1253 1254 return; 1255 } 1256 1257 case PropertyImplStrategy::CopyStruct: 1258 emitStructSetterCall(*this, setterMethod, ivar); 1259 return; 1260 1261 case PropertyImplStrategy::Expression: 1262 break; 1263 } 1264 1265 // Otherwise, fake up some ASTs and emit a normal assignment. 1266 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1267 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1268 VK_LValue, SourceLocation()); 1269 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1270 selfDecl->getType(), CK_LValueToRValue, &self, 1271 VK_RValue); 1272 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1273 SourceLocation(), SourceLocation(), 1274 &selfLoad, true, true); 1275 1276 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1277 QualType argType = argDecl->getType().getNonReferenceType(); 1278 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1279 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1280 argType.getUnqualifiedType(), CK_LValueToRValue, 1281 &arg, VK_RValue); 1282 1283 // The property type can differ from the ivar type in some situations with 1284 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1285 // The following absurdity is just to ensure well-formed IR. 1286 CastKind argCK = CK_NoOp; 1287 if (ivarRef.getType()->isObjCObjectPointerType()) { 1288 if (argLoad.getType()->isObjCObjectPointerType()) 1289 argCK = CK_BitCast; 1290 else if (argLoad.getType()->isBlockPointerType()) 1291 argCK = CK_BlockPointerToObjCPointerCast; 1292 else 1293 argCK = CK_CPointerToObjCPointerCast; 1294 } else if (ivarRef.getType()->isBlockPointerType()) { 1295 if (argLoad.getType()->isBlockPointerType()) 1296 argCK = CK_BitCast; 1297 else 1298 argCK = CK_AnyPointerToBlockPointerCast; 1299 } else if (ivarRef.getType()->isPointerType()) { 1300 argCK = CK_BitCast; 1301 } 1302 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1303 ivarRef.getType(), argCK, &argLoad, 1304 VK_RValue); 1305 Expr *finalArg = &argLoad; 1306 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1307 argLoad.getType())) 1308 finalArg = &argCast; 1309 1310 1311 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1312 ivarRef.getType(), VK_RValue, OK_Ordinary, 1313 SourceLocation(), false); 1314 EmitStmt(&assign); 1315 } 1316 1317 /// \brief Generate an Objective-C property setter function. 1318 /// 1319 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1320 /// is illegal within a category. 1321 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1322 const ObjCPropertyImplDecl *PID) { 1323 llvm::Constant *AtomicHelperFn = 1324 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1325 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1326 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1327 assert(OMD && "Invalid call to generate setter (empty method)"); 1328 StartObjCMethod(OMD, IMP->getClassInterface()); 1329 1330 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1331 1332 FinishFunction(); 1333 } 1334 1335 namespace { 1336 struct DestroyIvar final : EHScopeStack::Cleanup { 1337 private: 1338 llvm::Value *addr; 1339 const ObjCIvarDecl *ivar; 1340 CodeGenFunction::Destroyer *destroyer; 1341 bool useEHCleanupForArray; 1342 public: 1343 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1344 CodeGenFunction::Destroyer *destroyer, 1345 bool useEHCleanupForArray) 1346 : addr(addr), ivar(ivar), destroyer(destroyer), 1347 useEHCleanupForArray(useEHCleanupForArray) {} 1348 1349 void Emit(CodeGenFunction &CGF, Flags flags) override { 1350 LValue lvalue 1351 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1352 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1353 flags.isForNormalCleanup() && useEHCleanupForArray); 1354 } 1355 }; 1356 } 1357 1358 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1359 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1360 Address addr, 1361 QualType type) { 1362 llvm::Value *null = getNullForVariable(addr); 1363 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1364 } 1365 1366 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1367 ObjCImplementationDecl *impl) { 1368 CodeGenFunction::RunCleanupsScope scope(CGF); 1369 1370 llvm::Value *self = CGF.LoadObjCSelf(); 1371 1372 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1373 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1374 ivar; ivar = ivar->getNextIvar()) { 1375 QualType type = ivar->getType(); 1376 1377 // Check whether the ivar is a destructible type. 1378 QualType::DestructionKind dtorKind = type.isDestructedType(); 1379 if (!dtorKind) continue; 1380 1381 CodeGenFunction::Destroyer *destroyer = nullptr; 1382 1383 // Use a call to objc_storeStrong to destroy strong ivars, for the 1384 // general benefit of the tools. 1385 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1386 destroyer = destroyARCStrongWithStore; 1387 1388 // Otherwise use the default for the destruction kind. 1389 } else { 1390 destroyer = CGF.getDestroyer(dtorKind); 1391 } 1392 1393 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1394 1395 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1396 cleanupKind & EHCleanup); 1397 } 1398 1399 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1400 } 1401 1402 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1403 ObjCMethodDecl *MD, 1404 bool ctor) { 1405 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1406 StartObjCMethod(MD, IMP->getClassInterface()); 1407 1408 // Emit .cxx_construct. 1409 if (ctor) { 1410 // Suppress the final autorelease in ARC. 1411 AutoreleaseResult = false; 1412 1413 for (const auto *IvarInit : IMP->inits()) { 1414 FieldDecl *Field = IvarInit->getAnyMember(); 1415 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1416 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1417 LoadObjCSelf(), Ivar, 0); 1418 EmitAggExpr(IvarInit->getInit(), 1419 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1420 AggValueSlot::DoesNotNeedGCBarriers, 1421 AggValueSlot::IsNotAliased)); 1422 } 1423 // constructor returns 'self'. 1424 CodeGenTypes &Types = CGM.getTypes(); 1425 QualType IdTy(CGM.getContext().getObjCIdType()); 1426 llvm::Value *SelfAsId = 1427 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1428 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1429 1430 // Emit .cxx_destruct. 1431 } else { 1432 emitCXXDestructMethod(*this, IMP); 1433 } 1434 FinishFunction(); 1435 } 1436 1437 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1438 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1439 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1440 Self->getType(), VK_LValue, SourceLocation()); 1441 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1442 } 1443 1444 QualType CodeGenFunction::TypeOfSelfObject() { 1445 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1446 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1447 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1448 getContext().getCanonicalType(selfDecl->getType())); 1449 return PTy->getPointeeType(); 1450 } 1451 1452 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1453 llvm::Constant *EnumerationMutationFn = 1454 CGM.getObjCRuntime().EnumerationMutationFunction(); 1455 1456 if (!EnumerationMutationFn) { 1457 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1458 return; 1459 } 1460 1461 CGDebugInfo *DI = getDebugInfo(); 1462 if (DI) 1463 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1464 1465 // The local variable comes into scope immediately. 1466 AutoVarEmission variable = AutoVarEmission::invalid(); 1467 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1468 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1469 1470 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1471 1472 // Fast enumeration state. 1473 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1474 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1475 EmitNullInitialization(StatePtr, StateTy); 1476 1477 // Number of elements in the items array. 1478 static const unsigned NumItems = 16; 1479 1480 // Fetch the countByEnumeratingWithState:objects:count: selector. 1481 IdentifierInfo *II[] = { 1482 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1483 &CGM.getContext().Idents.get("objects"), 1484 &CGM.getContext().Idents.get("count") 1485 }; 1486 Selector FastEnumSel = 1487 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1488 1489 QualType ItemsTy = 1490 getContext().getConstantArrayType(getContext().getObjCIdType(), 1491 llvm::APInt(32, NumItems), 1492 ArrayType::Normal, 0); 1493 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1494 1495 RunCleanupsScope ForScope(*this); 1496 1497 // Emit the collection pointer. In ARC, we do a retain. 1498 llvm::Value *Collection; 1499 if (getLangOpts().ObjCAutoRefCount) { 1500 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1501 1502 // Enter a cleanup to do the release. 1503 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1504 } else { 1505 Collection = EmitScalarExpr(S.getCollection()); 1506 } 1507 1508 // The 'continue' label needs to appear within the cleanup for the 1509 // collection object. 1510 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1511 1512 // Send it our message: 1513 CallArgList Args; 1514 1515 // The first argument is a temporary of the enumeration-state type. 1516 Args.add(RValue::get(StatePtr.getPointer()), 1517 getContext().getPointerType(StateTy)); 1518 1519 // The second argument is a temporary array with space for NumItems 1520 // pointers. We'll actually be loading elements from the array 1521 // pointer written into the control state; this buffer is so that 1522 // collections that *aren't* backed by arrays can still queue up 1523 // batches of elements. 1524 Args.add(RValue::get(ItemsPtr.getPointer()), 1525 getContext().getPointerType(ItemsTy)); 1526 1527 // The third argument is the capacity of that temporary array. 1528 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1529 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1530 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1531 1532 // Start the enumeration. 1533 RValue CountRV = 1534 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1535 getContext().UnsignedLongTy, 1536 FastEnumSel, 1537 Collection, Args); 1538 1539 // The initial number of objects that were returned in the buffer. 1540 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1541 1542 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1543 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1544 1545 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1546 1547 // If the limit pointer was zero to begin with, the collection is 1548 // empty; skip all this. Set the branch weight assuming this has the same 1549 // probability of exiting the loop as any other loop exit. 1550 uint64_t EntryCount = getCurrentProfileCount(); 1551 Builder.CreateCondBr( 1552 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1553 LoopInitBB, 1554 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1555 1556 // Otherwise, initialize the loop. 1557 EmitBlock(LoopInitBB); 1558 1559 // Save the initial mutations value. This is the value at an 1560 // address that was written into the state object by 1561 // countByEnumeratingWithState:objects:count:. 1562 Address StateMutationsPtrPtr = Builder.CreateStructGEP( 1563 StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr"); 1564 llvm::Value *StateMutationsPtr 1565 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1566 1567 llvm::Value *initialMutations = 1568 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1569 "forcoll.initial-mutations"); 1570 1571 // Start looping. This is the point we return to whenever we have a 1572 // fresh, non-empty batch of objects. 1573 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1574 EmitBlock(LoopBodyBB); 1575 1576 // The current index into the buffer. 1577 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1578 index->addIncoming(zero, LoopInitBB); 1579 1580 // The current buffer size. 1581 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1582 count->addIncoming(initialBufferLimit, LoopInitBB); 1583 1584 incrementProfileCounter(&S); 1585 1586 // Check whether the mutations value has changed from where it was 1587 // at start. StateMutationsPtr should actually be invariant between 1588 // refreshes. 1589 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1590 llvm::Value *currentMutations 1591 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1592 "statemutations"); 1593 1594 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1595 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1596 1597 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1598 WasNotMutatedBB, WasMutatedBB); 1599 1600 // If so, call the enumeration-mutation function. 1601 EmitBlock(WasMutatedBB); 1602 llvm::Value *V = 1603 Builder.CreateBitCast(Collection, 1604 ConvertType(getContext().getObjCIdType())); 1605 CallArgList Args2; 1606 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1607 // FIXME: We shouldn't need to get the function info here, the runtime already 1608 // should have computed it to build the function. 1609 EmitCall( 1610 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1611 EnumerationMutationFn, ReturnValueSlot(), Args2); 1612 1613 // Otherwise, or if the mutation function returns, just continue. 1614 EmitBlock(WasNotMutatedBB); 1615 1616 // Initialize the element variable. 1617 RunCleanupsScope elementVariableScope(*this); 1618 bool elementIsVariable; 1619 LValue elementLValue; 1620 QualType elementType; 1621 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1622 // Initialize the variable, in case it's a __block variable or something. 1623 EmitAutoVarInit(variable); 1624 1625 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1626 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1627 VK_LValue, SourceLocation()); 1628 elementLValue = EmitLValue(&tempDRE); 1629 elementType = D->getType(); 1630 elementIsVariable = true; 1631 1632 if (D->isARCPseudoStrong()) 1633 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1634 } else { 1635 elementLValue = LValue(); // suppress warning 1636 elementType = cast<Expr>(S.getElement())->getType(); 1637 elementIsVariable = false; 1638 } 1639 llvm::Type *convertedElementType = ConvertType(elementType); 1640 1641 // Fetch the buffer out of the enumeration state. 1642 // TODO: this pointer should actually be invariant between 1643 // refreshes, which would help us do certain loop optimizations. 1644 Address StateItemsPtr = Builder.CreateStructGEP( 1645 StatePtr, 1, getPointerSize(), "stateitems.ptr"); 1646 llvm::Value *EnumStateItems = 1647 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1648 1649 // Fetch the value at the current index from the buffer. 1650 llvm::Value *CurrentItemPtr = 1651 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1652 llvm::Value *CurrentItem = 1653 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1654 1655 // Cast that value to the right type. 1656 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1657 "currentitem"); 1658 1659 // Make sure we have an l-value. Yes, this gets evaluated every 1660 // time through the loop. 1661 if (!elementIsVariable) { 1662 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1663 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1664 } else { 1665 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1666 /*isInit*/ true); 1667 } 1668 1669 // If we do have an element variable, this assignment is the end of 1670 // its initialization. 1671 if (elementIsVariable) 1672 EmitAutoVarCleanups(variable); 1673 1674 // Perform the loop body, setting up break and continue labels. 1675 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1676 { 1677 RunCleanupsScope Scope(*this); 1678 EmitStmt(S.getBody()); 1679 } 1680 BreakContinueStack.pop_back(); 1681 1682 // Destroy the element variable now. 1683 elementVariableScope.ForceCleanup(); 1684 1685 // Check whether there are more elements. 1686 EmitBlock(AfterBody.getBlock()); 1687 1688 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1689 1690 // First we check in the local buffer. 1691 llvm::Value *indexPlusOne 1692 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1693 1694 // If we haven't overrun the buffer yet, we can continue. 1695 // Set the branch weights based on the simplifying assumption that this is 1696 // like a while-loop, i.e., ignoring that the false branch fetches more 1697 // elements and then returns to the loop. 1698 Builder.CreateCondBr( 1699 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1700 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1701 1702 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1703 count->addIncoming(count, AfterBody.getBlock()); 1704 1705 // Otherwise, we have to fetch more elements. 1706 EmitBlock(FetchMoreBB); 1707 1708 CountRV = 1709 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1710 getContext().UnsignedLongTy, 1711 FastEnumSel, 1712 Collection, Args); 1713 1714 // If we got a zero count, we're done. 1715 llvm::Value *refetchCount = CountRV.getScalarVal(); 1716 1717 // (note that the message send might split FetchMoreBB) 1718 index->addIncoming(zero, Builder.GetInsertBlock()); 1719 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1720 1721 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1722 EmptyBB, LoopBodyBB); 1723 1724 // No more elements. 1725 EmitBlock(EmptyBB); 1726 1727 if (!elementIsVariable) { 1728 // If the element was not a declaration, set it to be null. 1729 1730 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1731 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1732 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1733 } 1734 1735 if (DI) 1736 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1737 1738 ForScope.ForceCleanup(); 1739 EmitBlock(LoopEnd.getBlock()); 1740 } 1741 1742 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1743 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1744 } 1745 1746 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1747 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1748 } 1749 1750 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1751 const ObjCAtSynchronizedStmt &S) { 1752 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1753 } 1754 1755 namespace { 1756 struct CallObjCRelease final : EHScopeStack::Cleanup { 1757 CallObjCRelease(llvm::Value *object) : object(object) {} 1758 llvm::Value *object; 1759 1760 void Emit(CodeGenFunction &CGF, Flags flags) override { 1761 // Releases at the end of the full-expression are imprecise. 1762 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1763 } 1764 }; 1765 } 1766 1767 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1768 /// release at the end of the full-expression. 1769 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1770 llvm::Value *object) { 1771 // If we're in a conditional branch, we need to make the cleanup 1772 // conditional. 1773 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1774 return object; 1775 } 1776 1777 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1778 llvm::Value *value) { 1779 return EmitARCRetainAutorelease(type, value); 1780 } 1781 1782 /// Given a number of pointers, inform the optimizer that they're 1783 /// being intrinsically used up until this point in the program. 1784 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1785 llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use; 1786 if (!fn) { 1787 llvm::FunctionType *fnType = 1788 llvm::FunctionType::get(CGM.VoidTy, None, true); 1789 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use"); 1790 } 1791 1792 // This isn't really a "runtime" function, but as an intrinsic it 1793 // doesn't really matter as long as we align things up. 1794 EmitNounwindRuntimeCall(fn, values); 1795 } 1796 1797 1798 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1799 llvm::FunctionType *type, 1800 StringRef fnName) { 1801 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1802 1803 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) { 1804 // If the target runtime doesn't naturally support ARC, emit weak 1805 // references to the runtime support library. We don't really 1806 // permit this to fail, but we need a particular relocation style. 1807 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 1808 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1809 } else if (fnName == "objc_retain" || fnName == "objc_release") { 1810 // If we have Native ARC, set nonlazybind attribute for these APIs for 1811 // performance. 1812 f->addFnAttr(llvm::Attribute::NonLazyBind); 1813 } 1814 } 1815 1816 return fn; 1817 } 1818 1819 /// Perform an operation having the signature 1820 /// i8* (i8*) 1821 /// where a null input causes a no-op and returns null. 1822 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1823 llvm::Value *value, 1824 llvm::Constant *&fn, 1825 StringRef fnName, 1826 bool isTailCall = false) { 1827 if (isa<llvm::ConstantPointerNull>(value)) return value; 1828 1829 if (!fn) { 1830 llvm::FunctionType *fnType = 1831 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 1832 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1833 } 1834 1835 // Cast the argument to 'id'. 1836 llvm::Type *origType = value->getType(); 1837 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1838 1839 // Call the function. 1840 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1841 if (isTailCall) 1842 call->setTailCall(); 1843 1844 // Cast the result back to the original type. 1845 return CGF.Builder.CreateBitCast(call, origType); 1846 } 1847 1848 /// Perform an operation having the following signature: 1849 /// i8* (i8**) 1850 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1851 Address addr, 1852 llvm::Constant *&fn, 1853 StringRef fnName) { 1854 if (!fn) { 1855 llvm::FunctionType *fnType = 1856 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false); 1857 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1858 } 1859 1860 // Cast the argument to 'id*'. 1861 llvm::Type *origType = addr.getElementType(); 1862 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1863 1864 // Call the function. 1865 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 1866 1867 // Cast the result back to a dereference of the original type. 1868 if (origType != CGF.Int8PtrTy) 1869 result = CGF.Builder.CreateBitCast(result, origType); 1870 1871 return result; 1872 } 1873 1874 /// Perform an operation having the following signature: 1875 /// i8* (i8**, i8*) 1876 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1877 Address addr, 1878 llvm::Value *value, 1879 llvm::Constant *&fn, 1880 StringRef fnName, 1881 bool ignored) { 1882 assert(addr.getElementType() == value->getType()); 1883 1884 if (!fn) { 1885 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1886 1887 llvm::FunctionType *fnType 1888 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1889 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1890 } 1891 1892 llvm::Type *origType = value->getType(); 1893 1894 llvm::Value *args[] = { 1895 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 1896 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 1897 }; 1898 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 1899 1900 if (ignored) return nullptr; 1901 1902 return CGF.Builder.CreateBitCast(result, origType); 1903 } 1904 1905 /// Perform an operation having the following signature: 1906 /// void (i8**, i8**) 1907 static void emitARCCopyOperation(CodeGenFunction &CGF, 1908 Address dst, 1909 Address src, 1910 llvm::Constant *&fn, 1911 StringRef fnName) { 1912 assert(dst.getType() == src.getType()); 1913 1914 if (!fn) { 1915 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy }; 1916 1917 llvm::FunctionType *fnType 1918 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1919 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1920 } 1921 1922 llvm::Value *args[] = { 1923 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 1924 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 1925 }; 1926 CGF.EmitNounwindRuntimeCall(fn, args); 1927 } 1928 1929 /// Produce the code to do a retain. Based on the type, calls one of: 1930 /// call i8* \@objc_retain(i8* %value) 1931 /// call i8* \@objc_retainBlock(i8* %value) 1932 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1933 if (type->isBlockPointerType()) 1934 return EmitARCRetainBlock(value, /*mandatory*/ false); 1935 else 1936 return EmitARCRetainNonBlock(value); 1937 } 1938 1939 /// Retain the given object, with normal retain semantics. 1940 /// call i8* \@objc_retain(i8* %value) 1941 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1942 return emitARCValueOperation(*this, value, 1943 CGM.getObjCEntrypoints().objc_retain, 1944 "objc_retain"); 1945 } 1946 1947 /// Retain the given block, with _Block_copy semantics. 1948 /// call i8* \@objc_retainBlock(i8* %value) 1949 /// 1950 /// \param mandatory - If false, emit the call with metadata 1951 /// indicating that it's okay for the optimizer to eliminate this call 1952 /// if it can prove that the block never escapes except down the stack. 1953 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1954 bool mandatory) { 1955 llvm::Value *result 1956 = emitARCValueOperation(*this, value, 1957 CGM.getObjCEntrypoints().objc_retainBlock, 1958 "objc_retainBlock"); 1959 1960 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1961 // tell the optimizer that it doesn't need to do this copy if the 1962 // block doesn't escape, where being passed as an argument doesn't 1963 // count as escaping. 1964 if (!mandatory && isa<llvm::Instruction>(result)) { 1965 llvm::CallInst *call 1966 = cast<llvm::CallInst>(result->stripPointerCasts()); 1967 assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock); 1968 1969 call->setMetadata("clang.arc.copy_on_escape", 1970 llvm::MDNode::get(Builder.getContext(), None)); 1971 } 1972 1973 return result; 1974 } 1975 1976 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 1977 // Fetch the void(void) inline asm which marks that we're going to 1978 // do something with the autoreleased return value. 1979 llvm::InlineAsm *&marker 1980 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 1981 if (!marker) { 1982 StringRef assembly 1983 = CGF.CGM.getTargetCodeGenInfo() 1984 .getARCRetainAutoreleasedReturnValueMarker(); 1985 1986 // If we have an empty assembly string, there's nothing to do. 1987 if (assembly.empty()) { 1988 1989 // Otherwise, at -O0, build an inline asm that we're going to call 1990 // in a moment. 1991 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 1992 llvm::FunctionType *type = 1993 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 1994 1995 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 1996 1997 // If we're at -O1 and above, we don't want to litter the code 1998 // with this marker yet, so leave a breadcrumb for the ARC 1999 // optimizer to pick up. 2000 } else { 2001 llvm::NamedMDNode *metadata = 2002 CGF.CGM.getModule().getOrInsertNamedMetadata( 2003 "clang.arc.retainAutoreleasedReturnValueMarker"); 2004 assert(metadata->getNumOperands() <= 1); 2005 if (metadata->getNumOperands() == 0) { 2006 auto &ctx = CGF.getLLVMContext(); 2007 metadata->addOperand(llvm::MDNode::get(ctx, 2008 llvm::MDString::get(ctx, assembly))); 2009 } 2010 } 2011 } 2012 2013 // Call the marker asm if we made one, which we do only at -O0. 2014 if (marker) 2015 CGF.Builder.CreateCall(marker); 2016 } 2017 2018 /// Retain the given object which is the result of a function call. 2019 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2020 /// 2021 /// Yes, this function name is one character away from a different 2022 /// call with completely different semantics. 2023 llvm::Value * 2024 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2025 emitAutoreleasedReturnValueMarker(*this); 2026 return emitARCValueOperation(*this, value, 2027 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, 2028 "objc_retainAutoreleasedReturnValue"); 2029 } 2030 2031 /// Claim a possibly-autoreleased return value at +0. This is only 2032 /// valid to do in contexts which do not rely on the retain to keep 2033 /// the object valid for for all of its uses; for example, when 2034 /// the value is ignored, or when it is being assigned to an 2035 /// __unsafe_unretained variable. 2036 /// 2037 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2038 llvm::Value * 2039 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2040 emitAutoreleasedReturnValueMarker(*this); 2041 return emitARCValueOperation(*this, value, 2042 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, 2043 "objc_unsafeClaimAutoreleasedReturnValue"); 2044 } 2045 2046 /// Release the given object. 2047 /// call void \@objc_release(i8* %value) 2048 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2049 ARCPreciseLifetime_t precise) { 2050 if (isa<llvm::ConstantPointerNull>(value)) return; 2051 2052 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release; 2053 if (!fn) { 2054 llvm::FunctionType *fnType = 2055 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2056 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 2057 } 2058 2059 // Cast the argument to 'id'. 2060 value = Builder.CreateBitCast(value, Int8PtrTy); 2061 2062 // Call objc_release. 2063 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2064 2065 if (precise == ARCImpreciseLifetime) { 2066 call->setMetadata("clang.imprecise_release", 2067 llvm::MDNode::get(Builder.getContext(), None)); 2068 } 2069 } 2070 2071 /// Destroy a __strong variable. 2072 /// 2073 /// At -O0, emit a call to store 'null' into the address; 2074 /// instrumenting tools prefer this because the address is exposed, 2075 /// but it's relatively cumbersome to optimize. 2076 /// 2077 /// At -O1 and above, just load and call objc_release. 2078 /// 2079 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2080 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2081 ARCPreciseLifetime_t precise) { 2082 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2083 llvm::Value *null = getNullForVariable(addr); 2084 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2085 return; 2086 } 2087 2088 llvm::Value *value = Builder.CreateLoad(addr); 2089 EmitARCRelease(value, precise); 2090 } 2091 2092 /// Store into a strong object. Always calls this: 2093 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2094 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2095 llvm::Value *value, 2096 bool ignored) { 2097 assert(addr.getElementType() == value->getType()); 2098 2099 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2100 if (!fn) { 2101 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 2102 llvm::FunctionType *fnType 2103 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 2104 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 2105 } 2106 2107 llvm::Value *args[] = { 2108 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2109 Builder.CreateBitCast(value, Int8PtrTy) 2110 }; 2111 EmitNounwindRuntimeCall(fn, args); 2112 2113 if (ignored) return nullptr; 2114 return value; 2115 } 2116 2117 /// Store into a strong object. Sometimes calls this: 2118 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2119 /// Other times, breaks it down into components. 2120 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2121 llvm::Value *newValue, 2122 bool ignored) { 2123 QualType type = dst.getType(); 2124 bool isBlock = type->isBlockPointerType(); 2125 2126 // Use a store barrier at -O0 unless this is a block type or the 2127 // lvalue is inadequately aligned. 2128 if (shouldUseFusedARCCalls() && 2129 !isBlock && 2130 (dst.getAlignment().isZero() || 2131 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2132 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2133 } 2134 2135 // Otherwise, split it out. 2136 2137 // Retain the new value. 2138 newValue = EmitARCRetain(type, newValue); 2139 2140 // Read the old value. 2141 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2142 2143 // Store. We do this before the release so that any deallocs won't 2144 // see the old value. 2145 EmitStoreOfScalar(newValue, dst); 2146 2147 // Finally, release the old value. 2148 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2149 2150 return newValue; 2151 } 2152 2153 /// Autorelease the given object. 2154 /// call i8* \@objc_autorelease(i8* %value) 2155 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2156 return emitARCValueOperation(*this, value, 2157 CGM.getObjCEntrypoints().objc_autorelease, 2158 "objc_autorelease"); 2159 } 2160 2161 /// Autorelease the given object. 2162 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2163 llvm::Value * 2164 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2165 return emitARCValueOperation(*this, value, 2166 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2167 "objc_autoreleaseReturnValue", 2168 /*isTailCall*/ true); 2169 } 2170 2171 /// Do a fused retain/autorelease of the given object. 2172 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2173 llvm::Value * 2174 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2175 return emitARCValueOperation(*this, value, 2176 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2177 "objc_retainAutoreleaseReturnValue", 2178 /*isTailCall*/ true); 2179 } 2180 2181 /// Do a fused retain/autorelease of the given object. 2182 /// call i8* \@objc_retainAutorelease(i8* %value) 2183 /// or 2184 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2185 /// call i8* \@objc_autorelease(i8* %retain) 2186 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2187 llvm::Value *value) { 2188 if (!type->isBlockPointerType()) 2189 return EmitARCRetainAutoreleaseNonBlock(value); 2190 2191 if (isa<llvm::ConstantPointerNull>(value)) return value; 2192 2193 llvm::Type *origType = value->getType(); 2194 value = Builder.CreateBitCast(value, Int8PtrTy); 2195 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2196 value = EmitARCAutorelease(value); 2197 return Builder.CreateBitCast(value, origType); 2198 } 2199 2200 /// Do a fused retain/autorelease of the given object. 2201 /// call i8* \@objc_retainAutorelease(i8* %value) 2202 llvm::Value * 2203 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2204 return emitARCValueOperation(*this, value, 2205 CGM.getObjCEntrypoints().objc_retainAutorelease, 2206 "objc_retainAutorelease"); 2207 } 2208 2209 /// i8* \@objc_loadWeak(i8** %addr) 2210 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2211 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2212 return emitARCLoadOperation(*this, addr, 2213 CGM.getObjCEntrypoints().objc_loadWeak, 2214 "objc_loadWeak"); 2215 } 2216 2217 /// i8* \@objc_loadWeakRetained(i8** %addr) 2218 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2219 return emitARCLoadOperation(*this, addr, 2220 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2221 "objc_loadWeakRetained"); 2222 } 2223 2224 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2225 /// Returns %value. 2226 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2227 llvm::Value *value, 2228 bool ignored) { 2229 return emitARCStoreOperation(*this, addr, value, 2230 CGM.getObjCEntrypoints().objc_storeWeak, 2231 "objc_storeWeak", ignored); 2232 } 2233 2234 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2235 /// Returns %value. %addr is known to not have a current weak entry. 2236 /// Essentially equivalent to: 2237 /// *addr = nil; objc_storeWeak(addr, value); 2238 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2239 // If we're initializing to null, just write null to memory; no need 2240 // to get the runtime involved. But don't do this if optimization 2241 // is enabled, because accounting for this would make the optimizer 2242 // much more complicated. 2243 if (isa<llvm::ConstantPointerNull>(value) && 2244 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2245 Builder.CreateStore(value, addr); 2246 return; 2247 } 2248 2249 emitARCStoreOperation(*this, addr, value, 2250 CGM.getObjCEntrypoints().objc_initWeak, 2251 "objc_initWeak", /*ignored*/ true); 2252 } 2253 2254 /// void \@objc_destroyWeak(i8** %addr) 2255 /// Essentially objc_storeWeak(addr, nil). 2256 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2257 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2258 if (!fn) { 2259 llvm::FunctionType *fnType = 2260 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false); 2261 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 2262 } 2263 2264 // Cast the argument to 'id*'. 2265 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2266 2267 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2268 } 2269 2270 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2271 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2272 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2273 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2274 emitARCCopyOperation(*this, dst, src, 2275 CGM.getObjCEntrypoints().objc_moveWeak, 2276 "objc_moveWeak"); 2277 } 2278 2279 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2280 /// Disregards the current value in %dest. Essentially 2281 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2282 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2283 emitARCCopyOperation(*this, dst, src, 2284 CGM.getObjCEntrypoints().objc_copyWeak, 2285 "objc_copyWeak"); 2286 } 2287 2288 /// Produce the code to do a objc_autoreleasepool_push. 2289 /// call i8* \@objc_autoreleasePoolPush(void) 2290 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2291 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2292 if (!fn) { 2293 llvm::FunctionType *fnType = 2294 llvm::FunctionType::get(Int8PtrTy, false); 2295 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 2296 } 2297 2298 return EmitNounwindRuntimeCall(fn); 2299 } 2300 2301 /// Produce the code to do a primitive release. 2302 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2303 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2304 assert(value->getType() == Int8PtrTy); 2305 2306 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2307 if (!fn) { 2308 llvm::FunctionType *fnType = 2309 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2310 2311 // We don't want to use a weak import here; instead we should not 2312 // fall into this path. 2313 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 2314 } 2315 2316 // objc_autoreleasePoolPop can throw. 2317 EmitRuntimeCallOrInvoke(fn, value); 2318 } 2319 2320 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2321 /// Which is: [[NSAutoreleasePool alloc] init]; 2322 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2323 /// init is declared as: - (id) init; in its NSObject super class. 2324 /// 2325 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2326 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2327 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2328 // [NSAutoreleasePool alloc] 2329 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2330 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2331 CallArgList Args; 2332 RValue AllocRV = 2333 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2334 getContext().getObjCIdType(), 2335 AllocSel, Receiver, Args); 2336 2337 // [Receiver init] 2338 Receiver = AllocRV.getScalarVal(); 2339 II = &CGM.getContext().Idents.get("init"); 2340 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2341 RValue InitRV = 2342 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2343 getContext().getObjCIdType(), 2344 InitSel, Receiver, Args); 2345 return InitRV.getScalarVal(); 2346 } 2347 2348 /// Produce the code to do a primitive release. 2349 /// [tmp drain]; 2350 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2351 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2352 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2353 CallArgList Args; 2354 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2355 getContext().VoidTy, DrainSel, Arg, Args); 2356 } 2357 2358 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2359 Address addr, 2360 QualType type) { 2361 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2362 } 2363 2364 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2365 Address addr, 2366 QualType type) { 2367 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2368 } 2369 2370 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2371 Address addr, 2372 QualType type) { 2373 CGF.EmitARCDestroyWeak(addr); 2374 } 2375 2376 namespace { 2377 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2378 llvm::Value *Token; 2379 2380 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2381 2382 void Emit(CodeGenFunction &CGF, Flags flags) override { 2383 CGF.EmitObjCAutoreleasePoolPop(Token); 2384 } 2385 }; 2386 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2387 llvm::Value *Token; 2388 2389 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2390 2391 void Emit(CodeGenFunction &CGF, Flags flags) override { 2392 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2393 } 2394 }; 2395 } 2396 2397 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2398 if (CGM.getLangOpts().ObjCAutoRefCount) 2399 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2400 else 2401 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2402 } 2403 2404 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2405 LValue lvalue, 2406 QualType type) { 2407 switch (type.getObjCLifetime()) { 2408 case Qualifiers::OCL_None: 2409 case Qualifiers::OCL_ExplicitNone: 2410 case Qualifiers::OCL_Strong: 2411 case Qualifiers::OCL_Autoreleasing: 2412 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue, 2413 SourceLocation()).getScalarVal(), 2414 false); 2415 2416 case Qualifiers::OCL_Weak: 2417 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2418 true); 2419 } 2420 2421 llvm_unreachable("impossible lifetime!"); 2422 } 2423 2424 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2425 const Expr *e) { 2426 e = e->IgnoreParens(); 2427 QualType type = e->getType(); 2428 2429 // If we're loading retained from a __strong xvalue, we can avoid 2430 // an extra retain/release pair by zeroing out the source of this 2431 // "move" operation. 2432 if (e->isXValue() && 2433 !type.isConstQualified() && 2434 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2435 // Emit the lvalue. 2436 LValue lv = CGF.EmitLValue(e); 2437 2438 // Load the object pointer. 2439 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2440 SourceLocation()).getScalarVal(); 2441 2442 // Set the source pointer to NULL. 2443 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2444 2445 return TryEmitResult(result, true); 2446 } 2447 2448 // As a very special optimization, in ARC++, if the l-value is the 2449 // result of a non-volatile assignment, do a simple retain of the 2450 // result of the call to objc_storeWeak instead of reloading. 2451 if (CGF.getLangOpts().CPlusPlus && 2452 !type.isVolatileQualified() && 2453 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2454 isa<BinaryOperator>(e) && 2455 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2456 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2457 2458 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2459 } 2460 2461 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2462 llvm::Value *value)> 2463 ValueTransform; 2464 2465 /// Insert code immediately after a call. 2466 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2467 llvm::Value *value, 2468 ValueTransform doAfterCall, 2469 ValueTransform doFallback) { 2470 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2471 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2472 2473 // Place the retain immediately following the call. 2474 CGF.Builder.SetInsertPoint(call->getParent(), 2475 ++llvm::BasicBlock::iterator(call)); 2476 value = doAfterCall(CGF, value); 2477 2478 CGF.Builder.restoreIP(ip); 2479 return value; 2480 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2481 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2482 2483 // Place the retain at the beginning of the normal destination block. 2484 llvm::BasicBlock *BB = invoke->getNormalDest(); 2485 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2486 value = doAfterCall(CGF, value); 2487 2488 CGF.Builder.restoreIP(ip); 2489 return value; 2490 2491 // Bitcasts can arise because of related-result returns. Rewrite 2492 // the operand. 2493 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2494 llvm::Value *operand = bitcast->getOperand(0); 2495 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2496 bitcast->setOperand(0, operand); 2497 return bitcast; 2498 2499 // Generic fall-back case. 2500 } else { 2501 // Retain using the non-block variant: we never need to do a copy 2502 // of a block that's been returned to us. 2503 return doFallback(CGF, value); 2504 } 2505 } 2506 2507 /// Given that the given expression is some sort of call (which does 2508 /// not return retained), emit a retain following it. 2509 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2510 const Expr *e) { 2511 llvm::Value *value = CGF.EmitScalarExpr(e); 2512 return emitARCOperationAfterCall(CGF, value, 2513 [](CodeGenFunction &CGF, llvm::Value *value) { 2514 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2515 }, 2516 [](CodeGenFunction &CGF, llvm::Value *value) { 2517 return CGF.EmitARCRetainNonBlock(value); 2518 }); 2519 } 2520 2521 /// Given that the given expression is some sort of call (which does 2522 /// not return retained), perform an unsafeClaim following it. 2523 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 2524 const Expr *e) { 2525 llvm::Value *value = CGF.EmitScalarExpr(e); 2526 return emitARCOperationAfterCall(CGF, value, 2527 [](CodeGenFunction &CGF, llvm::Value *value) { 2528 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 2529 }, 2530 [](CodeGenFunction &CGF, llvm::Value *value) { 2531 return value; 2532 }); 2533 } 2534 2535 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 2536 bool allowUnsafeClaim) { 2537 if (allowUnsafeClaim && 2538 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 2539 return emitARCUnsafeClaimCallResult(*this, E); 2540 } else { 2541 llvm::Value *value = emitARCRetainCallResult(*this, E); 2542 return EmitObjCConsumeObject(E->getType(), value); 2543 } 2544 } 2545 2546 /// Determine whether it might be important to emit a separate 2547 /// objc_retain_block on the result of the given expression, or 2548 /// whether it's okay to just emit it in a +1 context. 2549 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2550 assert(e->getType()->isBlockPointerType()); 2551 e = e->IgnoreParens(); 2552 2553 // For future goodness, emit block expressions directly in +1 2554 // contexts if we can. 2555 if (isa<BlockExpr>(e)) 2556 return false; 2557 2558 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2559 switch (cast->getCastKind()) { 2560 // Emitting these operations in +1 contexts is goodness. 2561 case CK_LValueToRValue: 2562 case CK_ARCReclaimReturnedObject: 2563 case CK_ARCConsumeObject: 2564 case CK_ARCProduceObject: 2565 return false; 2566 2567 // These operations preserve a block type. 2568 case CK_NoOp: 2569 case CK_BitCast: 2570 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2571 2572 // These operations are known to be bad (or haven't been considered). 2573 case CK_AnyPointerToBlockPointerCast: 2574 default: 2575 return true; 2576 } 2577 } 2578 2579 return true; 2580 } 2581 2582 namespace { 2583 /// A CRTP base class for emitting expressions of retainable object 2584 /// pointer type in ARC. 2585 template <typename Impl, typename Result> class ARCExprEmitter { 2586 protected: 2587 CodeGenFunction &CGF; 2588 Impl &asImpl() { return *static_cast<Impl*>(this); } 2589 2590 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 2591 2592 public: 2593 Result visit(const Expr *e); 2594 Result visitCastExpr(const CastExpr *e); 2595 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 2596 Result visitBinaryOperator(const BinaryOperator *e); 2597 Result visitBinAssign(const BinaryOperator *e); 2598 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 2599 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 2600 Result visitBinAssignWeak(const BinaryOperator *e); 2601 Result visitBinAssignStrong(const BinaryOperator *e); 2602 2603 // Minimal implementation: 2604 // Result visitLValueToRValue(const Expr *e) 2605 // Result visitConsumeObject(const Expr *e) 2606 // Result visitExtendBlockObject(const Expr *e) 2607 // Result visitReclaimReturnedObject(const Expr *e) 2608 // Result visitCall(const Expr *e) 2609 // Result visitExpr(const Expr *e) 2610 // 2611 // Result emitBitCast(Result result, llvm::Type *resultType) 2612 // llvm::Value *getValueOfResult(Result result) 2613 }; 2614 } 2615 2616 /// Try to emit a PseudoObjectExpr under special ARC rules. 2617 /// 2618 /// This massively duplicates emitPseudoObjectRValue. 2619 template <typename Impl, typename Result> 2620 Result 2621 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 2622 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2623 2624 // Find the result expression. 2625 const Expr *resultExpr = E->getResultExpr(); 2626 assert(resultExpr); 2627 Result result; 2628 2629 for (PseudoObjectExpr::const_semantics_iterator 2630 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2631 const Expr *semantic = *i; 2632 2633 // If this semantic expression is an opaque value, bind it 2634 // to the result of its source expression. 2635 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2636 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2637 OVMA opaqueData; 2638 2639 // If this semantic is the result of the pseudo-object 2640 // expression, try to evaluate the source as +1. 2641 if (ov == resultExpr) { 2642 assert(!OVMA::shouldBindAsLValue(ov)); 2643 result = asImpl().visit(ov->getSourceExpr()); 2644 opaqueData = OVMA::bind(CGF, ov, 2645 RValue::get(asImpl().getValueOfResult(result))); 2646 2647 // Otherwise, just bind it. 2648 } else { 2649 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2650 } 2651 opaques.push_back(opaqueData); 2652 2653 // Otherwise, if the expression is the result, evaluate it 2654 // and remember the result. 2655 } else if (semantic == resultExpr) { 2656 result = asImpl().visit(semantic); 2657 2658 // Otherwise, evaluate the expression in an ignored context. 2659 } else { 2660 CGF.EmitIgnoredExpr(semantic); 2661 } 2662 } 2663 2664 // Unbind all the opaques now. 2665 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2666 opaques[i].unbind(CGF); 2667 2668 return result; 2669 } 2670 2671 template <typename Impl, typename Result> 2672 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 2673 switch (e->getCastKind()) { 2674 2675 // No-op casts don't change the type, so we just ignore them. 2676 case CK_NoOp: 2677 return asImpl().visit(e->getSubExpr()); 2678 2679 // These casts can change the type. 2680 case CK_CPointerToObjCPointerCast: 2681 case CK_BlockPointerToObjCPointerCast: 2682 case CK_AnyPointerToBlockPointerCast: 2683 case CK_BitCast: { 2684 llvm::Type *resultType = CGF.ConvertType(e->getType()); 2685 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 2686 Result result = asImpl().visit(e->getSubExpr()); 2687 return asImpl().emitBitCast(result, resultType); 2688 } 2689 2690 // Handle some casts specially. 2691 case CK_LValueToRValue: 2692 return asImpl().visitLValueToRValue(e->getSubExpr()); 2693 case CK_ARCConsumeObject: 2694 return asImpl().visitConsumeObject(e->getSubExpr()); 2695 case CK_ARCExtendBlockObject: 2696 return asImpl().visitExtendBlockObject(e->getSubExpr()); 2697 case CK_ARCReclaimReturnedObject: 2698 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 2699 2700 // Otherwise, use the default logic. 2701 default: 2702 return asImpl().visitExpr(e); 2703 } 2704 } 2705 2706 template <typename Impl, typename Result> 2707 Result 2708 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 2709 switch (e->getOpcode()) { 2710 case BO_Comma: 2711 CGF.EmitIgnoredExpr(e->getLHS()); 2712 CGF.EnsureInsertPoint(); 2713 return asImpl().visit(e->getRHS()); 2714 2715 case BO_Assign: 2716 return asImpl().visitBinAssign(e); 2717 2718 default: 2719 return asImpl().visitExpr(e); 2720 } 2721 } 2722 2723 template <typename Impl, typename Result> 2724 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 2725 switch (e->getLHS()->getType().getObjCLifetime()) { 2726 case Qualifiers::OCL_ExplicitNone: 2727 return asImpl().visitBinAssignUnsafeUnretained(e); 2728 2729 case Qualifiers::OCL_Weak: 2730 return asImpl().visitBinAssignWeak(e); 2731 2732 case Qualifiers::OCL_Autoreleasing: 2733 return asImpl().visitBinAssignAutoreleasing(e); 2734 2735 case Qualifiers::OCL_Strong: 2736 return asImpl().visitBinAssignStrong(e); 2737 2738 case Qualifiers::OCL_None: 2739 return asImpl().visitExpr(e); 2740 } 2741 llvm_unreachable("bad ObjC ownership qualifier"); 2742 } 2743 2744 /// The default rule for __unsafe_unretained emits the RHS recursively, 2745 /// stores into the unsafe variable, and propagates the result outward. 2746 template <typename Impl, typename Result> 2747 Result ARCExprEmitter<Impl,Result>:: 2748 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 2749 // Recursively emit the RHS. 2750 // For __block safety, do this before emitting the LHS. 2751 Result result = asImpl().visit(e->getRHS()); 2752 2753 // Perform the store. 2754 LValue lvalue = 2755 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 2756 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 2757 lvalue); 2758 2759 return result; 2760 } 2761 2762 template <typename Impl, typename Result> 2763 Result 2764 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 2765 return asImpl().visitExpr(e); 2766 } 2767 2768 template <typename Impl, typename Result> 2769 Result 2770 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 2771 return asImpl().visitExpr(e); 2772 } 2773 2774 template <typename Impl, typename Result> 2775 Result 2776 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 2777 return asImpl().visitExpr(e); 2778 } 2779 2780 /// The general expression-emission logic. 2781 template <typename Impl, typename Result> 2782 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 2783 // We should *never* see a nested full-expression here, because if 2784 // we fail to emit at +1, our caller must not retain after we close 2785 // out the full-expression. This isn't as important in the unsafe 2786 // emitter. 2787 assert(!isa<ExprWithCleanups>(e)); 2788 2789 // Look through parens, __extension__, generic selection, etc. 2790 e = e->IgnoreParens(); 2791 2792 // Handle certain kinds of casts. 2793 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2794 return asImpl().visitCastExpr(ce); 2795 2796 // Handle the comma operator. 2797 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 2798 return asImpl().visitBinaryOperator(op); 2799 2800 // TODO: handle conditional operators here 2801 2802 // For calls and message sends, use the retained-call logic. 2803 // Delegate inits are a special case in that they're the only 2804 // returns-retained expression that *isn't* surrounded by 2805 // a consume. 2806 } else if (isa<CallExpr>(e) || 2807 (isa<ObjCMessageExpr>(e) && 2808 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2809 return asImpl().visitCall(e); 2810 2811 // Look through pseudo-object expressions. 2812 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2813 return asImpl().visitPseudoObjectExpr(pseudo); 2814 } 2815 2816 return asImpl().visitExpr(e); 2817 } 2818 2819 namespace { 2820 2821 /// An emitter for +1 results. 2822 struct ARCRetainExprEmitter : 2823 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 2824 2825 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 2826 2827 llvm::Value *getValueOfResult(TryEmitResult result) { 2828 return result.getPointer(); 2829 } 2830 2831 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 2832 llvm::Value *value = result.getPointer(); 2833 value = CGF.Builder.CreateBitCast(value, resultType); 2834 result.setPointer(value); 2835 return result; 2836 } 2837 2838 TryEmitResult visitLValueToRValue(const Expr *e) { 2839 return tryEmitARCRetainLoadOfScalar(CGF, e); 2840 } 2841 2842 /// For consumptions, just emit the subexpression and thus elide 2843 /// the retain/release pair. 2844 TryEmitResult visitConsumeObject(const Expr *e) { 2845 llvm::Value *result = CGF.EmitScalarExpr(e); 2846 return TryEmitResult(result, true); 2847 } 2848 2849 /// Block extends are net +0. Naively, we could just recurse on 2850 /// the subexpression, but actually we need to ensure that the 2851 /// value is copied as a block, so there's a little filter here. 2852 TryEmitResult visitExtendBlockObject(const Expr *e) { 2853 llvm::Value *result; // will be a +0 value 2854 2855 // If we can't safely assume the sub-expression will produce a 2856 // block-copied value, emit the sub-expression at +0. 2857 if (shouldEmitSeparateBlockRetain(e)) { 2858 result = CGF.EmitScalarExpr(e); 2859 2860 // Otherwise, try to emit the sub-expression at +1 recursively. 2861 } else { 2862 TryEmitResult subresult = asImpl().visit(e); 2863 2864 // If that produced a retained value, just use that. 2865 if (subresult.getInt()) { 2866 return subresult; 2867 } 2868 2869 // Otherwise it's +0. 2870 result = subresult.getPointer(); 2871 } 2872 2873 // Retain the object as a block. 2874 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2875 return TryEmitResult(result, true); 2876 } 2877 2878 /// For reclaims, emit the subexpression as a retained call and 2879 /// skip the consumption. 2880 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 2881 llvm::Value *result = emitARCRetainCallResult(CGF, e); 2882 return TryEmitResult(result, true); 2883 } 2884 2885 /// When we have an undecorated call, retroactively do a claim. 2886 TryEmitResult visitCall(const Expr *e) { 2887 llvm::Value *result = emitARCRetainCallResult(CGF, e); 2888 return TryEmitResult(result, true); 2889 } 2890 2891 // TODO: maybe special-case visitBinAssignWeak? 2892 2893 TryEmitResult visitExpr(const Expr *e) { 2894 // We didn't find an obvious production, so emit what we've got and 2895 // tell the caller that we didn't manage to retain. 2896 llvm::Value *result = CGF.EmitScalarExpr(e); 2897 return TryEmitResult(result, false); 2898 } 2899 }; 2900 } 2901 2902 static TryEmitResult 2903 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2904 return ARCRetainExprEmitter(CGF).visit(e); 2905 } 2906 2907 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2908 LValue lvalue, 2909 QualType type) { 2910 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2911 llvm::Value *value = result.getPointer(); 2912 if (!result.getInt()) 2913 value = CGF.EmitARCRetain(type, value); 2914 return value; 2915 } 2916 2917 /// EmitARCRetainScalarExpr - Semantically equivalent to 2918 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2919 /// best-effort attempt to peephole expressions that naturally produce 2920 /// retained objects. 2921 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2922 // The retain needs to happen within the full-expression. 2923 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2924 enterFullExpression(cleanups); 2925 RunCleanupsScope scope(*this); 2926 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 2927 } 2928 2929 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2930 llvm::Value *value = result.getPointer(); 2931 if (!result.getInt()) 2932 value = EmitARCRetain(e->getType(), value); 2933 return value; 2934 } 2935 2936 llvm::Value * 2937 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2938 // The retain needs to happen within the full-expression. 2939 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2940 enterFullExpression(cleanups); 2941 RunCleanupsScope scope(*this); 2942 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 2943 } 2944 2945 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2946 llvm::Value *value = result.getPointer(); 2947 if (result.getInt()) 2948 value = EmitARCAutorelease(value); 2949 else 2950 value = EmitARCRetainAutorelease(e->getType(), value); 2951 return value; 2952 } 2953 2954 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2955 llvm::Value *result; 2956 bool doRetain; 2957 2958 if (shouldEmitSeparateBlockRetain(e)) { 2959 result = EmitScalarExpr(e); 2960 doRetain = true; 2961 } else { 2962 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2963 result = subresult.getPointer(); 2964 doRetain = !subresult.getInt(); 2965 } 2966 2967 if (doRetain) 2968 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2969 return EmitObjCConsumeObject(e->getType(), result); 2970 } 2971 2972 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2973 // In ARC, retain and autorelease the expression. 2974 if (getLangOpts().ObjCAutoRefCount) { 2975 // Do so before running any cleanups for the full-expression. 2976 // EmitARCRetainAutoreleaseScalarExpr does this for us. 2977 return EmitARCRetainAutoreleaseScalarExpr(expr); 2978 } 2979 2980 // Otherwise, use the normal scalar-expression emission. The 2981 // exception machinery doesn't do anything special with the 2982 // exception like retaining it, so there's no safety associated with 2983 // only running cleanups after the throw has started, and when it 2984 // matters it tends to be substantially inferior code. 2985 return EmitScalarExpr(expr); 2986 } 2987 2988 namespace { 2989 2990 /// An emitter for assigning into an __unsafe_unretained context. 2991 struct ARCUnsafeUnretainedExprEmitter : 2992 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 2993 2994 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 2995 2996 llvm::Value *getValueOfResult(llvm::Value *value) { 2997 return value; 2998 } 2999 3000 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3001 return CGF.Builder.CreateBitCast(value, resultType); 3002 } 3003 3004 llvm::Value *visitLValueToRValue(const Expr *e) { 3005 return CGF.EmitScalarExpr(e); 3006 } 3007 3008 /// For consumptions, just emit the subexpression and perform the 3009 /// consumption like normal. 3010 llvm::Value *visitConsumeObject(const Expr *e) { 3011 llvm::Value *value = CGF.EmitScalarExpr(e); 3012 return CGF.EmitObjCConsumeObject(e->getType(), value); 3013 } 3014 3015 /// No special logic for block extensions. (This probably can't 3016 /// actually happen in this emitter, though.) 3017 llvm::Value *visitExtendBlockObject(const Expr *e) { 3018 return CGF.EmitARCExtendBlockObject(e); 3019 } 3020 3021 /// For reclaims, perform an unsafeClaim if that's enabled. 3022 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3023 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3024 } 3025 3026 /// When we have an undecorated call, just emit it without adding 3027 /// the unsafeClaim. 3028 llvm::Value *visitCall(const Expr *e) { 3029 return CGF.EmitScalarExpr(e); 3030 } 3031 3032 /// Just do normal scalar emission in the default case. 3033 llvm::Value *visitExpr(const Expr *e) { 3034 return CGF.EmitScalarExpr(e); 3035 } 3036 }; 3037 } 3038 3039 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3040 const Expr *e) { 3041 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3042 } 3043 3044 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3045 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3046 /// avoiding any spurious retains, including by performing reclaims 3047 /// with objc_unsafeClaimAutoreleasedReturnValue. 3048 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3049 // Look through full-expressions. 3050 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3051 enterFullExpression(cleanups); 3052 RunCleanupsScope scope(*this); 3053 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3054 } 3055 3056 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3057 } 3058 3059 std::pair<LValue,llvm::Value*> 3060 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3061 bool ignored) { 3062 // Evaluate the RHS first. If we're ignoring the result, assume 3063 // that we can emit at an unsafe +0. 3064 llvm::Value *value; 3065 if (ignored) { 3066 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3067 } else { 3068 value = EmitScalarExpr(e->getRHS()); 3069 } 3070 3071 // Emit the LHS and perform the store. 3072 LValue lvalue = EmitLValue(e->getLHS()); 3073 EmitStoreOfScalar(value, lvalue); 3074 3075 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3076 } 3077 3078 std::pair<LValue,llvm::Value*> 3079 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3080 bool ignored) { 3081 // Evaluate the RHS first. 3082 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3083 llvm::Value *value = result.getPointer(); 3084 3085 bool hasImmediateRetain = result.getInt(); 3086 3087 // If we didn't emit a retained object, and the l-value is of block 3088 // type, then we need to emit the block-retain immediately in case 3089 // it invalidates the l-value. 3090 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3091 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3092 hasImmediateRetain = true; 3093 } 3094 3095 LValue lvalue = EmitLValue(e->getLHS()); 3096 3097 // If the RHS was emitted retained, expand this. 3098 if (hasImmediateRetain) { 3099 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3100 EmitStoreOfScalar(value, lvalue); 3101 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3102 } else { 3103 value = EmitARCStoreStrong(lvalue, value, ignored); 3104 } 3105 3106 return std::pair<LValue,llvm::Value*>(lvalue, value); 3107 } 3108 3109 std::pair<LValue,llvm::Value*> 3110 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3111 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3112 LValue lvalue = EmitLValue(e->getLHS()); 3113 3114 EmitStoreOfScalar(value, lvalue); 3115 3116 return std::pair<LValue,llvm::Value*>(lvalue, value); 3117 } 3118 3119 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3120 const ObjCAutoreleasePoolStmt &ARPS) { 3121 const Stmt *subStmt = ARPS.getSubStmt(); 3122 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3123 3124 CGDebugInfo *DI = getDebugInfo(); 3125 if (DI) 3126 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3127 3128 // Keep track of the current cleanup stack depth. 3129 RunCleanupsScope Scope(*this); 3130 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3131 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3132 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3133 } else { 3134 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3135 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3136 } 3137 3138 for (const auto *I : S.body()) 3139 EmitStmt(I); 3140 3141 if (DI) 3142 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3143 } 3144 3145 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3146 /// make sure it survives garbage collection until this point. 3147 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3148 // We just use an inline assembly. 3149 llvm::FunctionType *extenderType 3150 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3151 llvm::Value *extender 3152 = llvm::InlineAsm::get(extenderType, 3153 /* assembly */ "", 3154 /* constraints */ "r", 3155 /* side effects */ true); 3156 3157 object = Builder.CreateBitCast(object, VoidPtrTy); 3158 EmitNounwindRuntimeCall(extender, object); 3159 } 3160 3161 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3162 /// non-trivial copy assignment function, produce following helper function. 3163 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3164 /// 3165 llvm::Constant * 3166 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3167 const ObjCPropertyImplDecl *PID) { 3168 if (!getLangOpts().CPlusPlus || 3169 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3170 return nullptr; 3171 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3172 if (!Ty->isRecordType()) 3173 return nullptr; 3174 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3175 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3176 return nullptr; 3177 llvm::Constant *HelperFn = nullptr; 3178 if (hasTrivialSetExpr(PID)) 3179 return nullptr; 3180 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3181 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3182 return HelperFn; 3183 3184 ASTContext &C = getContext(); 3185 IdentifierInfo *II 3186 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3187 FunctionDecl *FD = FunctionDecl::Create(C, 3188 C.getTranslationUnitDecl(), 3189 SourceLocation(), 3190 SourceLocation(), II, C.VoidTy, 3191 nullptr, SC_Static, 3192 false, 3193 false); 3194 3195 QualType DestTy = C.getPointerType(Ty); 3196 QualType SrcTy = Ty; 3197 SrcTy.addConst(); 3198 SrcTy = C.getPointerType(SrcTy); 3199 3200 FunctionArgList args; 3201 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 3202 args.push_back(&dstDecl); 3203 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 3204 args.push_back(&srcDecl); 3205 3206 const CGFunctionInfo &FI = 3207 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); 3208 3209 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3210 3211 llvm::Function *Fn = 3212 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3213 "__assign_helper_atomic_property_", 3214 &CGM.getModule()); 3215 3216 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 3217 3218 StartFunction(FD, C.VoidTy, Fn, FI, args); 3219 3220 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 3221 VK_RValue, SourceLocation()); 3222 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 3223 VK_LValue, OK_Ordinary, SourceLocation()); 3224 3225 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 3226 VK_RValue, SourceLocation()); 3227 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3228 VK_LValue, OK_Ordinary, SourceLocation()); 3229 3230 Expr *Args[2] = { &DST, &SRC }; 3231 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3232 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 3233 Args, DestTy->getPointeeType(), 3234 VK_LValue, SourceLocation(), false); 3235 3236 EmitStmt(&TheCall); 3237 3238 FinishFunction(); 3239 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3240 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3241 return HelperFn; 3242 } 3243 3244 llvm::Constant * 3245 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3246 const ObjCPropertyImplDecl *PID) { 3247 if (!getLangOpts().CPlusPlus || 3248 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3249 return nullptr; 3250 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3251 QualType Ty = PD->getType(); 3252 if (!Ty->isRecordType()) 3253 return nullptr; 3254 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3255 return nullptr; 3256 llvm::Constant *HelperFn = nullptr; 3257 3258 if (hasTrivialGetExpr(PID)) 3259 return nullptr; 3260 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3261 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3262 return HelperFn; 3263 3264 3265 ASTContext &C = getContext(); 3266 IdentifierInfo *II 3267 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3268 FunctionDecl *FD = FunctionDecl::Create(C, 3269 C.getTranslationUnitDecl(), 3270 SourceLocation(), 3271 SourceLocation(), II, C.VoidTy, 3272 nullptr, SC_Static, 3273 false, 3274 false); 3275 3276 QualType DestTy = C.getPointerType(Ty); 3277 QualType SrcTy = Ty; 3278 SrcTy.addConst(); 3279 SrcTy = C.getPointerType(SrcTy); 3280 3281 FunctionArgList args; 3282 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 3283 args.push_back(&dstDecl); 3284 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 3285 args.push_back(&srcDecl); 3286 3287 const CGFunctionInfo &FI = 3288 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); 3289 3290 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3291 3292 llvm::Function *Fn = 3293 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3294 "__copy_helper_atomic_property_", &CGM.getModule()); 3295 3296 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 3297 3298 StartFunction(FD, C.VoidTy, Fn, FI, args); 3299 3300 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 3301 VK_RValue, SourceLocation()); 3302 3303 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3304 VK_LValue, OK_Ordinary, SourceLocation()); 3305 3306 CXXConstructExpr *CXXConstExpr = 3307 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3308 3309 SmallVector<Expr*, 4> ConstructorArgs; 3310 ConstructorArgs.push_back(&SRC); 3311 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3312 CXXConstExpr->arg_end()); 3313 3314 CXXConstructExpr *TheCXXConstructExpr = 3315 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3316 CXXConstExpr->getConstructor(), 3317 CXXConstExpr->isElidable(), 3318 ConstructorArgs, 3319 CXXConstExpr->hadMultipleCandidates(), 3320 CXXConstExpr->isListInitialization(), 3321 CXXConstExpr->isStdInitListInitialization(), 3322 CXXConstExpr->requiresZeroInitialization(), 3323 CXXConstExpr->getConstructionKind(), 3324 SourceRange()); 3325 3326 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 3327 VK_RValue, SourceLocation()); 3328 3329 RValue DV = EmitAnyExpr(&DstExpr); 3330 CharUnits Alignment 3331 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3332 EmitAggExpr(TheCXXConstructExpr, 3333 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3334 Qualifiers(), 3335 AggValueSlot::IsDestructed, 3336 AggValueSlot::DoesNotNeedGCBarriers, 3337 AggValueSlot::IsNotAliased)); 3338 3339 FinishFunction(); 3340 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3341 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3342 return HelperFn; 3343 } 3344 3345 llvm::Value * 3346 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3347 // Get selectors for retain/autorelease. 3348 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3349 Selector CopySelector = 3350 getContext().Selectors.getNullarySelector(CopyID); 3351 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3352 Selector AutoreleaseSelector = 3353 getContext().Selectors.getNullarySelector(AutoreleaseID); 3354 3355 // Emit calls to retain/autorelease. 3356 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3357 llvm::Value *Val = Block; 3358 RValue Result; 3359 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3360 Ty, CopySelector, 3361 Val, CallArgList(), nullptr, nullptr); 3362 Val = Result.getScalarVal(); 3363 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3364 Ty, AutoreleaseSelector, 3365 Val, CallArgList(), nullptr, nullptr); 3366 Val = Result.getScalarVal(); 3367 return Val; 3368 } 3369 3370 3371 CGObjCRuntime::~CGObjCRuntime() {} 3372