1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
35                                    QualType ET,
36                                    RValue Result);
37 
38 /// Given the address of a variable of pointer type, find the correct
39 /// null to store into it.
40 static llvm::Constant *getNullForVariable(Address addr) {
41   llvm::Type *type = addr.getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57 /// or [NSValue valueWithBytes:objCType:].
58 ///
59 llvm::Value *
60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61   // Generate the correct selector for this literal's concrete type.
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   const Expr *SubExpr = E->getSubExpr();
65   assert(BoxingMethod && "BoxingMethod is null");
66   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
67   Selector Sel = BoxingMethod->getSelector();
68 
69   // Generate a reference to the class pointer, which will be the receiver.
70   // Assumes that the method was introduced in the class that should be
71   // messaged (avoids pulling it out of the result type).
72   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
73   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
74   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
75 
76   CallArgList Args;
77   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
78   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
79 
80   // ObjCBoxedExpr supports boxing of structs and unions
81   // via [NSValue valueWithBytes:objCType:]
82   const QualType ValueType(SubExpr->getType().getCanonicalType());
83   if (ValueType->isObjCBoxableRecordType()) {
84     // Emit CodeGen for first parameter
85     // and cast value to correct type
86     Address Temporary = CreateMemTemp(SubExpr->getType());
87     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
88     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
89     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
90 
91     // Create char array to store type encoding
92     std::string Str;
93     getContext().getObjCEncodingForType(ValueType, Str);
94     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
95 
96     // Cast type encoding to correct type
97     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
98     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
99     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
100 
101     Args.add(RValue::get(Cast), EncodingQT);
102   } else {
103     Args.add(EmitAnyExpr(SubExpr), ArgQT);
104   }
105 
106   RValue result = Runtime.GenerateMessageSend(
107       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
108       Args, ClassDecl, BoxingMethod);
109   return Builder.CreateBitCast(result.getScalarVal(),
110                                ConvertType(E->getType()));
111 }
112 
113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
114                                     const ObjCMethodDecl *MethodWithObjects) {
115   ASTContext &Context = CGM.getContext();
116   const ObjCDictionaryLiteral *DLE = nullptr;
117   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
118   if (!ALE)
119     DLE = cast<ObjCDictionaryLiteral>(E);
120 
121   // Optimize empty collections by referencing constants, when available.
122   uint64_t NumElements =
123     ALE ? ALE->getNumElements() : DLE->getNumElements();
124   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
125     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
126     QualType IdTy(CGM.getContext().getObjCIdType());
127     llvm::Constant *Constant =
128         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
129     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
130     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
131     cast<llvm::LoadInst>(Ptr)->setMetadata(
132         CGM.getModule().getMDKindID("invariant.load"),
133         llvm::MDNode::get(getLLVMContext(), None));
134     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
135   }
136 
137   // Compute the type of the array we're initializing.
138   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
139                             NumElements);
140   QualType ElementType = Context.getObjCIdType().withConst();
141   QualType ElementArrayType
142     = Context.getConstantArrayType(ElementType, APNumElements,
143                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
144 
145   // Allocate the temporary array(s).
146   Address Objects = CreateMemTemp(ElementArrayType, "objects");
147   Address Keys = Address::invalid();
148   if (DLE)
149     Keys = CreateMemTemp(ElementArrayType, "keys");
150 
151   // In ARC, we may need to do extra work to keep all the keys and
152   // values alive until after the call.
153   SmallVector<llvm::Value *, 16> NeededObjects;
154   bool TrackNeededObjects =
155     (getLangOpts().ObjCAutoRefCount &&
156     CGM.getCodeGenOpts().OptimizationLevel != 0);
157 
158   // Perform the actual initialialization of the array(s).
159   for (uint64_t i = 0; i < NumElements; i++) {
160     if (ALE) {
161       // Emit the element and store it to the appropriate array slot.
162       const Expr *Rhs = ALE->getElement(i);
163       LValue LV = MakeAddrLValue(
164           Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
165           ElementType, AlignmentSource::Decl);
166 
167       llvm::Value *value = EmitScalarExpr(Rhs);
168       EmitStoreThroughLValue(RValue::get(value), LV, true);
169       if (TrackNeededObjects) {
170         NeededObjects.push_back(value);
171       }
172     } else {
173       // Emit the key and store it to the appropriate array slot.
174       const Expr *Key = DLE->getKeyValueElement(i).Key;
175       LValue KeyLV = MakeAddrLValue(
176           Builder.CreateConstArrayGEP(Keys, i, getPointerSize()),
177           ElementType, AlignmentSource::Decl);
178       llvm::Value *keyValue = EmitScalarExpr(Key);
179       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
180 
181       // Emit the value and store it to the appropriate array slot.
182       const Expr *Value = DLE->getKeyValueElement(i).Value;
183       LValue ValueLV = MakeAddrLValue(
184           Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
185           ElementType, AlignmentSource::Decl);
186       llvm::Value *valueValue = EmitScalarExpr(Value);
187       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
188       if (TrackNeededObjects) {
189         NeededObjects.push_back(keyValue);
190         NeededObjects.push_back(valueValue);
191       }
192     }
193   }
194 
195   // Generate the argument list.
196   CallArgList Args;
197   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
198   const ParmVarDecl *argDecl = *PI++;
199   QualType ArgQT = argDecl->getType().getUnqualifiedType();
200   Args.add(RValue::get(Objects.getPointer()), ArgQT);
201   if (DLE) {
202     argDecl = *PI++;
203     ArgQT = argDecl->getType().getUnqualifiedType();
204     Args.add(RValue::get(Keys.getPointer()), ArgQT);
205   }
206   argDecl = *PI;
207   ArgQT = argDecl->getType().getUnqualifiedType();
208   llvm::Value *Count =
209     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
210   Args.add(RValue::get(Count), ArgQT);
211 
212   // Generate a reference to the class pointer, which will be the receiver.
213   Selector Sel = MethodWithObjects->getSelector();
214   QualType ResultType = E->getType();
215   const ObjCObjectPointerType *InterfacePointerType
216     = ResultType->getAsObjCInterfacePointerType();
217   ObjCInterfaceDecl *Class
218     = InterfacePointerType->getObjectType()->getInterface();
219   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
220   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
221 
222   // Generate the message send.
223   RValue result = Runtime.GenerateMessageSend(
224       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
225       Receiver, Args, Class, MethodWithObjects);
226 
227   // The above message send needs these objects, but in ARC they are
228   // passed in a buffer that is essentially __unsafe_unretained.
229   // Therefore we must prevent the optimizer from releasing them until
230   // after the call.
231   if (TrackNeededObjects) {
232     EmitARCIntrinsicUse(NeededObjects);
233   }
234 
235   return Builder.CreateBitCast(result.getScalarVal(),
236                                ConvertType(E->getType()));
237 }
238 
239 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
240   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
241 }
242 
243 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
244                                             const ObjCDictionaryLiteral *E) {
245   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
246 }
247 
248 /// Emit a selector.
249 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
250   // Untyped selector.
251   // Note that this implementation allows for non-constant strings to be passed
252   // as arguments to @selector().  Currently, the only thing preventing this
253   // behaviour is the type checking in the front end.
254   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
255 }
256 
257 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
258   // FIXME: This should pass the Decl not the name.
259   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
260 }
261 
262 /// Adjust the type of an Objective-C object that doesn't match up due
263 /// to type erasure at various points, e.g., related result types or the use
264 /// of parameterized classes.
265 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
266                                    RValue Result) {
267   if (!ExpT->isObjCRetainableType())
268     return Result;
269 
270   // If the converted types are the same, we're done.
271   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
272   if (ExpLLVMTy == Result.getScalarVal()->getType())
273     return Result;
274 
275   // We have applied a substitution. Cast the rvalue appropriately.
276   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
277                                                ExpLLVMTy));
278 }
279 
280 /// Decide whether to extend the lifetime of the receiver of a
281 /// returns-inner-pointer message.
282 static bool
283 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
284   switch (message->getReceiverKind()) {
285 
286   // For a normal instance message, we should extend unless the
287   // receiver is loaded from a variable with precise lifetime.
288   case ObjCMessageExpr::Instance: {
289     const Expr *receiver = message->getInstanceReceiver();
290 
291     // Look through OVEs.
292     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
293       if (opaque->getSourceExpr())
294         receiver = opaque->getSourceExpr()->IgnoreParens();
295     }
296 
297     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
298     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
299     receiver = ice->getSubExpr()->IgnoreParens();
300 
301     // Look through OVEs.
302     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
303       if (opaque->getSourceExpr())
304         receiver = opaque->getSourceExpr()->IgnoreParens();
305     }
306 
307     // Only __strong variables.
308     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
309       return true;
310 
311     // All ivars and fields have precise lifetime.
312     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
313       return false;
314 
315     // Otherwise, check for variables.
316     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
317     if (!declRef) return true;
318     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
319     if (!var) return true;
320 
321     // All variables have precise lifetime except local variables with
322     // automatic storage duration that aren't specially marked.
323     return (var->hasLocalStorage() &&
324             !var->hasAttr<ObjCPreciseLifetimeAttr>());
325   }
326 
327   case ObjCMessageExpr::Class:
328   case ObjCMessageExpr::SuperClass:
329     // It's never necessary for class objects.
330     return false;
331 
332   case ObjCMessageExpr::SuperInstance:
333     // We generally assume that 'self' lives throughout a method call.
334     return false;
335   }
336 
337   llvm_unreachable("invalid receiver kind");
338 }
339 
340 /// Given an expression of ObjC pointer type, check whether it was
341 /// immediately loaded from an ARC __weak l-value.
342 static const Expr *findWeakLValue(const Expr *E) {
343   assert(E->getType()->isObjCRetainableType());
344   E = E->IgnoreParens();
345   if (auto CE = dyn_cast<CastExpr>(E)) {
346     if (CE->getCastKind() == CK_LValueToRValue) {
347       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
348         return CE->getSubExpr();
349     }
350   }
351 
352   return nullptr;
353 }
354 
355 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
356                                             ReturnValueSlot Return) {
357   // Only the lookup mechanism and first two arguments of the method
358   // implementation vary between runtimes.  We can get the receiver and
359   // arguments in generic code.
360 
361   bool isDelegateInit = E->isDelegateInitCall();
362 
363   const ObjCMethodDecl *method = E->getMethodDecl();
364 
365   // If the method is -retain, and the receiver's being loaded from
366   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
367   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
368       method->getMethodFamily() == OMF_retain) {
369     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
370       LValue lvalue = EmitLValue(lvalueExpr);
371       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
372       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
373     }
374   }
375 
376   // We don't retain the receiver in delegate init calls, and this is
377   // safe because the receiver value is always loaded from 'self',
378   // which we zero out.  We don't want to Block_copy block receivers,
379   // though.
380   bool retainSelf =
381     (!isDelegateInit &&
382      CGM.getLangOpts().ObjCAutoRefCount &&
383      method &&
384      method->hasAttr<NSConsumesSelfAttr>());
385 
386   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
387   bool isSuperMessage = false;
388   bool isClassMessage = false;
389   ObjCInterfaceDecl *OID = nullptr;
390   // Find the receiver
391   QualType ReceiverType;
392   llvm::Value *Receiver = nullptr;
393   switch (E->getReceiverKind()) {
394   case ObjCMessageExpr::Instance:
395     ReceiverType = E->getInstanceReceiver()->getType();
396     if (retainSelf) {
397       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
398                                                    E->getInstanceReceiver());
399       Receiver = ter.getPointer();
400       if (ter.getInt()) retainSelf = false;
401     } else
402       Receiver = EmitScalarExpr(E->getInstanceReceiver());
403     break;
404 
405   case ObjCMessageExpr::Class: {
406     ReceiverType = E->getClassReceiver();
407     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
408     assert(ObjTy && "Invalid Objective-C class message send");
409     OID = ObjTy->getInterface();
410     assert(OID && "Invalid Objective-C class message send");
411     Receiver = Runtime.GetClass(*this, OID);
412     isClassMessage = true;
413     break;
414   }
415 
416   case ObjCMessageExpr::SuperInstance:
417     ReceiverType = E->getSuperType();
418     Receiver = LoadObjCSelf();
419     isSuperMessage = true;
420     break;
421 
422   case ObjCMessageExpr::SuperClass:
423     ReceiverType = E->getSuperType();
424     Receiver = LoadObjCSelf();
425     isSuperMessage = true;
426     isClassMessage = true;
427     break;
428   }
429 
430   if (retainSelf)
431     Receiver = EmitARCRetainNonBlock(Receiver);
432 
433   // In ARC, we sometimes want to "extend the lifetime"
434   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
435   // messages.
436   if (getLangOpts().ObjCAutoRefCount && method &&
437       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
438       shouldExtendReceiverForInnerPointerMessage(E))
439     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
440 
441   QualType ResultType = method ? method->getReturnType() : E->getType();
442 
443   CallArgList Args;
444   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
445 
446   // For delegate init calls in ARC, do an unsafe store of null into
447   // self.  This represents the call taking direct ownership of that
448   // value.  We have to do this after emitting the other call
449   // arguments because they might also reference self, but we don't
450   // have to worry about any of them modifying self because that would
451   // be an undefined read and write of an object in unordered
452   // expressions.
453   if (isDelegateInit) {
454     assert(getLangOpts().ObjCAutoRefCount &&
455            "delegate init calls should only be marked in ARC");
456 
457     // Do an unsafe store of null into self.
458     Address selfAddr =
459       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
460     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
461   }
462 
463   RValue result;
464   if (isSuperMessage) {
465     // super is only valid in an Objective-C method
466     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
467     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
468     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
469                                               E->getSelector(),
470                                               OMD->getClassInterface(),
471                                               isCategoryImpl,
472                                               Receiver,
473                                               isClassMessage,
474                                               Args,
475                                               method);
476   } else {
477     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
478                                          E->getSelector(),
479                                          Receiver, Args, OID,
480                                          method);
481   }
482 
483   // For delegate init calls in ARC, implicitly store the result of
484   // the call back into self.  This takes ownership of the value.
485   if (isDelegateInit) {
486     Address selfAddr =
487       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
488     llvm::Value *newSelf = result.getScalarVal();
489 
490     // The delegate return type isn't necessarily a matching type; in
491     // fact, it's quite likely to be 'id'.
492     llvm::Type *selfTy = selfAddr.getElementType();
493     newSelf = Builder.CreateBitCast(newSelf, selfTy);
494 
495     Builder.CreateStore(newSelf, selfAddr);
496   }
497 
498   return AdjustObjCObjectType(*this, E->getType(), result);
499 }
500 
501 namespace {
502 struct FinishARCDealloc final : EHScopeStack::Cleanup {
503   void Emit(CodeGenFunction &CGF, Flags flags) override {
504     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
505 
506     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
507     const ObjCInterfaceDecl *iface = impl->getClassInterface();
508     if (!iface->getSuperClass()) return;
509 
510     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
511 
512     // Call [super dealloc] if we have a superclass.
513     llvm::Value *self = CGF.LoadObjCSelf();
514 
515     CallArgList args;
516     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
517                                                       CGF.getContext().VoidTy,
518                                                       method->getSelector(),
519                                                       iface,
520                                                       isCategory,
521                                                       self,
522                                                       /*is class msg*/ false,
523                                                       args,
524                                                       method);
525   }
526 };
527 }
528 
529 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
530 /// the LLVM function and sets the other context used by
531 /// CodeGenFunction.
532 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
533                                       const ObjCContainerDecl *CD) {
534   SourceLocation StartLoc = OMD->getBeginLoc();
535   FunctionArgList args;
536   // Check if we should generate debug info for this method.
537   if (OMD->hasAttr<NoDebugAttr>())
538     DebugInfo = nullptr; // disable debug info indefinitely for this function
539 
540   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
541 
542   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
543   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
544 
545   args.push_back(OMD->getSelfDecl());
546   args.push_back(OMD->getCmdDecl());
547 
548   args.append(OMD->param_begin(), OMD->param_end());
549 
550   CurGD = OMD;
551   CurEHLocation = OMD->getEndLoc();
552 
553   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
554                 OMD->getLocation(), StartLoc);
555 
556   // In ARC, certain methods get an extra cleanup.
557   if (CGM.getLangOpts().ObjCAutoRefCount &&
558       OMD->isInstanceMethod() &&
559       OMD->getSelector().isUnarySelector()) {
560     const IdentifierInfo *ident =
561       OMD->getSelector().getIdentifierInfoForSlot(0);
562     if (ident->isStr("dealloc"))
563       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
564   }
565 }
566 
567 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
568                                               LValue lvalue, QualType type);
569 
570 /// Generate an Objective-C method.  An Objective-C method is a C function with
571 /// its pointer, name, and types registered in the class struture.
572 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
573   StartObjCMethod(OMD, OMD->getClassInterface());
574   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
575   assert(isa<CompoundStmt>(OMD->getBody()));
576   incrementProfileCounter(OMD->getBody());
577   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
578   FinishFunction(OMD->getBodyRBrace());
579 }
580 
581 /// emitStructGetterCall - Call the runtime function to load a property
582 /// into the return value slot.
583 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
584                                  bool isAtomic, bool hasStrong) {
585   ASTContext &Context = CGF.getContext();
586 
587   Address src =
588     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
589        .getAddress();
590 
591   // objc_copyStruct (ReturnValue, &structIvar,
592   //                  sizeof (Type of Ivar), isAtomic, false);
593   CallArgList args;
594 
595   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
596   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
597 
598   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
599   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
600 
601   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
602   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
603   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
604   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
605 
606   llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
607   CGCallee callee = CGCallee::forDirect(fn);
608   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
609                callee, ReturnValueSlot(), args);
610 }
611 
612 /// Determine whether the given architecture supports unaligned atomic
613 /// accesses.  They don't have to be fast, just faster than a function
614 /// call and a mutex.
615 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
616   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
617   // currently supported by the backend.)
618   return 0;
619 }
620 
621 /// Return the maximum size that permits atomic accesses for the given
622 /// architecture.
623 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
624                                         llvm::Triple::ArchType arch) {
625   // ARM has 8-byte atomic accesses, but it's not clear whether we
626   // want to rely on them here.
627 
628   // In the default case, just assume that any size up to a pointer is
629   // fine given adequate alignment.
630   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
631 }
632 
633 namespace {
634   class PropertyImplStrategy {
635   public:
636     enum StrategyKind {
637       /// The 'native' strategy is to use the architecture's provided
638       /// reads and writes.
639       Native,
640 
641       /// Use objc_setProperty and objc_getProperty.
642       GetSetProperty,
643 
644       /// Use objc_setProperty for the setter, but use expression
645       /// evaluation for the getter.
646       SetPropertyAndExpressionGet,
647 
648       /// Use objc_copyStruct.
649       CopyStruct,
650 
651       /// The 'expression' strategy is to emit normal assignment or
652       /// lvalue-to-rvalue expressions.
653       Expression
654     };
655 
656     StrategyKind getKind() const { return StrategyKind(Kind); }
657 
658     bool hasStrongMember() const { return HasStrong; }
659     bool isAtomic() const { return IsAtomic; }
660     bool isCopy() const { return IsCopy; }
661 
662     CharUnits getIvarSize() const { return IvarSize; }
663     CharUnits getIvarAlignment() const { return IvarAlignment; }
664 
665     PropertyImplStrategy(CodeGenModule &CGM,
666                          const ObjCPropertyImplDecl *propImpl);
667 
668   private:
669     unsigned Kind : 8;
670     unsigned IsAtomic : 1;
671     unsigned IsCopy : 1;
672     unsigned HasStrong : 1;
673 
674     CharUnits IvarSize;
675     CharUnits IvarAlignment;
676   };
677 }
678 
679 /// Pick an implementation strategy for the given property synthesis.
680 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
681                                      const ObjCPropertyImplDecl *propImpl) {
682   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
683   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
684 
685   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
686   IsAtomic = prop->isAtomic();
687   HasStrong = false; // doesn't matter here.
688 
689   // Evaluate the ivar's size and alignment.
690   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
691   QualType ivarType = ivar->getType();
692   std::tie(IvarSize, IvarAlignment) =
693       CGM.getContext().getTypeInfoInChars(ivarType);
694 
695   // If we have a copy property, we always have to use getProperty/setProperty.
696   // TODO: we could actually use setProperty and an expression for non-atomics.
697   if (IsCopy) {
698     Kind = GetSetProperty;
699     return;
700   }
701 
702   // Handle retain.
703   if (setterKind == ObjCPropertyDecl::Retain) {
704     // In GC-only, there's nothing special that needs to be done.
705     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
706       // fallthrough
707 
708     // In ARC, if the property is non-atomic, use expression emission,
709     // which translates to objc_storeStrong.  This isn't required, but
710     // it's slightly nicer.
711     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
712       // Using standard expression emission for the setter is only
713       // acceptable if the ivar is __strong, which won't be true if
714       // the property is annotated with __attribute__((NSObject)).
715       // TODO: falling all the way back to objc_setProperty here is
716       // just laziness, though;  we could still use objc_storeStrong
717       // if we hacked it right.
718       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
719         Kind = Expression;
720       else
721         Kind = SetPropertyAndExpressionGet;
722       return;
723 
724     // Otherwise, we need to at least use setProperty.  However, if
725     // the property isn't atomic, we can use normal expression
726     // emission for the getter.
727     } else if (!IsAtomic) {
728       Kind = SetPropertyAndExpressionGet;
729       return;
730 
731     // Otherwise, we have to use both setProperty and getProperty.
732     } else {
733       Kind = GetSetProperty;
734       return;
735     }
736   }
737 
738   // If we're not atomic, just use expression accesses.
739   if (!IsAtomic) {
740     Kind = Expression;
741     return;
742   }
743 
744   // Properties on bitfield ivars need to be emitted using expression
745   // accesses even if they're nominally atomic.
746   if (ivar->isBitField()) {
747     Kind = Expression;
748     return;
749   }
750 
751   // GC-qualified or ARC-qualified ivars need to be emitted as
752   // expressions.  This actually works out to being atomic anyway,
753   // except for ARC __strong, but that should trigger the above code.
754   if (ivarType.hasNonTrivialObjCLifetime() ||
755       (CGM.getLangOpts().getGC() &&
756        CGM.getContext().getObjCGCAttrKind(ivarType))) {
757     Kind = Expression;
758     return;
759   }
760 
761   // Compute whether the ivar has strong members.
762   if (CGM.getLangOpts().getGC())
763     if (const RecordType *recordType = ivarType->getAs<RecordType>())
764       HasStrong = recordType->getDecl()->hasObjectMember();
765 
766   // We can never access structs with object members with a native
767   // access, because we need to use write barriers.  This is what
768   // objc_copyStruct is for.
769   if (HasStrong) {
770     Kind = CopyStruct;
771     return;
772   }
773 
774   // Otherwise, this is target-dependent and based on the size and
775   // alignment of the ivar.
776 
777   // If the size of the ivar is not a power of two, give up.  We don't
778   // want to get into the business of doing compare-and-swaps.
779   if (!IvarSize.isPowerOfTwo()) {
780     Kind = CopyStruct;
781     return;
782   }
783 
784   llvm::Triple::ArchType arch =
785     CGM.getTarget().getTriple().getArch();
786 
787   // Most architectures require memory to fit within a single cache
788   // line, so the alignment has to be at least the size of the access.
789   // Otherwise we have to grab a lock.
790   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
791     Kind = CopyStruct;
792     return;
793   }
794 
795   // If the ivar's size exceeds the architecture's maximum atomic
796   // access size, we have to use CopyStruct.
797   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
798     Kind = CopyStruct;
799     return;
800   }
801 
802   // Otherwise, we can use native loads and stores.
803   Kind = Native;
804 }
805 
806 /// Generate an Objective-C property getter function.
807 ///
808 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
809 /// is illegal within a category.
810 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
811                                          const ObjCPropertyImplDecl *PID) {
812   llvm::Constant *AtomicHelperFn =
813       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
814   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
815   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
816   assert(OMD && "Invalid call to generate getter (empty method)");
817   StartObjCMethod(OMD, IMP->getClassInterface());
818 
819   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
820 
821   FinishFunction();
822 }
823 
824 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
825   const Expr *getter = propImpl->getGetterCXXConstructor();
826   if (!getter) return true;
827 
828   // Sema only makes only of these when the ivar has a C++ class type,
829   // so the form is pretty constrained.
830 
831   // If the property has a reference type, we might just be binding a
832   // reference, in which case the result will be a gl-value.  We should
833   // treat this as a non-trivial operation.
834   if (getter->isGLValue())
835     return false;
836 
837   // If we selected a trivial copy-constructor, we're okay.
838   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
839     return (construct->getConstructor()->isTrivial());
840 
841   // The constructor might require cleanups (in which case it's never
842   // trivial).
843   assert(isa<ExprWithCleanups>(getter));
844   return false;
845 }
846 
847 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
848 /// copy the ivar into the resturn slot.
849 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
850                                           llvm::Value *returnAddr,
851                                           ObjCIvarDecl *ivar,
852                                           llvm::Constant *AtomicHelperFn) {
853   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
854   //                           AtomicHelperFn);
855   CallArgList args;
856 
857   // The 1st argument is the return Slot.
858   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
859 
860   // The 2nd argument is the address of the ivar.
861   llvm::Value *ivarAddr =
862     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
863                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
864   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
865   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
866 
867   // Third argument is the helper function.
868   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
869 
870   llvm::Constant *copyCppAtomicObjectFn =
871     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
872   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
873   CGF.EmitCall(
874       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
875                callee, ReturnValueSlot(), args);
876 }
877 
878 void
879 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
880                                         const ObjCPropertyImplDecl *propImpl,
881                                         const ObjCMethodDecl *GetterMethodDecl,
882                                         llvm::Constant *AtomicHelperFn) {
883   // If there's a non-trivial 'get' expression, we just have to emit that.
884   if (!hasTrivialGetExpr(propImpl)) {
885     if (!AtomicHelperFn) {
886       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
887                      /*nrvo*/ nullptr);
888       EmitReturnStmt(ret);
889     }
890     else {
891       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
892       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
893                                     ivar, AtomicHelperFn);
894     }
895     return;
896   }
897 
898   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
899   QualType propType = prop->getType();
900   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
901 
902   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
903 
904   // Pick an implementation strategy.
905   PropertyImplStrategy strategy(CGM, propImpl);
906   switch (strategy.getKind()) {
907   case PropertyImplStrategy::Native: {
908     // We don't need to do anything for a zero-size struct.
909     if (strategy.getIvarSize().isZero())
910       return;
911 
912     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
913 
914     // Currently, all atomic accesses have to be through integer
915     // types, so there's no point in trying to pick a prettier type.
916     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
917     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
918     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
919 
920     // Perform an atomic load.  This does not impose ordering constraints.
921     Address ivarAddr = LV.getAddress();
922     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
923     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
924     load->setAtomic(llvm::AtomicOrdering::Unordered);
925 
926     // Store that value into the return address.  Doing this with a
927     // bitcast is likely to produce some pretty ugly IR, but it's not
928     // the *most* terrible thing in the world.
929     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
930     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
931     llvm::Value *ivarVal = load;
932     if (ivarSize > retTySize) {
933       llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
934       ivarVal = Builder.CreateTrunc(load, newTy);
935       bitcastType = newTy->getPointerTo();
936     }
937     Builder.CreateStore(ivarVal,
938                         Builder.CreateBitCast(ReturnValue, bitcastType));
939 
940     // Make sure we don't do an autorelease.
941     AutoreleaseResult = false;
942     return;
943   }
944 
945   case PropertyImplStrategy::GetSetProperty: {
946     llvm::Constant *getPropertyFn =
947       CGM.getObjCRuntime().GetPropertyGetFunction();
948     if (!getPropertyFn) {
949       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
950       return;
951     }
952     CGCallee callee = CGCallee::forDirect(getPropertyFn);
953 
954     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
955     // FIXME: Can't this be simpler? This might even be worse than the
956     // corresponding gcc code.
957     llvm::Value *cmd =
958       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
959     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
960     llvm::Value *ivarOffset =
961       EmitIvarOffset(classImpl->getClassInterface(), ivar);
962 
963     CallArgList args;
964     args.add(RValue::get(self), getContext().getObjCIdType());
965     args.add(RValue::get(cmd), getContext().getObjCSelType());
966     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
967     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
968              getContext().BoolTy);
969 
970     // FIXME: We shouldn't need to get the function info here, the
971     // runtime already should have computed it to build the function.
972     llvm::Instruction *CallInstruction;
973     RValue RV = EmitCall(
974         getTypes().arrangeBuiltinFunctionCall(propType, args),
975         callee, ReturnValueSlot(), args, &CallInstruction);
976     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
977       call->setTailCall();
978 
979     // We need to fix the type here. Ivars with copy & retain are
980     // always objects so we don't need to worry about complex or
981     // aggregates.
982     RV = RValue::get(Builder.CreateBitCast(
983         RV.getScalarVal(),
984         getTypes().ConvertType(getterMethod->getReturnType())));
985 
986     EmitReturnOfRValue(RV, propType);
987 
988     // objc_getProperty does an autorelease, so we should suppress ours.
989     AutoreleaseResult = false;
990 
991     return;
992   }
993 
994   case PropertyImplStrategy::CopyStruct:
995     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
996                          strategy.hasStrongMember());
997     return;
998 
999   case PropertyImplStrategy::Expression:
1000   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1001     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1002 
1003     QualType ivarType = ivar->getType();
1004     switch (getEvaluationKind(ivarType)) {
1005     case TEK_Complex: {
1006       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1007       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1008                          /*init*/ true);
1009       return;
1010     }
1011     case TEK_Aggregate: {
1012       // The return value slot is guaranteed to not be aliased, but
1013       // that's not necessarily the same as "on the stack", so
1014       // we still potentially need objc_memmove_collectable.
1015       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1016                         /* Src= */ LV, ivarType, overlapForReturnValue());
1017       return;
1018     }
1019     case TEK_Scalar: {
1020       llvm::Value *value;
1021       if (propType->isReferenceType()) {
1022         value = LV.getAddress().getPointer();
1023       } else {
1024         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1025         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1026           if (getLangOpts().ObjCAutoRefCount) {
1027             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1028           } else {
1029             value = EmitARCLoadWeak(LV.getAddress());
1030           }
1031 
1032         // Otherwise we want to do a simple load, suppressing the
1033         // final autorelease.
1034         } else {
1035           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1036           AutoreleaseResult = false;
1037         }
1038 
1039         value = Builder.CreateBitCast(
1040             value, ConvertType(GetterMethodDecl->getReturnType()));
1041       }
1042 
1043       EmitReturnOfRValue(RValue::get(value), propType);
1044       return;
1045     }
1046     }
1047     llvm_unreachable("bad evaluation kind");
1048   }
1049 
1050   }
1051   llvm_unreachable("bad @property implementation strategy!");
1052 }
1053 
1054 /// emitStructSetterCall - Call the runtime function to store the value
1055 /// from the first formal parameter into the given ivar.
1056 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1057                                  ObjCIvarDecl *ivar) {
1058   // objc_copyStruct (&structIvar, &Arg,
1059   //                  sizeof (struct something), true, false);
1060   CallArgList args;
1061 
1062   // The first argument is the address of the ivar.
1063   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1064                                                 CGF.LoadObjCSelf(), ivar, 0)
1065     .getPointer();
1066   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1067   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1068 
1069   // The second argument is the address of the parameter variable.
1070   ParmVarDecl *argVar = *OMD->param_begin();
1071   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1072                      VK_LValue, SourceLocation());
1073   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1074   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1075   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1076 
1077   // The third argument is the sizeof the type.
1078   llvm::Value *size =
1079     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1080   args.add(RValue::get(size), CGF.getContext().getSizeType());
1081 
1082   // The fourth argument is the 'isAtomic' flag.
1083   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1084 
1085   // The fifth argument is the 'hasStrong' flag.
1086   // FIXME: should this really always be false?
1087   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1088 
1089   llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1090   CGCallee callee = CGCallee::forDirect(fn);
1091   CGF.EmitCall(
1092       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1093                callee, ReturnValueSlot(), args);
1094 }
1095 
1096 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1097 /// the value from the first formal parameter into the given ivar, using
1098 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1099 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1100                                           ObjCMethodDecl *OMD,
1101                                           ObjCIvarDecl *ivar,
1102                                           llvm::Constant *AtomicHelperFn) {
1103   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1104   //                           AtomicHelperFn);
1105   CallArgList args;
1106 
1107   // The first argument is the address of the ivar.
1108   llvm::Value *ivarAddr =
1109     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1110                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
1111   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1112   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1113 
1114   // The second argument is the address of the parameter variable.
1115   ParmVarDecl *argVar = *OMD->param_begin();
1116   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1117                      VK_LValue, SourceLocation());
1118   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1119   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1120   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1121 
1122   // Third argument is the helper function.
1123   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1124 
1125   llvm::Constant *fn =
1126     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1127   CGCallee callee = CGCallee::forDirect(fn);
1128   CGF.EmitCall(
1129       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1130                callee, ReturnValueSlot(), args);
1131 }
1132 
1133 
1134 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1135   Expr *setter = PID->getSetterCXXAssignment();
1136   if (!setter) return true;
1137 
1138   // Sema only makes only of these when the ivar has a C++ class type,
1139   // so the form is pretty constrained.
1140 
1141   // An operator call is trivial if the function it calls is trivial.
1142   // This also implies that there's nothing non-trivial going on with
1143   // the arguments, because operator= can only be trivial if it's a
1144   // synthesized assignment operator and therefore both parameters are
1145   // references.
1146   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1147     if (const FunctionDecl *callee
1148           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1149       if (callee->isTrivial())
1150         return true;
1151     return false;
1152   }
1153 
1154   assert(isa<ExprWithCleanups>(setter));
1155   return false;
1156 }
1157 
1158 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1159   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1160     return false;
1161   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1162 }
1163 
1164 void
1165 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1166                                         const ObjCPropertyImplDecl *propImpl,
1167                                         llvm::Constant *AtomicHelperFn) {
1168   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1169   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1170   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1171 
1172   // Just use the setter expression if Sema gave us one and it's
1173   // non-trivial.
1174   if (!hasTrivialSetExpr(propImpl)) {
1175     if (!AtomicHelperFn)
1176       // If non-atomic, assignment is called directly.
1177       EmitStmt(propImpl->getSetterCXXAssignment());
1178     else
1179       // If atomic, assignment is called via a locking api.
1180       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1181                                     AtomicHelperFn);
1182     return;
1183   }
1184 
1185   PropertyImplStrategy strategy(CGM, propImpl);
1186   switch (strategy.getKind()) {
1187   case PropertyImplStrategy::Native: {
1188     // We don't need to do anything for a zero-size struct.
1189     if (strategy.getIvarSize().isZero())
1190       return;
1191 
1192     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1193 
1194     LValue ivarLValue =
1195       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1196     Address ivarAddr = ivarLValue.getAddress();
1197 
1198     // Currently, all atomic accesses have to be through integer
1199     // types, so there's no point in trying to pick a prettier type.
1200     llvm::Type *bitcastType =
1201       llvm::Type::getIntNTy(getLLVMContext(),
1202                             getContext().toBits(strategy.getIvarSize()));
1203 
1204     // Cast both arguments to the chosen operation type.
1205     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1206     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1207 
1208     // This bitcast load is likely to cause some nasty IR.
1209     llvm::Value *load = Builder.CreateLoad(argAddr);
1210 
1211     // Perform an atomic store.  There are no memory ordering requirements.
1212     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1213     store->setAtomic(llvm::AtomicOrdering::Unordered);
1214     return;
1215   }
1216 
1217   case PropertyImplStrategy::GetSetProperty:
1218   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1219 
1220     llvm::Constant *setOptimizedPropertyFn = nullptr;
1221     llvm::Constant *setPropertyFn = nullptr;
1222     if (UseOptimizedSetter(CGM)) {
1223       // 10.8 and iOS 6.0 code and GC is off
1224       setOptimizedPropertyFn =
1225         CGM.getObjCRuntime()
1226            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1227                                             strategy.isCopy());
1228       if (!setOptimizedPropertyFn) {
1229         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1230         return;
1231       }
1232     }
1233     else {
1234       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1235       if (!setPropertyFn) {
1236         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1237         return;
1238       }
1239     }
1240 
1241     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1242     //                       <is-atomic>, <is-copy>).
1243     llvm::Value *cmd =
1244       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1245     llvm::Value *self =
1246       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1247     llvm::Value *ivarOffset =
1248       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1249     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1250     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1251     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1252 
1253     CallArgList args;
1254     args.add(RValue::get(self), getContext().getObjCIdType());
1255     args.add(RValue::get(cmd), getContext().getObjCSelType());
1256     if (setOptimizedPropertyFn) {
1257       args.add(RValue::get(arg), getContext().getObjCIdType());
1258       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1259       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1260       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1261                callee, ReturnValueSlot(), args);
1262     } else {
1263       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1264       args.add(RValue::get(arg), getContext().getObjCIdType());
1265       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1266                getContext().BoolTy);
1267       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1268                getContext().BoolTy);
1269       // FIXME: We shouldn't need to get the function info here, the runtime
1270       // already should have computed it to build the function.
1271       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1272       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1273                callee, ReturnValueSlot(), args);
1274     }
1275 
1276     return;
1277   }
1278 
1279   case PropertyImplStrategy::CopyStruct:
1280     emitStructSetterCall(*this, setterMethod, ivar);
1281     return;
1282 
1283   case PropertyImplStrategy::Expression:
1284     break;
1285   }
1286 
1287   // Otherwise, fake up some ASTs and emit a normal assignment.
1288   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1289   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1290                    VK_LValue, SourceLocation());
1291   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1292                             selfDecl->getType(), CK_LValueToRValue, &self,
1293                             VK_RValue);
1294   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1295                           SourceLocation(), SourceLocation(),
1296                           &selfLoad, true, true);
1297 
1298   ParmVarDecl *argDecl = *setterMethod->param_begin();
1299   QualType argType = argDecl->getType().getNonReferenceType();
1300   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1301   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1302                            argType.getUnqualifiedType(), CK_LValueToRValue,
1303                            &arg, VK_RValue);
1304 
1305   // The property type can differ from the ivar type in some situations with
1306   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1307   // The following absurdity is just to ensure well-formed IR.
1308   CastKind argCK = CK_NoOp;
1309   if (ivarRef.getType()->isObjCObjectPointerType()) {
1310     if (argLoad.getType()->isObjCObjectPointerType())
1311       argCK = CK_BitCast;
1312     else if (argLoad.getType()->isBlockPointerType())
1313       argCK = CK_BlockPointerToObjCPointerCast;
1314     else
1315       argCK = CK_CPointerToObjCPointerCast;
1316   } else if (ivarRef.getType()->isBlockPointerType()) {
1317      if (argLoad.getType()->isBlockPointerType())
1318       argCK = CK_BitCast;
1319     else
1320       argCK = CK_AnyPointerToBlockPointerCast;
1321   } else if (ivarRef.getType()->isPointerType()) {
1322     argCK = CK_BitCast;
1323   }
1324   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1325                            ivarRef.getType(), argCK, &argLoad,
1326                            VK_RValue);
1327   Expr *finalArg = &argLoad;
1328   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1329                                            argLoad.getType()))
1330     finalArg = &argCast;
1331 
1332 
1333   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1334                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1335                         SourceLocation(), FPOptions());
1336   EmitStmt(&assign);
1337 }
1338 
1339 /// Generate an Objective-C property setter function.
1340 ///
1341 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1342 /// is illegal within a category.
1343 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1344                                          const ObjCPropertyImplDecl *PID) {
1345   llvm::Constant *AtomicHelperFn =
1346       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1347   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1348   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1349   assert(OMD && "Invalid call to generate setter (empty method)");
1350   StartObjCMethod(OMD, IMP->getClassInterface());
1351 
1352   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1353 
1354   FinishFunction();
1355 }
1356 
1357 namespace {
1358   struct DestroyIvar final : EHScopeStack::Cleanup {
1359   private:
1360     llvm::Value *addr;
1361     const ObjCIvarDecl *ivar;
1362     CodeGenFunction::Destroyer *destroyer;
1363     bool useEHCleanupForArray;
1364   public:
1365     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1366                 CodeGenFunction::Destroyer *destroyer,
1367                 bool useEHCleanupForArray)
1368       : addr(addr), ivar(ivar), destroyer(destroyer),
1369         useEHCleanupForArray(useEHCleanupForArray) {}
1370 
1371     void Emit(CodeGenFunction &CGF, Flags flags) override {
1372       LValue lvalue
1373         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1374       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1375                       flags.isForNormalCleanup() && useEHCleanupForArray);
1376     }
1377   };
1378 }
1379 
1380 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1381 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1382                                       Address addr,
1383                                       QualType type) {
1384   llvm::Value *null = getNullForVariable(addr);
1385   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1386 }
1387 
1388 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1389                                   ObjCImplementationDecl *impl) {
1390   CodeGenFunction::RunCleanupsScope scope(CGF);
1391 
1392   llvm::Value *self = CGF.LoadObjCSelf();
1393 
1394   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1395   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1396        ivar; ivar = ivar->getNextIvar()) {
1397     QualType type = ivar->getType();
1398 
1399     // Check whether the ivar is a destructible type.
1400     QualType::DestructionKind dtorKind = type.isDestructedType();
1401     if (!dtorKind) continue;
1402 
1403     CodeGenFunction::Destroyer *destroyer = nullptr;
1404 
1405     // Use a call to objc_storeStrong to destroy strong ivars, for the
1406     // general benefit of the tools.
1407     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1408       destroyer = destroyARCStrongWithStore;
1409 
1410     // Otherwise use the default for the destruction kind.
1411     } else {
1412       destroyer = CGF.getDestroyer(dtorKind);
1413     }
1414 
1415     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1416 
1417     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1418                                          cleanupKind & EHCleanup);
1419   }
1420 
1421   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1422 }
1423 
1424 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1425                                                  ObjCMethodDecl *MD,
1426                                                  bool ctor) {
1427   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1428   StartObjCMethod(MD, IMP->getClassInterface());
1429 
1430   // Emit .cxx_construct.
1431   if (ctor) {
1432     // Suppress the final autorelease in ARC.
1433     AutoreleaseResult = false;
1434 
1435     for (const auto *IvarInit : IMP->inits()) {
1436       FieldDecl *Field = IvarInit->getAnyMember();
1437       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1438       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1439                                     LoadObjCSelf(), Ivar, 0);
1440       EmitAggExpr(IvarInit->getInit(),
1441                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1442                                           AggValueSlot::DoesNotNeedGCBarriers,
1443                                           AggValueSlot::IsNotAliased,
1444                                           AggValueSlot::DoesNotOverlap));
1445     }
1446     // constructor returns 'self'.
1447     CodeGenTypes &Types = CGM.getTypes();
1448     QualType IdTy(CGM.getContext().getObjCIdType());
1449     llvm::Value *SelfAsId =
1450       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1451     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1452 
1453   // Emit .cxx_destruct.
1454   } else {
1455     emitCXXDestructMethod(*this, IMP);
1456   }
1457   FinishFunction();
1458 }
1459 
1460 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1461   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1462   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1463                   Self->getType(), VK_LValue, SourceLocation());
1464   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1465 }
1466 
1467 QualType CodeGenFunction::TypeOfSelfObject() {
1468   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1469   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1470   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1471     getContext().getCanonicalType(selfDecl->getType()));
1472   return PTy->getPointeeType();
1473 }
1474 
1475 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1476   llvm::Constant *EnumerationMutationFnPtr =
1477     CGM.getObjCRuntime().EnumerationMutationFunction();
1478   if (!EnumerationMutationFnPtr) {
1479     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1480     return;
1481   }
1482   CGCallee EnumerationMutationFn =
1483     CGCallee::forDirect(EnumerationMutationFnPtr);
1484 
1485   CGDebugInfo *DI = getDebugInfo();
1486   if (DI)
1487     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1488 
1489   RunCleanupsScope ForScope(*this);
1490 
1491   // The local variable comes into scope immediately.
1492   AutoVarEmission variable = AutoVarEmission::invalid();
1493   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1494     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1495 
1496   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1497 
1498   // Fast enumeration state.
1499   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1500   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1501   EmitNullInitialization(StatePtr, StateTy);
1502 
1503   // Number of elements in the items array.
1504   static const unsigned NumItems = 16;
1505 
1506   // Fetch the countByEnumeratingWithState:objects:count: selector.
1507   IdentifierInfo *II[] = {
1508     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1509     &CGM.getContext().Idents.get("objects"),
1510     &CGM.getContext().Idents.get("count")
1511   };
1512   Selector FastEnumSel =
1513     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1514 
1515   QualType ItemsTy =
1516     getContext().getConstantArrayType(getContext().getObjCIdType(),
1517                                       llvm::APInt(32, NumItems),
1518                                       ArrayType::Normal, 0);
1519   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1520 
1521   // Emit the collection pointer.  In ARC, we do a retain.
1522   llvm::Value *Collection;
1523   if (getLangOpts().ObjCAutoRefCount) {
1524     Collection = EmitARCRetainScalarExpr(S.getCollection());
1525 
1526     // Enter a cleanup to do the release.
1527     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1528   } else {
1529     Collection = EmitScalarExpr(S.getCollection());
1530   }
1531 
1532   // The 'continue' label needs to appear within the cleanup for the
1533   // collection object.
1534   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1535 
1536   // Send it our message:
1537   CallArgList Args;
1538 
1539   // The first argument is a temporary of the enumeration-state type.
1540   Args.add(RValue::get(StatePtr.getPointer()),
1541            getContext().getPointerType(StateTy));
1542 
1543   // The second argument is a temporary array with space for NumItems
1544   // pointers.  We'll actually be loading elements from the array
1545   // pointer written into the control state; this buffer is so that
1546   // collections that *aren't* backed by arrays can still queue up
1547   // batches of elements.
1548   Args.add(RValue::get(ItemsPtr.getPointer()),
1549            getContext().getPointerType(ItemsTy));
1550 
1551   // The third argument is the capacity of that temporary array.
1552   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1553   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1554   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1555 
1556   // Start the enumeration.
1557   RValue CountRV =
1558       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1559                                                getContext().getNSUIntegerType(),
1560                                                FastEnumSel, Collection, Args);
1561 
1562   // The initial number of objects that were returned in the buffer.
1563   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1564 
1565   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1566   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1567 
1568   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1569 
1570   // If the limit pointer was zero to begin with, the collection is
1571   // empty; skip all this. Set the branch weight assuming this has the same
1572   // probability of exiting the loop as any other loop exit.
1573   uint64_t EntryCount = getCurrentProfileCount();
1574   Builder.CreateCondBr(
1575       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1576       LoopInitBB,
1577       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1578 
1579   // Otherwise, initialize the loop.
1580   EmitBlock(LoopInitBB);
1581 
1582   // Save the initial mutations value.  This is the value at an
1583   // address that was written into the state object by
1584   // countByEnumeratingWithState:objects:count:.
1585   Address StateMutationsPtrPtr = Builder.CreateStructGEP(
1586       StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr");
1587   llvm::Value *StateMutationsPtr
1588     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1589 
1590   llvm::Value *initialMutations =
1591     Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1592                               "forcoll.initial-mutations");
1593 
1594   // Start looping.  This is the point we return to whenever we have a
1595   // fresh, non-empty batch of objects.
1596   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1597   EmitBlock(LoopBodyBB);
1598 
1599   // The current index into the buffer.
1600   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1601   index->addIncoming(zero, LoopInitBB);
1602 
1603   // The current buffer size.
1604   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1605   count->addIncoming(initialBufferLimit, LoopInitBB);
1606 
1607   incrementProfileCounter(&S);
1608 
1609   // Check whether the mutations value has changed from where it was
1610   // at start.  StateMutationsPtr should actually be invariant between
1611   // refreshes.
1612   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1613   llvm::Value *currentMutations
1614     = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1615                                 "statemutations");
1616 
1617   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1618   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1619 
1620   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1621                        WasNotMutatedBB, WasMutatedBB);
1622 
1623   // If so, call the enumeration-mutation function.
1624   EmitBlock(WasMutatedBB);
1625   llvm::Value *V =
1626     Builder.CreateBitCast(Collection,
1627                           ConvertType(getContext().getObjCIdType()));
1628   CallArgList Args2;
1629   Args2.add(RValue::get(V), getContext().getObjCIdType());
1630   // FIXME: We shouldn't need to get the function info here, the runtime already
1631   // should have computed it to build the function.
1632   EmitCall(
1633           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1634            EnumerationMutationFn, ReturnValueSlot(), Args2);
1635 
1636   // Otherwise, or if the mutation function returns, just continue.
1637   EmitBlock(WasNotMutatedBB);
1638 
1639   // Initialize the element variable.
1640   RunCleanupsScope elementVariableScope(*this);
1641   bool elementIsVariable;
1642   LValue elementLValue;
1643   QualType elementType;
1644   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1645     // Initialize the variable, in case it's a __block variable or something.
1646     EmitAutoVarInit(variable);
1647 
1648     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1649     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1650                         VK_LValue, SourceLocation());
1651     elementLValue = EmitLValue(&tempDRE);
1652     elementType = D->getType();
1653     elementIsVariable = true;
1654 
1655     if (D->isARCPseudoStrong())
1656       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1657   } else {
1658     elementLValue = LValue(); // suppress warning
1659     elementType = cast<Expr>(S.getElement())->getType();
1660     elementIsVariable = false;
1661   }
1662   llvm::Type *convertedElementType = ConvertType(elementType);
1663 
1664   // Fetch the buffer out of the enumeration state.
1665   // TODO: this pointer should actually be invariant between
1666   // refreshes, which would help us do certain loop optimizations.
1667   Address StateItemsPtr = Builder.CreateStructGEP(
1668       StatePtr, 1, getPointerSize(), "stateitems.ptr");
1669   llvm::Value *EnumStateItems =
1670     Builder.CreateLoad(StateItemsPtr, "stateitems");
1671 
1672   // Fetch the value at the current index from the buffer.
1673   llvm::Value *CurrentItemPtr =
1674     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1675   llvm::Value *CurrentItem =
1676     Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1677 
1678   // Cast that value to the right type.
1679   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1680                                       "currentitem");
1681 
1682   // Make sure we have an l-value.  Yes, this gets evaluated every
1683   // time through the loop.
1684   if (!elementIsVariable) {
1685     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1686     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1687   } else {
1688     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1689                            /*isInit*/ true);
1690   }
1691 
1692   // If we do have an element variable, this assignment is the end of
1693   // its initialization.
1694   if (elementIsVariable)
1695     EmitAutoVarCleanups(variable);
1696 
1697   // Perform the loop body, setting up break and continue labels.
1698   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1699   {
1700     RunCleanupsScope Scope(*this);
1701     EmitStmt(S.getBody());
1702   }
1703   BreakContinueStack.pop_back();
1704 
1705   // Destroy the element variable now.
1706   elementVariableScope.ForceCleanup();
1707 
1708   // Check whether there are more elements.
1709   EmitBlock(AfterBody.getBlock());
1710 
1711   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1712 
1713   // First we check in the local buffer.
1714   llvm::Value *indexPlusOne =
1715       Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1716 
1717   // If we haven't overrun the buffer yet, we can continue.
1718   // Set the branch weights based on the simplifying assumption that this is
1719   // like a while-loop, i.e., ignoring that the false branch fetches more
1720   // elements and then returns to the loop.
1721   Builder.CreateCondBr(
1722       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1723       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1724 
1725   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1726   count->addIncoming(count, AfterBody.getBlock());
1727 
1728   // Otherwise, we have to fetch more elements.
1729   EmitBlock(FetchMoreBB);
1730 
1731   CountRV =
1732       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1733                                                getContext().getNSUIntegerType(),
1734                                                FastEnumSel, Collection, Args);
1735 
1736   // If we got a zero count, we're done.
1737   llvm::Value *refetchCount = CountRV.getScalarVal();
1738 
1739   // (note that the message send might split FetchMoreBB)
1740   index->addIncoming(zero, Builder.GetInsertBlock());
1741   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1742 
1743   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1744                        EmptyBB, LoopBodyBB);
1745 
1746   // No more elements.
1747   EmitBlock(EmptyBB);
1748 
1749   if (!elementIsVariable) {
1750     // If the element was not a declaration, set it to be null.
1751 
1752     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1753     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1754     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1755   }
1756 
1757   if (DI)
1758     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1759 
1760   ForScope.ForceCleanup();
1761   EmitBlock(LoopEnd.getBlock());
1762 }
1763 
1764 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1765   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1766 }
1767 
1768 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1769   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1770 }
1771 
1772 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1773                                               const ObjCAtSynchronizedStmt &S) {
1774   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1775 }
1776 
1777 namespace {
1778   struct CallObjCRelease final : EHScopeStack::Cleanup {
1779     CallObjCRelease(llvm::Value *object) : object(object) {}
1780     llvm::Value *object;
1781 
1782     void Emit(CodeGenFunction &CGF, Flags flags) override {
1783       // Releases at the end of the full-expression are imprecise.
1784       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1785     }
1786   };
1787 }
1788 
1789 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1790 /// release at the end of the full-expression.
1791 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1792                                                     llvm::Value *object) {
1793   // If we're in a conditional branch, we need to make the cleanup
1794   // conditional.
1795   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1796   return object;
1797 }
1798 
1799 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1800                                                            llvm::Value *value) {
1801   return EmitARCRetainAutorelease(type, value);
1802 }
1803 
1804 /// Given a number of pointers, inform the optimizer that they're
1805 /// being intrinsically used up until this point in the program.
1806 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1807   llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1808   if (!fn) {
1809     llvm::FunctionType *fnType =
1810       llvm::FunctionType::get(CGM.VoidTy, None, true);
1811     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1812   }
1813 
1814   // This isn't really a "runtime" function, but as an intrinsic it
1815   // doesn't really matter as long as we align things up.
1816   EmitNounwindRuntimeCall(fn, values);
1817 }
1818 
1819 
1820 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1821                                                 llvm::FunctionType *FTy,
1822                                                 StringRef Name) {
1823   llvm::Constant *RTF = CGM.CreateRuntimeFunction(FTy, Name);
1824 
1825   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
1826     // If the target runtime doesn't naturally support ARC, emit weak
1827     // references to the runtime support library.  We don't really
1828     // permit this to fail, but we need a particular relocation style.
1829     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
1830         !CGM.getTriple().isOSBinFormatCOFF()) {
1831       F->setLinkage(llvm::Function::ExternalWeakLinkage);
1832     } else if (Name == "objc_retain" || Name  == "objc_release") {
1833       // If we have Native ARC, set nonlazybind attribute for these APIs for
1834       // performance.
1835       F->addFnAttr(llvm::Attribute::NonLazyBind);
1836     }
1837   }
1838 
1839   return RTF;
1840 }
1841 
1842 /// Perform an operation having the signature
1843 ///   i8* (i8*)
1844 /// where a null input causes a no-op and returns null.
1845 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1846                                           llvm::Value *value,
1847                                           llvm::Constant *&fn,
1848                                           StringRef fnName,
1849                                           bool isTailCall = false) {
1850   if (isa<llvm::ConstantPointerNull>(value))
1851     return value;
1852 
1853   if (!fn) {
1854     llvm::FunctionType *fnType =
1855       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1856     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1857   }
1858 
1859   // Cast the argument to 'id'.
1860   llvm::Type *origType = value->getType();
1861   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1862 
1863   // Call the function.
1864   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1865   if (isTailCall)
1866     call->setTailCall();
1867 
1868   // Cast the result back to the original type.
1869   return CGF.Builder.CreateBitCast(call, origType);
1870 }
1871 
1872 /// Perform an operation having the following signature:
1873 ///   i8* (i8**)
1874 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1875                                          Address addr,
1876                                          llvm::Constant *&fn,
1877                                          StringRef fnName) {
1878   if (!fn) {
1879     llvm::FunctionType *fnType =
1880       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1881     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1882   }
1883 
1884   // Cast the argument to 'id*'.
1885   llvm::Type *origType = addr.getElementType();
1886   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1887 
1888   // Call the function.
1889   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
1890 
1891   // Cast the result back to a dereference of the original type.
1892   if (origType != CGF.Int8PtrTy)
1893     result = CGF.Builder.CreateBitCast(result, origType);
1894 
1895   return result;
1896 }
1897 
1898 /// Perform an operation having the following signature:
1899 ///   i8* (i8**, i8*)
1900 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1901                                           Address addr,
1902                                           llvm::Value *value,
1903                                           llvm::Constant *&fn,
1904                                           StringRef fnName,
1905                                           bool ignored) {
1906   assert(addr.getElementType() == value->getType());
1907 
1908   if (!fn) {
1909     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1910 
1911     llvm::FunctionType *fnType
1912       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1913     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1914   }
1915 
1916   llvm::Type *origType = value->getType();
1917 
1918   llvm::Value *args[] = {
1919     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
1920     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1921   };
1922   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1923 
1924   if (ignored) return nullptr;
1925 
1926   return CGF.Builder.CreateBitCast(result, origType);
1927 }
1928 
1929 /// Perform an operation having the following signature:
1930 ///   void (i8**, i8**)
1931 static void emitARCCopyOperation(CodeGenFunction &CGF,
1932                                  Address dst,
1933                                  Address src,
1934                                  llvm::Constant *&fn,
1935                                  StringRef fnName) {
1936   assert(dst.getType() == src.getType());
1937 
1938   if (!fn) {
1939     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1940 
1941     llvm::FunctionType *fnType
1942       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1943     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1944   }
1945 
1946   llvm::Value *args[] = {
1947     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
1948     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
1949   };
1950   CGF.EmitNounwindRuntimeCall(fn, args);
1951 }
1952 
1953 /// Produce the code to do a retain.  Based on the type, calls one of:
1954 ///   call i8* \@objc_retain(i8* %value)
1955 ///   call i8* \@objc_retainBlock(i8* %value)
1956 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1957   if (type->isBlockPointerType())
1958     return EmitARCRetainBlock(value, /*mandatory*/ false);
1959   else
1960     return EmitARCRetainNonBlock(value);
1961 }
1962 
1963 /// Retain the given object, with normal retain semantics.
1964 ///   call i8* \@objc_retain(i8* %value)
1965 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1966   return emitARCValueOperation(*this, value,
1967                                CGM.getObjCEntrypoints().objc_retain,
1968                                "objc_retain");
1969 }
1970 
1971 /// Retain the given block, with _Block_copy semantics.
1972 ///   call i8* \@objc_retainBlock(i8* %value)
1973 ///
1974 /// \param mandatory - If false, emit the call with metadata
1975 /// indicating that it's okay for the optimizer to eliminate this call
1976 /// if it can prove that the block never escapes except down the stack.
1977 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1978                                                  bool mandatory) {
1979   llvm::Value *result
1980     = emitARCValueOperation(*this, value,
1981                             CGM.getObjCEntrypoints().objc_retainBlock,
1982                             "objc_retainBlock");
1983 
1984   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1985   // tell the optimizer that it doesn't need to do this copy if the
1986   // block doesn't escape, where being passed as an argument doesn't
1987   // count as escaping.
1988   if (!mandatory && isa<llvm::Instruction>(result)) {
1989     llvm::CallInst *call
1990       = cast<llvm::CallInst>(result->stripPointerCasts());
1991     assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock);
1992 
1993     call->setMetadata("clang.arc.copy_on_escape",
1994                       llvm::MDNode::get(Builder.getContext(), None));
1995   }
1996 
1997   return result;
1998 }
1999 
2000 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2001   // Fetch the void(void) inline asm which marks that we're going to
2002   // do something with the autoreleased return value.
2003   llvm::InlineAsm *&marker
2004     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2005   if (!marker) {
2006     StringRef assembly
2007       = CGF.CGM.getTargetCodeGenInfo()
2008            .getARCRetainAutoreleasedReturnValueMarker();
2009 
2010     // If we have an empty assembly string, there's nothing to do.
2011     if (assembly.empty()) {
2012 
2013     // Otherwise, at -O0, build an inline asm that we're going to call
2014     // in a moment.
2015     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2016       llvm::FunctionType *type =
2017         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2018 
2019       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2020 
2021     // If we're at -O1 and above, we don't want to litter the code
2022     // with this marker yet, so leave a breadcrumb for the ARC
2023     // optimizer to pick up.
2024     } else {
2025       llvm::NamedMDNode *metadata =
2026         CGF.CGM.getModule().getOrInsertNamedMetadata(
2027                             "clang.arc.retainAutoreleasedReturnValueMarker");
2028       assert(metadata->getNumOperands() <= 1);
2029       if (metadata->getNumOperands() == 0) {
2030         auto &ctx = CGF.getLLVMContext();
2031         metadata->addOperand(llvm::MDNode::get(ctx,
2032                                      llvm::MDString::get(ctx, assembly)));
2033       }
2034     }
2035   }
2036 
2037   // Call the marker asm if we made one, which we do only at -O0.
2038   if (marker)
2039     CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2040 }
2041 
2042 /// Retain the given object which is the result of a function call.
2043 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2044 ///
2045 /// Yes, this function name is one character away from a different
2046 /// call with completely different semantics.
2047 llvm::Value *
2048 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2049   emitAutoreleasedReturnValueMarker(*this);
2050   return emitARCValueOperation(*this, value,
2051               CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2052                                "objc_retainAutoreleasedReturnValue");
2053 }
2054 
2055 /// Claim a possibly-autoreleased return value at +0.  This is only
2056 /// valid to do in contexts which do not rely on the retain to keep
2057 /// the object valid for all of its uses; for example, when
2058 /// the value is ignored, or when it is being assigned to an
2059 /// __unsafe_unretained variable.
2060 ///
2061 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2062 llvm::Value *
2063 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2064   emitAutoreleasedReturnValueMarker(*this);
2065   return emitARCValueOperation(*this, value,
2066               CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2067                                "objc_unsafeClaimAutoreleasedReturnValue");
2068 }
2069 
2070 /// Release the given object.
2071 ///   call void \@objc_release(i8* %value)
2072 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2073                                      ARCPreciseLifetime_t precise) {
2074   if (isa<llvm::ConstantPointerNull>(value)) return;
2075 
2076   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release;
2077   if (!fn) {
2078     llvm::FunctionType *fnType =
2079       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2080     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
2081   }
2082 
2083   // Cast the argument to 'id'.
2084   value = Builder.CreateBitCast(value, Int8PtrTy);
2085 
2086   // Call objc_release.
2087   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2088 
2089   if (precise == ARCImpreciseLifetime) {
2090     call->setMetadata("clang.imprecise_release",
2091                       llvm::MDNode::get(Builder.getContext(), None));
2092   }
2093 }
2094 
2095 /// Destroy a __strong variable.
2096 ///
2097 /// At -O0, emit a call to store 'null' into the address;
2098 /// instrumenting tools prefer this because the address is exposed,
2099 /// but it's relatively cumbersome to optimize.
2100 ///
2101 /// At -O1 and above, just load and call objc_release.
2102 ///
2103 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2104 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2105                                            ARCPreciseLifetime_t precise) {
2106   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2107     llvm::Value *null = getNullForVariable(addr);
2108     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2109     return;
2110   }
2111 
2112   llvm::Value *value = Builder.CreateLoad(addr);
2113   EmitARCRelease(value, precise);
2114 }
2115 
2116 /// Store into a strong object.  Always calls this:
2117 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2118 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2119                                                      llvm::Value *value,
2120                                                      bool ignored) {
2121   assert(addr.getElementType() == value->getType());
2122 
2123   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2124   if (!fn) {
2125     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2126     llvm::FunctionType *fnType
2127       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2128     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2129   }
2130 
2131   llvm::Value *args[] = {
2132     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2133     Builder.CreateBitCast(value, Int8PtrTy)
2134   };
2135   EmitNounwindRuntimeCall(fn, args);
2136 
2137   if (ignored) return nullptr;
2138   return value;
2139 }
2140 
2141 /// Store into a strong object.  Sometimes calls this:
2142 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2143 /// Other times, breaks it down into components.
2144 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2145                                                  llvm::Value *newValue,
2146                                                  bool ignored) {
2147   QualType type = dst.getType();
2148   bool isBlock = type->isBlockPointerType();
2149 
2150   // Use a store barrier at -O0 unless this is a block type or the
2151   // lvalue is inadequately aligned.
2152   if (shouldUseFusedARCCalls() &&
2153       !isBlock &&
2154       (dst.getAlignment().isZero() ||
2155        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2156     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2157   }
2158 
2159   // Otherwise, split it out.
2160 
2161   // Retain the new value.
2162   newValue = EmitARCRetain(type, newValue);
2163 
2164   // Read the old value.
2165   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2166 
2167   // Store.  We do this before the release so that any deallocs won't
2168   // see the old value.
2169   EmitStoreOfScalar(newValue, dst);
2170 
2171   // Finally, release the old value.
2172   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2173 
2174   return newValue;
2175 }
2176 
2177 /// Autorelease the given object.
2178 ///   call i8* \@objc_autorelease(i8* %value)
2179 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2180   return emitARCValueOperation(*this, value,
2181                                CGM.getObjCEntrypoints().objc_autorelease,
2182                                "objc_autorelease");
2183 }
2184 
2185 /// Autorelease the given object.
2186 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2187 llvm::Value *
2188 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2189   return emitARCValueOperation(*this, value,
2190                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2191                                "objc_autoreleaseReturnValue",
2192                                /*isTailCall*/ true);
2193 }
2194 
2195 /// Do a fused retain/autorelease of the given object.
2196 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2197 llvm::Value *
2198 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2199   return emitARCValueOperation(*this, value,
2200                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2201                                "objc_retainAutoreleaseReturnValue",
2202                                /*isTailCall*/ true);
2203 }
2204 
2205 /// Do a fused retain/autorelease of the given object.
2206 ///   call i8* \@objc_retainAutorelease(i8* %value)
2207 /// or
2208 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2209 ///   call i8* \@objc_autorelease(i8* %retain)
2210 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2211                                                        llvm::Value *value) {
2212   if (!type->isBlockPointerType())
2213     return EmitARCRetainAutoreleaseNonBlock(value);
2214 
2215   if (isa<llvm::ConstantPointerNull>(value)) return value;
2216 
2217   llvm::Type *origType = value->getType();
2218   value = Builder.CreateBitCast(value, Int8PtrTy);
2219   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2220   value = EmitARCAutorelease(value);
2221   return Builder.CreateBitCast(value, origType);
2222 }
2223 
2224 /// Do a fused retain/autorelease of the given object.
2225 ///   call i8* \@objc_retainAutorelease(i8* %value)
2226 llvm::Value *
2227 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2228   return emitARCValueOperation(*this, value,
2229                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2230                                "objc_retainAutorelease");
2231 }
2232 
2233 /// i8* \@objc_loadWeak(i8** %addr)
2234 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2235 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2236   return emitARCLoadOperation(*this, addr,
2237                               CGM.getObjCEntrypoints().objc_loadWeak,
2238                               "objc_loadWeak");
2239 }
2240 
2241 /// i8* \@objc_loadWeakRetained(i8** %addr)
2242 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2243   return emitARCLoadOperation(*this, addr,
2244                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2245                               "objc_loadWeakRetained");
2246 }
2247 
2248 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2249 /// Returns %value.
2250 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2251                                                llvm::Value *value,
2252                                                bool ignored) {
2253   return emitARCStoreOperation(*this, addr, value,
2254                                CGM.getObjCEntrypoints().objc_storeWeak,
2255                                "objc_storeWeak", ignored);
2256 }
2257 
2258 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2259 /// Returns %value.  %addr is known to not have a current weak entry.
2260 /// Essentially equivalent to:
2261 ///   *addr = nil; objc_storeWeak(addr, value);
2262 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2263   // If we're initializing to null, just write null to memory; no need
2264   // to get the runtime involved.  But don't do this if optimization
2265   // is enabled, because accounting for this would make the optimizer
2266   // much more complicated.
2267   if (isa<llvm::ConstantPointerNull>(value) &&
2268       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2269     Builder.CreateStore(value, addr);
2270     return;
2271   }
2272 
2273   emitARCStoreOperation(*this, addr, value,
2274                         CGM.getObjCEntrypoints().objc_initWeak,
2275                         "objc_initWeak", /*ignored*/ true);
2276 }
2277 
2278 /// void \@objc_destroyWeak(i8** %addr)
2279 /// Essentially objc_storeWeak(addr, nil).
2280 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2281   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2282   if (!fn) {
2283     llvm::FunctionType *fnType =
2284       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2285     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2286   }
2287 
2288   // Cast the argument to 'id*'.
2289   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2290 
2291   EmitNounwindRuntimeCall(fn, addr.getPointer());
2292 }
2293 
2294 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2295 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2296 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2297 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2298   emitARCCopyOperation(*this, dst, src,
2299                        CGM.getObjCEntrypoints().objc_moveWeak,
2300                        "objc_moveWeak");
2301 }
2302 
2303 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2304 /// Disregards the current value in %dest.  Essentially
2305 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2306 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2307   emitARCCopyOperation(*this, dst, src,
2308                        CGM.getObjCEntrypoints().objc_copyWeak,
2309                        "objc_copyWeak");
2310 }
2311 
2312 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2313                                             Address SrcAddr) {
2314   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2315   Object = EmitObjCConsumeObject(Ty, Object);
2316   EmitARCStoreWeak(DstAddr, Object, false);
2317 }
2318 
2319 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2320                                             Address SrcAddr) {
2321   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2322   Object = EmitObjCConsumeObject(Ty, Object);
2323   EmitARCStoreWeak(DstAddr, Object, false);
2324   EmitARCDestroyWeak(SrcAddr);
2325 }
2326 
2327 /// Produce the code to do a objc_autoreleasepool_push.
2328 ///   call i8* \@objc_autoreleasePoolPush(void)
2329 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2330   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2331   if (!fn) {
2332     llvm::FunctionType *fnType =
2333       llvm::FunctionType::get(Int8PtrTy, false);
2334     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2335   }
2336 
2337   return EmitNounwindRuntimeCall(fn);
2338 }
2339 
2340 /// Produce the code to do a primitive release.
2341 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2342 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2343   assert(value->getType() == Int8PtrTy);
2344 
2345   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2346   if (!fn) {
2347     llvm::FunctionType *fnType =
2348       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2349 
2350     // We don't want to use a weak import here; instead we should not
2351     // fall into this path.
2352     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2353   }
2354 
2355   // objc_autoreleasePoolPop can throw.
2356   EmitRuntimeCallOrInvoke(fn, value);
2357 }
2358 
2359 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2360 /// Which is: [[NSAutoreleasePool alloc] init];
2361 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2362 /// init is declared as: - (id) init; in its NSObject super class.
2363 ///
2364 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2365   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2366   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2367   // [NSAutoreleasePool alloc]
2368   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2369   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2370   CallArgList Args;
2371   RValue AllocRV =
2372     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2373                                 getContext().getObjCIdType(),
2374                                 AllocSel, Receiver, Args);
2375 
2376   // [Receiver init]
2377   Receiver = AllocRV.getScalarVal();
2378   II = &CGM.getContext().Idents.get("init");
2379   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2380   RValue InitRV =
2381     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2382                                 getContext().getObjCIdType(),
2383                                 InitSel, Receiver, Args);
2384   return InitRV.getScalarVal();
2385 }
2386 
2387 /// Produce the code to do a primitive release.
2388 /// [tmp drain];
2389 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2390   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2391   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2392   CallArgList Args;
2393   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2394                               getContext().VoidTy, DrainSel, Arg, Args);
2395 }
2396 
2397 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2398                                               Address addr,
2399                                               QualType type) {
2400   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2401 }
2402 
2403 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2404                                                 Address addr,
2405                                                 QualType type) {
2406   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2407 }
2408 
2409 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2410                                      Address addr,
2411                                      QualType type) {
2412   CGF.EmitARCDestroyWeak(addr);
2413 }
2414 
2415 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2416                                           QualType type) {
2417   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2418   CGF.EmitARCIntrinsicUse(value);
2419 }
2420 
2421 namespace {
2422   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2423     llvm::Value *Token;
2424 
2425     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2426 
2427     void Emit(CodeGenFunction &CGF, Flags flags) override {
2428       CGF.EmitObjCAutoreleasePoolPop(Token);
2429     }
2430   };
2431   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2432     llvm::Value *Token;
2433 
2434     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2435 
2436     void Emit(CodeGenFunction &CGF, Flags flags) override {
2437       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2438     }
2439   };
2440 }
2441 
2442 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2443   if (CGM.getLangOpts().ObjCAutoRefCount)
2444     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2445   else
2446     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2447 }
2448 
2449 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2450                                                   LValue lvalue,
2451                                                   QualType type) {
2452   switch (type.getObjCLifetime()) {
2453   case Qualifiers::OCL_None:
2454   case Qualifiers::OCL_ExplicitNone:
2455   case Qualifiers::OCL_Strong:
2456   case Qualifiers::OCL_Autoreleasing:
2457     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2458                                               SourceLocation()).getScalarVal(),
2459                          false);
2460 
2461   case Qualifiers::OCL_Weak:
2462     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2463                          true);
2464   }
2465 
2466   llvm_unreachable("impossible lifetime!");
2467 }
2468 
2469 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2470                                                   const Expr *e) {
2471   e = e->IgnoreParens();
2472   QualType type = e->getType();
2473 
2474   // If we're loading retained from a __strong xvalue, we can avoid
2475   // an extra retain/release pair by zeroing out the source of this
2476   // "move" operation.
2477   if (e->isXValue() &&
2478       !type.isConstQualified() &&
2479       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2480     // Emit the lvalue.
2481     LValue lv = CGF.EmitLValue(e);
2482 
2483     // Load the object pointer.
2484     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2485                                                SourceLocation()).getScalarVal();
2486 
2487     // Set the source pointer to NULL.
2488     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2489 
2490     return TryEmitResult(result, true);
2491   }
2492 
2493   // As a very special optimization, in ARC++, if the l-value is the
2494   // result of a non-volatile assignment, do a simple retain of the
2495   // result of the call to objc_storeWeak instead of reloading.
2496   if (CGF.getLangOpts().CPlusPlus &&
2497       !type.isVolatileQualified() &&
2498       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2499       isa<BinaryOperator>(e) &&
2500       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2501     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2502 
2503   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2504 }
2505 
2506 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2507                                          llvm::Value *value)>
2508   ValueTransform;
2509 
2510 /// Insert code immediately after a call.
2511 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2512                                               llvm::Value *value,
2513                                               ValueTransform doAfterCall,
2514                                               ValueTransform doFallback) {
2515   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2516     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2517 
2518     // Place the retain immediately following the call.
2519     CGF.Builder.SetInsertPoint(call->getParent(),
2520                                ++llvm::BasicBlock::iterator(call));
2521     value = doAfterCall(CGF, value);
2522 
2523     CGF.Builder.restoreIP(ip);
2524     return value;
2525   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2526     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2527 
2528     // Place the retain at the beginning of the normal destination block.
2529     llvm::BasicBlock *BB = invoke->getNormalDest();
2530     CGF.Builder.SetInsertPoint(BB, BB->begin());
2531     value = doAfterCall(CGF, value);
2532 
2533     CGF.Builder.restoreIP(ip);
2534     return value;
2535 
2536   // Bitcasts can arise because of related-result returns.  Rewrite
2537   // the operand.
2538   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2539     llvm::Value *operand = bitcast->getOperand(0);
2540     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2541     bitcast->setOperand(0, operand);
2542     return bitcast;
2543 
2544   // Generic fall-back case.
2545   } else {
2546     // Retain using the non-block variant: we never need to do a copy
2547     // of a block that's been returned to us.
2548     return doFallback(CGF, value);
2549   }
2550 }
2551 
2552 /// Given that the given expression is some sort of call (which does
2553 /// not return retained), emit a retain following it.
2554 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2555                                             const Expr *e) {
2556   llvm::Value *value = CGF.EmitScalarExpr(e);
2557   return emitARCOperationAfterCall(CGF, value,
2558            [](CodeGenFunction &CGF, llvm::Value *value) {
2559              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2560            },
2561            [](CodeGenFunction &CGF, llvm::Value *value) {
2562              return CGF.EmitARCRetainNonBlock(value);
2563            });
2564 }
2565 
2566 /// Given that the given expression is some sort of call (which does
2567 /// not return retained), perform an unsafeClaim following it.
2568 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2569                                                  const Expr *e) {
2570   llvm::Value *value = CGF.EmitScalarExpr(e);
2571   return emitARCOperationAfterCall(CGF, value,
2572            [](CodeGenFunction &CGF, llvm::Value *value) {
2573              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2574            },
2575            [](CodeGenFunction &CGF, llvm::Value *value) {
2576              return value;
2577            });
2578 }
2579 
2580 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2581                                                       bool allowUnsafeClaim) {
2582   if (allowUnsafeClaim &&
2583       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2584     return emitARCUnsafeClaimCallResult(*this, E);
2585   } else {
2586     llvm::Value *value = emitARCRetainCallResult(*this, E);
2587     return EmitObjCConsumeObject(E->getType(), value);
2588   }
2589 }
2590 
2591 /// Determine whether it might be important to emit a separate
2592 /// objc_retain_block on the result of the given expression, or
2593 /// whether it's okay to just emit it in a +1 context.
2594 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2595   assert(e->getType()->isBlockPointerType());
2596   e = e->IgnoreParens();
2597 
2598   // For future goodness, emit block expressions directly in +1
2599   // contexts if we can.
2600   if (isa<BlockExpr>(e))
2601     return false;
2602 
2603   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2604     switch (cast->getCastKind()) {
2605     // Emitting these operations in +1 contexts is goodness.
2606     case CK_LValueToRValue:
2607     case CK_ARCReclaimReturnedObject:
2608     case CK_ARCConsumeObject:
2609     case CK_ARCProduceObject:
2610       return false;
2611 
2612     // These operations preserve a block type.
2613     case CK_NoOp:
2614     case CK_BitCast:
2615       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2616 
2617     // These operations are known to be bad (or haven't been considered).
2618     case CK_AnyPointerToBlockPointerCast:
2619     default:
2620       return true;
2621     }
2622   }
2623 
2624   return true;
2625 }
2626 
2627 namespace {
2628 /// A CRTP base class for emitting expressions of retainable object
2629 /// pointer type in ARC.
2630 template <typename Impl, typename Result> class ARCExprEmitter {
2631 protected:
2632   CodeGenFunction &CGF;
2633   Impl &asImpl() { return *static_cast<Impl*>(this); }
2634 
2635   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2636 
2637 public:
2638   Result visit(const Expr *e);
2639   Result visitCastExpr(const CastExpr *e);
2640   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2641   Result visitBinaryOperator(const BinaryOperator *e);
2642   Result visitBinAssign(const BinaryOperator *e);
2643   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2644   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2645   Result visitBinAssignWeak(const BinaryOperator *e);
2646   Result visitBinAssignStrong(const BinaryOperator *e);
2647 
2648   // Minimal implementation:
2649   //   Result visitLValueToRValue(const Expr *e)
2650   //   Result visitConsumeObject(const Expr *e)
2651   //   Result visitExtendBlockObject(const Expr *e)
2652   //   Result visitReclaimReturnedObject(const Expr *e)
2653   //   Result visitCall(const Expr *e)
2654   //   Result visitExpr(const Expr *e)
2655   //
2656   //   Result emitBitCast(Result result, llvm::Type *resultType)
2657   //   llvm::Value *getValueOfResult(Result result)
2658 };
2659 }
2660 
2661 /// Try to emit a PseudoObjectExpr under special ARC rules.
2662 ///
2663 /// This massively duplicates emitPseudoObjectRValue.
2664 template <typename Impl, typename Result>
2665 Result
2666 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2667   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2668 
2669   // Find the result expression.
2670   const Expr *resultExpr = E->getResultExpr();
2671   assert(resultExpr);
2672   Result result;
2673 
2674   for (PseudoObjectExpr::const_semantics_iterator
2675          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2676     const Expr *semantic = *i;
2677 
2678     // If this semantic expression is an opaque value, bind it
2679     // to the result of its source expression.
2680     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2681       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2682       OVMA opaqueData;
2683 
2684       // If this semantic is the result of the pseudo-object
2685       // expression, try to evaluate the source as +1.
2686       if (ov == resultExpr) {
2687         assert(!OVMA::shouldBindAsLValue(ov));
2688         result = asImpl().visit(ov->getSourceExpr());
2689         opaqueData = OVMA::bind(CGF, ov,
2690                             RValue::get(asImpl().getValueOfResult(result)));
2691 
2692       // Otherwise, just bind it.
2693       } else {
2694         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2695       }
2696       opaques.push_back(opaqueData);
2697 
2698     // Otherwise, if the expression is the result, evaluate it
2699     // and remember the result.
2700     } else if (semantic == resultExpr) {
2701       result = asImpl().visit(semantic);
2702 
2703     // Otherwise, evaluate the expression in an ignored context.
2704     } else {
2705       CGF.EmitIgnoredExpr(semantic);
2706     }
2707   }
2708 
2709   // Unbind all the opaques now.
2710   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2711     opaques[i].unbind(CGF);
2712 
2713   return result;
2714 }
2715 
2716 template <typename Impl, typename Result>
2717 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
2718   switch (e->getCastKind()) {
2719 
2720   // No-op casts don't change the type, so we just ignore them.
2721   case CK_NoOp:
2722     return asImpl().visit(e->getSubExpr());
2723 
2724   // These casts can change the type.
2725   case CK_CPointerToObjCPointerCast:
2726   case CK_BlockPointerToObjCPointerCast:
2727   case CK_AnyPointerToBlockPointerCast:
2728   case CK_BitCast: {
2729     llvm::Type *resultType = CGF.ConvertType(e->getType());
2730     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
2731     Result result = asImpl().visit(e->getSubExpr());
2732     return asImpl().emitBitCast(result, resultType);
2733   }
2734 
2735   // Handle some casts specially.
2736   case CK_LValueToRValue:
2737     return asImpl().visitLValueToRValue(e->getSubExpr());
2738   case CK_ARCConsumeObject:
2739     return asImpl().visitConsumeObject(e->getSubExpr());
2740   case CK_ARCExtendBlockObject:
2741     return asImpl().visitExtendBlockObject(e->getSubExpr());
2742   case CK_ARCReclaimReturnedObject:
2743     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
2744 
2745   // Otherwise, use the default logic.
2746   default:
2747     return asImpl().visitExpr(e);
2748   }
2749 }
2750 
2751 template <typename Impl, typename Result>
2752 Result
2753 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
2754   switch (e->getOpcode()) {
2755   case BO_Comma:
2756     CGF.EmitIgnoredExpr(e->getLHS());
2757     CGF.EnsureInsertPoint();
2758     return asImpl().visit(e->getRHS());
2759 
2760   case BO_Assign:
2761     return asImpl().visitBinAssign(e);
2762 
2763   default:
2764     return asImpl().visitExpr(e);
2765   }
2766 }
2767 
2768 template <typename Impl, typename Result>
2769 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
2770   switch (e->getLHS()->getType().getObjCLifetime()) {
2771   case Qualifiers::OCL_ExplicitNone:
2772     return asImpl().visitBinAssignUnsafeUnretained(e);
2773 
2774   case Qualifiers::OCL_Weak:
2775     return asImpl().visitBinAssignWeak(e);
2776 
2777   case Qualifiers::OCL_Autoreleasing:
2778     return asImpl().visitBinAssignAutoreleasing(e);
2779 
2780   case Qualifiers::OCL_Strong:
2781     return asImpl().visitBinAssignStrong(e);
2782 
2783   case Qualifiers::OCL_None:
2784     return asImpl().visitExpr(e);
2785   }
2786   llvm_unreachable("bad ObjC ownership qualifier");
2787 }
2788 
2789 /// The default rule for __unsafe_unretained emits the RHS recursively,
2790 /// stores into the unsafe variable, and propagates the result outward.
2791 template <typename Impl, typename Result>
2792 Result ARCExprEmitter<Impl,Result>::
2793                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
2794   // Recursively emit the RHS.
2795   // For __block safety, do this before emitting the LHS.
2796   Result result = asImpl().visit(e->getRHS());
2797 
2798   // Perform the store.
2799   LValue lvalue =
2800     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
2801   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
2802                              lvalue);
2803 
2804   return result;
2805 }
2806 
2807 template <typename Impl, typename Result>
2808 Result
2809 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
2810   return asImpl().visitExpr(e);
2811 }
2812 
2813 template <typename Impl, typename Result>
2814 Result
2815 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
2816   return asImpl().visitExpr(e);
2817 }
2818 
2819 template <typename Impl, typename Result>
2820 Result
2821 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
2822   return asImpl().visitExpr(e);
2823 }
2824 
2825 /// The general expression-emission logic.
2826 template <typename Impl, typename Result>
2827 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
2828   // We should *never* see a nested full-expression here, because if
2829   // we fail to emit at +1, our caller must not retain after we close
2830   // out the full-expression.  This isn't as important in the unsafe
2831   // emitter.
2832   assert(!isa<ExprWithCleanups>(e));
2833 
2834   // Look through parens, __extension__, generic selection, etc.
2835   e = e->IgnoreParens();
2836 
2837   // Handle certain kinds of casts.
2838   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2839     return asImpl().visitCastExpr(ce);
2840 
2841   // Handle the comma operator.
2842   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
2843     return asImpl().visitBinaryOperator(op);
2844 
2845   // TODO: handle conditional operators here
2846 
2847   // For calls and message sends, use the retained-call logic.
2848   // Delegate inits are a special case in that they're the only
2849   // returns-retained expression that *isn't* surrounded by
2850   // a consume.
2851   } else if (isa<CallExpr>(e) ||
2852              (isa<ObjCMessageExpr>(e) &&
2853               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2854     return asImpl().visitCall(e);
2855 
2856   // Look through pseudo-object expressions.
2857   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2858     return asImpl().visitPseudoObjectExpr(pseudo);
2859   }
2860 
2861   return asImpl().visitExpr(e);
2862 }
2863 
2864 namespace {
2865 
2866 /// An emitter for +1 results.
2867 struct ARCRetainExprEmitter :
2868   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
2869 
2870   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
2871 
2872   llvm::Value *getValueOfResult(TryEmitResult result) {
2873     return result.getPointer();
2874   }
2875 
2876   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
2877     llvm::Value *value = result.getPointer();
2878     value = CGF.Builder.CreateBitCast(value, resultType);
2879     result.setPointer(value);
2880     return result;
2881   }
2882 
2883   TryEmitResult visitLValueToRValue(const Expr *e) {
2884     return tryEmitARCRetainLoadOfScalar(CGF, e);
2885   }
2886 
2887   /// For consumptions, just emit the subexpression and thus elide
2888   /// the retain/release pair.
2889   TryEmitResult visitConsumeObject(const Expr *e) {
2890     llvm::Value *result = CGF.EmitScalarExpr(e);
2891     return TryEmitResult(result, true);
2892   }
2893 
2894   /// Block extends are net +0.  Naively, we could just recurse on
2895   /// the subexpression, but actually we need to ensure that the
2896   /// value is copied as a block, so there's a little filter here.
2897   TryEmitResult visitExtendBlockObject(const Expr *e) {
2898     llvm::Value *result; // will be a +0 value
2899 
2900     // If we can't safely assume the sub-expression will produce a
2901     // block-copied value, emit the sub-expression at +0.
2902     if (shouldEmitSeparateBlockRetain(e)) {
2903       result = CGF.EmitScalarExpr(e);
2904 
2905     // Otherwise, try to emit the sub-expression at +1 recursively.
2906     } else {
2907       TryEmitResult subresult = asImpl().visit(e);
2908 
2909       // If that produced a retained value, just use that.
2910       if (subresult.getInt()) {
2911         return subresult;
2912       }
2913 
2914       // Otherwise it's +0.
2915       result = subresult.getPointer();
2916     }
2917 
2918     // Retain the object as a block.
2919     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2920     return TryEmitResult(result, true);
2921   }
2922 
2923   /// For reclaims, emit the subexpression as a retained call and
2924   /// skip the consumption.
2925   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
2926     llvm::Value *result = emitARCRetainCallResult(CGF, e);
2927     return TryEmitResult(result, true);
2928   }
2929 
2930   /// When we have an undecorated call, retroactively do a claim.
2931   TryEmitResult visitCall(const Expr *e) {
2932     llvm::Value *result = emitARCRetainCallResult(CGF, e);
2933     return TryEmitResult(result, true);
2934   }
2935 
2936   // TODO: maybe special-case visitBinAssignWeak?
2937 
2938   TryEmitResult visitExpr(const Expr *e) {
2939     // We didn't find an obvious production, so emit what we've got and
2940     // tell the caller that we didn't manage to retain.
2941     llvm::Value *result = CGF.EmitScalarExpr(e);
2942     return TryEmitResult(result, false);
2943   }
2944 };
2945 }
2946 
2947 static TryEmitResult
2948 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2949   return ARCRetainExprEmitter(CGF).visit(e);
2950 }
2951 
2952 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2953                                                 LValue lvalue,
2954                                                 QualType type) {
2955   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2956   llvm::Value *value = result.getPointer();
2957   if (!result.getInt())
2958     value = CGF.EmitARCRetain(type, value);
2959   return value;
2960 }
2961 
2962 /// EmitARCRetainScalarExpr - Semantically equivalent to
2963 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2964 /// best-effort attempt to peephole expressions that naturally produce
2965 /// retained objects.
2966 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2967   // The retain needs to happen within the full-expression.
2968   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2969     enterFullExpression(cleanups);
2970     RunCleanupsScope scope(*this);
2971     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2972   }
2973 
2974   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2975   llvm::Value *value = result.getPointer();
2976   if (!result.getInt())
2977     value = EmitARCRetain(e->getType(), value);
2978   return value;
2979 }
2980 
2981 llvm::Value *
2982 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2983   // The retain needs to happen within the full-expression.
2984   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2985     enterFullExpression(cleanups);
2986     RunCleanupsScope scope(*this);
2987     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2988   }
2989 
2990   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2991   llvm::Value *value = result.getPointer();
2992   if (result.getInt())
2993     value = EmitARCAutorelease(value);
2994   else
2995     value = EmitARCRetainAutorelease(e->getType(), value);
2996   return value;
2997 }
2998 
2999 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3000   llvm::Value *result;
3001   bool doRetain;
3002 
3003   if (shouldEmitSeparateBlockRetain(e)) {
3004     result = EmitScalarExpr(e);
3005     doRetain = true;
3006   } else {
3007     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3008     result = subresult.getPointer();
3009     doRetain = !subresult.getInt();
3010   }
3011 
3012   if (doRetain)
3013     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3014   return EmitObjCConsumeObject(e->getType(), result);
3015 }
3016 
3017 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3018   // In ARC, retain and autorelease the expression.
3019   if (getLangOpts().ObjCAutoRefCount) {
3020     // Do so before running any cleanups for the full-expression.
3021     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3022     return EmitARCRetainAutoreleaseScalarExpr(expr);
3023   }
3024 
3025   // Otherwise, use the normal scalar-expression emission.  The
3026   // exception machinery doesn't do anything special with the
3027   // exception like retaining it, so there's no safety associated with
3028   // only running cleanups after the throw has started, and when it
3029   // matters it tends to be substantially inferior code.
3030   return EmitScalarExpr(expr);
3031 }
3032 
3033 namespace {
3034 
3035 /// An emitter for assigning into an __unsafe_unretained context.
3036 struct ARCUnsafeUnretainedExprEmitter :
3037   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3038 
3039   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3040 
3041   llvm::Value *getValueOfResult(llvm::Value *value) {
3042     return value;
3043   }
3044 
3045   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3046     return CGF.Builder.CreateBitCast(value, resultType);
3047   }
3048 
3049   llvm::Value *visitLValueToRValue(const Expr *e) {
3050     return CGF.EmitScalarExpr(e);
3051   }
3052 
3053   /// For consumptions, just emit the subexpression and perform the
3054   /// consumption like normal.
3055   llvm::Value *visitConsumeObject(const Expr *e) {
3056     llvm::Value *value = CGF.EmitScalarExpr(e);
3057     return CGF.EmitObjCConsumeObject(e->getType(), value);
3058   }
3059 
3060   /// No special logic for block extensions.  (This probably can't
3061   /// actually happen in this emitter, though.)
3062   llvm::Value *visitExtendBlockObject(const Expr *e) {
3063     return CGF.EmitARCExtendBlockObject(e);
3064   }
3065 
3066   /// For reclaims, perform an unsafeClaim if that's enabled.
3067   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3068     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3069   }
3070 
3071   /// When we have an undecorated call, just emit it without adding
3072   /// the unsafeClaim.
3073   llvm::Value *visitCall(const Expr *e) {
3074     return CGF.EmitScalarExpr(e);
3075   }
3076 
3077   /// Just do normal scalar emission in the default case.
3078   llvm::Value *visitExpr(const Expr *e) {
3079     return CGF.EmitScalarExpr(e);
3080   }
3081 };
3082 }
3083 
3084 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3085                                                       const Expr *e) {
3086   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3087 }
3088 
3089 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3090 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3091 /// avoiding any spurious retains, including by performing reclaims
3092 /// with objc_unsafeClaimAutoreleasedReturnValue.
3093 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3094   // Look through full-expressions.
3095   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3096     enterFullExpression(cleanups);
3097     RunCleanupsScope scope(*this);
3098     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3099   }
3100 
3101   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3102 }
3103 
3104 std::pair<LValue,llvm::Value*>
3105 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3106                                               bool ignored) {
3107   // Evaluate the RHS first.  If we're ignoring the result, assume
3108   // that we can emit at an unsafe +0.
3109   llvm::Value *value;
3110   if (ignored) {
3111     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3112   } else {
3113     value = EmitScalarExpr(e->getRHS());
3114   }
3115 
3116   // Emit the LHS and perform the store.
3117   LValue lvalue = EmitLValue(e->getLHS());
3118   EmitStoreOfScalar(value, lvalue);
3119 
3120   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3121 }
3122 
3123 std::pair<LValue,llvm::Value*>
3124 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3125                                     bool ignored) {
3126   // Evaluate the RHS first.
3127   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3128   llvm::Value *value = result.getPointer();
3129 
3130   bool hasImmediateRetain = result.getInt();
3131 
3132   // If we didn't emit a retained object, and the l-value is of block
3133   // type, then we need to emit the block-retain immediately in case
3134   // it invalidates the l-value.
3135   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3136     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3137     hasImmediateRetain = true;
3138   }
3139 
3140   LValue lvalue = EmitLValue(e->getLHS());
3141 
3142   // If the RHS was emitted retained, expand this.
3143   if (hasImmediateRetain) {
3144     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3145     EmitStoreOfScalar(value, lvalue);
3146     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3147   } else {
3148     value = EmitARCStoreStrong(lvalue, value, ignored);
3149   }
3150 
3151   return std::pair<LValue,llvm::Value*>(lvalue, value);
3152 }
3153 
3154 std::pair<LValue,llvm::Value*>
3155 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3156   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3157   LValue lvalue = EmitLValue(e->getLHS());
3158 
3159   EmitStoreOfScalar(value, lvalue);
3160 
3161   return std::pair<LValue,llvm::Value*>(lvalue, value);
3162 }
3163 
3164 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3165                                           const ObjCAutoreleasePoolStmt &ARPS) {
3166   const Stmt *subStmt = ARPS.getSubStmt();
3167   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3168 
3169   CGDebugInfo *DI = getDebugInfo();
3170   if (DI)
3171     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3172 
3173   // Keep track of the current cleanup stack depth.
3174   RunCleanupsScope Scope(*this);
3175   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3176     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3177     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3178   } else {
3179     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3180     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3181   }
3182 
3183   for (const auto *I : S.body())
3184     EmitStmt(I);
3185 
3186   if (DI)
3187     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3188 }
3189 
3190 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3191 /// make sure it survives garbage collection until this point.
3192 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3193   // We just use an inline assembly.
3194   llvm::FunctionType *extenderType
3195     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3196   llvm::Value *extender
3197     = llvm::InlineAsm::get(extenderType,
3198                            /* assembly */ "",
3199                            /* constraints */ "r",
3200                            /* side effects */ true);
3201 
3202   object = Builder.CreateBitCast(object, VoidPtrTy);
3203   EmitNounwindRuntimeCall(extender, object);
3204 }
3205 
3206 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3207 /// non-trivial copy assignment function, produce following helper function.
3208 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3209 ///
3210 llvm::Constant *
3211 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3212                                         const ObjCPropertyImplDecl *PID) {
3213   if (!getLangOpts().CPlusPlus ||
3214       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3215     return nullptr;
3216   QualType Ty = PID->getPropertyIvarDecl()->getType();
3217   if (!Ty->isRecordType())
3218     return nullptr;
3219   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3220   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3221     return nullptr;
3222   llvm::Constant *HelperFn = nullptr;
3223   if (hasTrivialSetExpr(PID))
3224     return nullptr;
3225   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3226   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3227     return HelperFn;
3228 
3229   ASTContext &C = getContext();
3230   IdentifierInfo *II
3231     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3232   FunctionDecl *FD = FunctionDecl::Create(C,
3233                                           C.getTranslationUnitDecl(),
3234                                           SourceLocation(),
3235                                           SourceLocation(), II, C.VoidTy,
3236                                           nullptr, SC_Static,
3237                                           false,
3238                                           false);
3239 
3240   QualType DestTy = C.getPointerType(Ty);
3241   QualType SrcTy = Ty;
3242   SrcTy.addConst();
3243   SrcTy = C.getPointerType(SrcTy);
3244 
3245   FunctionArgList args;
3246   ImplicitParamDecl DstDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr,
3247                             DestTy, ImplicitParamDecl::Other);
3248   args.push_back(&DstDecl);
3249   ImplicitParamDecl SrcDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr,
3250                             SrcTy, ImplicitParamDecl::Other);
3251   args.push_back(&SrcDecl);
3252 
3253   const CGFunctionInfo &FI =
3254     CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args);
3255 
3256   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3257 
3258   llvm::Function *Fn =
3259     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3260                            "__assign_helper_atomic_property_",
3261                            &CGM.getModule());
3262 
3263   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3264 
3265   StartFunction(FD, C.VoidTy, Fn, FI, args);
3266 
3267   DeclRefExpr DstExpr(&DstDecl, false, DestTy,
3268                       VK_RValue, SourceLocation());
3269   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
3270                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3271 
3272   DeclRefExpr SrcExpr(&SrcDecl, false, SrcTy,
3273                       VK_RValue, SourceLocation());
3274   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3275                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3276 
3277   Expr *Args[2] = { &DST, &SRC };
3278   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3279   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
3280                               Args, DestTy->getPointeeType(),
3281                               VK_LValue, SourceLocation(), FPOptions());
3282 
3283   EmitStmt(&TheCall);
3284 
3285   FinishFunction();
3286   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3287   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3288   return HelperFn;
3289 }
3290 
3291 llvm::Constant *
3292 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3293                                             const ObjCPropertyImplDecl *PID) {
3294   if (!getLangOpts().CPlusPlus ||
3295       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3296     return nullptr;
3297   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3298   QualType Ty = PD->getType();
3299   if (!Ty->isRecordType())
3300     return nullptr;
3301   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3302     return nullptr;
3303   llvm::Constant *HelperFn = nullptr;
3304 
3305   if (hasTrivialGetExpr(PID))
3306     return nullptr;
3307   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3308   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3309     return HelperFn;
3310 
3311 
3312   ASTContext &C = getContext();
3313   IdentifierInfo *II
3314   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3315   FunctionDecl *FD = FunctionDecl::Create(C,
3316                                           C.getTranslationUnitDecl(),
3317                                           SourceLocation(),
3318                                           SourceLocation(), II, C.VoidTy,
3319                                           nullptr, SC_Static,
3320                                           false,
3321                                           false);
3322 
3323   QualType DestTy = C.getPointerType(Ty);
3324   QualType SrcTy = Ty;
3325   SrcTy.addConst();
3326   SrcTy = C.getPointerType(SrcTy);
3327 
3328   FunctionArgList args;
3329   ImplicitParamDecl DstDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr,
3330                             DestTy, ImplicitParamDecl::Other);
3331   args.push_back(&DstDecl);
3332   ImplicitParamDecl SrcDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr,
3333                             SrcTy, ImplicitParamDecl::Other);
3334   args.push_back(&SrcDecl);
3335 
3336   const CGFunctionInfo &FI =
3337     CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args);
3338 
3339   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3340 
3341   llvm::Function *Fn =
3342   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3343                          "__copy_helper_atomic_property_", &CGM.getModule());
3344 
3345   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3346 
3347   StartFunction(FD, C.VoidTy, Fn, FI, args);
3348 
3349   DeclRefExpr SrcExpr(&SrcDecl, false, SrcTy,
3350                       VK_RValue, SourceLocation());
3351 
3352   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3353                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3354 
3355   CXXConstructExpr *CXXConstExpr =
3356     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3357 
3358   SmallVector<Expr*, 4> ConstructorArgs;
3359   ConstructorArgs.push_back(&SRC);
3360   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3361                          CXXConstExpr->arg_end());
3362 
3363   CXXConstructExpr *TheCXXConstructExpr =
3364     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3365                              CXXConstExpr->getConstructor(),
3366                              CXXConstExpr->isElidable(),
3367                              ConstructorArgs,
3368                              CXXConstExpr->hadMultipleCandidates(),
3369                              CXXConstExpr->isListInitialization(),
3370                              CXXConstExpr->isStdInitListInitialization(),
3371                              CXXConstExpr->requiresZeroInitialization(),
3372                              CXXConstExpr->getConstructionKind(),
3373                              SourceRange());
3374 
3375   DeclRefExpr DstExpr(&DstDecl, false, DestTy,
3376                       VK_RValue, SourceLocation());
3377 
3378   RValue DV = EmitAnyExpr(&DstExpr);
3379   CharUnits Alignment
3380     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3381   EmitAggExpr(TheCXXConstructExpr,
3382               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3383                                     Qualifiers(),
3384                                     AggValueSlot::IsDestructed,
3385                                     AggValueSlot::DoesNotNeedGCBarriers,
3386                                     AggValueSlot::IsNotAliased,
3387                                     AggValueSlot::DoesNotOverlap));
3388 
3389   FinishFunction();
3390   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3391   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3392   return HelperFn;
3393 }
3394 
3395 llvm::Value *
3396 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3397   // Get selectors for retain/autorelease.
3398   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3399   Selector CopySelector =
3400       getContext().Selectors.getNullarySelector(CopyID);
3401   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3402   Selector AutoreleaseSelector =
3403       getContext().Selectors.getNullarySelector(AutoreleaseID);
3404 
3405   // Emit calls to retain/autorelease.
3406   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3407   llvm::Value *Val = Block;
3408   RValue Result;
3409   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3410                                        Ty, CopySelector,
3411                                        Val, CallArgList(), nullptr, nullptr);
3412   Val = Result.getScalarVal();
3413   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3414                                        Ty, AutoreleaseSelector,
3415                                        Val, CallArgList(), nullptr, nullptr);
3416   Val = Result.getScalarVal();
3417   return Val;
3418 }
3419 
3420 llvm::Value *
3421 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) {
3422   assert(Args.size() == 3 && "Expected 3 argument here!");
3423 
3424   if (!CGM.IsOSVersionAtLeastFn) {
3425     llvm::FunctionType *FTy =
3426         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3427     CGM.IsOSVersionAtLeastFn =
3428         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3429   }
3430 
3431   llvm::Value *CallRes =
3432       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3433 
3434   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3435 }
3436 
3437 void CodeGenModule::emitAtAvailableLinkGuard() {
3438   if (!IsOSVersionAtLeastFn)
3439     return;
3440   // @available requires CoreFoundation only on Darwin.
3441   if (!Target.getTriple().isOSDarwin())
3442     return;
3443   // Add -framework CoreFoundation to the linker commands. We still want to
3444   // emit the core foundation reference down below because otherwise if
3445   // CoreFoundation is not used in the code, the linker won't link the
3446   // framework.
3447   auto &Context = getLLVMContext();
3448   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3449                              llvm::MDString::get(Context, "CoreFoundation")};
3450   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3451   // Emit a reference to a symbol from CoreFoundation to ensure that
3452   // CoreFoundation is linked into the final binary.
3453   llvm::FunctionType *FTy =
3454       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3455   llvm::Constant *CFFunc =
3456       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3457 
3458   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3459   llvm::Function *CFLinkCheckFunc = cast<llvm::Function>(CreateBuiltinFunction(
3460       CheckFTy, "__clang_at_available_requires_core_foundation_framework"));
3461   CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3462   CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3463   CodeGenFunction CGF(*this);
3464   CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3465   CGF.EmitNounwindRuntimeCall(CFFunc, llvm::Constant::getNullValue(VoidPtrTy));
3466   CGF.Builder.CreateUnreachable();
3467   addCompilerUsedGlobal(CFLinkCheckFunc);
3468 }
3469 
3470 CGObjCRuntime::~CGObjCRuntime() {}
3471