1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/InlineAsm.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
30 static TryEmitResult
31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
32 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
33                                       QualType ET,
34                                       const ObjCMethodDecl *Method,
35                                       RValue Result);
36 
37 /// Given the address of a variable of pointer type, find the correct
38 /// null to store into it.
39 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
40   llvm::Type *type =
41     cast<llvm::PointerType>(addr->getType())->getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString());
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
57 ///
58 llvm::Value *
59 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
60   // Generate the correct selector for this literal's concrete type.
61   const Expr *SubExpr = E->getSubExpr();
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   assert(BoxingMethod && "BoxingMethod is null");
65   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
66   Selector Sel = BoxingMethod->getSelector();
67 
68   // Generate a reference to the class pointer, which will be the receiver.
69   // Assumes that the method was introduced in the class that should be
70   // messaged (avoids pulling it out of the result type).
71   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
72   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
73   llvm::Value *Receiver = Runtime.GetClass(Builder, ClassDecl);
74 
75   const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
76   QualType ArgQT = argDecl->getType().getUnqualifiedType();
77   RValue RV = EmitAnyExpr(SubExpr);
78   CallArgList Args;
79   Args.add(RV, ArgQT);
80 
81   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
82                                               BoxingMethod->getResultType(), Sel, Receiver, Args,
83                                               ClassDecl, BoxingMethod);
84   return Builder.CreateBitCast(result.getScalarVal(),
85                                ConvertType(E->getType()));
86 }
87 
88 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
89                                     const ObjCMethodDecl *MethodWithObjects) {
90   ASTContext &Context = CGM.getContext();
91   const ObjCDictionaryLiteral *DLE = 0;
92   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
93   if (!ALE)
94     DLE = cast<ObjCDictionaryLiteral>(E);
95 
96   // Compute the type of the array we're initializing.
97   uint64_t NumElements =
98     ALE ? ALE->getNumElements() : DLE->getNumElements();
99   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
100                             NumElements);
101   QualType ElementType = Context.getObjCIdType().withConst();
102   QualType ElementArrayType
103     = Context.getConstantArrayType(ElementType, APNumElements,
104                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
105 
106   // Allocate the temporary array(s).
107   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
108   llvm::Value *Keys = 0;
109   if (DLE)
110     Keys = CreateMemTemp(ElementArrayType, "keys");
111 
112   // Perform the actual initialialization of the array(s).
113   for (uint64_t i = 0; i < NumElements; i++) {
114     if (ALE) {
115       // Emit the initializer.
116       const Expr *Rhs = ALE->getElement(i);
117       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
118                                    ElementType,
119                                    Context.getTypeAlignInChars(Rhs->getType()),
120                                    Context);
121       EmitScalarInit(Rhs, /*D=*/0, LV, /*capturedByInit=*/false);
122     } else {
123       // Emit the key initializer.
124       const Expr *Key = DLE->getKeyValueElement(i).Key;
125       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
126                                       ElementType,
127                                     Context.getTypeAlignInChars(Key->getType()),
128                                       Context);
129       EmitScalarInit(Key, /*D=*/0, KeyLV, /*capturedByInit=*/false);
130 
131       // Emit the value initializer.
132       const Expr *Value = DLE->getKeyValueElement(i).Value;
133       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
134                                         ElementType,
135                                   Context.getTypeAlignInChars(Value->getType()),
136                                         Context);
137       EmitScalarInit(Value, /*D=*/0, ValueLV, /*capturedByInit=*/false);
138     }
139   }
140 
141   // Generate the argument list.
142   CallArgList Args;
143   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
144   const ParmVarDecl *argDecl = *PI++;
145   QualType ArgQT = argDecl->getType().getUnqualifiedType();
146   Args.add(RValue::get(Objects), ArgQT);
147   if (DLE) {
148     argDecl = *PI++;
149     ArgQT = argDecl->getType().getUnqualifiedType();
150     Args.add(RValue::get(Keys), ArgQT);
151   }
152   argDecl = *PI;
153   ArgQT = argDecl->getType().getUnqualifiedType();
154   llvm::Value *Count =
155     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
156   Args.add(RValue::get(Count), ArgQT);
157 
158   // Generate a reference to the class pointer, which will be the receiver.
159   Selector Sel = MethodWithObjects->getSelector();
160   QualType ResultType = E->getType();
161   const ObjCObjectPointerType *InterfacePointerType
162     = ResultType->getAsObjCInterfacePointerType();
163   ObjCInterfaceDecl *Class
164     = InterfacePointerType->getObjectType()->getInterface();
165   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
166   llvm::Value *Receiver = Runtime.GetClass(Builder, Class);
167 
168   // Generate the message send.
169   RValue result
170     = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
171                                   MethodWithObjects->getResultType(),
172                                   Sel,
173                                   Receiver, Args, Class,
174                                   MethodWithObjects);
175   return Builder.CreateBitCast(result.getScalarVal(),
176                                ConvertType(E->getType()));
177 }
178 
179 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
180   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
181 }
182 
183 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
184                                             const ObjCDictionaryLiteral *E) {
185   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
186 }
187 
188 /// Emit a selector.
189 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
190   // Untyped selector.
191   // Note that this implementation allows for non-constant strings to be passed
192   // as arguments to @selector().  Currently, the only thing preventing this
193   // behaviour is the type checking in the front end.
194   return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector());
195 }
196 
197 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
198   // FIXME: This should pass the Decl not the name.
199   return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol());
200 }
201 
202 /// \brief Adjust the type of the result of an Objective-C message send
203 /// expression when the method has a related result type.
204 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
205                                       QualType ExpT,
206                                       const ObjCMethodDecl *Method,
207                                       RValue Result) {
208   if (!Method)
209     return Result;
210 
211   if (!Method->hasRelatedResultType() ||
212       CGF.getContext().hasSameType(ExpT, Method->getResultType()) ||
213       !Result.isScalar())
214     return Result;
215 
216   // We have applied a related result type. Cast the rvalue appropriately.
217   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
218                                                CGF.ConvertType(ExpT)));
219 }
220 
221 /// Decide whether to extend the lifetime of the receiver of a
222 /// returns-inner-pointer message.
223 static bool
224 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
225   switch (message->getReceiverKind()) {
226 
227   // For a normal instance message, we should extend unless the
228   // receiver is loaded from a variable with precise lifetime.
229   case ObjCMessageExpr::Instance: {
230     const Expr *receiver = message->getInstanceReceiver();
231     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
232     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
233     receiver = ice->getSubExpr()->IgnoreParens();
234 
235     // Only __strong variables.
236     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
237       return true;
238 
239     // All ivars and fields have precise lifetime.
240     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
241       return false;
242 
243     // Otherwise, check for variables.
244     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
245     if (!declRef) return true;
246     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
247     if (!var) return true;
248 
249     // All variables have precise lifetime except local variables with
250     // automatic storage duration that aren't specially marked.
251     return (var->hasLocalStorage() &&
252             !var->hasAttr<ObjCPreciseLifetimeAttr>());
253   }
254 
255   case ObjCMessageExpr::Class:
256   case ObjCMessageExpr::SuperClass:
257     // It's never necessary for class objects.
258     return false;
259 
260   case ObjCMessageExpr::SuperInstance:
261     // We generally assume that 'self' lives throughout a method call.
262     return false;
263   }
264 
265   llvm_unreachable("invalid receiver kind");
266 }
267 
268 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
269                                             ReturnValueSlot Return) {
270   // Only the lookup mechanism and first two arguments of the method
271   // implementation vary between runtimes.  We can get the receiver and
272   // arguments in generic code.
273 
274   bool isDelegateInit = E->isDelegateInitCall();
275 
276   const ObjCMethodDecl *method = E->getMethodDecl();
277 
278   // We don't retain the receiver in delegate init calls, and this is
279   // safe because the receiver value is always loaded from 'self',
280   // which we zero out.  We don't want to Block_copy block receivers,
281   // though.
282   bool retainSelf =
283     (!isDelegateInit &&
284      CGM.getLangOpts().ObjCAutoRefCount &&
285      method &&
286      method->hasAttr<NSConsumesSelfAttr>());
287 
288   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
289   bool isSuperMessage = false;
290   bool isClassMessage = false;
291   ObjCInterfaceDecl *OID = 0;
292   // Find the receiver
293   QualType ReceiverType;
294   llvm::Value *Receiver = 0;
295   switch (E->getReceiverKind()) {
296   case ObjCMessageExpr::Instance:
297     ReceiverType = E->getInstanceReceiver()->getType();
298     if (retainSelf) {
299       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
300                                                    E->getInstanceReceiver());
301       Receiver = ter.getPointer();
302       if (ter.getInt()) retainSelf = false;
303     } else
304       Receiver = EmitScalarExpr(E->getInstanceReceiver());
305     break;
306 
307   case ObjCMessageExpr::Class: {
308     ReceiverType = E->getClassReceiver();
309     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
310     assert(ObjTy && "Invalid Objective-C class message send");
311     OID = ObjTy->getInterface();
312     assert(OID && "Invalid Objective-C class message send");
313     Receiver = Runtime.GetClass(Builder, OID);
314     isClassMessage = true;
315     break;
316   }
317 
318   case ObjCMessageExpr::SuperInstance:
319     ReceiverType = E->getSuperType();
320     Receiver = LoadObjCSelf();
321     isSuperMessage = true;
322     break;
323 
324   case ObjCMessageExpr::SuperClass:
325     ReceiverType = E->getSuperType();
326     Receiver = LoadObjCSelf();
327     isSuperMessage = true;
328     isClassMessage = true;
329     break;
330   }
331 
332   if (retainSelf)
333     Receiver = EmitARCRetainNonBlock(Receiver);
334 
335   // In ARC, we sometimes want to "extend the lifetime"
336   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
337   // messages.
338   if (getLangOpts().ObjCAutoRefCount && method &&
339       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
340       shouldExtendReceiverForInnerPointerMessage(E))
341     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
342 
343   QualType ResultType =
344     method ? method->getResultType() : E->getType();
345 
346   CallArgList Args;
347   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
348 
349   // For delegate init calls in ARC, do an unsafe store of null into
350   // self.  This represents the call taking direct ownership of that
351   // value.  We have to do this after emitting the other call
352   // arguments because they might also reference self, but we don't
353   // have to worry about any of them modifying self because that would
354   // be an undefined read and write of an object in unordered
355   // expressions.
356   if (isDelegateInit) {
357     assert(getLangOpts().ObjCAutoRefCount &&
358            "delegate init calls should only be marked in ARC");
359 
360     // Do an unsafe store of null into self.
361     llvm::Value *selfAddr =
362       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
363     assert(selfAddr && "no self entry for a delegate init call?");
364 
365     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
366   }
367 
368   RValue result;
369   if (isSuperMessage) {
370     // super is only valid in an Objective-C method
371     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
372     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
373     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
374                                               E->getSelector(),
375                                               OMD->getClassInterface(),
376                                               isCategoryImpl,
377                                               Receiver,
378                                               isClassMessage,
379                                               Args,
380                                               method);
381   } else {
382     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
383                                          E->getSelector(),
384                                          Receiver, Args, OID,
385                                          method);
386   }
387 
388   // For delegate init calls in ARC, implicitly store the result of
389   // the call back into self.  This takes ownership of the value.
390   if (isDelegateInit) {
391     llvm::Value *selfAddr =
392       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
393     llvm::Value *newSelf = result.getScalarVal();
394 
395     // The delegate return type isn't necessarily a matching type; in
396     // fact, it's quite likely to be 'id'.
397     llvm::Type *selfTy =
398       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
399     newSelf = Builder.CreateBitCast(newSelf, selfTy);
400 
401     Builder.CreateStore(newSelf, selfAddr);
402   }
403 
404   return AdjustRelatedResultType(*this, E->getType(), method, result);
405 }
406 
407 namespace {
408 struct FinishARCDealloc : EHScopeStack::Cleanup {
409   void Emit(CodeGenFunction &CGF, Flags flags) {
410     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
411 
412     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
413     const ObjCInterfaceDecl *iface = impl->getClassInterface();
414     if (!iface->getSuperClass()) return;
415 
416     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
417 
418     // Call [super dealloc] if we have a superclass.
419     llvm::Value *self = CGF.LoadObjCSelf();
420 
421     CallArgList args;
422     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
423                                                       CGF.getContext().VoidTy,
424                                                       method->getSelector(),
425                                                       iface,
426                                                       isCategory,
427                                                       self,
428                                                       /*is class msg*/ false,
429                                                       args,
430                                                       method);
431   }
432 };
433 }
434 
435 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
436 /// the LLVM function and sets the other context used by
437 /// CodeGenFunction.
438 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
439                                       const ObjCContainerDecl *CD,
440                                       SourceLocation StartLoc) {
441   FunctionArgList args;
442   // Check if we should generate debug info for this method.
443   if (!OMD->hasAttr<NoDebugAttr>())
444     maybeInitializeDebugInfo();
445 
446   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
447 
448   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
449   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
450 
451   args.push_back(OMD->getSelfDecl());
452   args.push_back(OMD->getCmdDecl());
453 
454   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
455          E = OMD->param_end(); PI != E; ++PI)
456     args.push_back(*PI);
457 
458   CurGD = OMD;
459 
460   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
461 
462   // In ARC, certain methods get an extra cleanup.
463   if (CGM.getLangOpts().ObjCAutoRefCount &&
464       OMD->isInstanceMethod() &&
465       OMD->getSelector().isUnarySelector()) {
466     const IdentifierInfo *ident =
467       OMD->getSelector().getIdentifierInfoForSlot(0);
468     if (ident->isStr("dealloc"))
469       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
470   }
471 }
472 
473 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
474                                               LValue lvalue, QualType type);
475 
476 /// Generate an Objective-C method.  An Objective-C method is a C function with
477 /// its pointer, name, and types registered in the class struture.
478 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
479   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
480   EmitStmt(OMD->getBody());
481   FinishFunction(OMD->getBodyRBrace());
482 }
483 
484 /// emitStructGetterCall - Call the runtime function to load a property
485 /// into the return value slot.
486 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
487                                  bool isAtomic, bool hasStrong) {
488   ASTContext &Context = CGF.getContext();
489 
490   llvm::Value *src =
491     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
492                           ivar, 0).getAddress();
493 
494   // objc_copyStruct (ReturnValue, &structIvar,
495   //                  sizeof (Type of Ivar), isAtomic, false);
496   CallArgList args;
497 
498   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
499   args.add(RValue::get(dest), Context.VoidPtrTy);
500 
501   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
502   args.add(RValue::get(src), Context.VoidPtrTy);
503 
504   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
505   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
506   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
507   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
508 
509   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
510   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
511                                                       FunctionType::ExtInfo(),
512                                                       RequiredArgs::All),
513                fn, ReturnValueSlot(), args);
514 }
515 
516 /// Determine whether the given architecture supports unaligned atomic
517 /// accesses.  They don't have to be fast, just faster than a function
518 /// call and a mutex.
519 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
520   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
521   // currently supported by the backend.)
522   return 0;
523 }
524 
525 /// Return the maximum size that permits atomic accesses for the given
526 /// architecture.
527 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
528                                         llvm::Triple::ArchType arch) {
529   // ARM has 8-byte atomic accesses, but it's not clear whether we
530   // want to rely on them here.
531 
532   // In the default case, just assume that any size up to a pointer is
533   // fine given adequate alignment.
534   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
535 }
536 
537 namespace {
538   class PropertyImplStrategy {
539   public:
540     enum StrategyKind {
541       /// The 'native' strategy is to use the architecture's provided
542       /// reads and writes.
543       Native,
544 
545       /// Use objc_setProperty and objc_getProperty.
546       GetSetProperty,
547 
548       /// Use objc_setProperty for the setter, but use expression
549       /// evaluation for the getter.
550       SetPropertyAndExpressionGet,
551 
552       /// Use objc_copyStruct.
553       CopyStruct,
554 
555       /// The 'expression' strategy is to emit normal assignment or
556       /// lvalue-to-rvalue expressions.
557       Expression
558     };
559 
560     StrategyKind getKind() const { return StrategyKind(Kind); }
561 
562     bool hasStrongMember() const { return HasStrong; }
563     bool isAtomic() const { return IsAtomic; }
564     bool isCopy() const { return IsCopy; }
565 
566     CharUnits getIvarSize() const { return IvarSize; }
567     CharUnits getIvarAlignment() const { return IvarAlignment; }
568 
569     PropertyImplStrategy(CodeGenModule &CGM,
570                          const ObjCPropertyImplDecl *propImpl);
571 
572   private:
573     unsigned Kind : 8;
574     unsigned IsAtomic : 1;
575     unsigned IsCopy : 1;
576     unsigned HasStrong : 1;
577 
578     CharUnits IvarSize;
579     CharUnits IvarAlignment;
580   };
581 }
582 
583 /// Pick an implementation strategy for the given property synthesis.
584 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
585                                      const ObjCPropertyImplDecl *propImpl) {
586   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
587   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
588 
589   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
590   IsAtomic = prop->isAtomic();
591   HasStrong = false; // doesn't matter here.
592 
593   // Evaluate the ivar's size and alignment.
594   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
595   QualType ivarType = ivar->getType();
596   llvm::tie(IvarSize, IvarAlignment)
597     = CGM.getContext().getTypeInfoInChars(ivarType);
598 
599   // If we have a copy property, we always have to use getProperty/setProperty.
600   // TODO: we could actually use setProperty and an expression for non-atomics.
601   if (IsCopy) {
602     Kind = GetSetProperty;
603     return;
604   }
605 
606   // Handle retain.
607   if (setterKind == ObjCPropertyDecl::Retain) {
608     // In GC-only, there's nothing special that needs to be done.
609     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
610       // fallthrough
611 
612     // In ARC, if the property is non-atomic, use expression emission,
613     // which translates to objc_storeStrong.  This isn't required, but
614     // it's slightly nicer.
615     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
616       // Using standard expression emission for the setter is only
617       // acceptable if the ivar is __strong, which won't be true if
618       // the property is annotated with __attribute__((NSObject)).
619       // TODO: falling all the way back to objc_setProperty here is
620       // just laziness, though;  we could still use objc_storeStrong
621       // if we hacked it right.
622       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
623         Kind = Expression;
624       else
625         Kind = SetPropertyAndExpressionGet;
626       return;
627 
628     // Otherwise, we need to at least use setProperty.  However, if
629     // the property isn't atomic, we can use normal expression
630     // emission for the getter.
631     } else if (!IsAtomic) {
632       Kind = SetPropertyAndExpressionGet;
633       return;
634 
635     // Otherwise, we have to use both setProperty and getProperty.
636     } else {
637       Kind = GetSetProperty;
638       return;
639     }
640   }
641 
642   // If we're not atomic, just use expression accesses.
643   if (!IsAtomic) {
644     Kind = Expression;
645     return;
646   }
647 
648   // Properties on bitfield ivars need to be emitted using expression
649   // accesses even if they're nominally atomic.
650   if (ivar->isBitField()) {
651     Kind = Expression;
652     return;
653   }
654 
655   // GC-qualified or ARC-qualified ivars need to be emitted as
656   // expressions.  This actually works out to being atomic anyway,
657   // except for ARC __strong, but that should trigger the above code.
658   if (ivarType.hasNonTrivialObjCLifetime() ||
659       (CGM.getLangOpts().getGC() &&
660        CGM.getContext().getObjCGCAttrKind(ivarType))) {
661     Kind = Expression;
662     return;
663   }
664 
665   // Compute whether the ivar has strong members.
666   if (CGM.getLangOpts().getGC())
667     if (const RecordType *recordType = ivarType->getAs<RecordType>())
668       HasStrong = recordType->getDecl()->hasObjectMember();
669 
670   // We can never access structs with object members with a native
671   // access, because we need to use write barriers.  This is what
672   // objc_copyStruct is for.
673   if (HasStrong) {
674     Kind = CopyStruct;
675     return;
676   }
677 
678   // Otherwise, this is target-dependent and based on the size and
679   // alignment of the ivar.
680 
681   // If the size of the ivar is not a power of two, give up.  We don't
682   // want to get into the business of doing compare-and-swaps.
683   if (!IvarSize.isPowerOfTwo()) {
684     Kind = CopyStruct;
685     return;
686   }
687 
688   llvm::Triple::ArchType arch =
689     CGM.getContext().getTargetInfo().getTriple().getArch();
690 
691   // Most architectures require memory to fit within a single cache
692   // line, so the alignment has to be at least the size of the access.
693   // Otherwise we have to grab a lock.
694   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
695     Kind = CopyStruct;
696     return;
697   }
698 
699   // If the ivar's size exceeds the architecture's maximum atomic
700   // access size, we have to use CopyStruct.
701   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
702     Kind = CopyStruct;
703     return;
704   }
705 
706   // Otherwise, we can use native loads and stores.
707   Kind = Native;
708 }
709 
710 /// \brief Generate an Objective-C property getter function.
711 ///
712 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
713 /// is illegal within a category.
714 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
715                                          const ObjCPropertyImplDecl *PID) {
716   llvm::Constant *AtomicHelperFn =
717     GenerateObjCAtomicGetterCopyHelperFunction(PID);
718   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
719   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
720   assert(OMD && "Invalid call to generate getter (empty method)");
721   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
722 
723   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
724 
725   FinishFunction();
726 }
727 
728 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
729   const Expr *getter = propImpl->getGetterCXXConstructor();
730   if (!getter) return true;
731 
732   // Sema only makes only of these when the ivar has a C++ class type,
733   // so the form is pretty constrained.
734 
735   // If the property has a reference type, we might just be binding a
736   // reference, in which case the result will be a gl-value.  We should
737   // treat this as a non-trivial operation.
738   if (getter->isGLValue())
739     return false;
740 
741   // If we selected a trivial copy-constructor, we're okay.
742   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
743     return (construct->getConstructor()->isTrivial());
744 
745   // The constructor might require cleanups (in which case it's never
746   // trivial).
747   assert(isa<ExprWithCleanups>(getter));
748   return false;
749 }
750 
751 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
752 /// copy the ivar into the resturn slot.
753 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
754                                           llvm::Value *returnAddr,
755                                           ObjCIvarDecl *ivar,
756                                           llvm::Constant *AtomicHelperFn) {
757   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
758   //                           AtomicHelperFn);
759   CallArgList args;
760 
761   // The 1st argument is the return Slot.
762   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
763 
764   // The 2nd argument is the address of the ivar.
765   llvm::Value *ivarAddr =
766   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
767                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
768   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
769   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
770 
771   // Third argument is the helper function.
772   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
773 
774   llvm::Value *copyCppAtomicObjectFn =
775     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
776   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
777                                                       args,
778                                                       FunctionType::ExtInfo(),
779                                                       RequiredArgs::All),
780                copyCppAtomicObjectFn, ReturnValueSlot(), args);
781 }
782 
783 void
784 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
785                                         const ObjCPropertyImplDecl *propImpl,
786                                         const ObjCMethodDecl *GetterMethodDecl,
787                                         llvm::Constant *AtomicHelperFn) {
788   // If there's a non-trivial 'get' expression, we just have to emit that.
789   if (!hasTrivialGetExpr(propImpl)) {
790     if (!AtomicHelperFn) {
791       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
792                      /*nrvo*/ 0);
793       EmitReturnStmt(ret);
794     }
795     else {
796       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
797       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
798                                     ivar, AtomicHelperFn);
799     }
800     return;
801   }
802 
803   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
804   QualType propType = prop->getType();
805   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
806 
807   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
808 
809   // Pick an implementation strategy.
810   PropertyImplStrategy strategy(CGM, propImpl);
811   switch (strategy.getKind()) {
812   case PropertyImplStrategy::Native: {
813     // We don't need to do anything for a zero-size struct.
814     if (strategy.getIvarSize().isZero())
815       return;
816 
817     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
818 
819     // Currently, all atomic accesses have to be through integer
820     // types, so there's no point in trying to pick a prettier type.
821     llvm::Type *bitcastType =
822       llvm::Type::getIntNTy(getLLVMContext(),
823                             getContext().toBits(strategy.getIvarSize()));
824     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
825 
826     // Perform an atomic load.  This does not impose ordering constraints.
827     llvm::Value *ivarAddr = LV.getAddress();
828     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
829     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
830     load->setAlignment(strategy.getIvarAlignment().getQuantity());
831     load->setAtomic(llvm::Unordered);
832 
833     // Store that value into the return address.  Doing this with a
834     // bitcast is likely to produce some pretty ugly IR, but it's not
835     // the *most* terrible thing in the world.
836     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
837 
838     // Make sure we don't do an autorelease.
839     AutoreleaseResult = false;
840     return;
841   }
842 
843   case PropertyImplStrategy::GetSetProperty: {
844     llvm::Value *getPropertyFn =
845       CGM.getObjCRuntime().GetPropertyGetFunction();
846     if (!getPropertyFn) {
847       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
848       return;
849     }
850 
851     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
852     // FIXME: Can't this be simpler? This might even be worse than the
853     // corresponding gcc code.
854     llvm::Value *cmd =
855       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
856     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
857     llvm::Value *ivarOffset =
858       EmitIvarOffset(classImpl->getClassInterface(), ivar);
859 
860     CallArgList args;
861     args.add(RValue::get(self), getContext().getObjCIdType());
862     args.add(RValue::get(cmd), getContext().getObjCSelType());
863     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
864     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
865              getContext().BoolTy);
866 
867     // FIXME: We shouldn't need to get the function info here, the
868     // runtime already should have computed it to build the function.
869     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
870                                                        FunctionType::ExtInfo(),
871                                                             RequiredArgs::All),
872                          getPropertyFn, ReturnValueSlot(), args);
873 
874     // We need to fix the type here. Ivars with copy & retain are
875     // always objects so we don't need to worry about complex or
876     // aggregates.
877     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
878            getTypes().ConvertType(getterMethod->getResultType())));
879 
880     EmitReturnOfRValue(RV, propType);
881 
882     // objc_getProperty does an autorelease, so we should suppress ours.
883     AutoreleaseResult = false;
884 
885     return;
886   }
887 
888   case PropertyImplStrategy::CopyStruct:
889     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
890                          strategy.hasStrongMember());
891     return;
892 
893   case PropertyImplStrategy::Expression:
894   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
895     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
896 
897     QualType ivarType = ivar->getType();
898     if (ivarType->isAnyComplexType()) {
899       ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(),
900                                                LV.isVolatileQualified());
901       StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified());
902     } else if (hasAggregateLLVMType(ivarType)) {
903       // The return value slot is guaranteed to not be aliased, but
904       // that's not necessarily the same as "on the stack", so
905       // we still potentially need objc_memmove_collectable.
906       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
907     } else {
908       llvm::Value *value;
909       if (propType->isReferenceType()) {
910         value = LV.getAddress();
911       } else {
912         // We want to load and autoreleaseReturnValue ARC __weak ivars.
913         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
914           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
915 
916         // Otherwise we want to do a simple load, suppressing the
917         // final autorelease.
918         } else {
919           value = EmitLoadOfLValue(LV).getScalarVal();
920           AutoreleaseResult = false;
921         }
922 
923         value = Builder.CreateBitCast(value, ConvertType(propType));
924         value = Builder.CreateBitCast(value,
925                   ConvertType(GetterMethodDecl->getResultType()));
926       }
927 
928       EmitReturnOfRValue(RValue::get(value), propType);
929     }
930     return;
931   }
932 
933   }
934   llvm_unreachable("bad @property implementation strategy!");
935 }
936 
937 /// emitStructSetterCall - Call the runtime function to store the value
938 /// from the first formal parameter into the given ivar.
939 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
940                                  ObjCIvarDecl *ivar) {
941   // objc_copyStruct (&structIvar, &Arg,
942   //                  sizeof (struct something), true, false);
943   CallArgList args;
944 
945   // The first argument is the address of the ivar.
946   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
947                                                 CGF.LoadObjCSelf(), ivar, 0)
948     .getAddress();
949   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
950   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
951 
952   // The second argument is the address of the parameter variable.
953   ParmVarDecl *argVar = *OMD->param_begin();
954   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
955                      VK_LValue, SourceLocation());
956   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
957   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
958   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
959 
960   // The third argument is the sizeof the type.
961   llvm::Value *size =
962     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
963   args.add(RValue::get(size), CGF.getContext().getSizeType());
964 
965   // The fourth argument is the 'isAtomic' flag.
966   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
967 
968   // The fifth argument is the 'hasStrong' flag.
969   // FIXME: should this really always be false?
970   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
971 
972   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
973   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
974                                                       args,
975                                                       FunctionType::ExtInfo(),
976                                                       RequiredArgs::All),
977                copyStructFn, ReturnValueSlot(), args);
978 }
979 
980 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
981 /// the value from the first formal parameter into the given ivar, using
982 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
983 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
984                                           ObjCMethodDecl *OMD,
985                                           ObjCIvarDecl *ivar,
986                                           llvm::Constant *AtomicHelperFn) {
987   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
988   //                           AtomicHelperFn);
989   CallArgList args;
990 
991   // The first argument is the address of the ivar.
992   llvm::Value *ivarAddr =
993     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
994                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
995   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
996   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
997 
998   // The second argument is the address of the parameter variable.
999   ParmVarDecl *argVar = *OMD->param_begin();
1000   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1001                      VK_LValue, SourceLocation());
1002   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1003   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1004   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1005 
1006   // Third argument is the helper function.
1007   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1008 
1009   llvm::Value *copyCppAtomicObjectFn =
1010     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1011   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1012                                                       args,
1013                                                       FunctionType::ExtInfo(),
1014                                                       RequiredArgs::All),
1015                copyCppAtomicObjectFn, ReturnValueSlot(), args);
1016 
1017 
1018 }
1019 
1020 
1021 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1022   Expr *setter = PID->getSetterCXXAssignment();
1023   if (!setter) return true;
1024 
1025   // Sema only makes only of these when the ivar has a C++ class type,
1026   // so the form is pretty constrained.
1027 
1028   // An operator call is trivial if the function it calls is trivial.
1029   // This also implies that there's nothing non-trivial going on with
1030   // the arguments, because operator= can only be trivial if it's a
1031   // synthesized assignment operator and therefore both parameters are
1032   // references.
1033   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1034     if (const FunctionDecl *callee
1035           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1036       if (callee->isTrivial())
1037         return true;
1038     return false;
1039   }
1040 
1041   assert(isa<ExprWithCleanups>(setter));
1042   return false;
1043 }
1044 
1045 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1046   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1047     return false;
1048   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1049 }
1050 
1051 void
1052 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1053                                         const ObjCPropertyImplDecl *propImpl,
1054                                         llvm::Constant *AtomicHelperFn) {
1055   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1056   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1057   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1058 
1059   // Just use the setter expression if Sema gave us one and it's
1060   // non-trivial.
1061   if (!hasTrivialSetExpr(propImpl)) {
1062     if (!AtomicHelperFn)
1063       // If non-atomic, assignment is called directly.
1064       EmitStmt(propImpl->getSetterCXXAssignment());
1065     else
1066       // If atomic, assignment is called via a locking api.
1067       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1068                                     AtomicHelperFn);
1069     return;
1070   }
1071 
1072   PropertyImplStrategy strategy(CGM, propImpl);
1073   switch (strategy.getKind()) {
1074   case PropertyImplStrategy::Native: {
1075     // We don't need to do anything for a zero-size struct.
1076     if (strategy.getIvarSize().isZero())
1077       return;
1078 
1079     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1080 
1081     LValue ivarLValue =
1082       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1083     llvm::Value *ivarAddr = ivarLValue.getAddress();
1084 
1085     // Currently, all atomic accesses have to be through integer
1086     // types, so there's no point in trying to pick a prettier type.
1087     llvm::Type *bitcastType =
1088       llvm::Type::getIntNTy(getLLVMContext(),
1089                             getContext().toBits(strategy.getIvarSize()));
1090     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1091 
1092     // Cast both arguments to the chosen operation type.
1093     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1094     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1095 
1096     // This bitcast load is likely to cause some nasty IR.
1097     llvm::Value *load = Builder.CreateLoad(argAddr);
1098 
1099     // Perform an atomic store.  There are no memory ordering requirements.
1100     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1101     store->setAlignment(strategy.getIvarAlignment().getQuantity());
1102     store->setAtomic(llvm::Unordered);
1103     return;
1104   }
1105 
1106   case PropertyImplStrategy::GetSetProperty:
1107   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1108 
1109     llvm::Value *setOptimizedPropertyFn = 0;
1110     llvm::Value *setPropertyFn = 0;
1111     if (UseOptimizedSetter(CGM)) {
1112       // 10.8 and iOS 6.0 code and GC is off
1113       setOptimizedPropertyFn =
1114         CGM.getObjCRuntime()
1115            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1116                                             strategy.isCopy());
1117       if (!setOptimizedPropertyFn) {
1118         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1119         return;
1120       }
1121     }
1122     else {
1123       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1124       if (!setPropertyFn) {
1125         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1126         return;
1127       }
1128     }
1129 
1130     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1131     //                       <is-atomic>, <is-copy>).
1132     llvm::Value *cmd =
1133       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1134     llvm::Value *self =
1135       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1136     llvm::Value *ivarOffset =
1137       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1138     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1139     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1140 
1141     CallArgList args;
1142     args.add(RValue::get(self), getContext().getObjCIdType());
1143     args.add(RValue::get(cmd), getContext().getObjCSelType());
1144     if (setOptimizedPropertyFn) {
1145       args.add(RValue::get(arg), getContext().getObjCIdType());
1146       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1147       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1148                                                   FunctionType::ExtInfo(),
1149                                                   RequiredArgs::All),
1150                setOptimizedPropertyFn, ReturnValueSlot(), args);
1151     } else {
1152       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1153       args.add(RValue::get(arg), getContext().getObjCIdType());
1154       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1155                getContext().BoolTy);
1156       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1157                getContext().BoolTy);
1158       // FIXME: We shouldn't need to get the function info here, the runtime
1159       // already should have computed it to build the function.
1160       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1161                                                   FunctionType::ExtInfo(),
1162                                                   RequiredArgs::All),
1163                setPropertyFn, ReturnValueSlot(), args);
1164     }
1165 
1166     return;
1167   }
1168 
1169   case PropertyImplStrategy::CopyStruct:
1170     emitStructSetterCall(*this, setterMethod, ivar);
1171     return;
1172 
1173   case PropertyImplStrategy::Expression:
1174     break;
1175   }
1176 
1177   // Otherwise, fake up some ASTs and emit a normal assignment.
1178   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1179   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1180                    VK_LValue, SourceLocation());
1181   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1182                             selfDecl->getType(), CK_LValueToRValue, &self,
1183                             VK_RValue);
1184   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1185                           SourceLocation(), &selfLoad, true, true);
1186 
1187   ParmVarDecl *argDecl = *setterMethod->param_begin();
1188   QualType argType = argDecl->getType().getNonReferenceType();
1189   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1190   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1191                            argType.getUnqualifiedType(), CK_LValueToRValue,
1192                            &arg, VK_RValue);
1193 
1194   // The property type can differ from the ivar type in some situations with
1195   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1196   // The following absurdity is just to ensure well-formed IR.
1197   CastKind argCK = CK_NoOp;
1198   if (ivarRef.getType()->isObjCObjectPointerType()) {
1199     if (argLoad.getType()->isObjCObjectPointerType())
1200       argCK = CK_BitCast;
1201     else if (argLoad.getType()->isBlockPointerType())
1202       argCK = CK_BlockPointerToObjCPointerCast;
1203     else
1204       argCK = CK_CPointerToObjCPointerCast;
1205   } else if (ivarRef.getType()->isBlockPointerType()) {
1206      if (argLoad.getType()->isBlockPointerType())
1207       argCK = CK_BitCast;
1208     else
1209       argCK = CK_AnyPointerToBlockPointerCast;
1210   } else if (ivarRef.getType()->isPointerType()) {
1211     argCK = CK_BitCast;
1212   }
1213   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1214                            ivarRef.getType(), argCK, &argLoad,
1215                            VK_RValue);
1216   Expr *finalArg = &argLoad;
1217   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1218                                            argLoad.getType()))
1219     finalArg = &argCast;
1220 
1221 
1222   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1223                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1224                         SourceLocation(), false);
1225   EmitStmt(&assign);
1226 }
1227 
1228 /// \brief Generate an Objective-C property setter function.
1229 ///
1230 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1231 /// is illegal within a category.
1232 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1233                                          const ObjCPropertyImplDecl *PID) {
1234   llvm::Constant *AtomicHelperFn =
1235     GenerateObjCAtomicSetterCopyHelperFunction(PID);
1236   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1237   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1238   assert(OMD && "Invalid call to generate setter (empty method)");
1239   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
1240 
1241   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1242 
1243   FinishFunction();
1244 }
1245 
1246 namespace {
1247   struct DestroyIvar : EHScopeStack::Cleanup {
1248   private:
1249     llvm::Value *addr;
1250     const ObjCIvarDecl *ivar;
1251     CodeGenFunction::Destroyer *destroyer;
1252     bool useEHCleanupForArray;
1253   public:
1254     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1255                 CodeGenFunction::Destroyer *destroyer,
1256                 bool useEHCleanupForArray)
1257       : addr(addr), ivar(ivar), destroyer(destroyer),
1258         useEHCleanupForArray(useEHCleanupForArray) {}
1259 
1260     void Emit(CodeGenFunction &CGF, Flags flags) {
1261       LValue lvalue
1262         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1263       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1264                       flags.isForNormalCleanup() && useEHCleanupForArray);
1265     }
1266   };
1267 }
1268 
1269 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1270 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1271                                       llvm::Value *addr,
1272                                       QualType type) {
1273   llvm::Value *null = getNullForVariable(addr);
1274   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1275 }
1276 
1277 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1278                                   ObjCImplementationDecl *impl) {
1279   CodeGenFunction::RunCleanupsScope scope(CGF);
1280 
1281   llvm::Value *self = CGF.LoadObjCSelf();
1282 
1283   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1284   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1285        ivar; ivar = ivar->getNextIvar()) {
1286     QualType type = ivar->getType();
1287 
1288     // Check whether the ivar is a destructible type.
1289     QualType::DestructionKind dtorKind = type.isDestructedType();
1290     if (!dtorKind) continue;
1291 
1292     CodeGenFunction::Destroyer *destroyer = 0;
1293 
1294     // Use a call to objc_storeStrong to destroy strong ivars, for the
1295     // general benefit of the tools.
1296     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1297       destroyer = destroyARCStrongWithStore;
1298 
1299     // Otherwise use the default for the destruction kind.
1300     } else {
1301       destroyer = CGF.getDestroyer(dtorKind);
1302     }
1303 
1304     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1305 
1306     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1307                                          cleanupKind & EHCleanup);
1308   }
1309 
1310   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1311 }
1312 
1313 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1314                                                  ObjCMethodDecl *MD,
1315                                                  bool ctor) {
1316   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1317   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1318 
1319   // Emit .cxx_construct.
1320   if (ctor) {
1321     // Suppress the final autorelease in ARC.
1322     AutoreleaseResult = false;
1323 
1324     SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
1325     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1326            E = IMP->init_end(); B != E; ++B) {
1327       CXXCtorInitializer *IvarInit = (*B);
1328       FieldDecl *Field = IvarInit->getAnyMember();
1329       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
1330       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1331                                     LoadObjCSelf(), Ivar, 0);
1332       EmitAggExpr(IvarInit->getInit(),
1333                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1334                                           AggValueSlot::DoesNotNeedGCBarriers,
1335                                           AggValueSlot::IsNotAliased));
1336     }
1337     // constructor returns 'self'.
1338     CodeGenTypes &Types = CGM.getTypes();
1339     QualType IdTy(CGM.getContext().getObjCIdType());
1340     llvm::Value *SelfAsId =
1341       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1342     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1343 
1344   // Emit .cxx_destruct.
1345   } else {
1346     emitCXXDestructMethod(*this, IMP);
1347   }
1348   FinishFunction();
1349 }
1350 
1351 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1352   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1353   it++; it++;
1354   const ABIArgInfo &AI = it->info;
1355   // FIXME. Is this sufficient check?
1356   return (AI.getKind() == ABIArgInfo::Indirect);
1357 }
1358 
1359 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1360   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1361     return false;
1362   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1363     return FDTTy->getDecl()->hasObjectMember();
1364   return false;
1365 }
1366 
1367 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1368   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1369   return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self");
1370 }
1371 
1372 QualType CodeGenFunction::TypeOfSelfObject() {
1373   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1374   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1375   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1376     getContext().getCanonicalType(selfDecl->getType()));
1377   return PTy->getPointeeType();
1378 }
1379 
1380 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1381   llvm::Constant *EnumerationMutationFn =
1382     CGM.getObjCRuntime().EnumerationMutationFunction();
1383 
1384   if (!EnumerationMutationFn) {
1385     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1386     return;
1387   }
1388 
1389   CGDebugInfo *DI = getDebugInfo();
1390   if (DI)
1391     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1392 
1393   // The local variable comes into scope immediately.
1394   AutoVarEmission variable = AutoVarEmission::invalid();
1395   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1396     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1397 
1398   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1399 
1400   // Fast enumeration state.
1401   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1402   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1403   EmitNullInitialization(StatePtr, StateTy);
1404 
1405   // Number of elements in the items array.
1406   static const unsigned NumItems = 16;
1407 
1408   // Fetch the countByEnumeratingWithState:objects:count: selector.
1409   IdentifierInfo *II[] = {
1410     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1411     &CGM.getContext().Idents.get("objects"),
1412     &CGM.getContext().Idents.get("count")
1413   };
1414   Selector FastEnumSel =
1415     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1416 
1417   QualType ItemsTy =
1418     getContext().getConstantArrayType(getContext().getObjCIdType(),
1419                                       llvm::APInt(32, NumItems),
1420                                       ArrayType::Normal, 0);
1421   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1422 
1423   // Emit the collection pointer.  In ARC, we do a retain.
1424   llvm::Value *Collection;
1425   if (getLangOpts().ObjCAutoRefCount) {
1426     Collection = EmitARCRetainScalarExpr(S.getCollection());
1427 
1428     // Enter a cleanup to do the release.
1429     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1430   } else {
1431     Collection = EmitScalarExpr(S.getCollection());
1432   }
1433 
1434   // The 'continue' label needs to appear within the cleanup for the
1435   // collection object.
1436   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1437 
1438   // Send it our message:
1439   CallArgList Args;
1440 
1441   // The first argument is a temporary of the enumeration-state type.
1442   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1443 
1444   // The second argument is a temporary array with space for NumItems
1445   // pointers.  We'll actually be loading elements from the array
1446   // pointer written into the control state; this buffer is so that
1447   // collections that *aren't* backed by arrays can still queue up
1448   // batches of elements.
1449   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1450 
1451   // The third argument is the capacity of that temporary array.
1452   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1453   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1454   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1455 
1456   // Start the enumeration.
1457   RValue CountRV =
1458     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1459                                              getContext().UnsignedLongTy,
1460                                              FastEnumSel,
1461                                              Collection, Args);
1462 
1463   // The initial number of objects that were returned in the buffer.
1464   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1465 
1466   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1467   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1468 
1469   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1470 
1471   // If the limit pointer was zero to begin with, the collection is
1472   // empty; skip all this.
1473   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1474                        EmptyBB, LoopInitBB);
1475 
1476   // Otherwise, initialize the loop.
1477   EmitBlock(LoopInitBB);
1478 
1479   // Save the initial mutations value.  This is the value at an
1480   // address that was written into the state object by
1481   // countByEnumeratingWithState:objects:count:.
1482   llvm::Value *StateMutationsPtrPtr =
1483     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1484   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1485                                                       "mutationsptr");
1486 
1487   llvm::Value *initialMutations =
1488     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1489 
1490   // Start looping.  This is the point we return to whenever we have a
1491   // fresh, non-empty batch of objects.
1492   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1493   EmitBlock(LoopBodyBB);
1494 
1495   // The current index into the buffer.
1496   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1497   index->addIncoming(zero, LoopInitBB);
1498 
1499   // The current buffer size.
1500   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1501   count->addIncoming(initialBufferLimit, LoopInitBB);
1502 
1503   // Check whether the mutations value has changed from where it was
1504   // at start.  StateMutationsPtr should actually be invariant between
1505   // refreshes.
1506   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1507   llvm::Value *currentMutations
1508     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1509 
1510   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1511   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1512 
1513   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1514                        WasNotMutatedBB, WasMutatedBB);
1515 
1516   // If so, call the enumeration-mutation function.
1517   EmitBlock(WasMutatedBB);
1518   llvm::Value *V =
1519     Builder.CreateBitCast(Collection,
1520                           ConvertType(getContext().getObjCIdType()));
1521   CallArgList Args2;
1522   Args2.add(RValue::get(V), getContext().getObjCIdType());
1523   // FIXME: We shouldn't need to get the function info here, the runtime already
1524   // should have computed it to build the function.
1525   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1526                                                   FunctionType::ExtInfo(),
1527                                                   RequiredArgs::All),
1528            EnumerationMutationFn, ReturnValueSlot(), Args2);
1529 
1530   // Otherwise, or if the mutation function returns, just continue.
1531   EmitBlock(WasNotMutatedBB);
1532 
1533   // Initialize the element variable.
1534   RunCleanupsScope elementVariableScope(*this);
1535   bool elementIsVariable;
1536   LValue elementLValue;
1537   QualType elementType;
1538   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1539     // Initialize the variable, in case it's a __block variable or something.
1540     EmitAutoVarInit(variable);
1541 
1542     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1543     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1544                         VK_LValue, SourceLocation());
1545     elementLValue = EmitLValue(&tempDRE);
1546     elementType = D->getType();
1547     elementIsVariable = true;
1548 
1549     if (D->isARCPseudoStrong())
1550       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1551   } else {
1552     elementLValue = LValue(); // suppress warning
1553     elementType = cast<Expr>(S.getElement())->getType();
1554     elementIsVariable = false;
1555   }
1556   llvm::Type *convertedElementType = ConvertType(elementType);
1557 
1558   // Fetch the buffer out of the enumeration state.
1559   // TODO: this pointer should actually be invariant between
1560   // refreshes, which would help us do certain loop optimizations.
1561   llvm::Value *StateItemsPtr =
1562     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1563   llvm::Value *EnumStateItems =
1564     Builder.CreateLoad(StateItemsPtr, "stateitems");
1565 
1566   // Fetch the value at the current index from the buffer.
1567   llvm::Value *CurrentItemPtr =
1568     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1569   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1570 
1571   // Cast that value to the right type.
1572   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1573                                       "currentitem");
1574 
1575   // Make sure we have an l-value.  Yes, this gets evaluated every
1576   // time through the loop.
1577   if (!elementIsVariable) {
1578     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1579     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1580   } else {
1581     EmitScalarInit(CurrentItem, elementLValue);
1582   }
1583 
1584   // If we do have an element variable, this assignment is the end of
1585   // its initialization.
1586   if (elementIsVariable)
1587     EmitAutoVarCleanups(variable);
1588 
1589   // Perform the loop body, setting up break and continue labels.
1590   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1591   {
1592     RunCleanupsScope Scope(*this);
1593     EmitStmt(S.getBody());
1594   }
1595   BreakContinueStack.pop_back();
1596 
1597   // Destroy the element variable now.
1598   elementVariableScope.ForceCleanup();
1599 
1600   // Check whether there are more elements.
1601   EmitBlock(AfterBody.getBlock());
1602 
1603   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1604 
1605   // First we check in the local buffer.
1606   llvm::Value *indexPlusOne
1607     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1608 
1609   // If we haven't overrun the buffer yet, we can continue.
1610   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1611                        LoopBodyBB, FetchMoreBB);
1612 
1613   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1614   count->addIncoming(count, AfterBody.getBlock());
1615 
1616   // Otherwise, we have to fetch more elements.
1617   EmitBlock(FetchMoreBB);
1618 
1619   CountRV =
1620     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1621                                              getContext().UnsignedLongTy,
1622                                              FastEnumSel,
1623                                              Collection, Args);
1624 
1625   // If we got a zero count, we're done.
1626   llvm::Value *refetchCount = CountRV.getScalarVal();
1627 
1628   // (note that the message send might split FetchMoreBB)
1629   index->addIncoming(zero, Builder.GetInsertBlock());
1630   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1631 
1632   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1633                        EmptyBB, LoopBodyBB);
1634 
1635   // No more elements.
1636   EmitBlock(EmptyBB);
1637 
1638   if (!elementIsVariable) {
1639     // If the element was not a declaration, set it to be null.
1640 
1641     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1642     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1643     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1644   }
1645 
1646   if (DI)
1647     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1648 
1649   // Leave the cleanup we entered in ARC.
1650   if (getLangOpts().ObjCAutoRefCount)
1651     PopCleanupBlock();
1652 
1653   EmitBlock(LoopEnd.getBlock());
1654 }
1655 
1656 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1657   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1658 }
1659 
1660 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1661   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1662 }
1663 
1664 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1665                                               const ObjCAtSynchronizedStmt &S) {
1666   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1667 }
1668 
1669 /// Produce the code for a CK_ARCProduceObject.  Just does a
1670 /// primitive retain.
1671 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1672                                                     llvm::Value *value) {
1673   return EmitARCRetain(type, value);
1674 }
1675 
1676 namespace {
1677   struct CallObjCRelease : EHScopeStack::Cleanup {
1678     CallObjCRelease(llvm::Value *object) : object(object) {}
1679     llvm::Value *object;
1680 
1681     void Emit(CodeGenFunction &CGF, Flags flags) {
1682       CGF.EmitARCRelease(object, /*precise*/ true);
1683     }
1684   };
1685 }
1686 
1687 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1688 /// release at the end of the full-expression.
1689 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1690                                                     llvm::Value *object) {
1691   // If we're in a conditional branch, we need to make the cleanup
1692   // conditional.
1693   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1694   return object;
1695 }
1696 
1697 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1698                                                            llvm::Value *value) {
1699   return EmitARCRetainAutorelease(type, value);
1700 }
1701 
1702 
1703 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1704                                                 llvm::FunctionType *type,
1705                                                 StringRef fnName) {
1706   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1707 
1708   // If the target runtime doesn't naturally support ARC, emit weak
1709   // references to the runtime support library.  We don't really
1710   // permit this to fail, but we need a particular relocation style.
1711   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1712     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC())
1713       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1714     // set nonlazybind attribute for these APIs for performance.
1715     if (fnName == "objc_retain" || fnName  == "objc_release")
1716       f->addFnAttr(llvm::Attribute::NonLazyBind);
1717   }
1718 
1719   return fn;
1720 }
1721 
1722 /// Perform an operation having the signature
1723 ///   i8* (i8*)
1724 /// where a null input causes a no-op and returns null.
1725 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1726                                           llvm::Value *value,
1727                                           llvm::Constant *&fn,
1728                                           StringRef fnName,
1729                                           bool isTailCall = false) {
1730   if (isa<llvm::ConstantPointerNull>(value)) return value;
1731 
1732   if (!fn) {
1733     std::vector<llvm::Type*> args(1, CGF.Int8PtrTy);
1734     llvm::FunctionType *fnType =
1735       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1736     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1737   }
1738 
1739   // Cast the argument to 'id'.
1740   llvm::Type *origType = value->getType();
1741   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1742 
1743   // Call the function.
1744   llvm::CallInst *call = CGF.Builder.CreateCall(fn, value);
1745   call->setDoesNotThrow();
1746   if (isTailCall)
1747     call->setTailCall();
1748 
1749   // Cast the result back to the original type.
1750   return CGF.Builder.CreateBitCast(call, origType);
1751 }
1752 
1753 /// Perform an operation having the following signature:
1754 ///   i8* (i8**)
1755 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1756                                          llvm::Value *addr,
1757                                          llvm::Constant *&fn,
1758                                          StringRef fnName) {
1759   if (!fn) {
1760     std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy);
1761     llvm::FunctionType *fnType =
1762       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1763     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1764   }
1765 
1766   // Cast the argument to 'id*'.
1767   llvm::Type *origType = addr->getType();
1768   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1769 
1770   // Call the function.
1771   llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr);
1772   call->setDoesNotThrow();
1773 
1774   // Cast the result back to a dereference of the original type.
1775   llvm::Value *result = call;
1776   if (origType != CGF.Int8PtrPtrTy)
1777     result = CGF.Builder.CreateBitCast(result,
1778                         cast<llvm::PointerType>(origType)->getElementType());
1779 
1780   return result;
1781 }
1782 
1783 /// Perform an operation having the following signature:
1784 ///   i8* (i8**, i8*)
1785 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1786                                           llvm::Value *addr,
1787                                           llvm::Value *value,
1788                                           llvm::Constant *&fn,
1789                                           StringRef fnName,
1790                                           bool ignored) {
1791   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1792            == value->getType());
1793 
1794   if (!fn) {
1795     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1796 
1797     llvm::FunctionType *fnType
1798       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1799     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1800   }
1801 
1802   llvm::Type *origType = value->getType();
1803 
1804   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1805   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1806 
1807   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value);
1808   result->setDoesNotThrow();
1809 
1810   if (ignored) return 0;
1811 
1812   return CGF.Builder.CreateBitCast(result, origType);
1813 }
1814 
1815 /// Perform an operation having the following signature:
1816 ///   void (i8**, i8**)
1817 static void emitARCCopyOperation(CodeGenFunction &CGF,
1818                                  llvm::Value *dst,
1819                                  llvm::Value *src,
1820                                  llvm::Constant *&fn,
1821                                  StringRef fnName) {
1822   assert(dst->getType() == src->getType());
1823 
1824   if (!fn) {
1825     std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy);
1826     llvm::FunctionType *fnType
1827       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1828     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1829   }
1830 
1831   dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy);
1832   src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy);
1833 
1834   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src);
1835   result->setDoesNotThrow();
1836 }
1837 
1838 /// Produce the code to do a retain.  Based on the type, calls one of:
1839 ///   call i8* \@objc_retain(i8* %value)
1840 ///   call i8* \@objc_retainBlock(i8* %value)
1841 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1842   if (type->isBlockPointerType())
1843     return EmitARCRetainBlock(value, /*mandatory*/ false);
1844   else
1845     return EmitARCRetainNonBlock(value);
1846 }
1847 
1848 /// Retain the given object, with normal retain semantics.
1849 ///   call i8* \@objc_retain(i8* %value)
1850 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1851   return emitARCValueOperation(*this, value,
1852                                CGM.getARCEntrypoints().objc_retain,
1853                                "objc_retain");
1854 }
1855 
1856 /// Retain the given block, with _Block_copy semantics.
1857 ///   call i8* \@objc_retainBlock(i8* %value)
1858 ///
1859 /// \param mandatory - If false, emit the call with metadata
1860 /// indicating that it's okay for the optimizer to eliminate this call
1861 /// if it can prove that the block never escapes except down the stack.
1862 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1863                                                  bool mandatory) {
1864   llvm::Value *result
1865     = emitARCValueOperation(*this, value,
1866                             CGM.getARCEntrypoints().objc_retainBlock,
1867                             "objc_retainBlock");
1868 
1869   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1870   // tell the optimizer that it doesn't need to do this copy if the
1871   // block doesn't escape, where being passed as an argument doesn't
1872   // count as escaping.
1873   if (!mandatory && isa<llvm::Instruction>(result)) {
1874     llvm::CallInst *call
1875       = cast<llvm::CallInst>(result->stripPointerCasts());
1876     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1877 
1878     SmallVector<llvm::Value*,1> args;
1879     call->setMetadata("clang.arc.copy_on_escape",
1880                       llvm::MDNode::get(Builder.getContext(), args));
1881   }
1882 
1883   return result;
1884 }
1885 
1886 /// Retain the given object which is the result of a function call.
1887 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1888 ///
1889 /// Yes, this function name is one character away from a different
1890 /// call with completely different semantics.
1891 llvm::Value *
1892 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1893   // Fetch the void(void) inline asm which marks that we're going to
1894   // retain the autoreleased return value.
1895   llvm::InlineAsm *&marker
1896     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1897   if (!marker) {
1898     StringRef assembly
1899       = CGM.getTargetCodeGenInfo()
1900            .getARCRetainAutoreleasedReturnValueMarker();
1901 
1902     // If we have an empty assembly string, there's nothing to do.
1903     if (assembly.empty()) {
1904 
1905     // Otherwise, at -O0, build an inline asm that we're going to call
1906     // in a moment.
1907     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1908       llvm::FunctionType *type =
1909         llvm::FunctionType::get(VoidTy, /*variadic*/false);
1910 
1911       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1912 
1913     // If we're at -O1 and above, we don't want to litter the code
1914     // with this marker yet, so leave a breadcrumb for the ARC
1915     // optimizer to pick up.
1916     } else {
1917       llvm::NamedMDNode *metadata =
1918         CGM.getModule().getOrInsertNamedMetadata(
1919                             "clang.arc.retainAutoreleasedReturnValueMarker");
1920       assert(metadata->getNumOperands() <= 1);
1921       if (metadata->getNumOperands() == 0) {
1922         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1923         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1924       }
1925     }
1926   }
1927 
1928   // Call the marker asm if we made one, which we do only at -O0.
1929   if (marker) Builder.CreateCall(marker);
1930 
1931   return emitARCValueOperation(*this, value,
1932                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1933                                "objc_retainAutoreleasedReturnValue");
1934 }
1935 
1936 /// Release the given object.
1937 ///   call void \@objc_release(i8* %value)
1938 void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) {
1939   if (isa<llvm::ConstantPointerNull>(value)) return;
1940 
1941   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
1942   if (!fn) {
1943     std::vector<llvm::Type*> args(1, Int8PtrTy);
1944     llvm::FunctionType *fnType =
1945       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
1946     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
1947   }
1948 
1949   // Cast the argument to 'id'.
1950   value = Builder.CreateBitCast(value, Int8PtrTy);
1951 
1952   // Call objc_release.
1953   llvm::CallInst *call = Builder.CreateCall(fn, value);
1954   call->setDoesNotThrow();
1955 
1956   if (!precise) {
1957     SmallVector<llvm::Value*,1> args;
1958     call->setMetadata("clang.imprecise_release",
1959                       llvm::MDNode::get(Builder.getContext(), args));
1960   }
1961 }
1962 
1963 /// Destroy a __strong variable.
1964 ///
1965 /// At -O0, emit a call to store 'null' into the address;
1966 /// instrumenting tools prefer this because the address is exposed,
1967 /// but it's relatively cumbersome to optimize.
1968 ///
1969 /// At -O1 and above, just load and call objc_release.
1970 ///
1971 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
1972 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr, bool precise) {
1973   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1974     llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
1975     llvm::Value *null = llvm::ConstantPointerNull::get(
1976                           cast<llvm::PointerType>(addrTy->getElementType()));
1977     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1978     return;
1979   }
1980 
1981   llvm::Value *value = Builder.CreateLoad(addr);
1982   EmitARCRelease(value, precise);
1983 }
1984 
1985 /// Store into a strong object.  Always calls this:
1986 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
1987 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
1988                                                      llvm::Value *value,
1989                                                      bool ignored) {
1990   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1991            == value->getType());
1992 
1993   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
1994   if (!fn) {
1995     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
1996     llvm::FunctionType *fnType
1997       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
1998     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
1999   }
2000 
2001   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2002   llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy);
2003 
2004   Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow();
2005 
2006   if (ignored) return 0;
2007   return value;
2008 }
2009 
2010 /// Store into a strong object.  Sometimes calls this:
2011 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2012 /// Other times, breaks it down into components.
2013 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2014                                                  llvm::Value *newValue,
2015                                                  bool ignored) {
2016   QualType type = dst.getType();
2017   bool isBlock = type->isBlockPointerType();
2018 
2019   // Use a store barrier at -O0 unless this is a block type or the
2020   // lvalue is inadequately aligned.
2021   if (shouldUseFusedARCCalls() &&
2022       !isBlock &&
2023       (dst.getAlignment().isZero() ||
2024        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2025     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2026   }
2027 
2028   // Otherwise, split it out.
2029 
2030   // Retain the new value.
2031   newValue = EmitARCRetain(type, newValue);
2032 
2033   // Read the old value.
2034   llvm::Value *oldValue = EmitLoadOfScalar(dst);
2035 
2036   // Store.  We do this before the release so that any deallocs won't
2037   // see the old value.
2038   EmitStoreOfScalar(newValue, dst);
2039 
2040   // Finally, release the old value.
2041   EmitARCRelease(oldValue, /*precise*/ false);
2042 
2043   return newValue;
2044 }
2045 
2046 /// Autorelease the given object.
2047 ///   call i8* \@objc_autorelease(i8* %value)
2048 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2049   return emitARCValueOperation(*this, value,
2050                                CGM.getARCEntrypoints().objc_autorelease,
2051                                "objc_autorelease");
2052 }
2053 
2054 /// Autorelease the given object.
2055 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2056 llvm::Value *
2057 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2058   return emitARCValueOperation(*this, value,
2059                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2060                                "objc_autoreleaseReturnValue",
2061                                /*isTailCall*/ true);
2062 }
2063 
2064 /// Do a fused retain/autorelease of the given object.
2065 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2066 llvm::Value *
2067 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2068   return emitARCValueOperation(*this, value,
2069                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2070                                "objc_retainAutoreleaseReturnValue",
2071                                /*isTailCall*/ true);
2072 }
2073 
2074 /// Do a fused retain/autorelease of the given object.
2075 ///   call i8* \@objc_retainAutorelease(i8* %value)
2076 /// or
2077 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2078 ///   call i8* \@objc_autorelease(i8* %retain)
2079 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2080                                                        llvm::Value *value) {
2081   if (!type->isBlockPointerType())
2082     return EmitARCRetainAutoreleaseNonBlock(value);
2083 
2084   if (isa<llvm::ConstantPointerNull>(value)) return value;
2085 
2086   llvm::Type *origType = value->getType();
2087   value = Builder.CreateBitCast(value, Int8PtrTy);
2088   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2089   value = EmitARCAutorelease(value);
2090   return Builder.CreateBitCast(value, origType);
2091 }
2092 
2093 /// Do a fused retain/autorelease of the given object.
2094 ///   call i8* \@objc_retainAutorelease(i8* %value)
2095 llvm::Value *
2096 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2097   return emitARCValueOperation(*this, value,
2098                                CGM.getARCEntrypoints().objc_retainAutorelease,
2099                                "objc_retainAutorelease");
2100 }
2101 
2102 /// i8* \@objc_loadWeak(i8** %addr)
2103 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2104 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2105   return emitARCLoadOperation(*this, addr,
2106                               CGM.getARCEntrypoints().objc_loadWeak,
2107                               "objc_loadWeak");
2108 }
2109 
2110 /// i8* \@objc_loadWeakRetained(i8** %addr)
2111 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2112   return emitARCLoadOperation(*this, addr,
2113                               CGM.getARCEntrypoints().objc_loadWeakRetained,
2114                               "objc_loadWeakRetained");
2115 }
2116 
2117 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2118 /// Returns %value.
2119 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2120                                                llvm::Value *value,
2121                                                bool ignored) {
2122   return emitARCStoreOperation(*this, addr, value,
2123                                CGM.getARCEntrypoints().objc_storeWeak,
2124                                "objc_storeWeak", ignored);
2125 }
2126 
2127 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2128 /// Returns %value.  %addr is known to not have a current weak entry.
2129 /// Essentially equivalent to:
2130 ///   *addr = nil; objc_storeWeak(addr, value);
2131 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2132   // If we're initializing to null, just write null to memory; no need
2133   // to get the runtime involved.  But don't do this if optimization
2134   // is enabled, because accounting for this would make the optimizer
2135   // much more complicated.
2136   if (isa<llvm::ConstantPointerNull>(value) &&
2137       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2138     Builder.CreateStore(value, addr);
2139     return;
2140   }
2141 
2142   emitARCStoreOperation(*this, addr, value,
2143                         CGM.getARCEntrypoints().objc_initWeak,
2144                         "objc_initWeak", /*ignored*/ true);
2145 }
2146 
2147 /// void \@objc_destroyWeak(i8** %addr)
2148 /// Essentially objc_storeWeak(addr, nil).
2149 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2150   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2151   if (!fn) {
2152     std::vector<llvm::Type*> args(1, Int8PtrPtrTy);
2153     llvm::FunctionType *fnType =
2154       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
2155     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2156   }
2157 
2158   // Cast the argument to 'id*'.
2159   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2160 
2161   llvm::CallInst *call = Builder.CreateCall(fn, addr);
2162   call->setDoesNotThrow();
2163 }
2164 
2165 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2166 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2167 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2168 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2169   emitARCCopyOperation(*this, dst, src,
2170                        CGM.getARCEntrypoints().objc_moveWeak,
2171                        "objc_moveWeak");
2172 }
2173 
2174 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2175 /// Disregards the current value in %dest.  Essentially
2176 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2177 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2178   emitARCCopyOperation(*this, dst, src,
2179                        CGM.getARCEntrypoints().objc_copyWeak,
2180                        "objc_copyWeak");
2181 }
2182 
2183 /// Produce the code to do a objc_autoreleasepool_push.
2184 ///   call i8* \@objc_autoreleasePoolPush(void)
2185 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2186   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2187   if (!fn) {
2188     llvm::FunctionType *fnType =
2189       llvm::FunctionType::get(Int8PtrTy, false);
2190     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2191   }
2192 
2193   llvm::CallInst *call = Builder.CreateCall(fn);
2194   call->setDoesNotThrow();
2195 
2196   return call;
2197 }
2198 
2199 /// Produce the code to do a primitive release.
2200 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2201 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2202   assert(value->getType() == Int8PtrTy);
2203 
2204   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2205   if (!fn) {
2206     std::vector<llvm::Type*> args(1, Int8PtrTy);
2207     llvm::FunctionType *fnType =
2208       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
2209 
2210     // We don't want to use a weak import here; instead we should not
2211     // fall into this path.
2212     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2213   }
2214 
2215   llvm::CallInst *call = Builder.CreateCall(fn, value);
2216   call->setDoesNotThrow();
2217 }
2218 
2219 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2220 /// Which is: [[NSAutoreleasePool alloc] init];
2221 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2222 /// init is declared as: - (id) init; in its NSObject super class.
2223 ///
2224 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2225   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2226   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder);
2227   // [NSAutoreleasePool alloc]
2228   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2229   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2230   CallArgList Args;
2231   RValue AllocRV =
2232     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2233                                 getContext().getObjCIdType(),
2234                                 AllocSel, Receiver, Args);
2235 
2236   // [Receiver init]
2237   Receiver = AllocRV.getScalarVal();
2238   II = &CGM.getContext().Idents.get("init");
2239   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2240   RValue InitRV =
2241     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2242                                 getContext().getObjCIdType(),
2243                                 InitSel, Receiver, Args);
2244   return InitRV.getScalarVal();
2245 }
2246 
2247 /// Produce the code to do a primitive release.
2248 /// [tmp drain];
2249 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2250   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2251   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2252   CallArgList Args;
2253   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2254                               getContext().VoidTy, DrainSel, Arg, Args);
2255 }
2256 
2257 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2258                                               llvm::Value *addr,
2259                                               QualType type) {
2260   CGF.EmitARCDestroyStrong(addr, /*precise*/ true);
2261 }
2262 
2263 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2264                                                 llvm::Value *addr,
2265                                                 QualType type) {
2266   CGF.EmitARCDestroyStrong(addr, /*precise*/ false);
2267 }
2268 
2269 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2270                                      llvm::Value *addr,
2271                                      QualType type) {
2272   CGF.EmitARCDestroyWeak(addr);
2273 }
2274 
2275 namespace {
2276   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2277     llvm::Value *Token;
2278 
2279     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2280 
2281     void Emit(CodeGenFunction &CGF, Flags flags) {
2282       CGF.EmitObjCAutoreleasePoolPop(Token);
2283     }
2284   };
2285   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2286     llvm::Value *Token;
2287 
2288     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2289 
2290     void Emit(CodeGenFunction &CGF, Flags flags) {
2291       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2292     }
2293   };
2294 }
2295 
2296 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2297   if (CGM.getLangOpts().ObjCAutoRefCount)
2298     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2299   else
2300     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2301 }
2302 
2303 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2304                                                   LValue lvalue,
2305                                                   QualType type) {
2306   switch (type.getObjCLifetime()) {
2307   case Qualifiers::OCL_None:
2308   case Qualifiers::OCL_ExplicitNone:
2309   case Qualifiers::OCL_Strong:
2310   case Qualifiers::OCL_Autoreleasing:
2311     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
2312                          false);
2313 
2314   case Qualifiers::OCL_Weak:
2315     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2316                          true);
2317   }
2318 
2319   llvm_unreachable("impossible lifetime!");
2320 }
2321 
2322 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2323                                                   const Expr *e) {
2324   e = e->IgnoreParens();
2325   QualType type = e->getType();
2326 
2327   // If we're loading retained from a __strong xvalue, we can avoid
2328   // an extra retain/release pair by zeroing out the source of this
2329   // "move" operation.
2330   if (e->isXValue() &&
2331       !type.isConstQualified() &&
2332       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2333     // Emit the lvalue.
2334     LValue lv = CGF.EmitLValue(e);
2335 
2336     // Load the object pointer.
2337     llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
2338 
2339     // Set the source pointer to NULL.
2340     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2341 
2342     return TryEmitResult(result, true);
2343   }
2344 
2345   // As a very special optimization, in ARC++, if the l-value is the
2346   // result of a non-volatile assignment, do a simple retain of the
2347   // result of the call to objc_storeWeak instead of reloading.
2348   if (CGF.getLangOpts().CPlusPlus &&
2349       !type.isVolatileQualified() &&
2350       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2351       isa<BinaryOperator>(e) &&
2352       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2353     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2354 
2355   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2356 }
2357 
2358 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2359                                            llvm::Value *value);
2360 
2361 /// Given that the given expression is some sort of call (which does
2362 /// not return retained), emit a retain following it.
2363 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2364   llvm::Value *value = CGF.EmitScalarExpr(e);
2365   return emitARCRetainAfterCall(CGF, value);
2366 }
2367 
2368 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2369                                            llvm::Value *value) {
2370   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2371     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2372 
2373     // Place the retain immediately following the call.
2374     CGF.Builder.SetInsertPoint(call->getParent(),
2375                                ++llvm::BasicBlock::iterator(call));
2376     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2377 
2378     CGF.Builder.restoreIP(ip);
2379     return value;
2380   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2381     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2382 
2383     // Place the retain at the beginning of the normal destination block.
2384     llvm::BasicBlock *BB = invoke->getNormalDest();
2385     CGF.Builder.SetInsertPoint(BB, BB->begin());
2386     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2387 
2388     CGF.Builder.restoreIP(ip);
2389     return value;
2390 
2391   // Bitcasts can arise because of related-result returns.  Rewrite
2392   // the operand.
2393   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2394     llvm::Value *operand = bitcast->getOperand(0);
2395     operand = emitARCRetainAfterCall(CGF, operand);
2396     bitcast->setOperand(0, operand);
2397     return bitcast;
2398 
2399   // Generic fall-back case.
2400   } else {
2401     // Retain using the non-block variant: we never need to do a copy
2402     // of a block that's been returned to us.
2403     return CGF.EmitARCRetainNonBlock(value);
2404   }
2405 }
2406 
2407 /// Determine whether it might be important to emit a separate
2408 /// objc_retain_block on the result of the given expression, or
2409 /// whether it's okay to just emit it in a +1 context.
2410 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2411   assert(e->getType()->isBlockPointerType());
2412   e = e->IgnoreParens();
2413 
2414   // For future goodness, emit block expressions directly in +1
2415   // contexts if we can.
2416   if (isa<BlockExpr>(e))
2417     return false;
2418 
2419   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2420     switch (cast->getCastKind()) {
2421     // Emitting these operations in +1 contexts is goodness.
2422     case CK_LValueToRValue:
2423     case CK_ARCReclaimReturnedObject:
2424     case CK_ARCConsumeObject:
2425     case CK_ARCProduceObject:
2426       return false;
2427 
2428     // These operations preserve a block type.
2429     case CK_NoOp:
2430     case CK_BitCast:
2431       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2432 
2433     // These operations are known to be bad (or haven't been considered).
2434     case CK_AnyPointerToBlockPointerCast:
2435     default:
2436       return true;
2437     }
2438   }
2439 
2440   return true;
2441 }
2442 
2443 /// Try to emit a PseudoObjectExpr at +1.
2444 ///
2445 /// This massively duplicates emitPseudoObjectRValue.
2446 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2447                                                   const PseudoObjectExpr *E) {
2448   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2449 
2450   // Find the result expression.
2451   const Expr *resultExpr = E->getResultExpr();
2452   assert(resultExpr);
2453   TryEmitResult result;
2454 
2455   for (PseudoObjectExpr::const_semantics_iterator
2456          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2457     const Expr *semantic = *i;
2458 
2459     // If this semantic expression is an opaque value, bind it
2460     // to the result of its source expression.
2461     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2462       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2463       OVMA opaqueData;
2464 
2465       // If this semantic is the result of the pseudo-object
2466       // expression, try to evaluate the source as +1.
2467       if (ov == resultExpr) {
2468         assert(!OVMA::shouldBindAsLValue(ov));
2469         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2470         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2471 
2472       // Otherwise, just bind it.
2473       } else {
2474         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2475       }
2476       opaques.push_back(opaqueData);
2477 
2478     // Otherwise, if the expression is the result, evaluate it
2479     // and remember the result.
2480     } else if (semantic == resultExpr) {
2481       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2482 
2483     // Otherwise, evaluate the expression in an ignored context.
2484     } else {
2485       CGF.EmitIgnoredExpr(semantic);
2486     }
2487   }
2488 
2489   // Unbind all the opaques now.
2490   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2491     opaques[i].unbind(CGF);
2492 
2493   return result;
2494 }
2495 
2496 static TryEmitResult
2497 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2498   // Look through cleanups.
2499   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2500     CGF.enterFullExpression(cleanups);
2501     CodeGenFunction::RunCleanupsScope scope(CGF);
2502     return tryEmitARCRetainScalarExpr(CGF, cleanups->getSubExpr());
2503   }
2504 
2505   // The desired result type, if it differs from the type of the
2506   // ultimate opaque expression.
2507   llvm::Type *resultType = 0;
2508 
2509   while (true) {
2510     e = e->IgnoreParens();
2511 
2512     // There's a break at the end of this if-chain;  anything
2513     // that wants to keep looping has to explicitly continue.
2514     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2515       switch (ce->getCastKind()) {
2516       // No-op casts don't change the type, so we just ignore them.
2517       case CK_NoOp:
2518         e = ce->getSubExpr();
2519         continue;
2520 
2521       case CK_LValueToRValue: {
2522         TryEmitResult loadResult
2523           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2524         if (resultType) {
2525           llvm::Value *value = loadResult.getPointer();
2526           value = CGF.Builder.CreateBitCast(value, resultType);
2527           loadResult.setPointer(value);
2528         }
2529         return loadResult;
2530       }
2531 
2532       // These casts can change the type, so remember that and
2533       // soldier on.  We only need to remember the outermost such
2534       // cast, though.
2535       case CK_CPointerToObjCPointerCast:
2536       case CK_BlockPointerToObjCPointerCast:
2537       case CK_AnyPointerToBlockPointerCast:
2538       case CK_BitCast:
2539         if (!resultType)
2540           resultType = CGF.ConvertType(ce->getType());
2541         e = ce->getSubExpr();
2542         assert(e->getType()->hasPointerRepresentation());
2543         continue;
2544 
2545       // For consumptions, just emit the subexpression and thus elide
2546       // the retain/release pair.
2547       case CK_ARCConsumeObject: {
2548         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2549         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2550         return TryEmitResult(result, true);
2551       }
2552 
2553       // Block extends are net +0.  Naively, we could just recurse on
2554       // the subexpression, but actually we need to ensure that the
2555       // value is copied as a block, so there's a little filter here.
2556       case CK_ARCExtendBlockObject: {
2557         llvm::Value *result; // will be a +0 value
2558 
2559         // If we can't safely assume the sub-expression will produce a
2560         // block-copied value, emit the sub-expression at +0.
2561         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2562           result = CGF.EmitScalarExpr(ce->getSubExpr());
2563 
2564         // Otherwise, try to emit the sub-expression at +1 recursively.
2565         } else {
2566           TryEmitResult subresult
2567             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2568           result = subresult.getPointer();
2569 
2570           // If that produced a retained value, just use that,
2571           // possibly casting down.
2572           if (subresult.getInt()) {
2573             if (resultType)
2574               result = CGF.Builder.CreateBitCast(result, resultType);
2575             return TryEmitResult(result, true);
2576           }
2577 
2578           // Otherwise it's +0.
2579         }
2580 
2581         // Retain the object as a block, then cast down.
2582         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2583         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2584         return TryEmitResult(result, true);
2585       }
2586 
2587       // For reclaims, emit the subexpression as a retained call and
2588       // skip the consumption.
2589       case CK_ARCReclaimReturnedObject: {
2590         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2591         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2592         return TryEmitResult(result, true);
2593       }
2594 
2595       default:
2596         break;
2597       }
2598 
2599     // Skip __extension__.
2600     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2601       if (op->getOpcode() == UO_Extension) {
2602         e = op->getSubExpr();
2603         continue;
2604       }
2605 
2606     // For calls and message sends, use the retained-call logic.
2607     // Delegate inits are a special case in that they're the only
2608     // returns-retained expression that *isn't* surrounded by
2609     // a consume.
2610     } else if (isa<CallExpr>(e) ||
2611                (isa<ObjCMessageExpr>(e) &&
2612                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2613       llvm::Value *result = emitARCRetainCall(CGF, e);
2614       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2615       return TryEmitResult(result, true);
2616 
2617     // Look through pseudo-object expressions.
2618     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2619       TryEmitResult result
2620         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2621       if (resultType) {
2622         llvm::Value *value = result.getPointer();
2623         value = CGF.Builder.CreateBitCast(value, resultType);
2624         result.setPointer(value);
2625       }
2626       return result;
2627     }
2628 
2629     // Conservatively halt the search at any other expression kind.
2630     break;
2631   }
2632 
2633   // We didn't find an obvious production, so emit what we've got and
2634   // tell the caller that we didn't manage to retain.
2635   llvm::Value *result = CGF.EmitScalarExpr(e);
2636   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2637   return TryEmitResult(result, false);
2638 }
2639 
2640 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2641                                                 LValue lvalue,
2642                                                 QualType type) {
2643   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2644   llvm::Value *value = result.getPointer();
2645   if (!result.getInt())
2646     value = CGF.EmitARCRetain(type, value);
2647   return value;
2648 }
2649 
2650 /// EmitARCRetainScalarExpr - Semantically equivalent to
2651 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2652 /// best-effort attempt to peephole expressions that naturally produce
2653 /// retained objects.
2654 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2655   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2656   llvm::Value *value = result.getPointer();
2657   if (!result.getInt())
2658     value = EmitARCRetain(e->getType(), value);
2659   return value;
2660 }
2661 
2662 llvm::Value *
2663 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2664   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2665   llvm::Value *value = result.getPointer();
2666   if (result.getInt())
2667     value = EmitARCAutorelease(value);
2668   else
2669     value = EmitARCRetainAutorelease(e->getType(), value);
2670   return value;
2671 }
2672 
2673 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2674   llvm::Value *result;
2675   bool doRetain;
2676 
2677   if (shouldEmitSeparateBlockRetain(e)) {
2678     result = EmitScalarExpr(e);
2679     doRetain = true;
2680   } else {
2681     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2682     result = subresult.getPointer();
2683     doRetain = !subresult.getInt();
2684   }
2685 
2686   if (doRetain)
2687     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2688   return EmitObjCConsumeObject(e->getType(), result);
2689 }
2690 
2691 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2692   // In ARC, retain and autorelease the expression.
2693   if (getLangOpts().ObjCAutoRefCount) {
2694     // Do so before running any cleanups for the full-expression.
2695     // tryEmitARCRetainScalarExpr does make an effort to do things
2696     // inside cleanups, but there are crazy cases like
2697     //   @throw A().foo;
2698     // where a full retain+autorelease is required and would
2699     // otherwise happen after the destructor for the temporary.
2700     if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(expr)) {
2701       enterFullExpression(ewc);
2702       expr = ewc->getSubExpr();
2703     }
2704 
2705     CodeGenFunction::RunCleanupsScope cleanups(*this);
2706     return EmitARCRetainAutoreleaseScalarExpr(expr);
2707   }
2708 
2709   // Otherwise, use the normal scalar-expression emission.  The
2710   // exception machinery doesn't do anything special with the
2711   // exception like retaining it, so there's no safety associated with
2712   // only running cleanups after the throw has started, and when it
2713   // matters it tends to be substantially inferior code.
2714   return EmitScalarExpr(expr);
2715 }
2716 
2717 std::pair<LValue,llvm::Value*>
2718 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2719                                     bool ignored) {
2720   // Evaluate the RHS first.
2721   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2722   llvm::Value *value = result.getPointer();
2723 
2724   bool hasImmediateRetain = result.getInt();
2725 
2726   // If we didn't emit a retained object, and the l-value is of block
2727   // type, then we need to emit the block-retain immediately in case
2728   // it invalidates the l-value.
2729   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2730     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2731     hasImmediateRetain = true;
2732   }
2733 
2734   LValue lvalue = EmitLValue(e->getLHS());
2735 
2736   // If the RHS was emitted retained, expand this.
2737   if (hasImmediateRetain) {
2738     llvm::Value *oldValue =
2739       EmitLoadOfScalar(lvalue);
2740     EmitStoreOfScalar(value, lvalue);
2741     EmitARCRelease(oldValue, /*precise*/ false);
2742   } else {
2743     value = EmitARCStoreStrong(lvalue, value, ignored);
2744   }
2745 
2746   return std::pair<LValue,llvm::Value*>(lvalue, value);
2747 }
2748 
2749 std::pair<LValue,llvm::Value*>
2750 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2751   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2752   LValue lvalue = EmitLValue(e->getLHS());
2753 
2754   EmitStoreOfScalar(value, lvalue);
2755 
2756   return std::pair<LValue,llvm::Value*>(lvalue, value);
2757 }
2758 
2759 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2760                                           const ObjCAutoreleasePoolStmt &ARPS) {
2761   const Stmt *subStmt = ARPS.getSubStmt();
2762   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2763 
2764   CGDebugInfo *DI = getDebugInfo();
2765   if (DI)
2766     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2767 
2768   // Keep track of the current cleanup stack depth.
2769   RunCleanupsScope Scope(*this);
2770   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2771     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2772     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2773   } else {
2774     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2775     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2776   }
2777 
2778   for (CompoundStmt::const_body_iterator I = S.body_begin(),
2779        E = S.body_end(); I != E; ++I)
2780     EmitStmt(*I);
2781 
2782   if (DI)
2783     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2784 }
2785 
2786 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2787 /// make sure it survives garbage collection until this point.
2788 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2789   // We just use an inline assembly.
2790   llvm::FunctionType *extenderType
2791     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2792   llvm::Value *extender
2793     = llvm::InlineAsm::get(extenderType,
2794                            /* assembly */ "",
2795                            /* constraints */ "r",
2796                            /* side effects */ true);
2797 
2798   object = Builder.CreateBitCast(object, VoidPtrTy);
2799   Builder.CreateCall(extender, object)->setDoesNotThrow();
2800 }
2801 
2802 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2803 /// non-trivial copy assignment function, produce following helper function.
2804 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2805 ///
2806 llvm::Constant *
2807 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2808                                         const ObjCPropertyImplDecl *PID) {
2809   if (!getLangOpts().CPlusPlus ||
2810       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2811     return 0;
2812   QualType Ty = PID->getPropertyIvarDecl()->getType();
2813   if (!Ty->isRecordType())
2814     return 0;
2815   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2816   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2817     return 0;
2818   llvm::Constant * HelperFn = 0;
2819   if (hasTrivialSetExpr(PID))
2820     return 0;
2821   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2822   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2823     return HelperFn;
2824 
2825   ASTContext &C = getContext();
2826   IdentifierInfo *II
2827     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2828   FunctionDecl *FD = FunctionDecl::Create(C,
2829                                           C.getTranslationUnitDecl(),
2830                                           SourceLocation(),
2831                                           SourceLocation(), II, C.VoidTy, 0,
2832                                           SC_Static,
2833                                           SC_None,
2834                                           false,
2835                                           false);
2836 
2837   QualType DestTy = C.getPointerType(Ty);
2838   QualType SrcTy = Ty;
2839   SrcTy.addConst();
2840   SrcTy = C.getPointerType(SrcTy);
2841 
2842   FunctionArgList args;
2843   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2844   args.push_back(&dstDecl);
2845   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2846   args.push_back(&srcDecl);
2847 
2848   const CGFunctionInfo &FI =
2849     CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2850                                               FunctionType::ExtInfo(),
2851                                               RequiredArgs::All);
2852 
2853   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2854 
2855   llvm::Function *Fn =
2856     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2857                            "__assign_helper_atomic_property_",
2858                            &CGM.getModule());
2859 
2860   // Initialize debug info if needed.
2861   maybeInitializeDebugInfo();
2862 
2863   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2864 
2865   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2866                       VK_RValue, SourceLocation());
2867   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2868                     VK_LValue, OK_Ordinary, SourceLocation());
2869 
2870   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2871                       VK_RValue, SourceLocation());
2872   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2873                     VK_LValue, OK_Ordinary, SourceLocation());
2874 
2875   Expr *Args[2] = { &DST, &SRC };
2876   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2877   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2878                               Args, DestTy->getPointeeType(),
2879                               VK_LValue, SourceLocation(), false);
2880 
2881   EmitStmt(&TheCall);
2882 
2883   FinishFunction();
2884   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2885   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2886   return HelperFn;
2887 }
2888 
2889 llvm::Constant *
2890 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2891                                             const ObjCPropertyImplDecl *PID) {
2892   if (!getLangOpts().CPlusPlus ||
2893       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2894     return 0;
2895   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2896   QualType Ty = PD->getType();
2897   if (!Ty->isRecordType())
2898     return 0;
2899   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2900     return 0;
2901   llvm::Constant * HelperFn = 0;
2902 
2903   if (hasTrivialGetExpr(PID))
2904     return 0;
2905   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2906   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2907     return HelperFn;
2908 
2909 
2910   ASTContext &C = getContext();
2911   IdentifierInfo *II
2912   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2913   FunctionDecl *FD = FunctionDecl::Create(C,
2914                                           C.getTranslationUnitDecl(),
2915                                           SourceLocation(),
2916                                           SourceLocation(), II, C.VoidTy, 0,
2917                                           SC_Static,
2918                                           SC_None,
2919                                           false,
2920                                           false);
2921 
2922   QualType DestTy = C.getPointerType(Ty);
2923   QualType SrcTy = Ty;
2924   SrcTy.addConst();
2925   SrcTy = C.getPointerType(SrcTy);
2926 
2927   FunctionArgList args;
2928   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2929   args.push_back(&dstDecl);
2930   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2931   args.push_back(&srcDecl);
2932 
2933   const CGFunctionInfo &FI =
2934   CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2935                                             FunctionType::ExtInfo(),
2936                                             RequiredArgs::All);
2937 
2938   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2939 
2940   llvm::Function *Fn =
2941   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2942                          "__copy_helper_atomic_property_", &CGM.getModule());
2943 
2944   // Initialize debug info if needed.
2945   maybeInitializeDebugInfo();
2946 
2947   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2948 
2949   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2950                       VK_RValue, SourceLocation());
2951 
2952   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2953                     VK_LValue, OK_Ordinary, SourceLocation());
2954 
2955   CXXConstructExpr *CXXConstExpr =
2956     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
2957 
2958   SmallVector<Expr*, 4> ConstructorArgs;
2959   ConstructorArgs.push_back(&SRC);
2960   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
2961   ++A;
2962 
2963   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
2964        A != AEnd; ++A)
2965     ConstructorArgs.push_back(*A);
2966 
2967   CXXConstructExpr *TheCXXConstructExpr =
2968     CXXConstructExpr::Create(C, Ty, SourceLocation(),
2969                              CXXConstExpr->getConstructor(),
2970                              CXXConstExpr->isElidable(),
2971                              ConstructorArgs,
2972                              CXXConstExpr->hadMultipleCandidates(),
2973                              CXXConstExpr->isListInitialization(),
2974                              CXXConstExpr->requiresZeroInitialization(),
2975                              CXXConstExpr->getConstructionKind(),
2976                              SourceRange());
2977 
2978   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2979                       VK_RValue, SourceLocation());
2980 
2981   RValue DV = EmitAnyExpr(&DstExpr);
2982   CharUnits Alignment
2983     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
2984   EmitAggExpr(TheCXXConstructExpr,
2985               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
2986                                     AggValueSlot::IsDestructed,
2987                                     AggValueSlot::DoesNotNeedGCBarriers,
2988                                     AggValueSlot::IsNotAliased));
2989 
2990   FinishFunction();
2991   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2992   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
2993   return HelperFn;
2994 }
2995 
2996 llvm::Value *
2997 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
2998   // Get selectors for retain/autorelease.
2999   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3000   Selector CopySelector =
3001       getContext().Selectors.getNullarySelector(CopyID);
3002   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3003   Selector AutoreleaseSelector =
3004       getContext().Selectors.getNullarySelector(AutoreleaseID);
3005 
3006   // Emit calls to retain/autorelease.
3007   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3008   llvm::Value *Val = Block;
3009   RValue Result;
3010   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3011                                        Ty, CopySelector,
3012                                        Val, CallArgList(), 0, 0);
3013   Val = Result.getScalarVal();
3014   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3015                                        Ty, AutoreleaseSelector,
3016                                        Val, CallArgList(), 0, 0);
3017   Val = Result.getScalarVal();
3018   return Val;
3019 }
3020 
3021 
3022 CGObjCRuntime::~CGObjCRuntime() {}
3023