1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Objective-C code as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/StmtObjC.h" 23 #include "clang/Basic/Diagnostic.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 35 QualType ET, 36 RValue Result); 37 38 /// Given the address of a variable of pointer type, find the correct 39 /// null to store into it. 40 static llvm::Constant *getNullForVariable(Address addr) { 41 llvm::Type *type = addr.getElementType(); 42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 43 } 44 45 /// Emits an instance of NSConstantString representing the object. 46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 47 { 48 llvm::Constant *C = 49 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 50 // FIXME: This bitcast should just be made an invariant on the Runtime. 51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 52 } 53 54 /// EmitObjCBoxedExpr - This routine generates code to call 55 /// the appropriate expression boxing method. This will either be 56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 57 /// or [NSValue valueWithBytes:objCType:]. 58 /// 59 llvm::Value * 60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 61 // Generate the correct selector for this literal's concrete type. 62 // Get the method. 63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 64 const Expr *SubExpr = E->getSubExpr(); 65 66 if (E->isExpressibleAsConstantInitializer()) { 67 ConstantEmitter ConstEmitter(CGM); 68 return ConstEmitter.tryEmitAbstract(E, E->getType()); 69 } 70 71 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 72 Selector Sel = BoxingMethod->getSelector(); 73 74 // Generate a reference to the class pointer, which will be the receiver. 75 // Assumes that the method was introduced in the class that should be 76 // messaged (avoids pulling it out of the result type). 77 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 78 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 79 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 80 81 CallArgList Args; 82 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 83 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 84 85 // ObjCBoxedExpr supports boxing of structs and unions 86 // via [NSValue valueWithBytes:objCType:] 87 const QualType ValueType(SubExpr->getType().getCanonicalType()); 88 if (ValueType->isObjCBoxableRecordType()) { 89 // Emit CodeGen for first parameter 90 // and cast value to correct type 91 Address Temporary = CreateMemTemp(SubExpr->getType()); 92 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 93 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 94 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 95 96 // Create char array to store type encoding 97 std::string Str; 98 getContext().getObjCEncodingForType(ValueType, Str); 99 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 100 101 // Cast type encoding to correct type 102 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 103 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 104 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 105 106 Args.add(RValue::get(Cast), EncodingQT); 107 } else { 108 Args.add(EmitAnyExpr(SubExpr), ArgQT); 109 } 110 111 RValue result = Runtime.GenerateMessageSend( 112 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 113 Args, ClassDecl, BoxingMethod); 114 return Builder.CreateBitCast(result.getScalarVal(), 115 ConvertType(E->getType())); 116 } 117 118 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 119 const ObjCMethodDecl *MethodWithObjects) { 120 ASTContext &Context = CGM.getContext(); 121 const ObjCDictionaryLiteral *DLE = nullptr; 122 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 123 if (!ALE) 124 DLE = cast<ObjCDictionaryLiteral>(E); 125 126 // Optimize empty collections by referencing constants, when available. 127 uint64_t NumElements = 128 ALE ? ALE->getNumElements() : DLE->getNumElements(); 129 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 130 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 131 QualType IdTy(CGM.getContext().getObjCIdType()); 132 llvm::Constant *Constant = 133 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 134 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 135 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); 136 cast<llvm::LoadInst>(Ptr)->setMetadata( 137 CGM.getModule().getMDKindID("invariant.load"), 138 llvm::MDNode::get(getLLVMContext(), None)); 139 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 140 } 141 142 // Compute the type of the array we're initializing. 143 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 144 NumElements); 145 QualType ElementType = Context.getObjCIdType().withConst(); 146 QualType ElementArrayType 147 = Context.getConstantArrayType(ElementType, APNumElements, nullptr, 148 ArrayType::Normal, /*IndexTypeQuals=*/0); 149 150 // Allocate the temporary array(s). 151 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 152 Address Keys = Address::invalid(); 153 if (DLE) 154 Keys = CreateMemTemp(ElementArrayType, "keys"); 155 156 // In ARC, we may need to do extra work to keep all the keys and 157 // values alive until after the call. 158 SmallVector<llvm::Value *, 16> NeededObjects; 159 bool TrackNeededObjects = 160 (getLangOpts().ObjCAutoRefCount && 161 CGM.getCodeGenOpts().OptimizationLevel != 0); 162 163 // Perform the actual initialialization of the array(s). 164 for (uint64_t i = 0; i < NumElements; i++) { 165 if (ALE) { 166 // Emit the element and store it to the appropriate array slot. 167 const Expr *Rhs = ALE->getElement(i); 168 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 169 ElementType, AlignmentSource::Decl); 170 171 llvm::Value *value = EmitScalarExpr(Rhs); 172 EmitStoreThroughLValue(RValue::get(value), LV, true); 173 if (TrackNeededObjects) { 174 NeededObjects.push_back(value); 175 } 176 } else { 177 // Emit the key and store it to the appropriate array slot. 178 const Expr *Key = DLE->getKeyValueElement(i).Key; 179 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i), 180 ElementType, AlignmentSource::Decl); 181 llvm::Value *keyValue = EmitScalarExpr(Key); 182 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 183 184 // Emit the value and store it to the appropriate array slot. 185 const Expr *Value = DLE->getKeyValueElement(i).Value; 186 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 187 ElementType, AlignmentSource::Decl); 188 llvm::Value *valueValue = EmitScalarExpr(Value); 189 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 190 if (TrackNeededObjects) { 191 NeededObjects.push_back(keyValue); 192 NeededObjects.push_back(valueValue); 193 } 194 } 195 } 196 197 // Generate the argument list. 198 CallArgList Args; 199 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 200 const ParmVarDecl *argDecl = *PI++; 201 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 202 Args.add(RValue::get(Objects.getPointer()), ArgQT); 203 if (DLE) { 204 argDecl = *PI++; 205 ArgQT = argDecl->getType().getUnqualifiedType(); 206 Args.add(RValue::get(Keys.getPointer()), ArgQT); 207 } 208 argDecl = *PI; 209 ArgQT = argDecl->getType().getUnqualifiedType(); 210 llvm::Value *Count = 211 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 212 Args.add(RValue::get(Count), ArgQT); 213 214 // Generate a reference to the class pointer, which will be the receiver. 215 Selector Sel = MethodWithObjects->getSelector(); 216 QualType ResultType = E->getType(); 217 const ObjCObjectPointerType *InterfacePointerType 218 = ResultType->getAsObjCInterfacePointerType(); 219 ObjCInterfaceDecl *Class 220 = InterfacePointerType->getObjectType()->getInterface(); 221 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 222 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 223 224 // Generate the message send. 225 RValue result = Runtime.GenerateMessageSend( 226 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 227 Receiver, Args, Class, MethodWithObjects); 228 229 // The above message send needs these objects, but in ARC they are 230 // passed in a buffer that is essentially __unsafe_unretained. 231 // Therefore we must prevent the optimizer from releasing them until 232 // after the call. 233 if (TrackNeededObjects) { 234 EmitARCIntrinsicUse(NeededObjects); 235 } 236 237 return Builder.CreateBitCast(result.getScalarVal(), 238 ConvertType(E->getType())); 239 } 240 241 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 242 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 243 } 244 245 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 246 const ObjCDictionaryLiteral *E) { 247 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 248 } 249 250 /// Emit a selector. 251 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 252 // Untyped selector. 253 // Note that this implementation allows for non-constant strings to be passed 254 // as arguments to @selector(). Currently, the only thing preventing this 255 // behaviour is the type checking in the front end. 256 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 257 } 258 259 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 260 // FIXME: This should pass the Decl not the name. 261 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 262 } 263 264 /// Adjust the type of an Objective-C object that doesn't match up due 265 /// to type erasure at various points, e.g., related result types or the use 266 /// of parameterized classes. 267 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 268 RValue Result) { 269 if (!ExpT->isObjCRetainableType()) 270 return Result; 271 272 // If the converted types are the same, we're done. 273 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 274 if (ExpLLVMTy == Result.getScalarVal()->getType()) 275 return Result; 276 277 // We have applied a substitution. Cast the rvalue appropriately. 278 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 279 ExpLLVMTy)); 280 } 281 282 /// Decide whether to extend the lifetime of the receiver of a 283 /// returns-inner-pointer message. 284 static bool 285 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 286 switch (message->getReceiverKind()) { 287 288 // For a normal instance message, we should extend unless the 289 // receiver is loaded from a variable with precise lifetime. 290 case ObjCMessageExpr::Instance: { 291 const Expr *receiver = message->getInstanceReceiver(); 292 293 // Look through OVEs. 294 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 295 if (opaque->getSourceExpr()) 296 receiver = opaque->getSourceExpr()->IgnoreParens(); 297 } 298 299 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 300 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 301 receiver = ice->getSubExpr()->IgnoreParens(); 302 303 // Look through OVEs. 304 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 305 if (opaque->getSourceExpr()) 306 receiver = opaque->getSourceExpr()->IgnoreParens(); 307 } 308 309 // Only __strong variables. 310 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 311 return true; 312 313 // All ivars and fields have precise lifetime. 314 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 315 return false; 316 317 // Otherwise, check for variables. 318 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 319 if (!declRef) return true; 320 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 321 if (!var) return true; 322 323 // All variables have precise lifetime except local variables with 324 // automatic storage duration that aren't specially marked. 325 return (var->hasLocalStorage() && 326 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 327 } 328 329 case ObjCMessageExpr::Class: 330 case ObjCMessageExpr::SuperClass: 331 // It's never necessary for class objects. 332 return false; 333 334 case ObjCMessageExpr::SuperInstance: 335 // We generally assume that 'self' lives throughout a method call. 336 return false; 337 } 338 339 llvm_unreachable("invalid receiver kind"); 340 } 341 342 /// Given an expression of ObjC pointer type, check whether it was 343 /// immediately loaded from an ARC __weak l-value. 344 static const Expr *findWeakLValue(const Expr *E) { 345 assert(E->getType()->isObjCRetainableType()); 346 E = E->IgnoreParens(); 347 if (auto CE = dyn_cast<CastExpr>(E)) { 348 if (CE->getCastKind() == CK_LValueToRValue) { 349 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 350 return CE->getSubExpr(); 351 } 352 } 353 354 return nullptr; 355 } 356 357 /// The ObjC runtime may provide entrypoints that are likely to be faster 358 /// than an ordinary message send of the appropriate selector. 359 /// 360 /// The entrypoints are guaranteed to be equivalent to just sending the 361 /// corresponding message. If the entrypoint is implemented naively as just a 362 /// message send, using it is a trade-off: it sacrifices a few cycles of 363 /// overhead to save a small amount of code. However, it's possible for 364 /// runtimes to detect and special-case classes that use "standard" 365 /// behavior; if that's dynamically a large proportion of all objects, using 366 /// the entrypoint will also be faster than using a message send. 367 /// 368 /// If the runtime does support a required entrypoint, then this method will 369 /// generate a call and return the resulting value. Otherwise it will return 370 /// None and the caller can generate a msgSend instead. 371 static Optional<llvm::Value *> 372 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType, 373 llvm::Value *Receiver, 374 const CallArgList& Args, Selector Sel, 375 const ObjCMethodDecl *method, 376 bool isClassMessage) { 377 auto &CGM = CGF.CGM; 378 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) 379 return None; 380 381 auto &Runtime = CGM.getLangOpts().ObjCRuntime; 382 switch (Sel.getMethodFamily()) { 383 case OMF_alloc: 384 if (isClassMessage && 385 Runtime.shouldUseRuntimeFunctionsForAlloc() && 386 ResultType->isObjCObjectPointerType()) { 387 // [Foo alloc] -> objc_alloc(Foo) or 388 // [self alloc] -> objc_alloc(self) 389 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc") 390 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType)); 391 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or 392 // [self allocWithZone:nil] -> objc_allocWithZone(self) 393 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && 394 Args.size() == 1 && Args.front().getType()->isPointerType() && 395 Sel.getNameForSlot(0) == "allocWithZone") { 396 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); 397 if (isa<llvm::ConstantPointerNull>(arg)) 398 return CGF.EmitObjCAllocWithZone(Receiver, 399 CGF.ConvertType(ResultType)); 400 return None; 401 } 402 } 403 break; 404 405 case OMF_autorelease: 406 if (ResultType->isObjCObjectPointerType() && 407 CGM.getLangOpts().getGC() == LangOptions::NonGC && 408 Runtime.shouldUseARCFunctionsForRetainRelease()) 409 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType)); 410 break; 411 412 case OMF_retain: 413 if (ResultType->isObjCObjectPointerType() && 414 CGM.getLangOpts().getGC() == LangOptions::NonGC && 415 Runtime.shouldUseARCFunctionsForRetainRelease()) 416 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType)); 417 break; 418 419 case OMF_release: 420 if (ResultType->isVoidType() && 421 CGM.getLangOpts().getGC() == LangOptions::NonGC && 422 Runtime.shouldUseARCFunctionsForRetainRelease()) { 423 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime); 424 return nullptr; 425 } 426 break; 427 428 default: 429 break; 430 } 431 return None; 432 } 433 434 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend( 435 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, 436 Selector Sel, llvm::Value *Receiver, const CallArgList &Args, 437 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method, 438 bool isClassMessage) { 439 if (Optional<llvm::Value *> SpecializedResult = 440 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args, 441 Sel, Method, isClassMessage)) { 442 return RValue::get(SpecializedResult.getValue()); 443 } 444 return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID, 445 Method); 446 } 447 448 static void AppendFirstImpliedRuntimeProtocols( 449 const ObjCProtocolDecl *PD, 450 llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) { 451 if (!PD->isNonRuntimeProtocol()) { 452 const auto *Can = PD->getCanonicalDecl(); 453 PDs.insert(Can); 454 return; 455 } 456 457 for (const auto *ParentPD : PD->protocols()) 458 AppendFirstImpliedRuntimeProtocols(ParentPD, PDs); 459 } 460 461 std::vector<const ObjCProtocolDecl *> 462 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin, 463 ObjCProtocolDecl::protocol_iterator end) { 464 std::vector<const ObjCProtocolDecl *> RuntimePds; 465 llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs; 466 467 for (; begin != end; ++begin) { 468 const auto *It = *begin; 469 const auto *Can = It->getCanonicalDecl(); 470 if (Can->isNonRuntimeProtocol()) 471 NonRuntimePDs.insert(Can); 472 else 473 RuntimePds.push_back(Can); 474 } 475 476 // If there are no non-runtime protocols then we can just stop now. 477 if (NonRuntimePDs.empty()) 478 return RuntimePds; 479 480 // Else we have to search through the non-runtime protocol's inheritancy 481 // hierarchy DAG stopping whenever a branch either finds a runtime protocol or 482 // a non-runtime protocol without any parents. These are the "first-implied" 483 // protocols from a non-runtime protocol. 484 llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos; 485 for (const auto *PD : NonRuntimePDs) 486 AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos); 487 488 // Walk the Runtime list to get all protocols implied via the inclusion of 489 // this protocol, e.g. all protocols it inherits from including itself. 490 llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols; 491 for (const auto *PD : RuntimePds) { 492 const auto *Can = PD->getCanonicalDecl(); 493 AllImpliedProtocols.insert(Can); 494 Can->getImpliedProtocols(AllImpliedProtocols); 495 } 496 497 // Similar to above, walk the list of first-implied protocols to find the set 498 // all the protocols implied excluding the listed protocols themselves since 499 // they are not yet a part of the `RuntimePds` list. 500 for (const auto *PD : FirstImpliedProtos) { 501 PD->getImpliedProtocols(AllImpliedProtocols); 502 } 503 504 // From the first-implied list we have to finish building the final protocol 505 // list. If a protocol in the first-implied list was already implied via some 506 // inheritance path through some other protocols then it would be redundant to 507 // add it here and so we skip over it. 508 for (const auto *PD : FirstImpliedProtos) { 509 if (!AllImpliedProtocols.contains(PD)) { 510 RuntimePds.push_back(PD); 511 } 512 } 513 514 return RuntimePds; 515 } 516 517 /// Instead of '[[MyClass alloc] init]', try to generate 518 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the 519 /// caller side, as well as the optimized objc_alloc. 520 static Optional<llvm::Value *> 521 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) { 522 auto &Runtime = CGF.getLangOpts().ObjCRuntime; 523 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit()) 524 return None; 525 526 // Match the exact pattern '[[MyClass alloc] init]'. 527 Selector Sel = OME->getSelector(); 528 if (OME->getReceiverKind() != ObjCMessageExpr::Instance || 529 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() || 530 Sel.getNameForSlot(0) != "init") 531 return None; 532 533 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' 534 // with 'cls' a Class. 535 auto *SubOME = 536 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts()); 537 if (!SubOME) 538 return None; 539 Selector SubSel = SubOME->getSelector(); 540 541 if (!SubOME->getType()->isObjCObjectPointerType() || 542 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc") 543 return None; 544 545 llvm::Value *Receiver = nullptr; 546 switch (SubOME->getReceiverKind()) { 547 case ObjCMessageExpr::Instance: 548 if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType()) 549 return None; 550 Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver()); 551 break; 552 553 case ObjCMessageExpr::Class: { 554 QualType ReceiverType = SubOME->getClassReceiver(); 555 const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>(); 556 const ObjCInterfaceDecl *ID = ObjTy->getInterface(); 557 assert(ID && "null interface should be impossible here"); 558 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID); 559 break; 560 } 561 case ObjCMessageExpr::SuperInstance: 562 case ObjCMessageExpr::SuperClass: 563 return None; 564 } 565 566 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType())); 567 } 568 569 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 570 ReturnValueSlot Return) { 571 // Only the lookup mechanism and first two arguments of the method 572 // implementation vary between runtimes. We can get the receiver and 573 // arguments in generic code. 574 575 bool isDelegateInit = E->isDelegateInitCall(); 576 577 const ObjCMethodDecl *method = E->getMethodDecl(); 578 579 // If the method is -retain, and the receiver's being loaded from 580 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 581 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 582 method->getMethodFamily() == OMF_retain) { 583 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 584 LValue lvalue = EmitLValue(lvalueExpr); 585 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this)); 586 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 587 } 588 } 589 590 if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E)) 591 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val)); 592 593 // We don't retain the receiver in delegate init calls, and this is 594 // safe because the receiver value is always loaded from 'self', 595 // which we zero out. We don't want to Block_copy block receivers, 596 // though. 597 bool retainSelf = 598 (!isDelegateInit && 599 CGM.getLangOpts().ObjCAutoRefCount && 600 method && 601 method->hasAttr<NSConsumesSelfAttr>()); 602 603 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 604 bool isSuperMessage = false; 605 bool isClassMessage = false; 606 ObjCInterfaceDecl *OID = nullptr; 607 // Find the receiver 608 QualType ReceiverType; 609 llvm::Value *Receiver = nullptr; 610 switch (E->getReceiverKind()) { 611 case ObjCMessageExpr::Instance: 612 ReceiverType = E->getInstanceReceiver()->getType(); 613 isClassMessage = ReceiverType->isObjCClassType(); 614 if (retainSelf) { 615 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 616 E->getInstanceReceiver()); 617 Receiver = ter.getPointer(); 618 if (ter.getInt()) retainSelf = false; 619 } else 620 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 621 break; 622 623 case ObjCMessageExpr::Class: { 624 ReceiverType = E->getClassReceiver(); 625 OID = ReceiverType->castAs<ObjCObjectType>()->getInterface(); 626 assert(OID && "Invalid Objective-C class message send"); 627 Receiver = Runtime.GetClass(*this, OID); 628 isClassMessage = true; 629 break; 630 } 631 632 case ObjCMessageExpr::SuperInstance: 633 ReceiverType = E->getSuperType(); 634 Receiver = LoadObjCSelf(); 635 isSuperMessage = true; 636 break; 637 638 case ObjCMessageExpr::SuperClass: 639 ReceiverType = E->getSuperType(); 640 Receiver = LoadObjCSelf(); 641 isSuperMessage = true; 642 isClassMessage = true; 643 break; 644 } 645 646 if (retainSelf) 647 Receiver = EmitARCRetainNonBlock(Receiver); 648 649 // In ARC, we sometimes want to "extend the lifetime" 650 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 651 // messages. 652 if (getLangOpts().ObjCAutoRefCount && method && 653 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 654 shouldExtendReceiverForInnerPointerMessage(E)) 655 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 656 657 QualType ResultType = method ? method->getReturnType() : E->getType(); 658 659 CallArgList Args; 660 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 661 662 // For delegate init calls in ARC, do an unsafe store of null into 663 // self. This represents the call taking direct ownership of that 664 // value. We have to do this after emitting the other call 665 // arguments because they might also reference self, but we don't 666 // have to worry about any of them modifying self because that would 667 // be an undefined read and write of an object in unordered 668 // expressions. 669 if (isDelegateInit) { 670 assert(getLangOpts().ObjCAutoRefCount && 671 "delegate init calls should only be marked in ARC"); 672 673 // Do an unsafe store of null into self. 674 Address selfAddr = 675 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 676 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 677 } 678 679 RValue result; 680 if (isSuperMessage) { 681 // super is only valid in an Objective-C method 682 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 683 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 684 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 685 E->getSelector(), 686 OMD->getClassInterface(), 687 isCategoryImpl, 688 Receiver, 689 isClassMessage, 690 Args, 691 method); 692 } else { 693 // Call runtime methods directly if we can. 694 result = Runtime.GeneratePossiblySpecializedMessageSend( 695 *this, Return, ResultType, E->getSelector(), Receiver, Args, OID, 696 method, isClassMessage); 697 } 698 699 // For delegate init calls in ARC, implicitly store the result of 700 // the call back into self. This takes ownership of the value. 701 if (isDelegateInit) { 702 Address selfAddr = 703 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 704 llvm::Value *newSelf = result.getScalarVal(); 705 706 // The delegate return type isn't necessarily a matching type; in 707 // fact, it's quite likely to be 'id'. 708 llvm::Type *selfTy = selfAddr.getElementType(); 709 newSelf = Builder.CreateBitCast(newSelf, selfTy); 710 711 Builder.CreateStore(newSelf, selfAddr); 712 } 713 714 return AdjustObjCObjectType(*this, E->getType(), result); 715 } 716 717 namespace { 718 struct FinishARCDealloc final : EHScopeStack::Cleanup { 719 void Emit(CodeGenFunction &CGF, Flags flags) override { 720 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 721 722 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 723 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 724 if (!iface->getSuperClass()) return; 725 726 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 727 728 // Call [super dealloc] if we have a superclass. 729 llvm::Value *self = CGF.LoadObjCSelf(); 730 731 CallArgList args; 732 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 733 CGF.getContext().VoidTy, 734 method->getSelector(), 735 iface, 736 isCategory, 737 self, 738 /*is class msg*/ false, 739 args, 740 method); 741 } 742 }; 743 } 744 745 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 746 /// the LLVM function and sets the other context used by 747 /// CodeGenFunction. 748 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 749 const ObjCContainerDecl *CD) { 750 SourceLocation StartLoc = OMD->getBeginLoc(); 751 FunctionArgList args; 752 // Check if we should generate debug info for this method. 753 if (OMD->hasAttr<NoDebugAttr>()) 754 DebugInfo = nullptr; // disable debug info indefinitely for this function 755 756 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 757 758 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 759 if (OMD->isDirectMethod()) { 760 Fn->setVisibility(llvm::Function::HiddenVisibility); 761 CGM.SetLLVMFunctionAttributes(OMD, FI, Fn); 762 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn); 763 } else { 764 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 765 } 766 767 args.push_back(OMD->getSelfDecl()); 768 args.push_back(OMD->getCmdDecl()); 769 770 args.append(OMD->param_begin(), OMD->param_end()); 771 772 CurGD = OMD; 773 CurEHLocation = OMD->getEndLoc(); 774 775 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 776 OMD->getLocation(), StartLoc); 777 778 if (OMD->isDirectMethod()) { 779 // This function is a direct call, it has to implement a nil check 780 // on entry. 781 // 782 // TODO: possibly have several entry points to elide the check 783 CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD); 784 } 785 786 // In ARC, certain methods get an extra cleanup. 787 if (CGM.getLangOpts().ObjCAutoRefCount && 788 OMD->isInstanceMethod() && 789 OMD->getSelector().isUnarySelector()) { 790 const IdentifierInfo *ident = 791 OMD->getSelector().getIdentifierInfoForSlot(0); 792 if (ident->isStr("dealloc")) 793 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 794 } 795 } 796 797 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 798 LValue lvalue, QualType type); 799 800 /// Generate an Objective-C method. An Objective-C method is a C function with 801 /// its pointer, name, and types registered in the class structure. 802 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 803 StartObjCMethod(OMD, OMD->getClassInterface()); 804 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 805 assert(isa<CompoundStmt>(OMD->getBody())); 806 incrementProfileCounter(OMD->getBody()); 807 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 808 FinishFunction(OMD->getBodyRBrace()); 809 } 810 811 /// emitStructGetterCall - Call the runtime function to load a property 812 /// into the return value slot. 813 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 814 bool isAtomic, bool hasStrong) { 815 ASTContext &Context = CGF.getContext(); 816 817 Address src = 818 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 819 .getAddress(CGF); 820 821 // objc_copyStruct (ReturnValue, &structIvar, 822 // sizeof (Type of Ivar), isAtomic, false); 823 CallArgList args; 824 825 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 826 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 827 828 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 829 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 830 831 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 832 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 833 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 834 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 835 836 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 837 CGCallee callee = CGCallee::forDirect(fn); 838 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 839 callee, ReturnValueSlot(), args); 840 } 841 842 /// Determine whether the given architecture supports unaligned atomic 843 /// accesses. They don't have to be fast, just faster than a function 844 /// call and a mutex. 845 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 846 // FIXME: Allow unaligned atomic load/store on x86. (It is not 847 // currently supported by the backend.) 848 return 0; 849 } 850 851 /// Return the maximum size that permits atomic accesses for the given 852 /// architecture. 853 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 854 llvm::Triple::ArchType arch) { 855 // ARM has 8-byte atomic accesses, but it's not clear whether we 856 // want to rely on them here. 857 858 // In the default case, just assume that any size up to a pointer is 859 // fine given adequate alignment. 860 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 861 } 862 863 namespace { 864 class PropertyImplStrategy { 865 public: 866 enum StrategyKind { 867 /// The 'native' strategy is to use the architecture's provided 868 /// reads and writes. 869 Native, 870 871 /// Use objc_setProperty and objc_getProperty. 872 GetSetProperty, 873 874 /// Use objc_setProperty for the setter, but use expression 875 /// evaluation for the getter. 876 SetPropertyAndExpressionGet, 877 878 /// Use objc_copyStruct. 879 CopyStruct, 880 881 /// The 'expression' strategy is to emit normal assignment or 882 /// lvalue-to-rvalue expressions. 883 Expression 884 }; 885 886 StrategyKind getKind() const { return StrategyKind(Kind); } 887 888 bool hasStrongMember() const { return HasStrong; } 889 bool isAtomic() const { return IsAtomic; } 890 bool isCopy() const { return IsCopy; } 891 892 CharUnits getIvarSize() const { return IvarSize; } 893 CharUnits getIvarAlignment() const { return IvarAlignment; } 894 895 PropertyImplStrategy(CodeGenModule &CGM, 896 const ObjCPropertyImplDecl *propImpl); 897 898 private: 899 unsigned Kind : 8; 900 unsigned IsAtomic : 1; 901 unsigned IsCopy : 1; 902 unsigned HasStrong : 1; 903 904 CharUnits IvarSize; 905 CharUnits IvarAlignment; 906 }; 907 } 908 909 /// Pick an implementation strategy for the given property synthesis. 910 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 911 const ObjCPropertyImplDecl *propImpl) { 912 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 913 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 914 915 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 916 IsAtomic = prop->isAtomic(); 917 HasStrong = false; // doesn't matter here. 918 919 // Evaluate the ivar's size and alignment. 920 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 921 QualType ivarType = ivar->getType(); 922 std::tie(IvarSize, IvarAlignment) = 923 CGM.getContext().getTypeInfoInChars(ivarType); 924 925 // If we have a copy property, we always have to use getProperty/setProperty. 926 // TODO: we could actually use setProperty and an expression for non-atomics. 927 if (IsCopy) { 928 Kind = GetSetProperty; 929 return; 930 } 931 932 // Handle retain. 933 if (setterKind == ObjCPropertyDecl::Retain) { 934 // In GC-only, there's nothing special that needs to be done. 935 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 936 // fallthrough 937 938 // In ARC, if the property is non-atomic, use expression emission, 939 // which translates to objc_storeStrong. This isn't required, but 940 // it's slightly nicer. 941 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 942 // Using standard expression emission for the setter is only 943 // acceptable if the ivar is __strong, which won't be true if 944 // the property is annotated with __attribute__((NSObject)). 945 // TODO: falling all the way back to objc_setProperty here is 946 // just laziness, though; we could still use objc_storeStrong 947 // if we hacked it right. 948 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 949 Kind = Expression; 950 else 951 Kind = SetPropertyAndExpressionGet; 952 return; 953 954 // Otherwise, we need to at least use setProperty. However, if 955 // the property isn't atomic, we can use normal expression 956 // emission for the getter. 957 } else if (!IsAtomic) { 958 Kind = SetPropertyAndExpressionGet; 959 return; 960 961 // Otherwise, we have to use both setProperty and getProperty. 962 } else { 963 Kind = GetSetProperty; 964 return; 965 } 966 } 967 968 // If we're not atomic, just use expression accesses. 969 if (!IsAtomic) { 970 Kind = Expression; 971 return; 972 } 973 974 // Properties on bitfield ivars need to be emitted using expression 975 // accesses even if they're nominally atomic. 976 if (ivar->isBitField()) { 977 Kind = Expression; 978 return; 979 } 980 981 // GC-qualified or ARC-qualified ivars need to be emitted as 982 // expressions. This actually works out to being atomic anyway, 983 // except for ARC __strong, but that should trigger the above code. 984 if (ivarType.hasNonTrivialObjCLifetime() || 985 (CGM.getLangOpts().getGC() && 986 CGM.getContext().getObjCGCAttrKind(ivarType))) { 987 Kind = Expression; 988 return; 989 } 990 991 // Compute whether the ivar has strong members. 992 if (CGM.getLangOpts().getGC()) 993 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 994 HasStrong = recordType->getDecl()->hasObjectMember(); 995 996 // We can never access structs with object members with a native 997 // access, because we need to use write barriers. This is what 998 // objc_copyStruct is for. 999 if (HasStrong) { 1000 Kind = CopyStruct; 1001 return; 1002 } 1003 1004 // Otherwise, this is target-dependent and based on the size and 1005 // alignment of the ivar. 1006 1007 // If the size of the ivar is not a power of two, give up. We don't 1008 // want to get into the business of doing compare-and-swaps. 1009 if (!IvarSize.isPowerOfTwo()) { 1010 Kind = CopyStruct; 1011 return; 1012 } 1013 1014 llvm::Triple::ArchType arch = 1015 CGM.getTarget().getTriple().getArch(); 1016 1017 // Most architectures require memory to fit within a single cache 1018 // line, so the alignment has to be at least the size of the access. 1019 // Otherwise we have to grab a lock. 1020 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 1021 Kind = CopyStruct; 1022 return; 1023 } 1024 1025 // If the ivar's size exceeds the architecture's maximum atomic 1026 // access size, we have to use CopyStruct. 1027 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 1028 Kind = CopyStruct; 1029 return; 1030 } 1031 1032 // Otherwise, we can use native loads and stores. 1033 Kind = Native; 1034 } 1035 1036 /// Generate an Objective-C property getter function. 1037 /// 1038 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1039 /// is illegal within a category. 1040 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 1041 const ObjCPropertyImplDecl *PID) { 1042 llvm::Constant *AtomicHelperFn = 1043 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 1044 ObjCMethodDecl *OMD = PID->getGetterMethodDecl(); 1045 assert(OMD && "Invalid call to generate getter (empty method)"); 1046 StartObjCMethod(OMD, IMP->getClassInterface()); 1047 1048 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 1049 1050 FinishFunction(OMD->getEndLoc()); 1051 } 1052 1053 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 1054 const Expr *getter = propImpl->getGetterCXXConstructor(); 1055 if (!getter) return true; 1056 1057 // Sema only makes only of these when the ivar has a C++ class type, 1058 // so the form is pretty constrained. 1059 1060 // If the property has a reference type, we might just be binding a 1061 // reference, in which case the result will be a gl-value. We should 1062 // treat this as a non-trivial operation. 1063 if (getter->isGLValue()) 1064 return false; 1065 1066 // If we selected a trivial copy-constructor, we're okay. 1067 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 1068 return (construct->getConstructor()->isTrivial()); 1069 1070 // The constructor might require cleanups (in which case it's never 1071 // trivial). 1072 assert(isa<ExprWithCleanups>(getter)); 1073 return false; 1074 } 1075 1076 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 1077 /// copy the ivar into the resturn slot. 1078 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 1079 llvm::Value *returnAddr, 1080 ObjCIvarDecl *ivar, 1081 llvm::Constant *AtomicHelperFn) { 1082 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 1083 // AtomicHelperFn); 1084 CallArgList args; 1085 1086 // The 1st argument is the return Slot. 1087 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 1088 1089 // The 2nd argument is the address of the ivar. 1090 llvm::Value *ivarAddr = 1091 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1092 .getPointer(CGF); 1093 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1094 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1095 1096 // Third argument is the helper function. 1097 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1098 1099 llvm::FunctionCallee copyCppAtomicObjectFn = 1100 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 1101 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 1102 CGF.EmitCall( 1103 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1104 callee, ReturnValueSlot(), args); 1105 } 1106 1107 void 1108 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1109 const ObjCPropertyImplDecl *propImpl, 1110 const ObjCMethodDecl *GetterMethodDecl, 1111 llvm::Constant *AtomicHelperFn) { 1112 // If there's a non-trivial 'get' expression, we just have to emit that. 1113 if (!hasTrivialGetExpr(propImpl)) { 1114 if (!AtomicHelperFn) { 1115 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(), 1116 propImpl->getGetterCXXConstructor(), 1117 /* NRVOCandidate=*/nullptr); 1118 EmitReturnStmt(*ret); 1119 } 1120 else { 1121 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1122 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 1123 ivar, AtomicHelperFn); 1124 } 1125 return; 1126 } 1127 1128 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1129 QualType propType = prop->getType(); 1130 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl(); 1131 1132 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1133 1134 // Pick an implementation strategy. 1135 PropertyImplStrategy strategy(CGM, propImpl); 1136 switch (strategy.getKind()) { 1137 case PropertyImplStrategy::Native: { 1138 // We don't need to do anything for a zero-size struct. 1139 if (strategy.getIvarSize().isZero()) 1140 return; 1141 1142 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1143 1144 // Currently, all atomic accesses have to be through integer 1145 // types, so there's no point in trying to pick a prettier type. 1146 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 1147 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 1148 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1149 1150 // Perform an atomic load. This does not impose ordering constraints. 1151 Address ivarAddr = LV.getAddress(*this); 1152 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1153 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 1154 load->setAtomic(llvm::AtomicOrdering::Unordered); 1155 1156 // Store that value into the return address. Doing this with a 1157 // bitcast is likely to produce some pretty ugly IR, but it's not 1158 // the *most* terrible thing in the world. 1159 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 1160 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 1161 llvm::Value *ivarVal = load; 1162 if (ivarSize > retTySize) { 1163 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 1164 ivarVal = Builder.CreateTrunc(load, newTy); 1165 bitcastType = newTy->getPointerTo(); 1166 } 1167 Builder.CreateStore(ivarVal, 1168 Builder.CreateBitCast(ReturnValue, bitcastType)); 1169 1170 // Make sure we don't do an autorelease. 1171 AutoreleaseResult = false; 1172 return; 1173 } 1174 1175 case PropertyImplStrategy::GetSetProperty: { 1176 llvm::FunctionCallee getPropertyFn = 1177 CGM.getObjCRuntime().GetPropertyGetFunction(); 1178 if (!getPropertyFn) { 1179 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 1180 return; 1181 } 1182 CGCallee callee = CGCallee::forDirect(getPropertyFn); 1183 1184 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 1185 // FIXME: Can't this be simpler? This might even be worse than the 1186 // corresponding gcc code. 1187 llvm::Value *cmd = 1188 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 1189 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1190 llvm::Value *ivarOffset = 1191 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1192 1193 CallArgList args; 1194 args.add(RValue::get(self), getContext().getObjCIdType()); 1195 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1196 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1197 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1198 getContext().BoolTy); 1199 1200 // FIXME: We shouldn't need to get the function info here, the 1201 // runtime already should have computed it to build the function. 1202 llvm::CallBase *CallInstruction; 1203 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall( 1204 getContext().getObjCIdType(), args), 1205 callee, ReturnValueSlot(), args, &CallInstruction); 1206 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 1207 call->setTailCall(); 1208 1209 // We need to fix the type here. Ivars with copy & retain are 1210 // always objects so we don't need to worry about complex or 1211 // aggregates. 1212 RV = RValue::get(Builder.CreateBitCast( 1213 RV.getScalarVal(), 1214 getTypes().ConvertType(getterMethod->getReturnType()))); 1215 1216 EmitReturnOfRValue(RV, propType); 1217 1218 // objc_getProperty does an autorelease, so we should suppress ours. 1219 AutoreleaseResult = false; 1220 1221 return; 1222 } 1223 1224 case PropertyImplStrategy::CopyStruct: 1225 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 1226 strategy.hasStrongMember()); 1227 return; 1228 1229 case PropertyImplStrategy::Expression: 1230 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1231 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1232 1233 QualType ivarType = ivar->getType(); 1234 switch (getEvaluationKind(ivarType)) { 1235 case TEK_Complex: { 1236 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1237 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1238 /*init*/ true); 1239 return; 1240 } 1241 case TEK_Aggregate: { 1242 // The return value slot is guaranteed to not be aliased, but 1243 // that's not necessarily the same as "on the stack", so 1244 // we still potentially need objc_memmove_collectable. 1245 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1246 /* Src= */ LV, ivarType, getOverlapForReturnValue()); 1247 return; 1248 } 1249 case TEK_Scalar: { 1250 llvm::Value *value; 1251 if (propType->isReferenceType()) { 1252 value = LV.getAddress(*this).getPointer(); 1253 } else { 1254 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1255 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1256 if (getLangOpts().ObjCAutoRefCount) { 1257 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1258 } else { 1259 value = EmitARCLoadWeak(LV.getAddress(*this)); 1260 } 1261 1262 // Otherwise we want to do a simple load, suppressing the 1263 // final autorelease. 1264 } else { 1265 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1266 AutoreleaseResult = false; 1267 } 1268 1269 value = Builder.CreateBitCast( 1270 value, ConvertType(GetterMethodDecl->getReturnType())); 1271 } 1272 1273 EmitReturnOfRValue(RValue::get(value), propType); 1274 return; 1275 } 1276 } 1277 llvm_unreachable("bad evaluation kind"); 1278 } 1279 1280 } 1281 llvm_unreachable("bad @property implementation strategy!"); 1282 } 1283 1284 /// emitStructSetterCall - Call the runtime function to store the value 1285 /// from the first formal parameter into the given ivar. 1286 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1287 ObjCIvarDecl *ivar) { 1288 // objc_copyStruct (&structIvar, &Arg, 1289 // sizeof (struct something), true, false); 1290 CallArgList args; 1291 1292 // The first argument is the address of the ivar. 1293 llvm::Value *ivarAddr = 1294 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1295 .getPointer(CGF); 1296 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1297 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1298 1299 // The second argument is the address of the parameter variable. 1300 ParmVarDecl *argVar = *OMD->param_begin(); 1301 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1302 argVar->getType().getNonReferenceType(), VK_LValue, 1303 SourceLocation()); 1304 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1305 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1306 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1307 1308 // The third argument is the sizeof the type. 1309 llvm::Value *size = 1310 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1311 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1312 1313 // The fourth argument is the 'isAtomic' flag. 1314 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1315 1316 // The fifth argument is the 'hasStrong' flag. 1317 // FIXME: should this really always be false? 1318 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1319 1320 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1321 CGCallee callee = CGCallee::forDirect(fn); 1322 CGF.EmitCall( 1323 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1324 callee, ReturnValueSlot(), args); 1325 } 1326 1327 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1328 /// the value from the first formal parameter into the given ivar, using 1329 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1330 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1331 ObjCMethodDecl *OMD, 1332 ObjCIvarDecl *ivar, 1333 llvm::Constant *AtomicHelperFn) { 1334 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1335 // AtomicHelperFn); 1336 CallArgList args; 1337 1338 // The first argument is the address of the ivar. 1339 llvm::Value *ivarAddr = 1340 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1341 .getPointer(CGF); 1342 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1343 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1344 1345 // The second argument is the address of the parameter variable. 1346 ParmVarDecl *argVar = *OMD->param_begin(); 1347 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1348 argVar->getType().getNonReferenceType(), VK_LValue, 1349 SourceLocation()); 1350 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1351 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1352 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1353 1354 // Third argument is the helper function. 1355 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1356 1357 llvm::FunctionCallee fn = 1358 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1359 CGCallee callee = CGCallee::forDirect(fn); 1360 CGF.EmitCall( 1361 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1362 callee, ReturnValueSlot(), args); 1363 } 1364 1365 1366 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1367 Expr *setter = PID->getSetterCXXAssignment(); 1368 if (!setter) return true; 1369 1370 // Sema only makes only of these when the ivar has a C++ class type, 1371 // so the form is pretty constrained. 1372 1373 // An operator call is trivial if the function it calls is trivial. 1374 // This also implies that there's nothing non-trivial going on with 1375 // the arguments, because operator= can only be trivial if it's a 1376 // synthesized assignment operator and therefore both parameters are 1377 // references. 1378 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1379 if (const FunctionDecl *callee 1380 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1381 if (callee->isTrivial()) 1382 return true; 1383 return false; 1384 } 1385 1386 assert(isa<ExprWithCleanups>(setter)); 1387 return false; 1388 } 1389 1390 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1391 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1392 return false; 1393 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1394 } 1395 1396 void 1397 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1398 const ObjCPropertyImplDecl *propImpl, 1399 llvm::Constant *AtomicHelperFn) { 1400 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1401 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl(); 1402 1403 // Just use the setter expression if Sema gave us one and it's 1404 // non-trivial. 1405 if (!hasTrivialSetExpr(propImpl)) { 1406 if (!AtomicHelperFn) 1407 // If non-atomic, assignment is called directly. 1408 EmitStmt(propImpl->getSetterCXXAssignment()); 1409 else 1410 // If atomic, assignment is called via a locking api. 1411 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1412 AtomicHelperFn); 1413 return; 1414 } 1415 1416 PropertyImplStrategy strategy(CGM, propImpl); 1417 switch (strategy.getKind()) { 1418 case PropertyImplStrategy::Native: { 1419 // We don't need to do anything for a zero-size struct. 1420 if (strategy.getIvarSize().isZero()) 1421 return; 1422 1423 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1424 1425 LValue ivarLValue = 1426 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1427 Address ivarAddr = ivarLValue.getAddress(*this); 1428 1429 // Currently, all atomic accesses have to be through integer 1430 // types, so there's no point in trying to pick a prettier type. 1431 llvm::Type *bitcastType = 1432 llvm::Type::getIntNTy(getLLVMContext(), 1433 getContext().toBits(strategy.getIvarSize())); 1434 1435 // Cast both arguments to the chosen operation type. 1436 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1437 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1438 1439 // This bitcast load is likely to cause some nasty IR. 1440 llvm::Value *load = Builder.CreateLoad(argAddr); 1441 1442 // Perform an atomic store. There are no memory ordering requirements. 1443 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1444 store->setAtomic(llvm::AtomicOrdering::Unordered); 1445 return; 1446 } 1447 1448 case PropertyImplStrategy::GetSetProperty: 1449 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1450 1451 llvm::FunctionCallee setOptimizedPropertyFn = nullptr; 1452 llvm::FunctionCallee setPropertyFn = nullptr; 1453 if (UseOptimizedSetter(CGM)) { 1454 // 10.8 and iOS 6.0 code and GC is off 1455 setOptimizedPropertyFn = 1456 CGM.getObjCRuntime().GetOptimizedPropertySetFunction( 1457 strategy.isAtomic(), strategy.isCopy()); 1458 if (!setOptimizedPropertyFn) { 1459 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1460 return; 1461 } 1462 } 1463 else { 1464 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1465 if (!setPropertyFn) { 1466 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1467 return; 1468 } 1469 } 1470 1471 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1472 // <is-atomic>, <is-copy>). 1473 llvm::Value *cmd = 1474 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1475 llvm::Value *self = 1476 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1477 llvm::Value *ivarOffset = 1478 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1479 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1480 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1481 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1482 1483 CallArgList args; 1484 args.add(RValue::get(self), getContext().getObjCIdType()); 1485 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1486 if (setOptimizedPropertyFn) { 1487 args.add(RValue::get(arg), getContext().getObjCIdType()); 1488 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1489 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1490 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1491 callee, ReturnValueSlot(), args); 1492 } else { 1493 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1494 args.add(RValue::get(arg), getContext().getObjCIdType()); 1495 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1496 getContext().BoolTy); 1497 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1498 getContext().BoolTy); 1499 // FIXME: We shouldn't need to get the function info here, the runtime 1500 // already should have computed it to build the function. 1501 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1502 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1503 callee, ReturnValueSlot(), args); 1504 } 1505 1506 return; 1507 } 1508 1509 case PropertyImplStrategy::CopyStruct: 1510 emitStructSetterCall(*this, setterMethod, ivar); 1511 return; 1512 1513 case PropertyImplStrategy::Expression: 1514 break; 1515 } 1516 1517 // Otherwise, fake up some ASTs and emit a normal assignment. 1518 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1519 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(), 1520 VK_LValue, SourceLocation()); 1521 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(), 1522 CK_LValueToRValue, &self, VK_RValue, 1523 FPOptionsOverride()); 1524 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1525 SourceLocation(), SourceLocation(), 1526 &selfLoad, true, true); 1527 1528 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1529 QualType argType = argDecl->getType().getNonReferenceType(); 1530 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue, 1531 SourceLocation()); 1532 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1533 argType.getUnqualifiedType(), CK_LValueToRValue, 1534 &arg, VK_RValue, FPOptionsOverride()); 1535 1536 // The property type can differ from the ivar type in some situations with 1537 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1538 // The following absurdity is just to ensure well-formed IR. 1539 CastKind argCK = CK_NoOp; 1540 if (ivarRef.getType()->isObjCObjectPointerType()) { 1541 if (argLoad.getType()->isObjCObjectPointerType()) 1542 argCK = CK_BitCast; 1543 else if (argLoad.getType()->isBlockPointerType()) 1544 argCK = CK_BlockPointerToObjCPointerCast; 1545 else 1546 argCK = CK_CPointerToObjCPointerCast; 1547 } else if (ivarRef.getType()->isBlockPointerType()) { 1548 if (argLoad.getType()->isBlockPointerType()) 1549 argCK = CK_BitCast; 1550 else 1551 argCK = CK_AnyPointerToBlockPointerCast; 1552 } else if (ivarRef.getType()->isPointerType()) { 1553 argCK = CK_BitCast; 1554 } 1555 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK, 1556 &argLoad, VK_RValue, FPOptionsOverride()); 1557 Expr *finalArg = &argLoad; 1558 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1559 argLoad.getType())) 1560 finalArg = &argCast; 1561 1562 BinaryOperator *assign = BinaryOperator::Create( 1563 getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), VK_RValue, 1564 OK_Ordinary, SourceLocation(), FPOptionsOverride()); 1565 EmitStmt(assign); 1566 } 1567 1568 /// Generate an Objective-C property setter function. 1569 /// 1570 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1571 /// is illegal within a category. 1572 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1573 const ObjCPropertyImplDecl *PID) { 1574 llvm::Constant *AtomicHelperFn = 1575 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1576 ObjCMethodDecl *OMD = PID->getSetterMethodDecl(); 1577 assert(OMD && "Invalid call to generate setter (empty method)"); 1578 StartObjCMethod(OMD, IMP->getClassInterface()); 1579 1580 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1581 1582 FinishFunction(OMD->getEndLoc()); 1583 } 1584 1585 namespace { 1586 struct DestroyIvar final : EHScopeStack::Cleanup { 1587 private: 1588 llvm::Value *addr; 1589 const ObjCIvarDecl *ivar; 1590 CodeGenFunction::Destroyer *destroyer; 1591 bool useEHCleanupForArray; 1592 public: 1593 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1594 CodeGenFunction::Destroyer *destroyer, 1595 bool useEHCleanupForArray) 1596 : addr(addr), ivar(ivar), destroyer(destroyer), 1597 useEHCleanupForArray(useEHCleanupForArray) {} 1598 1599 void Emit(CodeGenFunction &CGF, Flags flags) override { 1600 LValue lvalue 1601 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1602 CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer, 1603 flags.isForNormalCleanup() && useEHCleanupForArray); 1604 } 1605 }; 1606 } 1607 1608 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1609 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1610 Address addr, 1611 QualType type) { 1612 llvm::Value *null = getNullForVariable(addr); 1613 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1614 } 1615 1616 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1617 ObjCImplementationDecl *impl) { 1618 CodeGenFunction::RunCleanupsScope scope(CGF); 1619 1620 llvm::Value *self = CGF.LoadObjCSelf(); 1621 1622 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1623 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1624 ivar; ivar = ivar->getNextIvar()) { 1625 QualType type = ivar->getType(); 1626 1627 // Check whether the ivar is a destructible type. 1628 QualType::DestructionKind dtorKind = type.isDestructedType(); 1629 if (!dtorKind) continue; 1630 1631 CodeGenFunction::Destroyer *destroyer = nullptr; 1632 1633 // Use a call to objc_storeStrong to destroy strong ivars, for the 1634 // general benefit of the tools. 1635 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1636 destroyer = destroyARCStrongWithStore; 1637 1638 // Otherwise use the default for the destruction kind. 1639 } else { 1640 destroyer = CGF.getDestroyer(dtorKind); 1641 } 1642 1643 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1644 1645 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1646 cleanupKind & EHCleanup); 1647 } 1648 1649 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1650 } 1651 1652 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1653 ObjCMethodDecl *MD, 1654 bool ctor) { 1655 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1656 StartObjCMethod(MD, IMP->getClassInterface()); 1657 1658 // Emit .cxx_construct. 1659 if (ctor) { 1660 // Suppress the final autorelease in ARC. 1661 AutoreleaseResult = false; 1662 1663 for (const auto *IvarInit : IMP->inits()) { 1664 FieldDecl *Field = IvarInit->getAnyMember(); 1665 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1666 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1667 LoadObjCSelf(), Ivar, 0); 1668 EmitAggExpr(IvarInit->getInit(), 1669 AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed, 1670 AggValueSlot::DoesNotNeedGCBarriers, 1671 AggValueSlot::IsNotAliased, 1672 AggValueSlot::DoesNotOverlap)); 1673 } 1674 // constructor returns 'self'. 1675 CodeGenTypes &Types = CGM.getTypes(); 1676 QualType IdTy(CGM.getContext().getObjCIdType()); 1677 llvm::Value *SelfAsId = 1678 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1679 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1680 1681 // Emit .cxx_destruct. 1682 } else { 1683 emitCXXDestructMethod(*this, IMP); 1684 } 1685 FinishFunction(); 1686 } 1687 1688 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1689 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1690 DeclRefExpr DRE(getContext(), Self, 1691 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1692 Self->getType(), VK_LValue, SourceLocation()); 1693 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1694 } 1695 1696 QualType CodeGenFunction::TypeOfSelfObject() { 1697 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1698 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1699 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1700 getContext().getCanonicalType(selfDecl->getType())); 1701 return PTy->getPointeeType(); 1702 } 1703 1704 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1705 llvm::FunctionCallee EnumerationMutationFnPtr = 1706 CGM.getObjCRuntime().EnumerationMutationFunction(); 1707 if (!EnumerationMutationFnPtr) { 1708 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1709 return; 1710 } 1711 CGCallee EnumerationMutationFn = 1712 CGCallee::forDirect(EnumerationMutationFnPtr); 1713 1714 CGDebugInfo *DI = getDebugInfo(); 1715 if (DI) 1716 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1717 1718 RunCleanupsScope ForScope(*this); 1719 1720 // The local variable comes into scope immediately. 1721 AutoVarEmission variable = AutoVarEmission::invalid(); 1722 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1723 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1724 1725 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1726 1727 // Fast enumeration state. 1728 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1729 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1730 EmitNullInitialization(StatePtr, StateTy); 1731 1732 // Number of elements in the items array. 1733 static const unsigned NumItems = 16; 1734 1735 // Fetch the countByEnumeratingWithState:objects:count: selector. 1736 IdentifierInfo *II[] = { 1737 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1738 &CGM.getContext().Idents.get("objects"), 1739 &CGM.getContext().Idents.get("count") 1740 }; 1741 Selector FastEnumSel = 1742 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1743 1744 QualType ItemsTy = 1745 getContext().getConstantArrayType(getContext().getObjCIdType(), 1746 llvm::APInt(32, NumItems), nullptr, 1747 ArrayType::Normal, 0); 1748 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1749 1750 // Emit the collection pointer. In ARC, we do a retain. 1751 llvm::Value *Collection; 1752 if (getLangOpts().ObjCAutoRefCount) { 1753 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1754 1755 // Enter a cleanup to do the release. 1756 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1757 } else { 1758 Collection = EmitScalarExpr(S.getCollection()); 1759 } 1760 1761 // The 'continue' label needs to appear within the cleanup for the 1762 // collection object. 1763 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1764 1765 // Send it our message: 1766 CallArgList Args; 1767 1768 // The first argument is a temporary of the enumeration-state type. 1769 Args.add(RValue::get(StatePtr.getPointer()), 1770 getContext().getPointerType(StateTy)); 1771 1772 // The second argument is a temporary array with space for NumItems 1773 // pointers. We'll actually be loading elements from the array 1774 // pointer written into the control state; this buffer is so that 1775 // collections that *aren't* backed by arrays can still queue up 1776 // batches of elements. 1777 Args.add(RValue::get(ItemsPtr.getPointer()), 1778 getContext().getPointerType(ItemsTy)); 1779 1780 // The third argument is the capacity of that temporary array. 1781 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1782 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1783 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1784 1785 // Start the enumeration. 1786 RValue CountRV = 1787 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1788 getContext().getNSUIntegerType(), 1789 FastEnumSel, Collection, Args); 1790 1791 // The initial number of objects that were returned in the buffer. 1792 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1793 1794 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1795 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1796 1797 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1798 1799 // If the limit pointer was zero to begin with, the collection is 1800 // empty; skip all this. Set the branch weight assuming this has the same 1801 // probability of exiting the loop as any other loop exit. 1802 uint64_t EntryCount = getCurrentProfileCount(); 1803 Builder.CreateCondBr( 1804 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1805 LoopInitBB, 1806 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1807 1808 // Otherwise, initialize the loop. 1809 EmitBlock(LoopInitBB); 1810 1811 // Save the initial mutations value. This is the value at an 1812 // address that was written into the state object by 1813 // countByEnumeratingWithState:objects:count:. 1814 Address StateMutationsPtrPtr = 1815 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1816 llvm::Value *StateMutationsPtr 1817 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1818 1819 llvm::Value *initialMutations = 1820 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1821 "forcoll.initial-mutations"); 1822 1823 // Start looping. This is the point we return to whenever we have a 1824 // fresh, non-empty batch of objects. 1825 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1826 EmitBlock(LoopBodyBB); 1827 1828 // The current index into the buffer. 1829 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1830 index->addIncoming(zero, LoopInitBB); 1831 1832 // The current buffer size. 1833 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1834 count->addIncoming(initialBufferLimit, LoopInitBB); 1835 1836 incrementProfileCounter(&S); 1837 1838 // Check whether the mutations value has changed from where it was 1839 // at start. StateMutationsPtr should actually be invariant between 1840 // refreshes. 1841 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1842 llvm::Value *currentMutations 1843 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1844 "statemutations"); 1845 1846 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1847 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1848 1849 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1850 WasNotMutatedBB, WasMutatedBB); 1851 1852 // If so, call the enumeration-mutation function. 1853 EmitBlock(WasMutatedBB); 1854 llvm::Value *V = 1855 Builder.CreateBitCast(Collection, 1856 ConvertType(getContext().getObjCIdType())); 1857 CallArgList Args2; 1858 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1859 // FIXME: We shouldn't need to get the function info here, the runtime already 1860 // should have computed it to build the function. 1861 EmitCall( 1862 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1863 EnumerationMutationFn, ReturnValueSlot(), Args2); 1864 1865 // Otherwise, or if the mutation function returns, just continue. 1866 EmitBlock(WasNotMutatedBB); 1867 1868 // Initialize the element variable. 1869 RunCleanupsScope elementVariableScope(*this); 1870 bool elementIsVariable; 1871 LValue elementLValue; 1872 QualType elementType; 1873 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1874 // Initialize the variable, in case it's a __block variable or something. 1875 EmitAutoVarInit(variable); 1876 1877 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl()); 1878 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false, 1879 D->getType(), VK_LValue, SourceLocation()); 1880 elementLValue = EmitLValue(&tempDRE); 1881 elementType = D->getType(); 1882 elementIsVariable = true; 1883 1884 if (D->isARCPseudoStrong()) 1885 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1886 } else { 1887 elementLValue = LValue(); // suppress warning 1888 elementType = cast<Expr>(S.getElement())->getType(); 1889 elementIsVariable = false; 1890 } 1891 llvm::Type *convertedElementType = ConvertType(elementType); 1892 1893 // Fetch the buffer out of the enumeration state. 1894 // TODO: this pointer should actually be invariant between 1895 // refreshes, which would help us do certain loop optimizations. 1896 Address StateItemsPtr = 1897 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1898 llvm::Value *EnumStateItems = 1899 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1900 1901 // Fetch the value at the current index from the buffer. 1902 llvm::Value *CurrentItemPtr = 1903 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1904 llvm::Value *CurrentItem = 1905 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1906 1907 if (SanOpts.has(SanitizerKind::ObjCCast)) { 1908 // Before using an item from the collection, check that the implicit cast 1909 // from id to the element type is valid. This is done with instrumentation 1910 // roughly corresponding to: 1911 // 1912 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ } 1913 const ObjCObjectPointerType *ObjPtrTy = 1914 elementType->getAsObjCInterfacePointerType(); 1915 const ObjCInterfaceType *InterfaceTy = 1916 ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr; 1917 if (InterfaceTy) { 1918 SanitizerScope SanScope(this); 1919 auto &C = CGM.getContext(); 1920 assert(InterfaceTy->getDecl() && "No decl for ObjC interface type"); 1921 Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C); 1922 CallArgList IsKindOfClassArgs; 1923 llvm::Value *Cls = 1924 CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl()); 1925 IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType()); 1926 llvm::Value *IsClass = 1927 CGM.getObjCRuntime() 1928 .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy, 1929 IsKindOfClassSel, CurrentItem, 1930 IsKindOfClassArgs) 1931 .getScalarVal(); 1932 llvm::Constant *StaticData[] = { 1933 EmitCheckSourceLocation(S.getBeginLoc()), 1934 EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))}; 1935 EmitCheck({{IsClass, SanitizerKind::ObjCCast}}, 1936 SanitizerHandler::InvalidObjCCast, 1937 ArrayRef<llvm::Constant *>(StaticData), CurrentItem); 1938 } 1939 } 1940 1941 // Cast that value to the right type. 1942 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1943 "currentitem"); 1944 1945 // Make sure we have an l-value. Yes, this gets evaluated every 1946 // time through the loop. 1947 if (!elementIsVariable) { 1948 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1949 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1950 } else { 1951 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1952 /*isInit*/ true); 1953 } 1954 1955 // If we do have an element variable, this assignment is the end of 1956 // its initialization. 1957 if (elementIsVariable) 1958 EmitAutoVarCleanups(variable); 1959 1960 // Perform the loop body, setting up break and continue labels. 1961 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1962 { 1963 RunCleanupsScope Scope(*this); 1964 EmitStmt(S.getBody()); 1965 } 1966 BreakContinueStack.pop_back(); 1967 1968 // Destroy the element variable now. 1969 elementVariableScope.ForceCleanup(); 1970 1971 // Check whether there are more elements. 1972 EmitBlock(AfterBody.getBlock()); 1973 1974 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1975 1976 // First we check in the local buffer. 1977 llvm::Value *indexPlusOne = 1978 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 1979 1980 // If we haven't overrun the buffer yet, we can continue. 1981 // Set the branch weights based on the simplifying assumption that this is 1982 // like a while-loop, i.e., ignoring that the false branch fetches more 1983 // elements and then returns to the loop. 1984 Builder.CreateCondBr( 1985 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1986 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1987 1988 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1989 count->addIncoming(count, AfterBody.getBlock()); 1990 1991 // Otherwise, we have to fetch more elements. 1992 EmitBlock(FetchMoreBB); 1993 1994 CountRV = 1995 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1996 getContext().getNSUIntegerType(), 1997 FastEnumSel, Collection, Args); 1998 1999 // If we got a zero count, we're done. 2000 llvm::Value *refetchCount = CountRV.getScalarVal(); 2001 2002 // (note that the message send might split FetchMoreBB) 2003 index->addIncoming(zero, Builder.GetInsertBlock()); 2004 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 2005 2006 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 2007 EmptyBB, LoopBodyBB); 2008 2009 // No more elements. 2010 EmitBlock(EmptyBB); 2011 2012 if (!elementIsVariable) { 2013 // If the element was not a declaration, set it to be null. 2014 2015 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 2016 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 2017 EmitStoreThroughLValue(RValue::get(null), elementLValue); 2018 } 2019 2020 if (DI) 2021 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 2022 2023 ForScope.ForceCleanup(); 2024 EmitBlock(LoopEnd.getBlock()); 2025 } 2026 2027 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 2028 CGM.getObjCRuntime().EmitTryStmt(*this, S); 2029 } 2030 2031 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 2032 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 2033 } 2034 2035 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 2036 const ObjCAtSynchronizedStmt &S) { 2037 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 2038 } 2039 2040 namespace { 2041 struct CallObjCRelease final : EHScopeStack::Cleanup { 2042 CallObjCRelease(llvm::Value *object) : object(object) {} 2043 llvm::Value *object; 2044 2045 void Emit(CodeGenFunction &CGF, Flags flags) override { 2046 // Releases at the end of the full-expression are imprecise. 2047 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 2048 } 2049 }; 2050 } 2051 2052 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 2053 /// release at the end of the full-expression. 2054 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 2055 llvm::Value *object) { 2056 // If we're in a conditional branch, we need to make the cleanup 2057 // conditional. 2058 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 2059 return object; 2060 } 2061 2062 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 2063 llvm::Value *value) { 2064 return EmitARCRetainAutorelease(type, value); 2065 } 2066 2067 /// Given a number of pointers, inform the optimizer that they're 2068 /// being intrinsically used up until this point in the program. 2069 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 2070 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use; 2071 if (!fn) 2072 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use); 2073 2074 // This isn't really a "runtime" function, but as an intrinsic it 2075 // doesn't really matter as long as we align things up. 2076 EmitNounwindRuntimeCall(fn, values); 2077 } 2078 2079 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) { 2080 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 2081 // If the target runtime doesn't naturally support ARC, emit weak 2082 // references to the runtime support library. We don't really 2083 // permit this to fail, but we need a particular relocation style. 2084 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 2085 !CGM.getTriple().isOSBinFormatCOFF()) { 2086 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2087 } 2088 } 2089 } 2090 2091 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, 2092 llvm::FunctionCallee RTF) { 2093 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee()); 2094 } 2095 2096 /// Perform an operation having the signature 2097 /// i8* (i8*) 2098 /// where a null input causes a no-op and returns null. 2099 static llvm::Value *emitARCValueOperation( 2100 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, 2101 llvm::Function *&fn, llvm::Intrinsic::ID IntID, 2102 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) { 2103 if (isa<llvm::ConstantPointerNull>(value)) 2104 return value; 2105 2106 if (!fn) { 2107 fn = CGF.CGM.getIntrinsic(IntID); 2108 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2109 } 2110 2111 // Cast the argument to 'id'. 2112 llvm::Type *origType = returnType ? returnType : value->getType(); 2113 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2114 2115 // Call the function. 2116 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 2117 call->setTailCallKind(tailKind); 2118 2119 // Cast the result back to the original type. 2120 return CGF.Builder.CreateBitCast(call, origType); 2121 } 2122 2123 /// Perform an operation having the following signature: 2124 /// i8* (i8**) 2125 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr, 2126 llvm::Function *&fn, 2127 llvm::Intrinsic::ID IntID) { 2128 if (!fn) { 2129 fn = CGF.CGM.getIntrinsic(IntID); 2130 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2131 } 2132 2133 // Cast the argument to 'id*'. 2134 llvm::Type *origType = addr.getElementType(); 2135 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 2136 2137 // Call the function. 2138 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 2139 2140 // Cast the result back to a dereference of the original type. 2141 if (origType != CGF.Int8PtrTy) 2142 result = CGF.Builder.CreateBitCast(result, origType); 2143 2144 return result; 2145 } 2146 2147 /// Perform an operation having the following signature: 2148 /// i8* (i8**, i8*) 2149 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr, 2150 llvm::Value *value, 2151 llvm::Function *&fn, 2152 llvm::Intrinsic::ID IntID, 2153 bool ignored) { 2154 assert(addr.getElementType() == value->getType()); 2155 2156 if (!fn) { 2157 fn = CGF.CGM.getIntrinsic(IntID); 2158 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2159 } 2160 2161 llvm::Type *origType = value->getType(); 2162 2163 llvm::Value *args[] = { 2164 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 2165 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 2166 }; 2167 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 2168 2169 if (ignored) return nullptr; 2170 2171 return CGF.Builder.CreateBitCast(result, origType); 2172 } 2173 2174 /// Perform an operation having the following signature: 2175 /// void (i8**, i8**) 2176 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, 2177 llvm::Function *&fn, 2178 llvm::Intrinsic::ID IntID) { 2179 assert(dst.getType() == src.getType()); 2180 2181 if (!fn) { 2182 fn = CGF.CGM.getIntrinsic(IntID); 2183 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2184 } 2185 2186 llvm::Value *args[] = { 2187 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 2188 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 2189 }; 2190 CGF.EmitNounwindRuntimeCall(fn, args); 2191 } 2192 2193 /// Perform an operation having the signature 2194 /// i8* (i8*) 2195 /// where a null input causes a no-op and returns null. 2196 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, 2197 llvm::Value *value, 2198 llvm::Type *returnType, 2199 llvm::FunctionCallee &fn, 2200 StringRef fnName) { 2201 if (isa<llvm::ConstantPointerNull>(value)) 2202 return value; 2203 2204 if (!fn) { 2205 llvm::FunctionType *fnType = 2206 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 2207 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName); 2208 2209 // We have Native ARC, so set nonlazybind attribute for performance 2210 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2211 if (fnName == "objc_retain") 2212 f->addFnAttr(llvm::Attribute::NonLazyBind); 2213 } 2214 2215 // Cast the argument to 'id'. 2216 llvm::Type *origType = returnType ? returnType : value->getType(); 2217 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2218 2219 // Call the function. 2220 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value); 2221 2222 // Cast the result back to the original type. 2223 return CGF.Builder.CreateBitCast(Inst, origType); 2224 } 2225 2226 /// Produce the code to do a retain. Based on the type, calls one of: 2227 /// call i8* \@objc_retain(i8* %value) 2228 /// call i8* \@objc_retainBlock(i8* %value) 2229 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 2230 if (type->isBlockPointerType()) 2231 return EmitARCRetainBlock(value, /*mandatory*/ false); 2232 else 2233 return EmitARCRetainNonBlock(value); 2234 } 2235 2236 /// Retain the given object, with normal retain semantics. 2237 /// call i8* \@objc_retain(i8* %value) 2238 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 2239 return emitARCValueOperation(*this, value, nullptr, 2240 CGM.getObjCEntrypoints().objc_retain, 2241 llvm::Intrinsic::objc_retain); 2242 } 2243 2244 /// Retain the given block, with _Block_copy semantics. 2245 /// call i8* \@objc_retainBlock(i8* %value) 2246 /// 2247 /// \param mandatory - If false, emit the call with metadata 2248 /// indicating that it's okay for the optimizer to eliminate this call 2249 /// if it can prove that the block never escapes except down the stack. 2250 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 2251 bool mandatory) { 2252 llvm::Value *result 2253 = emitARCValueOperation(*this, value, nullptr, 2254 CGM.getObjCEntrypoints().objc_retainBlock, 2255 llvm::Intrinsic::objc_retainBlock); 2256 2257 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 2258 // tell the optimizer that it doesn't need to do this copy if the 2259 // block doesn't escape, where being passed as an argument doesn't 2260 // count as escaping. 2261 if (!mandatory && isa<llvm::Instruction>(result)) { 2262 llvm::CallInst *call 2263 = cast<llvm::CallInst>(result->stripPointerCasts()); 2264 assert(call->getCalledOperand() == 2265 CGM.getObjCEntrypoints().objc_retainBlock); 2266 2267 call->setMetadata("clang.arc.copy_on_escape", 2268 llvm::MDNode::get(Builder.getContext(), None)); 2269 } 2270 2271 return result; 2272 } 2273 2274 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 2275 // Fetch the void(void) inline asm which marks that we're going to 2276 // do something with the autoreleased return value. 2277 llvm::InlineAsm *&marker 2278 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2279 if (!marker) { 2280 StringRef assembly 2281 = CGF.CGM.getTargetCodeGenInfo() 2282 .getARCRetainAutoreleasedReturnValueMarker(); 2283 2284 // If we have an empty assembly string, there's nothing to do. 2285 if (assembly.empty()) { 2286 2287 // Otherwise, at -O0, build an inline asm that we're going to call 2288 // in a moment. 2289 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2290 llvm::FunctionType *type = 2291 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2292 2293 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2294 2295 // If we're at -O1 and above, we don't want to litter the code 2296 // with this marker yet, so leave a breadcrumb for the ARC 2297 // optimizer to pick up. 2298 } else { 2299 const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker"; 2300 if (!CGF.CGM.getModule().getModuleFlag(markerKey)) { 2301 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly); 2302 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str); 2303 } 2304 } 2305 } 2306 2307 // Call the marker asm if we made one, which we do only at -O0. 2308 if (marker) 2309 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker)); 2310 } 2311 2312 /// Retain the given object which is the result of a function call. 2313 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2314 /// 2315 /// Yes, this function name is one character away from a different 2316 /// call with completely different semantics. 2317 llvm::Value * 2318 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2319 emitAutoreleasedReturnValueMarker(*this); 2320 llvm::CallInst::TailCallKind tailKind = 2321 CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail() 2322 ? llvm::CallInst::TCK_NoTail 2323 : llvm::CallInst::TCK_None; 2324 return emitARCValueOperation( 2325 *this, value, nullptr, 2326 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, 2327 llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind); 2328 } 2329 2330 /// Claim a possibly-autoreleased return value at +0. This is only 2331 /// valid to do in contexts which do not rely on the retain to keep 2332 /// the object valid for all of its uses; for example, when 2333 /// the value is ignored, or when it is being assigned to an 2334 /// __unsafe_unretained variable. 2335 /// 2336 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2337 llvm::Value * 2338 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2339 emitAutoreleasedReturnValueMarker(*this); 2340 llvm::CallInst::TailCallKind tailKind = 2341 CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail() 2342 ? llvm::CallInst::TCK_NoTail 2343 : llvm::CallInst::TCK_None; 2344 return emitARCValueOperation( 2345 *this, value, nullptr, 2346 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, 2347 llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue, tailKind); 2348 } 2349 2350 /// Release the given object. 2351 /// call void \@objc_release(i8* %value) 2352 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2353 ARCPreciseLifetime_t precise) { 2354 if (isa<llvm::ConstantPointerNull>(value)) return; 2355 2356 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release; 2357 if (!fn) { 2358 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release); 2359 setARCRuntimeFunctionLinkage(CGM, fn); 2360 } 2361 2362 // Cast the argument to 'id'. 2363 value = Builder.CreateBitCast(value, Int8PtrTy); 2364 2365 // Call objc_release. 2366 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2367 2368 if (precise == ARCImpreciseLifetime) { 2369 call->setMetadata("clang.imprecise_release", 2370 llvm::MDNode::get(Builder.getContext(), None)); 2371 } 2372 } 2373 2374 /// Destroy a __strong variable. 2375 /// 2376 /// At -O0, emit a call to store 'null' into the address; 2377 /// instrumenting tools prefer this because the address is exposed, 2378 /// but it's relatively cumbersome to optimize. 2379 /// 2380 /// At -O1 and above, just load and call objc_release. 2381 /// 2382 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2383 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2384 ARCPreciseLifetime_t precise) { 2385 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2386 llvm::Value *null = getNullForVariable(addr); 2387 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2388 return; 2389 } 2390 2391 llvm::Value *value = Builder.CreateLoad(addr); 2392 EmitARCRelease(value, precise); 2393 } 2394 2395 /// Store into a strong object. Always calls this: 2396 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2397 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2398 llvm::Value *value, 2399 bool ignored) { 2400 assert(addr.getElementType() == value->getType()); 2401 2402 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2403 if (!fn) { 2404 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong); 2405 setARCRuntimeFunctionLinkage(CGM, fn); 2406 } 2407 2408 llvm::Value *args[] = { 2409 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2410 Builder.CreateBitCast(value, Int8PtrTy) 2411 }; 2412 EmitNounwindRuntimeCall(fn, args); 2413 2414 if (ignored) return nullptr; 2415 return value; 2416 } 2417 2418 /// Store into a strong object. Sometimes calls this: 2419 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2420 /// Other times, breaks it down into components. 2421 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2422 llvm::Value *newValue, 2423 bool ignored) { 2424 QualType type = dst.getType(); 2425 bool isBlock = type->isBlockPointerType(); 2426 2427 // Use a store barrier at -O0 unless this is a block type or the 2428 // lvalue is inadequately aligned. 2429 if (shouldUseFusedARCCalls() && 2430 !isBlock && 2431 (dst.getAlignment().isZero() || 2432 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2433 return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored); 2434 } 2435 2436 // Otherwise, split it out. 2437 2438 // Retain the new value. 2439 newValue = EmitARCRetain(type, newValue); 2440 2441 // Read the old value. 2442 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2443 2444 // Store. We do this before the release so that any deallocs won't 2445 // see the old value. 2446 EmitStoreOfScalar(newValue, dst); 2447 2448 // Finally, release the old value. 2449 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2450 2451 return newValue; 2452 } 2453 2454 /// Autorelease the given object. 2455 /// call i8* \@objc_autorelease(i8* %value) 2456 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2457 return emitARCValueOperation(*this, value, nullptr, 2458 CGM.getObjCEntrypoints().objc_autorelease, 2459 llvm::Intrinsic::objc_autorelease); 2460 } 2461 2462 /// Autorelease the given object. 2463 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2464 llvm::Value * 2465 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2466 return emitARCValueOperation(*this, value, nullptr, 2467 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2468 llvm::Intrinsic::objc_autoreleaseReturnValue, 2469 llvm::CallInst::TCK_Tail); 2470 } 2471 2472 /// Do a fused retain/autorelease of the given object. 2473 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2474 llvm::Value * 2475 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2476 return emitARCValueOperation(*this, value, nullptr, 2477 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2478 llvm::Intrinsic::objc_retainAutoreleaseReturnValue, 2479 llvm::CallInst::TCK_Tail); 2480 } 2481 2482 /// Do a fused retain/autorelease of the given object. 2483 /// call i8* \@objc_retainAutorelease(i8* %value) 2484 /// or 2485 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2486 /// call i8* \@objc_autorelease(i8* %retain) 2487 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2488 llvm::Value *value) { 2489 if (!type->isBlockPointerType()) 2490 return EmitARCRetainAutoreleaseNonBlock(value); 2491 2492 if (isa<llvm::ConstantPointerNull>(value)) return value; 2493 2494 llvm::Type *origType = value->getType(); 2495 value = Builder.CreateBitCast(value, Int8PtrTy); 2496 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2497 value = EmitARCAutorelease(value); 2498 return Builder.CreateBitCast(value, origType); 2499 } 2500 2501 /// Do a fused retain/autorelease of the given object. 2502 /// call i8* \@objc_retainAutorelease(i8* %value) 2503 llvm::Value * 2504 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2505 return emitARCValueOperation(*this, value, nullptr, 2506 CGM.getObjCEntrypoints().objc_retainAutorelease, 2507 llvm::Intrinsic::objc_retainAutorelease); 2508 } 2509 2510 /// i8* \@objc_loadWeak(i8** %addr) 2511 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2512 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2513 return emitARCLoadOperation(*this, addr, 2514 CGM.getObjCEntrypoints().objc_loadWeak, 2515 llvm::Intrinsic::objc_loadWeak); 2516 } 2517 2518 /// i8* \@objc_loadWeakRetained(i8** %addr) 2519 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2520 return emitARCLoadOperation(*this, addr, 2521 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2522 llvm::Intrinsic::objc_loadWeakRetained); 2523 } 2524 2525 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2526 /// Returns %value. 2527 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2528 llvm::Value *value, 2529 bool ignored) { 2530 return emitARCStoreOperation(*this, addr, value, 2531 CGM.getObjCEntrypoints().objc_storeWeak, 2532 llvm::Intrinsic::objc_storeWeak, ignored); 2533 } 2534 2535 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2536 /// Returns %value. %addr is known to not have a current weak entry. 2537 /// Essentially equivalent to: 2538 /// *addr = nil; objc_storeWeak(addr, value); 2539 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2540 // If we're initializing to null, just write null to memory; no need 2541 // to get the runtime involved. But don't do this if optimization 2542 // is enabled, because accounting for this would make the optimizer 2543 // much more complicated. 2544 if (isa<llvm::ConstantPointerNull>(value) && 2545 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2546 Builder.CreateStore(value, addr); 2547 return; 2548 } 2549 2550 emitARCStoreOperation(*this, addr, value, 2551 CGM.getObjCEntrypoints().objc_initWeak, 2552 llvm::Intrinsic::objc_initWeak, /*ignored*/ true); 2553 } 2554 2555 /// void \@objc_destroyWeak(i8** %addr) 2556 /// Essentially objc_storeWeak(addr, nil). 2557 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2558 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2559 if (!fn) { 2560 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak); 2561 setARCRuntimeFunctionLinkage(CGM, fn); 2562 } 2563 2564 // Cast the argument to 'id*'. 2565 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2566 2567 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2568 } 2569 2570 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2571 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2572 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2573 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2574 emitARCCopyOperation(*this, dst, src, 2575 CGM.getObjCEntrypoints().objc_moveWeak, 2576 llvm::Intrinsic::objc_moveWeak); 2577 } 2578 2579 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2580 /// Disregards the current value in %dest. Essentially 2581 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2582 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2583 emitARCCopyOperation(*this, dst, src, 2584 CGM.getObjCEntrypoints().objc_copyWeak, 2585 llvm::Intrinsic::objc_copyWeak); 2586 } 2587 2588 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, 2589 Address SrcAddr) { 2590 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2591 Object = EmitObjCConsumeObject(Ty, Object); 2592 EmitARCStoreWeak(DstAddr, Object, false); 2593 } 2594 2595 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, 2596 Address SrcAddr) { 2597 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2598 Object = EmitObjCConsumeObject(Ty, Object); 2599 EmitARCStoreWeak(DstAddr, Object, false); 2600 EmitARCDestroyWeak(SrcAddr); 2601 } 2602 2603 /// Produce the code to do a objc_autoreleasepool_push. 2604 /// call i8* \@objc_autoreleasePoolPush(void) 2605 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2606 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2607 if (!fn) { 2608 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush); 2609 setARCRuntimeFunctionLinkage(CGM, fn); 2610 } 2611 2612 return EmitNounwindRuntimeCall(fn); 2613 } 2614 2615 /// Produce the code to do a primitive release. 2616 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2617 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2618 assert(value->getType() == Int8PtrTy); 2619 2620 if (getInvokeDest()) { 2621 // Call the runtime method not the intrinsic if we are handling exceptions 2622 llvm::FunctionCallee &fn = 2623 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; 2624 if (!fn) { 2625 llvm::FunctionType *fnType = 2626 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2627 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop"); 2628 setARCRuntimeFunctionLinkage(CGM, fn); 2629 } 2630 2631 // objc_autoreleasePoolPop can throw. 2632 EmitRuntimeCallOrInvoke(fn, value); 2633 } else { 2634 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2635 if (!fn) { 2636 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop); 2637 setARCRuntimeFunctionLinkage(CGM, fn); 2638 } 2639 2640 EmitRuntimeCall(fn, value); 2641 } 2642 } 2643 2644 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2645 /// Which is: [[NSAutoreleasePool alloc] init]; 2646 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2647 /// init is declared as: - (id) init; in its NSObject super class. 2648 /// 2649 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2650 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2651 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2652 // [NSAutoreleasePool alloc] 2653 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2654 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2655 CallArgList Args; 2656 RValue AllocRV = 2657 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2658 getContext().getObjCIdType(), 2659 AllocSel, Receiver, Args); 2660 2661 // [Receiver init] 2662 Receiver = AllocRV.getScalarVal(); 2663 II = &CGM.getContext().Idents.get("init"); 2664 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2665 RValue InitRV = 2666 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2667 getContext().getObjCIdType(), 2668 InitSel, Receiver, Args); 2669 return InitRV.getScalarVal(); 2670 } 2671 2672 /// Allocate the given objc object. 2673 /// call i8* \@objc_alloc(i8* %value) 2674 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, 2675 llvm::Type *resultType) { 2676 return emitObjCValueOperation(*this, value, resultType, 2677 CGM.getObjCEntrypoints().objc_alloc, 2678 "objc_alloc"); 2679 } 2680 2681 /// Allocate the given objc object. 2682 /// call i8* \@objc_allocWithZone(i8* %value) 2683 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, 2684 llvm::Type *resultType) { 2685 return emitObjCValueOperation(*this, value, resultType, 2686 CGM.getObjCEntrypoints().objc_allocWithZone, 2687 "objc_allocWithZone"); 2688 } 2689 2690 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value, 2691 llvm::Type *resultType) { 2692 return emitObjCValueOperation(*this, value, resultType, 2693 CGM.getObjCEntrypoints().objc_alloc_init, 2694 "objc_alloc_init"); 2695 } 2696 2697 /// Produce the code to do a primitive release. 2698 /// [tmp drain]; 2699 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2700 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2701 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2702 CallArgList Args; 2703 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2704 getContext().VoidTy, DrainSel, Arg, Args); 2705 } 2706 2707 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2708 Address addr, 2709 QualType type) { 2710 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2711 } 2712 2713 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2714 Address addr, 2715 QualType type) { 2716 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2717 } 2718 2719 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2720 Address addr, 2721 QualType type) { 2722 CGF.EmitARCDestroyWeak(addr); 2723 } 2724 2725 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2726 QualType type) { 2727 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2728 CGF.EmitARCIntrinsicUse(value); 2729 } 2730 2731 /// Autorelease the given object. 2732 /// call i8* \@objc_autorelease(i8* %value) 2733 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value, 2734 llvm::Type *returnType) { 2735 return emitObjCValueOperation( 2736 *this, value, returnType, 2737 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction, 2738 "objc_autorelease"); 2739 } 2740 2741 /// Retain the given object, with normal retain semantics. 2742 /// call i8* \@objc_retain(i8* %value) 2743 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value, 2744 llvm::Type *returnType) { 2745 return emitObjCValueOperation( 2746 *this, value, returnType, 2747 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain"); 2748 } 2749 2750 /// Release the given object. 2751 /// call void \@objc_release(i8* %value) 2752 void CodeGenFunction::EmitObjCRelease(llvm::Value *value, 2753 ARCPreciseLifetime_t precise) { 2754 if (isa<llvm::ConstantPointerNull>(value)) return; 2755 2756 llvm::FunctionCallee &fn = 2757 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction; 2758 if (!fn) { 2759 llvm::FunctionType *fnType = 2760 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2761 fn = CGM.CreateRuntimeFunction(fnType, "objc_release"); 2762 setARCRuntimeFunctionLinkage(CGM, fn); 2763 // We have Native ARC, so set nonlazybind attribute for performance 2764 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2765 f->addFnAttr(llvm::Attribute::NonLazyBind); 2766 } 2767 2768 // Cast the argument to 'id'. 2769 value = Builder.CreateBitCast(value, Int8PtrTy); 2770 2771 // Call objc_release. 2772 llvm::CallBase *call = EmitCallOrInvoke(fn, value); 2773 2774 if (precise == ARCImpreciseLifetime) { 2775 call->setMetadata("clang.imprecise_release", 2776 llvm::MDNode::get(Builder.getContext(), None)); 2777 } 2778 } 2779 2780 namespace { 2781 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2782 llvm::Value *Token; 2783 2784 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2785 2786 void Emit(CodeGenFunction &CGF, Flags flags) override { 2787 CGF.EmitObjCAutoreleasePoolPop(Token); 2788 } 2789 }; 2790 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2791 llvm::Value *Token; 2792 2793 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2794 2795 void Emit(CodeGenFunction &CGF, Flags flags) override { 2796 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2797 } 2798 }; 2799 } 2800 2801 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2802 if (CGM.getLangOpts().ObjCAutoRefCount) 2803 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2804 else 2805 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2806 } 2807 2808 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { 2809 switch (lifetime) { 2810 case Qualifiers::OCL_None: 2811 case Qualifiers::OCL_ExplicitNone: 2812 case Qualifiers::OCL_Strong: 2813 case Qualifiers::OCL_Autoreleasing: 2814 return true; 2815 2816 case Qualifiers::OCL_Weak: 2817 return false; 2818 } 2819 2820 llvm_unreachable("impossible lifetime!"); 2821 } 2822 2823 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2824 LValue lvalue, 2825 QualType type) { 2826 llvm::Value *result; 2827 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime()); 2828 if (shouldRetain) { 2829 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal(); 2830 } else { 2831 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); 2832 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF)); 2833 } 2834 return TryEmitResult(result, !shouldRetain); 2835 } 2836 2837 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2838 const Expr *e) { 2839 e = e->IgnoreParens(); 2840 QualType type = e->getType(); 2841 2842 // If we're loading retained from a __strong xvalue, we can avoid 2843 // an extra retain/release pair by zeroing out the source of this 2844 // "move" operation. 2845 if (e->isXValue() && 2846 !type.isConstQualified() && 2847 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2848 // Emit the lvalue. 2849 LValue lv = CGF.EmitLValue(e); 2850 2851 // Load the object pointer. 2852 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2853 SourceLocation()).getScalarVal(); 2854 2855 // Set the source pointer to NULL. 2856 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv); 2857 2858 return TryEmitResult(result, true); 2859 } 2860 2861 // As a very special optimization, in ARC++, if the l-value is the 2862 // result of a non-volatile assignment, do a simple retain of the 2863 // result of the call to objc_storeWeak instead of reloading. 2864 if (CGF.getLangOpts().CPlusPlus && 2865 !type.isVolatileQualified() && 2866 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2867 isa<BinaryOperator>(e) && 2868 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2869 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2870 2871 // Try to emit code for scalar constant instead of emitting LValue and 2872 // loading it because we are not guaranteed to have an l-value. One of such 2873 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. 2874 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) { 2875 auto *DRE = const_cast<DeclRefExpr *>(decl_expr); 2876 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE)) 2877 return TryEmitResult(CGF.emitScalarConstant(constant, DRE), 2878 !shouldRetainObjCLifetime(type.getObjCLifetime())); 2879 } 2880 2881 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2882 } 2883 2884 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2885 llvm::Value *value)> 2886 ValueTransform; 2887 2888 /// Insert code immediately after a call. 2889 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2890 llvm::Value *value, 2891 ValueTransform doAfterCall, 2892 ValueTransform doFallback) { 2893 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2894 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2895 2896 // Place the retain immediately following the call. 2897 CGF.Builder.SetInsertPoint(call->getParent(), 2898 ++llvm::BasicBlock::iterator(call)); 2899 value = doAfterCall(CGF, value); 2900 2901 CGF.Builder.restoreIP(ip); 2902 return value; 2903 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2904 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2905 2906 // Place the retain at the beginning of the normal destination block. 2907 llvm::BasicBlock *BB = invoke->getNormalDest(); 2908 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2909 value = doAfterCall(CGF, value); 2910 2911 CGF.Builder.restoreIP(ip); 2912 return value; 2913 2914 // Bitcasts can arise because of related-result returns. Rewrite 2915 // the operand. 2916 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2917 llvm::Value *operand = bitcast->getOperand(0); 2918 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2919 bitcast->setOperand(0, operand); 2920 return bitcast; 2921 2922 // Generic fall-back case. 2923 } else { 2924 // Retain using the non-block variant: we never need to do a copy 2925 // of a block that's been returned to us. 2926 return doFallback(CGF, value); 2927 } 2928 } 2929 2930 /// Given that the given expression is some sort of call (which does 2931 /// not return retained), emit a retain following it. 2932 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2933 const Expr *e) { 2934 llvm::Value *value = CGF.EmitScalarExpr(e); 2935 return emitARCOperationAfterCall(CGF, value, 2936 [](CodeGenFunction &CGF, llvm::Value *value) { 2937 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2938 }, 2939 [](CodeGenFunction &CGF, llvm::Value *value) { 2940 return CGF.EmitARCRetainNonBlock(value); 2941 }); 2942 } 2943 2944 /// Given that the given expression is some sort of call (which does 2945 /// not return retained), perform an unsafeClaim following it. 2946 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 2947 const Expr *e) { 2948 llvm::Value *value = CGF.EmitScalarExpr(e); 2949 return emitARCOperationAfterCall(CGF, value, 2950 [](CodeGenFunction &CGF, llvm::Value *value) { 2951 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 2952 }, 2953 [](CodeGenFunction &CGF, llvm::Value *value) { 2954 return value; 2955 }); 2956 } 2957 2958 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 2959 bool allowUnsafeClaim) { 2960 if (allowUnsafeClaim && 2961 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 2962 return emitARCUnsafeClaimCallResult(*this, E); 2963 } else { 2964 llvm::Value *value = emitARCRetainCallResult(*this, E); 2965 return EmitObjCConsumeObject(E->getType(), value); 2966 } 2967 } 2968 2969 /// Determine whether it might be important to emit a separate 2970 /// objc_retain_block on the result of the given expression, or 2971 /// whether it's okay to just emit it in a +1 context. 2972 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2973 assert(e->getType()->isBlockPointerType()); 2974 e = e->IgnoreParens(); 2975 2976 // For future goodness, emit block expressions directly in +1 2977 // contexts if we can. 2978 if (isa<BlockExpr>(e)) 2979 return false; 2980 2981 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2982 switch (cast->getCastKind()) { 2983 // Emitting these operations in +1 contexts is goodness. 2984 case CK_LValueToRValue: 2985 case CK_ARCReclaimReturnedObject: 2986 case CK_ARCConsumeObject: 2987 case CK_ARCProduceObject: 2988 return false; 2989 2990 // These operations preserve a block type. 2991 case CK_NoOp: 2992 case CK_BitCast: 2993 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2994 2995 // These operations are known to be bad (or haven't been considered). 2996 case CK_AnyPointerToBlockPointerCast: 2997 default: 2998 return true; 2999 } 3000 } 3001 3002 return true; 3003 } 3004 3005 namespace { 3006 /// A CRTP base class for emitting expressions of retainable object 3007 /// pointer type in ARC. 3008 template <typename Impl, typename Result> class ARCExprEmitter { 3009 protected: 3010 CodeGenFunction &CGF; 3011 Impl &asImpl() { return *static_cast<Impl*>(this); } 3012 3013 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 3014 3015 public: 3016 Result visit(const Expr *e); 3017 Result visitCastExpr(const CastExpr *e); 3018 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 3019 Result visitBlockExpr(const BlockExpr *e); 3020 Result visitBinaryOperator(const BinaryOperator *e); 3021 Result visitBinAssign(const BinaryOperator *e); 3022 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 3023 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 3024 Result visitBinAssignWeak(const BinaryOperator *e); 3025 Result visitBinAssignStrong(const BinaryOperator *e); 3026 3027 // Minimal implementation: 3028 // Result visitLValueToRValue(const Expr *e) 3029 // Result visitConsumeObject(const Expr *e) 3030 // Result visitExtendBlockObject(const Expr *e) 3031 // Result visitReclaimReturnedObject(const Expr *e) 3032 // Result visitCall(const Expr *e) 3033 // Result visitExpr(const Expr *e) 3034 // 3035 // Result emitBitCast(Result result, llvm::Type *resultType) 3036 // llvm::Value *getValueOfResult(Result result) 3037 }; 3038 } 3039 3040 /// Try to emit a PseudoObjectExpr under special ARC rules. 3041 /// 3042 /// This massively duplicates emitPseudoObjectRValue. 3043 template <typename Impl, typename Result> 3044 Result 3045 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 3046 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3047 3048 // Find the result expression. 3049 const Expr *resultExpr = E->getResultExpr(); 3050 assert(resultExpr); 3051 Result result; 3052 3053 for (PseudoObjectExpr::const_semantics_iterator 3054 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3055 const Expr *semantic = *i; 3056 3057 // If this semantic expression is an opaque value, bind it 3058 // to the result of its source expression. 3059 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3060 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3061 OVMA opaqueData; 3062 3063 // If this semantic is the result of the pseudo-object 3064 // expression, try to evaluate the source as +1. 3065 if (ov == resultExpr) { 3066 assert(!OVMA::shouldBindAsLValue(ov)); 3067 result = asImpl().visit(ov->getSourceExpr()); 3068 opaqueData = OVMA::bind(CGF, ov, 3069 RValue::get(asImpl().getValueOfResult(result))); 3070 3071 // Otherwise, just bind it. 3072 } else { 3073 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3074 } 3075 opaques.push_back(opaqueData); 3076 3077 // Otherwise, if the expression is the result, evaluate it 3078 // and remember the result. 3079 } else if (semantic == resultExpr) { 3080 result = asImpl().visit(semantic); 3081 3082 // Otherwise, evaluate the expression in an ignored context. 3083 } else { 3084 CGF.EmitIgnoredExpr(semantic); 3085 } 3086 } 3087 3088 // Unbind all the opaques now. 3089 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3090 opaques[i].unbind(CGF); 3091 3092 return result; 3093 } 3094 3095 template <typename Impl, typename Result> 3096 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) { 3097 // The default implementation just forwards the expression to visitExpr. 3098 return asImpl().visitExpr(e); 3099 } 3100 3101 template <typename Impl, typename Result> 3102 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 3103 switch (e->getCastKind()) { 3104 3105 // No-op casts don't change the type, so we just ignore them. 3106 case CK_NoOp: 3107 return asImpl().visit(e->getSubExpr()); 3108 3109 // These casts can change the type. 3110 case CK_CPointerToObjCPointerCast: 3111 case CK_BlockPointerToObjCPointerCast: 3112 case CK_AnyPointerToBlockPointerCast: 3113 case CK_BitCast: { 3114 llvm::Type *resultType = CGF.ConvertType(e->getType()); 3115 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 3116 Result result = asImpl().visit(e->getSubExpr()); 3117 return asImpl().emitBitCast(result, resultType); 3118 } 3119 3120 // Handle some casts specially. 3121 case CK_LValueToRValue: 3122 return asImpl().visitLValueToRValue(e->getSubExpr()); 3123 case CK_ARCConsumeObject: 3124 return asImpl().visitConsumeObject(e->getSubExpr()); 3125 case CK_ARCExtendBlockObject: 3126 return asImpl().visitExtendBlockObject(e->getSubExpr()); 3127 case CK_ARCReclaimReturnedObject: 3128 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 3129 3130 // Otherwise, use the default logic. 3131 default: 3132 return asImpl().visitExpr(e); 3133 } 3134 } 3135 3136 template <typename Impl, typename Result> 3137 Result 3138 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 3139 switch (e->getOpcode()) { 3140 case BO_Comma: 3141 CGF.EmitIgnoredExpr(e->getLHS()); 3142 CGF.EnsureInsertPoint(); 3143 return asImpl().visit(e->getRHS()); 3144 3145 case BO_Assign: 3146 return asImpl().visitBinAssign(e); 3147 3148 default: 3149 return asImpl().visitExpr(e); 3150 } 3151 } 3152 3153 template <typename Impl, typename Result> 3154 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 3155 switch (e->getLHS()->getType().getObjCLifetime()) { 3156 case Qualifiers::OCL_ExplicitNone: 3157 return asImpl().visitBinAssignUnsafeUnretained(e); 3158 3159 case Qualifiers::OCL_Weak: 3160 return asImpl().visitBinAssignWeak(e); 3161 3162 case Qualifiers::OCL_Autoreleasing: 3163 return asImpl().visitBinAssignAutoreleasing(e); 3164 3165 case Qualifiers::OCL_Strong: 3166 return asImpl().visitBinAssignStrong(e); 3167 3168 case Qualifiers::OCL_None: 3169 return asImpl().visitExpr(e); 3170 } 3171 llvm_unreachable("bad ObjC ownership qualifier"); 3172 } 3173 3174 /// The default rule for __unsafe_unretained emits the RHS recursively, 3175 /// stores into the unsafe variable, and propagates the result outward. 3176 template <typename Impl, typename Result> 3177 Result ARCExprEmitter<Impl,Result>:: 3178 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 3179 // Recursively emit the RHS. 3180 // For __block safety, do this before emitting the LHS. 3181 Result result = asImpl().visit(e->getRHS()); 3182 3183 // Perform the store. 3184 LValue lvalue = 3185 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 3186 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 3187 lvalue); 3188 3189 return result; 3190 } 3191 3192 template <typename Impl, typename Result> 3193 Result 3194 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 3195 return asImpl().visitExpr(e); 3196 } 3197 3198 template <typename Impl, typename Result> 3199 Result 3200 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 3201 return asImpl().visitExpr(e); 3202 } 3203 3204 template <typename Impl, typename Result> 3205 Result 3206 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 3207 return asImpl().visitExpr(e); 3208 } 3209 3210 /// The general expression-emission logic. 3211 template <typename Impl, typename Result> 3212 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 3213 // We should *never* see a nested full-expression here, because if 3214 // we fail to emit at +1, our caller must not retain after we close 3215 // out the full-expression. This isn't as important in the unsafe 3216 // emitter. 3217 assert(!isa<ExprWithCleanups>(e)); 3218 3219 // Look through parens, __extension__, generic selection, etc. 3220 e = e->IgnoreParens(); 3221 3222 // Handle certain kinds of casts. 3223 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 3224 return asImpl().visitCastExpr(ce); 3225 3226 // Handle the comma operator. 3227 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 3228 return asImpl().visitBinaryOperator(op); 3229 3230 // TODO: handle conditional operators here 3231 3232 // For calls and message sends, use the retained-call logic. 3233 // Delegate inits are a special case in that they're the only 3234 // returns-retained expression that *isn't* surrounded by 3235 // a consume. 3236 } else if (isa<CallExpr>(e) || 3237 (isa<ObjCMessageExpr>(e) && 3238 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 3239 return asImpl().visitCall(e); 3240 3241 // Look through pseudo-object expressions. 3242 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 3243 return asImpl().visitPseudoObjectExpr(pseudo); 3244 } else if (auto *be = dyn_cast<BlockExpr>(e)) 3245 return asImpl().visitBlockExpr(be); 3246 3247 return asImpl().visitExpr(e); 3248 } 3249 3250 namespace { 3251 3252 /// An emitter for +1 results. 3253 struct ARCRetainExprEmitter : 3254 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 3255 3256 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3257 3258 llvm::Value *getValueOfResult(TryEmitResult result) { 3259 return result.getPointer(); 3260 } 3261 3262 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 3263 llvm::Value *value = result.getPointer(); 3264 value = CGF.Builder.CreateBitCast(value, resultType); 3265 result.setPointer(value); 3266 return result; 3267 } 3268 3269 TryEmitResult visitLValueToRValue(const Expr *e) { 3270 return tryEmitARCRetainLoadOfScalar(CGF, e); 3271 } 3272 3273 /// For consumptions, just emit the subexpression and thus elide 3274 /// the retain/release pair. 3275 TryEmitResult visitConsumeObject(const Expr *e) { 3276 llvm::Value *result = CGF.EmitScalarExpr(e); 3277 return TryEmitResult(result, true); 3278 } 3279 3280 TryEmitResult visitBlockExpr(const BlockExpr *e) { 3281 TryEmitResult result = visitExpr(e); 3282 // Avoid the block-retain if this is a block literal that doesn't need to be 3283 // copied to the heap. 3284 if (e->getBlockDecl()->canAvoidCopyToHeap()) 3285 result.setInt(true); 3286 return result; 3287 } 3288 3289 /// Block extends are net +0. Naively, we could just recurse on 3290 /// the subexpression, but actually we need to ensure that the 3291 /// value is copied as a block, so there's a little filter here. 3292 TryEmitResult visitExtendBlockObject(const Expr *e) { 3293 llvm::Value *result; // will be a +0 value 3294 3295 // If we can't safely assume the sub-expression will produce a 3296 // block-copied value, emit the sub-expression at +0. 3297 if (shouldEmitSeparateBlockRetain(e)) { 3298 result = CGF.EmitScalarExpr(e); 3299 3300 // Otherwise, try to emit the sub-expression at +1 recursively. 3301 } else { 3302 TryEmitResult subresult = asImpl().visit(e); 3303 3304 // If that produced a retained value, just use that. 3305 if (subresult.getInt()) { 3306 return subresult; 3307 } 3308 3309 // Otherwise it's +0. 3310 result = subresult.getPointer(); 3311 } 3312 3313 // Retain the object as a block. 3314 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 3315 return TryEmitResult(result, true); 3316 } 3317 3318 /// For reclaims, emit the subexpression as a retained call and 3319 /// skip the consumption. 3320 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 3321 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3322 return TryEmitResult(result, true); 3323 } 3324 3325 /// When we have an undecorated call, retroactively do a claim. 3326 TryEmitResult visitCall(const Expr *e) { 3327 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3328 return TryEmitResult(result, true); 3329 } 3330 3331 // TODO: maybe special-case visitBinAssignWeak? 3332 3333 TryEmitResult visitExpr(const Expr *e) { 3334 // We didn't find an obvious production, so emit what we've got and 3335 // tell the caller that we didn't manage to retain. 3336 llvm::Value *result = CGF.EmitScalarExpr(e); 3337 return TryEmitResult(result, false); 3338 } 3339 }; 3340 } 3341 3342 static TryEmitResult 3343 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 3344 return ARCRetainExprEmitter(CGF).visit(e); 3345 } 3346 3347 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 3348 LValue lvalue, 3349 QualType type) { 3350 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 3351 llvm::Value *value = result.getPointer(); 3352 if (!result.getInt()) 3353 value = CGF.EmitARCRetain(type, value); 3354 return value; 3355 } 3356 3357 /// EmitARCRetainScalarExpr - Semantically equivalent to 3358 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 3359 /// best-effort attempt to peephole expressions that naturally produce 3360 /// retained objects. 3361 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 3362 // The retain needs to happen within the full-expression. 3363 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3364 RunCleanupsScope scope(*this); 3365 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 3366 } 3367 3368 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3369 llvm::Value *value = result.getPointer(); 3370 if (!result.getInt()) 3371 value = EmitARCRetain(e->getType(), value); 3372 return value; 3373 } 3374 3375 llvm::Value * 3376 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 3377 // The retain needs to happen within the full-expression. 3378 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3379 RunCleanupsScope scope(*this); 3380 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 3381 } 3382 3383 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3384 llvm::Value *value = result.getPointer(); 3385 if (result.getInt()) 3386 value = EmitARCAutorelease(value); 3387 else 3388 value = EmitARCRetainAutorelease(e->getType(), value); 3389 return value; 3390 } 3391 3392 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 3393 llvm::Value *result; 3394 bool doRetain; 3395 3396 if (shouldEmitSeparateBlockRetain(e)) { 3397 result = EmitScalarExpr(e); 3398 doRetain = true; 3399 } else { 3400 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 3401 result = subresult.getPointer(); 3402 doRetain = !subresult.getInt(); 3403 } 3404 3405 if (doRetain) 3406 result = EmitARCRetainBlock(result, /*mandatory*/ true); 3407 return EmitObjCConsumeObject(e->getType(), result); 3408 } 3409 3410 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3411 // In ARC, retain and autorelease the expression. 3412 if (getLangOpts().ObjCAutoRefCount) { 3413 // Do so before running any cleanups for the full-expression. 3414 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3415 return EmitARCRetainAutoreleaseScalarExpr(expr); 3416 } 3417 3418 // Otherwise, use the normal scalar-expression emission. The 3419 // exception machinery doesn't do anything special with the 3420 // exception like retaining it, so there's no safety associated with 3421 // only running cleanups after the throw has started, and when it 3422 // matters it tends to be substantially inferior code. 3423 return EmitScalarExpr(expr); 3424 } 3425 3426 namespace { 3427 3428 /// An emitter for assigning into an __unsafe_unretained context. 3429 struct ARCUnsafeUnretainedExprEmitter : 3430 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3431 3432 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3433 3434 llvm::Value *getValueOfResult(llvm::Value *value) { 3435 return value; 3436 } 3437 3438 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3439 return CGF.Builder.CreateBitCast(value, resultType); 3440 } 3441 3442 llvm::Value *visitLValueToRValue(const Expr *e) { 3443 return CGF.EmitScalarExpr(e); 3444 } 3445 3446 /// For consumptions, just emit the subexpression and perform the 3447 /// consumption like normal. 3448 llvm::Value *visitConsumeObject(const Expr *e) { 3449 llvm::Value *value = CGF.EmitScalarExpr(e); 3450 return CGF.EmitObjCConsumeObject(e->getType(), value); 3451 } 3452 3453 /// No special logic for block extensions. (This probably can't 3454 /// actually happen in this emitter, though.) 3455 llvm::Value *visitExtendBlockObject(const Expr *e) { 3456 return CGF.EmitARCExtendBlockObject(e); 3457 } 3458 3459 /// For reclaims, perform an unsafeClaim if that's enabled. 3460 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3461 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3462 } 3463 3464 /// When we have an undecorated call, just emit it without adding 3465 /// the unsafeClaim. 3466 llvm::Value *visitCall(const Expr *e) { 3467 return CGF.EmitScalarExpr(e); 3468 } 3469 3470 /// Just do normal scalar emission in the default case. 3471 llvm::Value *visitExpr(const Expr *e) { 3472 return CGF.EmitScalarExpr(e); 3473 } 3474 }; 3475 } 3476 3477 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3478 const Expr *e) { 3479 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3480 } 3481 3482 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3483 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3484 /// avoiding any spurious retains, including by performing reclaims 3485 /// with objc_unsafeClaimAutoreleasedReturnValue. 3486 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3487 // Look through full-expressions. 3488 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3489 RunCleanupsScope scope(*this); 3490 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3491 } 3492 3493 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3494 } 3495 3496 std::pair<LValue,llvm::Value*> 3497 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3498 bool ignored) { 3499 // Evaluate the RHS first. If we're ignoring the result, assume 3500 // that we can emit at an unsafe +0. 3501 llvm::Value *value; 3502 if (ignored) { 3503 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3504 } else { 3505 value = EmitScalarExpr(e->getRHS()); 3506 } 3507 3508 // Emit the LHS and perform the store. 3509 LValue lvalue = EmitLValue(e->getLHS()); 3510 EmitStoreOfScalar(value, lvalue); 3511 3512 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3513 } 3514 3515 std::pair<LValue,llvm::Value*> 3516 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3517 bool ignored) { 3518 // Evaluate the RHS first. 3519 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3520 llvm::Value *value = result.getPointer(); 3521 3522 bool hasImmediateRetain = result.getInt(); 3523 3524 // If we didn't emit a retained object, and the l-value is of block 3525 // type, then we need to emit the block-retain immediately in case 3526 // it invalidates the l-value. 3527 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3528 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3529 hasImmediateRetain = true; 3530 } 3531 3532 LValue lvalue = EmitLValue(e->getLHS()); 3533 3534 // If the RHS was emitted retained, expand this. 3535 if (hasImmediateRetain) { 3536 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3537 EmitStoreOfScalar(value, lvalue); 3538 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3539 } else { 3540 value = EmitARCStoreStrong(lvalue, value, ignored); 3541 } 3542 3543 return std::pair<LValue,llvm::Value*>(lvalue, value); 3544 } 3545 3546 std::pair<LValue,llvm::Value*> 3547 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3548 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3549 LValue lvalue = EmitLValue(e->getLHS()); 3550 3551 EmitStoreOfScalar(value, lvalue); 3552 3553 return std::pair<LValue,llvm::Value*>(lvalue, value); 3554 } 3555 3556 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3557 const ObjCAutoreleasePoolStmt &ARPS) { 3558 const Stmt *subStmt = ARPS.getSubStmt(); 3559 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3560 3561 CGDebugInfo *DI = getDebugInfo(); 3562 if (DI) 3563 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3564 3565 // Keep track of the current cleanup stack depth. 3566 RunCleanupsScope Scope(*this); 3567 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3568 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3569 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3570 } else { 3571 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3572 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3573 } 3574 3575 for (const auto *I : S.body()) 3576 EmitStmt(I); 3577 3578 if (DI) 3579 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3580 } 3581 3582 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3583 /// make sure it survives garbage collection until this point. 3584 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3585 // We just use an inline assembly. 3586 llvm::FunctionType *extenderType 3587 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3588 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType, 3589 /* assembly */ "", 3590 /* constraints */ "r", 3591 /* side effects */ true); 3592 3593 object = Builder.CreateBitCast(object, VoidPtrTy); 3594 EmitNounwindRuntimeCall(extender, object); 3595 } 3596 3597 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3598 /// non-trivial copy assignment function, produce following helper function. 3599 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3600 /// 3601 llvm::Constant * 3602 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3603 const ObjCPropertyImplDecl *PID) { 3604 if (!getLangOpts().CPlusPlus || 3605 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3606 return nullptr; 3607 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3608 if (!Ty->isRecordType()) 3609 return nullptr; 3610 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3611 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3612 return nullptr; 3613 llvm::Constant *HelperFn = nullptr; 3614 if (hasTrivialSetExpr(PID)) 3615 return nullptr; 3616 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3617 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3618 return HelperFn; 3619 3620 ASTContext &C = getContext(); 3621 IdentifierInfo *II 3622 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3623 3624 QualType ReturnTy = C.VoidTy; 3625 QualType DestTy = C.getPointerType(Ty); 3626 QualType SrcTy = Ty; 3627 SrcTy.addConst(); 3628 SrcTy = C.getPointerType(SrcTy); 3629 3630 SmallVector<QualType, 2> ArgTys; 3631 ArgTys.push_back(DestTy); 3632 ArgTys.push_back(SrcTy); 3633 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3634 3635 FunctionDecl *FD = FunctionDecl::Create( 3636 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3637 FunctionTy, nullptr, SC_Static, false, false); 3638 3639 FunctionArgList args; 3640 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3641 ImplicitParamDecl::Other); 3642 args.push_back(&DstDecl); 3643 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3644 ImplicitParamDecl::Other); 3645 args.push_back(&SrcDecl); 3646 3647 const CGFunctionInfo &FI = 3648 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3649 3650 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3651 3652 llvm::Function *Fn = 3653 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3654 "__assign_helper_atomic_property_", 3655 &CGM.getModule()); 3656 3657 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3658 3659 StartFunction(FD, ReturnTy, Fn, FI, args); 3660 3661 DeclRefExpr DstExpr(C, &DstDecl, false, DestTy, VK_RValue, SourceLocation()); 3662 UnaryOperator *DST = UnaryOperator::Create( 3663 C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary, 3664 SourceLocation(), false, FPOptionsOverride()); 3665 3666 DeclRefExpr SrcExpr(C, &SrcDecl, false, SrcTy, VK_RValue, SourceLocation()); 3667 UnaryOperator *SRC = UnaryOperator::Create( 3668 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3669 SourceLocation(), false, FPOptionsOverride()); 3670 3671 Expr *Args[2] = {DST, SRC}; 3672 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3673 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 3674 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(), 3675 VK_LValue, SourceLocation(), FPOptionsOverride()); 3676 3677 EmitStmt(TheCall); 3678 3679 FinishFunction(); 3680 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3681 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3682 return HelperFn; 3683 } 3684 3685 llvm::Constant * 3686 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3687 const ObjCPropertyImplDecl *PID) { 3688 if (!getLangOpts().CPlusPlus || 3689 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3690 return nullptr; 3691 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3692 QualType Ty = PD->getType(); 3693 if (!Ty->isRecordType()) 3694 return nullptr; 3695 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3696 return nullptr; 3697 llvm::Constant *HelperFn = nullptr; 3698 if (hasTrivialGetExpr(PID)) 3699 return nullptr; 3700 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3701 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3702 return HelperFn; 3703 3704 ASTContext &C = getContext(); 3705 IdentifierInfo *II = 3706 &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3707 3708 QualType ReturnTy = C.VoidTy; 3709 QualType DestTy = C.getPointerType(Ty); 3710 QualType SrcTy = Ty; 3711 SrcTy.addConst(); 3712 SrcTy = C.getPointerType(SrcTy); 3713 3714 SmallVector<QualType, 2> ArgTys; 3715 ArgTys.push_back(DestTy); 3716 ArgTys.push_back(SrcTy); 3717 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3718 3719 FunctionDecl *FD = FunctionDecl::Create( 3720 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3721 FunctionTy, nullptr, SC_Static, false, false); 3722 3723 FunctionArgList args; 3724 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3725 ImplicitParamDecl::Other); 3726 args.push_back(&DstDecl); 3727 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3728 ImplicitParamDecl::Other); 3729 args.push_back(&SrcDecl); 3730 3731 const CGFunctionInfo &FI = 3732 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3733 3734 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3735 3736 llvm::Function *Fn = llvm::Function::Create( 3737 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_", 3738 &CGM.getModule()); 3739 3740 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3741 3742 StartFunction(FD, ReturnTy, Fn, FI, args); 3743 3744 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue, 3745 SourceLocation()); 3746 3747 UnaryOperator *SRC = UnaryOperator::Create( 3748 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3749 SourceLocation(), false, FPOptionsOverride()); 3750 3751 CXXConstructExpr *CXXConstExpr = 3752 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3753 3754 SmallVector<Expr*, 4> ConstructorArgs; 3755 ConstructorArgs.push_back(SRC); 3756 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3757 CXXConstExpr->arg_end()); 3758 3759 CXXConstructExpr *TheCXXConstructExpr = 3760 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3761 CXXConstExpr->getConstructor(), 3762 CXXConstExpr->isElidable(), 3763 ConstructorArgs, 3764 CXXConstExpr->hadMultipleCandidates(), 3765 CXXConstExpr->isListInitialization(), 3766 CXXConstExpr->isStdInitListInitialization(), 3767 CXXConstExpr->requiresZeroInitialization(), 3768 CXXConstExpr->getConstructionKind(), 3769 SourceRange()); 3770 3771 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue, 3772 SourceLocation()); 3773 3774 RValue DV = EmitAnyExpr(&DstExpr); 3775 CharUnits Alignment 3776 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3777 EmitAggExpr(TheCXXConstructExpr, 3778 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3779 Qualifiers(), 3780 AggValueSlot::IsDestructed, 3781 AggValueSlot::DoesNotNeedGCBarriers, 3782 AggValueSlot::IsNotAliased, 3783 AggValueSlot::DoesNotOverlap)); 3784 3785 FinishFunction(); 3786 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3787 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3788 return HelperFn; 3789 } 3790 3791 llvm::Value * 3792 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3793 // Get selectors for retain/autorelease. 3794 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3795 Selector CopySelector = 3796 getContext().Selectors.getNullarySelector(CopyID); 3797 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3798 Selector AutoreleaseSelector = 3799 getContext().Selectors.getNullarySelector(AutoreleaseID); 3800 3801 // Emit calls to retain/autorelease. 3802 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3803 llvm::Value *Val = Block; 3804 RValue Result; 3805 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3806 Ty, CopySelector, 3807 Val, CallArgList(), nullptr, nullptr); 3808 Val = Result.getScalarVal(); 3809 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3810 Ty, AutoreleaseSelector, 3811 Val, CallArgList(), nullptr, nullptr); 3812 Val = Result.getScalarVal(); 3813 return Val; 3814 } 3815 3816 llvm::Value * 3817 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) { 3818 assert(Args.size() == 3 && "Expected 3 argument here!"); 3819 3820 if (!CGM.IsOSVersionAtLeastFn) { 3821 llvm::FunctionType *FTy = 3822 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 3823 CGM.IsOSVersionAtLeastFn = 3824 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 3825 } 3826 3827 llvm::Value *CallRes = 3828 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 3829 3830 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 3831 } 3832 3833 void CodeGenModule::emitAtAvailableLinkGuard() { 3834 if (!IsOSVersionAtLeastFn) 3835 return; 3836 // @available requires CoreFoundation only on Darwin. 3837 if (!Target.getTriple().isOSDarwin()) 3838 return; 3839 // Add -framework CoreFoundation to the linker commands. We still want to 3840 // emit the core foundation reference down below because otherwise if 3841 // CoreFoundation is not used in the code, the linker won't link the 3842 // framework. 3843 auto &Context = getLLVMContext(); 3844 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3845 llvm::MDString::get(Context, "CoreFoundation")}; 3846 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 3847 // Emit a reference to a symbol from CoreFoundation to ensure that 3848 // CoreFoundation is linked into the final binary. 3849 llvm::FunctionType *FTy = 3850 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 3851 llvm::FunctionCallee CFFunc = 3852 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 3853 3854 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 3855 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction( 3856 CheckFTy, "__clang_at_available_requires_core_foundation_framework", 3857 llvm::AttributeList(), /*Local=*/true); 3858 llvm::Function *CFLinkCheckFunc = 3859 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts()); 3860 if (CFLinkCheckFunc->empty()) { 3861 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 3862 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 3863 CodeGenFunction CGF(*this); 3864 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 3865 CGF.EmitNounwindRuntimeCall(CFFunc, 3866 llvm::Constant::getNullValue(VoidPtrTy)); 3867 CGF.Builder.CreateUnreachable(); 3868 addCompilerUsedGlobal(CFLinkCheckFunc); 3869 } 3870 } 3871 3872 CGObjCRuntime::~CGObjCRuntime() {} 3873