1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 35 QualType ET, 36 RValue Result); 37 38 /// Given the address of a variable of pointer type, find the correct 39 /// null to store into it. 40 static llvm::Constant *getNullForVariable(Address addr) { 41 llvm::Type *type = addr.getElementType(); 42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 43 } 44 45 /// Emits an instance of NSConstantString representing the object. 46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 47 { 48 llvm::Constant *C = 49 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 50 // FIXME: This bitcast should just be made an invariant on the Runtime. 51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 52 } 53 54 /// EmitObjCBoxedExpr - This routine generates code to call 55 /// the appropriate expression boxing method. This will either be 56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 57 /// or [NSValue valueWithBytes:objCType:]. 58 /// 59 llvm::Value * 60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 61 // Generate the correct selector for this literal's concrete type. 62 // Get the method. 63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 64 const Expr *SubExpr = E->getSubExpr(); 65 assert(BoxingMethod && "BoxingMethod is null"); 66 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 67 Selector Sel = BoxingMethod->getSelector(); 68 69 // Generate a reference to the class pointer, which will be the receiver. 70 // Assumes that the method was introduced in the class that should be 71 // messaged (avoids pulling it out of the result type). 72 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 73 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 74 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 75 76 CallArgList Args; 77 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 78 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 79 80 // ObjCBoxedExpr supports boxing of structs and unions 81 // via [NSValue valueWithBytes:objCType:] 82 const QualType ValueType(SubExpr->getType().getCanonicalType()); 83 if (ValueType->isObjCBoxableRecordType()) { 84 // Emit CodeGen for first parameter 85 // and cast value to correct type 86 Address Temporary = CreateMemTemp(SubExpr->getType()); 87 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 88 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 89 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 90 91 // Create char array to store type encoding 92 std::string Str; 93 getContext().getObjCEncodingForType(ValueType, Str); 94 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 95 96 // Cast type encoding to correct type 97 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 98 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 99 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 100 101 Args.add(RValue::get(Cast), EncodingQT); 102 } else { 103 Args.add(EmitAnyExpr(SubExpr), ArgQT); 104 } 105 106 RValue result = Runtime.GenerateMessageSend( 107 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 108 Args, ClassDecl, BoxingMethod); 109 return Builder.CreateBitCast(result.getScalarVal(), 110 ConvertType(E->getType())); 111 } 112 113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 114 const ObjCMethodDecl *MethodWithObjects) { 115 ASTContext &Context = CGM.getContext(); 116 const ObjCDictionaryLiteral *DLE = nullptr; 117 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 118 if (!ALE) 119 DLE = cast<ObjCDictionaryLiteral>(E); 120 121 // Optimize empty collections by referencing constants, when available. 122 uint64_t NumElements = 123 ALE ? ALE->getNumElements() : DLE->getNumElements(); 124 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 125 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 126 QualType IdTy(CGM.getContext().getObjCIdType()); 127 llvm::Constant *Constant = 128 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 129 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 130 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); 131 cast<llvm::LoadInst>(Ptr)->setMetadata( 132 CGM.getModule().getMDKindID("invariant.load"), 133 llvm::MDNode::get(getLLVMContext(), None)); 134 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 135 } 136 137 // Compute the type of the array we're initializing. 138 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 139 NumElements); 140 QualType ElementType = Context.getObjCIdType().withConst(); 141 QualType ElementArrayType 142 = Context.getConstantArrayType(ElementType, APNumElements, 143 ArrayType::Normal, /*IndexTypeQuals=*/0); 144 145 // Allocate the temporary array(s). 146 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 147 Address Keys = Address::invalid(); 148 if (DLE) 149 Keys = CreateMemTemp(ElementArrayType, "keys"); 150 151 // In ARC, we may need to do extra work to keep all the keys and 152 // values alive until after the call. 153 SmallVector<llvm::Value *, 16> NeededObjects; 154 bool TrackNeededObjects = 155 (getLangOpts().ObjCAutoRefCount && 156 CGM.getCodeGenOpts().OptimizationLevel != 0); 157 158 // Perform the actual initialialization of the array(s). 159 for (uint64_t i = 0; i < NumElements; i++) { 160 if (ALE) { 161 // Emit the element and store it to the appropriate array slot. 162 const Expr *Rhs = ALE->getElement(i); 163 LValue LV = MakeAddrLValue( 164 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 165 ElementType, AlignmentSource::Decl); 166 167 llvm::Value *value = EmitScalarExpr(Rhs); 168 EmitStoreThroughLValue(RValue::get(value), LV, true); 169 if (TrackNeededObjects) { 170 NeededObjects.push_back(value); 171 } 172 } else { 173 // Emit the key and store it to the appropriate array slot. 174 const Expr *Key = DLE->getKeyValueElement(i).Key; 175 LValue KeyLV = MakeAddrLValue( 176 Builder.CreateConstArrayGEP(Keys, i, getPointerSize()), 177 ElementType, AlignmentSource::Decl); 178 llvm::Value *keyValue = EmitScalarExpr(Key); 179 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 180 181 // Emit the value and store it to the appropriate array slot. 182 const Expr *Value = DLE->getKeyValueElement(i).Value; 183 LValue ValueLV = MakeAddrLValue( 184 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 185 ElementType, AlignmentSource::Decl); 186 llvm::Value *valueValue = EmitScalarExpr(Value); 187 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 188 if (TrackNeededObjects) { 189 NeededObjects.push_back(keyValue); 190 NeededObjects.push_back(valueValue); 191 } 192 } 193 } 194 195 // Generate the argument list. 196 CallArgList Args; 197 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 198 const ParmVarDecl *argDecl = *PI++; 199 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 200 Args.add(RValue::get(Objects.getPointer()), ArgQT); 201 if (DLE) { 202 argDecl = *PI++; 203 ArgQT = argDecl->getType().getUnqualifiedType(); 204 Args.add(RValue::get(Keys.getPointer()), ArgQT); 205 } 206 argDecl = *PI; 207 ArgQT = argDecl->getType().getUnqualifiedType(); 208 llvm::Value *Count = 209 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 210 Args.add(RValue::get(Count), ArgQT); 211 212 // Generate a reference to the class pointer, which will be the receiver. 213 Selector Sel = MethodWithObjects->getSelector(); 214 QualType ResultType = E->getType(); 215 const ObjCObjectPointerType *InterfacePointerType 216 = ResultType->getAsObjCInterfacePointerType(); 217 ObjCInterfaceDecl *Class 218 = InterfacePointerType->getObjectType()->getInterface(); 219 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 220 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 221 222 // Generate the message send. 223 RValue result = Runtime.GenerateMessageSend( 224 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 225 Receiver, Args, Class, MethodWithObjects); 226 227 // The above message send needs these objects, but in ARC they are 228 // passed in a buffer that is essentially __unsafe_unretained. 229 // Therefore we must prevent the optimizer from releasing them until 230 // after the call. 231 if (TrackNeededObjects) { 232 EmitARCIntrinsicUse(NeededObjects); 233 } 234 235 return Builder.CreateBitCast(result.getScalarVal(), 236 ConvertType(E->getType())); 237 } 238 239 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 240 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 241 } 242 243 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 244 const ObjCDictionaryLiteral *E) { 245 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 246 } 247 248 /// Emit a selector. 249 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 250 // Untyped selector. 251 // Note that this implementation allows for non-constant strings to be passed 252 // as arguments to @selector(). Currently, the only thing preventing this 253 // behaviour is the type checking in the front end. 254 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 255 } 256 257 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 258 // FIXME: This should pass the Decl not the name. 259 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 260 } 261 262 /// Adjust the type of an Objective-C object that doesn't match up due 263 /// to type erasure at various points, e.g., related result types or the use 264 /// of parameterized classes. 265 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 266 RValue Result) { 267 if (!ExpT->isObjCRetainableType()) 268 return Result; 269 270 // If the converted types are the same, we're done. 271 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 272 if (ExpLLVMTy == Result.getScalarVal()->getType()) 273 return Result; 274 275 // We have applied a substitution. Cast the rvalue appropriately. 276 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 277 ExpLLVMTy)); 278 } 279 280 /// Decide whether to extend the lifetime of the receiver of a 281 /// returns-inner-pointer message. 282 static bool 283 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 284 switch (message->getReceiverKind()) { 285 286 // For a normal instance message, we should extend unless the 287 // receiver is loaded from a variable with precise lifetime. 288 case ObjCMessageExpr::Instance: { 289 const Expr *receiver = message->getInstanceReceiver(); 290 291 // Look through OVEs. 292 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 293 if (opaque->getSourceExpr()) 294 receiver = opaque->getSourceExpr()->IgnoreParens(); 295 } 296 297 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 298 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 299 receiver = ice->getSubExpr()->IgnoreParens(); 300 301 // Look through OVEs. 302 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 303 if (opaque->getSourceExpr()) 304 receiver = opaque->getSourceExpr()->IgnoreParens(); 305 } 306 307 // Only __strong variables. 308 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 309 return true; 310 311 // All ivars and fields have precise lifetime. 312 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 313 return false; 314 315 // Otherwise, check for variables. 316 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 317 if (!declRef) return true; 318 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 319 if (!var) return true; 320 321 // All variables have precise lifetime except local variables with 322 // automatic storage duration that aren't specially marked. 323 return (var->hasLocalStorage() && 324 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 325 } 326 327 case ObjCMessageExpr::Class: 328 case ObjCMessageExpr::SuperClass: 329 // It's never necessary for class objects. 330 return false; 331 332 case ObjCMessageExpr::SuperInstance: 333 // We generally assume that 'self' lives throughout a method call. 334 return false; 335 } 336 337 llvm_unreachable("invalid receiver kind"); 338 } 339 340 /// Given an expression of ObjC pointer type, check whether it was 341 /// immediately loaded from an ARC __weak l-value. 342 static const Expr *findWeakLValue(const Expr *E) { 343 assert(E->getType()->isObjCRetainableType()); 344 E = E->IgnoreParens(); 345 if (auto CE = dyn_cast<CastExpr>(E)) { 346 if (CE->getCastKind() == CK_LValueToRValue) { 347 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 348 return CE->getSubExpr(); 349 } 350 } 351 352 return nullptr; 353 } 354 355 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 356 ReturnValueSlot Return) { 357 // Only the lookup mechanism and first two arguments of the method 358 // implementation vary between runtimes. We can get the receiver and 359 // arguments in generic code. 360 361 bool isDelegateInit = E->isDelegateInitCall(); 362 363 const ObjCMethodDecl *method = E->getMethodDecl(); 364 365 // If the method is -retain, and the receiver's being loaded from 366 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 367 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 368 method->getMethodFamily() == OMF_retain) { 369 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 370 LValue lvalue = EmitLValue(lvalueExpr); 371 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress()); 372 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 373 } 374 } 375 376 // We don't retain the receiver in delegate init calls, and this is 377 // safe because the receiver value is always loaded from 'self', 378 // which we zero out. We don't want to Block_copy block receivers, 379 // though. 380 bool retainSelf = 381 (!isDelegateInit && 382 CGM.getLangOpts().ObjCAutoRefCount && 383 method && 384 method->hasAttr<NSConsumesSelfAttr>()); 385 386 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 387 bool isSuperMessage = false; 388 bool isClassMessage = false; 389 ObjCInterfaceDecl *OID = nullptr; 390 // Find the receiver 391 QualType ReceiverType; 392 llvm::Value *Receiver = nullptr; 393 switch (E->getReceiverKind()) { 394 case ObjCMessageExpr::Instance: 395 ReceiverType = E->getInstanceReceiver()->getType(); 396 if (retainSelf) { 397 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 398 E->getInstanceReceiver()); 399 Receiver = ter.getPointer(); 400 if (ter.getInt()) retainSelf = false; 401 } else 402 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 403 break; 404 405 case ObjCMessageExpr::Class: { 406 ReceiverType = E->getClassReceiver(); 407 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 408 assert(ObjTy && "Invalid Objective-C class message send"); 409 OID = ObjTy->getInterface(); 410 assert(OID && "Invalid Objective-C class message send"); 411 Receiver = Runtime.GetClass(*this, OID); 412 isClassMessage = true; 413 break; 414 } 415 416 case ObjCMessageExpr::SuperInstance: 417 ReceiverType = E->getSuperType(); 418 Receiver = LoadObjCSelf(); 419 isSuperMessage = true; 420 break; 421 422 case ObjCMessageExpr::SuperClass: 423 ReceiverType = E->getSuperType(); 424 Receiver = LoadObjCSelf(); 425 isSuperMessage = true; 426 isClassMessage = true; 427 break; 428 } 429 430 if (retainSelf) 431 Receiver = EmitARCRetainNonBlock(Receiver); 432 433 // In ARC, we sometimes want to "extend the lifetime" 434 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 435 // messages. 436 if (getLangOpts().ObjCAutoRefCount && method && 437 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 438 shouldExtendReceiverForInnerPointerMessage(E)) 439 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 440 441 QualType ResultType = method ? method->getReturnType() : E->getType(); 442 443 CallArgList Args; 444 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 445 446 // For delegate init calls in ARC, do an unsafe store of null into 447 // self. This represents the call taking direct ownership of that 448 // value. We have to do this after emitting the other call 449 // arguments because they might also reference self, but we don't 450 // have to worry about any of them modifying self because that would 451 // be an undefined read and write of an object in unordered 452 // expressions. 453 if (isDelegateInit) { 454 assert(getLangOpts().ObjCAutoRefCount && 455 "delegate init calls should only be marked in ARC"); 456 457 // Do an unsafe store of null into self. 458 Address selfAddr = 459 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 460 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 461 } 462 463 RValue result; 464 if (isSuperMessage) { 465 // super is only valid in an Objective-C method 466 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 467 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 468 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 469 E->getSelector(), 470 OMD->getClassInterface(), 471 isCategoryImpl, 472 Receiver, 473 isClassMessage, 474 Args, 475 method); 476 } else { 477 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 478 E->getSelector(), 479 Receiver, Args, OID, 480 method); 481 } 482 483 // For delegate init calls in ARC, implicitly store the result of 484 // the call back into self. This takes ownership of the value. 485 if (isDelegateInit) { 486 Address selfAddr = 487 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 488 llvm::Value *newSelf = result.getScalarVal(); 489 490 // The delegate return type isn't necessarily a matching type; in 491 // fact, it's quite likely to be 'id'. 492 llvm::Type *selfTy = selfAddr.getElementType(); 493 newSelf = Builder.CreateBitCast(newSelf, selfTy); 494 495 Builder.CreateStore(newSelf, selfAddr); 496 } 497 498 return AdjustObjCObjectType(*this, E->getType(), result); 499 } 500 501 namespace { 502 struct FinishARCDealloc final : EHScopeStack::Cleanup { 503 void Emit(CodeGenFunction &CGF, Flags flags) override { 504 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 505 506 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 507 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 508 if (!iface->getSuperClass()) return; 509 510 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 511 512 // Call [super dealloc] if we have a superclass. 513 llvm::Value *self = CGF.LoadObjCSelf(); 514 515 CallArgList args; 516 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 517 CGF.getContext().VoidTy, 518 method->getSelector(), 519 iface, 520 isCategory, 521 self, 522 /*is class msg*/ false, 523 args, 524 method); 525 } 526 }; 527 } 528 529 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 530 /// the LLVM function and sets the other context used by 531 /// CodeGenFunction. 532 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 533 const ObjCContainerDecl *CD) { 534 SourceLocation StartLoc = OMD->getBeginLoc(); 535 FunctionArgList args; 536 // Check if we should generate debug info for this method. 537 if (OMD->hasAttr<NoDebugAttr>()) 538 DebugInfo = nullptr; // disable debug info indefinitely for this function 539 540 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 541 542 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 543 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 544 545 args.push_back(OMD->getSelfDecl()); 546 args.push_back(OMD->getCmdDecl()); 547 548 args.append(OMD->param_begin(), OMD->param_end()); 549 550 CurGD = OMD; 551 CurEHLocation = OMD->getEndLoc(); 552 553 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 554 OMD->getLocation(), StartLoc); 555 556 // In ARC, certain methods get an extra cleanup. 557 if (CGM.getLangOpts().ObjCAutoRefCount && 558 OMD->isInstanceMethod() && 559 OMD->getSelector().isUnarySelector()) { 560 const IdentifierInfo *ident = 561 OMD->getSelector().getIdentifierInfoForSlot(0); 562 if (ident->isStr("dealloc")) 563 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 564 } 565 } 566 567 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 568 LValue lvalue, QualType type); 569 570 /// Generate an Objective-C method. An Objective-C method is a C function with 571 /// its pointer, name, and types registered in the class struture. 572 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 573 StartObjCMethod(OMD, OMD->getClassInterface()); 574 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 575 assert(isa<CompoundStmt>(OMD->getBody())); 576 incrementProfileCounter(OMD->getBody()); 577 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 578 FinishFunction(OMD->getBodyRBrace()); 579 } 580 581 /// emitStructGetterCall - Call the runtime function to load a property 582 /// into the return value slot. 583 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 584 bool isAtomic, bool hasStrong) { 585 ASTContext &Context = CGF.getContext(); 586 587 Address src = 588 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 589 .getAddress(); 590 591 // objc_copyStruct (ReturnValue, &structIvar, 592 // sizeof (Type of Ivar), isAtomic, false); 593 CallArgList args; 594 595 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 596 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 597 598 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 599 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 600 601 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 602 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 603 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 604 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 605 606 llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 607 CGCallee callee = CGCallee::forDirect(fn); 608 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 609 callee, ReturnValueSlot(), args); 610 } 611 612 /// Determine whether the given architecture supports unaligned atomic 613 /// accesses. They don't have to be fast, just faster than a function 614 /// call and a mutex. 615 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 616 // FIXME: Allow unaligned atomic load/store on x86. (It is not 617 // currently supported by the backend.) 618 return 0; 619 } 620 621 /// Return the maximum size that permits atomic accesses for the given 622 /// architecture. 623 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 624 llvm::Triple::ArchType arch) { 625 // ARM has 8-byte atomic accesses, but it's not clear whether we 626 // want to rely on them here. 627 628 // In the default case, just assume that any size up to a pointer is 629 // fine given adequate alignment. 630 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 631 } 632 633 namespace { 634 class PropertyImplStrategy { 635 public: 636 enum StrategyKind { 637 /// The 'native' strategy is to use the architecture's provided 638 /// reads and writes. 639 Native, 640 641 /// Use objc_setProperty and objc_getProperty. 642 GetSetProperty, 643 644 /// Use objc_setProperty for the setter, but use expression 645 /// evaluation for the getter. 646 SetPropertyAndExpressionGet, 647 648 /// Use objc_copyStruct. 649 CopyStruct, 650 651 /// The 'expression' strategy is to emit normal assignment or 652 /// lvalue-to-rvalue expressions. 653 Expression 654 }; 655 656 StrategyKind getKind() const { return StrategyKind(Kind); } 657 658 bool hasStrongMember() const { return HasStrong; } 659 bool isAtomic() const { return IsAtomic; } 660 bool isCopy() const { return IsCopy; } 661 662 CharUnits getIvarSize() const { return IvarSize; } 663 CharUnits getIvarAlignment() const { return IvarAlignment; } 664 665 PropertyImplStrategy(CodeGenModule &CGM, 666 const ObjCPropertyImplDecl *propImpl); 667 668 private: 669 unsigned Kind : 8; 670 unsigned IsAtomic : 1; 671 unsigned IsCopy : 1; 672 unsigned HasStrong : 1; 673 674 CharUnits IvarSize; 675 CharUnits IvarAlignment; 676 }; 677 } 678 679 /// Pick an implementation strategy for the given property synthesis. 680 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 681 const ObjCPropertyImplDecl *propImpl) { 682 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 683 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 684 685 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 686 IsAtomic = prop->isAtomic(); 687 HasStrong = false; // doesn't matter here. 688 689 // Evaluate the ivar's size and alignment. 690 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 691 QualType ivarType = ivar->getType(); 692 std::tie(IvarSize, IvarAlignment) = 693 CGM.getContext().getTypeInfoInChars(ivarType); 694 695 // If we have a copy property, we always have to use getProperty/setProperty. 696 // TODO: we could actually use setProperty and an expression for non-atomics. 697 if (IsCopy) { 698 Kind = GetSetProperty; 699 return; 700 } 701 702 // Handle retain. 703 if (setterKind == ObjCPropertyDecl::Retain) { 704 // In GC-only, there's nothing special that needs to be done. 705 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 706 // fallthrough 707 708 // In ARC, if the property is non-atomic, use expression emission, 709 // which translates to objc_storeStrong. This isn't required, but 710 // it's slightly nicer. 711 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 712 // Using standard expression emission for the setter is only 713 // acceptable if the ivar is __strong, which won't be true if 714 // the property is annotated with __attribute__((NSObject)). 715 // TODO: falling all the way back to objc_setProperty here is 716 // just laziness, though; we could still use objc_storeStrong 717 // if we hacked it right. 718 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 719 Kind = Expression; 720 else 721 Kind = SetPropertyAndExpressionGet; 722 return; 723 724 // Otherwise, we need to at least use setProperty. However, if 725 // the property isn't atomic, we can use normal expression 726 // emission for the getter. 727 } else if (!IsAtomic) { 728 Kind = SetPropertyAndExpressionGet; 729 return; 730 731 // Otherwise, we have to use both setProperty and getProperty. 732 } else { 733 Kind = GetSetProperty; 734 return; 735 } 736 } 737 738 // If we're not atomic, just use expression accesses. 739 if (!IsAtomic) { 740 Kind = Expression; 741 return; 742 } 743 744 // Properties on bitfield ivars need to be emitted using expression 745 // accesses even if they're nominally atomic. 746 if (ivar->isBitField()) { 747 Kind = Expression; 748 return; 749 } 750 751 // GC-qualified or ARC-qualified ivars need to be emitted as 752 // expressions. This actually works out to being atomic anyway, 753 // except for ARC __strong, but that should trigger the above code. 754 if (ivarType.hasNonTrivialObjCLifetime() || 755 (CGM.getLangOpts().getGC() && 756 CGM.getContext().getObjCGCAttrKind(ivarType))) { 757 Kind = Expression; 758 return; 759 } 760 761 // Compute whether the ivar has strong members. 762 if (CGM.getLangOpts().getGC()) 763 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 764 HasStrong = recordType->getDecl()->hasObjectMember(); 765 766 // We can never access structs with object members with a native 767 // access, because we need to use write barriers. This is what 768 // objc_copyStruct is for. 769 if (HasStrong) { 770 Kind = CopyStruct; 771 return; 772 } 773 774 // Otherwise, this is target-dependent and based on the size and 775 // alignment of the ivar. 776 777 // If the size of the ivar is not a power of two, give up. We don't 778 // want to get into the business of doing compare-and-swaps. 779 if (!IvarSize.isPowerOfTwo()) { 780 Kind = CopyStruct; 781 return; 782 } 783 784 llvm::Triple::ArchType arch = 785 CGM.getTarget().getTriple().getArch(); 786 787 // Most architectures require memory to fit within a single cache 788 // line, so the alignment has to be at least the size of the access. 789 // Otherwise we have to grab a lock. 790 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 791 Kind = CopyStruct; 792 return; 793 } 794 795 // If the ivar's size exceeds the architecture's maximum atomic 796 // access size, we have to use CopyStruct. 797 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 798 Kind = CopyStruct; 799 return; 800 } 801 802 // Otherwise, we can use native loads and stores. 803 Kind = Native; 804 } 805 806 /// Generate an Objective-C property getter function. 807 /// 808 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 809 /// is illegal within a category. 810 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 811 const ObjCPropertyImplDecl *PID) { 812 llvm::Constant *AtomicHelperFn = 813 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 814 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 815 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 816 assert(OMD && "Invalid call to generate getter (empty method)"); 817 StartObjCMethod(OMD, IMP->getClassInterface()); 818 819 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 820 821 FinishFunction(); 822 } 823 824 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 825 const Expr *getter = propImpl->getGetterCXXConstructor(); 826 if (!getter) return true; 827 828 // Sema only makes only of these when the ivar has a C++ class type, 829 // so the form is pretty constrained. 830 831 // If the property has a reference type, we might just be binding a 832 // reference, in which case the result will be a gl-value. We should 833 // treat this as a non-trivial operation. 834 if (getter->isGLValue()) 835 return false; 836 837 // If we selected a trivial copy-constructor, we're okay. 838 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 839 return (construct->getConstructor()->isTrivial()); 840 841 // The constructor might require cleanups (in which case it's never 842 // trivial). 843 assert(isa<ExprWithCleanups>(getter)); 844 return false; 845 } 846 847 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 848 /// copy the ivar into the resturn slot. 849 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 850 llvm::Value *returnAddr, 851 ObjCIvarDecl *ivar, 852 llvm::Constant *AtomicHelperFn) { 853 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 854 // AtomicHelperFn); 855 CallArgList args; 856 857 // The 1st argument is the return Slot. 858 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 859 860 // The 2nd argument is the address of the ivar. 861 llvm::Value *ivarAddr = 862 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 863 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 864 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 865 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 866 867 // Third argument is the helper function. 868 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 869 870 llvm::Constant *copyCppAtomicObjectFn = 871 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 872 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 873 CGF.EmitCall( 874 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 875 callee, ReturnValueSlot(), args); 876 } 877 878 void 879 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 880 const ObjCPropertyImplDecl *propImpl, 881 const ObjCMethodDecl *GetterMethodDecl, 882 llvm::Constant *AtomicHelperFn) { 883 // If there's a non-trivial 'get' expression, we just have to emit that. 884 if (!hasTrivialGetExpr(propImpl)) { 885 if (!AtomicHelperFn) { 886 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 887 /*nrvo*/ nullptr); 888 EmitReturnStmt(ret); 889 } 890 else { 891 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 892 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 893 ivar, AtomicHelperFn); 894 } 895 return; 896 } 897 898 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 899 QualType propType = prop->getType(); 900 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 901 902 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 903 904 // Pick an implementation strategy. 905 PropertyImplStrategy strategy(CGM, propImpl); 906 switch (strategy.getKind()) { 907 case PropertyImplStrategy::Native: { 908 // We don't need to do anything for a zero-size struct. 909 if (strategy.getIvarSize().isZero()) 910 return; 911 912 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 913 914 // Currently, all atomic accesses have to be through integer 915 // types, so there's no point in trying to pick a prettier type. 916 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 917 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 918 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 919 920 // Perform an atomic load. This does not impose ordering constraints. 921 Address ivarAddr = LV.getAddress(); 922 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 923 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 924 load->setAtomic(llvm::AtomicOrdering::Unordered); 925 926 // Store that value into the return address. Doing this with a 927 // bitcast is likely to produce some pretty ugly IR, but it's not 928 // the *most* terrible thing in the world. 929 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 930 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 931 llvm::Value *ivarVal = load; 932 if (ivarSize > retTySize) { 933 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 934 ivarVal = Builder.CreateTrunc(load, newTy); 935 bitcastType = newTy->getPointerTo(); 936 } 937 Builder.CreateStore(ivarVal, 938 Builder.CreateBitCast(ReturnValue, bitcastType)); 939 940 // Make sure we don't do an autorelease. 941 AutoreleaseResult = false; 942 return; 943 } 944 945 case PropertyImplStrategy::GetSetProperty: { 946 llvm::Constant *getPropertyFn = 947 CGM.getObjCRuntime().GetPropertyGetFunction(); 948 if (!getPropertyFn) { 949 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 950 return; 951 } 952 CGCallee callee = CGCallee::forDirect(getPropertyFn); 953 954 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 955 // FIXME: Can't this be simpler? This might even be worse than the 956 // corresponding gcc code. 957 llvm::Value *cmd = 958 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 959 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 960 llvm::Value *ivarOffset = 961 EmitIvarOffset(classImpl->getClassInterface(), ivar); 962 963 CallArgList args; 964 args.add(RValue::get(self), getContext().getObjCIdType()); 965 args.add(RValue::get(cmd), getContext().getObjCSelType()); 966 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 967 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 968 getContext().BoolTy); 969 970 // FIXME: We shouldn't need to get the function info here, the 971 // runtime already should have computed it to build the function. 972 llvm::Instruction *CallInstruction; 973 RValue RV = EmitCall( 974 getTypes().arrangeBuiltinFunctionCall(propType, args), 975 callee, ReturnValueSlot(), args, &CallInstruction); 976 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 977 call->setTailCall(); 978 979 // We need to fix the type here. Ivars with copy & retain are 980 // always objects so we don't need to worry about complex or 981 // aggregates. 982 RV = RValue::get(Builder.CreateBitCast( 983 RV.getScalarVal(), 984 getTypes().ConvertType(getterMethod->getReturnType()))); 985 986 EmitReturnOfRValue(RV, propType); 987 988 // objc_getProperty does an autorelease, so we should suppress ours. 989 AutoreleaseResult = false; 990 991 return; 992 } 993 994 case PropertyImplStrategy::CopyStruct: 995 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 996 strategy.hasStrongMember()); 997 return; 998 999 case PropertyImplStrategy::Expression: 1000 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1001 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1002 1003 QualType ivarType = ivar->getType(); 1004 switch (getEvaluationKind(ivarType)) { 1005 case TEK_Complex: { 1006 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1007 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1008 /*init*/ true); 1009 return; 1010 } 1011 case TEK_Aggregate: { 1012 // The return value slot is guaranteed to not be aliased, but 1013 // that's not necessarily the same as "on the stack", so 1014 // we still potentially need objc_memmove_collectable. 1015 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1016 /* Src= */ LV, ivarType, overlapForReturnValue()); 1017 return; 1018 } 1019 case TEK_Scalar: { 1020 llvm::Value *value; 1021 if (propType->isReferenceType()) { 1022 value = LV.getAddress().getPointer(); 1023 } else { 1024 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1025 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1026 if (getLangOpts().ObjCAutoRefCount) { 1027 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1028 } else { 1029 value = EmitARCLoadWeak(LV.getAddress()); 1030 } 1031 1032 // Otherwise we want to do a simple load, suppressing the 1033 // final autorelease. 1034 } else { 1035 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1036 AutoreleaseResult = false; 1037 } 1038 1039 value = Builder.CreateBitCast( 1040 value, ConvertType(GetterMethodDecl->getReturnType())); 1041 } 1042 1043 EmitReturnOfRValue(RValue::get(value), propType); 1044 return; 1045 } 1046 } 1047 llvm_unreachable("bad evaluation kind"); 1048 } 1049 1050 } 1051 llvm_unreachable("bad @property implementation strategy!"); 1052 } 1053 1054 /// emitStructSetterCall - Call the runtime function to store the value 1055 /// from the first formal parameter into the given ivar. 1056 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1057 ObjCIvarDecl *ivar) { 1058 // objc_copyStruct (&structIvar, &Arg, 1059 // sizeof (struct something), true, false); 1060 CallArgList args; 1061 1062 // The first argument is the address of the ivar. 1063 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1064 CGF.LoadObjCSelf(), ivar, 0) 1065 .getPointer(); 1066 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1067 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1068 1069 // The second argument is the address of the parameter variable. 1070 ParmVarDecl *argVar = *OMD->param_begin(); 1071 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1072 VK_LValue, SourceLocation()); 1073 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1074 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1075 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1076 1077 // The third argument is the sizeof the type. 1078 llvm::Value *size = 1079 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1080 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1081 1082 // The fourth argument is the 'isAtomic' flag. 1083 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1084 1085 // The fifth argument is the 'hasStrong' flag. 1086 // FIXME: should this really always be false? 1087 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1088 1089 llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1090 CGCallee callee = CGCallee::forDirect(fn); 1091 CGF.EmitCall( 1092 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1093 callee, ReturnValueSlot(), args); 1094 } 1095 1096 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1097 /// the value from the first formal parameter into the given ivar, using 1098 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1099 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1100 ObjCMethodDecl *OMD, 1101 ObjCIvarDecl *ivar, 1102 llvm::Constant *AtomicHelperFn) { 1103 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1104 // AtomicHelperFn); 1105 CallArgList args; 1106 1107 // The first argument is the address of the ivar. 1108 llvm::Value *ivarAddr = 1109 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1110 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 1111 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1112 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1113 1114 // The second argument is the address of the parameter variable. 1115 ParmVarDecl *argVar = *OMD->param_begin(); 1116 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1117 VK_LValue, SourceLocation()); 1118 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1119 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1120 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1121 1122 // Third argument is the helper function. 1123 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1124 1125 llvm::Constant *fn = 1126 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1127 CGCallee callee = CGCallee::forDirect(fn); 1128 CGF.EmitCall( 1129 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1130 callee, ReturnValueSlot(), args); 1131 } 1132 1133 1134 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1135 Expr *setter = PID->getSetterCXXAssignment(); 1136 if (!setter) return true; 1137 1138 // Sema only makes only of these when the ivar has a C++ class type, 1139 // so the form is pretty constrained. 1140 1141 // An operator call is trivial if the function it calls is trivial. 1142 // This also implies that there's nothing non-trivial going on with 1143 // the arguments, because operator= can only be trivial if it's a 1144 // synthesized assignment operator and therefore both parameters are 1145 // references. 1146 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1147 if (const FunctionDecl *callee 1148 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1149 if (callee->isTrivial()) 1150 return true; 1151 return false; 1152 } 1153 1154 assert(isa<ExprWithCleanups>(setter)); 1155 return false; 1156 } 1157 1158 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1159 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1160 return false; 1161 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1162 } 1163 1164 void 1165 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1166 const ObjCPropertyImplDecl *propImpl, 1167 llvm::Constant *AtomicHelperFn) { 1168 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1169 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1170 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1171 1172 // Just use the setter expression if Sema gave us one and it's 1173 // non-trivial. 1174 if (!hasTrivialSetExpr(propImpl)) { 1175 if (!AtomicHelperFn) 1176 // If non-atomic, assignment is called directly. 1177 EmitStmt(propImpl->getSetterCXXAssignment()); 1178 else 1179 // If atomic, assignment is called via a locking api. 1180 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1181 AtomicHelperFn); 1182 return; 1183 } 1184 1185 PropertyImplStrategy strategy(CGM, propImpl); 1186 switch (strategy.getKind()) { 1187 case PropertyImplStrategy::Native: { 1188 // We don't need to do anything for a zero-size struct. 1189 if (strategy.getIvarSize().isZero()) 1190 return; 1191 1192 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1193 1194 LValue ivarLValue = 1195 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1196 Address ivarAddr = ivarLValue.getAddress(); 1197 1198 // Currently, all atomic accesses have to be through integer 1199 // types, so there's no point in trying to pick a prettier type. 1200 llvm::Type *bitcastType = 1201 llvm::Type::getIntNTy(getLLVMContext(), 1202 getContext().toBits(strategy.getIvarSize())); 1203 1204 // Cast both arguments to the chosen operation type. 1205 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1206 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1207 1208 // This bitcast load is likely to cause some nasty IR. 1209 llvm::Value *load = Builder.CreateLoad(argAddr); 1210 1211 // Perform an atomic store. There are no memory ordering requirements. 1212 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1213 store->setAtomic(llvm::AtomicOrdering::Unordered); 1214 return; 1215 } 1216 1217 case PropertyImplStrategy::GetSetProperty: 1218 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1219 1220 llvm::Constant *setOptimizedPropertyFn = nullptr; 1221 llvm::Constant *setPropertyFn = nullptr; 1222 if (UseOptimizedSetter(CGM)) { 1223 // 10.8 and iOS 6.0 code and GC is off 1224 setOptimizedPropertyFn = 1225 CGM.getObjCRuntime() 1226 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1227 strategy.isCopy()); 1228 if (!setOptimizedPropertyFn) { 1229 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1230 return; 1231 } 1232 } 1233 else { 1234 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1235 if (!setPropertyFn) { 1236 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1237 return; 1238 } 1239 } 1240 1241 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1242 // <is-atomic>, <is-copy>). 1243 llvm::Value *cmd = 1244 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1245 llvm::Value *self = 1246 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1247 llvm::Value *ivarOffset = 1248 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1249 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1250 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1251 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1252 1253 CallArgList args; 1254 args.add(RValue::get(self), getContext().getObjCIdType()); 1255 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1256 if (setOptimizedPropertyFn) { 1257 args.add(RValue::get(arg), getContext().getObjCIdType()); 1258 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1259 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1260 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1261 callee, ReturnValueSlot(), args); 1262 } else { 1263 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1264 args.add(RValue::get(arg), getContext().getObjCIdType()); 1265 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1266 getContext().BoolTy); 1267 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1268 getContext().BoolTy); 1269 // FIXME: We shouldn't need to get the function info here, the runtime 1270 // already should have computed it to build the function. 1271 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1272 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1273 callee, ReturnValueSlot(), args); 1274 } 1275 1276 return; 1277 } 1278 1279 case PropertyImplStrategy::CopyStruct: 1280 emitStructSetterCall(*this, setterMethod, ivar); 1281 return; 1282 1283 case PropertyImplStrategy::Expression: 1284 break; 1285 } 1286 1287 // Otherwise, fake up some ASTs and emit a normal assignment. 1288 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1289 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1290 VK_LValue, SourceLocation()); 1291 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1292 selfDecl->getType(), CK_LValueToRValue, &self, 1293 VK_RValue); 1294 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1295 SourceLocation(), SourceLocation(), 1296 &selfLoad, true, true); 1297 1298 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1299 QualType argType = argDecl->getType().getNonReferenceType(); 1300 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1301 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1302 argType.getUnqualifiedType(), CK_LValueToRValue, 1303 &arg, VK_RValue); 1304 1305 // The property type can differ from the ivar type in some situations with 1306 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1307 // The following absurdity is just to ensure well-formed IR. 1308 CastKind argCK = CK_NoOp; 1309 if (ivarRef.getType()->isObjCObjectPointerType()) { 1310 if (argLoad.getType()->isObjCObjectPointerType()) 1311 argCK = CK_BitCast; 1312 else if (argLoad.getType()->isBlockPointerType()) 1313 argCK = CK_BlockPointerToObjCPointerCast; 1314 else 1315 argCK = CK_CPointerToObjCPointerCast; 1316 } else if (ivarRef.getType()->isBlockPointerType()) { 1317 if (argLoad.getType()->isBlockPointerType()) 1318 argCK = CK_BitCast; 1319 else 1320 argCK = CK_AnyPointerToBlockPointerCast; 1321 } else if (ivarRef.getType()->isPointerType()) { 1322 argCK = CK_BitCast; 1323 } 1324 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1325 ivarRef.getType(), argCK, &argLoad, 1326 VK_RValue); 1327 Expr *finalArg = &argLoad; 1328 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1329 argLoad.getType())) 1330 finalArg = &argCast; 1331 1332 1333 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1334 ivarRef.getType(), VK_RValue, OK_Ordinary, 1335 SourceLocation(), FPOptions()); 1336 EmitStmt(&assign); 1337 } 1338 1339 /// Generate an Objective-C property setter function. 1340 /// 1341 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1342 /// is illegal within a category. 1343 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1344 const ObjCPropertyImplDecl *PID) { 1345 llvm::Constant *AtomicHelperFn = 1346 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1347 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1348 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1349 assert(OMD && "Invalid call to generate setter (empty method)"); 1350 StartObjCMethod(OMD, IMP->getClassInterface()); 1351 1352 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1353 1354 FinishFunction(); 1355 } 1356 1357 namespace { 1358 struct DestroyIvar final : EHScopeStack::Cleanup { 1359 private: 1360 llvm::Value *addr; 1361 const ObjCIvarDecl *ivar; 1362 CodeGenFunction::Destroyer *destroyer; 1363 bool useEHCleanupForArray; 1364 public: 1365 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1366 CodeGenFunction::Destroyer *destroyer, 1367 bool useEHCleanupForArray) 1368 : addr(addr), ivar(ivar), destroyer(destroyer), 1369 useEHCleanupForArray(useEHCleanupForArray) {} 1370 1371 void Emit(CodeGenFunction &CGF, Flags flags) override { 1372 LValue lvalue 1373 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1374 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1375 flags.isForNormalCleanup() && useEHCleanupForArray); 1376 } 1377 }; 1378 } 1379 1380 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1381 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1382 Address addr, 1383 QualType type) { 1384 llvm::Value *null = getNullForVariable(addr); 1385 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1386 } 1387 1388 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1389 ObjCImplementationDecl *impl) { 1390 CodeGenFunction::RunCleanupsScope scope(CGF); 1391 1392 llvm::Value *self = CGF.LoadObjCSelf(); 1393 1394 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1395 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1396 ivar; ivar = ivar->getNextIvar()) { 1397 QualType type = ivar->getType(); 1398 1399 // Check whether the ivar is a destructible type. 1400 QualType::DestructionKind dtorKind = type.isDestructedType(); 1401 if (!dtorKind) continue; 1402 1403 CodeGenFunction::Destroyer *destroyer = nullptr; 1404 1405 // Use a call to objc_storeStrong to destroy strong ivars, for the 1406 // general benefit of the tools. 1407 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1408 destroyer = destroyARCStrongWithStore; 1409 1410 // Otherwise use the default for the destruction kind. 1411 } else { 1412 destroyer = CGF.getDestroyer(dtorKind); 1413 } 1414 1415 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1416 1417 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1418 cleanupKind & EHCleanup); 1419 } 1420 1421 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1422 } 1423 1424 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1425 ObjCMethodDecl *MD, 1426 bool ctor) { 1427 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1428 StartObjCMethod(MD, IMP->getClassInterface()); 1429 1430 // Emit .cxx_construct. 1431 if (ctor) { 1432 // Suppress the final autorelease in ARC. 1433 AutoreleaseResult = false; 1434 1435 for (const auto *IvarInit : IMP->inits()) { 1436 FieldDecl *Field = IvarInit->getAnyMember(); 1437 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1438 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1439 LoadObjCSelf(), Ivar, 0); 1440 EmitAggExpr(IvarInit->getInit(), 1441 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1442 AggValueSlot::DoesNotNeedGCBarriers, 1443 AggValueSlot::IsNotAliased, 1444 AggValueSlot::DoesNotOverlap)); 1445 } 1446 // constructor returns 'self'. 1447 CodeGenTypes &Types = CGM.getTypes(); 1448 QualType IdTy(CGM.getContext().getObjCIdType()); 1449 llvm::Value *SelfAsId = 1450 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1451 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1452 1453 // Emit .cxx_destruct. 1454 } else { 1455 emitCXXDestructMethod(*this, IMP); 1456 } 1457 FinishFunction(); 1458 } 1459 1460 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1461 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1462 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1463 Self->getType(), VK_LValue, SourceLocation()); 1464 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1465 } 1466 1467 QualType CodeGenFunction::TypeOfSelfObject() { 1468 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1469 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1470 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1471 getContext().getCanonicalType(selfDecl->getType())); 1472 return PTy->getPointeeType(); 1473 } 1474 1475 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1476 llvm::Constant *EnumerationMutationFnPtr = 1477 CGM.getObjCRuntime().EnumerationMutationFunction(); 1478 if (!EnumerationMutationFnPtr) { 1479 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1480 return; 1481 } 1482 CGCallee EnumerationMutationFn = 1483 CGCallee::forDirect(EnumerationMutationFnPtr); 1484 1485 CGDebugInfo *DI = getDebugInfo(); 1486 if (DI) 1487 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1488 1489 RunCleanupsScope ForScope(*this); 1490 1491 // The local variable comes into scope immediately. 1492 AutoVarEmission variable = AutoVarEmission::invalid(); 1493 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1494 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1495 1496 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1497 1498 // Fast enumeration state. 1499 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1500 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1501 EmitNullInitialization(StatePtr, StateTy); 1502 1503 // Number of elements in the items array. 1504 static const unsigned NumItems = 16; 1505 1506 // Fetch the countByEnumeratingWithState:objects:count: selector. 1507 IdentifierInfo *II[] = { 1508 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1509 &CGM.getContext().Idents.get("objects"), 1510 &CGM.getContext().Idents.get("count") 1511 }; 1512 Selector FastEnumSel = 1513 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1514 1515 QualType ItemsTy = 1516 getContext().getConstantArrayType(getContext().getObjCIdType(), 1517 llvm::APInt(32, NumItems), 1518 ArrayType::Normal, 0); 1519 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1520 1521 // Emit the collection pointer. In ARC, we do a retain. 1522 llvm::Value *Collection; 1523 if (getLangOpts().ObjCAutoRefCount) { 1524 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1525 1526 // Enter a cleanup to do the release. 1527 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1528 } else { 1529 Collection = EmitScalarExpr(S.getCollection()); 1530 } 1531 1532 // The 'continue' label needs to appear within the cleanup for the 1533 // collection object. 1534 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1535 1536 // Send it our message: 1537 CallArgList Args; 1538 1539 // The first argument is a temporary of the enumeration-state type. 1540 Args.add(RValue::get(StatePtr.getPointer()), 1541 getContext().getPointerType(StateTy)); 1542 1543 // The second argument is a temporary array with space for NumItems 1544 // pointers. We'll actually be loading elements from the array 1545 // pointer written into the control state; this buffer is so that 1546 // collections that *aren't* backed by arrays can still queue up 1547 // batches of elements. 1548 Args.add(RValue::get(ItemsPtr.getPointer()), 1549 getContext().getPointerType(ItemsTy)); 1550 1551 // The third argument is the capacity of that temporary array. 1552 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1553 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1554 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1555 1556 // Start the enumeration. 1557 RValue CountRV = 1558 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1559 getContext().getNSUIntegerType(), 1560 FastEnumSel, Collection, Args); 1561 1562 // The initial number of objects that were returned in the buffer. 1563 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1564 1565 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1566 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1567 1568 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1569 1570 // If the limit pointer was zero to begin with, the collection is 1571 // empty; skip all this. Set the branch weight assuming this has the same 1572 // probability of exiting the loop as any other loop exit. 1573 uint64_t EntryCount = getCurrentProfileCount(); 1574 Builder.CreateCondBr( 1575 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1576 LoopInitBB, 1577 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1578 1579 // Otherwise, initialize the loop. 1580 EmitBlock(LoopInitBB); 1581 1582 // Save the initial mutations value. This is the value at an 1583 // address that was written into the state object by 1584 // countByEnumeratingWithState:objects:count:. 1585 Address StateMutationsPtrPtr = Builder.CreateStructGEP( 1586 StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr"); 1587 llvm::Value *StateMutationsPtr 1588 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1589 1590 llvm::Value *initialMutations = 1591 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1592 "forcoll.initial-mutations"); 1593 1594 // Start looping. This is the point we return to whenever we have a 1595 // fresh, non-empty batch of objects. 1596 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1597 EmitBlock(LoopBodyBB); 1598 1599 // The current index into the buffer. 1600 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1601 index->addIncoming(zero, LoopInitBB); 1602 1603 // The current buffer size. 1604 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1605 count->addIncoming(initialBufferLimit, LoopInitBB); 1606 1607 incrementProfileCounter(&S); 1608 1609 // Check whether the mutations value has changed from where it was 1610 // at start. StateMutationsPtr should actually be invariant between 1611 // refreshes. 1612 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1613 llvm::Value *currentMutations 1614 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1615 "statemutations"); 1616 1617 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1618 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1619 1620 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1621 WasNotMutatedBB, WasMutatedBB); 1622 1623 // If so, call the enumeration-mutation function. 1624 EmitBlock(WasMutatedBB); 1625 llvm::Value *V = 1626 Builder.CreateBitCast(Collection, 1627 ConvertType(getContext().getObjCIdType())); 1628 CallArgList Args2; 1629 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1630 // FIXME: We shouldn't need to get the function info here, the runtime already 1631 // should have computed it to build the function. 1632 EmitCall( 1633 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1634 EnumerationMutationFn, ReturnValueSlot(), Args2); 1635 1636 // Otherwise, or if the mutation function returns, just continue. 1637 EmitBlock(WasNotMutatedBB); 1638 1639 // Initialize the element variable. 1640 RunCleanupsScope elementVariableScope(*this); 1641 bool elementIsVariable; 1642 LValue elementLValue; 1643 QualType elementType; 1644 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1645 // Initialize the variable, in case it's a __block variable or something. 1646 EmitAutoVarInit(variable); 1647 1648 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1649 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1650 VK_LValue, SourceLocation()); 1651 elementLValue = EmitLValue(&tempDRE); 1652 elementType = D->getType(); 1653 elementIsVariable = true; 1654 1655 if (D->isARCPseudoStrong()) 1656 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1657 } else { 1658 elementLValue = LValue(); // suppress warning 1659 elementType = cast<Expr>(S.getElement())->getType(); 1660 elementIsVariable = false; 1661 } 1662 llvm::Type *convertedElementType = ConvertType(elementType); 1663 1664 // Fetch the buffer out of the enumeration state. 1665 // TODO: this pointer should actually be invariant between 1666 // refreshes, which would help us do certain loop optimizations. 1667 Address StateItemsPtr = Builder.CreateStructGEP( 1668 StatePtr, 1, getPointerSize(), "stateitems.ptr"); 1669 llvm::Value *EnumStateItems = 1670 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1671 1672 // Fetch the value at the current index from the buffer. 1673 llvm::Value *CurrentItemPtr = 1674 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1675 llvm::Value *CurrentItem = 1676 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1677 1678 // Cast that value to the right type. 1679 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1680 "currentitem"); 1681 1682 // Make sure we have an l-value. Yes, this gets evaluated every 1683 // time through the loop. 1684 if (!elementIsVariable) { 1685 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1686 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1687 } else { 1688 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1689 /*isInit*/ true); 1690 } 1691 1692 // If we do have an element variable, this assignment is the end of 1693 // its initialization. 1694 if (elementIsVariable) 1695 EmitAutoVarCleanups(variable); 1696 1697 // Perform the loop body, setting up break and continue labels. 1698 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1699 { 1700 RunCleanupsScope Scope(*this); 1701 EmitStmt(S.getBody()); 1702 } 1703 BreakContinueStack.pop_back(); 1704 1705 // Destroy the element variable now. 1706 elementVariableScope.ForceCleanup(); 1707 1708 // Check whether there are more elements. 1709 EmitBlock(AfterBody.getBlock()); 1710 1711 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1712 1713 // First we check in the local buffer. 1714 llvm::Value *indexPlusOne = 1715 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 1716 1717 // If we haven't overrun the buffer yet, we can continue. 1718 // Set the branch weights based on the simplifying assumption that this is 1719 // like a while-loop, i.e., ignoring that the false branch fetches more 1720 // elements and then returns to the loop. 1721 Builder.CreateCondBr( 1722 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1723 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1724 1725 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1726 count->addIncoming(count, AfterBody.getBlock()); 1727 1728 // Otherwise, we have to fetch more elements. 1729 EmitBlock(FetchMoreBB); 1730 1731 CountRV = 1732 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1733 getContext().getNSUIntegerType(), 1734 FastEnumSel, Collection, Args); 1735 1736 // If we got a zero count, we're done. 1737 llvm::Value *refetchCount = CountRV.getScalarVal(); 1738 1739 // (note that the message send might split FetchMoreBB) 1740 index->addIncoming(zero, Builder.GetInsertBlock()); 1741 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1742 1743 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1744 EmptyBB, LoopBodyBB); 1745 1746 // No more elements. 1747 EmitBlock(EmptyBB); 1748 1749 if (!elementIsVariable) { 1750 // If the element was not a declaration, set it to be null. 1751 1752 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1753 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1754 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1755 } 1756 1757 if (DI) 1758 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1759 1760 ForScope.ForceCleanup(); 1761 EmitBlock(LoopEnd.getBlock()); 1762 } 1763 1764 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1765 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1766 } 1767 1768 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1769 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1770 } 1771 1772 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1773 const ObjCAtSynchronizedStmt &S) { 1774 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1775 } 1776 1777 namespace { 1778 struct CallObjCRelease final : EHScopeStack::Cleanup { 1779 CallObjCRelease(llvm::Value *object) : object(object) {} 1780 llvm::Value *object; 1781 1782 void Emit(CodeGenFunction &CGF, Flags flags) override { 1783 // Releases at the end of the full-expression are imprecise. 1784 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1785 } 1786 }; 1787 } 1788 1789 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1790 /// release at the end of the full-expression. 1791 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1792 llvm::Value *object) { 1793 // If we're in a conditional branch, we need to make the cleanup 1794 // conditional. 1795 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1796 return object; 1797 } 1798 1799 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1800 llvm::Value *value) { 1801 return EmitARCRetainAutorelease(type, value); 1802 } 1803 1804 /// Given a number of pointers, inform the optimizer that they're 1805 /// being intrinsically used up until this point in the program. 1806 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1807 llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use; 1808 if (!fn) { 1809 llvm::FunctionType *fnType = 1810 llvm::FunctionType::get(CGM.VoidTy, None, true); 1811 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use"); 1812 } 1813 1814 // This isn't really a "runtime" function, but as an intrinsic it 1815 // doesn't really matter as long as we align things up. 1816 EmitNounwindRuntimeCall(fn, values); 1817 } 1818 1819 1820 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1821 llvm::FunctionType *FTy, 1822 StringRef Name) { 1823 llvm::Constant *RTF = CGM.CreateRuntimeFunction(FTy, Name); 1824 1825 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 1826 // If the target runtime doesn't naturally support ARC, emit weak 1827 // references to the runtime support library. We don't really 1828 // permit this to fail, but we need a particular relocation style. 1829 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 1830 !CGM.getTriple().isOSBinFormatCOFF()) { 1831 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1832 } else if (Name == "objc_retain" || Name == "objc_release") { 1833 // If we have Native ARC, set nonlazybind attribute for these APIs for 1834 // performance. 1835 F->addFnAttr(llvm::Attribute::NonLazyBind); 1836 } 1837 } 1838 1839 return RTF; 1840 } 1841 1842 /// Perform an operation having the signature 1843 /// i8* (i8*) 1844 /// where a null input causes a no-op and returns null. 1845 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1846 llvm::Value *value, 1847 llvm::Constant *&fn, 1848 StringRef fnName, 1849 bool isTailCall = false) { 1850 if (isa<llvm::ConstantPointerNull>(value)) 1851 return value; 1852 1853 if (!fn) { 1854 llvm::FunctionType *fnType = 1855 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 1856 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1857 } 1858 1859 // Cast the argument to 'id'. 1860 llvm::Type *origType = value->getType(); 1861 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1862 1863 // Call the function. 1864 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1865 if (isTailCall) 1866 call->setTailCall(); 1867 1868 // Cast the result back to the original type. 1869 return CGF.Builder.CreateBitCast(call, origType); 1870 } 1871 1872 /// Perform an operation having the following signature: 1873 /// i8* (i8**) 1874 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1875 Address addr, 1876 llvm::Constant *&fn, 1877 StringRef fnName) { 1878 if (!fn) { 1879 llvm::FunctionType *fnType = 1880 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false); 1881 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1882 } 1883 1884 // Cast the argument to 'id*'. 1885 llvm::Type *origType = addr.getElementType(); 1886 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1887 1888 // Call the function. 1889 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 1890 1891 // Cast the result back to a dereference of the original type. 1892 if (origType != CGF.Int8PtrTy) 1893 result = CGF.Builder.CreateBitCast(result, origType); 1894 1895 return result; 1896 } 1897 1898 /// Perform an operation having the following signature: 1899 /// i8* (i8**, i8*) 1900 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1901 Address addr, 1902 llvm::Value *value, 1903 llvm::Constant *&fn, 1904 StringRef fnName, 1905 bool ignored) { 1906 assert(addr.getElementType() == value->getType()); 1907 1908 if (!fn) { 1909 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1910 1911 llvm::FunctionType *fnType 1912 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1913 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1914 } 1915 1916 llvm::Type *origType = value->getType(); 1917 1918 llvm::Value *args[] = { 1919 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 1920 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 1921 }; 1922 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 1923 1924 if (ignored) return nullptr; 1925 1926 return CGF.Builder.CreateBitCast(result, origType); 1927 } 1928 1929 /// Perform an operation having the following signature: 1930 /// void (i8**, i8**) 1931 static void emitARCCopyOperation(CodeGenFunction &CGF, 1932 Address dst, 1933 Address src, 1934 llvm::Constant *&fn, 1935 StringRef fnName) { 1936 assert(dst.getType() == src.getType()); 1937 1938 if (!fn) { 1939 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy }; 1940 1941 llvm::FunctionType *fnType 1942 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1943 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1944 } 1945 1946 llvm::Value *args[] = { 1947 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 1948 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 1949 }; 1950 CGF.EmitNounwindRuntimeCall(fn, args); 1951 } 1952 1953 /// Produce the code to do a retain. Based on the type, calls one of: 1954 /// call i8* \@objc_retain(i8* %value) 1955 /// call i8* \@objc_retainBlock(i8* %value) 1956 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1957 if (type->isBlockPointerType()) 1958 return EmitARCRetainBlock(value, /*mandatory*/ false); 1959 else 1960 return EmitARCRetainNonBlock(value); 1961 } 1962 1963 /// Retain the given object, with normal retain semantics. 1964 /// call i8* \@objc_retain(i8* %value) 1965 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1966 return emitARCValueOperation(*this, value, 1967 CGM.getObjCEntrypoints().objc_retain, 1968 "objc_retain"); 1969 } 1970 1971 /// Retain the given block, with _Block_copy semantics. 1972 /// call i8* \@objc_retainBlock(i8* %value) 1973 /// 1974 /// \param mandatory - If false, emit the call with metadata 1975 /// indicating that it's okay for the optimizer to eliminate this call 1976 /// if it can prove that the block never escapes except down the stack. 1977 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1978 bool mandatory) { 1979 llvm::Value *result 1980 = emitARCValueOperation(*this, value, 1981 CGM.getObjCEntrypoints().objc_retainBlock, 1982 "objc_retainBlock"); 1983 1984 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1985 // tell the optimizer that it doesn't need to do this copy if the 1986 // block doesn't escape, where being passed as an argument doesn't 1987 // count as escaping. 1988 if (!mandatory && isa<llvm::Instruction>(result)) { 1989 llvm::CallInst *call 1990 = cast<llvm::CallInst>(result->stripPointerCasts()); 1991 assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock); 1992 1993 call->setMetadata("clang.arc.copy_on_escape", 1994 llvm::MDNode::get(Builder.getContext(), None)); 1995 } 1996 1997 return result; 1998 } 1999 2000 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 2001 // Fetch the void(void) inline asm which marks that we're going to 2002 // do something with the autoreleased return value. 2003 llvm::InlineAsm *&marker 2004 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2005 if (!marker) { 2006 StringRef assembly 2007 = CGF.CGM.getTargetCodeGenInfo() 2008 .getARCRetainAutoreleasedReturnValueMarker(); 2009 2010 // If we have an empty assembly string, there's nothing to do. 2011 if (assembly.empty()) { 2012 2013 // Otherwise, at -O0, build an inline asm that we're going to call 2014 // in a moment. 2015 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2016 llvm::FunctionType *type = 2017 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2018 2019 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2020 2021 // If we're at -O1 and above, we don't want to litter the code 2022 // with this marker yet, so leave a breadcrumb for the ARC 2023 // optimizer to pick up. 2024 } else { 2025 llvm::NamedMDNode *metadata = 2026 CGF.CGM.getModule().getOrInsertNamedMetadata( 2027 "clang.arc.retainAutoreleasedReturnValueMarker"); 2028 assert(metadata->getNumOperands() <= 1); 2029 if (metadata->getNumOperands() == 0) { 2030 auto &ctx = CGF.getLLVMContext(); 2031 metadata->addOperand(llvm::MDNode::get(ctx, 2032 llvm::MDString::get(ctx, assembly))); 2033 } 2034 } 2035 } 2036 2037 // Call the marker asm if we made one, which we do only at -O0. 2038 if (marker) 2039 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker)); 2040 } 2041 2042 /// Retain the given object which is the result of a function call. 2043 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2044 /// 2045 /// Yes, this function name is one character away from a different 2046 /// call with completely different semantics. 2047 llvm::Value * 2048 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2049 emitAutoreleasedReturnValueMarker(*this); 2050 return emitARCValueOperation(*this, value, 2051 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, 2052 "objc_retainAutoreleasedReturnValue"); 2053 } 2054 2055 /// Claim a possibly-autoreleased return value at +0. This is only 2056 /// valid to do in contexts which do not rely on the retain to keep 2057 /// the object valid for all of its uses; for example, when 2058 /// the value is ignored, or when it is being assigned to an 2059 /// __unsafe_unretained variable. 2060 /// 2061 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2062 llvm::Value * 2063 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2064 emitAutoreleasedReturnValueMarker(*this); 2065 return emitARCValueOperation(*this, value, 2066 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, 2067 "objc_unsafeClaimAutoreleasedReturnValue"); 2068 } 2069 2070 /// Release the given object. 2071 /// call void \@objc_release(i8* %value) 2072 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2073 ARCPreciseLifetime_t precise) { 2074 if (isa<llvm::ConstantPointerNull>(value)) return; 2075 2076 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release; 2077 if (!fn) { 2078 llvm::FunctionType *fnType = 2079 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2080 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 2081 } 2082 2083 // Cast the argument to 'id'. 2084 value = Builder.CreateBitCast(value, Int8PtrTy); 2085 2086 // Call objc_release. 2087 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2088 2089 if (precise == ARCImpreciseLifetime) { 2090 call->setMetadata("clang.imprecise_release", 2091 llvm::MDNode::get(Builder.getContext(), None)); 2092 } 2093 } 2094 2095 /// Destroy a __strong variable. 2096 /// 2097 /// At -O0, emit a call to store 'null' into the address; 2098 /// instrumenting tools prefer this because the address is exposed, 2099 /// but it's relatively cumbersome to optimize. 2100 /// 2101 /// At -O1 and above, just load and call objc_release. 2102 /// 2103 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2104 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2105 ARCPreciseLifetime_t precise) { 2106 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2107 llvm::Value *null = getNullForVariable(addr); 2108 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2109 return; 2110 } 2111 2112 llvm::Value *value = Builder.CreateLoad(addr); 2113 EmitARCRelease(value, precise); 2114 } 2115 2116 /// Store into a strong object. Always calls this: 2117 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2118 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2119 llvm::Value *value, 2120 bool ignored) { 2121 assert(addr.getElementType() == value->getType()); 2122 2123 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2124 if (!fn) { 2125 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 2126 llvm::FunctionType *fnType 2127 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 2128 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 2129 } 2130 2131 llvm::Value *args[] = { 2132 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2133 Builder.CreateBitCast(value, Int8PtrTy) 2134 }; 2135 EmitNounwindRuntimeCall(fn, args); 2136 2137 if (ignored) return nullptr; 2138 return value; 2139 } 2140 2141 /// Store into a strong object. Sometimes calls this: 2142 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2143 /// Other times, breaks it down into components. 2144 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2145 llvm::Value *newValue, 2146 bool ignored) { 2147 QualType type = dst.getType(); 2148 bool isBlock = type->isBlockPointerType(); 2149 2150 // Use a store barrier at -O0 unless this is a block type or the 2151 // lvalue is inadequately aligned. 2152 if (shouldUseFusedARCCalls() && 2153 !isBlock && 2154 (dst.getAlignment().isZero() || 2155 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2156 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2157 } 2158 2159 // Otherwise, split it out. 2160 2161 // Retain the new value. 2162 newValue = EmitARCRetain(type, newValue); 2163 2164 // Read the old value. 2165 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2166 2167 // Store. We do this before the release so that any deallocs won't 2168 // see the old value. 2169 EmitStoreOfScalar(newValue, dst); 2170 2171 // Finally, release the old value. 2172 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2173 2174 return newValue; 2175 } 2176 2177 /// Autorelease the given object. 2178 /// call i8* \@objc_autorelease(i8* %value) 2179 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2180 return emitARCValueOperation(*this, value, 2181 CGM.getObjCEntrypoints().objc_autorelease, 2182 "objc_autorelease"); 2183 } 2184 2185 /// Autorelease the given object. 2186 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2187 llvm::Value * 2188 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2189 return emitARCValueOperation(*this, value, 2190 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2191 "objc_autoreleaseReturnValue", 2192 /*isTailCall*/ true); 2193 } 2194 2195 /// Do a fused retain/autorelease of the given object. 2196 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2197 llvm::Value * 2198 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2199 return emitARCValueOperation(*this, value, 2200 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2201 "objc_retainAutoreleaseReturnValue", 2202 /*isTailCall*/ true); 2203 } 2204 2205 /// Do a fused retain/autorelease of the given object. 2206 /// call i8* \@objc_retainAutorelease(i8* %value) 2207 /// or 2208 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2209 /// call i8* \@objc_autorelease(i8* %retain) 2210 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2211 llvm::Value *value) { 2212 if (!type->isBlockPointerType()) 2213 return EmitARCRetainAutoreleaseNonBlock(value); 2214 2215 if (isa<llvm::ConstantPointerNull>(value)) return value; 2216 2217 llvm::Type *origType = value->getType(); 2218 value = Builder.CreateBitCast(value, Int8PtrTy); 2219 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2220 value = EmitARCAutorelease(value); 2221 return Builder.CreateBitCast(value, origType); 2222 } 2223 2224 /// Do a fused retain/autorelease of the given object. 2225 /// call i8* \@objc_retainAutorelease(i8* %value) 2226 llvm::Value * 2227 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2228 return emitARCValueOperation(*this, value, 2229 CGM.getObjCEntrypoints().objc_retainAutorelease, 2230 "objc_retainAutorelease"); 2231 } 2232 2233 /// i8* \@objc_loadWeak(i8** %addr) 2234 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2235 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2236 return emitARCLoadOperation(*this, addr, 2237 CGM.getObjCEntrypoints().objc_loadWeak, 2238 "objc_loadWeak"); 2239 } 2240 2241 /// i8* \@objc_loadWeakRetained(i8** %addr) 2242 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2243 return emitARCLoadOperation(*this, addr, 2244 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2245 "objc_loadWeakRetained"); 2246 } 2247 2248 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2249 /// Returns %value. 2250 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2251 llvm::Value *value, 2252 bool ignored) { 2253 return emitARCStoreOperation(*this, addr, value, 2254 CGM.getObjCEntrypoints().objc_storeWeak, 2255 "objc_storeWeak", ignored); 2256 } 2257 2258 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2259 /// Returns %value. %addr is known to not have a current weak entry. 2260 /// Essentially equivalent to: 2261 /// *addr = nil; objc_storeWeak(addr, value); 2262 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2263 // If we're initializing to null, just write null to memory; no need 2264 // to get the runtime involved. But don't do this if optimization 2265 // is enabled, because accounting for this would make the optimizer 2266 // much more complicated. 2267 if (isa<llvm::ConstantPointerNull>(value) && 2268 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2269 Builder.CreateStore(value, addr); 2270 return; 2271 } 2272 2273 emitARCStoreOperation(*this, addr, value, 2274 CGM.getObjCEntrypoints().objc_initWeak, 2275 "objc_initWeak", /*ignored*/ true); 2276 } 2277 2278 /// void \@objc_destroyWeak(i8** %addr) 2279 /// Essentially objc_storeWeak(addr, nil). 2280 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2281 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2282 if (!fn) { 2283 llvm::FunctionType *fnType = 2284 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false); 2285 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 2286 } 2287 2288 // Cast the argument to 'id*'. 2289 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2290 2291 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2292 } 2293 2294 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2295 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2296 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2297 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2298 emitARCCopyOperation(*this, dst, src, 2299 CGM.getObjCEntrypoints().objc_moveWeak, 2300 "objc_moveWeak"); 2301 } 2302 2303 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2304 /// Disregards the current value in %dest. Essentially 2305 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2306 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2307 emitARCCopyOperation(*this, dst, src, 2308 CGM.getObjCEntrypoints().objc_copyWeak, 2309 "objc_copyWeak"); 2310 } 2311 2312 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, 2313 Address SrcAddr) { 2314 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2315 Object = EmitObjCConsumeObject(Ty, Object); 2316 EmitARCStoreWeak(DstAddr, Object, false); 2317 } 2318 2319 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, 2320 Address SrcAddr) { 2321 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2322 Object = EmitObjCConsumeObject(Ty, Object); 2323 EmitARCStoreWeak(DstAddr, Object, false); 2324 EmitARCDestroyWeak(SrcAddr); 2325 } 2326 2327 /// Produce the code to do a objc_autoreleasepool_push. 2328 /// call i8* \@objc_autoreleasePoolPush(void) 2329 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2330 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2331 if (!fn) { 2332 llvm::FunctionType *fnType = 2333 llvm::FunctionType::get(Int8PtrTy, false); 2334 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 2335 } 2336 2337 return EmitNounwindRuntimeCall(fn); 2338 } 2339 2340 /// Produce the code to do a primitive release. 2341 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2342 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2343 assert(value->getType() == Int8PtrTy); 2344 2345 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2346 if (!fn) { 2347 llvm::FunctionType *fnType = 2348 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2349 2350 // We don't want to use a weak import here; instead we should not 2351 // fall into this path. 2352 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 2353 } 2354 2355 // objc_autoreleasePoolPop can throw. 2356 EmitRuntimeCallOrInvoke(fn, value); 2357 } 2358 2359 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2360 /// Which is: [[NSAutoreleasePool alloc] init]; 2361 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2362 /// init is declared as: - (id) init; in its NSObject super class. 2363 /// 2364 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2365 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2366 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2367 // [NSAutoreleasePool alloc] 2368 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2369 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2370 CallArgList Args; 2371 RValue AllocRV = 2372 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2373 getContext().getObjCIdType(), 2374 AllocSel, Receiver, Args); 2375 2376 // [Receiver init] 2377 Receiver = AllocRV.getScalarVal(); 2378 II = &CGM.getContext().Idents.get("init"); 2379 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2380 RValue InitRV = 2381 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2382 getContext().getObjCIdType(), 2383 InitSel, Receiver, Args); 2384 return InitRV.getScalarVal(); 2385 } 2386 2387 /// Produce the code to do a primitive release. 2388 /// [tmp drain]; 2389 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2390 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2391 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2392 CallArgList Args; 2393 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2394 getContext().VoidTy, DrainSel, Arg, Args); 2395 } 2396 2397 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2398 Address addr, 2399 QualType type) { 2400 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2401 } 2402 2403 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2404 Address addr, 2405 QualType type) { 2406 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2407 } 2408 2409 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2410 Address addr, 2411 QualType type) { 2412 CGF.EmitARCDestroyWeak(addr); 2413 } 2414 2415 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2416 QualType type) { 2417 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2418 CGF.EmitARCIntrinsicUse(value); 2419 } 2420 2421 namespace { 2422 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2423 llvm::Value *Token; 2424 2425 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2426 2427 void Emit(CodeGenFunction &CGF, Flags flags) override { 2428 CGF.EmitObjCAutoreleasePoolPop(Token); 2429 } 2430 }; 2431 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2432 llvm::Value *Token; 2433 2434 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2435 2436 void Emit(CodeGenFunction &CGF, Flags flags) override { 2437 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2438 } 2439 }; 2440 } 2441 2442 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2443 if (CGM.getLangOpts().ObjCAutoRefCount) 2444 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2445 else 2446 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2447 } 2448 2449 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2450 LValue lvalue, 2451 QualType type) { 2452 switch (type.getObjCLifetime()) { 2453 case Qualifiers::OCL_None: 2454 case Qualifiers::OCL_ExplicitNone: 2455 case Qualifiers::OCL_Strong: 2456 case Qualifiers::OCL_Autoreleasing: 2457 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue, 2458 SourceLocation()).getScalarVal(), 2459 false); 2460 2461 case Qualifiers::OCL_Weak: 2462 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2463 true); 2464 } 2465 2466 llvm_unreachable("impossible lifetime!"); 2467 } 2468 2469 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2470 const Expr *e) { 2471 e = e->IgnoreParens(); 2472 QualType type = e->getType(); 2473 2474 // If we're loading retained from a __strong xvalue, we can avoid 2475 // an extra retain/release pair by zeroing out the source of this 2476 // "move" operation. 2477 if (e->isXValue() && 2478 !type.isConstQualified() && 2479 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2480 // Emit the lvalue. 2481 LValue lv = CGF.EmitLValue(e); 2482 2483 // Load the object pointer. 2484 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2485 SourceLocation()).getScalarVal(); 2486 2487 // Set the source pointer to NULL. 2488 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2489 2490 return TryEmitResult(result, true); 2491 } 2492 2493 // As a very special optimization, in ARC++, if the l-value is the 2494 // result of a non-volatile assignment, do a simple retain of the 2495 // result of the call to objc_storeWeak instead of reloading. 2496 if (CGF.getLangOpts().CPlusPlus && 2497 !type.isVolatileQualified() && 2498 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2499 isa<BinaryOperator>(e) && 2500 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2501 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2502 2503 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2504 } 2505 2506 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2507 llvm::Value *value)> 2508 ValueTransform; 2509 2510 /// Insert code immediately after a call. 2511 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2512 llvm::Value *value, 2513 ValueTransform doAfterCall, 2514 ValueTransform doFallback) { 2515 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2516 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2517 2518 // Place the retain immediately following the call. 2519 CGF.Builder.SetInsertPoint(call->getParent(), 2520 ++llvm::BasicBlock::iterator(call)); 2521 value = doAfterCall(CGF, value); 2522 2523 CGF.Builder.restoreIP(ip); 2524 return value; 2525 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2526 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2527 2528 // Place the retain at the beginning of the normal destination block. 2529 llvm::BasicBlock *BB = invoke->getNormalDest(); 2530 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2531 value = doAfterCall(CGF, value); 2532 2533 CGF.Builder.restoreIP(ip); 2534 return value; 2535 2536 // Bitcasts can arise because of related-result returns. Rewrite 2537 // the operand. 2538 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2539 llvm::Value *operand = bitcast->getOperand(0); 2540 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2541 bitcast->setOperand(0, operand); 2542 return bitcast; 2543 2544 // Generic fall-back case. 2545 } else { 2546 // Retain using the non-block variant: we never need to do a copy 2547 // of a block that's been returned to us. 2548 return doFallback(CGF, value); 2549 } 2550 } 2551 2552 /// Given that the given expression is some sort of call (which does 2553 /// not return retained), emit a retain following it. 2554 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2555 const Expr *e) { 2556 llvm::Value *value = CGF.EmitScalarExpr(e); 2557 return emitARCOperationAfterCall(CGF, value, 2558 [](CodeGenFunction &CGF, llvm::Value *value) { 2559 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2560 }, 2561 [](CodeGenFunction &CGF, llvm::Value *value) { 2562 return CGF.EmitARCRetainNonBlock(value); 2563 }); 2564 } 2565 2566 /// Given that the given expression is some sort of call (which does 2567 /// not return retained), perform an unsafeClaim following it. 2568 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 2569 const Expr *e) { 2570 llvm::Value *value = CGF.EmitScalarExpr(e); 2571 return emitARCOperationAfterCall(CGF, value, 2572 [](CodeGenFunction &CGF, llvm::Value *value) { 2573 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 2574 }, 2575 [](CodeGenFunction &CGF, llvm::Value *value) { 2576 return value; 2577 }); 2578 } 2579 2580 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 2581 bool allowUnsafeClaim) { 2582 if (allowUnsafeClaim && 2583 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 2584 return emitARCUnsafeClaimCallResult(*this, E); 2585 } else { 2586 llvm::Value *value = emitARCRetainCallResult(*this, E); 2587 return EmitObjCConsumeObject(E->getType(), value); 2588 } 2589 } 2590 2591 /// Determine whether it might be important to emit a separate 2592 /// objc_retain_block on the result of the given expression, or 2593 /// whether it's okay to just emit it in a +1 context. 2594 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2595 assert(e->getType()->isBlockPointerType()); 2596 e = e->IgnoreParens(); 2597 2598 // For future goodness, emit block expressions directly in +1 2599 // contexts if we can. 2600 if (isa<BlockExpr>(e)) 2601 return false; 2602 2603 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2604 switch (cast->getCastKind()) { 2605 // Emitting these operations in +1 contexts is goodness. 2606 case CK_LValueToRValue: 2607 case CK_ARCReclaimReturnedObject: 2608 case CK_ARCConsumeObject: 2609 case CK_ARCProduceObject: 2610 return false; 2611 2612 // These operations preserve a block type. 2613 case CK_NoOp: 2614 case CK_BitCast: 2615 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2616 2617 // These operations are known to be bad (or haven't been considered). 2618 case CK_AnyPointerToBlockPointerCast: 2619 default: 2620 return true; 2621 } 2622 } 2623 2624 return true; 2625 } 2626 2627 namespace { 2628 /// A CRTP base class for emitting expressions of retainable object 2629 /// pointer type in ARC. 2630 template <typename Impl, typename Result> class ARCExprEmitter { 2631 protected: 2632 CodeGenFunction &CGF; 2633 Impl &asImpl() { return *static_cast<Impl*>(this); } 2634 2635 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 2636 2637 public: 2638 Result visit(const Expr *e); 2639 Result visitCastExpr(const CastExpr *e); 2640 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 2641 Result visitBinaryOperator(const BinaryOperator *e); 2642 Result visitBinAssign(const BinaryOperator *e); 2643 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 2644 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 2645 Result visitBinAssignWeak(const BinaryOperator *e); 2646 Result visitBinAssignStrong(const BinaryOperator *e); 2647 2648 // Minimal implementation: 2649 // Result visitLValueToRValue(const Expr *e) 2650 // Result visitConsumeObject(const Expr *e) 2651 // Result visitExtendBlockObject(const Expr *e) 2652 // Result visitReclaimReturnedObject(const Expr *e) 2653 // Result visitCall(const Expr *e) 2654 // Result visitExpr(const Expr *e) 2655 // 2656 // Result emitBitCast(Result result, llvm::Type *resultType) 2657 // llvm::Value *getValueOfResult(Result result) 2658 }; 2659 } 2660 2661 /// Try to emit a PseudoObjectExpr under special ARC rules. 2662 /// 2663 /// This massively duplicates emitPseudoObjectRValue. 2664 template <typename Impl, typename Result> 2665 Result 2666 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 2667 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2668 2669 // Find the result expression. 2670 const Expr *resultExpr = E->getResultExpr(); 2671 assert(resultExpr); 2672 Result result; 2673 2674 for (PseudoObjectExpr::const_semantics_iterator 2675 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2676 const Expr *semantic = *i; 2677 2678 // If this semantic expression is an opaque value, bind it 2679 // to the result of its source expression. 2680 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2681 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2682 OVMA opaqueData; 2683 2684 // If this semantic is the result of the pseudo-object 2685 // expression, try to evaluate the source as +1. 2686 if (ov == resultExpr) { 2687 assert(!OVMA::shouldBindAsLValue(ov)); 2688 result = asImpl().visit(ov->getSourceExpr()); 2689 opaqueData = OVMA::bind(CGF, ov, 2690 RValue::get(asImpl().getValueOfResult(result))); 2691 2692 // Otherwise, just bind it. 2693 } else { 2694 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2695 } 2696 opaques.push_back(opaqueData); 2697 2698 // Otherwise, if the expression is the result, evaluate it 2699 // and remember the result. 2700 } else if (semantic == resultExpr) { 2701 result = asImpl().visit(semantic); 2702 2703 // Otherwise, evaluate the expression in an ignored context. 2704 } else { 2705 CGF.EmitIgnoredExpr(semantic); 2706 } 2707 } 2708 2709 // Unbind all the opaques now. 2710 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2711 opaques[i].unbind(CGF); 2712 2713 return result; 2714 } 2715 2716 template <typename Impl, typename Result> 2717 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 2718 switch (e->getCastKind()) { 2719 2720 // No-op casts don't change the type, so we just ignore them. 2721 case CK_NoOp: 2722 return asImpl().visit(e->getSubExpr()); 2723 2724 // These casts can change the type. 2725 case CK_CPointerToObjCPointerCast: 2726 case CK_BlockPointerToObjCPointerCast: 2727 case CK_AnyPointerToBlockPointerCast: 2728 case CK_BitCast: { 2729 llvm::Type *resultType = CGF.ConvertType(e->getType()); 2730 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 2731 Result result = asImpl().visit(e->getSubExpr()); 2732 return asImpl().emitBitCast(result, resultType); 2733 } 2734 2735 // Handle some casts specially. 2736 case CK_LValueToRValue: 2737 return asImpl().visitLValueToRValue(e->getSubExpr()); 2738 case CK_ARCConsumeObject: 2739 return asImpl().visitConsumeObject(e->getSubExpr()); 2740 case CK_ARCExtendBlockObject: 2741 return asImpl().visitExtendBlockObject(e->getSubExpr()); 2742 case CK_ARCReclaimReturnedObject: 2743 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 2744 2745 // Otherwise, use the default logic. 2746 default: 2747 return asImpl().visitExpr(e); 2748 } 2749 } 2750 2751 template <typename Impl, typename Result> 2752 Result 2753 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 2754 switch (e->getOpcode()) { 2755 case BO_Comma: 2756 CGF.EmitIgnoredExpr(e->getLHS()); 2757 CGF.EnsureInsertPoint(); 2758 return asImpl().visit(e->getRHS()); 2759 2760 case BO_Assign: 2761 return asImpl().visitBinAssign(e); 2762 2763 default: 2764 return asImpl().visitExpr(e); 2765 } 2766 } 2767 2768 template <typename Impl, typename Result> 2769 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 2770 switch (e->getLHS()->getType().getObjCLifetime()) { 2771 case Qualifiers::OCL_ExplicitNone: 2772 return asImpl().visitBinAssignUnsafeUnretained(e); 2773 2774 case Qualifiers::OCL_Weak: 2775 return asImpl().visitBinAssignWeak(e); 2776 2777 case Qualifiers::OCL_Autoreleasing: 2778 return asImpl().visitBinAssignAutoreleasing(e); 2779 2780 case Qualifiers::OCL_Strong: 2781 return asImpl().visitBinAssignStrong(e); 2782 2783 case Qualifiers::OCL_None: 2784 return asImpl().visitExpr(e); 2785 } 2786 llvm_unreachable("bad ObjC ownership qualifier"); 2787 } 2788 2789 /// The default rule for __unsafe_unretained emits the RHS recursively, 2790 /// stores into the unsafe variable, and propagates the result outward. 2791 template <typename Impl, typename Result> 2792 Result ARCExprEmitter<Impl,Result>:: 2793 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 2794 // Recursively emit the RHS. 2795 // For __block safety, do this before emitting the LHS. 2796 Result result = asImpl().visit(e->getRHS()); 2797 2798 // Perform the store. 2799 LValue lvalue = 2800 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 2801 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 2802 lvalue); 2803 2804 return result; 2805 } 2806 2807 template <typename Impl, typename Result> 2808 Result 2809 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 2810 return asImpl().visitExpr(e); 2811 } 2812 2813 template <typename Impl, typename Result> 2814 Result 2815 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 2816 return asImpl().visitExpr(e); 2817 } 2818 2819 template <typename Impl, typename Result> 2820 Result 2821 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 2822 return asImpl().visitExpr(e); 2823 } 2824 2825 /// The general expression-emission logic. 2826 template <typename Impl, typename Result> 2827 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 2828 // We should *never* see a nested full-expression here, because if 2829 // we fail to emit at +1, our caller must not retain after we close 2830 // out the full-expression. This isn't as important in the unsafe 2831 // emitter. 2832 assert(!isa<ExprWithCleanups>(e)); 2833 2834 // Look through parens, __extension__, generic selection, etc. 2835 e = e->IgnoreParens(); 2836 2837 // Handle certain kinds of casts. 2838 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2839 return asImpl().visitCastExpr(ce); 2840 2841 // Handle the comma operator. 2842 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 2843 return asImpl().visitBinaryOperator(op); 2844 2845 // TODO: handle conditional operators here 2846 2847 // For calls and message sends, use the retained-call logic. 2848 // Delegate inits are a special case in that they're the only 2849 // returns-retained expression that *isn't* surrounded by 2850 // a consume. 2851 } else if (isa<CallExpr>(e) || 2852 (isa<ObjCMessageExpr>(e) && 2853 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2854 return asImpl().visitCall(e); 2855 2856 // Look through pseudo-object expressions. 2857 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2858 return asImpl().visitPseudoObjectExpr(pseudo); 2859 } 2860 2861 return asImpl().visitExpr(e); 2862 } 2863 2864 namespace { 2865 2866 /// An emitter for +1 results. 2867 struct ARCRetainExprEmitter : 2868 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 2869 2870 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 2871 2872 llvm::Value *getValueOfResult(TryEmitResult result) { 2873 return result.getPointer(); 2874 } 2875 2876 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 2877 llvm::Value *value = result.getPointer(); 2878 value = CGF.Builder.CreateBitCast(value, resultType); 2879 result.setPointer(value); 2880 return result; 2881 } 2882 2883 TryEmitResult visitLValueToRValue(const Expr *e) { 2884 return tryEmitARCRetainLoadOfScalar(CGF, e); 2885 } 2886 2887 /// For consumptions, just emit the subexpression and thus elide 2888 /// the retain/release pair. 2889 TryEmitResult visitConsumeObject(const Expr *e) { 2890 llvm::Value *result = CGF.EmitScalarExpr(e); 2891 return TryEmitResult(result, true); 2892 } 2893 2894 /// Block extends are net +0. Naively, we could just recurse on 2895 /// the subexpression, but actually we need to ensure that the 2896 /// value is copied as a block, so there's a little filter here. 2897 TryEmitResult visitExtendBlockObject(const Expr *e) { 2898 llvm::Value *result; // will be a +0 value 2899 2900 // If we can't safely assume the sub-expression will produce a 2901 // block-copied value, emit the sub-expression at +0. 2902 if (shouldEmitSeparateBlockRetain(e)) { 2903 result = CGF.EmitScalarExpr(e); 2904 2905 // Otherwise, try to emit the sub-expression at +1 recursively. 2906 } else { 2907 TryEmitResult subresult = asImpl().visit(e); 2908 2909 // If that produced a retained value, just use that. 2910 if (subresult.getInt()) { 2911 return subresult; 2912 } 2913 2914 // Otherwise it's +0. 2915 result = subresult.getPointer(); 2916 } 2917 2918 // Retain the object as a block. 2919 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2920 return TryEmitResult(result, true); 2921 } 2922 2923 /// For reclaims, emit the subexpression as a retained call and 2924 /// skip the consumption. 2925 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 2926 llvm::Value *result = emitARCRetainCallResult(CGF, e); 2927 return TryEmitResult(result, true); 2928 } 2929 2930 /// When we have an undecorated call, retroactively do a claim. 2931 TryEmitResult visitCall(const Expr *e) { 2932 llvm::Value *result = emitARCRetainCallResult(CGF, e); 2933 return TryEmitResult(result, true); 2934 } 2935 2936 // TODO: maybe special-case visitBinAssignWeak? 2937 2938 TryEmitResult visitExpr(const Expr *e) { 2939 // We didn't find an obvious production, so emit what we've got and 2940 // tell the caller that we didn't manage to retain. 2941 llvm::Value *result = CGF.EmitScalarExpr(e); 2942 return TryEmitResult(result, false); 2943 } 2944 }; 2945 } 2946 2947 static TryEmitResult 2948 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2949 return ARCRetainExprEmitter(CGF).visit(e); 2950 } 2951 2952 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2953 LValue lvalue, 2954 QualType type) { 2955 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2956 llvm::Value *value = result.getPointer(); 2957 if (!result.getInt()) 2958 value = CGF.EmitARCRetain(type, value); 2959 return value; 2960 } 2961 2962 /// EmitARCRetainScalarExpr - Semantically equivalent to 2963 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2964 /// best-effort attempt to peephole expressions that naturally produce 2965 /// retained objects. 2966 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2967 // The retain needs to happen within the full-expression. 2968 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2969 enterFullExpression(cleanups); 2970 RunCleanupsScope scope(*this); 2971 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 2972 } 2973 2974 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2975 llvm::Value *value = result.getPointer(); 2976 if (!result.getInt()) 2977 value = EmitARCRetain(e->getType(), value); 2978 return value; 2979 } 2980 2981 llvm::Value * 2982 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2983 // The retain needs to happen within the full-expression. 2984 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2985 enterFullExpression(cleanups); 2986 RunCleanupsScope scope(*this); 2987 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 2988 } 2989 2990 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2991 llvm::Value *value = result.getPointer(); 2992 if (result.getInt()) 2993 value = EmitARCAutorelease(value); 2994 else 2995 value = EmitARCRetainAutorelease(e->getType(), value); 2996 return value; 2997 } 2998 2999 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 3000 llvm::Value *result; 3001 bool doRetain; 3002 3003 if (shouldEmitSeparateBlockRetain(e)) { 3004 result = EmitScalarExpr(e); 3005 doRetain = true; 3006 } else { 3007 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 3008 result = subresult.getPointer(); 3009 doRetain = !subresult.getInt(); 3010 } 3011 3012 if (doRetain) 3013 result = EmitARCRetainBlock(result, /*mandatory*/ true); 3014 return EmitObjCConsumeObject(e->getType(), result); 3015 } 3016 3017 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3018 // In ARC, retain and autorelease the expression. 3019 if (getLangOpts().ObjCAutoRefCount) { 3020 // Do so before running any cleanups for the full-expression. 3021 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3022 return EmitARCRetainAutoreleaseScalarExpr(expr); 3023 } 3024 3025 // Otherwise, use the normal scalar-expression emission. The 3026 // exception machinery doesn't do anything special with the 3027 // exception like retaining it, so there's no safety associated with 3028 // only running cleanups after the throw has started, and when it 3029 // matters it tends to be substantially inferior code. 3030 return EmitScalarExpr(expr); 3031 } 3032 3033 namespace { 3034 3035 /// An emitter for assigning into an __unsafe_unretained context. 3036 struct ARCUnsafeUnretainedExprEmitter : 3037 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3038 3039 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3040 3041 llvm::Value *getValueOfResult(llvm::Value *value) { 3042 return value; 3043 } 3044 3045 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3046 return CGF.Builder.CreateBitCast(value, resultType); 3047 } 3048 3049 llvm::Value *visitLValueToRValue(const Expr *e) { 3050 return CGF.EmitScalarExpr(e); 3051 } 3052 3053 /// For consumptions, just emit the subexpression and perform the 3054 /// consumption like normal. 3055 llvm::Value *visitConsumeObject(const Expr *e) { 3056 llvm::Value *value = CGF.EmitScalarExpr(e); 3057 return CGF.EmitObjCConsumeObject(e->getType(), value); 3058 } 3059 3060 /// No special logic for block extensions. (This probably can't 3061 /// actually happen in this emitter, though.) 3062 llvm::Value *visitExtendBlockObject(const Expr *e) { 3063 return CGF.EmitARCExtendBlockObject(e); 3064 } 3065 3066 /// For reclaims, perform an unsafeClaim if that's enabled. 3067 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3068 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3069 } 3070 3071 /// When we have an undecorated call, just emit it without adding 3072 /// the unsafeClaim. 3073 llvm::Value *visitCall(const Expr *e) { 3074 return CGF.EmitScalarExpr(e); 3075 } 3076 3077 /// Just do normal scalar emission in the default case. 3078 llvm::Value *visitExpr(const Expr *e) { 3079 return CGF.EmitScalarExpr(e); 3080 } 3081 }; 3082 } 3083 3084 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3085 const Expr *e) { 3086 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3087 } 3088 3089 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3090 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3091 /// avoiding any spurious retains, including by performing reclaims 3092 /// with objc_unsafeClaimAutoreleasedReturnValue. 3093 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3094 // Look through full-expressions. 3095 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3096 enterFullExpression(cleanups); 3097 RunCleanupsScope scope(*this); 3098 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3099 } 3100 3101 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3102 } 3103 3104 std::pair<LValue,llvm::Value*> 3105 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3106 bool ignored) { 3107 // Evaluate the RHS first. If we're ignoring the result, assume 3108 // that we can emit at an unsafe +0. 3109 llvm::Value *value; 3110 if (ignored) { 3111 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3112 } else { 3113 value = EmitScalarExpr(e->getRHS()); 3114 } 3115 3116 // Emit the LHS and perform the store. 3117 LValue lvalue = EmitLValue(e->getLHS()); 3118 EmitStoreOfScalar(value, lvalue); 3119 3120 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3121 } 3122 3123 std::pair<LValue,llvm::Value*> 3124 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3125 bool ignored) { 3126 // Evaluate the RHS first. 3127 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3128 llvm::Value *value = result.getPointer(); 3129 3130 bool hasImmediateRetain = result.getInt(); 3131 3132 // If we didn't emit a retained object, and the l-value is of block 3133 // type, then we need to emit the block-retain immediately in case 3134 // it invalidates the l-value. 3135 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3136 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3137 hasImmediateRetain = true; 3138 } 3139 3140 LValue lvalue = EmitLValue(e->getLHS()); 3141 3142 // If the RHS was emitted retained, expand this. 3143 if (hasImmediateRetain) { 3144 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3145 EmitStoreOfScalar(value, lvalue); 3146 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3147 } else { 3148 value = EmitARCStoreStrong(lvalue, value, ignored); 3149 } 3150 3151 return std::pair<LValue,llvm::Value*>(lvalue, value); 3152 } 3153 3154 std::pair<LValue,llvm::Value*> 3155 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3156 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3157 LValue lvalue = EmitLValue(e->getLHS()); 3158 3159 EmitStoreOfScalar(value, lvalue); 3160 3161 return std::pair<LValue,llvm::Value*>(lvalue, value); 3162 } 3163 3164 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3165 const ObjCAutoreleasePoolStmt &ARPS) { 3166 const Stmt *subStmt = ARPS.getSubStmt(); 3167 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3168 3169 CGDebugInfo *DI = getDebugInfo(); 3170 if (DI) 3171 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3172 3173 // Keep track of the current cleanup stack depth. 3174 RunCleanupsScope Scope(*this); 3175 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3176 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3177 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3178 } else { 3179 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3180 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3181 } 3182 3183 for (const auto *I : S.body()) 3184 EmitStmt(I); 3185 3186 if (DI) 3187 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3188 } 3189 3190 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3191 /// make sure it survives garbage collection until this point. 3192 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3193 // We just use an inline assembly. 3194 llvm::FunctionType *extenderType 3195 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3196 llvm::Value *extender 3197 = llvm::InlineAsm::get(extenderType, 3198 /* assembly */ "", 3199 /* constraints */ "r", 3200 /* side effects */ true); 3201 3202 object = Builder.CreateBitCast(object, VoidPtrTy); 3203 EmitNounwindRuntimeCall(extender, object); 3204 } 3205 3206 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3207 /// non-trivial copy assignment function, produce following helper function. 3208 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3209 /// 3210 llvm::Constant * 3211 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3212 const ObjCPropertyImplDecl *PID) { 3213 if (!getLangOpts().CPlusPlus || 3214 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3215 return nullptr; 3216 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3217 if (!Ty->isRecordType()) 3218 return nullptr; 3219 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3220 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3221 return nullptr; 3222 llvm::Constant *HelperFn = nullptr; 3223 if (hasTrivialSetExpr(PID)) 3224 return nullptr; 3225 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3226 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3227 return HelperFn; 3228 3229 ASTContext &C = getContext(); 3230 IdentifierInfo *II 3231 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3232 FunctionDecl *FD = FunctionDecl::Create(C, 3233 C.getTranslationUnitDecl(), 3234 SourceLocation(), 3235 SourceLocation(), II, C.VoidTy, 3236 nullptr, SC_Static, 3237 false, 3238 false); 3239 3240 QualType DestTy = C.getPointerType(Ty); 3241 QualType SrcTy = Ty; 3242 SrcTy.addConst(); 3243 SrcTy = C.getPointerType(SrcTy); 3244 3245 FunctionArgList args; 3246 ImplicitParamDecl DstDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr, 3247 DestTy, ImplicitParamDecl::Other); 3248 args.push_back(&DstDecl); 3249 ImplicitParamDecl SrcDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr, 3250 SrcTy, ImplicitParamDecl::Other); 3251 args.push_back(&SrcDecl); 3252 3253 const CGFunctionInfo &FI = 3254 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); 3255 3256 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3257 3258 llvm::Function *Fn = 3259 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3260 "__assign_helper_atomic_property_", 3261 &CGM.getModule()); 3262 3263 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3264 3265 StartFunction(FD, C.VoidTy, Fn, FI, args); 3266 3267 DeclRefExpr DstExpr(&DstDecl, false, DestTy, 3268 VK_RValue, SourceLocation()); 3269 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 3270 VK_LValue, OK_Ordinary, SourceLocation(), false); 3271 3272 DeclRefExpr SrcExpr(&SrcDecl, false, SrcTy, 3273 VK_RValue, SourceLocation()); 3274 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3275 VK_LValue, OK_Ordinary, SourceLocation(), false); 3276 3277 Expr *Args[2] = { &DST, &SRC }; 3278 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3279 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 3280 Args, DestTy->getPointeeType(), 3281 VK_LValue, SourceLocation(), FPOptions()); 3282 3283 EmitStmt(&TheCall); 3284 3285 FinishFunction(); 3286 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3287 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3288 return HelperFn; 3289 } 3290 3291 llvm::Constant * 3292 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3293 const ObjCPropertyImplDecl *PID) { 3294 if (!getLangOpts().CPlusPlus || 3295 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3296 return nullptr; 3297 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3298 QualType Ty = PD->getType(); 3299 if (!Ty->isRecordType()) 3300 return nullptr; 3301 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3302 return nullptr; 3303 llvm::Constant *HelperFn = nullptr; 3304 3305 if (hasTrivialGetExpr(PID)) 3306 return nullptr; 3307 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3308 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3309 return HelperFn; 3310 3311 3312 ASTContext &C = getContext(); 3313 IdentifierInfo *II 3314 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3315 FunctionDecl *FD = FunctionDecl::Create(C, 3316 C.getTranslationUnitDecl(), 3317 SourceLocation(), 3318 SourceLocation(), II, C.VoidTy, 3319 nullptr, SC_Static, 3320 false, 3321 false); 3322 3323 QualType DestTy = C.getPointerType(Ty); 3324 QualType SrcTy = Ty; 3325 SrcTy.addConst(); 3326 SrcTy = C.getPointerType(SrcTy); 3327 3328 FunctionArgList args; 3329 ImplicitParamDecl DstDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr, 3330 DestTy, ImplicitParamDecl::Other); 3331 args.push_back(&DstDecl); 3332 ImplicitParamDecl SrcDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr, 3333 SrcTy, ImplicitParamDecl::Other); 3334 args.push_back(&SrcDecl); 3335 3336 const CGFunctionInfo &FI = 3337 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); 3338 3339 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3340 3341 llvm::Function *Fn = 3342 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3343 "__copy_helper_atomic_property_", &CGM.getModule()); 3344 3345 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3346 3347 StartFunction(FD, C.VoidTy, Fn, FI, args); 3348 3349 DeclRefExpr SrcExpr(&SrcDecl, false, SrcTy, 3350 VK_RValue, SourceLocation()); 3351 3352 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3353 VK_LValue, OK_Ordinary, SourceLocation(), false); 3354 3355 CXXConstructExpr *CXXConstExpr = 3356 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3357 3358 SmallVector<Expr*, 4> ConstructorArgs; 3359 ConstructorArgs.push_back(&SRC); 3360 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3361 CXXConstExpr->arg_end()); 3362 3363 CXXConstructExpr *TheCXXConstructExpr = 3364 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3365 CXXConstExpr->getConstructor(), 3366 CXXConstExpr->isElidable(), 3367 ConstructorArgs, 3368 CXXConstExpr->hadMultipleCandidates(), 3369 CXXConstExpr->isListInitialization(), 3370 CXXConstExpr->isStdInitListInitialization(), 3371 CXXConstExpr->requiresZeroInitialization(), 3372 CXXConstExpr->getConstructionKind(), 3373 SourceRange()); 3374 3375 DeclRefExpr DstExpr(&DstDecl, false, DestTy, 3376 VK_RValue, SourceLocation()); 3377 3378 RValue DV = EmitAnyExpr(&DstExpr); 3379 CharUnits Alignment 3380 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3381 EmitAggExpr(TheCXXConstructExpr, 3382 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3383 Qualifiers(), 3384 AggValueSlot::IsDestructed, 3385 AggValueSlot::DoesNotNeedGCBarriers, 3386 AggValueSlot::IsNotAliased, 3387 AggValueSlot::DoesNotOverlap)); 3388 3389 FinishFunction(); 3390 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3391 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3392 return HelperFn; 3393 } 3394 3395 llvm::Value * 3396 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3397 // Get selectors for retain/autorelease. 3398 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3399 Selector CopySelector = 3400 getContext().Selectors.getNullarySelector(CopyID); 3401 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3402 Selector AutoreleaseSelector = 3403 getContext().Selectors.getNullarySelector(AutoreleaseID); 3404 3405 // Emit calls to retain/autorelease. 3406 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3407 llvm::Value *Val = Block; 3408 RValue Result; 3409 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3410 Ty, CopySelector, 3411 Val, CallArgList(), nullptr, nullptr); 3412 Val = Result.getScalarVal(); 3413 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3414 Ty, AutoreleaseSelector, 3415 Val, CallArgList(), nullptr, nullptr); 3416 Val = Result.getScalarVal(); 3417 return Val; 3418 } 3419 3420 llvm::Value * 3421 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) { 3422 assert(Args.size() == 3 && "Expected 3 argument here!"); 3423 3424 if (!CGM.IsOSVersionAtLeastFn) { 3425 llvm::FunctionType *FTy = 3426 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 3427 CGM.IsOSVersionAtLeastFn = 3428 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 3429 } 3430 3431 llvm::Value *CallRes = 3432 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 3433 3434 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 3435 } 3436 3437 void CodeGenModule::emitAtAvailableLinkGuard() { 3438 if (!IsOSVersionAtLeastFn) 3439 return; 3440 // @available requires CoreFoundation only on Darwin. 3441 if (!Target.getTriple().isOSDarwin()) 3442 return; 3443 // Add -framework CoreFoundation to the linker commands. We still want to 3444 // emit the core foundation reference down below because otherwise if 3445 // CoreFoundation is not used in the code, the linker won't link the 3446 // framework. 3447 auto &Context = getLLVMContext(); 3448 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3449 llvm::MDString::get(Context, "CoreFoundation")}; 3450 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 3451 // Emit a reference to a symbol from CoreFoundation to ensure that 3452 // CoreFoundation is linked into the final binary. 3453 llvm::FunctionType *FTy = 3454 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 3455 llvm::Constant *CFFunc = 3456 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 3457 3458 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 3459 llvm::Function *CFLinkCheckFunc = cast<llvm::Function>(CreateBuiltinFunction( 3460 CheckFTy, "__clang_at_available_requires_core_foundation_framework")); 3461 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 3462 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 3463 CodeGenFunction CGF(*this); 3464 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 3465 CGF.EmitNounwindRuntimeCall(CFFunc, llvm::Constant::getNullValue(VoidPtrTy)); 3466 CGF.Builder.CreateUnreachable(); 3467 addCompilerUsedGlobal(CFLinkCheckFunc); 3468 } 3469 3470 CGObjCRuntime::~CGObjCRuntime() {} 3471