1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
35                                    QualType ET,
36                                    RValue Result);
37 
38 /// Given the address of a variable of pointer type, find the correct
39 /// null to store into it.
40 static llvm::Constant *getNullForVariable(Address addr) {
41   llvm::Type *type = addr.getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57 /// or [NSValue valueWithBytes:objCType:].
58 ///
59 llvm::Value *
60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61   // Generate the correct selector for this literal's concrete type.
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   const Expr *SubExpr = E->getSubExpr();
65   assert(BoxingMethod && "BoxingMethod is null");
66   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
67   Selector Sel = BoxingMethod->getSelector();
68 
69   // Generate a reference to the class pointer, which will be the receiver.
70   // Assumes that the method was introduced in the class that should be
71   // messaged (avoids pulling it out of the result type).
72   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
73   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
74   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
75 
76   CallArgList Args;
77   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
78   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
79 
80   // ObjCBoxedExpr supports boxing of structs and unions
81   // via [NSValue valueWithBytes:objCType:]
82   const QualType ValueType(SubExpr->getType().getCanonicalType());
83   if (ValueType->isObjCBoxableRecordType()) {
84     // Emit CodeGen for first parameter
85     // and cast value to correct type
86     Address Temporary = CreateMemTemp(SubExpr->getType());
87     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
88     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
89     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
90 
91     // Create char array to store type encoding
92     std::string Str;
93     getContext().getObjCEncodingForType(ValueType, Str);
94     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
95 
96     // Cast type encoding to correct type
97     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
98     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
99     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
100 
101     Args.add(RValue::get(Cast), EncodingQT);
102   } else {
103     Args.add(EmitAnyExpr(SubExpr), ArgQT);
104   }
105 
106   RValue result = Runtime.GenerateMessageSend(
107       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
108       Args, ClassDecl, BoxingMethod);
109   return Builder.CreateBitCast(result.getScalarVal(),
110                                ConvertType(E->getType()));
111 }
112 
113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
114                                     const ObjCMethodDecl *MethodWithObjects) {
115   ASTContext &Context = CGM.getContext();
116   const ObjCDictionaryLiteral *DLE = nullptr;
117   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
118   if (!ALE)
119     DLE = cast<ObjCDictionaryLiteral>(E);
120 
121   // Optimize empty collections by referencing constants, when available.
122   uint64_t NumElements =
123     ALE ? ALE->getNumElements() : DLE->getNumElements();
124   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
125     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
126     QualType IdTy(CGM.getContext().getObjCIdType());
127     llvm::Constant *Constant =
128         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
129     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
130     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getLocStart());
131     cast<llvm::LoadInst>(Ptr)->setMetadata(
132         CGM.getModule().getMDKindID("invariant.load"),
133         llvm::MDNode::get(getLLVMContext(), None));
134     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
135   }
136 
137   // Compute the type of the array we're initializing.
138   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
139                             NumElements);
140   QualType ElementType = Context.getObjCIdType().withConst();
141   QualType ElementArrayType
142     = Context.getConstantArrayType(ElementType, APNumElements,
143                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
144 
145   // Allocate the temporary array(s).
146   Address Objects = CreateMemTemp(ElementArrayType, "objects");
147   Address Keys = Address::invalid();
148   if (DLE)
149     Keys = CreateMemTemp(ElementArrayType, "keys");
150 
151   // In ARC, we may need to do extra work to keep all the keys and
152   // values alive until after the call.
153   SmallVector<llvm::Value *, 16> NeededObjects;
154   bool TrackNeededObjects =
155     (getLangOpts().ObjCAutoRefCount &&
156     CGM.getCodeGenOpts().OptimizationLevel != 0);
157 
158   // Perform the actual initialialization of the array(s).
159   for (uint64_t i = 0; i < NumElements; i++) {
160     if (ALE) {
161       // Emit the element and store it to the appropriate array slot.
162       const Expr *Rhs = ALE->getElement(i);
163       LValue LV = MakeAddrLValue(
164           Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
165           ElementType, AlignmentSource::Decl);
166 
167       llvm::Value *value = EmitScalarExpr(Rhs);
168       EmitStoreThroughLValue(RValue::get(value), LV, true);
169       if (TrackNeededObjects) {
170         NeededObjects.push_back(value);
171       }
172     } else {
173       // Emit the key and store it to the appropriate array slot.
174       const Expr *Key = DLE->getKeyValueElement(i).Key;
175       LValue KeyLV = MakeAddrLValue(
176           Builder.CreateConstArrayGEP(Keys, i, getPointerSize()),
177           ElementType, AlignmentSource::Decl);
178       llvm::Value *keyValue = EmitScalarExpr(Key);
179       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
180 
181       // Emit the value and store it to the appropriate array slot.
182       const Expr *Value = DLE->getKeyValueElement(i).Value;
183       LValue ValueLV = MakeAddrLValue(
184           Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
185           ElementType, AlignmentSource::Decl);
186       llvm::Value *valueValue = EmitScalarExpr(Value);
187       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
188       if (TrackNeededObjects) {
189         NeededObjects.push_back(keyValue);
190         NeededObjects.push_back(valueValue);
191       }
192     }
193   }
194 
195   // Generate the argument list.
196   CallArgList Args;
197   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
198   const ParmVarDecl *argDecl = *PI++;
199   QualType ArgQT = argDecl->getType().getUnqualifiedType();
200   Args.add(RValue::get(Objects.getPointer()), ArgQT);
201   if (DLE) {
202     argDecl = *PI++;
203     ArgQT = argDecl->getType().getUnqualifiedType();
204     Args.add(RValue::get(Keys.getPointer()), ArgQT);
205   }
206   argDecl = *PI;
207   ArgQT = argDecl->getType().getUnqualifiedType();
208   llvm::Value *Count =
209     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
210   Args.add(RValue::get(Count), ArgQT);
211 
212   // Generate a reference to the class pointer, which will be the receiver.
213   Selector Sel = MethodWithObjects->getSelector();
214   QualType ResultType = E->getType();
215   const ObjCObjectPointerType *InterfacePointerType
216     = ResultType->getAsObjCInterfacePointerType();
217   ObjCInterfaceDecl *Class
218     = InterfacePointerType->getObjectType()->getInterface();
219   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
220   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
221 
222   // Generate the message send.
223   RValue result = Runtime.GenerateMessageSend(
224       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
225       Receiver, Args, Class, MethodWithObjects);
226 
227   // The above message send needs these objects, but in ARC they are
228   // passed in a buffer that is essentially __unsafe_unretained.
229   // Therefore we must prevent the optimizer from releasing them until
230   // after the call.
231   if (TrackNeededObjects) {
232     EmitARCIntrinsicUse(NeededObjects);
233   }
234 
235   return Builder.CreateBitCast(result.getScalarVal(),
236                                ConvertType(E->getType()));
237 }
238 
239 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
240   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
241 }
242 
243 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
244                                             const ObjCDictionaryLiteral *E) {
245   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
246 }
247 
248 /// Emit a selector.
249 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
250   // Untyped selector.
251   // Note that this implementation allows for non-constant strings to be passed
252   // as arguments to @selector().  Currently, the only thing preventing this
253   // behaviour is the type checking in the front end.
254   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
255 }
256 
257 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
258   // FIXME: This should pass the Decl not the name.
259   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
260 }
261 
262 /// \brief Adjust the type of an Objective-C object that doesn't match up due
263 /// to type erasure at various points, e.g., related result types or the use
264 /// of parameterized classes.
265 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
266                                    RValue Result) {
267   if (!ExpT->isObjCRetainableType())
268     return Result;
269 
270   // If the converted types are the same, we're done.
271   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
272   if (ExpLLVMTy == Result.getScalarVal()->getType())
273     return Result;
274 
275   // We have applied a substitution. Cast the rvalue appropriately.
276   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
277                                                ExpLLVMTy));
278 }
279 
280 /// Decide whether to extend the lifetime of the receiver of a
281 /// returns-inner-pointer message.
282 static bool
283 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
284   switch (message->getReceiverKind()) {
285 
286   // For a normal instance message, we should extend unless the
287   // receiver is loaded from a variable with precise lifetime.
288   case ObjCMessageExpr::Instance: {
289     const Expr *receiver = message->getInstanceReceiver();
290 
291     // Look through OVEs.
292     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
293       if (opaque->getSourceExpr())
294         receiver = opaque->getSourceExpr()->IgnoreParens();
295     }
296 
297     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
298     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
299     receiver = ice->getSubExpr()->IgnoreParens();
300 
301     // Look through OVEs.
302     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
303       if (opaque->getSourceExpr())
304         receiver = opaque->getSourceExpr()->IgnoreParens();
305     }
306 
307     // Only __strong variables.
308     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
309       return true;
310 
311     // All ivars and fields have precise lifetime.
312     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
313       return false;
314 
315     // Otherwise, check for variables.
316     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
317     if (!declRef) return true;
318     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
319     if (!var) return true;
320 
321     // All variables have precise lifetime except local variables with
322     // automatic storage duration that aren't specially marked.
323     return (var->hasLocalStorage() &&
324             !var->hasAttr<ObjCPreciseLifetimeAttr>());
325   }
326 
327   case ObjCMessageExpr::Class:
328   case ObjCMessageExpr::SuperClass:
329     // It's never necessary for class objects.
330     return false;
331 
332   case ObjCMessageExpr::SuperInstance:
333     // We generally assume that 'self' lives throughout a method call.
334     return false;
335   }
336 
337   llvm_unreachable("invalid receiver kind");
338 }
339 
340 /// Given an expression of ObjC pointer type, check whether it was
341 /// immediately loaded from an ARC __weak l-value.
342 static const Expr *findWeakLValue(const Expr *E) {
343   assert(E->getType()->isObjCRetainableType());
344   E = E->IgnoreParens();
345   if (auto CE = dyn_cast<CastExpr>(E)) {
346     if (CE->getCastKind() == CK_LValueToRValue) {
347       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
348         return CE->getSubExpr();
349     }
350   }
351 
352   return nullptr;
353 }
354 
355 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
356                                             ReturnValueSlot Return) {
357   // Only the lookup mechanism and first two arguments of the method
358   // implementation vary between runtimes.  We can get the receiver and
359   // arguments in generic code.
360 
361   bool isDelegateInit = E->isDelegateInitCall();
362 
363   const ObjCMethodDecl *method = E->getMethodDecl();
364 
365   // If the method is -retain, and the receiver's being loaded from
366   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
367   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
368       method->getMethodFamily() == OMF_retain) {
369     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
370       LValue lvalue = EmitLValue(lvalueExpr);
371       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
372       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
373     }
374   }
375 
376   // We don't retain the receiver in delegate init calls, and this is
377   // safe because the receiver value is always loaded from 'self',
378   // which we zero out.  We don't want to Block_copy block receivers,
379   // though.
380   bool retainSelf =
381     (!isDelegateInit &&
382      CGM.getLangOpts().ObjCAutoRefCount &&
383      method &&
384      method->hasAttr<NSConsumesSelfAttr>());
385 
386   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
387   bool isSuperMessage = false;
388   bool isClassMessage = false;
389   ObjCInterfaceDecl *OID = nullptr;
390   // Find the receiver
391   QualType ReceiverType;
392   llvm::Value *Receiver = nullptr;
393   switch (E->getReceiverKind()) {
394   case ObjCMessageExpr::Instance:
395     ReceiverType = E->getInstanceReceiver()->getType();
396     if (retainSelf) {
397       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
398                                                    E->getInstanceReceiver());
399       Receiver = ter.getPointer();
400       if (ter.getInt()) retainSelf = false;
401     } else
402       Receiver = EmitScalarExpr(E->getInstanceReceiver());
403     break;
404 
405   case ObjCMessageExpr::Class: {
406     ReceiverType = E->getClassReceiver();
407     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
408     assert(ObjTy && "Invalid Objective-C class message send");
409     OID = ObjTy->getInterface();
410     assert(OID && "Invalid Objective-C class message send");
411     Receiver = Runtime.GetClass(*this, OID);
412     isClassMessage = true;
413     break;
414   }
415 
416   case ObjCMessageExpr::SuperInstance:
417     ReceiverType = E->getSuperType();
418     Receiver = LoadObjCSelf();
419     isSuperMessage = true;
420     break;
421 
422   case ObjCMessageExpr::SuperClass:
423     ReceiverType = E->getSuperType();
424     Receiver = LoadObjCSelf();
425     isSuperMessage = true;
426     isClassMessage = true;
427     break;
428   }
429 
430   if (retainSelf)
431     Receiver = EmitARCRetainNonBlock(Receiver);
432 
433   // In ARC, we sometimes want to "extend the lifetime"
434   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
435   // messages.
436   if (getLangOpts().ObjCAutoRefCount && method &&
437       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
438       shouldExtendReceiverForInnerPointerMessage(E))
439     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
440 
441   QualType ResultType = method ? method->getReturnType() : E->getType();
442 
443   CallArgList Args;
444   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
445 
446   // For delegate init calls in ARC, do an unsafe store of null into
447   // self.  This represents the call taking direct ownership of that
448   // value.  We have to do this after emitting the other call
449   // arguments because they might also reference self, but we don't
450   // have to worry about any of them modifying self because that would
451   // be an undefined read and write of an object in unordered
452   // expressions.
453   if (isDelegateInit) {
454     assert(getLangOpts().ObjCAutoRefCount &&
455            "delegate init calls should only be marked in ARC");
456 
457     // Do an unsafe store of null into self.
458     Address selfAddr =
459       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
460     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
461   }
462 
463   RValue result;
464   if (isSuperMessage) {
465     // super is only valid in an Objective-C method
466     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
467     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
468     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
469                                               E->getSelector(),
470                                               OMD->getClassInterface(),
471                                               isCategoryImpl,
472                                               Receiver,
473                                               isClassMessage,
474                                               Args,
475                                               method);
476   } else {
477     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
478                                          E->getSelector(),
479                                          Receiver, Args, OID,
480                                          method);
481   }
482 
483   // For delegate init calls in ARC, implicitly store the result of
484   // the call back into self.  This takes ownership of the value.
485   if (isDelegateInit) {
486     Address selfAddr =
487       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
488     llvm::Value *newSelf = result.getScalarVal();
489 
490     // The delegate return type isn't necessarily a matching type; in
491     // fact, it's quite likely to be 'id'.
492     llvm::Type *selfTy = selfAddr.getElementType();
493     newSelf = Builder.CreateBitCast(newSelf, selfTy);
494 
495     Builder.CreateStore(newSelf, selfAddr);
496   }
497 
498   return AdjustObjCObjectType(*this, E->getType(), result);
499 }
500 
501 namespace {
502 struct FinishARCDealloc final : EHScopeStack::Cleanup {
503   void Emit(CodeGenFunction &CGF, Flags flags) override {
504     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
505 
506     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
507     const ObjCInterfaceDecl *iface = impl->getClassInterface();
508     if (!iface->getSuperClass()) return;
509 
510     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
511 
512     // Call [super dealloc] if we have a superclass.
513     llvm::Value *self = CGF.LoadObjCSelf();
514 
515     CallArgList args;
516     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
517                                                       CGF.getContext().VoidTy,
518                                                       method->getSelector(),
519                                                       iface,
520                                                       isCategory,
521                                                       self,
522                                                       /*is class msg*/ false,
523                                                       args,
524                                                       method);
525   }
526 };
527 }
528 
529 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
530 /// the LLVM function and sets the other context used by
531 /// CodeGenFunction.
532 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
533                                       const ObjCContainerDecl *CD) {
534   SourceLocation StartLoc = OMD->getLocStart();
535   FunctionArgList args;
536   // Check if we should generate debug info for this method.
537   if (OMD->hasAttr<NoDebugAttr>())
538     DebugInfo = nullptr; // disable debug info indefinitely for this function
539 
540   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
541 
542   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
543   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
544 
545   args.push_back(OMD->getSelfDecl());
546   args.push_back(OMD->getCmdDecl());
547 
548   args.append(OMD->param_begin(), OMD->param_end());
549 
550   CurGD = OMD;
551   CurEHLocation = OMD->getLocEnd();
552 
553   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
554                 OMD->getLocation(), StartLoc);
555 
556   // In ARC, certain methods get an extra cleanup.
557   if (CGM.getLangOpts().ObjCAutoRefCount &&
558       OMD->isInstanceMethod() &&
559       OMD->getSelector().isUnarySelector()) {
560     const IdentifierInfo *ident =
561       OMD->getSelector().getIdentifierInfoForSlot(0);
562     if (ident->isStr("dealloc"))
563       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
564   }
565 }
566 
567 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
568                                               LValue lvalue, QualType type);
569 
570 /// Generate an Objective-C method.  An Objective-C method is a C function with
571 /// its pointer, name, and types registered in the class struture.
572 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
573   StartObjCMethod(OMD, OMD->getClassInterface());
574   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
575   assert(isa<CompoundStmt>(OMD->getBody()));
576   incrementProfileCounter(OMD->getBody());
577   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
578   FinishFunction(OMD->getBodyRBrace());
579 }
580 
581 /// emitStructGetterCall - Call the runtime function to load a property
582 /// into the return value slot.
583 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
584                                  bool isAtomic, bool hasStrong) {
585   ASTContext &Context = CGF.getContext();
586 
587   Address src =
588     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
589        .getAddress();
590 
591   // objc_copyStruct (ReturnValue, &structIvar,
592   //                  sizeof (Type of Ivar), isAtomic, false);
593   CallArgList args;
594 
595   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
596   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
597 
598   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
599   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
600 
601   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
602   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
603   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
604   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
605 
606   llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
607   CGCallee callee = CGCallee::forDirect(fn);
608   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
609                callee, ReturnValueSlot(), args);
610 }
611 
612 /// Determine whether the given architecture supports unaligned atomic
613 /// accesses.  They don't have to be fast, just faster than a function
614 /// call and a mutex.
615 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
616   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
617   // currently supported by the backend.)
618   return 0;
619 }
620 
621 /// Return the maximum size that permits atomic accesses for the given
622 /// architecture.
623 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
624                                         llvm::Triple::ArchType arch) {
625   // ARM has 8-byte atomic accesses, but it's not clear whether we
626   // want to rely on them here.
627 
628   // In the default case, just assume that any size up to a pointer is
629   // fine given adequate alignment.
630   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
631 }
632 
633 namespace {
634   class PropertyImplStrategy {
635   public:
636     enum StrategyKind {
637       /// The 'native' strategy is to use the architecture's provided
638       /// reads and writes.
639       Native,
640 
641       /// Use objc_setProperty and objc_getProperty.
642       GetSetProperty,
643 
644       /// Use objc_setProperty for the setter, but use expression
645       /// evaluation for the getter.
646       SetPropertyAndExpressionGet,
647 
648       /// Use objc_copyStruct.
649       CopyStruct,
650 
651       /// The 'expression' strategy is to emit normal assignment or
652       /// lvalue-to-rvalue expressions.
653       Expression
654     };
655 
656     StrategyKind getKind() const { return StrategyKind(Kind); }
657 
658     bool hasStrongMember() const { return HasStrong; }
659     bool isAtomic() const { return IsAtomic; }
660     bool isCopy() const { return IsCopy; }
661 
662     CharUnits getIvarSize() const { return IvarSize; }
663     CharUnits getIvarAlignment() const { return IvarAlignment; }
664 
665     PropertyImplStrategy(CodeGenModule &CGM,
666                          const ObjCPropertyImplDecl *propImpl);
667 
668   private:
669     unsigned Kind : 8;
670     unsigned IsAtomic : 1;
671     unsigned IsCopy : 1;
672     unsigned HasStrong : 1;
673 
674     CharUnits IvarSize;
675     CharUnits IvarAlignment;
676   };
677 }
678 
679 /// Pick an implementation strategy for the given property synthesis.
680 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
681                                      const ObjCPropertyImplDecl *propImpl) {
682   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
683   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
684 
685   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
686   IsAtomic = prop->isAtomic();
687   HasStrong = false; // doesn't matter here.
688 
689   // Evaluate the ivar's size and alignment.
690   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
691   QualType ivarType = ivar->getType();
692   std::tie(IvarSize, IvarAlignment) =
693       CGM.getContext().getTypeInfoInChars(ivarType);
694 
695   // If we have a copy property, we always have to use getProperty/setProperty.
696   // TODO: we could actually use setProperty and an expression for non-atomics.
697   if (IsCopy) {
698     Kind = GetSetProperty;
699     return;
700   }
701 
702   // Handle retain.
703   if (setterKind == ObjCPropertyDecl::Retain) {
704     // In GC-only, there's nothing special that needs to be done.
705     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
706       // fallthrough
707 
708     // In ARC, if the property is non-atomic, use expression emission,
709     // which translates to objc_storeStrong.  This isn't required, but
710     // it's slightly nicer.
711     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
712       // Using standard expression emission for the setter is only
713       // acceptable if the ivar is __strong, which won't be true if
714       // the property is annotated with __attribute__((NSObject)).
715       // TODO: falling all the way back to objc_setProperty here is
716       // just laziness, though;  we could still use objc_storeStrong
717       // if we hacked it right.
718       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
719         Kind = Expression;
720       else
721         Kind = SetPropertyAndExpressionGet;
722       return;
723 
724     // Otherwise, we need to at least use setProperty.  However, if
725     // the property isn't atomic, we can use normal expression
726     // emission for the getter.
727     } else if (!IsAtomic) {
728       Kind = SetPropertyAndExpressionGet;
729       return;
730 
731     // Otherwise, we have to use both setProperty and getProperty.
732     } else {
733       Kind = GetSetProperty;
734       return;
735     }
736   }
737 
738   // If we're not atomic, just use expression accesses.
739   if (!IsAtomic) {
740     Kind = Expression;
741     return;
742   }
743 
744   // Properties on bitfield ivars need to be emitted using expression
745   // accesses even if they're nominally atomic.
746   if (ivar->isBitField()) {
747     Kind = Expression;
748     return;
749   }
750 
751   // GC-qualified or ARC-qualified ivars need to be emitted as
752   // expressions.  This actually works out to being atomic anyway,
753   // except for ARC __strong, but that should trigger the above code.
754   if (ivarType.hasNonTrivialObjCLifetime() ||
755       (CGM.getLangOpts().getGC() &&
756        CGM.getContext().getObjCGCAttrKind(ivarType))) {
757     Kind = Expression;
758     return;
759   }
760 
761   // Compute whether the ivar has strong members.
762   if (CGM.getLangOpts().getGC())
763     if (const RecordType *recordType = ivarType->getAs<RecordType>())
764       HasStrong = recordType->getDecl()->hasObjectMember();
765 
766   // We can never access structs with object members with a native
767   // access, because we need to use write barriers.  This is what
768   // objc_copyStruct is for.
769   if (HasStrong) {
770     Kind = CopyStruct;
771     return;
772   }
773 
774   // Otherwise, this is target-dependent and based on the size and
775   // alignment of the ivar.
776 
777   // If the size of the ivar is not a power of two, give up.  We don't
778   // want to get into the business of doing compare-and-swaps.
779   if (!IvarSize.isPowerOfTwo()) {
780     Kind = CopyStruct;
781     return;
782   }
783 
784   llvm::Triple::ArchType arch =
785     CGM.getTarget().getTriple().getArch();
786 
787   // Most architectures require memory to fit within a single cache
788   // line, so the alignment has to be at least the size of the access.
789   // Otherwise we have to grab a lock.
790   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
791     Kind = CopyStruct;
792     return;
793   }
794 
795   // If the ivar's size exceeds the architecture's maximum atomic
796   // access size, we have to use CopyStruct.
797   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
798     Kind = CopyStruct;
799     return;
800   }
801 
802   // Otherwise, we can use native loads and stores.
803   Kind = Native;
804 }
805 
806 /// \brief Generate an Objective-C property getter function.
807 ///
808 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
809 /// is illegal within a category.
810 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
811                                          const ObjCPropertyImplDecl *PID) {
812   llvm::Constant *AtomicHelperFn =
813       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
814   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
815   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
816   assert(OMD && "Invalid call to generate getter (empty method)");
817   StartObjCMethod(OMD, IMP->getClassInterface());
818 
819   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
820 
821   FinishFunction();
822 }
823 
824 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
825   const Expr *getter = propImpl->getGetterCXXConstructor();
826   if (!getter) return true;
827 
828   // Sema only makes only of these when the ivar has a C++ class type,
829   // so the form is pretty constrained.
830 
831   // If the property has a reference type, we might just be binding a
832   // reference, in which case the result will be a gl-value.  We should
833   // treat this as a non-trivial operation.
834   if (getter->isGLValue())
835     return false;
836 
837   // If we selected a trivial copy-constructor, we're okay.
838   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
839     return (construct->getConstructor()->isTrivial());
840 
841   // The constructor might require cleanups (in which case it's never
842   // trivial).
843   assert(isa<ExprWithCleanups>(getter));
844   return false;
845 }
846 
847 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
848 /// copy the ivar into the resturn slot.
849 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
850                                           llvm::Value *returnAddr,
851                                           ObjCIvarDecl *ivar,
852                                           llvm::Constant *AtomicHelperFn) {
853   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
854   //                           AtomicHelperFn);
855   CallArgList args;
856 
857   // The 1st argument is the return Slot.
858   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
859 
860   // The 2nd argument is the address of the ivar.
861   llvm::Value *ivarAddr =
862     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
863                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
864   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
865   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
866 
867   // Third argument is the helper function.
868   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
869 
870   llvm::Constant *copyCppAtomicObjectFn =
871     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
872   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
873   CGF.EmitCall(
874       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
875                callee, ReturnValueSlot(), args);
876 }
877 
878 void
879 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
880                                         const ObjCPropertyImplDecl *propImpl,
881                                         const ObjCMethodDecl *GetterMethodDecl,
882                                         llvm::Constant *AtomicHelperFn) {
883   // If there's a non-trivial 'get' expression, we just have to emit that.
884   if (!hasTrivialGetExpr(propImpl)) {
885     if (!AtomicHelperFn) {
886       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
887                      /*nrvo*/ nullptr);
888       EmitReturnStmt(ret);
889     }
890     else {
891       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
892       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
893                                     ivar, AtomicHelperFn);
894     }
895     return;
896   }
897 
898   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
899   QualType propType = prop->getType();
900   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
901 
902   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
903 
904   // Pick an implementation strategy.
905   PropertyImplStrategy strategy(CGM, propImpl);
906   switch (strategy.getKind()) {
907   case PropertyImplStrategy::Native: {
908     // We don't need to do anything for a zero-size struct.
909     if (strategy.getIvarSize().isZero())
910       return;
911 
912     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
913 
914     // Currently, all atomic accesses have to be through integer
915     // types, so there's no point in trying to pick a prettier type.
916     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
917     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
918     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
919 
920     // Perform an atomic load.  This does not impose ordering constraints.
921     Address ivarAddr = LV.getAddress();
922     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
923     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
924     load->setAtomic(llvm::AtomicOrdering::Unordered);
925 
926     // Store that value into the return address.  Doing this with a
927     // bitcast is likely to produce some pretty ugly IR, but it's not
928     // the *most* terrible thing in the world.
929     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
930     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
931     llvm::Value *ivarVal = load;
932     if (ivarSize > retTySize) {
933       llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
934       ivarVal = Builder.CreateTrunc(load, newTy);
935       bitcastType = newTy->getPointerTo();
936     }
937     Builder.CreateStore(ivarVal,
938                         Builder.CreateBitCast(ReturnValue, bitcastType));
939 
940     // Make sure we don't do an autorelease.
941     AutoreleaseResult = false;
942     return;
943   }
944 
945   case PropertyImplStrategy::GetSetProperty: {
946     llvm::Constant *getPropertyFn =
947       CGM.getObjCRuntime().GetPropertyGetFunction();
948     if (!getPropertyFn) {
949       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
950       return;
951     }
952     CGCallee callee = CGCallee::forDirect(getPropertyFn);
953 
954     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
955     // FIXME: Can't this be simpler? This might even be worse than the
956     // corresponding gcc code.
957     llvm::Value *cmd =
958       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
959     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
960     llvm::Value *ivarOffset =
961       EmitIvarOffset(classImpl->getClassInterface(), ivar);
962 
963     CallArgList args;
964     args.add(RValue::get(self), getContext().getObjCIdType());
965     args.add(RValue::get(cmd), getContext().getObjCSelType());
966     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
967     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
968              getContext().BoolTy);
969 
970     // FIXME: We shouldn't need to get the function info here, the
971     // runtime already should have computed it to build the function.
972     llvm::Instruction *CallInstruction;
973     RValue RV = EmitCall(
974         getTypes().arrangeBuiltinFunctionCall(propType, args),
975         callee, ReturnValueSlot(), args, &CallInstruction);
976     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
977       call->setTailCall();
978 
979     // We need to fix the type here. Ivars with copy & retain are
980     // always objects so we don't need to worry about complex or
981     // aggregates.
982     RV = RValue::get(Builder.CreateBitCast(
983         RV.getScalarVal(),
984         getTypes().ConvertType(getterMethod->getReturnType())));
985 
986     EmitReturnOfRValue(RV, propType);
987 
988     // objc_getProperty does an autorelease, so we should suppress ours.
989     AutoreleaseResult = false;
990 
991     return;
992   }
993 
994   case PropertyImplStrategy::CopyStruct:
995     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
996                          strategy.hasStrongMember());
997     return;
998 
999   case PropertyImplStrategy::Expression:
1000   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1001     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1002 
1003     QualType ivarType = ivar->getType();
1004     switch (getEvaluationKind(ivarType)) {
1005     case TEK_Complex: {
1006       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1007       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1008                          /*init*/ true);
1009       return;
1010     }
1011     case TEK_Aggregate:
1012       // The return value slot is guaranteed to not be aliased, but
1013       // that's not necessarily the same as "on the stack", so
1014       // we still potentially need objc_memmove_collectable.
1015       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
1016       return;
1017     case TEK_Scalar: {
1018       llvm::Value *value;
1019       if (propType->isReferenceType()) {
1020         value = LV.getAddress().getPointer();
1021       } else {
1022         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1023         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1024           if (getLangOpts().ObjCAutoRefCount) {
1025             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1026           } else {
1027             value = EmitARCLoadWeak(LV.getAddress());
1028           }
1029 
1030         // Otherwise we want to do a simple load, suppressing the
1031         // final autorelease.
1032         } else {
1033           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1034           AutoreleaseResult = false;
1035         }
1036 
1037         value = Builder.CreateBitCast(
1038             value, ConvertType(GetterMethodDecl->getReturnType()));
1039       }
1040 
1041       EmitReturnOfRValue(RValue::get(value), propType);
1042       return;
1043     }
1044     }
1045     llvm_unreachable("bad evaluation kind");
1046   }
1047 
1048   }
1049   llvm_unreachable("bad @property implementation strategy!");
1050 }
1051 
1052 /// emitStructSetterCall - Call the runtime function to store the value
1053 /// from the first formal parameter into the given ivar.
1054 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1055                                  ObjCIvarDecl *ivar) {
1056   // objc_copyStruct (&structIvar, &Arg,
1057   //                  sizeof (struct something), true, false);
1058   CallArgList args;
1059 
1060   // The first argument is the address of the ivar.
1061   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1062                                                 CGF.LoadObjCSelf(), ivar, 0)
1063     .getPointer();
1064   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1065   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1066 
1067   // The second argument is the address of the parameter variable.
1068   ParmVarDecl *argVar = *OMD->param_begin();
1069   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1070                      VK_LValue, SourceLocation());
1071   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1072   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1073   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1074 
1075   // The third argument is the sizeof the type.
1076   llvm::Value *size =
1077     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1078   args.add(RValue::get(size), CGF.getContext().getSizeType());
1079 
1080   // The fourth argument is the 'isAtomic' flag.
1081   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1082 
1083   // The fifth argument is the 'hasStrong' flag.
1084   // FIXME: should this really always be false?
1085   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1086 
1087   llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1088   CGCallee callee = CGCallee::forDirect(fn);
1089   CGF.EmitCall(
1090       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1091                callee, ReturnValueSlot(), args);
1092 }
1093 
1094 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1095 /// the value from the first formal parameter into the given ivar, using
1096 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1097 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1098                                           ObjCMethodDecl *OMD,
1099                                           ObjCIvarDecl *ivar,
1100                                           llvm::Constant *AtomicHelperFn) {
1101   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1102   //                           AtomicHelperFn);
1103   CallArgList args;
1104 
1105   // The first argument is the address of the ivar.
1106   llvm::Value *ivarAddr =
1107     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1108                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
1109   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1110   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1111 
1112   // The second argument is the address of the parameter variable.
1113   ParmVarDecl *argVar = *OMD->param_begin();
1114   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1115                      VK_LValue, SourceLocation());
1116   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1117   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1118   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1119 
1120   // Third argument is the helper function.
1121   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1122 
1123   llvm::Constant *fn =
1124     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1125   CGCallee callee = CGCallee::forDirect(fn);
1126   CGF.EmitCall(
1127       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1128                callee, ReturnValueSlot(), args);
1129 }
1130 
1131 
1132 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1133   Expr *setter = PID->getSetterCXXAssignment();
1134   if (!setter) return true;
1135 
1136   // Sema only makes only of these when the ivar has a C++ class type,
1137   // so the form is pretty constrained.
1138 
1139   // An operator call is trivial if the function it calls is trivial.
1140   // This also implies that there's nothing non-trivial going on with
1141   // the arguments, because operator= can only be trivial if it's a
1142   // synthesized assignment operator and therefore both parameters are
1143   // references.
1144   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1145     if (const FunctionDecl *callee
1146           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1147       if (callee->isTrivial())
1148         return true;
1149     return false;
1150   }
1151 
1152   assert(isa<ExprWithCleanups>(setter));
1153   return false;
1154 }
1155 
1156 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1157   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1158     return false;
1159   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1160 }
1161 
1162 void
1163 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1164                                         const ObjCPropertyImplDecl *propImpl,
1165                                         llvm::Constant *AtomicHelperFn) {
1166   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1167   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1168   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1169 
1170   // Just use the setter expression if Sema gave us one and it's
1171   // non-trivial.
1172   if (!hasTrivialSetExpr(propImpl)) {
1173     if (!AtomicHelperFn)
1174       // If non-atomic, assignment is called directly.
1175       EmitStmt(propImpl->getSetterCXXAssignment());
1176     else
1177       // If atomic, assignment is called via a locking api.
1178       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1179                                     AtomicHelperFn);
1180     return;
1181   }
1182 
1183   PropertyImplStrategy strategy(CGM, propImpl);
1184   switch (strategy.getKind()) {
1185   case PropertyImplStrategy::Native: {
1186     // We don't need to do anything for a zero-size struct.
1187     if (strategy.getIvarSize().isZero())
1188       return;
1189 
1190     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1191 
1192     LValue ivarLValue =
1193       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1194     Address ivarAddr = ivarLValue.getAddress();
1195 
1196     // Currently, all atomic accesses have to be through integer
1197     // types, so there's no point in trying to pick a prettier type.
1198     llvm::Type *bitcastType =
1199       llvm::Type::getIntNTy(getLLVMContext(),
1200                             getContext().toBits(strategy.getIvarSize()));
1201 
1202     // Cast both arguments to the chosen operation type.
1203     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1204     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1205 
1206     // This bitcast load is likely to cause some nasty IR.
1207     llvm::Value *load = Builder.CreateLoad(argAddr);
1208 
1209     // Perform an atomic store.  There are no memory ordering requirements.
1210     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1211     store->setAtomic(llvm::AtomicOrdering::Unordered);
1212     return;
1213   }
1214 
1215   case PropertyImplStrategy::GetSetProperty:
1216   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1217 
1218     llvm::Constant *setOptimizedPropertyFn = nullptr;
1219     llvm::Constant *setPropertyFn = nullptr;
1220     if (UseOptimizedSetter(CGM)) {
1221       // 10.8 and iOS 6.0 code and GC is off
1222       setOptimizedPropertyFn =
1223         CGM.getObjCRuntime()
1224            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1225                                             strategy.isCopy());
1226       if (!setOptimizedPropertyFn) {
1227         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1228         return;
1229       }
1230     }
1231     else {
1232       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1233       if (!setPropertyFn) {
1234         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1235         return;
1236       }
1237     }
1238 
1239     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1240     //                       <is-atomic>, <is-copy>).
1241     llvm::Value *cmd =
1242       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1243     llvm::Value *self =
1244       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1245     llvm::Value *ivarOffset =
1246       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1247     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1248     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1249     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1250 
1251     CallArgList args;
1252     args.add(RValue::get(self), getContext().getObjCIdType());
1253     args.add(RValue::get(cmd), getContext().getObjCSelType());
1254     if (setOptimizedPropertyFn) {
1255       args.add(RValue::get(arg), getContext().getObjCIdType());
1256       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1257       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1258       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1259                callee, ReturnValueSlot(), args);
1260     } else {
1261       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1262       args.add(RValue::get(arg), getContext().getObjCIdType());
1263       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1264                getContext().BoolTy);
1265       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1266                getContext().BoolTy);
1267       // FIXME: We shouldn't need to get the function info here, the runtime
1268       // already should have computed it to build the function.
1269       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1270       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1271                callee, ReturnValueSlot(), args);
1272     }
1273 
1274     return;
1275   }
1276 
1277   case PropertyImplStrategy::CopyStruct:
1278     emitStructSetterCall(*this, setterMethod, ivar);
1279     return;
1280 
1281   case PropertyImplStrategy::Expression:
1282     break;
1283   }
1284 
1285   // Otherwise, fake up some ASTs and emit a normal assignment.
1286   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1287   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1288                    VK_LValue, SourceLocation());
1289   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1290                             selfDecl->getType(), CK_LValueToRValue, &self,
1291                             VK_RValue);
1292   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1293                           SourceLocation(), SourceLocation(),
1294                           &selfLoad, true, true);
1295 
1296   ParmVarDecl *argDecl = *setterMethod->param_begin();
1297   QualType argType = argDecl->getType().getNonReferenceType();
1298   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1299   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1300                            argType.getUnqualifiedType(), CK_LValueToRValue,
1301                            &arg, VK_RValue);
1302 
1303   // The property type can differ from the ivar type in some situations with
1304   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1305   // The following absurdity is just to ensure well-formed IR.
1306   CastKind argCK = CK_NoOp;
1307   if (ivarRef.getType()->isObjCObjectPointerType()) {
1308     if (argLoad.getType()->isObjCObjectPointerType())
1309       argCK = CK_BitCast;
1310     else if (argLoad.getType()->isBlockPointerType())
1311       argCK = CK_BlockPointerToObjCPointerCast;
1312     else
1313       argCK = CK_CPointerToObjCPointerCast;
1314   } else if (ivarRef.getType()->isBlockPointerType()) {
1315      if (argLoad.getType()->isBlockPointerType())
1316       argCK = CK_BitCast;
1317     else
1318       argCK = CK_AnyPointerToBlockPointerCast;
1319   } else if (ivarRef.getType()->isPointerType()) {
1320     argCK = CK_BitCast;
1321   }
1322   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1323                            ivarRef.getType(), argCK, &argLoad,
1324                            VK_RValue);
1325   Expr *finalArg = &argLoad;
1326   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1327                                            argLoad.getType()))
1328     finalArg = &argCast;
1329 
1330 
1331   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1332                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1333                         SourceLocation(), FPOptions());
1334   EmitStmt(&assign);
1335 }
1336 
1337 /// \brief Generate an Objective-C property setter function.
1338 ///
1339 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1340 /// is illegal within a category.
1341 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1342                                          const ObjCPropertyImplDecl *PID) {
1343   llvm::Constant *AtomicHelperFn =
1344       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1345   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1346   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1347   assert(OMD && "Invalid call to generate setter (empty method)");
1348   StartObjCMethod(OMD, IMP->getClassInterface());
1349 
1350   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1351 
1352   FinishFunction();
1353 }
1354 
1355 namespace {
1356   struct DestroyIvar final : EHScopeStack::Cleanup {
1357   private:
1358     llvm::Value *addr;
1359     const ObjCIvarDecl *ivar;
1360     CodeGenFunction::Destroyer *destroyer;
1361     bool useEHCleanupForArray;
1362   public:
1363     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1364                 CodeGenFunction::Destroyer *destroyer,
1365                 bool useEHCleanupForArray)
1366       : addr(addr), ivar(ivar), destroyer(destroyer),
1367         useEHCleanupForArray(useEHCleanupForArray) {}
1368 
1369     void Emit(CodeGenFunction &CGF, Flags flags) override {
1370       LValue lvalue
1371         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1372       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1373                       flags.isForNormalCleanup() && useEHCleanupForArray);
1374     }
1375   };
1376 }
1377 
1378 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1379 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1380                                       Address addr,
1381                                       QualType type) {
1382   llvm::Value *null = getNullForVariable(addr);
1383   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1384 }
1385 
1386 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1387                                   ObjCImplementationDecl *impl) {
1388   CodeGenFunction::RunCleanupsScope scope(CGF);
1389 
1390   llvm::Value *self = CGF.LoadObjCSelf();
1391 
1392   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1393   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1394        ivar; ivar = ivar->getNextIvar()) {
1395     QualType type = ivar->getType();
1396 
1397     // Check whether the ivar is a destructible type.
1398     QualType::DestructionKind dtorKind = type.isDestructedType();
1399     if (!dtorKind) continue;
1400 
1401     CodeGenFunction::Destroyer *destroyer = nullptr;
1402 
1403     // Use a call to objc_storeStrong to destroy strong ivars, for the
1404     // general benefit of the tools.
1405     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1406       destroyer = destroyARCStrongWithStore;
1407 
1408     // Otherwise use the default for the destruction kind.
1409     } else {
1410       destroyer = CGF.getDestroyer(dtorKind);
1411     }
1412 
1413     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1414 
1415     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1416                                          cleanupKind & EHCleanup);
1417   }
1418 
1419   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1420 }
1421 
1422 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1423                                                  ObjCMethodDecl *MD,
1424                                                  bool ctor) {
1425   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1426   StartObjCMethod(MD, IMP->getClassInterface());
1427 
1428   // Emit .cxx_construct.
1429   if (ctor) {
1430     // Suppress the final autorelease in ARC.
1431     AutoreleaseResult = false;
1432 
1433     for (const auto *IvarInit : IMP->inits()) {
1434       FieldDecl *Field = IvarInit->getAnyMember();
1435       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1436       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1437                                     LoadObjCSelf(), Ivar, 0);
1438       EmitAggExpr(IvarInit->getInit(),
1439                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1440                                           AggValueSlot::DoesNotNeedGCBarriers,
1441                                           AggValueSlot::IsNotAliased));
1442     }
1443     // constructor returns 'self'.
1444     CodeGenTypes &Types = CGM.getTypes();
1445     QualType IdTy(CGM.getContext().getObjCIdType());
1446     llvm::Value *SelfAsId =
1447       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1448     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1449 
1450   // Emit .cxx_destruct.
1451   } else {
1452     emitCXXDestructMethod(*this, IMP);
1453   }
1454   FinishFunction();
1455 }
1456 
1457 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1458   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1459   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1460                   Self->getType(), VK_LValue, SourceLocation());
1461   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1462 }
1463 
1464 QualType CodeGenFunction::TypeOfSelfObject() {
1465   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1466   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1467   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1468     getContext().getCanonicalType(selfDecl->getType()));
1469   return PTy->getPointeeType();
1470 }
1471 
1472 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1473   llvm::Constant *EnumerationMutationFnPtr =
1474     CGM.getObjCRuntime().EnumerationMutationFunction();
1475   if (!EnumerationMutationFnPtr) {
1476     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1477     return;
1478   }
1479   CGCallee EnumerationMutationFn =
1480     CGCallee::forDirect(EnumerationMutationFnPtr);
1481 
1482   CGDebugInfo *DI = getDebugInfo();
1483   if (DI)
1484     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1485 
1486   RunCleanupsScope ForScope(*this);
1487 
1488   // The local variable comes into scope immediately.
1489   AutoVarEmission variable = AutoVarEmission::invalid();
1490   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1491     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1492 
1493   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1494 
1495   // Fast enumeration state.
1496   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1497   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1498   EmitNullInitialization(StatePtr, StateTy);
1499 
1500   // Number of elements in the items array.
1501   static const unsigned NumItems = 16;
1502 
1503   // Fetch the countByEnumeratingWithState:objects:count: selector.
1504   IdentifierInfo *II[] = {
1505     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1506     &CGM.getContext().Idents.get("objects"),
1507     &CGM.getContext().Idents.get("count")
1508   };
1509   Selector FastEnumSel =
1510     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1511 
1512   QualType ItemsTy =
1513     getContext().getConstantArrayType(getContext().getObjCIdType(),
1514                                       llvm::APInt(32, NumItems),
1515                                       ArrayType::Normal, 0);
1516   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1517 
1518   // Emit the collection pointer.  In ARC, we do a retain.
1519   llvm::Value *Collection;
1520   if (getLangOpts().ObjCAutoRefCount) {
1521     Collection = EmitARCRetainScalarExpr(S.getCollection());
1522 
1523     // Enter a cleanup to do the release.
1524     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1525   } else {
1526     Collection = EmitScalarExpr(S.getCollection());
1527   }
1528 
1529   // The 'continue' label needs to appear within the cleanup for the
1530   // collection object.
1531   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1532 
1533   // Send it our message:
1534   CallArgList Args;
1535 
1536   // The first argument is a temporary of the enumeration-state type.
1537   Args.add(RValue::get(StatePtr.getPointer()),
1538            getContext().getPointerType(StateTy));
1539 
1540   // The second argument is a temporary array with space for NumItems
1541   // pointers.  We'll actually be loading elements from the array
1542   // pointer written into the control state; this buffer is so that
1543   // collections that *aren't* backed by arrays can still queue up
1544   // batches of elements.
1545   Args.add(RValue::get(ItemsPtr.getPointer()),
1546            getContext().getPointerType(ItemsTy));
1547 
1548   // The third argument is the capacity of that temporary array.
1549   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1550   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1551   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1552 
1553   // Start the enumeration.
1554   RValue CountRV =
1555     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1556                                              getContext().UnsignedLongTy,
1557                                              FastEnumSel,
1558                                              Collection, Args);
1559 
1560   // The initial number of objects that were returned in the buffer.
1561   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1562 
1563   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1564   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1565 
1566   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1567 
1568   // If the limit pointer was zero to begin with, the collection is
1569   // empty; skip all this. Set the branch weight assuming this has the same
1570   // probability of exiting the loop as any other loop exit.
1571   uint64_t EntryCount = getCurrentProfileCount();
1572   Builder.CreateCondBr(
1573       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1574       LoopInitBB,
1575       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1576 
1577   // Otherwise, initialize the loop.
1578   EmitBlock(LoopInitBB);
1579 
1580   // Save the initial mutations value.  This is the value at an
1581   // address that was written into the state object by
1582   // countByEnumeratingWithState:objects:count:.
1583   Address StateMutationsPtrPtr = Builder.CreateStructGEP(
1584       StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr");
1585   llvm::Value *StateMutationsPtr
1586     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1587 
1588   llvm::Value *initialMutations =
1589     Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1590                               "forcoll.initial-mutations");
1591 
1592   // Start looping.  This is the point we return to whenever we have a
1593   // fresh, non-empty batch of objects.
1594   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1595   EmitBlock(LoopBodyBB);
1596 
1597   // The current index into the buffer.
1598   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1599   index->addIncoming(zero, LoopInitBB);
1600 
1601   // The current buffer size.
1602   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1603   count->addIncoming(initialBufferLimit, LoopInitBB);
1604 
1605   incrementProfileCounter(&S);
1606 
1607   // Check whether the mutations value has changed from where it was
1608   // at start.  StateMutationsPtr should actually be invariant between
1609   // refreshes.
1610   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1611   llvm::Value *currentMutations
1612     = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1613                                 "statemutations");
1614 
1615   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1616   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1617 
1618   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1619                        WasNotMutatedBB, WasMutatedBB);
1620 
1621   // If so, call the enumeration-mutation function.
1622   EmitBlock(WasMutatedBB);
1623   llvm::Value *V =
1624     Builder.CreateBitCast(Collection,
1625                           ConvertType(getContext().getObjCIdType()));
1626   CallArgList Args2;
1627   Args2.add(RValue::get(V), getContext().getObjCIdType());
1628   // FIXME: We shouldn't need to get the function info here, the runtime already
1629   // should have computed it to build the function.
1630   EmitCall(
1631           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1632            EnumerationMutationFn, ReturnValueSlot(), Args2);
1633 
1634   // Otherwise, or if the mutation function returns, just continue.
1635   EmitBlock(WasNotMutatedBB);
1636 
1637   // Initialize the element variable.
1638   RunCleanupsScope elementVariableScope(*this);
1639   bool elementIsVariable;
1640   LValue elementLValue;
1641   QualType elementType;
1642   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1643     // Initialize the variable, in case it's a __block variable or something.
1644     EmitAutoVarInit(variable);
1645 
1646     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1647     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1648                         VK_LValue, SourceLocation());
1649     elementLValue = EmitLValue(&tempDRE);
1650     elementType = D->getType();
1651     elementIsVariable = true;
1652 
1653     if (D->isARCPseudoStrong())
1654       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1655   } else {
1656     elementLValue = LValue(); // suppress warning
1657     elementType = cast<Expr>(S.getElement())->getType();
1658     elementIsVariable = false;
1659   }
1660   llvm::Type *convertedElementType = ConvertType(elementType);
1661 
1662   // Fetch the buffer out of the enumeration state.
1663   // TODO: this pointer should actually be invariant between
1664   // refreshes, which would help us do certain loop optimizations.
1665   Address StateItemsPtr = Builder.CreateStructGEP(
1666       StatePtr, 1, getPointerSize(), "stateitems.ptr");
1667   llvm::Value *EnumStateItems =
1668     Builder.CreateLoad(StateItemsPtr, "stateitems");
1669 
1670   // Fetch the value at the current index from the buffer.
1671   llvm::Value *CurrentItemPtr =
1672     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1673   llvm::Value *CurrentItem =
1674     Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1675 
1676   // Cast that value to the right type.
1677   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1678                                       "currentitem");
1679 
1680   // Make sure we have an l-value.  Yes, this gets evaluated every
1681   // time through the loop.
1682   if (!elementIsVariable) {
1683     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1684     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1685   } else {
1686     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1687                            /*isInit*/ true);
1688   }
1689 
1690   // If we do have an element variable, this assignment is the end of
1691   // its initialization.
1692   if (elementIsVariable)
1693     EmitAutoVarCleanups(variable);
1694 
1695   // Perform the loop body, setting up break and continue labels.
1696   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1697   {
1698     RunCleanupsScope Scope(*this);
1699     EmitStmt(S.getBody());
1700   }
1701   BreakContinueStack.pop_back();
1702 
1703   // Destroy the element variable now.
1704   elementVariableScope.ForceCleanup();
1705 
1706   // Check whether there are more elements.
1707   EmitBlock(AfterBody.getBlock());
1708 
1709   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1710 
1711   // First we check in the local buffer.
1712   llvm::Value *indexPlusOne
1713     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1714 
1715   // If we haven't overrun the buffer yet, we can continue.
1716   // Set the branch weights based on the simplifying assumption that this is
1717   // like a while-loop, i.e., ignoring that the false branch fetches more
1718   // elements and then returns to the loop.
1719   Builder.CreateCondBr(
1720       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1721       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1722 
1723   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1724   count->addIncoming(count, AfterBody.getBlock());
1725 
1726   // Otherwise, we have to fetch more elements.
1727   EmitBlock(FetchMoreBB);
1728 
1729   CountRV =
1730     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1731                                              getContext().UnsignedLongTy,
1732                                              FastEnumSel,
1733                                              Collection, Args);
1734 
1735   // If we got a zero count, we're done.
1736   llvm::Value *refetchCount = CountRV.getScalarVal();
1737 
1738   // (note that the message send might split FetchMoreBB)
1739   index->addIncoming(zero, Builder.GetInsertBlock());
1740   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1741 
1742   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1743                        EmptyBB, LoopBodyBB);
1744 
1745   // No more elements.
1746   EmitBlock(EmptyBB);
1747 
1748   if (!elementIsVariable) {
1749     // If the element was not a declaration, set it to be null.
1750 
1751     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1752     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1753     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1754   }
1755 
1756   if (DI)
1757     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1758 
1759   ForScope.ForceCleanup();
1760   EmitBlock(LoopEnd.getBlock());
1761 }
1762 
1763 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1764   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1765 }
1766 
1767 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1768   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1769 }
1770 
1771 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1772                                               const ObjCAtSynchronizedStmt &S) {
1773   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1774 }
1775 
1776 namespace {
1777   struct CallObjCRelease final : EHScopeStack::Cleanup {
1778     CallObjCRelease(llvm::Value *object) : object(object) {}
1779     llvm::Value *object;
1780 
1781     void Emit(CodeGenFunction &CGF, Flags flags) override {
1782       // Releases at the end of the full-expression are imprecise.
1783       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1784     }
1785   };
1786 }
1787 
1788 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1789 /// release at the end of the full-expression.
1790 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1791                                                     llvm::Value *object) {
1792   // If we're in a conditional branch, we need to make the cleanup
1793   // conditional.
1794   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1795   return object;
1796 }
1797 
1798 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1799                                                            llvm::Value *value) {
1800   return EmitARCRetainAutorelease(type, value);
1801 }
1802 
1803 /// Given a number of pointers, inform the optimizer that they're
1804 /// being intrinsically used up until this point in the program.
1805 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1806   llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1807   if (!fn) {
1808     llvm::FunctionType *fnType =
1809       llvm::FunctionType::get(CGM.VoidTy, None, true);
1810     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1811   }
1812 
1813   // This isn't really a "runtime" function, but as an intrinsic it
1814   // doesn't really matter as long as we align things up.
1815   EmitNounwindRuntimeCall(fn, values);
1816 }
1817 
1818 
1819 static bool IsForwarding(StringRef Name) {
1820   return llvm::StringSwitch<bool>(Name)
1821       .Cases("objc_autoreleaseReturnValue",             // ARCInstKind::AutoreleaseRV
1822              "objc_autorelease",                        // ARCInstKind::Autorelease
1823              "objc_retainAutoreleaseReturnValue",       // ARCInstKind::FusedRetainAutoreleaseRV
1824              "objc_retainAutoreleasedReturnValue",      // ARCInstKind::RetainRV
1825              "objc_retainAutorelease",                  // ARCInstKind::FusedRetainAutorelease
1826              "objc_retainedObject",                     // ARCInstKind::NoopCast
1827              "objc_retain",                             // ARCInstKind::Retain
1828              "objc_unretainedObject",                   // ARCInstKind::NoopCast
1829              "objc_unretainedPointer",                  // ARCInstKind::NoopCast
1830              "objc_unsafeClaimAutoreleasedReturnValue", // ARCInstKind::ClaimRV
1831              true)
1832       .Default(false);
1833 }
1834 
1835 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1836                                                 llvm::FunctionType *FTy,
1837                                                 StringRef Name) {
1838   llvm::Constant *RTF = CGM.CreateRuntimeFunction(FTy, Name);
1839 
1840   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
1841     // If the target runtime doesn't naturally support ARC, emit weak
1842     // references to the runtime support library.  We don't really
1843     // permit this to fail, but we need a particular relocation style.
1844     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
1845         !CGM.getTriple().isOSBinFormatCOFF()) {
1846       F->setLinkage(llvm::Function::ExternalWeakLinkage);
1847     } else if (Name == "objc_retain" || Name  == "objc_release") {
1848       // If we have Native ARC, set nonlazybind attribute for these APIs for
1849       // performance.
1850       F->addFnAttr(llvm::Attribute::NonLazyBind);
1851     }
1852 
1853     if (IsForwarding(Name)) {
1854       llvm::AttrBuilder B;
1855       B.addAttribute(llvm::Attribute::Returned);
1856 
1857       F->arg_begin()->addAttr(llvm::AttributeList::get(F->getContext(), 1, B));
1858     }
1859   }
1860 
1861   return RTF;
1862 }
1863 
1864 /// Perform an operation having the signature
1865 ///   i8* (i8*)
1866 /// where a null input causes a no-op and returns null.
1867 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1868                                           llvm::Value *value,
1869                                           llvm::Constant *&fn,
1870                                           StringRef fnName,
1871                                           bool isTailCall = false) {
1872   if (isa<llvm::ConstantPointerNull>(value))
1873     return value;
1874 
1875   if (!fn) {
1876     llvm::FunctionType *fnType =
1877       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1878     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1879   }
1880 
1881   // Cast the argument to 'id'.
1882   llvm::Type *origType = value->getType();
1883   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1884 
1885   // Call the function.
1886   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1887   if (isTailCall)
1888     call->setTailCall();
1889 
1890   // Cast the result back to the original type.
1891   return CGF.Builder.CreateBitCast(call, origType);
1892 }
1893 
1894 /// Perform an operation having the following signature:
1895 ///   i8* (i8**)
1896 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1897                                          Address addr,
1898                                          llvm::Constant *&fn,
1899                                          StringRef fnName) {
1900   if (!fn) {
1901     llvm::FunctionType *fnType =
1902       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1903     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1904   }
1905 
1906   // Cast the argument to 'id*'.
1907   llvm::Type *origType = addr.getElementType();
1908   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1909 
1910   // Call the function.
1911   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
1912 
1913   // Cast the result back to a dereference of the original type.
1914   if (origType != CGF.Int8PtrTy)
1915     result = CGF.Builder.CreateBitCast(result, origType);
1916 
1917   return result;
1918 }
1919 
1920 /// Perform an operation having the following signature:
1921 ///   i8* (i8**, i8*)
1922 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1923                                           Address addr,
1924                                           llvm::Value *value,
1925                                           llvm::Constant *&fn,
1926                                           StringRef fnName,
1927                                           bool ignored) {
1928   assert(addr.getElementType() == value->getType());
1929 
1930   if (!fn) {
1931     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1932 
1933     llvm::FunctionType *fnType
1934       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1935     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1936   }
1937 
1938   llvm::Type *origType = value->getType();
1939 
1940   llvm::Value *args[] = {
1941     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
1942     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1943   };
1944   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1945 
1946   if (ignored) return nullptr;
1947 
1948   return CGF.Builder.CreateBitCast(result, origType);
1949 }
1950 
1951 /// Perform an operation having the following signature:
1952 ///   void (i8**, i8**)
1953 static void emitARCCopyOperation(CodeGenFunction &CGF,
1954                                  Address dst,
1955                                  Address src,
1956                                  llvm::Constant *&fn,
1957                                  StringRef fnName) {
1958   assert(dst.getType() == src.getType());
1959 
1960   if (!fn) {
1961     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1962 
1963     llvm::FunctionType *fnType
1964       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1965     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1966   }
1967 
1968   llvm::Value *args[] = {
1969     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
1970     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
1971   };
1972   CGF.EmitNounwindRuntimeCall(fn, args);
1973 }
1974 
1975 /// Produce the code to do a retain.  Based on the type, calls one of:
1976 ///   call i8* \@objc_retain(i8* %value)
1977 ///   call i8* \@objc_retainBlock(i8* %value)
1978 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1979   if (type->isBlockPointerType())
1980     return EmitARCRetainBlock(value, /*mandatory*/ false);
1981   else
1982     return EmitARCRetainNonBlock(value);
1983 }
1984 
1985 /// Retain the given object, with normal retain semantics.
1986 ///   call i8* \@objc_retain(i8* %value)
1987 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1988   return emitARCValueOperation(*this, value,
1989                                CGM.getObjCEntrypoints().objc_retain,
1990                                "objc_retain");
1991 }
1992 
1993 /// Retain the given block, with _Block_copy semantics.
1994 ///   call i8* \@objc_retainBlock(i8* %value)
1995 ///
1996 /// \param mandatory - If false, emit the call with metadata
1997 /// indicating that it's okay for the optimizer to eliminate this call
1998 /// if it can prove that the block never escapes except down the stack.
1999 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2000                                                  bool mandatory) {
2001   llvm::Value *result
2002     = emitARCValueOperation(*this, value,
2003                             CGM.getObjCEntrypoints().objc_retainBlock,
2004                             "objc_retainBlock");
2005 
2006   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2007   // tell the optimizer that it doesn't need to do this copy if the
2008   // block doesn't escape, where being passed as an argument doesn't
2009   // count as escaping.
2010   if (!mandatory && isa<llvm::Instruction>(result)) {
2011     llvm::CallInst *call
2012       = cast<llvm::CallInst>(result->stripPointerCasts());
2013     assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock);
2014 
2015     call->setMetadata("clang.arc.copy_on_escape",
2016                       llvm::MDNode::get(Builder.getContext(), None));
2017   }
2018 
2019   return result;
2020 }
2021 
2022 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2023   // Fetch the void(void) inline asm which marks that we're going to
2024   // do something with the autoreleased return value.
2025   llvm::InlineAsm *&marker
2026     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2027   if (!marker) {
2028     StringRef assembly
2029       = CGF.CGM.getTargetCodeGenInfo()
2030            .getARCRetainAutoreleasedReturnValueMarker();
2031 
2032     // If we have an empty assembly string, there's nothing to do.
2033     if (assembly.empty()) {
2034 
2035     // Otherwise, at -O0, build an inline asm that we're going to call
2036     // in a moment.
2037     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2038       llvm::FunctionType *type =
2039         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2040 
2041       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2042 
2043     // If we're at -O1 and above, we don't want to litter the code
2044     // with this marker yet, so leave a breadcrumb for the ARC
2045     // optimizer to pick up.
2046     } else {
2047       llvm::NamedMDNode *metadata =
2048         CGF.CGM.getModule().getOrInsertNamedMetadata(
2049                             "clang.arc.retainAutoreleasedReturnValueMarker");
2050       assert(metadata->getNumOperands() <= 1);
2051       if (metadata->getNumOperands() == 0) {
2052         auto &ctx = CGF.getLLVMContext();
2053         metadata->addOperand(llvm::MDNode::get(ctx,
2054                                      llvm::MDString::get(ctx, assembly)));
2055       }
2056     }
2057   }
2058 
2059   // Call the marker asm if we made one, which we do only at -O0.
2060   if (marker)
2061     CGF.Builder.CreateCall(marker);
2062 }
2063 
2064 /// Retain the given object which is the result of a function call.
2065 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2066 ///
2067 /// Yes, this function name is one character away from a different
2068 /// call with completely different semantics.
2069 llvm::Value *
2070 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2071   emitAutoreleasedReturnValueMarker(*this);
2072   return emitARCValueOperation(*this, value,
2073               CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2074                                "objc_retainAutoreleasedReturnValue");
2075 }
2076 
2077 /// Claim a possibly-autoreleased return value at +0.  This is only
2078 /// valid to do in contexts which do not rely on the retain to keep
2079 /// the object valid for for all of its uses; for example, when
2080 /// the value is ignored, or when it is being assigned to an
2081 /// __unsafe_unretained variable.
2082 ///
2083 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2084 llvm::Value *
2085 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2086   emitAutoreleasedReturnValueMarker(*this);
2087   return emitARCValueOperation(*this, value,
2088               CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2089                                "objc_unsafeClaimAutoreleasedReturnValue");
2090 }
2091 
2092 /// Release the given object.
2093 ///   call void \@objc_release(i8* %value)
2094 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2095                                      ARCPreciseLifetime_t precise) {
2096   if (isa<llvm::ConstantPointerNull>(value)) return;
2097 
2098   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release;
2099   if (!fn) {
2100     llvm::FunctionType *fnType =
2101       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2102     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
2103   }
2104 
2105   // Cast the argument to 'id'.
2106   value = Builder.CreateBitCast(value, Int8PtrTy);
2107 
2108   // Call objc_release.
2109   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2110 
2111   if (precise == ARCImpreciseLifetime) {
2112     call->setMetadata("clang.imprecise_release",
2113                       llvm::MDNode::get(Builder.getContext(), None));
2114   }
2115 }
2116 
2117 /// Destroy a __strong variable.
2118 ///
2119 /// At -O0, emit a call to store 'null' into the address;
2120 /// instrumenting tools prefer this because the address is exposed,
2121 /// but it's relatively cumbersome to optimize.
2122 ///
2123 /// At -O1 and above, just load and call objc_release.
2124 ///
2125 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2126 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2127                                            ARCPreciseLifetime_t precise) {
2128   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2129     llvm::Value *null = getNullForVariable(addr);
2130     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2131     return;
2132   }
2133 
2134   llvm::Value *value = Builder.CreateLoad(addr);
2135   EmitARCRelease(value, precise);
2136 }
2137 
2138 /// Store into a strong object.  Always calls this:
2139 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2140 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2141                                                      llvm::Value *value,
2142                                                      bool ignored) {
2143   assert(addr.getElementType() == value->getType());
2144 
2145   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2146   if (!fn) {
2147     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2148     llvm::FunctionType *fnType
2149       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2150     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2151   }
2152 
2153   llvm::Value *args[] = {
2154     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2155     Builder.CreateBitCast(value, Int8PtrTy)
2156   };
2157   EmitNounwindRuntimeCall(fn, args);
2158 
2159   if (ignored) return nullptr;
2160   return value;
2161 }
2162 
2163 /// Store into a strong object.  Sometimes calls this:
2164 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2165 /// Other times, breaks it down into components.
2166 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2167                                                  llvm::Value *newValue,
2168                                                  bool ignored) {
2169   QualType type = dst.getType();
2170   bool isBlock = type->isBlockPointerType();
2171 
2172   // Use a store barrier at -O0 unless this is a block type or the
2173   // lvalue is inadequately aligned.
2174   if (shouldUseFusedARCCalls() &&
2175       !isBlock &&
2176       (dst.getAlignment().isZero() ||
2177        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2178     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2179   }
2180 
2181   // Otherwise, split it out.
2182 
2183   // Retain the new value.
2184   newValue = EmitARCRetain(type, newValue);
2185 
2186   // Read the old value.
2187   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2188 
2189   // Store.  We do this before the release so that any deallocs won't
2190   // see the old value.
2191   EmitStoreOfScalar(newValue, dst);
2192 
2193   // Finally, release the old value.
2194   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2195 
2196   return newValue;
2197 }
2198 
2199 /// Autorelease the given object.
2200 ///   call i8* \@objc_autorelease(i8* %value)
2201 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2202   return emitARCValueOperation(*this, value,
2203                                CGM.getObjCEntrypoints().objc_autorelease,
2204                                "objc_autorelease");
2205 }
2206 
2207 /// Autorelease the given object.
2208 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2209 llvm::Value *
2210 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2211   return emitARCValueOperation(*this, value,
2212                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2213                                "objc_autoreleaseReturnValue",
2214                                /*isTailCall*/ true);
2215 }
2216 
2217 /// Do a fused retain/autorelease of the given object.
2218 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2219 llvm::Value *
2220 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2221   return emitARCValueOperation(*this, value,
2222                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2223                                "objc_retainAutoreleaseReturnValue",
2224                                /*isTailCall*/ true);
2225 }
2226 
2227 /// Do a fused retain/autorelease of the given object.
2228 ///   call i8* \@objc_retainAutorelease(i8* %value)
2229 /// or
2230 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2231 ///   call i8* \@objc_autorelease(i8* %retain)
2232 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2233                                                        llvm::Value *value) {
2234   if (!type->isBlockPointerType())
2235     return EmitARCRetainAutoreleaseNonBlock(value);
2236 
2237   if (isa<llvm::ConstantPointerNull>(value)) return value;
2238 
2239   llvm::Type *origType = value->getType();
2240   value = Builder.CreateBitCast(value, Int8PtrTy);
2241   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2242   value = EmitARCAutorelease(value);
2243   return Builder.CreateBitCast(value, origType);
2244 }
2245 
2246 /// Do a fused retain/autorelease of the given object.
2247 ///   call i8* \@objc_retainAutorelease(i8* %value)
2248 llvm::Value *
2249 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2250   return emitARCValueOperation(*this, value,
2251                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2252                                "objc_retainAutorelease");
2253 }
2254 
2255 /// i8* \@objc_loadWeak(i8** %addr)
2256 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2257 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2258   return emitARCLoadOperation(*this, addr,
2259                               CGM.getObjCEntrypoints().objc_loadWeak,
2260                               "objc_loadWeak");
2261 }
2262 
2263 /// i8* \@objc_loadWeakRetained(i8** %addr)
2264 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2265   return emitARCLoadOperation(*this, addr,
2266                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2267                               "objc_loadWeakRetained");
2268 }
2269 
2270 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2271 /// Returns %value.
2272 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2273                                                llvm::Value *value,
2274                                                bool ignored) {
2275   return emitARCStoreOperation(*this, addr, value,
2276                                CGM.getObjCEntrypoints().objc_storeWeak,
2277                                "objc_storeWeak", ignored);
2278 }
2279 
2280 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2281 /// Returns %value.  %addr is known to not have a current weak entry.
2282 /// Essentially equivalent to:
2283 ///   *addr = nil; objc_storeWeak(addr, value);
2284 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2285   // If we're initializing to null, just write null to memory; no need
2286   // to get the runtime involved.  But don't do this if optimization
2287   // is enabled, because accounting for this would make the optimizer
2288   // much more complicated.
2289   if (isa<llvm::ConstantPointerNull>(value) &&
2290       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2291     Builder.CreateStore(value, addr);
2292     return;
2293   }
2294 
2295   emitARCStoreOperation(*this, addr, value,
2296                         CGM.getObjCEntrypoints().objc_initWeak,
2297                         "objc_initWeak", /*ignored*/ true);
2298 }
2299 
2300 /// void \@objc_destroyWeak(i8** %addr)
2301 /// Essentially objc_storeWeak(addr, nil).
2302 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2303   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2304   if (!fn) {
2305     llvm::FunctionType *fnType =
2306       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2307     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2308   }
2309 
2310   // Cast the argument to 'id*'.
2311   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2312 
2313   EmitNounwindRuntimeCall(fn, addr.getPointer());
2314 }
2315 
2316 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2317 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2318 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2319 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2320   emitARCCopyOperation(*this, dst, src,
2321                        CGM.getObjCEntrypoints().objc_moveWeak,
2322                        "objc_moveWeak");
2323 }
2324 
2325 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2326 /// Disregards the current value in %dest.  Essentially
2327 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2328 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2329   emitARCCopyOperation(*this, dst, src,
2330                        CGM.getObjCEntrypoints().objc_copyWeak,
2331                        "objc_copyWeak");
2332 }
2333 
2334 /// Produce the code to do a objc_autoreleasepool_push.
2335 ///   call i8* \@objc_autoreleasePoolPush(void)
2336 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2337   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2338   if (!fn) {
2339     llvm::FunctionType *fnType =
2340       llvm::FunctionType::get(Int8PtrTy, false);
2341     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2342   }
2343 
2344   return EmitNounwindRuntimeCall(fn);
2345 }
2346 
2347 /// Produce the code to do a primitive release.
2348 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2349 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2350   assert(value->getType() == Int8PtrTy);
2351 
2352   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2353   if (!fn) {
2354     llvm::FunctionType *fnType =
2355       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2356 
2357     // We don't want to use a weak import here; instead we should not
2358     // fall into this path.
2359     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2360   }
2361 
2362   // objc_autoreleasePoolPop can throw.
2363   EmitRuntimeCallOrInvoke(fn, value);
2364 }
2365 
2366 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2367 /// Which is: [[NSAutoreleasePool alloc] init];
2368 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2369 /// init is declared as: - (id) init; in its NSObject super class.
2370 ///
2371 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2372   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2373   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2374   // [NSAutoreleasePool alloc]
2375   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2376   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2377   CallArgList Args;
2378   RValue AllocRV =
2379     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2380                                 getContext().getObjCIdType(),
2381                                 AllocSel, Receiver, Args);
2382 
2383   // [Receiver init]
2384   Receiver = AllocRV.getScalarVal();
2385   II = &CGM.getContext().Idents.get("init");
2386   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2387   RValue InitRV =
2388     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2389                                 getContext().getObjCIdType(),
2390                                 InitSel, Receiver, Args);
2391   return InitRV.getScalarVal();
2392 }
2393 
2394 /// Produce the code to do a primitive release.
2395 /// [tmp drain];
2396 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2397   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2398   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2399   CallArgList Args;
2400   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2401                               getContext().VoidTy, DrainSel, Arg, Args);
2402 }
2403 
2404 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2405                                               Address addr,
2406                                               QualType type) {
2407   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2408 }
2409 
2410 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2411                                                 Address addr,
2412                                                 QualType type) {
2413   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2414 }
2415 
2416 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2417                                      Address addr,
2418                                      QualType type) {
2419   CGF.EmitARCDestroyWeak(addr);
2420 }
2421 
2422 namespace {
2423   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2424     llvm::Value *Token;
2425 
2426     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2427 
2428     void Emit(CodeGenFunction &CGF, Flags flags) override {
2429       CGF.EmitObjCAutoreleasePoolPop(Token);
2430     }
2431   };
2432   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2433     llvm::Value *Token;
2434 
2435     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2436 
2437     void Emit(CodeGenFunction &CGF, Flags flags) override {
2438       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2439     }
2440   };
2441 }
2442 
2443 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2444   if (CGM.getLangOpts().ObjCAutoRefCount)
2445     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2446   else
2447     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2448 }
2449 
2450 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2451                                                   LValue lvalue,
2452                                                   QualType type) {
2453   switch (type.getObjCLifetime()) {
2454   case Qualifiers::OCL_None:
2455   case Qualifiers::OCL_ExplicitNone:
2456   case Qualifiers::OCL_Strong:
2457   case Qualifiers::OCL_Autoreleasing:
2458     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2459                                               SourceLocation()).getScalarVal(),
2460                          false);
2461 
2462   case Qualifiers::OCL_Weak:
2463     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2464                          true);
2465   }
2466 
2467   llvm_unreachable("impossible lifetime!");
2468 }
2469 
2470 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2471                                                   const Expr *e) {
2472   e = e->IgnoreParens();
2473   QualType type = e->getType();
2474 
2475   // If we're loading retained from a __strong xvalue, we can avoid
2476   // an extra retain/release pair by zeroing out the source of this
2477   // "move" operation.
2478   if (e->isXValue() &&
2479       !type.isConstQualified() &&
2480       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2481     // Emit the lvalue.
2482     LValue lv = CGF.EmitLValue(e);
2483 
2484     // Load the object pointer.
2485     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2486                                                SourceLocation()).getScalarVal();
2487 
2488     // Set the source pointer to NULL.
2489     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2490 
2491     return TryEmitResult(result, true);
2492   }
2493 
2494   // As a very special optimization, in ARC++, if the l-value is the
2495   // result of a non-volatile assignment, do a simple retain of the
2496   // result of the call to objc_storeWeak instead of reloading.
2497   if (CGF.getLangOpts().CPlusPlus &&
2498       !type.isVolatileQualified() &&
2499       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2500       isa<BinaryOperator>(e) &&
2501       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2502     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2503 
2504   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2505 }
2506 
2507 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2508                                          llvm::Value *value)>
2509   ValueTransform;
2510 
2511 /// Insert code immediately after a call.
2512 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2513                                               llvm::Value *value,
2514                                               ValueTransform doAfterCall,
2515                                               ValueTransform doFallback) {
2516   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2517     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2518 
2519     // Place the retain immediately following the call.
2520     CGF.Builder.SetInsertPoint(call->getParent(),
2521                                ++llvm::BasicBlock::iterator(call));
2522     value = doAfterCall(CGF, value);
2523 
2524     CGF.Builder.restoreIP(ip);
2525     return value;
2526   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2527     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2528 
2529     // Place the retain at the beginning of the normal destination block.
2530     llvm::BasicBlock *BB = invoke->getNormalDest();
2531     CGF.Builder.SetInsertPoint(BB, BB->begin());
2532     value = doAfterCall(CGF, value);
2533 
2534     CGF.Builder.restoreIP(ip);
2535     return value;
2536 
2537   // Bitcasts can arise because of related-result returns.  Rewrite
2538   // the operand.
2539   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2540     llvm::Value *operand = bitcast->getOperand(0);
2541     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2542     bitcast->setOperand(0, operand);
2543     return bitcast;
2544 
2545   // Generic fall-back case.
2546   } else {
2547     // Retain using the non-block variant: we never need to do a copy
2548     // of a block that's been returned to us.
2549     return doFallback(CGF, value);
2550   }
2551 }
2552 
2553 /// Given that the given expression is some sort of call (which does
2554 /// not return retained), emit a retain following it.
2555 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2556                                             const Expr *e) {
2557   llvm::Value *value = CGF.EmitScalarExpr(e);
2558   return emitARCOperationAfterCall(CGF, value,
2559            [](CodeGenFunction &CGF, llvm::Value *value) {
2560              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2561            },
2562            [](CodeGenFunction &CGF, llvm::Value *value) {
2563              return CGF.EmitARCRetainNonBlock(value);
2564            });
2565 }
2566 
2567 /// Given that the given expression is some sort of call (which does
2568 /// not return retained), perform an unsafeClaim following it.
2569 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2570                                                  const Expr *e) {
2571   llvm::Value *value = CGF.EmitScalarExpr(e);
2572   return emitARCOperationAfterCall(CGF, value,
2573            [](CodeGenFunction &CGF, llvm::Value *value) {
2574              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2575            },
2576            [](CodeGenFunction &CGF, llvm::Value *value) {
2577              return value;
2578            });
2579 }
2580 
2581 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2582                                                       bool allowUnsafeClaim) {
2583   if (allowUnsafeClaim &&
2584       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2585     return emitARCUnsafeClaimCallResult(*this, E);
2586   } else {
2587     llvm::Value *value = emitARCRetainCallResult(*this, E);
2588     return EmitObjCConsumeObject(E->getType(), value);
2589   }
2590 }
2591 
2592 /// Determine whether it might be important to emit a separate
2593 /// objc_retain_block on the result of the given expression, or
2594 /// whether it's okay to just emit it in a +1 context.
2595 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2596   assert(e->getType()->isBlockPointerType());
2597   e = e->IgnoreParens();
2598 
2599   // For future goodness, emit block expressions directly in +1
2600   // contexts if we can.
2601   if (isa<BlockExpr>(e))
2602     return false;
2603 
2604   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2605     switch (cast->getCastKind()) {
2606     // Emitting these operations in +1 contexts is goodness.
2607     case CK_LValueToRValue:
2608     case CK_ARCReclaimReturnedObject:
2609     case CK_ARCConsumeObject:
2610     case CK_ARCProduceObject:
2611       return false;
2612 
2613     // These operations preserve a block type.
2614     case CK_NoOp:
2615     case CK_BitCast:
2616       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2617 
2618     // These operations are known to be bad (or haven't been considered).
2619     case CK_AnyPointerToBlockPointerCast:
2620     default:
2621       return true;
2622     }
2623   }
2624 
2625   return true;
2626 }
2627 
2628 namespace {
2629 /// A CRTP base class for emitting expressions of retainable object
2630 /// pointer type in ARC.
2631 template <typename Impl, typename Result> class ARCExprEmitter {
2632 protected:
2633   CodeGenFunction &CGF;
2634   Impl &asImpl() { return *static_cast<Impl*>(this); }
2635 
2636   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2637 
2638 public:
2639   Result visit(const Expr *e);
2640   Result visitCastExpr(const CastExpr *e);
2641   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2642   Result visitBinaryOperator(const BinaryOperator *e);
2643   Result visitBinAssign(const BinaryOperator *e);
2644   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2645   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2646   Result visitBinAssignWeak(const BinaryOperator *e);
2647   Result visitBinAssignStrong(const BinaryOperator *e);
2648 
2649   // Minimal implementation:
2650   //   Result visitLValueToRValue(const Expr *e)
2651   //   Result visitConsumeObject(const Expr *e)
2652   //   Result visitExtendBlockObject(const Expr *e)
2653   //   Result visitReclaimReturnedObject(const Expr *e)
2654   //   Result visitCall(const Expr *e)
2655   //   Result visitExpr(const Expr *e)
2656   //
2657   //   Result emitBitCast(Result result, llvm::Type *resultType)
2658   //   llvm::Value *getValueOfResult(Result result)
2659 };
2660 }
2661 
2662 /// Try to emit a PseudoObjectExpr under special ARC rules.
2663 ///
2664 /// This massively duplicates emitPseudoObjectRValue.
2665 template <typename Impl, typename Result>
2666 Result
2667 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2668   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2669 
2670   // Find the result expression.
2671   const Expr *resultExpr = E->getResultExpr();
2672   assert(resultExpr);
2673   Result result;
2674 
2675   for (PseudoObjectExpr::const_semantics_iterator
2676          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2677     const Expr *semantic = *i;
2678 
2679     // If this semantic expression is an opaque value, bind it
2680     // to the result of its source expression.
2681     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2682       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2683       OVMA opaqueData;
2684 
2685       // If this semantic is the result of the pseudo-object
2686       // expression, try to evaluate the source as +1.
2687       if (ov == resultExpr) {
2688         assert(!OVMA::shouldBindAsLValue(ov));
2689         result = asImpl().visit(ov->getSourceExpr());
2690         opaqueData = OVMA::bind(CGF, ov,
2691                             RValue::get(asImpl().getValueOfResult(result)));
2692 
2693       // Otherwise, just bind it.
2694       } else {
2695         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2696       }
2697       opaques.push_back(opaqueData);
2698 
2699     // Otherwise, if the expression is the result, evaluate it
2700     // and remember the result.
2701     } else if (semantic == resultExpr) {
2702       result = asImpl().visit(semantic);
2703 
2704     // Otherwise, evaluate the expression in an ignored context.
2705     } else {
2706       CGF.EmitIgnoredExpr(semantic);
2707     }
2708   }
2709 
2710   // Unbind all the opaques now.
2711   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2712     opaques[i].unbind(CGF);
2713 
2714   return result;
2715 }
2716 
2717 template <typename Impl, typename Result>
2718 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
2719   switch (e->getCastKind()) {
2720 
2721   // No-op casts don't change the type, so we just ignore them.
2722   case CK_NoOp:
2723     return asImpl().visit(e->getSubExpr());
2724 
2725   // These casts can change the type.
2726   case CK_CPointerToObjCPointerCast:
2727   case CK_BlockPointerToObjCPointerCast:
2728   case CK_AnyPointerToBlockPointerCast:
2729   case CK_BitCast: {
2730     llvm::Type *resultType = CGF.ConvertType(e->getType());
2731     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
2732     Result result = asImpl().visit(e->getSubExpr());
2733     return asImpl().emitBitCast(result, resultType);
2734   }
2735 
2736   // Handle some casts specially.
2737   case CK_LValueToRValue:
2738     return asImpl().visitLValueToRValue(e->getSubExpr());
2739   case CK_ARCConsumeObject:
2740     return asImpl().visitConsumeObject(e->getSubExpr());
2741   case CK_ARCExtendBlockObject:
2742     return asImpl().visitExtendBlockObject(e->getSubExpr());
2743   case CK_ARCReclaimReturnedObject:
2744     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
2745 
2746   // Otherwise, use the default logic.
2747   default:
2748     return asImpl().visitExpr(e);
2749   }
2750 }
2751 
2752 template <typename Impl, typename Result>
2753 Result
2754 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
2755   switch (e->getOpcode()) {
2756   case BO_Comma:
2757     CGF.EmitIgnoredExpr(e->getLHS());
2758     CGF.EnsureInsertPoint();
2759     return asImpl().visit(e->getRHS());
2760 
2761   case BO_Assign:
2762     return asImpl().visitBinAssign(e);
2763 
2764   default:
2765     return asImpl().visitExpr(e);
2766   }
2767 }
2768 
2769 template <typename Impl, typename Result>
2770 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
2771   switch (e->getLHS()->getType().getObjCLifetime()) {
2772   case Qualifiers::OCL_ExplicitNone:
2773     return asImpl().visitBinAssignUnsafeUnretained(e);
2774 
2775   case Qualifiers::OCL_Weak:
2776     return asImpl().visitBinAssignWeak(e);
2777 
2778   case Qualifiers::OCL_Autoreleasing:
2779     return asImpl().visitBinAssignAutoreleasing(e);
2780 
2781   case Qualifiers::OCL_Strong:
2782     return asImpl().visitBinAssignStrong(e);
2783 
2784   case Qualifiers::OCL_None:
2785     return asImpl().visitExpr(e);
2786   }
2787   llvm_unreachable("bad ObjC ownership qualifier");
2788 }
2789 
2790 /// The default rule for __unsafe_unretained emits the RHS recursively,
2791 /// stores into the unsafe variable, and propagates the result outward.
2792 template <typename Impl, typename Result>
2793 Result ARCExprEmitter<Impl,Result>::
2794                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
2795   // Recursively emit the RHS.
2796   // For __block safety, do this before emitting the LHS.
2797   Result result = asImpl().visit(e->getRHS());
2798 
2799   // Perform the store.
2800   LValue lvalue =
2801     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
2802   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
2803                              lvalue);
2804 
2805   return result;
2806 }
2807 
2808 template <typename Impl, typename Result>
2809 Result
2810 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
2811   return asImpl().visitExpr(e);
2812 }
2813 
2814 template <typename Impl, typename Result>
2815 Result
2816 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
2817   return asImpl().visitExpr(e);
2818 }
2819 
2820 template <typename Impl, typename Result>
2821 Result
2822 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
2823   return asImpl().visitExpr(e);
2824 }
2825 
2826 /// The general expression-emission logic.
2827 template <typename Impl, typename Result>
2828 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
2829   // We should *never* see a nested full-expression here, because if
2830   // we fail to emit at +1, our caller must not retain after we close
2831   // out the full-expression.  This isn't as important in the unsafe
2832   // emitter.
2833   assert(!isa<ExprWithCleanups>(e));
2834 
2835   // Look through parens, __extension__, generic selection, etc.
2836   e = e->IgnoreParens();
2837 
2838   // Handle certain kinds of casts.
2839   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2840     return asImpl().visitCastExpr(ce);
2841 
2842   // Handle the comma operator.
2843   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
2844     return asImpl().visitBinaryOperator(op);
2845 
2846   // TODO: handle conditional operators here
2847 
2848   // For calls and message sends, use the retained-call logic.
2849   // Delegate inits are a special case in that they're the only
2850   // returns-retained expression that *isn't* surrounded by
2851   // a consume.
2852   } else if (isa<CallExpr>(e) ||
2853              (isa<ObjCMessageExpr>(e) &&
2854               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2855     return asImpl().visitCall(e);
2856 
2857   // Look through pseudo-object expressions.
2858   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2859     return asImpl().visitPseudoObjectExpr(pseudo);
2860   }
2861 
2862   return asImpl().visitExpr(e);
2863 }
2864 
2865 namespace {
2866 
2867 /// An emitter for +1 results.
2868 struct ARCRetainExprEmitter :
2869   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
2870 
2871   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
2872 
2873   llvm::Value *getValueOfResult(TryEmitResult result) {
2874     return result.getPointer();
2875   }
2876 
2877   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
2878     llvm::Value *value = result.getPointer();
2879     value = CGF.Builder.CreateBitCast(value, resultType);
2880     result.setPointer(value);
2881     return result;
2882   }
2883 
2884   TryEmitResult visitLValueToRValue(const Expr *e) {
2885     return tryEmitARCRetainLoadOfScalar(CGF, e);
2886   }
2887 
2888   /// For consumptions, just emit the subexpression and thus elide
2889   /// the retain/release pair.
2890   TryEmitResult visitConsumeObject(const Expr *e) {
2891     llvm::Value *result = CGF.EmitScalarExpr(e);
2892     return TryEmitResult(result, true);
2893   }
2894 
2895   /// Block extends are net +0.  Naively, we could just recurse on
2896   /// the subexpression, but actually we need to ensure that the
2897   /// value is copied as a block, so there's a little filter here.
2898   TryEmitResult visitExtendBlockObject(const Expr *e) {
2899     llvm::Value *result; // will be a +0 value
2900 
2901     // If we can't safely assume the sub-expression will produce a
2902     // block-copied value, emit the sub-expression at +0.
2903     if (shouldEmitSeparateBlockRetain(e)) {
2904       result = CGF.EmitScalarExpr(e);
2905 
2906     // Otherwise, try to emit the sub-expression at +1 recursively.
2907     } else {
2908       TryEmitResult subresult = asImpl().visit(e);
2909 
2910       // If that produced a retained value, just use that.
2911       if (subresult.getInt()) {
2912         return subresult;
2913       }
2914 
2915       // Otherwise it's +0.
2916       result = subresult.getPointer();
2917     }
2918 
2919     // Retain the object as a block.
2920     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2921     return TryEmitResult(result, true);
2922   }
2923 
2924   /// For reclaims, emit the subexpression as a retained call and
2925   /// skip the consumption.
2926   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
2927     llvm::Value *result = emitARCRetainCallResult(CGF, e);
2928     return TryEmitResult(result, true);
2929   }
2930 
2931   /// When we have an undecorated call, retroactively do a claim.
2932   TryEmitResult visitCall(const Expr *e) {
2933     llvm::Value *result = emitARCRetainCallResult(CGF, e);
2934     return TryEmitResult(result, true);
2935   }
2936 
2937   // TODO: maybe special-case visitBinAssignWeak?
2938 
2939   TryEmitResult visitExpr(const Expr *e) {
2940     // We didn't find an obvious production, so emit what we've got and
2941     // tell the caller that we didn't manage to retain.
2942     llvm::Value *result = CGF.EmitScalarExpr(e);
2943     return TryEmitResult(result, false);
2944   }
2945 };
2946 }
2947 
2948 static TryEmitResult
2949 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2950   return ARCRetainExprEmitter(CGF).visit(e);
2951 }
2952 
2953 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2954                                                 LValue lvalue,
2955                                                 QualType type) {
2956   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2957   llvm::Value *value = result.getPointer();
2958   if (!result.getInt())
2959     value = CGF.EmitARCRetain(type, value);
2960   return value;
2961 }
2962 
2963 /// EmitARCRetainScalarExpr - Semantically equivalent to
2964 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2965 /// best-effort attempt to peephole expressions that naturally produce
2966 /// retained objects.
2967 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2968   // The retain needs to happen within the full-expression.
2969   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2970     enterFullExpression(cleanups);
2971     RunCleanupsScope scope(*this);
2972     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2973   }
2974 
2975   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2976   llvm::Value *value = result.getPointer();
2977   if (!result.getInt())
2978     value = EmitARCRetain(e->getType(), value);
2979   return value;
2980 }
2981 
2982 llvm::Value *
2983 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2984   // The retain needs to happen within the full-expression.
2985   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2986     enterFullExpression(cleanups);
2987     RunCleanupsScope scope(*this);
2988     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2989   }
2990 
2991   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2992   llvm::Value *value = result.getPointer();
2993   if (result.getInt())
2994     value = EmitARCAutorelease(value);
2995   else
2996     value = EmitARCRetainAutorelease(e->getType(), value);
2997   return value;
2998 }
2999 
3000 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3001   llvm::Value *result;
3002   bool doRetain;
3003 
3004   if (shouldEmitSeparateBlockRetain(e)) {
3005     result = EmitScalarExpr(e);
3006     doRetain = true;
3007   } else {
3008     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3009     result = subresult.getPointer();
3010     doRetain = !subresult.getInt();
3011   }
3012 
3013   if (doRetain)
3014     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3015   return EmitObjCConsumeObject(e->getType(), result);
3016 }
3017 
3018 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3019   // In ARC, retain and autorelease the expression.
3020   if (getLangOpts().ObjCAutoRefCount) {
3021     // Do so before running any cleanups for the full-expression.
3022     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3023     return EmitARCRetainAutoreleaseScalarExpr(expr);
3024   }
3025 
3026   // Otherwise, use the normal scalar-expression emission.  The
3027   // exception machinery doesn't do anything special with the
3028   // exception like retaining it, so there's no safety associated with
3029   // only running cleanups after the throw has started, and when it
3030   // matters it tends to be substantially inferior code.
3031   return EmitScalarExpr(expr);
3032 }
3033 
3034 namespace {
3035 
3036 /// An emitter for assigning into an __unsafe_unretained context.
3037 struct ARCUnsafeUnretainedExprEmitter :
3038   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3039 
3040   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3041 
3042   llvm::Value *getValueOfResult(llvm::Value *value) {
3043     return value;
3044   }
3045 
3046   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3047     return CGF.Builder.CreateBitCast(value, resultType);
3048   }
3049 
3050   llvm::Value *visitLValueToRValue(const Expr *e) {
3051     return CGF.EmitScalarExpr(e);
3052   }
3053 
3054   /// For consumptions, just emit the subexpression and perform the
3055   /// consumption like normal.
3056   llvm::Value *visitConsumeObject(const Expr *e) {
3057     llvm::Value *value = CGF.EmitScalarExpr(e);
3058     return CGF.EmitObjCConsumeObject(e->getType(), value);
3059   }
3060 
3061   /// No special logic for block extensions.  (This probably can't
3062   /// actually happen in this emitter, though.)
3063   llvm::Value *visitExtendBlockObject(const Expr *e) {
3064     return CGF.EmitARCExtendBlockObject(e);
3065   }
3066 
3067   /// For reclaims, perform an unsafeClaim if that's enabled.
3068   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3069     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3070   }
3071 
3072   /// When we have an undecorated call, just emit it without adding
3073   /// the unsafeClaim.
3074   llvm::Value *visitCall(const Expr *e) {
3075     return CGF.EmitScalarExpr(e);
3076   }
3077 
3078   /// Just do normal scalar emission in the default case.
3079   llvm::Value *visitExpr(const Expr *e) {
3080     return CGF.EmitScalarExpr(e);
3081   }
3082 };
3083 }
3084 
3085 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3086                                                       const Expr *e) {
3087   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3088 }
3089 
3090 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3091 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3092 /// avoiding any spurious retains, including by performing reclaims
3093 /// with objc_unsafeClaimAutoreleasedReturnValue.
3094 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3095   // Look through full-expressions.
3096   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3097     enterFullExpression(cleanups);
3098     RunCleanupsScope scope(*this);
3099     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3100   }
3101 
3102   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3103 }
3104 
3105 std::pair<LValue,llvm::Value*>
3106 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3107                                               bool ignored) {
3108   // Evaluate the RHS first.  If we're ignoring the result, assume
3109   // that we can emit at an unsafe +0.
3110   llvm::Value *value;
3111   if (ignored) {
3112     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3113   } else {
3114     value = EmitScalarExpr(e->getRHS());
3115   }
3116 
3117   // Emit the LHS and perform the store.
3118   LValue lvalue = EmitLValue(e->getLHS());
3119   EmitStoreOfScalar(value, lvalue);
3120 
3121   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3122 }
3123 
3124 std::pair<LValue,llvm::Value*>
3125 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3126                                     bool ignored) {
3127   // Evaluate the RHS first.
3128   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3129   llvm::Value *value = result.getPointer();
3130 
3131   bool hasImmediateRetain = result.getInt();
3132 
3133   // If we didn't emit a retained object, and the l-value is of block
3134   // type, then we need to emit the block-retain immediately in case
3135   // it invalidates the l-value.
3136   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3137     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3138     hasImmediateRetain = true;
3139   }
3140 
3141   LValue lvalue = EmitLValue(e->getLHS());
3142 
3143   // If the RHS was emitted retained, expand this.
3144   if (hasImmediateRetain) {
3145     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3146     EmitStoreOfScalar(value, lvalue);
3147     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3148   } else {
3149     value = EmitARCStoreStrong(lvalue, value, ignored);
3150   }
3151 
3152   return std::pair<LValue,llvm::Value*>(lvalue, value);
3153 }
3154 
3155 std::pair<LValue,llvm::Value*>
3156 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3157   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3158   LValue lvalue = EmitLValue(e->getLHS());
3159 
3160   EmitStoreOfScalar(value, lvalue);
3161 
3162   return std::pair<LValue,llvm::Value*>(lvalue, value);
3163 }
3164 
3165 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3166                                           const ObjCAutoreleasePoolStmt &ARPS) {
3167   const Stmt *subStmt = ARPS.getSubStmt();
3168   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3169 
3170   CGDebugInfo *DI = getDebugInfo();
3171   if (DI)
3172     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3173 
3174   // Keep track of the current cleanup stack depth.
3175   RunCleanupsScope Scope(*this);
3176   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3177     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3178     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3179   } else {
3180     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3181     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3182   }
3183 
3184   for (const auto *I : S.body())
3185     EmitStmt(I);
3186 
3187   if (DI)
3188     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3189 }
3190 
3191 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3192 /// make sure it survives garbage collection until this point.
3193 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3194   // We just use an inline assembly.
3195   llvm::FunctionType *extenderType
3196     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3197   llvm::Value *extender
3198     = llvm::InlineAsm::get(extenderType,
3199                            /* assembly */ "",
3200                            /* constraints */ "r",
3201                            /* side effects */ true);
3202 
3203   object = Builder.CreateBitCast(object, VoidPtrTy);
3204   EmitNounwindRuntimeCall(extender, object);
3205 }
3206 
3207 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3208 /// non-trivial copy assignment function, produce following helper function.
3209 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3210 ///
3211 llvm::Constant *
3212 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3213                                         const ObjCPropertyImplDecl *PID) {
3214   if (!getLangOpts().CPlusPlus ||
3215       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3216     return nullptr;
3217   QualType Ty = PID->getPropertyIvarDecl()->getType();
3218   if (!Ty->isRecordType())
3219     return nullptr;
3220   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3221   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3222     return nullptr;
3223   llvm::Constant *HelperFn = nullptr;
3224   if (hasTrivialSetExpr(PID))
3225     return nullptr;
3226   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3227   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3228     return HelperFn;
3229 
3230   ASTContext &C = getContext();
3231   IdentifierInfo *II
3232     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3233   FunctionDecl *FD = FunctionDecl::Create(C,
3234                                           C.getTranslationUnitDecl(),
3235                                           SourceLocation(),
3236                                           SourceLocation(), II, C.VoidTy,
3237                                           nullptr, SC_Static,
3238                                           false,
3239                                           false);
3240 
3241   QualType DestTy = C.getPointerType(Ty);
3242   QualType SrcTy = Ty;
3243   SrcTy.addConst();
3244   SrcTy = C.getPointerType(SrcTy);
3245 
3246   FunctionArgList args;
3247   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
3248   args.push_back(&dstDecl);
3249   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
3250   args.push_back(&srcDecl);
3251 
3252   const CGFunctionInfo &FI =
3253     CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args);
3254 
3255   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3256 
3257   llvm::Function *Fn =
3258     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3259                            "__assign_helper_atomic_property_",
3260                            &CGM.getModule());
3261 
3262   CGM.SetInternalFunctionAttributes(nullptr, Fn, FI);
3263 
3264   StartFunction(FD, C.VoidTy, Fn, FI, args);
3265 
3266   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3267                       VK_RValue, SourceLocation());
3268   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
3269                     VK_LValue, OK_Ordinary, SourceLocation());
3270 
3271   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
3272                       VK_RValue, SourceLocation());
3273   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3274                     VK_LValue, OK_Ordinary, SourceLocation());
3275 
3276   Expr *Args[2] = { &DST, &SRC };
3277   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3278   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
3279                               Args, DestTy->getPointeeType(),
3280                               VK_LValue, SourceLocation(), FPOptions());
3281 
3282   EmitStmt(&TheCall);
3283 
3284   FinishFunction();
3285   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3286   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3287   return HelperFn;
3288 }
3289 
3290 llvm::Constant *
3291 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3292                                             const ObjCPropertyImplDecl *PID) {
3293   if (!getLangOpts().CPlusPlus ||
3294       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3295     return nullptr;
3296   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3297   QualType Ty = PD->getType();
3298   if (!Ty->isRecordType())
3299     return nullptr;
3300   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3301     return nullptr;
3302   llvm::Constant *HelperFn = nullptr;
3303 
3304   if (hasTrivialGetExpr(PID))
3305     return nullptr;
3306   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3307   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3308     return HelperFn;
3309 
3310 
3311   ASTContext &C = getContext();
3312   IdentifierInfo *II
3313   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3314   FunctionDecl *FD = FunctionDecl::Create(C,
3315                                           C.getTranslationUnitDecl(),
3316                                           SourceLocation(),
3317                                           SourceLocation(), II, C.VoidTy,
3318                                           nullptr, SC_Static,
3319                                           false,
3320                                           false);
3321 
3322   QualType DestTy = C.getPointerType(Ty);
3323   QualType SrcTy = Ty;
3324   SrcTy.addConst();
3325   SrcTy = C.getPointerType(SrcTy);
3326 
3327   FunctionArgList args;
3328   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
3329   args.push_back(&dstDecl);
3330   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
3331   args.push_back(&srcDecl);
3332 
3333   const CGFunctionInfo &FI =
3334     CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args);
3335 
3336   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3337 
3338   llvm::Function *Fn =
3339   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3340                          "__copy_helper_atomic_property_", &CGM.getModule());
3341 
3342   CGM.SetInternalFunctionAttributes(nullptr, Fn, FI);
3343 
3344   StartFunction(FD, C.VoidTy, Fn, FI, args);
3345 
3346   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
3347                       VK_RValue, SourceLocation());
3348 
3349   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3350                     VK_LValue, OK_Ordinary, SourceLocation());
3351 
3352   CXXConstructExpr *CXXConstExpr =
3353     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3354 
3355   SmallVector<Expr*, 4> ConstructorArgs;
3356   ConstructorArgs.push_back(&SRC);
3357   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3358                          CXXConstExpr->arg_end());
3359 
3360   CXXConstructExpr *TheCXXConstructExpr =
3361     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3362                              CXXConstExpr->getConstructor(),
3363                              CXXConstExpr->isElidable(),
3364                              ConstructorArgs,
3365                              CXXConstExpr->hadMultipleCandidates(),
3366                              CXXConstExpr->isListInitialization(),
3367                              CXXConstExpr->isStdInitListInitialization(),
3368                              CXXConstExpr->requiresZeroInitialization(),
3369                              CXXConstExpr->getConstructionKind(),
3370                              SourceRange());
3371 
3372   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3373                       VK_RValue, SourceLocation());
3374 
3375   RValue DV = EmitAnyExpr(&DstExpr);
3376   CharUnits Alignment
3377     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3378   EmitAggExpr(TheCXXConstructExpr,
3379               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3380                                     Qualifiers(),
3381                                     AggValueSlot::IsDestructed,
3382                                     AggValueSlot::DoesNotNeedGCBarriers,
3383                                     AggValueSlot::IsNotAliased));
3384 
3385   FinishFunction();
3386   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3387   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3388   return HelperFn;
3389 }
3390 
3391 llvm::Value *
3392 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3393   // Get selectors for retain/autorelease.
3394   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3395   Selector CopySelector =
3396       getContext().Selectors.getNullarySelector(CopyID);
3397   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3398   Selector AutoreleaseSelector =
3399       getContext().Selectors.getNullarySelector(AutoreleaseID);
3400 
3401   // Emit calls to retain/autorelease.
3402   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3403   llvm::Value *Val = Block;
3404   RValue Result;
3405   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3406                                        Ty, CopySelector,
3407                                        Val, CallArgList(), nullptr, nullptr);
3408   Val = Result.getScalarVal();
3409   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3410                                        Ty, AutoreleaseSelector,
3411                                        Val, CallArgList(), nullptr, nullptr);
3412   Val = Result.getScalarVal();
3413   return Val;
3414 }
3415 
3416 llvm::Value *
3417 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) {
3418   assert(Args.size() == 3 && "Expected 3 argument here!");
3419 
3420   if (!CGM.IsOSVersionAtLeastFn) {
3421     llvm::FunctionType *FTy =
3422         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3423     CGM.IsOSVersionAtLeastFn =
3424         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3425   }
3426 
3427   llvm::Value *CallRes =
3428       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3429 
3430   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3431 }
3432 
3433 void CodeGenModule::emitAtAvailableLinkGuard() {
3434   if (!IsOSVersionAtLeastFn)
3435     return;
3436   // @available requires CoreFoundation only on Darwin.
3437   if (!Target.getTriple().isOSDarwin())
3438     return;
3439   // Add -framework CoreFoundation to the linker commands. We still want to
3440   // emit the core foundation reference down below because otherwise if
3441   // CoreFoundation is not used in the code, the linker won't link the
3442   // framework.
3443   auto &Context = getLLVMContext();
3444   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3445                              llvm::MDString::get(Context, "CoreFoundation")};
3446   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3447   // Emit a reference to a symbol from CoreFoundation to ensure that
3448   // CoreFoundation is linked into the final binary.
3449   llvm::FunctionType *FTy =
3450       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3451   llvm::Constant *CFFunc =
3452       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3453 
3454   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3455   llvm::Function *CFLinkCheckFunc = cast<llvm::Function>(CreateBuiltinFunction(
3456       CheckFTy, "__clang_at_available_requires_core_foundation_framework"));
3457   CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3458   CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3459   CodeGenFunction CGF(*this);
3460   CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3461   CGF.EmitNounwindRuntimeCall(CFFunc, llvm::Constant::getNullValue(VoidPtrTy));
3462   CGF.Builder.CreateUnreachable();
3463   addCompilerUsedGlobal(CFLinkCheckFunc);
3464 }
3465 
3466 CGObjCRuntime::~CGObjCRuntime() {}
3467