1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/InlineAsm.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
30 static TryEmitResult
31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
32 
33 /// Given the address of a variable of pointer type, find the correct
34 /// null to store into it.
35 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
36   llvm::Type *type =
37     cast<llvm::PointerType>(addr->getType())->getElementType();
38   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
39 }
40 
41 /// Emits an instance of NSConstantString representing the object.
42 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
43 {
44   llvm::Constant *C =
45       CGM.getObjCRuntime().GenerateConstantString(E->getString());
46   // FIXME: This bitcast should just be made an invariant on the Runtime.
47   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
48 }
49 
50 /// Emit a selector.
51 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
52   // Untyped selector.
53   // Note that this implementation allows for non-constant strings to be passed
54   // as arguments to @selector().  Currently, the only thing preventing this
55   // behaviour is the type checking in the front end.
56   return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector());
57 }
58 
59 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
60   // FIXME: This should pass the Decl not the name.
61   return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol());
62 }
63 
64 /// \brief Adjust the type of the result of an Objective-C message send
65 /// expression when the method has a related result type.
66 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
67                                       const Expr *E,
68                                       const ObjCMethodDecl *Method,
69                                       RValue Result) {
70   if (!Method)
71     return Result;
72 
73   if (!Method->hasRelatedResultType() ||
74       CGF.getContext().hasSameType(E->getType(), Method->getResultType()) ||
75       !Result.isScalar())
76     return Result;
77 
78   // We have applied a related result type. Cast the rvalue appropriately.
79   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
80                                                CGF.ConvertType(E->getType())));
81 }
82 
83 /// Decide whether to extend the lifetime of the receiver of a
84 /// returns-inner-pointer message.
85 static bool
86 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
87   switch (message->getReceiverKind()) {
88 
89   // For a normal instance message, we should extend unless the
90   // receiver is loaded from a variable with precise lifetime.
91   case ObjCMessageExpr::Instance: {
92     const Expr *receiver = message->getInstanceReceiver();
93     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
94     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
95     receiver = ice->getSubExpr()->IgnoreParens();
96 
97     // Only __strong variables.
98     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
99       return true;
100 
101     // All ivars and fields have precise lifetime.
102     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
103       return false;
104 
105     // Otherwise, check for variables.
106     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
107     if (!declRef) return true;
108     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
109     if (!var) return true;
110 
111     // All variables have precise lifetime except local variables with
112     // automatic storage duration that aren't specially marked.
113     return (var->hasLocalStorage() &&
114             !var->hasAttr<ObjCPreciseLifetimeAttr>());
115   }
116 
117   case ObjCMessageExpr::Class:
118   case ObjCMessageExpr::SuperClass:
119     // It's never necessary for class objects.
120     return false;
121 
122   case ObjCMessageExpr::SuperInstance:
123     // We generally assume that 'self' lives throughout a method call.
124     return false;
125   }
126 
127   llvm_unreachable("invalid receiver kind");
128 }
129 
130 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
131                                             ReturnValueSlot Return) {
132   // Only the lookup mechanism and first two arguments of the method
133   // implementation vary between runtimes.  We can get the receiver and
134   // arguments in generic code.
135 
136   bool isDelegateInit = E->isDelegateInitCall();
137 
138   const ObjCMethodDecl *method = E->getMethodDecl();
139 
140   // We don't retain the receiver in delegate init calls, and this is
141   // safe because the receiver value is always loaded from 'self',
142   // which we zero out.  We don't want to Block_copy block receivers,
143   // though.
144   bool retainSelf =
145     (!isDelegateInit &&
146      CGM.getLangOptions().ObjCAutoRefCount &&
147      method &&
148      method->hasAttr<NSConsumesSelfAttr>());
149 
150   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
151   bool isSuperMessage = false;
152   bool isClassMessage = false;
153   ObjCInterfaceDecl *OID = 0;
154   // Find the receiver
155   QualType ReceiverType;
156   llvm::Value *Receiver = 0;
157   switch (E->getReceiverKind()) {
158   case ObjCMessageExpr::Instance:
159     ReceiverType = E->getInstanceReceiver()->getType();
160     if (retainSelf) {
161       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
162                                                    E->getInstanceReceiver());
163       Receiver = ter.getPointer();
164       if (ter.getInt()) retainSelf = false;
165     } else
166       Receiver = EmitScalarExpr(E->getInstanceReceiver());
167     break;
168 
169   case ObjCMessageExpr::Class: {
170     ReceiverType = E->getClassReceiver();
171     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
172     assert(ObjTy && "Invalid Objective-C class message send");
173     OID = ObjTy->getInterface();
174     assert(OID && "Invalid Objective-C class message send");
175     Receiver = Runtime.GetClass(Builder, OID);
176     isClassMessage = true;
177     break;
178   }
179 
180   case ObjCMessageExpr::SuperInstance:
181     ReceiverType = E->getSuperType();
182     Receiver = LoadObjCSelf();
183     isSuperMessage = true;
184     break;
185 
186   case ObjCMessageExpr::SuperClass:
187     ReceiverType = E->getSuperType();
188     Receiver = LoadObjCSelf();
189     isSuperMessage = true;
190     isClassMessage = true;
191     break;
192   }
193 
194   if (retainSelf)
195     Receiver = EmitARCRetainNonBlock(Receiver);
196 
197   // In ARC, we sometimes want to "extend the lifetime"
198   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
199   // messages.
200   if (getLangOptions().ObjCAutoRefCount && method &&
201       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
202       shouldExtendReceiverForInnerPointerMessage(E))
203     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
204 
205   QualType ResultType =
206     method ? method->getResultType() : E->getType();
207 
208   CallArgList Args;
209   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
210 
211   // For delegate init calls in ARC, do an unsafe store of null into
212   // self.  This represents the call taking direct ownership of that
213   // value.  We have to do this after emitting the other call
214   // arguments because they might also reference self, but we don't
215   // have to worry about any of them modifying self because that would
216   // be an undefined read and write of an object in unordered
217   // expressions.
218   if (isDelegateInit) {
219     assert(getLangOptions().ObjCAutoRefCount &&
220            "delegate init calls should only be marked in ARC");
221 
222     // Do an unsafe store of null into self.
223     llvm::Value *selfAddr =
224       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
225     assert(selfAddr && "no self entry for a delegate init call?");
226 
227     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
228   }
229 
230   RValue result;
231   if (isSuperMessage) {
232     // super is only valid in an Objective-C method
233     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
234     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
235     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
236                                               E->getSelector(),
237                                               OMD->getClassInterface(),
238                                               isCategoryImpl,
239                                               Receiver,
240                                               isClassMessage,
241                                               Args,
242                                               method);
243   } else {
244     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
245                                          E->getSelector(),
246                                          Receiver, Args, OID,
247                                          method);
248   }
249 
250   // For delegate init calls in ARC, implicitly store the result of
251   // the call back into self.  This takes ownership of the value.
252   if (isDelegateInit) {
253     llvm::Value *selfAddr =
254       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
255     llvm::Value *newSelf = result.getScalarVal();
256 
257     // The delegate return type isn't necessarily a matching type; in
258     // fact, it's quite likely to be 'id'.
259     llvm::Type *selfTy =
260       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
261     newSelf = Builder.CreateBitCast(newSelf, selfTy);
262 
263     Builder.CreateStore(newSelf, selfAddr);
264   }
265 
266   return AdjustRelatedResultType(*this, E, method, result);
267 }
268 
269 namespace {
270 struct FinishARCDealloc : EHScopeStack::Cleanup {
271   void Emit(CodeGenFunction &CGF, Flags flags) {
272     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
273 
274     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
275     const ObjCInterfaceDecl *iface = impl->getClassInterface();
276     if (!iface->getSuperClass()) return;
277 
278     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
279 
280     // Call [super dealloc] if we have a superclass.
281     llvm::Value *self = CGF.LoadObjCSelf();
282 
283     CallArgList args;
284     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
285                                                       CGF.getContext().VoidTy,
286                                                       method->getSelector(),
287                                                       iface,
288                                                       isCategory,
289                                                       self,
290                                                       /*is class msg*/ false,
291                                                       args,
292                                                       method);
293   }
294 };
295 }
296 
297 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
298 /// the LLVM function and sets the other context used by
299 /// CodeGenFunction.
300 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
301                                       const ObjCContainerDecl *CD,
302                                       SourceLocation StartLoc) {
303   FunctionArgList args;
304   // Check if we should generate debug info for this method.
305   if (CGM.getModuleDebugInfo() && !OMD->hasAttr<NoDebugAttr>())
306     DebugInfo = CGM.getModuleDebugInfo();
307 
308   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
309 
310   const CGFunctionInfo &FI = CGM.getTypes().getFunctionInfo(OMD);
311   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
312 
313   args.push_back(OMD->getSelfDecl());
314   args.push_back(OMD->getCmdDecl());
315 
316   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
317        E = OMD->param_end(); PI != E; ++PI)
318     args.push_back(*PI);
319 
320   CurGD = OMD;
321 
322   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
323 
324   // In ARC, certain methods get an extra cleanup.
325   if (CGM.getLangOptions().ObjCAutoRefCount &&
326       OMD->isInstanceMethod() &&
327       OMD->getSelector().isUnarySelector()) {
328     const IdentifierInfo *ident =
329       OMD->getSelector().getIdentifierInfoForSlot(0);
330     if (ident->isStr("dealloc"))
331       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
332   }
333 }
334 
335 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
336                                               LValue lvalue, QualType type);
337 
338 /// Generate an Objective-C method.  An Objective-C method is a C function with
339 /// its pointer, name, and types registered in the class struture.
340 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
341   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
342   EmitStmt(OMD->getBody());
343   FinishFunction(OMD->getBodyRBrace());
344 }
345 
346 /// emitStructGetterCall - Call the runtime function to load a property
347 /// into the return value slot.
348 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
349                                  bool isAtomic, bool hasStrong) {
350   ASTContext &Context = CGF.getContext();
351 
352   llvm::Value *src =
353     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
354                           ivar, 0).getAddress();
355 
356   // objc_copyStruct (ReturnValue, &structIvar,
357   //                  sizeof (Type of Ivar), isAtomic, false);
358   CallArgList args;
359 
360   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
361   args.add(RValue::get(dest), Context.VoidPtrTy);
362 
363   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
364   args.add(RValue::get(src), Context.VoidPtrTy);
365 
366   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
367   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
368   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
369   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
370 
371   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
372   CGF.EmitCall(CGF.getTypes().getFunctionInfo(Context.VoidTy, args,
373                                               FunctionType::ExtInfo()),
374                fn, ReturnValueSlot(), args);
375 }
376 
377 /// Determine whether the given architecture supports unaligned atomic
378 /// accesses.  They don't have to be fast, just faster than a function
379 /// call and a mutex.
380 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
381   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
382   // currently supported by the backend.)
383   return 0;
384 }
385 
386 /// Return the maximum size that permits atomic accesses for the given
387 /// architecture.
388 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
389                                         llvm::Triple::ArchType arch) {
390   // ARM has 8-byte atomic accesses, but it's not clear whether we
391   // want to rely on them here.
392 
393   // In the default case, just assume that any size up to a pointer is
394   // fine given adequate alignment.
395   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
396 }
397 
398 namespace {
399   class PropertyImplStrategy {
400   public:
401     enum StrategyKind {
402       /// The 'native' strategy is to use the architecture's provided
403       /// reads and writes.
404       Native,
405 
406       /// Use objc_setProperty and objc_getProperty.
407       GetSetProperty,
408 
409       /// Use objc_setProperty for the setter, but use expression
410       /// evaluation for the getter.
411       SetPropertyAndExpressionGet,
412 
413       /// Use objc_copyStruct.
414       CopyStruct,
415 
416       /// The 'expression' strategy is to emit normal assignment or
417       /// lvalue-to-rvalue expressions.
418       Expression
419     };
420 
421     StrategyKind getKind() const { return StrategyKind(Kind); }
422 
423     bool hasStrongMember() const { return HasStrong; }
424     bool isAtomic() const { return IsAtomic; }
425     bool isCopy() const { return IsCopy; }
426 
427     CharUnits getIvarSize() const { return IvarSize; }
428     CharUnits getIvarAlignment() const { return IvarAlignment; }
429 
430     PropertyImplStrategy(CodeGenModule &CGM,
431                          const ObjCPropertyImplDecl *propImpl);
432 
433   private:
434     unsigned Kind : 8;
435     unsigned IsAtomic : 1;
436     unsigned IsCopy : 1;
437     unsigned HasStrong : 1;
438 
439     CharUnits IvarSize;
440     CharUnits IvarAlignment;
441   };
442 }
443 
444 /// Pick an implementation strategy for the the given property synthesis.
445 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
446                                      const ObjCPropertyImplDecl *propImpl) {
447   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
448   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
449 
450   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
451   IsAtomic = prop->isAtomic();
452   HasStrong = false; // doesn't matter here.
453 
454   // Evaluate the ivar's size and alignment.
455   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
456   QualType ivarType = ivar->getType();
457   llvm::tie(IvarSize, IvarAlignment)
458     = CGM.getContext().getTypeInfoInChars(ivarType);
459 
460   // If we have a copy property, we always have to use getProperty/setProperty.
461   // TODO: we could actually use setProperty and an expression for non-atomics.
462   if (IsCopy) {
463     Kind = GetSetProperty;
464     return;
465   }
466 
467   // Handle retain.
468   if (setterKind == ObjCPropertyDecl::Retain) {
469     // In GC-only, there's nothing special that needs to be done.
470     if (CGM.getLangOptions().getGC() == LangOptions::GCOnly) {
471       // fallthrough
472 
473     // In ARC, if the property is non-atomic, use expression emission,
474     // which translates to objc_storeStrong.  This isn't required, but
475     // it's slightly nicer.
476     } else if (CGM.getLangOptions().ObjCAutoRefCount && !IsAtomic) {
477       Kind = Expression;
478       return;
479 
480     // Otherwise, we need to at least use setProperty.  However, if
481     // the property isn't atomic, we can use normal expression
482     // emission for the getter.
483     } else if (!IsAtomic) {
484       Kind = SetPropertyAndExpressionGet;
485       return;
486 
487     // Otherwise, we have to use both setProperty and getProperty.
488     } else {
489       Kind = GetSetProperty;
490       return;
491     }
492   }
493 
494   // If we're not atomic, just use expression accesses.
495   if (!IsAtomic) {
496     Kind = Expression;
497     return;
498   }
499 
500   // Properties on bitfield ivars need to be emitted using expression
501   // accesses even if they're nominally atomic.
502   if (ivar->isBitField()) {
503     Kind = Expression;
504     return;
505   }
506 
507   // GC-qualified or ARC-qualified ivars need to be emitted as
508   // expressions.  This actually works out to being atomic anyway,
509   // except for ARC __strong, but that should trigger the above code.
510   if (ivarType.hasNonTrivialObjCLifetime() ||
511       (CGM.getLangOptions().getGC() &&
512        CGM.getContext().getObjCGCAttrKind(ivarType))) {
513     Kind = Expression;
514     return;
515   }
516 
517   // Compute whether the ivar has strong members.
518   if (CGM.getLangOptions().getGC())
519     if (const RecordType *recordType = ivarType->getAs<RecordType>())
520       HasStrong = recordType->getDecl()->hasObjectMember();
521 
522   // We can never access structs with object members with a native
523   // access, because we need to use write barriers.  This is what
524   // objc_copyStruct is for.
525   if (HasStrong) {
526     Kind = CopyStruct;
527     return;
528   }
529 
530   // Otherwise, this is target-dependent and based on the size and
531   // alignment of the ivar.
532 
533   // If the size of the ivar is not a power of two, give up.  We don't
534   // want to get into the business of doing compare-and-swaps.
535   if (!IvarSize.isPowerOfTwo()) {
536     Kind = CopyStruct;
537     return;
538   }
539 
540   llvm::Triple::ArchType arch =
541     CGM.getContext().getTargetInfo().getTriple().getArch();
542 
543   // Most architectures require memory to fit within a single cache
544   // line, so the alignment has to be at least the size of the access.
545   // Otherwise we have to grab a lock.
546   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
547     Kind = CopyStruct;
548     return;
549   }
550 
551   // If the ivar's size exceeds the architecture's maximum atomic
552   // access size, we have to use CopyStruct.
553   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
554     Kind = CopyStruct;
555     return;
556   }
557 
558   // Otherwise, we can use native loads and stores.
559   Kind = Native;
560 }
561 
562 /// GenerateObjCGetter - Generate an Objective-C property getter
563 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize
564 /// is illegal within a category.
565 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
566                                          const ObjCPropertyImplDecl *PID) {
567   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
568   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
569   assert(OMD && "Invalid call to generate getter (empty method)");
570   StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart());
571 
572   generateObjCGetterBody(IMP, PID);
573 
574   FinishFunction();
575 }
576 
577 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
578   const Expr *getter = propImpl->getGetterCXXConstructor();
579   if (!getter) return true;
580 
581   // Sema only makes only of these when the ivar has a C++ class type,
582   // so the form is pretty constrained.
583 
584   // If the property has a reference type, we might just be binding a
585   // reference, in which case the result will be a gl-value.  We should
586   // treat this as a non-trivial operation.
587   if (getter->isGLValue())
588     return false;
589 
590   // If we selected a trivial copy-constructor, we're okay.
591   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
592     return (construct->getConstructor()->isTrivial());
593 
594   // The constructor might require cleanups (in which case it's never
595   // trivial).
596   assert(isa<ExprWithCleanups>(getter));
597   return false;
598 }
599 
600 void
601 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
602                                         const ObjCPropertyImplDecl *propImpl) {
603   // If there's a non-trivial 'get' expression, we just have to emit that.
604   if (!hasTrivialGetExpr(propImpl)) {
605     ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
606                    /*nrvo*/ 0);
607     EmitReturnStmt(ret);
608     return;
609   }
610 
611   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
612   QualType propType = prop->getType();
613   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
614 
615   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
616 
617   // Pick an implementation strategy.
618   PropertyImplStrategy strategy(CGM, propImpl);
619   switch (strategy.getKind()) {
620   case PropertyImplStrategy::Native: {
621     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
622 
623     // Currently, all atomic accesses have to be through integer
624     // types, so there's no point in trying to pick a prettier type.
625     llvm::Type *bitcastType =
626       llvm::Type::getIntNTy(getLLVMContext(),
627                             getContext().toBits(strategy.getIvarSize()));
628     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
629 
630     // Perform an atomic load.  This does not impose ordering constraints.
631     llvm::Value *ivarAddr = LV.getAddress();
632     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
633     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
634     load->setAlignment(strategy.getIvarAlignment().getQuantity());
635     load->setAtomic(llvm::Unordered);
636 
637     // Store that value into the return address.  Doing this with a
638     // bitcast is likely to produce some pretty ugly IR, but it's not
639     // the *most* terrible thing in the world.
640     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
641 
642     // Make sure we don't do an autorelease.
643     AutoreleaseResult = false;
644     return;
645   }
646 
647   case PropertyImplStrategy::GetSetProperty: {
648     llvm::Value *getPropertyFn =
649       CGM.getObjCRuntime().GetPropertyGetFunction();
650     if (!getPropertyFn) {
651       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
652       return;
653     }
654 
655     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
656     // FIXME: Can't this be simpler? This might even be worse than the
657     // corresponding gcc code.
658     llvm::Value *cmd =
659       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
660     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
661     llvm::Value *ivarOffset =
662       EmitIvarOffset(classImpl->getClassInterface(), ivar);
663 
664     CallArgList args;
665     args.add(RValue::get(self), getContext().getObjCIdType());
666     args.add(RValue::get(cmd), getContext().getObjCSelType());
667     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
668     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
669              getContext().BoolTy);
670 
671     // FIXME: We shouldn't need to get the function info here, the
672     // runtime already should have computed it to build the function.
673     RValue RV = EmitCall(getTypes().getFunctionInfo(propType, args,
674                                                     FunctionType::ExtInfo()),
675                          getPropertyFn, ReturnValueSlot(), args);
676 
677     // We need to fix the type here. Ivars with copy & retain are
678     // always objects so we don't need to worry about complex or
679     // aggregates.
680     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
681                                            getTypes().ConvertType(propType)));
682 
683     EmitReturnOfRValue(RV, propType);
684 
685     // objc_getProperty does an autorelease, so we should suppress ours.
686     AutoreleaseResult = false;
687 
688     return;
689   }
690 
691   case PropertyImplStrategy::CopyStruct:
692     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
693                          strategy.hasStrongMember());
694     return;
695 
696   case PropertyImplStrategy::Expression:
697   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
698     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
699 
700     QualType ivarType = ivar->getType();
701     if (ivarType->isAnyComplexType()) {
702       ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(),
703                                                LV.isVolatileQualified());
704       StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified());
705     } else if (hasAggregateLLVMType(ivarType)) {
706       // The return value slot is guaranteed to not be aliased, but
707       // that's not necessarily the same as "on the stack", so
708       // we still potentially need objc_memmove_collectable.
709       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
710     } else {
711       llvm::Value *value;
712       if (propType->isReferenceType()) {
713         value = LV.getAddress();
714       } else {
715         // We want to load and autoreleaseReturnValue ARC __weak ivars.
716         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
717           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
718 
719         // Otherwise we want to do a simple load, suppressing the
720         // final autorelease.
721         } else {
722           value = EmitLoadOfLValue(LV).getScalarVal();
723           AutoreleaseResult = false;
724         }
725 
726         value = Builder.CreateBitCast(value, ConvertType(propType));
727       }
728 
729       EmitReturnOfRValue(RValue::get(value), propType);
730     }
731     return;
732   }
733 
734   }
735   llvm_unreachable("bad @property implementation strategy!");
736 }
737 
738 /// emitStructSetterCall - Call the runtime function to store the value
739 /// from the first formal parameter into the given ivar.
740 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
741                                  ObjCIvarDecl *ivar) {
742   // objc_copyStruct (&structIvar, &Arg,
743   //                  sizeof (struct something), true, false);
744   CallArgList args;
745 
746   // The first argument is the address of the ivar.
747   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
748                                                 CGF.LoadObjCSelf(), ivar, 0)
749     .getAddress();
750   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
751   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
752 
753   // The second argument is the address of the parameter variable.
754   ParmVarDecl *argVar = *OMD->param_begin();
755   DeclRefExpr argRef(argVar, argVar->getType(), VK_LValue, SourceLocation());
756   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
757   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
758   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
759 
760   // The third argument is the sizeof the type.
761   llvm::Value *size =
762     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
763   args.add(RValue::get(size), CGF.getContext().getSizeType());
764 
765   // The fourth argument is the 'isAtomic' flag.
766   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
767 
768   // The fifth argument is the 'hasStrong' flag.
769   // FIXME: should this really always be false?
770   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
771 
772   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
773   CGF.EmitCall(CGF.getTypes().getFunctionInfo(CGF.getContext().VoidTy, args,
774                                               FunctionType::ExtInfo()),
775                copyStructFn, ReturnValueSlot(), args);
776 }
777 
778 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
779   Expr *setter = PID->getSetterCXXAssignment();
780   if (!setter) return true;
781 
782   // Sema only makes only of these when the ivar has a C++ class type,
783   // so the form is pretty constrained.
784 
785   // An operator call is trivial if the function it calls is trivial.
786   // This also implies that there's nothing non-trivial going on with
787   // the arguments, because operator= can only be trivial if it's a
788   // synthesized assignment operator and therefore both parameters are
789   // references.
790   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
791     if (const FunctionDecl *callee
792           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
793       if (callee->isTrivial())
794         return true;
795     return false;
796   }
797 
798   assert(isa<ExprWithCleanups>(setter));
799   return false;
800 }
801 
802 void
803 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
804                                         const ObjCPropertyImplDecl *propImpl) {
805   // Just use the setter expression if Sema gave us one and it's
806   // non-trivial.  There's no way to do this atomically.
807   if (!hasTrivialSetExpr(propImpl)) {
808     EmitStmt(propImpl->getSetterCXXAssignment());
809     return;
810   }
811 
812   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
813   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
814   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
815 
816   PropertyImplStrategy strategy(CGM, propImpl);
817   switch (strategy.getKind()) {
818   case PropertyImplStrategy::Native: {
819     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
820 
821     LValue ivarLValue =
822       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
823     llvm::Value *ivarAddr = ivarLValue.getAddress();
824 
825     // Currently, all atomic accesses have to be through integer
826     // types, so there's no point in trying to pick a prettier type.
827     llvm::Type *bitcastType =
828       llvm::Type::getIntNTy(getLLVMContext(),
829                             getContext().toBits(strategy.getIvarSize()));
830     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
831 
832     // Cast both arguments to the chosen operation type.
833     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
834     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
835 
836     // This bitcast load is likely to cause some nasty IR.
837     llvm::Value *load = Builder.CreateLoad(argAddr);
838 
839     // Perform an atomic store.  There are no memory ordering requirements.
840     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
841     store->setAlignment(strategy.getIvarAlignment().getQuantity());
842     store->setAtomic(llvm::Unordered);
843     return;
844   }
845 
846   case PropertyImplStrategy::GetSetProperty:
847   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
848     llvm::Value *setPropertyFn =
849       CGM.getObjCRuntime().GetPropertySetFunction();
850     if (!setPropertyFn) {
851       CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
852       return;
853     }
854 
855     // Emit objc_setProperty((id) self, _cmd, offset, arg,
856     //                       <is-atomic>, <is-copy>).
857     llvm::Value *cmd =
858       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
859     llvm::Value *self =
860       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
861     llvm::Value *ivarOffset =
862       EmitIvarOffset(classImpl->getClassInterface(), ivar);
863     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
864     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
865 
866     CallArgList args;
867     args.add(RValue::get(self), getContext().getObjCIdType());
868     args.add(RValue::get(cmd), getContext().getObjCSelType());
869     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
870     args.add(RValue::get(arg), getContext().getObjCIdType());
871     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
872              getContext().BoolTy);
873     args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
874              getContext().BoolTy);
875     // FIXME: We shouldn't need to get the function info here, the runtime
876     // already should have computed it to build the function.
877     EmitCall(getTypes().getFunctionInfo(getContext().VoidTy, args,
878                                         FunctionType::ExtInfo()),
879              setPropertyFn, ReturnValueSlot(), args);
880     return;
881   }
882 
883   case PropertyImplStrategy::CopyStruct:
884     emitStructSetterCall(*this, setterMethod, ivar);
885     return;
886 
887   case PropertyImplStrategy::Expression:
888     break;
889   }
890 
891   // Otherwise, fake up some ASTs and emit a normal assignment.
892   ValueDecl *selfDecl = setterMethod->getSelfDecl();
893   DeclRefExpr self(selfDecl, selfDecl->getType(), VK_LValue, SourceLocation());
894   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
895                             selfDecl->getType(), CK_LValueToRValue, &self,
896                             VK_RValue);
897   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
898                           SourceLocation(), &selfLoad, true, true);
899 
900   ParmVarDecl *argDecl = *setterMethod->param_begin();
901   QualType argType = argDecl->getType().getNonReferenceType();
902   DeclRefExpr arg(argDecl, argType, VK_LValue, SourceLocation());
903   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
904                            argType.getUnqualifiedType(), CK_LValueToRValue,
905                            &arg, VK_RValue);
906 
907   // The property type can differ from the ivar type in some situations with
908   // Objective-C pointer types, we can always bit cast the RHS in these cases.
909   // The following absurdity is just to ensure well-formed IR.
910   CastKind argCK = CK_NoOp;
911   if (ivarRef.getType()->isObjCObjectPointerType()) {
912     if (argLoad.getType()->isObjCObjectPointerType())
913       argCK = CK_BitCast;
914     else if (argLoad.getType()->isBlockPointerType())
915       argCK = CK_BlockPointerToObjCPointerCast;
916     else
917       argCK = CK_CPointerToObjCPointerCast;
918   } else if (ivarRef.getType()->isBlockPointerType()) {
919      if (argLoad.getType()->isBlockPointerType())
920       argCK = CK_BitCast;
921     else
922       argCK = CK_AnyPointerToBlockPointerCast;
923   } else if (ivarRef.getType()->isPointerType()) {
924     argCK = CK_BitCast;
925   }
926   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
927                            ivarRef.getType(), argCK, &argLoad,
928                            VK_RValue);
929   Expr *finalArg = &argLoad;
930   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
931                                            argLoad.getType()))
932     finalArg = &argCast;
933 
934 
935   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
936                         ivarRef.getType(), VK_RValue, OK_Ordinary,
937                         SourceLocation());
938   EmitStmt(&assign);
939 }
940 
941 /// GenerateObjCSetter - Generate an Objective-C property setter
942 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize
943 /// is illegal within a category.
944 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
945                                          const ObjCPropertyImplDecl *PID) {
946   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
947   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
948   assert(OMD && "Invalid call to generate setter (empty method)");
949   StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart());
950 
951   generateObjCSetterBody(IMP, PID);
952 
953   FinishFunction();
954 }
955 
956 namespace {
957   struct DestroyIvar : EHScopeStack::Cleanup {
958   private:
959     llvm::Value *addr;
960     const ObjCIvarDecl *ivar;
961     CodeGenFunction::Destroyer &destroyer;
962     bool useEHCleanupForArray;
963   public:
964     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
965                 CodeGenFunction::Destroyer *destroyer,
966                 bool useEHCleanupForArray)
967       : addr(addr), ivar(ivar), destroyer(*destroyer),
968         useEHCleanupForArray(useEHCleanupForArray) {}
969 
970     void Emit(CodeGenFunction &CGF, Flags flags) {
971       LValue lvalue
972         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
973       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
974                       flags.isForNormalCleanup() && useEHCleanupForArray);
975     }
976   };
977 }
978 
979 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
980 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
981                                       llvm::Value *addr,
982                                       QualType type) {
983   llvm::Value *null = getNullForVariable(addr);
984   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
985 }
986 
987 static void emitCXXDestructMethod(CodeGenFunction &CGF,
988                                   ObjCImplementationDecl *impl) {
989   CodeGenFunction::RunCleanupsScope scope(CGF);
990 
991   llvm::Value *self = CGF.LoadObjCSelf();
992 
993   const ObjCInterfaceDecl *iface = impl->getClassInterface();
994   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
995        ivar; ivar = ivar->getNextIvar()) {
996     QualType type = ivar->getType();
997 
998     // Check whether the ivar is a destructible type.
999     QualType::DestructionKind dtorKind = type.isDestructedType();
1000     if (!dtorKind) continue;
1001 
1002     CodeGenFunction::Destroyer *destroyer = 0;
1003 
1004     // Use a call to objc_storeStrong to destroy strong ivars, for the
1005     // general benefit of the tools.
1006     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1007       destroyer = &destroyARCStrongWithStore;
1008 
1009     // Otherwise use the default for the destruction kind.
1010     } else {
1011       destroyer = &CGF.getDestroyer(dtorKind);
1012     }
1013 
1014     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1015 
1016     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1017                                          cleanupKind & EHCleanup);
1018   }
1019 
1020   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1021 }
1022 
1023 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1024                                                  ObjCMethodDecl *MD,
1025                                                  bool ctor) {
1026   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1027   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1028 
1029   // Emit .cxx_construct.
1030   if (ctor) {
1031     // Suppress the final autorelease in ARC.
1032     AutoreleaseResult = false;
1033 
1034     SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
1035     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1036            E = IMP->init_end(); B != E; ++B) {
1037       CXXCtorInitializer *IvarInit = (*B);
1038       FieldDecl *Field = IvarInit->getAnyMember();
1039       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
1040       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1041                                     LoadObjCSelf(), Ivar, 0);
1042       EmitAggExpr(IvarInit->getInit(),
1043                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1044                                           AggValueSlot::DoesNotNeedGCBarriers,
1045                                           AggValueSlot::IsNotAliased));
1046     }
1047     // constructor returns 'self'.
1048     CodeGenTypes &Types = CGM.getTypes();
1049     QualType IdTy(CGM.getContext().getObjCIdType());
1050     llvm::Value *SelfAsId =
1051       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1052     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1053 
1054   // Emit .cxx_destruct.
1055   } else {
1056     emitCXXDestructMethod(*this, IMP);
1057   }
1058   FinishFunction();
1059 }
1060 
1061 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1062   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1063   it++; it++;
1064   const ABIArgInfo &AI = it->info;
1065   // FIXME. Is this sufficient check?
1066   return (AI.getKind() == ABIArgInfo::Indirect);
1067 }
1068 
1069 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1070   if (CGM.getLangOptions().getGC() == LangOptions::NonGC)
1071     return false;
1072   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1073     return FDTTy->getDecl()->hasObjectMember();
1074   return false;
1075 }
1076 
1077 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1078   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1079   return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self");
1080 }
1081 
1082 QualType CodeGenFunction::TypeOfSelfObject() {
1083   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1084   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1085   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1086     getContext().getCanonicalType(selfDecl->getType()));
1087   return PTy->getPointeeType();
1088 }
1089 
1090 LValue
1091 CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) {
1092   // This is a special l-value that just issues sends when we load or
1093   // store through it.
1094 
1095   // For certain base kinds, we need to emit the base immediately.
1096   llvm::Value *Base;
1097   if (E->isSuperReceiver())
1098     Base = LoadObjCSelf();
1099   else if (E->isClassReceiver())
1100     Base = CGM.getObjCRuntime().GetClass(Builder, E->getClassReceiver());
1101   else
1102     Base = EmitScalarExpr(E->getBase());
1103   return LValue::MakePropertyRef(E, Base);
1104 }
1105 
1106 static RValue GenerateMessageSendSuper(CodeGenFunction &CGF,
1107                                        ReturnValueSlot Return,
1108                                        QualType ResultType,
1109                                        Selector S,
1110                                        llvm::Value *Receiver,
1111                                        const CallArgList &CallArgs) {
1112   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CGF.CurFuncDecl);
1113   bool isClassMessage = OMD->isClassMethod();
1114   bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
1115   return CGF.CGM.getObjCRuntime()
1116                 .GenerateMessageSendSuper(CGF, Return, ResultType,
1117                                           S, OMD->getClassInterface(),
1118                                           isCategoryImpl, Receiver,
1119                                           isClassMessage, CallArgs);
1120 }
1121 
1122 RValue CodeGenFunction::EmitLoadOfPropertyRefLValue(LValue LV,
1123                                                     ReturnValueSlot Return) {
1124   const ObjCPropertyRefExpr *E = LV.getPropertyRefExpr();
1125   QualType ResultType = E->getGetterResultType();
1126   Selector S;
1127   const ObjCMethodDecl *method;
1128   if (E->isExplicitProperty()) {
1129     const ObjCPropertyDecl *Property = E->getExplicitProperty();
1130     S = Property->getGetterName();
1131     method = Property->getGetterMethodDecl();
1132   } else {
1133     method = E->getImplicitPropertyGetter();
1134     S = method->getSelector();
1135   }
1136 
1137   llvm::Value *Receiver = LV.getPropertyRefBaseAddr();
1138 
1139   if (CGM.getLangOptions().ObjCAutoRefCount) {
1140     QualType receiverType;
1141     if (E->isSuperReceiver())
1142       receiverType = E->getSuperReceiverType();
1143     else if (E->isClassReceiver())
1144       receiverType = getContext().getObjCClassType();
1145     else
1146       receiverType = E->getBase()->getType();
1147   }
1148 
1149   // Accesses to 'super' follow a different code path.
1150   if (E->isSuperReceiver())
1151     return AdjustRelatedResultType(*this, E, method,
1152                                    GenerateMessageSendSuper(*this, Return,
1153                                                             ResultType,
1154                                                             S, Receiver,
1155                                                             CallArgList()));
1156   const ObjCInterfaceDecl *ReceiverClass
1157     = (E->isClassReceiver() ? E->getClassReceiver() : 0);
1158   return AdjustRelatedResultType(*this, E, method,
1159           CGM.getObjCRuntime().
1160              GenerateMessageSend(*this, Return, ResultType, S,
1161                                  Receiver, CallArgList(), ReceiverClass));
1162 }
1163 
1164 void CodeGenFunction::EmitStoreThroughPropertyRefLValue(RValue Src,
1165                                                         LValue Dst) {
1166   const ObjCPropertyRefExpr *E = Dst.getPropertyRefExpr();
1167   Selector S = E->getSetterSelector();
1168   QualType ArgType = E->getSetterArgType();
1169 
1170   // FIXME. Other than scalars, AST is not adequate for setter and
1171   // getter type mismatches which require conversion.
1172   if (Src.isScalar()) {
1173     llvm::Value *SrcVal = Src.getScalarVal();
1174     QualType DstType = getContext().getCanonicalType(ArgType);
1175     llvm::Type *DstTy = ConvertType(DstType);
1176     if (SrcVal->getType() != DstTy)
1177       Src =
1178         RValue::get(EmitScalarConversion(SrcVal, E->getType(), DstType));
1179   }
1180 
1181   CallArgList Args;
1182   Args.add(Src, ArgType);
1183 
1184   llvm::Value *Receiver = Dst.getPropertyRefBaseAddr();
1185   QualType ResultType = getContext().VoidTy;
1186 
1187   if (E->isSuperReceiver()) {
1188     GenerateMessageSendSuper(*this, ReturnValueSlot(),
1189                              ResultType, S, Receiver, Args);
1190     return;
1191   }
1192 
1193   const ObjCInterfaceDecl *ReceiverClass
1194     = (E->isClassReceiver() ? E->getClassReceiver() : 0);
1195 
1196   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1197                                            ResultType, S, Receiver, Args,
1198                                            ReceiverClass);
1199 }
1200 
1201 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1202   llvm::Constant *EnumerationMutationFn =
1203     CGM.getObjCRuntime().EnumerationMutationFunction();
1204 
1205   if (!EnumerationMutationFn) {
1206     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1207     return;
1208   }
1209 
1210   CGDebugInfo *DI = getDebugInfo();
1211   if (DI)
1212     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1213 
1214   // The local variable comes into scope immediately.
1215   AutoVarEmission variable = AutoVarEmission::invalid();
1216   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1217     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1218 
1219   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1220 
1221   // Fast enumeration state.
1222   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1223   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1224   EmitNullInitialization(StatePtr, StateTy);
1225 
1226   // Number of elements in the items array.
1227   static const unsigned NumItems = 16;
1228 
1229   // Fetch the countByEnumeratingWithState:objects:count: selector.
1230   IdentifierInfo *II[] = {
1231     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1232     &CGM.getContext().Idents.get("objects"),
1233     &CGM.getContext().Idents.get("count")
1234   };
1235   Selector FastEnumSel =
1236     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1237 
1238   QualType ItemsTy =
1239     getContext().getConstantArrayType(getContext().getObjCIdType(),
1240                                       llvm::APInt(32, NumItems),
1241                                       ArrayType::Normal, 0);
1242   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1243 
1244   // Emit the collection pointer.  In ARC, we do a retain.
1245   llvm::Value *Collection;
1246   if (getLangOptions().ObjCAutoRefCount) {
1247     Collection = EmitARCRetainScalarExpr(S.getCollection());
1248 
1249     // Enter a cleanup to do the release.
1250     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1251   } else {
1252     Collection = EmitScalarExpr(S.getCollection());
1253   }
1254 
1255   // The 'continue' label needs to appear within the cleanup for the
1256   // collection object.
1257   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1258 
1259   // Send it our message:
1260   CallArgList Args;
1261 
1262   // The first argument is a temporary of the enumeration-state type.
1263   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1264 
1265   // The second argument is a temporary array with space for NumItems
1266   // pointers.  We'll actually be loading elements from the array
1267   // pointer written into the control state; this buffer is so that
1268   // collections that *aren't* backed by arrays can still queue up
1269   // batches of elements.
1270   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1271 
1272   // The third argument is the capacity of that temporary array.
1273   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1274   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1275   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1276 
1277   // Start the enumeration.
1278   RValue CountRV =
1279     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1280                                              getContext().UnsignedLongTy,
1281                                              FastEnumSel,
1282                                              Collection, Args);
1283 
1284   // The initial number of objects that were returned in the buffer.
1285   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1286 
1287   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1288   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1289 
1290   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1291 
1292   // If the limit pointer was zero to begin with, the collection is
1293   // empty; skip all this.
1294   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1295                        EmptyBB, LoopInitBB);
1296 
1297   // Otherwise, initialize the loop.
1298   EmitBlock(LoopInitBB);
1299 
1300   // Save the initial mutations value.  This is the value at an
1301   // address that was written into the state object by
1302   // countByEnumeratingWithState:objects:count:.
1303   llvm::Value *StateMutationsPtrPtr =
1304     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1305   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1306                                                       "mutationsptr");
1307 
1308   llvm::Value *initialMutations =
1309     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1310 
1311   // Start looping.  This is the point we return to whenever we have a
1312   // fresh, non-empty batch of objects.
1313   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1314   EmitBlock(LoopBodyBB);
1315 
1316   // The current index into the buffer.
1317   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1318   index->addIncoming(zero, LoopInitBB);
1319 
1320   // The current buffer size.
1321   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1322   count->addIncoming(initialBufferLimit, LoopInitBB);
1323 
1324   // Check whether the mutations value has changed from where it was
1325   // at start.  StateMutationsPtr should actually be invariant between
1326   // refreshes.
1327   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1328   llvm::Value *currentMutations
1329     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1330 
1331   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1332   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1333 
1334   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1335                        WasNotMutatedBB, WasMutatedBB);
1336 
1337   // If so, call the enumeration-mutation function.
1338   EmitBlock(WasMutatedBB);
1339   llvm::Value *V =
1340     Builder.CreateBitCast(Collection,
1341                           ConvertType(getContext().getObjCIdType()));
1342   CallArgList Args2;
1343   Args2.add(RValue::get(V), getContext().getObjCIdType());
1344   // FIXME: We shouldn't need to get the function info here, the runtime already
1345   // should have computed it to build the function.
1346   EmitCall(CGM.getTypes().getFunctionInfo(getContext().VoidTy, Args2,
1347                                           FunctionType::ExtInfo()),
1348            EnumerationMutationFn, ReturnValueSlot(), Args2);
1349 
1350   // Otherwise, or if the mutation function returns, just continue.
1351   EmitBlock(WasNotMutatedBB);
1352 
1353   // Initialize the element variable.
1354   RunCleanupsScope elementVariableScope(*this);
1355   bool elementIsVariable;
1356   LValue elementLValue;
1357   QualType elementType;
1358   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1359     // Initialize the variable, in case it's a __block variable or something.
1360     EmitAutoVarInit(variable);
1361 
1362     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1363     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), D->getType(),
1364                         VK_LValue, SourceLocation());
1365     elementLValue = EmitLValue(&tempDRE);
1366     elementType = D->getType();
1367     elementIsVariable = true;
1368 
1369     if (D->isARCPseudoStrong())
1370       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1371   } else {
1372     elementLValue = LValue(); // suppress warning
1373     elementType = cast<Expr>(S.getElement())->getType();
1374     elementIsVariable = false;
1375   }
1376   llvm::Type *convertedElementType = ConvertType(elementType);
1377 
1378   // Fetch the buffer out of the enumeration state.
1379   // TODO: this pointer should actually be invariant between
1380   // refreshes, which would help us do certain loop optimizations.
1381   llvm::Value *StateItemsPtr =
1382     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1383   llvm::Value *EnumStateItems =
1384     Builder.CreateLoad(StateItemsPtr, "stateitems");
1385 
1386   // Fetch the value at the current index from the buffer.
1387   llvm::Value *CurrentItemPtr =
1388     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1389   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1390 
1391   // Cast that value to the right type.
1392   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1393                                       "currentitem");
1394 
1395   // Make sure we have an l-value.  Yes, this gets evaluated every
1396   // time through the loop.
1397   if (!elementIsVariable) {
1398     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1399     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1400   } else {
1401     EmitScalarInit(CurrentItem, elementLValue);
1402   }
1403 
1404   // If we do have an element variable, this assignment is the end of
1405   // its initialization.
1406   if (elementIsVariable)
1407     EmitAutoVarCleanups(variable);
1408 
1409   // Perform the loop body, setting up break and continue labels.
1410   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1411   {
1412     RunCleanupsScope Scope(*this);
1413     EmitStmt(S.getBody());
1414   }
1415   BreakContinueStack.pop_back();
1416 
1417   // Destroy the element variable now.
1418   elementVariableScope.ForceCleanup();
1419 
1420   // Check whether there are more elements.
1421   EmitBlock(AfterBody.getBlock());
1422 
1423   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1424 
1425   // First we check in the local buffer.
1426   llvm::Value *indexPlusOne
1427     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1428 
1429   // If we haven't overrun the buffer yet, we can continue.
1430   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1431                        LoopBodyBB, FetchMoreBB);
1432 
1433   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1434   count->addIncoming(count, AfterBody.getBlock());
1435 
1436   // Otherwise, we have to fetch more elements.
1437   EmitBlock(FetchMoreBB);
1438 
1439   CountRV =
1440     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1441                                              getContext().UnsignedLongTy,
1442                                              FastEnumSel,
1443                                              Collection, Args);
1444 
1445   // If we got a zero count, we're done.
1446   llvm::Value *refetchCount = CountRV.getScalarVal();
1447 
1448   // (note that the message send might split FetchMoreBB)
1449   index->addIncoming(zero, Builder.GetInsertBlock());
1450   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1451 
1452   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1453                        EmptyBB, LoopBodyBB);
1454 
1455   // No more elements.
1456   EmitBlock(EmptyBB);
1457 
1458   if (!elementIsVariable) {
1459     // If the element was not a declaration, set it to be null.
1460 
1461     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1462     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1463     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1464   }
1465 
1466   if (DI)
1467     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1468 
1469   // Leave the cleanup we entered in ARC.
1470   if (getLangOptions().ObjCAutoRefCount)
1471     PopCleanupBlock();
1472 
1473   EmitBlock(LoopEnd.getBlock());
1474 }
1475 
1476 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1477   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1478 }
1479 
1480 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1481   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1482 }
1483 
1484 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1485                                               const ObjCAtSynchronizedStmt &S) {
1486   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1487 }
1488 
1489 /// Produce the code for a CK_ARCProduceObject.  Just does a
1490 /// primitive retain.
1491 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1492                                                     llvm::Value *value) {
1493   return EmitARCRetain(type, value);
1494 }
1495 
1496 namespace {
1497   struct CallObjCRelease : EHScopeStack::Cleanup {
1498     CallObjCRelease(llvm::Value *object) : object(object) {}
1499     llvm::Value *object;
1500 
1501     void Emit(CodeGenFunction &CGF, Flags flags) {
1502       CGF.EmitARCRelease(object, /*precise*/ true);
1503     }
1504   };
1505 }
1506 
1507 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1508 /// release at the end of the full-expression.
1509 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1510                                                     llvm::Value *object) {
1511   // If we're in a conditional branch, we need to make the cleanup
1512   // conditional.
1513   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1514   return object;
1515 }
1516 
1517 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1518                                                            llvm::Value *value) {
1519   return EmitARCRetainAutorelease(type, value);
1520 }
1521 
1522 
1523 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1524                                                 llvm::FunctionType *type,
1525                                                 StringRef fnName) {
1526   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1527 
1528   // In -fobjc-no-arc-runtime, emit weak references to the runtime
1529   // support library.
1530   if (!CGM.getCodeGenOpts().ObjCRuntimeHasARC)
1531     if (llvm::Function *f = dyn_cast<llvm::Function>(fn))
1532       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1533 
1534   return fn;
1535 }
1536 
1537 /// Perform an operation having the signature
1538 ///   i8* (i8*)
1539 /// where a null input causes a no-op and returns null.
1540 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1541                                           llvm::Value *value,
1542                                           llvm::Constant *&fn,
1543                                           StringRef fnName) {
1544   if (isa<llvm::ConstantPointerNull>(value)) return value;
1545 
1546   if (!fn) {
1547     std::vector<llvm::Type*> args(1, CGF.Int8PtrTy);
1548     llvm::FunctionType *fnType =
1549       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1550     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1551   }
1552 
1553   // Cast the argument to 'id'.
1554   llvm::Type *origType = value->getType();
1555   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1556 
1557   // Call the function.
1558   llvm::CallInst *call = CGF.Builder.CreateCall(fn, value);
1559   call->setDoesNotThrow();
1560 
1561   // Cast the result back to the original type.
1562   return CGF.Builder.CreateBitCast(call, origType);
1563 }
1564 
1565 /// Perform an operation having the following signature:
1566 ///   i8* (i8**)
1567 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1568                                          llvm::Value *addr,
1569                                          llvm::Constant *&fn,
1570                                          StringRef fnName) {
1571   if (!fn) {
1572     std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy);
1573     llvm::FunctionType *fnType =
1574       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1575     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1576   }
1577 
1578   // Cast the argument to 'id*'.
1579   llvm::Type *origType = addr->getType();
1580   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1581 
1582   // Call the function.
1583   llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr);
1584   call->setDoesNotThrow();
1585 
1586   // Cast the result back to a dereference of the original type.
1587   llvm::Value *result = call;
1588   if (origType != CGF.Int8PtrPtrTy)
1589     result = CGF.Builder.CreateBitCast(result,
1590                         cast<llvm::PointerType>(origType)->getElementType());
1591 
1592   return result;
1593 }
1594 
1595 /// Perform an operation having the following signature:
1596 ///   i8* (i8**, i8*)
1597 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1598                                           llvm::Value *addr,
1599                                           llvm::Value *value,
1600                                           llvm::Constant *&fn,
1601                                           StringRef fnName,
1602                                           bool ignored) {
1603   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1604            == value->getType());
1605 
1606   if (!fn) {
1607     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1608 
1609     llvm::FunctionType *fnType
1610       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1611     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1612   }
1613 
1614   llvm::Type *origType = value->getType();
1615 
1616   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1617   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1618 
1619   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value);
1620   result->setDoesNotThrow();
1621 
1622   if (ignored) return 0;
1623 
1624   return CGF.Builder.CreateBitCast(result, origType);
1625 }
1626 
1627 /// Perform an operation having the following signature:
1628 ///   void (i8**, i8**)
1629 static void emitARCCopyOperation(CodeGenFunction &CGF,
1630                                  llvm::Value *dst,
1631                                  llvm::Value *src,
1632                                  llvm::Constant *&fn,
1633                                  StringRef fnName) {
1634   assert(dst->getType() == src->getType());
1635 
1636   if (!fn) {
1637     std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy);
1638     llvm::FunctionType *fnType
1639       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1640     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1641   }
1642 
1643   dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy);
1644   src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy);
1645 
1646   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src);
1647   result->setDoesNotThrow();
1648 }
1649 
1650 /// Produce the code to do a retain.  Based on the type, calls one of:
1651 ///   call i8* @objc_retain(i8* %value)
1652 ///   call i8* @objc_retainBlock(i8* %value)
1653 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1654   if (type->isBlockPointerType())
1655     return EmitARCRetainBlock(value, /*mandatory*/ false);
1656   else
1657     return EmitARCRetainNonBlock(value);
1658 }
1659 
1660 /// Retain the given object, with normal retain semantics.
1661 ///   call i8* @objc_retain(i8* %value)
1662 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1663   return emitARCValueOperation(*this, value,
1664                                CGM.getARCEntrypoints().objc_retain,
1665                                "objc_retain");
1666 }
1667 
1668 /// Retain the given block, with _Block_copy semantics.
1669 ///   call i8* @objc_retainBlock(i8* %value)
1670 ///
1671 /// \param mandatory - If false, emit the call with metadata
1672 /// indicating that it's okay for the optimizer to eliminate this call
1673 /// if it can prove that the block never escapes except down the stack.
1674 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1675                                                  bool mandatory) {
1676   llvm::Value *result
1677     = emitARCValueOperation(*this, value,
1678                             CGM.getARCEntrypoints().objc_retainBlock,
1679                             "objc_retainBlock");
1680 
1681   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1682   // tell the optimizer that it doesn't need to do this copy if the
1683   // block doesn't escape, where being passed as an argument doesn't
1684   // count as escaping.
1685   if (!mandatory && isa<llvm::Instruction>(result)) {
1686     llvm::CallInst *call
1687       = cast<llvm::CallInst>(result->stripPointerCasts());
1688     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1689 
1690     SmallVector<llvm::Value*,1> args;
1691     call->setMetadata("clang.arc.copy_on_escape",
1692                       llvm::MDNode::get(Builder.getContext(), args));
1693   }
1694 
1695   return result;
1696 }
1697 
1698 /// Retain the given object which is the result of a function call.
1699 ///   call i8* @objc_retainAutoreleasedReturnValue(i8* %value)
1700 ///
1701 /// Yes, this function name is one character away from a different
1702 /// call with completely different semantics.
1703 llvm::Value *
1704 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1705   // Fetch the void(void) inline asm which marks that we're going to
1706   // retain the autoreleased return value.
1707   llvm::InlineAsm *&marker
1708     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1709   if (!marker) {
1710     StringRef assembly
1711       = CGM.getTargetCodeGenInfo()
1712            .getARCRetainAutoreleasedReturnValueMarker();
1713 
1714     // If we have an empty assembly string, there's nothing to do.
1715     if (assembly.empty()) {
1716 
1717     // Otherwise, at -O0, build an inline asm that we're going to call
1718     // in a moment.
1719     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1720       llvm::FunctionType *type =
1721         llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
1722                                 /*variadic*/ false);
1723 
1724       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1725 
1726     // If we're at -O1 and above, we don't want to litter the code
1727     // with this marker yet, so leave a breadcrumb for the ARC
1728     // optimizer to pick up.
1729     } else {
1730       llvm::NamedMDNode *metadata =
1731         CGM.getModule().getOrInsertNamedMetadata(
1732                             "clang.arc.retainAutoreleasedReturnValueMarker");
1733       assert(metadata->getNumOperands() <= 1);
1734       if (metadata->getNumOperands() == 0) {
1735         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1736         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1737       }
1738     }
1739   }
1740 
1741   // Call the marker asm if we made one, which we do only at -O0.
1742   if (marker) Builder.CreateCall(marker);
1743 
1744   return emitARCValueOperation(*this, value,
1745                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1746                                "objc_retainAutoreleasedReturnValue");
1747 }
1748 
1749 /// Release the given object.
1750 ///   call void @objc_release(i8* %value)
1751 void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) {
1752   if (isa<llvm::ConstantPointerNull>(value)) return;
1753 
1754   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
1755   if (!fn) {
1756     std::vector<llvm::Type*> args(1, Int8PtrTy);
1757     llvm::FunctionType *fnType =
1758       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
1759     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
1760   }
1761 
1762   // Cast the argument to 'id'.
1763   value = Builder.CreateBitCast(value, Int8PtrTy);
1764 
1765   // Call objc_release.
1766   llvm::CallInst *call = Builder.CreateCall(fn, value);
1767   call->setDoesNotThrow();
1768 
1769   if (!precise) {
1770     SmallVector<llvm::Value*,1> args;
1771     call->setMetadata("clang.imprecise_release",
1772                       llvm::MDNode::get(Builder.getContext(), args));
1773   }
1774 }
1775 
1776 /// Store into a strong object.  Always calls this:
1777 ///   call void @objc_storeStrong(i8** %addr, i8* %value)
1778 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
1779                                                      llvm::Value *value,
1780                                                      bool ignored) {
1781   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1782            == value->getType());
1783 
1784   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
1785   if (!fn) {
1786     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
1787     llvm::FunctionType *fnType
1788       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
1789     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
1790   }
1791 
1792   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
1793   llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy);
1794 
1795   Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow();
1796 
1797   if (ignored) return 0;
1798   return value;
1799 }
1800 
1801 /// Store into a strong object.  Sometimes calls this:
1802 ///   call void @objc_storeStrong(i8** %addr, i8* %value)
1803 /// Other times, breaks it down into components.
1804 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
1805                                                  llvm::Value *newValue,
1806                                                  bool ignored) {
1807   QualType type = dst.getType();
1808   bool isBlock = type->isBlockPointerType();
1809 
1810   // Use a store barrier at -O0 unless this is a block type or the
1811   // lvalue is inadequately aligned.
1812   if (shouldUseFusedARCCalls() &&
1813       !isBlock &&
1814       !(dst.getAlignment() && dst.getAlignment() < PointerAlignInBytes)) {
1815     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
1816   }
1817 
1818   // Otherwise, split it out.
1819 
1820   // Retain the new value.
1821   newValue = EmitARCRetain(type, newValue);
1822 
1823   // Read the old value.
1824   llvm::Value *oldValue = EmitLoadOfScalar(dst);
1825 
1826   // Store.  We do this before the release so that any deallocs won't
1827   // see the old value.
1828   EmitStoreOfScalar(newValue, dst);
1829 
1830   // Finally, release the old value.
1831   EmitARCRelease(oldValue, /*precise*/ false);
1832 
1833   return newValue;
1834 }
1835 
1836 /// Autorelease the given object.
1837 ///   call i8* @objc_autorelease(i8* %value)
1838 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
1839   return emitARCValueOperation(*this, value,
1840                                CGM.getARCEntrypoints().objc_autorelease,
1841                                "objc_autorelease");
1842 }
1843 
1844 /// Autorelease the given object.
1845 ///   call i8* @objc_autoreleaseReturnValue(i8* %value)
1846 llvm::Value *
1847 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
1848   return emitARCValueOperation(*this, value,
1849                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
1850                                "objc_autoreleaseReturnValue");
1851 }
1852 
1853 /// Do a fused retain/autorelease of the given object.
1854 ///   call i8* @objc_retainAutoreleaseReturnValue(i8* %value)
1855 llvm::Value *
1856 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
1857   return emitARCValueOperation(*this, value,
1858                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
1859                                "objc_retainAutoreleaseReturnValue");
1860 }
1861 
1862 /// Do a fused retain/autorelease of the given object.
1863 ///   call i8* @objc_retainAutorelease(i8* %value)
1864 /// or
1865 ///   %retain = call i8* @objc_retainBlock(i8* %value)
1866 ///   call i8* @objc_autorelease(i8* %retain)
1867 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
1868                                                        llvm::Value *value) {
1869   if (!type->isBlockPointerType())
1870     return EmitARCRetainAutoreleaseNonBlock(value);
1871 
1872   if (isa<llvm::ConstantPointerNull>(value)) return value;
1873 
1874   llvm::Type *origType = value->getType();
1875   value = Builder.CreateBitCast(value, Int8PtrTy);
1876   value = EmitARCRetainBlock(value, /*mandatory*/ true);
1877   value = EmitARCAutorelease(value);
1878   return Builder.CreateBitCast(value, origType);
1879 }
1880 
1881 /// Do a fused retain/autorelease of the given object.
1882 ///   call i8* @objc_retainAutorelease(i8* %value)
1883 llvm::Value *
1884 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
1885   return emitARCValueOperation(*this, value,
1886                                CGM.getARCEntrypoints().objc_retainAutorelease,
1887                                "objc_retainAutorelease");
1888 }
1889 
1890 /// i8* @objc_loadWeak(i8** %addr)
1891 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
1892 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
1893   return emitARCLoadOperation(*this, addr,
1894                               CGM.getARCEntrypoints().objc_loadWeak,
1895                               "objc_loadWeak");
1896 }
1897 
1898 /// i8* @objc_loadWeakRetained(i8** %addr)
1899 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
1900   return emitARCLoadOperation(*this, addr,
1901                               CGM.getARCEntrypoints().objc_loadWeakRetained,
1902                               "objc_loadWeakRetained");
1903 }
1904 
1905 /// i8* @objc_storeWeak(i8** %addr, i8* %value)
1906 /// Returns %value.
1907 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
1908                                                llvm::Value *value,
1909                                                bool ignored) {
1910   return emitARCStoreOperation(*this, addr, value,
1911                                CGM.getARCEntrypoints().objc_storeWeak,
1912                                "objc_storeWeak", ignored);
1913 }
1914 
1915 /// i8* @objc_initWeak(i8** %addr, i8* %value)
1916 /// Returns %value.  %addr is known to not have a current weak entry.
1917 /// Essentially equivalent to:
1918 ///   *addr = nil; objc_storeWeak(addr, value);
1919 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
1920   // If we're initializing to null, just write null to memory; no need
1921   // to get the runtime involved.  But don't do this if optimization
1922   // is enabled, because accounting for this would make the optimizer
1923   // much more complicated.
1924   if (isa<llvm::ConstantPointerNull>(value) &&
1925       CGM.getCodeGenOpts().OptimizationLevel == 0) {
1926     Builder.CreateStore(value, addr);
1927     return;
1928   }
1929 
1930   emitARCStoreOperation(*this, addr, value,
1931                         CGM.getARCEntrypoints().objc_initWeak,
1932                         "objc_initWeak", /*ignored*/ true);
1933 }
1934 
1935 /// void @objc_destroyWeak(i8** %addr)
1936 /// Essentially objc_storeWeak(addr, nil).
1937 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
1938   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
1939   if (!fn) {
1940     std::vector<llvm::Type*> args(1, Int8PtrPtrTy);
1941     llvm::FunctionType *fnType =
1942       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
1943     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
1944   }
1945 
1946   // Cast the argument to 'id*'.
1947   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
1948 
1949   llvm::CallInst *call = Builder.CreateCall(fn, addr);
1950   call->setDoesNotThrow();
1951 }
1952 
1953 /// void @objc_moveWeak(i8** %dest, i8** %src)
1954 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
1955 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
1956 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
1957   emitARCCopyOperation(*this, dst, src,
1958                        CGM.getARCEntrypoints().objc_moveWeak,
1959                        "objc_moveWeak");
1960 }
1961 
1962 /// void @objc_copyWeak(i8** %dest, i8** %src)
1963 /// Disregards the current value in %dest.  Essentially
1964 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
1965 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
1966   emitARCCopyOperation(*this, dst, src,
1967                        CGM.getARCEntrypoints().objc_copyWeak,
1968                        "objc_copyWeak");
1969 }
1970 
1971 /// Produce the code to do a objc_autoreleasepool_push.
1972 ///   call i8* @objc_autoreleasePoolPush(void)
1973 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
1974   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
1975   if (!fn) {
1976     llvm::FunctionType *fnType =
1977       llvm::FunctionType::get(Int8PtrTy, false);
1978     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
1979   }
1980 
1981   llvm::CallInst *call = Builder.CreateCall(fn);
1982   call->setDoesNotThrow();
1983 
1984   return call;
1985 }
1986 
1987 /// Produce the code to do a primitive release.
1988 ///   call void @objc_autoreleasePoolPop(i8* %ptr)
1989 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
1990   assert(value->getType() == Int8PtrTy);
1991 
1992   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
1993   if (!fn) {
1994     std::vector<llvm::Type*> args(1, Int8PtrTy);
1995     llvm::FunctionType *fnType =
1996       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
1997 
1998     // We don't want to use a weak import here; instead we should not
1999     // fall into this path.
2000     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2001   }
2002 
2003   llvm::CallInst *call = Builder.CreateCall(fn, value);
2004   call->setDoesNotThrow();
2005 }
2006 
2007 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2008 /// Which is: [[NSAutoreleasePool alloc] init];
2009 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2010 /// init is declared as: - (id) init; in its NSObject super class.
2011 ///
2012 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2013   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2014   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder);
2015   // [NSAutoreleasePool alloc]
2016   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2017   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2018   CallArgList Args;
2019   RValue AllocRV =
2020     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2021                                 getContext().getObjCIdType(),
2022                                 AllocSel, Receiver, Args);
2023 
2024   // [Receiver init]
2025   Receiver = AllocRV.getScalarVal();
2026   II = &CGM.getContext().Idents.get("init");
2027   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2028   RValue InitRV =
2029     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2030                                 getContext().getObjCIdType(),
2031                                 InitSel, Receiver, Args);
2032   return InitRV.getScalarVal();
2033 }
2034 
2035 /// Produce the code to do a primitive release.
2036 /// [tmp drain];
2037 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2038   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2039   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2040   CallArgList Args;
2041   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2042                               getContext().VoidTy, DrainSel, Arg, Args);
2043 }
2044 
2045 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2046                                               llvm::Value *addr,
2047                                               QualType type) {
2048   llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
2049   CGF.EmitARCRelease(ptr, /*precise*/ true);
2050 }
2051 
2052 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2053                                                 llvm::Value *addr,
2054                                                 QualType type) {
2055   llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
2056   CGF.EmitARCRelease(ptr, /*precise*/ false);
2057 }
2058 
2059 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2060                                      llvm::Value *addr,
2061                                      QualType type) {
2062   CGF.EmitARCDestroyWeak(addr);
2063 }
2064 
2065 namespace {
2066   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2067     llvm::Value *Token;
2068 
2069     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2070 
2071     void Emit(CodeGenFunction &CGF, Flags flags) {
2072       CGF.EmitObjCAutoreleasePoolPop(Token);
2073     }
2074   };
2075   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2076     llvm::Value *Token;
2077 
2078     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2079 
2080     void Emit(CodeGenFunction &CGF, Flags flags) {
2081       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2082     }
2083   };
2084 }
2085 
2086 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2087   if (CGM.getLangOptions().ObjCAutoRefCount)
2088     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2089   else
2090     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2091 }
2092 
2093 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2094                                                   LValue lvalue,
2095                                                   QualType type) {
2096   switch (type.getObjCLifetime()) {
2097   case Qualifiers::OCL_None:
2098   case Qualifiers::OCL_ExplicitNone:
2099   case Qualifiers::OCL_Strong:
2100   case Qualifiers::OCL_Autoreleasing:
2101     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
2102                          false);
2103 
2104   case Qualifiers::OCL_Weak:
2105     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2106                          true);
2107   }
2108 
2109   llvm_unreachable("impossible lifetime!");
2110   return TryEmitResult();
2111 }
2112 
2113 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2114                                                   const Expr *e) {
2115   e = e->IgnoreParens();
2116   QualType type = e->getType();
2117 
2118   // If we're loading retained from a __strong xvalue, we can avoid
2119   // an extra retain/release pair by zeroing out the source of this
2120   // "move" operation.
2121   if (e->isXValue() &&
2122       !type.isConstQualified() &&
2123       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2124     // Emit the lvalue.
2125     LValue lv = CGF.EmitLValue(e);
2126 
2127     // Load the object pointer.
2128     llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
2129 
2130     // Set the source pointer to NULL.
2131     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2132 
2133     return TryEmitResult(result, true);
2134   }
2135 
2136   // As a very special optimization, in ARC++, if the l-value is the
2137   // result of a non-volatile assignment, do a simple retain of the
2138   // result of the call to objc_storeWeak instead of reloading.
2139   if (CGF.getLangOptions().CPlusPlus &&
2140       !type.isVolatileQualified() &&
2141       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2142       isa<BinaryOperator>(e) &&
2143       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2144     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2145 
2146   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2147 }
2148 
2149 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2150                                            llvm::Value *value);
2151 
2152 /// Given that the given expression is some sort of call (which does
2153 /// not return retained), emit a retain following it.
2154 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2155   llvm::Value *value = CGF.EmitScalarExpr(e);
2156   return emitARCRetainAfterCall(CGF, value);
2157 }
2158 
2159 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2160                                            llvm::Value *value) {
2161   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2162     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2163 
2164     // Place the retain immediately following the call.
2165     CGF.Builder.SetInsertPoint(call->getParent(),
2166                                ++llvm::BasicBlock::iterator(call));
2167     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2168 
2169     CGF.Builder.restoreIP(ip);
2170     return value;
2171   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2172     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2173 
2174     // Place the retain at the beginning of the normal destination block.
2175     llvm::BasicBlock *BB = invoke->getNormalDest();
2176     CGF.Builder.SetInsertPoint(BB, BB->begin());
2177     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2178 
2179     CGF.Builder.restoreIP(ip);
2180     return value;
2181 
2182   // Bitcasts can arise because of related-result returns.  Rewrite
2183   // the operand.
2184   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2185     llvm::Value *operand = bitcast->getOperand(0);
2186     operand = emitARCRetainAfterCall(CGF, operand);
2187     bitcast->setOperand(0, operand);
2188     return bitcast;
2189 
2190   // Generic fall-back case.
2191   } else {
2192     // Retain using the non-block variant: we never need to do a copy
2193     // of a block that's been returned to us.
2194     return CGF.EmitARCRetainNonBlock(value);
2195   }
2196 }
2197 
2198 /// Determine whether it might be important to emit a separate
2199 /// objc_retain_block on the result of the given expression, or
2200 /// whether it's okay to just emit it in a +1 context.
2201 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2202   assert(e->getType()->isBlockPointerType());
2203   e = e->IgnoreParens();
2204 
2205   // For future goodness, emit block expressions directly in +1
2206   // contexts if we can.
2207   if (isa<BlockExpr>(e))
2208     return false;
2209 
2210   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2211     switch (cast->getCastKind()) {
2212     // Emitting these operations in +1 contexts is goodness.
2213     case CK_LValueToRValue:
2214     case CK_ARCReclaimReturnedObject:
2215     case CK_ARCConsumeObject:
2216     case CK_ARCProduceObject:
2217       return false;
2218 
2219     // These operations preserve a block type.
2220     case CK_NoOp:
2221     case CK_BitCast:
2222       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2223 
2224     // These operations are known to be bad (or haven't been considered).
2225     case CK_AnyPointerToBlockPointerCast:
2226     default:
2227       return true;
2228     }
2229   }
2230 
2231   return true;
2232 }
2233 
2234 static TryEmitResult
2235 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2236   // Look through cleanups.
2237   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2238     CodeGenFunction::RunCleanupsScope scope(CGF);
2239     return tryEmitARCRetainScalarExpr(CGF, cleanups->getSubExpr());
2240   }
2241 
2242   // The desired result type, if it differs from the type of the
2243   // ultimate opaque expression.
2244   llvm::Type *resultType = 0;
2245 
2246   while (true) {
2247     e = e->IgnoreParens();
2248 
2249     // There's a break at the end of this if-chain;  anything
2250     // that wants to keep looping has to explicitly continue.
2251     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2252       switch (ce->getCastKind()) {
2253       // No-op casts don't change the type, so we just ignore them.
2254       case CK_NoOp:
2255         e = ce->getSubExpr();
2256         continue;
2257 
2258       case CK_LValueToRValue: {
2259         TryEmitResult loadResult
2260           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2261         if (resultType) {
2262           llvm::Value *value = loadResult.getPointer();
2263           value = CGF.Builder.CreateBitCast(value, resultType);
2264           loadResult.setPointer(value);
2265         }
2266         return loadResult;
2267       }
2268 
2269       // These casts can change the type, so remember that and
2270       // soldier on.  We only need to remember the outermost such
2271       // cast, though.
2272       case CK_CPointerToObjCPointerCast:
2273       case CK_BlockPointerToObjCPointerCast:
2274       case CK_AnyPointerToBlockPointerCast:
2275       case CK_BitCast:
2276         if (!resultType)
2277           resultType = CGF.ConvertType(ce->getType());
2278         e = ce->getSubExpr();
2279         assert(e->getType()->hasPointerRepresentation());
2280         continue;
2281 
2282       // For consumptions, just emit the subexpression and thus elide
2283       // the retain/release pair.
2284       case CK_ARCConsumeObject: {
2285         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2286         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2287         return TryEmitResult(result, true);
2288       }
2289 
2290       // Block extends are net +0.  Naively, we could just recurse on
2291       // the subexpression, but actually we need to ensure that the
2292       // value is copied as a block, so there's a little filter here.
2293       case CK_ARCExtendBlockObject: {
2294         llvm::Value *result; // will be a +0 value
2295 
2296         // If we can't safely assume the sub-expression will produce a
2297         // block-copied value, emit the sub-expression at +0.
2298         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2299           result = CGF.EmitScalarExpr(ce->getSubExpr());
2300 
2301         // Otherwise, try to emit the sub-expression at +1 recursively.
2302         } else {
2303           TryEmitResult subresult
2304             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2305           result = subresult.getPointer();
2306 
2307           // If that produced a retained value, just use that,
2308           // possibly casting down.
2309           if (subresult.getInt()) {
2310             if (resultType)
2311               result = CGF.Builder.CreateBitCast(result, resultType);
2312             return TryEmitResult(result, true);
2313           }
2314 
2315           // Otherwise it's +0.
2316         }
2317 
2318         // Retain the object as a block, then cast down.
2319         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2320         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2321         return TryEmitResult(result, true);
2322       }
2323 
2324       // For reclaims, emit the subexpression as a retained call and
2325       // skip the consumption.
2326       case CK_ARCReclaimReturnedObject: {
2327         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2328         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2329         return TryEmitResult(result, true);
2330       }
2331 
2332       case CK_GetObjCProperty: {
2333         llvm::Value *result = emitARCRetainCall(CGF, ce);
2334         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2335         return TryEmitResult(result, true);
2336       }
2337 
2338       default:
2339         break;
2340       }
2341 
2342     // Skip __extension__.
2343     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2344       if (op->getOpcode() == UO_Extension) {
2345         e = op->getSubExpr();
2346         continue;
2347       }
2348 
2349     // For calls and message sends, use the retained-call logic.
2350     // Delegate inits are a special case in that they're the only
2351     // returns-retained expression that *isn't* surrounded by
2352     // a consume.
2353     } else if (isa<CallExpr>(e) ||
2354                (isa<ObjCMessageExpr>(e) &&
2355                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2356       llvm::Value *result = emitARCRetainCall(CGF, e);
2357       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2358       return TryEmitResult(result, true);
2359     }
2360 
2361     // Conservatively halt the search at any other expression kind.
2362     break;
2363   }
2364 
2365   // We didn't find an obvious production, so emit what we've got and
2366   // tell the caller that we didn't manage to retain.
2367   llvm::Value *result = CGF.EmitScalarExpr(e);
2368   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2369   return TryEmitResult(result, false);
2370 }
2371 
2372 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2373                                                 LValue lvalue,
2374                                                 QualType type) {
2375   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2376   llvm::Value *value = result.getPointer();
2377   if (!result.getInt())
2378     value = CGF.EmitARCRetain(type, value);
2379   return value;
2380 }
2381 
2382 /// EmitARCRetainScalarExpr - Semantically equivalent to
2383 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2384 /// best-effort attempt to peephole expressions that naturally produce
2385 /// retained objects.
2386 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2387   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2388   llvm::Value *value = result.getPointer();
2389   if (!result.getInt())
2390     value = EmitARCRetain(e->getType(), value);
2391   return value;
2392 }
2393 
2394 llvm::Value *
2395 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2396   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2397   llvm::Value *value = result.getPointer();
2398   if (result.getInt())
2399     value = EmitARCAutorelease(value);
2400   else
2401     value = EmitARCRetainAutorelease(e->getType(), value);
2402   return value;
2403 }
2404 
2405 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2406   llvm::Value *result;
2407   bool doRetain;
2408 
2409   if (shouldEmitSeparateBlockRetain(e)) {
2410     result = EmitScalarExpr(e);
2411     doRetain = true;
2412   } else {
2413     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2414     result = subresult.getPointer();
2415     doRetain = !subresult.getInt();
2416   }
2417 
2418   if (doRetain)
2419     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2420   return EmitObjCConsumeObject(e->getType(), result);
2421 }
2422 
2423 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2424   // In ARC, retain and autorelease the expression.
2425   if (getLangOptions().ObjCAutoRefCount) {
2426     // Do so before running any cleanups for the full-expression.
2427     // tryEmitARCRetainScalarExpr does make an effort to do things
2428     // inside cleanups, but there are crazy cases like
2429     //   @throw A().foo;
2430     // where a full retain+autorelease is required and would
2431     // otherwise happen after the destructor for the temporary.
2432     CodeGenFunction::RunCleanupsScope cleanups(*this);
2433     if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(expr))
2434       expr = ewc->getSubExpr();
2435 
2436     return EmitARCRetainAutoreleaseScalarExpr(expr);
2437   }
2438 
2439   // Otherwise, use the normal scalar-expression emission.  The
2440   // exception machinery doesn't do anything special with the
2441   // exception like retaining it, so there's no safety associated with
2442   // only running cleanups after the throw has started, and when it
2443   // matters it tends to be substantially inferior code.
2444   return EmitScalarExpr(expr);
2445 }
2446 
2447 std::pair<LValue,llvm::Value*>
2448 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2449                                     bool ignored) {
2450   // Evaluate the RHS first.
2451   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2452   llvm::Value *value = result.getPointer();
2453 
2454   bool hasImmediateRetain = result.getInt();
2455 
2456   // If we didn't emit a retained object, and the l-value is of block
2457   // type, then we need to emit the block-retain immediately in case
2458   // it invalidates the l-value.
2459   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2460     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2461     hasImmediateRetain = true;
2462   }
2463 
2464   LValue lvalue = EmitLValue(e->getLHS());
2465 
2466   // If the RHS was emitted retained, expand this.
2467   if (hasImmediateRetain) {
2468     llvm::Value *oldValue =
2469       EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatileQualified(),
2470                        lvalue.getAlignment(), e->getType(),
2471                        lvalue.getTBAAInfo());
2472     EmitStoreOfScalar(value, lvalue.getAddress(),
2473                       lvalue.isVolatileQualified(), lvalue.getAlignment(),
2474                       e->getType(), lvalue.getTBAAInfo());
2475     EmitARCRelease(oldValue, /*precise*/ false);
2476   } else {
2477     value = EmitARCStoreStrong(lvalue, value, ignored);
2478   }
2479 
2480   return std::pair<LValue,llvm::Value*>(lvalue, value);
2481 }
2482 
2483 std::pair<LValue,llvm::Value*>
2484 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2485   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2486   LValue lvalue = EmitLValue(e->getLHS());
2487 
2488   EmitStoreOfScalar(value, lvalue.getAddress(),
2489                     lvalue.isVolatileQualified(), lvalue.getAlignment(),
2490                     e->getType(), lvalue.getTBAAInfo());
2491 
2492   return std::pair<LValue,llvm::Value*>(lvalue, value);
2493 }
2494 
2495 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2496                                              const ObjCAutoreleasePoolStmt &ARPS) {
2497   const Stmt *subStmt = ARPS.getSubStmt();
2498   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2499 
2500   CGDebugInfo *DI = getDebugInfo();
2501   if (DI)
2502     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2503 
2504   // Keep track of the current cleanup stack depth.
2505   RunCleanupsScope Scope(*this);
2506   if (CGM.getCodeGenOpts().ObjCRuntimeHasARC) {
2507     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2508     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2509   } else {
2510     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2511     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2512   }
2513 
2514   for (CompoundStmt::const_body_iterator I = S.body_begin(),
2515        E = S.body_end(); I != E; ++I)
2516     EmitStmt(*I);
2517 
2518   if (DI)
2519     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2520 }
2521 
2522 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2523 /// make sure it survives garbage collection until this point.
2524 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2525   // We just use an inline assembly.
2526   llvm::FunctionType *extenderType
2527     = llvm::FunctionType::get(VoidTy, VoidPtrTy, /*variadic*/ false);
2528   llvm::Value *extender
2529     = llvm::InlineAsm::get(extenderType,
2530                            /* assembly */ "",
2531                            /* constraints */ "r",
2532                            /* side effects */ true);
2533 
2534   object = Builder.CreateBitCast(object, VoidPtrTy);
2535   Builder.CreateCall(extender, object)->setDoesNotThrow();
2536 }
2537 
2538 CGObjCRuntime::~CGObjCRuntime() {}
2539