1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Objective-C code as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/StmtObjC.h" 23 #include "clang/Basic/Diagnostic.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/Analysis/ObjCARCUtil.h" 27 #include "llvm/BinaryFormat/MachO.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/InlineAsm.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 34 static TryEmitResult 35 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 36 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 37 QualType ET, 38 RValue Result); 39 40 /// Given the address of a variable of pointer type, find the correct 41 /// null to store into it. 42 static llvm::Constant *getNullForVariable(Address addr) { 43 llvm::Type *type = addr.getElementType(); 44 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 45 } 46 47 /// Emits an instance of NSConstantString representing the object. 48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 49 { 50 llvm::Constant *C = 51 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 52 // FIXME: This bitcast should just be made an invariant on the Runtime. 53 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 54 } 55 56 /// EmitObjCBoxedExpr - This routine generates code to call 57 /// the appropriate expression boxing method. This will either be 58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 59 /// or [NSValue valueWithBytes:objCType:]. 60 /// 61 llvm::Value * 62 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 63 // Generate the correct selector for this literal's concrete type. 64 // Get the method. 65 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 66 const Expr *SubExpr = E->getSubExpr(); 67 68 if (E->isExpressibleAsConstantInitializer()) { 69 ConstantEmitter ConstEmitter(CGM); 70 return ConstEmitter.tryEmitAbstract(E, E->getType()); 71 } 72 73 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 74 Selector Sel = BoxingMethod->getSelector(); 75 76 // Generate a reference to the class pointer, which will be the receiver. 77 // Assumes that the method was introduced in the class that should be 78 // messaged (avoids pulling it out of the result type). 79 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 80 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 81 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 82 83 CallArgList Args; 84 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 85 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 86 87 // ObjCBoxedExpr supports boxing of structs and unions 88 // via [NSValue valueWithBytes:objCType:] 89 const QualType ValueType(SubExpr->getType().getCanonicalType()); 90 if (ValueType->isObjCBoxableRecordType()) { 91 // Emit CodeGen for first parameter 92 // and cast value to correct type 93 Address Temporary = CreateMemTemp(SubExpr->getType()); 94 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 95 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 96 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 97 98 // Create char array to store type encoding 99 std::string Str; 100 getContext().getObjCEncodingForType(ValueType, Str); 101 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 102 103 // Cast type encoding to correct type 104 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 105 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 106 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 107 108 Args.add(RValue::get(Cast), EncodingQT); 109 } else { 110 Args.add(EmitAnyExpr(SubExpr), ArgQT); 111 } 112 113 RValue result = Runtime.GenerateMessageSend( 114 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 115 Args, ClassDecl, BoxingMethod); 116 return Builder.CreateBitCast(result.getScalarVal(), 117 ConvertType(E->getType())); 118 } 119 120 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 121 const ObjCMethodDecl *MethodWithObjects) { 122 ASTContext &Context = CGM.getContext(); 123 const ObjCDictionaryLiteral *DLE = nullptr; 124 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 125 if (!ALE) 126 DLE = cast<ObjCDictionaryLiteral>(E); 127 128 // Optimize empty collections by referencing constants, when available. 129 uint64_t NumElements = 130 ALE ? ALE->getNumElements() : DLE->getNumElements(); 131 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 132 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 133 QualType IdTy(CGM.getContext().getObjCIdType()); 134 llvm::Constant *Constant = 135 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 136 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 137 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); 138 cast<llvm::LoadInst>(Ptr)->setMetadata( 139 CGM.getModule().getMDKindID("invariant.load"), 140 llvm::MDNode::get(getLLVMContext(), None)); 141 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 142 } 143 144 // Compute the type of the array we're initializing. 145 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 146 NumElements); 147 QualType ElementType = Context.getObjCIdType().withConst(); 148 QualType ElementArrayType 149 = Context.getConstantArrayType(ElementType, APNumElements, nullptr, 150 ArrayType::Normal, /*IndexTypeQuals=*/0); 151 152 // Allocate the temporary array(s). 153 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 154 Address Keys = Address::invalid(); 155 if (DLE) 156 Keys = CreateMemTemp(ElementArrayType, "keys"); 157 158 // In ARC, we may need to do extra work to keep all the keys and 159 // values alive until after the call. 160 SmallVector<llvm::Value *, 16> NeededObjects; 161 bool TrackNeededObjects = 162 (getLangOpts().ObjCAutoRefCount && 163 CGM.getCodeGenOpts().OptimizationLevel != 0); 164 165 // Perform the actual initialialization of the array(s). 166 for (uint64_t i = 0; i < NumElements; i++) { 167 if (ALE) { 168 // Emit the element and store it to the appropriate array slot. 169 const Expr *Rhs = ALE->getElement(i); 170 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 171 ElementType, AlignmentSource::Decl); 172 173 llvm::Value *value = EmitScalarExpr(Rhs); 174 EmitStoreThroughLValue(RValue::get(value), LV, true); 175 if (TrackNeededObjects) { 176 NeededObjects.push_back(value); 177 } 178 } else { 179 // Emit the key and store it to the appropriate array slot. 180 const Expr *Key = DLE->getKeyValueElement(i).Key; 181 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i), 182 ElementType, AlignmentSource::Decl); 183 llvm::Value *keyValue = EmitScalarExpr(Key); 184 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 185 186 // Emit the value and store it to the appropriate array slot. 187 const Expr *Value = DLE->getKeyValueElement(i).Value; 188 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 189 ElementType, AlignmentSource::Decl); 190 llvm::Value *valueValue = EmitScalarExpr(Value); 191 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 192 if (TrackNeededObjects) { 193 NeededObjects.push_back(keyValue); 194 NeededObjects.push_back(valueValue); 195 } 196 } 197 } 198 199 // Generate the argument list. 200 CallArgList Args; 201 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 202 const ParmVarDecl *argDecl = *PI++; 203 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 204 Args.add(RValue::get(Objects.getPointer()), ArgQT); 205 if (DLE) { 206 argDecl = *PI++; 207 ArgQT = argDecl->getType().getUnqualifiedType(); 208 Args.add(RValue::get(Keys.getPointer()), ArgQT); 209 } 210 argDecl = *PI; 211 ArgQT = argDecl->getType().getUnqualifiedType(); 212 llvm::Value *Count = 213 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 214 Args.add(RValue::get(Count), ArgQT); 215 216 // Generate a reference to the class pointer, which will be the receiver. 217 Selector Sel = MethodWithObjects->getSelector(); 218 QualType ResultType = E->getType(); 219 const ObjCObjectPointerType *InterfacePointerType 220 = ResultType->getAsObjCInterfacePointerType(); 221 ObjCInterfaceDecl *Class 222 = InterfacePointerType->getObjectType()->getInterface(); 223 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 224 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 225 226 // Generate the message send. 227 RValue result = Runtime.GenerateMessageSend( 228 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 229 Receiver, Args, Class, MethodWithObjects); 230 231 // The above message send needs these objects, but in ARC they are 232 // passed in a buffer that is essentially __unsafe_unretained. 233 // Therefore we must prevent the optimizer from releasing them until 234 // after the call. 235 if (TrackNeededObjects) { 236 EmitARCIntrinsicUse(NeededObjects); 237 } 238 239 return Builder.CreateBitCast(result.getScalarVal(), 240 ConvertType(E->getType())); 241 } 242 243 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 244 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 245 } 246 247 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 248 const ObjCDictionaryLiteral *E) { 249 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 250 } 251 252 /// Emit a selector. 253 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 254 // Untyped selector. 255 // Note that this implementation allows for non-constant strings to be passed 256 // as arguments to @selector(). Currently, the only thing preventing this 257 // behaviour is the type checking in the front end. 258 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 259 } 260 261 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 262 // FIXME: This should pass the Decl not the name. 263 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 264 } 265 266 /// Adjust the type of an Objective-C object that doesn't match up due 267 /// to type erasure at various points, e.g., related result types or the use 268 /// of parameterized classes. 269 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 270 RValue Result) { 271 if (!ExpT->isObjCRetainableType()) 272 return Result; 273 274 // If the converted types are the same, we're done. 275 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 276 if (ExpLLVMTy == Result.getScalarVal()->getType()) 277 return Result; 278 279 // We have applied a substitution. Cast the rvalue appropriately. 280 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 281 ExpLLVMTy)); 282 } 283 284 /// Decide whether to extend the lifetime of the receiver of a 285 /// returns-inner-pointer message. 286 static bool 287 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 288 switch (message->getReceiverKind()) { 289 290 // For a normal instance message, we should extend unless the 291 // receiver is loaded from a variable with precise lifetime. 292 case ObjCMessageExpr::Instance: { 293 const Expr *receiver = message->getInstanceReceiver(); 294 295 // Look through OVEs. 296 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 297 if (opaque->getSourceExpr()) 298 receiver = opaque->getSourceExpr()->IgnoreParens(); 299 } 300 301 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 302 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 303 receiver = ice->getSubExpr()->IgnoreParens(); 304 305 // Look through OVEs. 306 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 307 if (opaque->getSourceExpr()) 308 receiver = opaque->getSourceExpr()->IgnoreParens(); 309 } 310 311 // Only __strong variables. 312 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 313 return true; 314 315 // All ivars and fields have precise lifetime. 316 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 317 return false; 318 319 // Otherwise, check for variables. 320 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 321 if (!declRef) return true; 322 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 323 if (!var) return true; 324 325 // All variables have precise lifetime except local variables with 326 // automatic storage duration that aren't specially marked. 327 return (var->hasLocalStorage() && 328 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 329 } 330 331 case ObjCMessageExpr::Class: 332 case ObjCMessageExpr::SuperClass: 333 // It's never necessary for class objects. 334 return false; 335 336 case ObjCMessageExpr::SuperInstance: 337 // We generally assume that 'self' lives throughout a method call. 338 return false; 339 } 340 341 llvm_unreachable("invalid receiver kind"); 342 } 343 344 /// Given an expression of ObjC pointer type, check whether it was 345 /// immediately loaded from an ARC __weak l-value. 346 static const Expr *findWeakLValue(const Expr *E) { 347 assert(E->getType()->isObjCRetainableType()); 348 E = E->IgnoreParens(); 349 if (auto CE = dyn_cast<CastExpr>(E)) { 350 if (CE->getCastKind() == CK_LValueToRValue) { 351 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 352 return CE->getSubExpr(); 353 } 354 } 355 356 return nullptr; 357 } 358 359 /// The ObjC runtime may provide entrypoints that are likely to be faster 360 /// than an ordinary message send of the appropriate selector. 361 /// 362 /// The entrypoints are guaranteed to be equivalent to just sending the 363 /// corresponding message. If the entrypoint is implemented naively as just a 364 /// message send, using it is a trade-off: it sacrifices a few cycles of 365 /// overhead to save a small amount of code. However, it's possible for 366 /// runtimes to detect and special-case classes that use "standard" 367 /// behavior; if that's dynamically a large proportion of all objects, using 368 /// the entrypoint will also be faster than using a message send. 369 /// 370 /// If the runtime does support a required entrypoint, then this method will 371 /// generate a call and return the resulting value. Otherwise it will return 372 /// None and the caller can generate a msgSend instead. 373 static Optional<llvm::Value *> 374 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType, 375 llvm::Value *Receiver, 376 const CallArgList& Args, Selector Sel, 377 const ObjCMethodDecl *method, 378 bool isClassMessage) { 379 auto &CGM = CGF.CGM; 380 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) 381 return None; 382 383 auto &Runtime = CGM.getLangOpts().ObjCRuntime; 384 switch (Sel.getMethodFamily()) { 385 case OMF_alloc: 386 if (isClassMessage && 387 Runtime.shouldUseRuntimeFunctionsForAlloc() && 388 ResultType->isObjCObjectPointerType()) { 389 // [Foo alloc] -> objc_alloc(Foo) or 390 // [self alloc] -> objc_alloc(self) 391 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc") 392 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType)); 393 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or 394 // [self allocWithZone:nil] -> objc_allocWithZone(self) 395 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && 396 Args.size() == 1 && Args.front().getType()->isPointerType() && 397 Sel.getNameForSlot(0) == "allocWithZone") { 398 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); 399 if (isa<llvm::ConstantPointerNull>(arg)) 400 return CGF.EmitObjCAllocWithZone(Receiver, 401 CGF.ConvertType(ResultType)); 402 return None; 403 } 404 } 405 break; 406 407 case OMF_autorelease: 408 if (ResultType->isObjCObjectPointerType() && 409 CGM.getLangOpts().getGC() == LangOptions::NonGC && 410 Runtime.shouldUseARCFunctionsForRetainRelease()) 411 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType)); 412 break; 413 414 case OMF_retain: 415 if (ResultType->isObjCObjectPointerType() && 416 CGM.getLangOpts().getGC() == LangOptions::NonGC && 417 Runtime.shouldUseARCFunctionsForRetainRelease()) 418 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType)); 419 break; 420 421 case OMF_release: 422 if (ResultType->isVoidType() && 423 CGM.getLangOpts().getGC() == LangOptions::NonGC && 424 Runtime.shouldUseARCFunctionsForRetainRelease()) { 425 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime); 426 return nullptr; 427 } 428 break; 429 430 default: 431 break; 432 } 433 return None; 434 } 435 436 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend( 437 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, 438 Selector Sel, llvm::Value *Receiver, const CallArgList &Args, 439 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method, 440 bool isClassMessage) { 441 if (Optional<llvm::Value *> SpecializedResult = 442 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args, 443 Sel, Method, isClassMessage)) { 444 return RValue::get(SpecializedResult.getValue()); 445 } 446 return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID, 447 Method); 448 } 449 450 static void AppendFirstImpliedRuntimeProtocols( 451 const ObjCProtocolDecl *PD, 452 llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) { 453 if (!PD->isNonRuntimeProtocol()) { 454 const auto *Can = PD->getCanonicalDecl(); 455 PDs.insert(Can); 456 return; 457 } 458 459 for (const auto *ParentPD : PD->protocols()) 460 AppendFirstImpliedRuntimeProtocols(ParentPD, PDs); 461 } 462 463 std::vector<const ObjCProtocolDecl *> 464 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin, 465 ObjCProtocolDecl::protocol_iterator end) { 466 std::vector<const ObjCProtocolDecl *> RuntimePds; 467 llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs; 468 469 for (; begin != end; ++begin) { 470 const auto *It = *begin; 471 const auto *Can = It->getCanonicalDecl(); 472 if (Can->isNonRuntimeProtocol()) 473 NonRuntimePDs.insert(Can); 474 else 475 RuntimePds.push_back(Can); 476 } 477 478 // If there are no non-runtime protocols then we can just stop now. 479 if (NonRuntimePDs.empty()) 480 return RuntimePds; 481 482 // Else we have to search through the non-runtime protocol's inheritancy 483 // hierarchy DAG stopping whenever a branch either finds a runtime protocol or 484 // a non-runtime protocol without any parents. These are the "first-implied" 485 // protocols from a non-runtime protocol. 486 llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos; 487 for (const auto *PD : NonRuntimePDs) 488 AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos); 489 490 // Walk the Runtime list to get all protocols implied via the inclusion of 491 // this protocol, e.g. all protocols it inherits from including itself. 492 llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols; 493 for (const auto *PD : RuntimePds) { 494 const auto *Can = PD->getCanonicalDecl(); 495 AllImpliedProtocols.insert(Can); 496 Can->getImpliedProtocols(AllImpliedProtocols); 497 } 498 499 // Similar to above, walk the list of first-implied protocols to find the set 500 // all the protocols implied excluding the listed protocols themselves since 501 // they are not yet a part of the `RuntimePds` list. 502 for (const auto *PD : FirstImpliedProtos) { 503 PD->getImpliedProtocols(AllImpliedProtocols); 504 } 505 506 // From the first-implied list we have to finish building the final protocol 507 // list. If a protocol in the first-implied list was already implied via some 508 // inheritance path through some other protocols then it would be redundant to 509 // add it here and so we skip over it. 510 for (const auto *PD : FirstImpliedProtos) { 511 if (!AllImpliedProtocols.contains(PD)) { 512 RuntimePds.push_back(PD); 513 } 514 } 515 516 return RuntimePds; 517 } 518 519 /// Instead of '[[MyClass alloc] init]', try to generate 520 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the 521 /// caller side, as well as the optimized objc_alloc. 522 static Optional<llvm::Value *> 523 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) { 524 auto &Runtime = CGF.getLangOpts().ObjCRuntime; 525 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit()) 526 return None; 527 528 // Match the exact pattern '[[MyClass alloc] init]'. 529 Selector Sel = OME->getSelector(); 530 if (OME->getReceiverKind() != ObjCMessageExpr::Instance || 531 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() || 532 Sel.getNameForSlot(0) != "init") 533 return None; 534 535 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' 536 // with 'cls' a Class. 537 auto *SubOME = 538 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts()); 539 if (!SubOME) 540 return None; 541 Selector SubSel = SubOME->getSelector(); 542 543 if (!SubOME->getType()->isObjCObjectPointerType() || 544 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc") 545 return None; 546 547 llvm::Value *Receiver = nullptr; 548 switch (SubOME->getReceiverKind()) { 549 case ObjCMessageExpr::Instance: 550 if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType()) 551 return None; 552 Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver()); 553 break; 554 555 case ObjCMessageExpr::Class: { 556 QualType ReceiverType = SubOME->getClassReceiver(); 557 const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>(); 558 const ObjCInterfaceDecl *ID = ObjTy->getInterface(); 559 assert(ID && "null interface should be impossible here"); 560 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID); 561 break; 562 } 563 case ObjCMessageExpr::SuperInstance: 564 case ObjCMessageExpr::SuperClass: 565 return None; 566 } 567 568 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType())); 569 } 570 571 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 572 ReturnValueSlot Return) { 573 // Only the lookup mechanism and first two arguments of the method 574 // implementation vary between runtimes. We can get the receiver and 575 // arguments in generic code. 576 577 bool isDelegateInit = E->isDelegateInitCall(); 578 579 const ObjCMethodDecl *method = E->getMethodDecl(); 580 581 // If the method is -retain, and the receiver's being loaded from 582 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 583 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 584 method->getMethodFamily() == OMF_retain) { 585 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 586 LValue lvalue = EmitLValue(lvalueExpr); 587 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this)); 588 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 589 } 590 } 591 592 if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E)) 593 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val)); 594 595 // We don't retain the receiver in delegate init calls, and this is 596 // safe because the receiver value is always loaded from 'self', 597 // which we zero out. We don't want to Block_copy block receivers, 598 // though. 599 bool retainSelf = 600 (!isDelegateInit && 601 CGM.getLangOpts().ObjCAutoRefCount && 602 method && 603 method->hasAttr<NSConsumesSelfAttr>()); 604 605 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 606 bool isSuperMessage = false; 607 bool isClassMessage = false; 608 ObjCInterfaceDecl *OID = nullptr; 609 // Find the receiver 610 QualType ReceiverType; 611 llvm::Value *Receiver = nullptr; 612 switch (E->getReceiverKind()) { 613 case ObjCMessageExpr::Instance: 614 ReceiverType = E->getInstanceReceiver()->getType(); 615 isClassMessage = ReceiverType->isObjCClassType(); 616 if (retainSelf) { 617 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 618 E->getInstanceReceiver()); 619 Receiver = ter.getPointer(); 620 if (ter.getInt()) retainSelf = false; 621 } else 622 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 623 break; 624 625 case ObjCMessageExpr::Class: { 626 ReceiverType = E->getClassReceiver(); 627 OID = ReceiverType->castAs<ObjCObjectType>()->getInterface(); 628 assert(OID && "Invalid Objective-C class message send"); 629 Receiver = Runtime.GetClass(*this, OID); 630 isClassMessage = true; 631 break; 632 } 633 634 case ObjCMessageExpr::SuperInstance: 635 ReceiverType = E->getSuperType(); 636 Receiver = LoadObjCSelf(); 637 isSuperMessage = true; 638 break; 639 640 case ObjCMessageExpr::SuperClass: 641 ReceiverType = E->getSuperType(); 642 Receiver = LoadObjCSelf(); 643 isSuperMessage = true; 644 isClassMessage = true; 645 break; 646 } 647 648 if (retainSelf) 649 Receiver = EmitARCRetainNonBlock(Receiver); 650 651 // In ARC, we sometimes want to "extend the lifetime" 652 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 653 // messages. 654 if (getLangOpts().ObjCAutoRefCount && method && 655 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 656 shouldExtendReceiverForInnerPointerMessage(E)) 657 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 658 659 QualType ResultType = method ? method->getReturnType() : E->getType(); 660 661 CallArgList Args; 662 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 663 664 // For delegate init calls in ARC, do an unsafe store of null into 665 // self. This represents the call taking direct ownership of that 666 // value. We have to do this after emitting the other call 667 // arguments because they might also reference self, but we don't 668 // have to worry about any of them modifying self because that would 669 // be an undefined read and write of an object in unordered 670 // expressions. 671 if (isDelegateInit) { 672 assert(getLangOpts().ObjCAutoRefCount && 673 "delegate init calls should only be marked in ARC"); 674 675 // Do an unsafe store of null into self. 676 Address selfAddr = 677 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 678 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 679 } 680 681 RValue result; 682 if (isSuperMessage) { 683 // super is only valid in an Objective-C method 684 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 685 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 686 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 687 E->getSelector(), 688 OMD->getClassInterface(), 689 isCategoryImpl, 690 Receiver, 691 isClassMessage, 692 Args, 693 method); 694 } else { 695 // Call runtime methods directly if we can. 696 result = Runtime.GeneratePossiblySpecializedMessageSend( 697 *this, Return, ResultType, E->getSelector(), Receiver, Args, OID, 698 method, isClassMessage); 699 } 700 701 // For delegate init calls in ARC, implicitly store the result of 702 // the call back into self. This takes ownership of the value. 703 if (isDelegateInit) { 704 Address selfAddr = 705 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 706 llvm::Value *newSelf = result.getScalarVal(); 707 708 // The delegate return type isn't necessarily a matching type; in 709 // fact, it's quite likely to be 'id'. 710 llvm::Type *selfTy = selfAddr.getElementType(); 711 newSelf = Builder.CreateBitCast(newSelf, selfTy); 712 713 Builder.CreateStore(newSelf, selfAddr); 714 } 715 716 return AdjustObjCObjectType(*this, E->getType(), result); 717 } 718 719 namespace { 720 struct FinishARCDealloc final : EHScopeStack::Cleanup { 721 void Emit(CodeGenFunction &CGF, Flags flags) override { 722 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 723 724 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 725 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 726 if (!iface->getSuperClass()) return; 727 728 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 729 730 // Call [super dealloc] if we have a superclass. 731 llvm::Value *self = CGF.LoadObjCSelf(); 732 733 CallArgList args; 734 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 735 CGF.getContext().VoidTy, 736 method->getSelector(), 737 iface, 738 isCategory, 739 self, 740 /*is class msg*/ false, 741 args, 742 method); 743 } 744 }; 745 } 746 747 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 748 /// the LLVM function and sets the other context used by 749 /// CodeGenFunction. 750 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 751 const ObjCContainerDecl *CD) { 752 SourceLocation StartLoc = OMD->getBeginLoc(); 753 FunctionArgList args; 754 // Check if we should generate debug info for this method. 755 if (OMD->hasAttr<NoDebugAttr>()) 756 DebugInfo = nullptr; // disable debug info indefinitely for this function 757 758 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 759 760 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 761 if (OMD->isDirectMethod()) { 762 Fn->setVisibility(llvm::Function::HiddenVisibility); 763 CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false); 764 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn); 765 } else { 766 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 767 } 768 769 args.push_back(OMD->getSelfDecl()); 770 args.push_back(OMD->getCmdDecl()); 771 772 args.append(OMD->param_begin(), OMD->param_end()); 773 774 CurGD = OMD; 775 CurEHLocation = OMD->getEndLoc(); 776 777 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 778 OMD->getLocation(), StartLoc); 779 780 if (OMD->isDirectMethod()) { 781 // This function is a direct call, it has to implement a nil check 782 // on entry. 783 // 784 // TODO: possibly have several entry points to elide the check 785 CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD); 786 } 787 788 // In ARC, certain methods get an extra cleanup. 789 if (CGM.getLangOpts().ObjCAutoRefCount && 790 OMD->isInstanceMethod() && 791 OMD->getSelector().isUnarySelector()) { 792 const IdentifierInfo *ident = 793 OMD->getSelector().getIdentifierInfoForSlot(0); 794 if (ident->isStr("dealloc")) 795 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 796 } 797 } 798 799 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 800 LValue lvalue, QualType type); 801 802 /// Generate an Objective-C method. An Objective-C method is a C function with 803 /// its pointer, name, and types registered in the class structure. 804 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 805 StartObjCMethod(OMD, OMD->getClassInterface()); 806 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 807 assert(isa<CompoundStmt>(OMD->getBody())); 808 incrementProfileCounter(OMD->getBody()); 809 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 810 FinishFunction(OMD->getBodyRBrace()); 811 } 812 813 /// emitStructGetterCall - Call the runtime function to load a property 814 /// into the return value slot. 815 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 816 bool isAtomic, bool hasStrong) { 817 ASTContext &Context = CGF.getContext(); 818 819 Address src = 820 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 821 .getAddress(CGF); 822 823 // objc_copyStruct (ReturnValue, &structIvar, 824 // sizeof (Type of Ivar), isAtomic, false); 825 CallArgList args; 826 827 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 828 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 829 830 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 831 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 832 833 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 834 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 835 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 836 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 837 838 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 839 CGCallee callee = CGCallee::forDirect(fn); 840 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 841 callee, ReturnValueSlot(), args); 842 } 843 844 /// Determine whether the given architecture supports unaligned atomic 845 /// accesses. They don't have to be fast, just faster than a function 846 /// call and a mutex. 847 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 848 // FIXME: Allow unaligned atomic load/store on x86. (It is not 849 // currently supported by the backend.) 850 return 0; 851 } 852 853 /// Return the maximum size that permits atomic accesses for the given 854 /// architecture. 855 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 856 llvm::Triple::ArchType arch) { 857 // ARM has 8-byte atomic accesses, but it's not clear whether we 858 // want to rely on them here. 859 860 // In the default case, just assume that any size up to a pointer is 861 // fine given adequate alignment. 862 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 863 } 864 865 namespace { 866 class PropertyImplStrategy { 867 public: 868 enum StrategyKind { 869 /// The 'native' strategy is to use the architecture's provided 870 /// reads and writes. 871 Native, 872 873 /// Use objc_setProperty and objc_getProperty. 874 GetSetProperty, 875 876 /// Use objc_setProperty for the setter, but use expression 877 /// evaluation for the getter. 878 SetPropertyAndExpressionGet, 879 880 /// Use objc_copyStruct. 881 CopyStruct, 882 883 /// The 'expression' strategy is to emit normal assignment or 884 /// lvalue-to-rvalue expressions. 885 Expression 886 }; 887 888 StrategyKind getKind() const { return StrategyKind(Kind); } 889 890 bool hasStrongMember() const { return HasStrong; } 891 bool isAtomic() const { return IsAtomic; } 892 bool isCopy() const { return IsCopy; } 893 894 CharUnits getIvarSize() const { return IvarSize; } 895 CharUnits getIvarAlignment() const { return IvarAlignment; } 896 897 PropertyImplStrategy(CodeGenModule &CGM, 898 const ObjCPropertyImplDecl *propImpl); 899 900 private: 901 unsigned Kind : 8; 902 unsigned IsAtomic : 1; 903 unsigned IsCopy : 1; 904 unsigned HasStrong : 1; 905 906 CharUnits IvarSize; 907 CharUnits IvarAlignment; 908 }; 909 } 910 911 /// Pick an implementation strategy for the given property synthesis. 912 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 913 const ObjCPropertyImplDecl *propImpl) { 914 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 915 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 916 917 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 918 IsAtomic = prop->isAtomic(); 919 HasStrong = false; // doesn't matter here. 920 921 // Evaluate the ivar's size and alignment. 922 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 923 QualType ivarType = ivar->getType(); 924 auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType); 925 IvarSize = TInfo.Width; 926 IvarAlignment = TInfo.Align; 927 928 // If we have a copy property, we always have to use setProperty. 929 // If the property is atomic we need to use getProperty, but in 930 // the nonatomic case we can just use expression. 931 if (IsCopy) { 932 Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet; 933 return; 934 } 935 936 // Handle retain. 937 if (setterKind == ObjCPropertyDecl::Retain) { 938 // In GC-only, there's nothing special that needs to be done. 939 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 940 // fallthrough 941 942 // In ARC, if the property is non-atomic, use expression emission, 943 // which translates to objc_storeStrong. This isn't required, but 944 // it's slightly nicer. 945 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 946 // Using standard expression emission for the setter is only 947 // acceptable if the ivar is __strong, which won't be true if 948 // the property is annotated with __attribute__((NSObject)). 949 // TODO: falling all the way back to objc_setProperty here is 950 // just laziness, though; we could still use objc_storeStrong 951 // if we hacked it right. 952 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 953 Kind = Expression; 954 else 955 Kind = SetPropertyAndExpressionGet; 956 return; 957 958 // Otherwise, we need to at least use setProperty. However, if 959 // the property isn't atomic, we can use normal expression 960 // emission for the getter. 961 } else if (!IsAtomic) { 962 Kind = SetPropertyAndExpressionGet; 963 return; 964 965 // Otherwise, we have to use both setProperty and getProperty. 966 } else { 967 Kind = GetSetProperty; 968 return; 969 } 970 } 971 972 // If we're not atomic, just use expression accesses. 973 if (!IsAtomic) { 974 Kind = Expression; 975 return; 976 } 977 978 // Properties on bitfield ivars need to be emitted using expression 979 // accesses even if they're nominally atomic. 980 if (ivar->isBitField()) { 981 Kind = Expression; 982 return; 983 } 984 985 // GC-qualified or ARC-qualified ivars need to be emitted as 986 // expressions. This actually works out to being atomic anyway, 987 // except for ARC __strong, but that should trigger the above code. 988 if (ivarType.hasNonTrivialObjCLifetime() || 989 (CGM.getLangOpts().getGC() && 990 CGM.getContext().getObjCGCAttrKind(ivarType))) { 991 Kind = Expression; 992 return; 993 } 994 995 // Compute whether the ivar has strong members. 996 if (CGM.getLangOpts().getGC()) 997 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 998 HasStrong = recordType->getDecl()->hasObjectMember(); 999 1000 // We can never access structs with object members with a native 1001 // access, because we need to use write barriers. This is what 1002 // objc_copyStruct is for. 1003 if (HasStrong) { 1004 Kind = CopyStruct; 1005 return; 1006 } 1007 1008 // Otherwise, this is target-dependent and based on the size and 1009 // alignment of the ivar. 1010 1011 // If the size of the ivar is not a power of two, give up. We don't 1012 // want to get into the business of doing compare-and-swaps. 1013 if (!IvarSize.isPowerOfTwo()) { 1014 Kind = CopyStruct; 1015 return; 1016 } 1017 1018 llvm::Triple::ArchType arch = 1019 CGM.getTarget().getTriple().getArch(); 1020 1021 // Most architectures require memory to fit within a single cache 1022 // line, so the alignment has to be at least the size of the access. 1023 // Otherwise we have to grab a lock. 1024 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 1025 Kind = CopyStruct; 1026 return; 1027 } 1028 1029 // If the ivar's size exceeds the architecture's maximum atomic 1030 // access size, we have to use CopyStruct. 1031 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 1032 Kind = CopyStruct; 1033 return; 1034 } 1035 1036 // Otherwise, we can use native loads and stores. 1037 Kind = Native; 1038 } 1039 1040 /// Generate an Objective-C property getter function. 1041 /// 1042 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1043 /// is illegal within a category. 1044 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 1045 const ObjCPropertyImplDecl *PID) { 1046 llvm::Constant *AtomicHelperFn = 1047 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 1048 ObjCMethodDecl *OMD = PID->getGetterMethodDecl(); 1049 assert(OMD && "Invalid call to generate getter (empty method)"); 1050 StartObjCMethod(OMD, IMP->getClassInterface()); 1051 1052 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 1053 1054 FinishFunction(OMD->getEndLoc()); 1055 } 1056 1057 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 1058 const Expr *getter = propImpl->getGetterCXXConstructor(); 1059 if (!getter) return true; 1060 1061 // Sema only makes only of these when the ivar has a C++ class type, 1062 // so the form is pretty constrained. 1063 1064 // If the property has a reference type, we might just be binding a 1065 // reference, in which case the result will be a gl-value. We should 1066 // treat this as a non-trivial operation. 1067 if (getter->isGLValue()) 1068 return false; 1069 1070 // If we selected a trivial copy-constructor, we're okay. 1071 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 1072 return (construct->getConstructor()->isTrivial()); 1073 1074 // The constructor might require cleanups (in which case it's never 1075 // trivial). 1076 assert(isa<ExprWithCleanups>(getter)); 1077 return false; 1078 } 1079 1080 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 1081 /// copy the ivar into the resturn slot. 1082 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 1083 llvm::Value *returnAddr, 1084 ObjCIvarDecl *ivar, 1085 llvm::Constant *AtomicHelperFn) { 1086 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 1087 // AtomicHelperFn); 1088 CallArgList args; 1089 1090 // The 1st argument is the return Slot. 1091 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 1092 1093 // The 2nd argument is the address of the ivar. 1094 llvm::Value *ivarAddr = 1095 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1096 .getPointer(CGF); 1097 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1098 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1099 1100 // Third argument is the helper function. 1101 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1102 1103 llvm::FunctionCallee copyCppAtomicObjectFn = 1104 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 1105 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 1106 CGF.EmitCall( 1107 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1108 callee, ReturnValueSlot(), args); 1109 } 1110 1111 void 1112 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1113 const ObjCPropertyImplDecl *propImpl, 1114 const ObjCMethodDecl *GetterMethodDecl, 1115 llvm::Constant *AtomicHelperFn) { 1116 // If there's a non-trivial 'get' expression, we just have to emit that. 1117 if (!hasTrivialGetExpr(propImpl)) { 1118 if (!AtomicHelperFn) { 1119 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(), 1120 propImpl->getGetterCXXConstructor(), 1121 /* NRVOCandidate=*/nullptr); 1122 EmitReturnStmt(*ret); 1123 } 1124 else { 1125 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1126 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 1127 ivar, AtomicHelperFn); 1128 } 1129 return; 1130 } 1131 1132 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1133 QualType propType = prop->getType(); 1134 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl(); 1135 1136 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1137 1138 // Pick an implementation strategy. 1139 PropertyImplStrategy strategy(CGM, propImpl); 1140 switch (strategy.getKind()) { 1141 case PropertyImplStrategy::Native: { 1142 // We don't need to do anything for a zero-size struct. 1143 if (strategy.getIvarSize().isZero()) 1144 return; 1145 1146 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1147 1148 // Currently, all atomic accesses have to be through integer 1149 // types, so there's no point in trying to pick a prettier type. 1150 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 1151 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 1152 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1153 1154 // Perform an atomic load. This does not impose ordering constraints. 1155 Address ivarAddr = LV.getAddress(*this); 1156 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1157 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 1158 load->setAtomic(llvm::AtomicOrdering::Unordered); 1159 1160 // Store that value into the return address. Doing this with a 1161 // bitcast is likely to produce some pretty ugly IR, but it's not 1162 // the *most* terrible thing in the world. 1163 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 1164 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 1165 llvm::Value *ivarVal = load; 1166 if (ivarSize > retTySize) { 1167 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 1168 ivarVal = Builder.CreateTrunc(load, newTy); 1169 bitcastType = newTy->getPointerTo(); 1170 } 1171 Builder.CreateStore(ivarVal, 1172 Builder.CreateBitCast(ReturnValue, bitcastType)); 1173 1174 // Make sure we don't do an autorelease. 1175 AutoreleaseResult = false; 1176 return; 1177 } 1178 1179 case PropertyImplStrategy::GetSetProperty: { 1180 llvm::FunctionCallee getPropertyFn = 1181 CGM.getObjCRuntime().GetPropertyGetFunction(); 1182 if (!getPropertyFn) { 1183 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 1184 return; 1185 } 1186 CGCallee callee = CGCallee::forDirect(getPropertyFn); 1187 1188 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 1189 // FIXME: Can't this be simpler? This might even be worse than the 1190 // corresponding gcc code. 1191 llvm::Value *cmd = 1192 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 1193 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1194 llvm::Value *ivarOffset = 1195 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1196 1197 CallArgList args; 1198 args.add(RValue::get(self), getContext().getObjCIdType()); 1199 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1200 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1201 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1202 getContext().BoolTy); 1203 1204 // FIXME: We shouldn't need to get the function info here, the 1205 // runtime already should have computed it to build the function. 1206 llvm::CallBase *CallInstruction; 1207 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall( 1208 getContext().getObjCIdType(), args), 1209 callee, ReturnValueSlot(), args, &CallInstruction); 1210 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 1211 call->setTailCall(); 1212 1213 // We need to fix the type here. Ivars with copy & retain are 1214 // always objects so we don't need to worry about complex or 1215 // aggregates. 1216 RV = RValue::get(Builder.CreateBitCast( 1217 RV.getScalarVal(), 1218 getTypes().ConvertType(getterMethod->getReturnType()))); 1219 1220 EmitReturnOfRValue(RV, propType); 1221 1222 // objc_getProperty does an autorelease, so we should suppress ours. 1223 AutoreleaseResult = false; 1224 1225 return; 1226 } 1227 1228 case PropertyImplStrategy::CopyStruct: 1229 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 1230 strategy.hasStrongMember()); 1231 return; 1232 1233 case PropertyImplStrategy::Expression: 1234 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1235 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1236 1237 QualType ivarType = ivar->getType(); 1238 switch (getEvaluationKind(ivarType)) { 1239 case TEK_Complex: { 1240 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1241 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1242 /*init*/ true); 1243 return; 1244 } 1245 case TEK_Aggregate: { 1246 // The return value slot is guaranteed to not be aliased, but 1247 // that's not necessarily the same as "on the stack", so 1248 // we still potentially need objc_memmove_collectable. 1249 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1250 /* Src= */ LV, ivarType, getOverlapForReturnValue()); 1251 return; 1252 } 1253 case TEK_Scalar: { 1254 llvm::Value *value; 1255 if (propType->isReferenceType()) { 1256 value = LV.getAddress(*this).getPointer(); 1257 } else { 1258 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1259 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1260 if (getLangOpts().ObjCAutoRefCount) { 1261 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1262 } else { 1263 value = EmitARCLoadWeak(LV.getAddress(*this)); 1264 } 1265 1266 // Otherwise we want to do a simple load, suppressing the 1267 // final autorelease. 1268 } else { 1269 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1270 AutoreleaseResult = false; 1271 } 1272 1273 value = Builder.CreateBitCast( 1274 value, ConvertType(GetterMethodDecl->getReturnType())); 1275 } 1276 1277 EmitReturnOfRValue(RValue::get(value), propType); 1278 return; 1279 } 1280 } 1281 llvm_unreachable("bad evaluation kind"); 1282 } 1283 1284 } 1285 llvm_unreachable("bad @property implementation strategy!"); 1286 } 1287 1288 /// emitStructSetterCall - Call the runtime function to store the value 1289 /// from the first formal parameter into the given ivar. 1290 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1291 ObjCIvarDecl *ivar) { 1292 // objc_copyStruct (&structIvar, &Arg, 1293 // sizeof (struct something), true, false); 1294 CallArgList args; 1295 1296 // The first argument is the address of the ivar. 1297 llvm::Value *ivarAddr = 1298 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1299 .getPointer(CGF); 1300 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1301 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1302 1303 // The second argument is the address of the parameter variable. 1304 ParmVarDecl *argVar = *OMD->param_begin(); 1305 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1306 argVar->getType().getNonReferenceType(), VK_LValue, 1307 SourceLocation()); 1308 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1309 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1310 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1311 1312 // The third argument is the sizeof the type. 1313 llvm::Value *size = 1314 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1315 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1316 1317 // The fourth argument is the 'isAtomic' flag. 1318 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1319 1320 // The fifth argument is the 'hasStrong' flag. 1321 // FIXME: should this really always be false? 1322 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1323 1324 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1325 CGCallee callee = CGCallee::forDirect(fn); 1326 CGF.EmitCall( 1327 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1328 callee, ReturnValueSlot(), args); 1329 } 1330 1331 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1332 /// the value from the first formal parameter into the given ivar, using 1333 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1334 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1335 ObjCMethodDecl *OMD, 1336 ObjCIvarDecl *ivar, 1337 llvm::Constant *AtomicHelperFn) { 1338 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1339 // AtomicHelperFn); 1340 CallArgList args; 1341 1342 // The first argument is the address of the ivar. 1343 llvm::Value *ivarAddr = 1344 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1345 .getPointer(CGF); 1346 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1347 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1348 1349 // The second argument is the address of the parameter variable. 1350 ParmVarDecl *argVar = *OMD->param_begin(); 1351 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1352 argVar->getType().getNonReferenceType(), VK_LValue, 1353 SourceLocation()); 1354 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1355 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1356 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1357 1358 // Third argument is the helper function. 1359 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1360 1361 llvm::FunctionCallee fn = 1362 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1363 CGCallee callee = CGCallee::forDirect(fn); 1364 CGF.EmitCall( 1365 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1366 callee, ReturnValueSlot(), args); 1367 } 1368 1369 1370 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1371 Expr *setter = PID->getSetterCXXAssignment(); 1372 if (!setter) return true; 1373 1374 // Sema only makes only of these when the ivar has a C++ class type, 1375 // so the form is pretty constrained. 1376 1377 // An operator call is trivial if the function it calls is trivial. 1378 // This also implies that there's nothing non-trivial going on with 1379 // the arguments, because operator= can only be trivial if it's a 1380 // synthesized assignment operator and therefore both parameters are 1381 // references. 1382 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1383 if (const FunctionDecl *callee 1384 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1385 if (callee->isTrivial()) 1386 return true; 1387 return false; 1388 } 1389 1390 assert(isa<ExprWithCleanups>(setter)); 1391 return false; 1392 } 1393 1394 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1395 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1396 return false; 1397 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1398 } 1399 1400 void 1401 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1402 const ObjCPropertyImplDecl *propImpl, 1403 llvm::Constant *AtomicHelperFn) { 1404 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1405 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl(); 1406 1407 // Just use the setter expression if Sema gave us one and it's 1408 // non-trivial. 1409 if (!hasTrivialSetExpr(propImpl)) { 1410 if (!AtomicHelperFn) 1411 // If non-atomic, assignment is called directly. 1412 EmitStmt(propImpl->getSetterCXXAssignment()); 1413 else 1414 // If atomic, assignment is called via a locking api. 1415 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1416 AtomicHelperFn); 1417 return; 1418 } 1419 1420 PropertyImplStrategy strategy(CGM, propImpl); 1421 switch (strategy.getKind()) { 1422 case PropertyImplStrategy::Native: { 1423 // We don't need to do anything for a zero-size struct. 1424 if (strategy.getIvarSize().isZero()) 1425 return; 1426 1427 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1428 1429 LValue ivarLValue = 1430 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1431 Address ivarAddr = ivarLValue.getAddress(*this); 1432 1433 // Currently, all atomic accesses have to be through integer 1434 // types, so there's no point in trying to pick a prettier type. 1435 llvm::Type *bitcastType = 1436 llvm::Type::getIntNTy(getLLVMContext(), 1437 getContext().toBits(strategy.getIvarSize())); 1438 1439 // Cast both arguments to the chosen operation type. 1440 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1441 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1442 1443 // This bitcast load is likely to cause some nasty IR. 1444 llvm::Value *load = Builder.CreateLoad(argAddr); 1445 1446 // Perform an atomic store. There are no memory ordering requirements. 1447 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1448 store->setAtomic(llvm::AtomicOrdering::Unordered); 1449 return; 1450 } 1451 1452 case PropertyImplStrategy::GetSetProperty: 1453 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1454 1455 llvm::FunctionCallee setOptimizedPropertyFn = nullptr; 1456 llvm::FunctionCallee setPropertyFn = nullptr; 1457 if (UseOptimizedSetter(CGM)) { 1458 // 10.8 and iOS 6.0 code and GC is off 1459 setOptimizedPropertyFn = 1460 CGM.getObjCRuntime().GetOptimizedPropertySetFunction( 1461 strategy.isAtomic(), strategy.isCopy()); 1462 if (!setOptimizedPropertyFn) { 1463 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1464 return; 1465 } 1466 } 1467 else { 1468 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1469 if (!setPropertyFn) { 1470 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1471 return; 1472 } 1473 } 1474 1475 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1476 // <is-atomic>, <is-copy>). 1477 llvm::Value *cmd = 1478 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1479 llvm::Value *self = 1480 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1481 llvm::Value *ivarOffset = 1482 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1483 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1484 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1485 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1486 1487 CallArgList args; 1488 args.add(RValue::get(self), getContext().getObjCIdType()); 1489 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1490 if (setOptimizedPropertyFn) { 1491 args.add(RValue::get(arg), getContext().getObjCIdType()); 1492 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1493 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1494 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1495 callee, ReturnValueSlot(), args); 1496 } else { 1497 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1498 args.add(RValue::get(arg), getContext().getObjCIdType()); 1499 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1500 getContext().BoolTy); 1501 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1502 getContext().BoolTy); 1503 // FIXME: We shouldn't need to get the function info here, the runtime 1504 // already should have computed it to build the function. 1505 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1506 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1507 callee, ReturnValueSlot(), args); 1508 } 1509 1510 return; 1511 } 1512 1513 case PropertyImplStrategy::CopyStruct: 1514 emitStructSetterCall(*this, setterMethod, ivar); 1515 return; 1516 1517 case PropertyImplStrategy::Expression: 1518 break; 1519 } 1520 1521 // Otherwise, fake up some ASTs and emit a normal assignment. 1522 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1523 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(), 1524 VK_LValue, SourceLocation()); 1525 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(), 1526 CK_LValueToRValue, &self, VK_PRValue, 1527 FPOptionsOverride()); 1528 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1529 SourceLocation(), SourceLocation(), 1530 &selfLoad, true, true); 1531 1532 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1533 QualType argType = argDecl->getType().getNonReferenceType(); 1534 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue, 1535 SourceLocation()); 1536 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1537 argType.getUnqualifiedType(), CK_LValueToRValue, 1538 &arg, VK_PRValue, FPOptionsOverride()); 1539 1540 // The property type can differ from the ivar type in some situations with 1541 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1542 // The following absurdity is just to ensure well-formed IR. 1543 CastKind argCK = CK_NoOp; 1544 if (ivarRef.getType()->isObjCObjectPointerType()) { 1545 if (argLoad.getType()->isObjCObjectPointerType()) 1546 argCK = CK_BitCast; 1547 else if (argLoad.getType()->isBlockPointerType()) 1548 argCK = CK_BlockPointerToObjCPointerCast; 1549 else 1550 argCK = CK_CPointerToObjCPointerCast; 1551 } else if (ivarRef.getType()->isBlockPointerType()) { 1552 if (argLoad.getType()->isBlockPointerType()) 1553 argCK = CK_BitCast; 1554 else 1555 argCK = CK_AnyPointerToBlockPointerCast; 1556 } else if (ivarRef.getType()->isPointerType()) { 1557 argCK = CK_BitCast; 1558 } else if (argLoad.getType()->isAtomicType() && 1559 !ivarRef.getType()->isAtomicType()) { 1560 argCK = CK_AtomicToNonAtomic; 1561 } else if (!argLoad.getType()->isAtomicType() && 1562 ivarRef.getType()->isAtomicType()) { 1563 argCK = CK_NonAtomicToAtomic; 1564 } 1565 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK, 1566 &argLoad, VK_PRValue, FPOptionsOverride()); 1567 Expr *finalArg = &argLoad; 1568 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1569 argLoad.getType())) 1570 finalArg = &argCast; 1571 1572 BinaryOperator *assign = BinaryOperator::Create( 1573 getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), 1574 VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride()); 1575 EmitStmt(assign); 1576 } 1577 1578 /// Generate an Objective-C property setter function. 1579 /// 1580 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1581 /// is illegal within a category. 1582 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1583 const ObjCPropertyImplDecl *PID) { 1584 llvm::Constant *AtomicHelperFn = 1585 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1586 ObjCMethodDecl *OMD = PID->getSetterMethodDecl(); 1587 assert(OMD && "Invalid call to generate setter (empty method)"); 1588 StartObjCMethod(OMD, IMP->getClassInterface()); 1589 1590 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1591 1592 FinishFunction(OMD->getEndLoc()); 1593 } 1594 1595 namespace { 1596 struct DestroyIvar final : EHScopeStack::Cleanup { 1597 private: 1598 llvm::Value *addr; 1599 const ObjCIvarDecl *ivar; 1600 CodeGenFunction::Destroyer *destroyer; 1601 bool useEHCleanupForArray; 1602 public: 1603 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1604 CodeGenFunction::Destroyer *destroyer, 1605 bool useEHCleanupForArray) 1606 : addr(addr), ivar(ivar), destroyer(destroyer), 1607 useEHCleanupForArray(useEHCleanupForArray) {} 1608 1609 void Emit(CodeGenFunction &CGF, Flags flags) override { 1610 LValue lvalue 1611 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1612 CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer, 1613 flags.isForNormalCleanup() && useEHCleanupForArray); 1614 } 1615 }; 1616 } 1617 1618 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1619 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1620 Address addr, 1621 QualType type) { 1622 llvm::Value *null = getNullForVariable(addr); 1623 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1624 } 1625 1626 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1627 ObjCImplementationDecl *impl) { 1628 CodeGenFunction::RunCleanupsScope scope(CGF); 1629 1630 llvm::Value *self = CGF.LoadObjCSelf(); 1631 1632 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1633 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1634 ivar; ivar = ivar->getNextIvar()) { 1635 QualType type = ivar->getType(); 1636 1637 // Check whether the ivar is a destructible type. 1638 QualType::DestructionKind dtorKind = type.isDestructedType(); 1639 if (!dtorKind) continue; 1640 1641 CodeGenFunction::Destroyer *destroyer = nullptr; 1642 1643 // Use a call to objc_storeStrong to destroy strong ivars, for the 1644 // general benefit of the tools. 1645 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1646 destroyer = destroyARCStrongWithStore; 1647 1648 // Otherwise use the default for the destruction kind. 1649 } else { 1650 destroyer = CGF.getDestroyer(dtorKind); 1651 } 1652 1653 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1654 1655 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1656 cleanupKind & EHCleanup); 1657 } 1658 1659 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1660 } 1661 1662 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1663 ObjCMethodDecl *MD, 1664 bool ctor) { 1665 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1666 StartObjCMethod(MD, IMP->getClassInterface()); 1667 1668 // Emit .cxx_construct. 1669 if (ctor) { 1670 // Suppress the final autorelease in ARC. 1671 AutoreleaseResult = false; 1672 1673 for (const auto *IvarInit : IMP->inits()) { 1674 FieldDecl *Field = IvarInit->getAnyMember(); 1675 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1676 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1677 LoadObjCSelf(), Ivar, 0); 1678 EmitAggExpr(IvarInit->getInit(), 1679 AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed, 1680 AggValueSlot::DoesNotNeedGCBarriers, 1681 AggValueSlot::IsNotAliased, 1682 AggValueSlot::DoesNotOverlap)); 1683 } 1684 // constructor returns 'self'. 1685 CodeGenTypes &Types = CGM.getTypes(); 1686 QualType IdTy(CGM.getContext().getObjCIdType()); 1687 llvm::Value *SelfAsId = 1688 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1689 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1690 1691 // Emit .cxx_destruct. 1692 } else { 1693 emitCXXDestructMethod(*this, IMP); 1694 } 1695 FinishFunction(); 1696 } 1697 1698 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1699 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1700 DeclRefExpr DRE(getContext(), Self, 1701 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1702 Self->getType(), VK_LValue, SourceLocation()); 1703 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1704 } 1705 1706 QualType CodeGenFunction::TypeOfSelfObject() { 1707 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1708 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1709 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1710 getContext().getCanonicalType(selfDecl->getType())); 1711 return PTy->getPointeeType(); 1712 } 1713 1714 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1715 llvm::FunctionCallee EnumerationMutationFnPtr = 1716 CGM.getObjCRuntime().EnumerationMutationFunction(); 1717 if (!EnumerationMutationFnPtr) { 1718 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1719 return; 1720 } 1721 CGCallee EnumerationMutationFn = 1722 CGCallee::forDirect(EnumerationMutationFnPtr); 1723 1724 CGDebugInfo *DI = getDebugInfo(); 1725 if (DI) 1726 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1727 1728 RunCleanupsScope ForScope(*this); 1729 1730 // The local variable comes into scope immediately. 1731 AutoVarEmission variable = AutoVarEmission::invalid(); 1732 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1733 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1734 1735 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1736 1737 // Fast enumeration state. 1738 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1739 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1740 EmitNullInitialization(StatePtr, StateTy); 1741 1742 // Number of elements in the items array. 1743 static const unsigned NumItems = 16; 1744 1745 // Fetch the countByEnumeratingWithState:objects:count: selector. 1746 IdentifierInfo *II[] = { 1747 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1748 &CGM.getContext().Idents.get("objects"), 1749 &CGM.getContext().Idents.get("count") 1750 }; 1751 Selector FastEnumSel = 1752 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1753 1754 QualType ItemsTy = 1755 getContext().getConstantArrayType(getContext().getObjCIdType(), 1756 llvm::APInt(32, NumItems), nullptr, 1757 ArrayType::Normal, 0); 1758 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1759 1760 // Emit the collection pointer. In ARC, we do a retain. 1761 llvm::Value *Collection; 1762 if (getLangOpts().ObjCAutoRefCount) { 1763 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1764 1765 // Enter a cleanup to do the release. 1766 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1767 } else { 1768 Collection = EmitScalarExpr(S.getCollection()); 1769 } 1770 1771 // The 'continue' label needs to appear within the cleanup for the 1772 // collection object. 1773 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1774 1775 // Send it our message: 1776 CallArgList Args; 1777 1778 // The first argument is a temporary of the enumeration-state type. 1779 Args.add(RValue::get(StatePtr.getPointer()), 1780 getContext().getPointerType(StateTy)); 1781 1782 // The second argument is a temporary array with space for NumItems 1783 // pointers. We'll actually be loading elements from the array 1784 // pointer written into the control state; this buffer is so that 1785 // collections that *aren't* backed by arrays can still queue up 1786 // batches of elements. 1787 Args.add(RValue::get(ItemsPtr.getPointer()), 1788 getContext().getPointerType(ItemsTy)); 1789 1790 // The third argument is the capacity of that temporary array. 1791 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1792 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1793 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1794 1795 // Start the enumeration. 1796 RValue CountRV = 1797 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1798 getContext().getNSUIntegerType(), 1799 FastEnumSel, Collection, Args); 1800 1801 // The initial number of objects that were returned in the buffer. 1802 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1803 1804 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1805 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1806 1807 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1808 1809 // If the limit pointer was zero to begin with, the collection is 1810 // empty; skip all this. Set the branch weight assuming this has the same 1811 // probability of exiting the loop as any other loop exit. 1812 uint64_t EntryCount = getCurrentProfileCount(); 1813 Builder.CreateCondBr( 1814 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1815 LoopInitBB, 1816 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1817 1818 // Otherwise, initialize the loop. 1819 EmitBlock(LoopInitBB); 1820 1821 // Save the initial mutations value. This is the value at an 1822 // address that was written into the state object by 1823 // countByEnumeratingWithState:objects:count:. 1824 Address StateMutationsPtrPtr = 1825 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1826 llvm::Value *StateMutationsPtr 1827 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1828 1829 llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy); 1830 llvm::Value *initialMutations = 1831 Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr, 1832 getPointerAlign(), "forcoll.initial-mutations"); 1833 1834 // Start looping. This is the point we return to whenever we have a 1835 // fresh, non-empty batch of objects. 1836 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1837 EmitBlock(LoopBodyBB); 1838 1839 // The current index into the buffer. 1840 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1841 index->addIncoming(zero, LoopInitBB); 1842 1843 // The current buffer size. 1844 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1845 count->addIncoming(initialBufferLimit, LoopInitBB); 1846 1847 incrementProfileCounter(&S); 1848 1849 // Check whether the mutations value has changed from where it was 1850 // at start. StateMutationsPtr should actually be invariant between 1851 // refreshes. 1852 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1853 llvm::Value *currentMutations 1854 = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr, 1855 getPointerAlign(), "statemutations"); 1856 1857 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1858 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1859 1860 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1861 WasNotMutatedBB, WasMutatedBB); 1862 1863 // If so, call the enumeration-mutation function. 1864 EmitBlock(WasMutatedBB); 1865 llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType()); 1866 llvm::Value *V = 1867 Builder.CreateBitCast(Collection, ObjCIdType); 1868 CallArgList Args2; 1869 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1870 // FIXME: We shouldn't need to get the function info here, the runtime already 1871 // should have computed it to build the function. 1872 EmitCall( 1873 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1874 EnumerationMutationFn, ReturnValueSlot(), Args2); 1875 1876 // Otherwise, or if the mutation function returns, just continue. 1877 EmitBlock(WasNotMutatedBB); 1878 1879 // Initialize the element variable. 1880 RunCleanupsScope elementVariableScope(*this); 1881 bool elementIsVariable; 1882 LValue elementLValue; 1883 QualType elementType; 1884 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1885 // Initialize the variable, in case it's a __block variable or something. 1886 EmitAutoVarInit(variable); 1887 1888 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl()); 1889 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false, 1890 D->getType(), VK_LValue, SourceLocation()); 1891 elementLValue = EmitLValue(&tempDRE); 1892 elementType = D->getType(); 1893 elementIsVariable = true; 1894 1895 if (D->isARCPseudoStrong()) 1896 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1897 } else { 1898 elementLValue = LValue(); // suppress warning 1899 elementType = cast<Expr>(S.getElement())->getType(); 1900 elementIsVariable = false; 1901 } 1902 llvm::Type *convertedElementType = ConvertType(elementType); 1903 1904 // Fetch the buffer out of the enumeration state. 1905 // TODO: this pointer should actually be invariant between 1906 // refreshes, which would help us do certain loop optimizations. 1907 Address StateItemsPtr = 1908 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1909 llvm::Value *EnumStateItems = 1910 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1911 1912 // Fetch the value at the current index from the buffer. 1913 llvm::Value *CurrentItemPtr = Builder.CreateGEP( 1914 EnumStateItems->getType()->getPointerElementType(), EnumStateItems, index, 1915 "currentitem.ptr"); 1916 llvm::Value *CurrentItem = 1917 Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign()); 1918 1919 if (SanOpts.has(SanitizerKind::ObjCCast)) { 1920 // Before using an item from the collection, check that the implicit cast 1921 // from id to the element type is valid. This is done with instrumentation 1922 // roughly corresponding to: 1923 // 1924 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ } 1925 const ObjCObjectPointerType *ObjPtrTy = 1926 elementType->getAsObjCInterfacePointerType(); 1927 const ObjCInterfaceType *InterfaceTy = 1928 ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr; 1929 if (InterfaceTy) { 1930 SanitizerScope SanScope(this); 1931 auto &C = CGM.getContext(); 1932 assert(InterfaceTy->getDecl() && "No decl for ObjC interface type"); 1933 Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C); 1934 CallArgList IsKindOfClassArgs; 1935 llvm::Value *Cls = 1936 CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl()); 1937 IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType()); 1938 llvm::Value *IsClass = 1939 CGM.getObjCRuntime() 1940 .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy, 1941 IsKindOfClassSel, CurrentItem, 1942 IsKindOfClassArgs) 1943 .getScalarVal(); 1944 llvm::Constant *StaticData[] = { 1945 EmitCheckSourceLocation(S.getBeginLoc()), 1946 EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))}; 1947 EmitCheck({{IsClass, SanitizerKind::ObjCCast}}, 1948 SanitizerHandler::InvalidObjCCast, 1949 ArrayRef<llvm::Constant *>(StaticData), CurrentItem); 1950 } 1951 } 1952 1953 // Cast that value to the right type. 1954 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1955 "currentitem"); 1956 1957 // Make sure we have an l-value. Yes, this gets evaluated every 1958 // time through the loop. 1959 if (!elementIsVariable) { 1960 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1961 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1962 } else { 1963 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1964 /*isInit*/ true); 1965 } 1966 1967 // If we do have an element variable, this assignment is the end of 1968 // its initialization. 1969 if (elementIsVariable) 1970 EmitAutoVarCleanups(variable); 1971 1972 // Perform the loop body, setting up break and continue labels. 1973 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1974 { 1975 RunCleanupsScope Scope(*this); 1976 EmitStmt(S.getBody()); 1977 } 1978 BreakContinueStack.pop_back(); 1979 1980 // Destroy the element variable now. 1981 elementVariableScope.ForceCleanup(); 1982 1983 // Check whether there are more elements. 1984 EmitBlock(AfterBody.getBlock()); 1985 1986 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1987 1988 // First we check in the local buffer. 1989 llvm::Value *indexPlusOne = 1990 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 1991 1992 // If we haven't overrun the buffer yet, we can continue. 1993 // Set the branch weights based on the simplifying assumption that this is 1994 // like a while-loop, i.e., ignoring that the false branch fetches more 1995 // elements and then returns to the loop. 1996 Builder.CreateCondBr( 1997 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1998 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1999 2000 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 2001 count->addIncoming(count, AfterBody.getBlock()); 2002 2003 // Otherwise, we have to fetch more elements. 2004 EmitBlock(FetchMoreBB); 2005 2006 CountRV = 2007 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2008 getContext().getNSUIntegerType(), 2009 FastEnumSel, Collection, Args); 2010 2011 // If we got a zero count, we're done. 2012 llvm::Value *refetchCount = CountRV.getScalarVal(); 2013 2014 // (note that the message send might split FetchMoreBB) 2015 index->addIncoming(zero, Builder.GetInsertBlock()); 2016 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 2017 2018 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 2019 EmptyBB, LoopBodyBB); 2020 2021 // No more elements. 2022 EmitBlock(EmptyBB); 2023 2024 if (!elementIsVariable) { 2025 // If the element was not a declaration, set it to be null. 2026 2027 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 2028 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 2029 EmitStoreThroughLValue(RValue::get(null), elementLValue); 2030 } 2031 2032 if (DI) 2033 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 2034 2035 ForScope.ForceCleanup(); 2036 EmitBlock(LoopEnd.getBlock()); 2037 } 2038 2039 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 2040 CGM.getObjCRuntime().EmitTryStmt(*this, S); 2041 } 2042 2043 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 2044 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 2045 } 2046 2047 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 2048 const ObjCAtSynchronizedStmt &S) { 2049 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 2050 } 2051 2052 namespace { 2053 struct CallObjCRelease final : EHScopeStack::Cleanup { 2054 CallObjCRelease(llvm::Value *object) : object(object) {} 2055 llvm::Value *object; 2056 2057 void Emit(CodeGenFunction &CGF, Flags flags) override { 2058 // Releases at the end of the full-expression are imprecise. 2059 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 2060 } 2061 }; 2062 } 2063 2064 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 2065 /// release at the end of the full-expression. 2066 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 2067 llvm::Value *object) { 2068 // If we're in a conditional branch, we need to make the cleanup 2069 // conditional. 2070 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 2071 return object; 2072 } 2073 2074 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 2075 llvm::Value *value) { 2076 return EmitARCRetainAutorelease(type, value); 2077 } 2078 2079 /// Given a number of pointers, inform the optimizer that they're 2080 /// being intrinsically used up until this point in the program. 2081 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 2082 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use; 2083 if (!fn) 2084 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use); 2085 2086 // This isn't really a "runtime" function, but as an intrinsic it 2087 // doesn't really matter as long as we align things up. 2088 EmitNounwindRuntimeCall(fn, values); 2089 } 2090 2091 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call 2092 /// that has operand bundle "clang.arc.attachedcall". 2093 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) { 2094 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use; 2095 if (!fn) 2096 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use); 2097 EmitNounwindRuntimeCall(fn, values); 2098 } 2099 2100 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) { 2101 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 2102 // If the target runtime doesn't naturally support ARC, emit weak 2103 // references to the runtime support library. We don't really 2104 // permit this to fail, but we need a particular relocation style. 2105 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 2106 !CGM.getTriple().isOSBinFormatCOFF()) { 2107 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2108 } 2109 } 2110 } 2111 2112 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, 2113 llvm::FunctionCallee RTF) { 2114 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee()); 2115 } 2116 2117 static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID, 2118 CodeGenModule &CGM) { 2119 llvm::Function *fn = CGM.getIntrinsic(IntID); 2120 setARCRuntimeFunctionLinkage(CGM, fn); 2121 return fn; 2122 } 2123 2124 /// Perform an operation having the signature 2125 /// i8* (i8*) 2126 /// where a null input causes a no-op and returns null. 2127 static llvm::Value *emitARCValueOperation( 2128 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, 2129 llvm::Function *&fn, llvm::Intrinsic::ID IntID, 2130 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) { 2131 if (isa<llvm::ConstantPointerNull>(value)) 2132 return value; 2133 2134 if (!fn) 2135 fn = getARCIntrinsic(IntID, CGF.CGM); 2136 2137 // Cast the argument to 'id'. 2138 llvm::Type *origType = returnType ? returnType : value->getType(); 2139 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2140 2141 // Call the function. 2142 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 2143 call->setTailCallKind(tailKind); 2144 2145 // Cast the result back to the original type. 2146 return CGF.Builder.CreateBitCast(call, origType); 2147 } 2148 2149 /// Perform an operation having the following signature: 2150 /// i8* (i8**) 2151 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr, 2152 llvm::Function *&fn, 2153 llvm::Intrinsic::ID IntID) { 2154 if (!fn) 2155 fn = getARCIntrinsic(IntID, CGF.CGM); 2156 2157 // Cast the argument to 'id*'. 2158 llvm::Type *origType = addr.getElementType(); 2159 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 2160 2161 // Call the function. 2162 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 2163 2164 // Cast the result back to a dereference of the original type. 2165 if (origType != CGF.Int8PtrTy) 2166 result = CGF.Builder.CreateBitCast(result, origType); 2167 2168 return result; 2169 } 2170 2171 /// Perform an operation having the following signature: 2172 /// i8* (i8**, i8*) 2173 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr, 2174 llvm::Value *value, 2175 llvm::Function *&fn, 2176 llvm::Intrinsic::ID IntID, 2177 bool ignored) { 2178 assert(addr.getElementType() == value->getType()); 2179 2180 if (!fn) 2181 fn = getARCIntrinsic(IntID, CGF.CGM); 2182 2183 llvm::Type *origType = value->getType(); 2184 2185 llvm::Value *args[] = { 2186 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 2187 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 2188 }; 2189 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 2190 2191 if (ignored) return nullptr; 2192 2193 return CGF.Builder.CreateBitCast(result, origType); 2194 } 2195 2196 /// Perform an operation having the following signature: 2197 /// void (i8**, i8**) 2198 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, 2199 llvm::Function *&fn, 2200 llvm::Intrinsic::ID IntID) { 2201 assert(dst.getType() == src.getType()); 2202 2203 if (!fn) 2204 fn = getARCIntrinsic(IntID, CGF.CGM); 2205 2206 llvm::Value *args[] = { 2207 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 2208 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 2209 }; 2210 CGF.EmitNounwindRuntimeCall(fn, args); 2211 } 2212 2213 /// Perform an operation having the signature 2214 /// i8* (i8*) 2215 /// where a null input causes a no-op and returns null. 2216 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, 2217 llvm::Value *value, 2218 llvm::Type *returnType, 2219 llvm::FunctionCallee &fn, 2220 StringRef fnName) { 2221 if (isa<llvm::ConstantPointerNull>(value)) 2222 return value; 2223 2224 if (!fn) { 2225 llvm::FunctionType *fnType = 2226 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 2227 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName); 2228 2229 // We have Native ARC, so set nonlazybind attribute for performance 2230 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2231 if (fnName == "objc_retain") 2232 f->addFnAttr(llvm::Attribute::NonLazyBind); 2233 } 2234 2235 // Cast the argument to 'id'. 2236 llvm::Type *origType = returnType ? returnType : value->getType(); 2237 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2238 2239 // Call the function. 2240 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value); 2241 2242 // Mark calls to objc_autorelease as tail on the assumption that methods 2243 // overriding autorelease do not touch anything on the stack. 2244 if (fnName == "objc_autorelease") 2245 if (auto *Call = dyn_cast<llvm::CallInst>(Inst)) 2246 Call->setTailCall(); 2247 2248 // Cast the result back to the original type. 2249 return CGF.Builder.CreateBitCast(Inst, origType); 2250 } 2251 2252 /// Produce the code to do a retain. Based on the type, calls one of: 2253 /// call i8* \@objc_retain(i8* %value) 2254 /// call i8* \@objc_retainBlock(i8* %value) 2255 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 2256 if (type->isBlockPointerType()) 2257 return EmitARCRetainBlock(value, /*mandatory*/ false); 2258 else 2259 return EmitARCRetainNonBlock(value); 2260 } 2261 2262 /// Retain the given object, with normal retain semantics. 2263 /// call i8* \@objc_retain(i8* %value) 2264 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 2265 return emitARCValueOperation(*this, value, nullptr, 2266 CGM.getObjCEntrypoints().objc_retain, 2267 llvm::Intrinsic::objc_retain); 2268 } 2269 2270 /// Retain the given block, with _Block_copy semantics. 2271 /// call i8* \@objc_retainBlock(i8* %value) 2272 /// 2273 /// \param mandatory - If false, emit the call with metadata 2274 /// indicating that it's okay for the optimizer to eliminate this call 2275 /// if it can prove that the block never escapes except down the stack. 2276 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 2277 bool mandatory) { 2278 llvm::Value *result 2279 = emitARCValueOperation(*this, value, nullptr, 2280 CGM.getObjCEntrypoints().objc_retainBlock, 2281 llvm::Intrinsic::objc_retainBlock); 2282 2283 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 2284 // tell the optimizer that it doesn't need to do this copy if the 2285 // block doesn't escape, where being passed as an argument doesn't 2286 // count as escaping. 2287 if (!mandatory && isa<llvm::Instruction>(result)) { 2288 llvm::CallInst *call 2289 = cast<llvm::CallInst>(result->stripPointerCasts()); 2290 assert(call->getCalledOperand() == 2291 CGM.getObjCEntrypoints().objc_retainBlock); 2292 2293 call->setMetadata("clang.arc.copy_on_escape", 2294 llvm::MDNode::get(Builder.getContext(), None)); 2295 } 2296 2297 return result; 2298 } 2299 2300 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 2301 // Fetch the void(void) inline asm which marks that we're going to 2302 // do something with the autoreleased return value. 2303 llvm::InlineAsm *&marker 2304 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2305 if (!marker) { 2306 StringRef assembly 2307 = CGF.CGM.getTargetCodeGenInfo() 2308 .getARCRetainAutoreleasedReturnValueMarker(); 2309 2310 // If we have an empty assembly string, there's nothing to do. 2311 if (assembly.empty()) { 2312 2313 // Otherwise, at -O0, build an inline asm that we're going to call 2314 // in a moment. 2315 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2316 llvm::FunctionType *type = 2317 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2318 2319 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2320 2321 // If we're at -O1 and above, we don't want to litter the code 2322 // with this marker yet, so leave a breadcrumb for the ARC 2323 // optimizer to pick up. 2324 } else { 2325 const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr(); 2326 if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) { 2327 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly); 2328 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, 2329 retainRVMarkerKey, str); 2330 } 2331 } 2332 } 2333 2334 // Call the marker asm if we made one, which we do only at -O0. 2335 if (marker) 2336 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker)); 2337 } 2338 2339 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value, 2340 bool IsRetainRV, 2341 CodeGenFunction &CGF) { 2342 emitAutoreleasedReturnValueMarker(CGF); 2343 2344 // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting 2345 // retainRV or claimRV calls in the IR. We currently do this only when the 2346 // optimization level isn't -O0 since global-isel, which is currently run at 2347 // -O0, doesn't know about the operand bundle. 2348 ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints(); 2349 llvm::Function *&EP = IsRetainRV 2350 ? EPs.objc_retainAutoreleasedReturnValue 2351 : EPs.objc_unsafeClaimAutoreleasedReturnValue; 2352 llvm::Intrinsic::ID IID = 2353 IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue 2354 : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue; 2355 EP = getARCIntrinsic(IID, CGF.CGM); 2356 2357 // FIXME: Do this when the target isn't aarch64. 2358 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 && 2359 CGF.CGM.getTarget().getTriple().isAArch64()) { 2360 llvm::Value *bundleArgs[] = {EP}; 2361 llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs); 2362 auto *oldCall = cast<llvm::CallBase>(value); 2363 llvm::CallBase *newCall = llvm::CallBase::addOperandBundle( 2364 oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall); 2365 newCall->copyMetadata(*oldCall); 2366 oldCall->replaceAllUsesWith(newCall); 2367 oldCall->eraseFromParent(); 2368 CGF.EmitARCNoopIntrinsicUse(newCall); 2369 return newCall; 2370 } 2371 2372 bool isNoTail = 2373 CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail(); 2374 llvm::CallInst::TailCallKind tailKind = 2375 isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None; 2376 return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind); 2377 } 2378 2379 /// Retain the given object which is the result of a function call. 2380 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2381 /// 2382 /// Yes, this function name is one character away from a different 2383 /// call with completely different semantics. 2384 llvm::Value * 2385 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2386 return emitOptimizedARCReturnCall(value, true, *this); 2387 } 2388 2389 /// Claim a possibly-autoreleased return value at +0. This is only 2390 /// valid to do in contexts which do not rely on the retain to keep 2391 /// the object valid for all of its uses; for example, when 2392 /// the value is ignored, or when it is being assigned to an 2393 /// __unsafe_unretained variable. 2394 /// 2395 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2396 llvm::Value * 2397 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2398 return emitOptimizedARCReturnCall(value, false, *this); 2399 } 2400 2401 /// Release the given object. 2402 /// call void \@objc_release(i8* %value) 2403 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2404 ARCPreciseLifetime_t precise) { 2405 if (isa<llvm::ConstantPointerNull>(value)) return; 2406 2407 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release; 2408 if (!fn) 2409 fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM); 2410 2411 // Cast the argument to 'id'. 2412 value = Builder.CreateBitCast(value, Int8PtrTy); 2413 2414 // Call objc_release. 2415 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2416 2417 if (precise == ARCImpreciseLifetime) { 2418 call->setMetadata("clang.imprecise_release", 2419 llvm::MDNode::get(Builder.getContext(), None)); 2420 } 2421 } 2422 2423 /// Destroy a __strong variable. 2424 /// 2425 /// At -O0, emit a call to store 'null' into the address; 2426 /// instrumenting tools prefer this because the address is exposed, 2427 /// but it's relatively cumbersome to optimize. 2428 /// 2429 /// At -O1 and above, just load and call objc_release. 2430 /// 2431 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2432 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2433 ARCPreciseLifetime_t precise) { 2434 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2435 llvm::Value *null = getNullForVariable(addr); 2436 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2437 return; 2438 } 2439 2440 llvm::Value *value = Builder.CreateLoad(addr); 2441 EmitARCRelease(value, precise); 2442 } 2443 2444 /// Store into a strong object. Always calls this: 2445 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2446 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2447 llvm::Value *value, 2448 bool ignored) { 2449 assert(addr.getElementType() == value->getType()); 2450 2451 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2452 if (!fn) 2453 fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM); 2454 2455 llvm::Value *args[] = { 2456 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2457 Builder.CreateBitCast(value, Int8PtrTy) 2458 }; 2459 EmitNounwindRuntimeCall(fn, args); 2460 2461 if (ignored) return nullptr; 2462 return value; 2463 } 2464 2465 /// Store into a strong object. Sometimes calls this: 2466 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2467 /// Other times, breaks it down into components. 2468 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2469 llvm::Value *newValue, 2470 bool ignored) { 2471 QualType type = dst.getType(); 2472 bool isBlock = type->isBlockPointerType(); 2473 2474 // Use a store barrier at -O0 unless this is a block type or the 2475 // lvalue is inadequately aligned. 2476 if (shouldUseFusedARCCalls() && 2477 !isBlock && 2478 (dst.getAlignment().isZero() || 2479 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2480 return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored); 2481 } 2482 2483 // Otherwise, split it out. 2484 2485 // Retain the new value. 2486 newValue = EmitARCRetain(type, newValue); 2487 2488 // Read the old value. 2489 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2490 2491 // Store. We do this before the release so that any deallocs won't 2492 // see the old value. 2493 EmitStoreOfScalar(newValue, dst); 2494 2495 // Finally, release the old value. 2496 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2497 2498 return newValue; 2499 } 2500 2501 /// Autorelease the given object. 2502 /// call i8* \@objc_autorelease(i8* %value) 2503 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2504 return emitARCValueOperation(*this, value, nullptr, 2505 CGM.getObjCEntrypoints().objc_autorelease, 2506 llvm::Intrinsic::objc_autorelease); 2507 } 2508 2509 /// Autorelease the given object. 2510 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2511 llvm::Value * 2512 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2513 return emitARCValueOperation(*this, value, nullptr, 2514 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2515 llvm::Intrinsic::objc_autoreleaseReturnValue, 2516 llvm::CallInst::TCK_Tail); 2517 } 2518 2519 /// Do a fused retain/autorelease of the given object. 2520 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2521 llvm::Value * 2522 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2523 return emitARCValueOperation(*this, value, nullptr, 2524 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2525 llvm::Intrinsic::objc_retainAutoreleaseReturnValue, 2526 llvm::CallInst::TCK_Tail); 2527 } 2528 2529 /// Do a fused retain/autorelease of the given object. 2530 /// call i8* \@objc_retainAutorelease(i8* %value) 2531 /// or 2532 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2533 /// call i8* \@objc_autorelease(i8* %retain) 2534 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2535 llvm::Value *value) { 2536 if (!type->isBlockPointerType()) 2537 return EmitARCRetainAutoreleaseNonBlock(value); 2538 2539 if (isa<llvm::ConstantPointerNull>(value)) return value; 2540 2541 llvm::Type *origType = value->getType(); 2542 value = Builder.CreateBitCast(value, Int8PtrTy); 2543 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2544 value = EmitARCAutorelease(value); 2545 return Builder.CreateBitCast(value, origType); 2546 } 2547 2548 /// Do a fused retain/autorelease of the given object. 2549 /// call i8* \@objc_retainAutorelease(i8* %value) 2550 llvm::Value * 2551 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2552 return emitARCValueOperation(*this, value, nullptr, 2553 CGM.getObjCEntrypoints().objc_retainAutorelease, 2554 llvm::Intrinsic::objc_retainAutorelease); 2555 } 2556 2557 /// i8* \@objc_loadWeak(i8** %addr) 2558 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2559 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2560 return emitARCLoadOperation(*this, addr, 2561 CGM.getObjCEntrypoints().objc_loadWeak, 2562 llvm::Intrinsic::objc_loadWeak); 2563 } 2564 2565 /// i8* \@objc_loadWeakRetained(i8** %addr) 2566 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2567 return emitARCLoadOperation(*this, addr, 2568 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2569 llvm::Intrinsic::objc_loadWeakRetained); 2570 } 2571 2572 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2573 /// Returns %value. 2574 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2575 llvm::Value *value, 2576 bool ignored) { 2577 return emitARCStoreOperation(*this, addr, value, 2578 CGM.getObjCEntrypoints().objc_storeWeak, 2579 llvm::Intrinsic::objc_storeWeak, ignored); 2580 } 2581 2582 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2583 /// Returns %value. %addr is known to not have a current weak entry. 2584 /// Essentially equivalent to: 2585 /// *addr = nil; objc_storeWeak(addr, value); 2586 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2587 // If we're initializing to null, just write null to memory; no need 2588 // to get the runtime involved. But don't do this if optimization 2589 // is enabled, because accounting for this would make the optimizer 2590 // much more complicated. 2591 if (isa<llvm::ConstantPointerNull>(value) && 2592 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2593 Builder.CreateStore(value, addr); 2594 return; 2595 } 2596 2597 emitARCStoreOperation(*this, addr, value, 2598 CGM.getObjCEntrypoints().objc_initWeak, 2599 llvm::Intrinsic::objc_initWeak, /*ignored*/ true); 2600 } 2601 2602 /// void \@objc_destroyWeak(i8** %addr) 2603 /// Essentially objc_storeWeak(addr, nil). 2604 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2605 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2606 if (!fn) 2607 fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM); 2608 2609 // Cast the argument to 'id*'. 2610 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2611 2612 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2613 } 2614 2615 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2616 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2617 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2618 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2619 emitARCCopyOperation(*this, dst, src, 2620 CGM.getObjCEntrypoints().objc_moveWeak, 2621 llvm::Intrinsic::objc_moveWeak); 2622 } 2623 2624 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2625 /// Disregards the current value in %dest. Essentially 2626 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2627 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2628 emitARCCopyOperation(*this, dst, src, 2629 CGM.getObjCEntrypoints().objc_copyWeak, 2630 llvm::Intrinsic::objc_copyWeak); 2631 } 2632 2633 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, 2634 Address SrcAddr) { 2635 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2636 Object = EmitObjCConsumeObject(Ty, Object); 2637 EmitARCStoreWeak(DstAddr, Object, false); 2638 } 2639 2640 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, 2641 Address SrcAddr) { 2642 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2643 Object = EmitObjCConsumeObject(Ty, Object); 2644 EmitARCStoreWeak(DstAddr, Object, false); 2645 EmitARCDestroyWeak(SrcAddr); 2646 } 2647 2648 /// Produce the code to do a objc_autoreleasepool_push. 2649 /// call i8* \@objc_autoreleasePoolPush(void) 2650 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2651 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2652 if (!fn) 2653 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM); 2654 2655 return EmitNounwindRuntimeCall(fn); 2656 } 2657 2658 /// Produce the code to do a primitive release. 2659 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2660 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2661 assert(value->getType() == Int8PtrTy); 2662 2663 if (getInvokeDest()) { 2664 // Call the runtime method not the intrinsic if we are handling exceptions 2665 llvm::FunctionCallee &fn = 2666 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; 2667 if (!fn) { 2668 llvm::FunctionType *fnType = 2669 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2670 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop"); 2671 setARCRuntimeFunctionLinkage(CGM, fn); 2672 } 2673 2674 // objc_autoreleasePoolPop can throw. 2675 EmitRuntimeCallOrInvoke(fn, value); 2676 } else { 2677 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2678 if (!fn) 2679 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM); 2680 2681 EmitRuntimeCall(fn, value); 2682 } 2683 } 2684 2685 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2686 /// Which is: [[NSAutoreleasePool alloc] init]; 2687 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2688 /// init is declared as: - (id) init; in its NSObject super class. 2689 /// 2690 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2691 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2692 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2693 // [NSAutoreleasePool alloc] 2694 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2695 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2696 CallArgList Args; 2697 RValue AllocRV = 2698 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2699 getContext().getObjCIdType(), 2700 AllocSel, Receiver, Args); 2701 2702 // [Receiver init] 2703 Receiver = AllocRV.getScalarVal(); 2704 II = &CGM.getContext().Idents.get("init"); 2705 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2706 RValue InitRV = 2707 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2708 getContext().getObjCIdType(), 2709 InitSel, Receiver, Args); 2710 return InitRV.getScalarVal(); 2711 } 2712 2713 /// Allocate the given objc object. 2714 /// call i8* \@objc_alloc(i8* %value) 2715 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, 2716 llvm::Type *resultType) { 2717 return emitObjCValueOperation(*this, value, resultType, 2718 CGM.getObjCEntrypoints().objc_alloc, 2719 "objc_alloc"); 2720 } 2721 2722 /// Allocate the given objc object. 2723 /// call i8* \@objc_allocWithZone(i8* %value) 2724 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, 2725 llvm::Type *resultType) { 2726 return emitObjCValueOperation(*this, value, resultType, 2727 CGM.getObjCEntrypoints().objc_allocWithZone, 2728 "objc_allocWithZone"); 2729 } 2730 2731 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value, 2732 llvm::Type *resultType) { 2733 return emitObjCValueOperation(*this, value, resultType, 2734 CGM.getObjCEntrypoints().objc_alloc_init, 2735 "objc_alloc_init"); 2736 } 2737 2738 /// Produce the code to do a primitive release. 2739 /// [tmp drain]; 2740 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2741 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2742 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2743 CallArgList Args; 2744 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2745 getContext().VoidTy, DrainSel, Arg, Args); 2746 } 2747 2748 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2749 Address addr, 2750 QualType type) { 2751 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2752 } 2753 2754 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2755 Address addr, 2756 QualType type) { 2757 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2758 } 2759 2760 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2761 Address addr, 2762 QualType type) { 2763 CGF.EmitARCDestroyWeak(addr); 2764 } 2765 2766 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2767 QualType type) { 2768 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2769 CGF.EmitARCIntrinsicUse(value); 2770 } 2771 2772 /// Autorelease the given object. 2773 /// call i8* \@objc_autorelease(i8* %value) 2774 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value, 2775 llvm::Type *returnType) { 2776 return emitObjCValueOperation( 2777 *this, value, returnType, 2778 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction, 2779 "objc_autorelease"); 2780 } 2781 2782 /// Retain the given object, with normal retain semantics. 2783 /// call i8* \@objc_retain(i8* %value) 2784 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value, 2785 llvm::Type *returnType) { 2786 return emitObjCValueOperation( 2787 *this, value, returnType, 2788 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain"); 2789 } 2790 2791 /// Release the given object. 2792 /// call void \@objc_release(i8* %value) 2793 void CodeGenFunction::EmitObjCRelease(llvm::Value *value, 2794 ARCPreciseLifetime_t precise) { 2795 if (isa<llvm::ConstantPointerNull>(value)) return; 2796 2797 llvm::FunctionCallee &fn = 2798 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction; 2799 if (!fn) { 2800 llvm::FunctionType *fnType = 2801 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2802 fn = CGM.CreateRuntimeFunction(fnType, "objc_release"); 2803 setARCRuntimeFunctionLinkage(CGM, fn); 2804 // We have Native ARC, so set nonlazybind attribute for performance 2805 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2806 f->addFnAttr(llvm::Attribute::NonLazyBind); 2807 } 2808 2809 // Cast the argument to 'id'. 2810 value = Builder.CreateBitCast(value, Int8PtrTy); 2811 2812 // Call objc_release. 2813 llvm::CallBase *call = EmitCallOrInvoke(fn, value); 2814 2815 if (precise == ARCImpreciseLifetime) { 2816 call->setMetadata("clang.imprecise_release", 2817 llvm::MDNode::get(Builder.getContext(), None)); 2818 } 2819 } 2820 2821 namespace { 2822 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2823 llvm::Value *Token; 2824 2825 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2826 2827 void Emit(CodeGenFunction &CGF, Flags flags) override { 2828 CGF.EmitObjCAutoreleasePoolPop(Token); 2829 } 2830 }; 2831 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2832 llvm::Value *Token; 2833 2834 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2835 2836 void Emit(CodeGenFunction &CGF, Flags flags) override { 2837 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2838 } 2839 }; 2840 } 2841 2842 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2843 if (CGM.getLangOpts().ObjCAutoRefCount) 2844 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2845 else 2846 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2847 } 2848 2849 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { 2850 switch (lifetime) { 2851 case Qualifiers::OCL_None: 2852 case Qualifiers::OCL_ExplicitNone: 2853 case Qualifiers::OCL_Strong: 2854 case Qualifiers::OCL_Autoreleasing: 2855 return true; 2856 2857 case Qualifiers::OCL_Weak: 2858 return false; 2859 } 2860 2861 llvm_unreachable("impossible lifetime!"); 2862 } 2863 2864 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2865 LValue lvalue, 2866 QualType type) { 2867 llvm::Value *result; 2868 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime()); 2869 if (shouldRetain) { 2870 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal(); 2871 } else { 2872 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); 2873 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF)); 2874 } 2875 return TryEmitResult(result, !shouldRetain); 2876 } 2877 2878 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2879 const Expr *e) { 2880 e = e->IgnoreParens(); 2881 QualType type = e->getType(); 2882 2883 // If we're loading retained from a __strong xvalue, we can avoid 2884 // an extra retain/release pair by zeroing out the source of this 2885 // "move" operation. 2886 if (e->isXValue() && 2887 !type.isConstQualified() && 2888 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2889 // Emit the lvalue. 2890 LValue lv = CGF.EmitLValue(e); 2891 2892 // Load the object pointer. 2893 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2894 SourceLocation()).getScalarVal(); 2895 2896 // Set the source pointer to NULL. 2897 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv); 2898 2899 return TryEmitResult(result, true); 2900 } 2901 2902 // As a very special optimization, in ARC++, if the l-value is the 2903 // result of a non-volatile assignment, do a simple retain of the 2904 // result of the call to objc_storeWeak instead of reloading. 2905 if (CGF.getLangOpts().CPlusPlus && 2906 !type.isVolatileQualified() && 2907 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2908 isa<BinaryOperator>(e) && 2909 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2910 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2911 2912 // Try to emit code for scalar constant instead of emitting LValue and 2913 // loading it because we are not guaranteed to have an l-value. One of such 2914 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. 2915 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) { 2916 auto *DRE = const_cast<DeclRefExpr *>(decl_expr); 2917 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE)) 2918 return TryEmitResult(CGF.emitScalarConstant(constant, DRE), 2919 !shouldRetainObjCLifetime(type.getObjCLifetime())); 2920 } 2921 2922 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2923 } 2924 2925 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2926 llvm::Value *value)> 2927 ValueTransform; 2928 2929 /// Insert code immediately after a call. 2930 2931 // FIXME: We should find a way to emit the runtime call immediately 2932 // after the call is emitted to eliminate the need for this function. 2933 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2934 llvm::Value *value, 2935 ValueTransform doAfterCall, 2936 ValueTransform doFallback) { 2937 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2938 auto *callBase = dyn_cast<llvm::CallBase>(value); 2939 2940 if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) { 2941 // Fall back if the call base has operand bundle "clang.arc.attachedcall". 2942 value = doFallback(CGF, value); 2943 } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2944 // Place the retain immediately following the call. 2945 CGF.Builder.SetInsertPoint(call->getParent(), 2946 ++llvm::BasicBlock::iterator(call)); 2947 value = doAfterCall(CGF, value); 2948 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2949 // Place the retain at the beginning of the normal destination block. 2950 llvm::BasicBlock *BB = invoke->getNormalDest(); 2951 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2952 value = doAfterCall(CGF, value); 2953 2954 // Bitcasts can arise because of related-result returns. Rewrite 2955 // the operand. 2956 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2957 // Change the insert point to avoid emitting the fall-back call after the 2958 // bitcast. 2959 CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator()); 2960 llvm::Value *operand = bitcast->getOperand(0); 2961 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2962 bitcast->setOperand(0, operand); 2963 value = bitcast; 2964 } else { 2965 auto *phi = dyn_cast<llvm::PHINode>(value); 2966 if (phi && phi->getNumIncomingValues() == 2 && 2967 isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) && 2968 isa<llvm::CallBase>(phi->getIncomingValue(0))) { 2969 // Handle phi instructions that are generated when it's necessary to check 2970 // whether the receiver of a message is null. 2971 llvm::Value *inVal = phi->getIncomingValue(0); 2972 inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback); 2973 phi->setIncomingValue(0, inVal); 2974 value = phi; 2975 } else { 2976 // Generic fall-back case. 2977 // Retain using the non-block variant: we never need to do a copy 2978 // of a block that's been returned to us. 2979 value = doFallback(CGF, value); 2980 } 2981 } 2982 2983 CGF.Builder.restoreIP(ip); 2984 return value; 2985 } 2986 2987 /// Given that the given expression is some sort of call (which does 2988 /// not return retained), emit a retain following it. 2989 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2990 const Expr *e) { 2991 llvm::Value *value = CGF.EmitScalarExpr(e); 2992 return emitARCOperationAfterCall(CGF, value, 2993 [](CodeGenFunction &CGF, llvm::Value *value) { 2994 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2995 }, 2996 [](CodeGenFunction &CGF, llvm::Value *value) { 2997 return CGF.EmitARCRetainNonBlock(value); 2998 }); 2999 } 3000 3001 /// Given that the given expression is some sort of call (which does 3002 /// not return retained), perform an unsafeClaim following it. 3003 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 3004 const Expr *e) { 3005 llvm::Value *value = CGF.EmitScalarExpr(e); 3006 return emitARCOperationAfterCall(CGF, value, 3007 [](CodeGenFunction &CGF, llvm::Value *value) { 3008 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 3009 }, 3010 [](CodeGenFunction &CGF, llvm::Value *value) { 3011 return value; 3012 }); 3013 } 3014 3015 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 3016 bool allowUnsafeClaim) { 3017 if (allowUnsafeClaim && 3018 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 3019 return emitARCUnsafeClaimCallResult(*this, E); 3020 } else { 3021 llvm::Value *value = emitARCRetainCallResult(*this, E); 3022 return EmitObjCConsumeObject(E->getType(), value); 3023 } 3024 } 3025 3026 /// Determine whether it might be important to emit a separate 3027 /// objc_retain_block on the result of the given expression, or 3028 /// whether it's okay to just emit it in a +1 context. 3029 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 3030 assert(e->getType()->isBlockPointerType()); 3031 e = e->IgnoreParens(); 3032 3033 // For future goodness, emit block expressions directly in +1 3034 // contexts if we can. 3035 if (isa<BlockExpr>(e)) 3036 return false; 3037 3038 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 3039 switch (cast->getCastKind()) { 3040 // Emitting these operations in +1 contexts is goodness. 3041 case CK_LValueToRValue: 3042 case CK_ARCReclaimReturnedObject: 3043 case CK_ARCConsumeObject: 3044 case CK_ARCProduceObject: 3045 return false; 3046 3047 // These operations preserve a block type. 3048 case CK_NoOp: 3049 case CK_BitCast: 3050 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 3051 3052 // These operations are known to be bad (or haven't been considered). 3053 case CK_AnyPointerToBlockPointerCast: 3054 default: 3055 return true; 3056 } 3057 } 3058 3059 return true; 3060 } 3061 3062 namespace { 3063 /// A CRTP base class for emitting expressions of retainable object 3064 /// pointer type in ARC. 3065 template <typename Impl, typename Result> class ARCExprEmitter { 3066 protected: 3067 CodeGenFunction &CGF; 3068 Impl &asImpl() { return *static_cast<Impl*>(this); } 3069 3070 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 3071 3072 public: 3073 Result visit(const Expr *e); 3074 Result visitCastExpr(const CastExpr *e); 3075 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 3076 Result visitBlockExpr(const BlockExpr *e); 3077 Result visitBinaryOperator(const BinaryOperator *e); 3078 Result visitBinAssign(const BinaryOperator *e); 3079 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 3080 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 3081 Result visitBinAssignWeak(const BinaryOperator *e); 3082 Result visitBinAssignStrong(const BinaryOperator *e); 3083 3084 // Minimal implementation: 3085 // Result visitLValueToRValue(const Expr *e) 3086 // Result visitConsumeObject(const Expr *e) 3087 // Result visitExtendBlockObject(const Expr *e) 3088 // Result visitReclaimReturnedObject(const Expr *e) 3089 // Result visitCall(const Expr *e) 3090 // Result visitExpr(const Expr *e) 3091 // 3092 // Result emitBitCast(Result result, llvm::Type *resultType) 3093 // llvm::Value *getValueOfResult(Result result) 3094 }; 3095 } 3096 3097 /// Try to emit a PseudoObjectExpr under special ARC rules. 3098 /// 3099 /// This massively duplicates emitPseudoObjectRValue. 3100 template <typename Impl, typename Result> 3101 Result 3102 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 3103 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3104 3105 // Find the result expression. 3106 const Expr *resultExpr = E->getResultExpr(); 3107 assert(resultExpr); 3108 Result result; 3109 3110 for (PseudoObjectExpr::const_semantics_iterator 3111 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3112 const Expr *semantic = *i; 3113 3114 // If this semantic expression is an opaque value, bind it 3115 // to the result of its source expression. 3116 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3117 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3118 OVMA opaqueData; 3119 3120 // If this semantic is the result of the pseudo-object 3121 // expression, try to evaluate the source as +1. 3122 if (ov == resultExpr) { 3123 assert(!OVMA::shouldBindAsLValue(ov)); 3124 result = asImpl().visit(ov->getSourceExpr()); 3125 opaqueData = OVMA::bind(CGF, ov, 3126 RValue::get(asImpl().getValueOfResult(result))); 3127 3128 // Otherwise, just bind it. 3129 } else { 3130 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3131 } 3132 opaques.push_back(opaqueData); 3133 3134 // Otherwise, if the expression is the result, evaluate it 3135 // and remember the result. 3136 } else if (semantic == resultExpr) { 3137 result = asImpl().visit(semantic); 3138 3139 // Otherwise, evaluate the expression in an ignored context. 3140 } else { 3141 CGF.EmitIgnoredExpr(semantic); 3142 } 3143 } 3144 3145 // Unbind all the opaques now. 3146 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3147 opaques[i].unbind(CGF); 3148 3149 return result; 3150 } 3151 3152 template <typename Impl, typename Result> 3153 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) { 3154 // The default implementation just forwards the expression to visitExpr. 3155 return asImpl().visitExpr(e); 3156 } 3157 3158 template <typename Impl, typename Result> 3159 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 3160 switch (e->getCastKind()) { 3161 3162 // No-op casts don't change the type, so we just ignore them. 3163 case CK_NoOp: 3164 return asImpl().visit(e->getSubExpr()); 3165 3166 // These casts can change the type. 3167 case CK_CPointerToObjCPointerCast: 3168 case CK_BlockPointerToObjCPointerCast: 3169 case CK_AnyPointerToBlockPointerCast: 3170 case CK_BitCast: { 3171 llvm::Type *resultType = CGF.ConvertType(e->getType()); 3172 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 3173 Result result = asImpl().visit(e->getSubExpr()); 3174 return asImpl().emitBitCast(result, resultType); 3175 } 3176 3177 // Handle some casts specially. 3178 case CK_LValueToRValue: 3179 return asImpl().visitLValueToRValue(e->getSubExpr()); 3180 case CK_ARCConsumeObject: 3181 return asImpl().visitConsumeObject(e->getSubExpr()); 3182 case CK_ARCExtendBlockObject: 3183 return asImpl().visitExtendBlockObject(e->getSubExpr()); 3184 case CK_ARCReclaimReturnedObject: 3185 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 3186 3187 // Otherwise, use the default logic. 3188 default: 3189 return asImpl().visitExpr(e); 3190 } 3191 } 3192 3193 template <typename Impl, typename Result> 3194 Result 3195 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 3196 switch (e->getOpcode()) { 3197 case BO_Comma: 3198 CGF.EmitIgnoredExpr(e->getLHS()); 3199 CGF.EnsureInsertPoint(); 3200 return asImpl().visit(e->getRHS()); 3201 3202 case BO_Assign: 3203 return asImpl().visitBinAssign(e); 3204 3205 default: 3206 return asImpl().visitExpr(e); 3207 } 3208 } 3209 3210 template <typename Impl, typename Result> 3211 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 3212 switch (e->getLHS()->getType().getObjCLifetime()) { 3213 case Qualifiers::OCL_ExplicitNone: 3214 return asImpl().visitBinAssignUnsafeUnretained(e); 3215 3216 case Qualifiers::OCL_Weak: 3217 return asImpl().visitBinAssignWeak(e); 3218 3219 case Qualifiers::OCL_Autoreleasing: 3220 return asImpl().visitBinAssignAutoreleasing(e); 3221 3222 case Qualifiers::OCL_Strong: 3223 return asImpl().visitBinAssignStrong(e); 3224 3225 case Qualifiers::OCL_None: 3226 return asImpl().visitExpr(e); 3227 } 3228 llvm_unreachable("bad ObjC ownership qualifier"); 3229 } 3230 3231 /// The default rule for __unsafe_unretained emits the RHS recursively, 3232 /// stores into the unsafe variable, and propagates the result outward. 3233 template <typename Impl, typename Result> 3234 Result ARCExprEmitter<Impl,Result>:: 3235 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 3236 // Recursively emit the RHS. 3237 // For __block safety, do this before emitting the LHS. 3238 Result result = asImpl().visit(e->getRHS()); 3239 3240 // Perform the store. 3241 LValue lvalue = 3242 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 3243 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 3244 lvalue); 3245 3246 return result; 3247 } 3248 3249 template <typename Impl, typename Result> 3250 Result 3251 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 3252 return asImpl().visitExpr(e); 3253 } 3254 3255 template <typename Impl, typename Result> 3256 Result 3257 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 3258 return asImpl().visitExpr(e); 3259 } 3260 3261 template <typename Impl, typename Result> 3262 Result 3263 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 3264 return asImpl().visitExpr(e); 3265 } 3266 3267 /// The general expression-emission logic. 3268 template <typename Impl, typename Result> 3269 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 3270 // We should *never* see a nested full-expression here, because if 3271 // we fail to emit at +1, our caller must not retain after we close 3272 // out the full-expression. This isn't as important in the unsafe 3273 // emitter. 3274 assert(!isa<ExprWithCleanups>(e)); 3275 3276 // Look through parens, __extension__, generic selection, etc. 3277 e = e->IgnoreParens(); 3278 3279 // Handle certain kinds of casts. 3280 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 3281 return asImpl().visitCastExpr(ce); 3282 3283 // Handle the comma operator. 3284 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 3285 return asImpl().visitBinaryOperator(op); 3286 3287 // TODO: handle conditional operators here 3288 3289 // For calls and message sends, use the retained-call logic. 3290 // Delegate inits are a special case in that they're the only 3291 // returns-retained expression that *isn't* surrounded by 3292 // a consume. 3293 } else if (isa<CallExpr>(e) || 3294 (isa<ObjCMessageExpr>(e) && 3295 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 3296 return asImpl().visitCall(e); 3297 3298 // Look through pseudo-object expressions. 3299 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 3300 return asImpl().visitPseudoObjectExpr(pseudo); 3301 } else if (auto *be = dyn_cast<BlockExpr>(e)) 3302 return asImpl().visitBlockExpr(be); 3303 3304 return asImpl().visitExpr(e); 3305 } 3306 3307 namespace { 3308 3309 /// An emitter for +1 results. 3310 struct ARCRetainExprEmitter : 3311 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 3312 3313 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3314 3315 llvm::Value *getValueOfResult(TryEmitResult result) { 3316 return result.getPointer(); 3317 } 3318 3319 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 3320 llvm::Value *value = result.getPointer(); 3321 value = CGF.Builder.CreateBitCast(value, resultType); 3322 result.setPointer(value); 3323 return result; 3324 } 3325 3326 TryEmitResult visitLValueToRValue(const Expr *e) { 3327 return tryEmitARCRetainLoadOfScalar(CGF, e); 3328 } 3329 3330 /// For consumptions, just emit the subexpression and thus elide 3331 /// the retain/release pair. 3332 TryEmitResult visitConsumeObject(const Expr *e) { 3333 llvm::Value *result = CGF.EmitScalarExpr(e); 3334 return TryEmitResult(result, true); 3335 } 3336 3337 TryEmitResult visitBlockExpr(const BlockExpr *e) { 3338 TryEmitResult result = visitExpr(e); 3339 // Avoid the block-retain if this is a block literal that doesn't need to be 3340 // copied to the heap. 3341 if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks && 3342 e->getBlockDecl()->canAvoidCopyToHeap()) 3343 result.setInt(true); 3344 return result; 3345 } 3346 3347 /// Block extends are net +0. Naively, we could just recurse on 3348 /// the subexpression, but actually we need to ensure that the 3349 /// value is copied as a block, so there's a little filter here. 3350 TryEmitResult visitExtendBlockObject(const Expr *e) { 3351 llvm::Value *result; // will be a +0 value 3352 3353 // If we can't safely assume the sub-expression will produce a 3354 // block-copied value, emit the sub-expression at +0. 3355 if (shouldEmitSeparateBlockRetain(e)) { 3356 result = CGF.EmitScalarExpr(e); 3357 3358 // Otherwise, try to emit the sub-expression at +1 recursively. 3359 } else { 3360 TryEmitResult subresult = asImpl().visit(e); 3361 3362 // If that produced a retained value, just use that. 3363 if (subresult.getInt()) { 3364 return subresult; 3365 } 3366 3367 // Otherwise it's +0. 3368 result = subresult.getPointer(); 3369 } 3370 3371 // Retain the object as a block. 3372 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 3373 return TryEmitResult(result, true); 3374 } 3375 3376 /// For reclaims, emit the subexpression as a retained call and 3377 /// skip the consumption. 3378 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 3379 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3380 return TryEmitResult(result, true); 3381 } 3382 3383 /// When we have an undecorated call, retroactively do a claim. 3384 TryEmitResult visitCall(const Expr *e) { 3385 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3386 return TryEmitResult(result, true); 3387 } 3388 3389 // TODO: maybe special-case visitBinAssignWeak? 3390 3391 TryEmitResult visitExpr(const Expr *e) { 3392 // We didn't find an obvious production, so emit what we've got and 3393 // tell the caller that we didn't manage to retain. 3394 llvm::Value *result = CGF.EmitScalarExpr(e); 3395 return TryEmitResult(result, false); 3396 } 3397 }; 3398 } 3399 3400 static TryEmitResult 3401 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 3402 return ARCRetainExprEmitter(CGF).visit(e); 3403 } 3404 3405 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 3406 LValue lvalue, 3407 QualType type) { 3408 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 3409 llvm::Value *value = result.getPointer(); 3410 if (!result.getInt()) 3411 value = CGF.EmitARCRetain(type, value); 3412 return value; 3413 } 3414 3415 /// EmitARCRetainScalarExpr - Semantically equivalent to 3416 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 3417 /// best-effort attempt to peephole expressions that naturally produce 3418 /// retained objects. 3419 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 3420 // The retain needs to happen within the full-expression. 3421 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3422 RunCleanupsScope scope(*this); 3423 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 3424 } 3425 3426 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3427 llvm::Value *value = result.getPointer(); 3428 if (!result.getInt()) 3429 value = EmitARCRetain(e->getType(), value); 3430 return value; 3431 } 3432 3433 llvm::Value * 3434 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 3435 // The retain needs to happen within the full-expression. 3436 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3437 RunCleanupsScope scope(*this); 3438 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 3439 } 3440 3441 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3442 llvm::Value *value = result.getPointer(); 3443 if (result.getInt()) 3444 value = EmitARCAutorelease(value); 3445 else 3446 value = EmitARCRetainAutorelease(e->getType(), value); 3447 return value; 3448 } 3449 3450 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 3451 llvm::Value *result; 3452 bool doRetain; 3453 3454 if (shouldEmitSeparateBlockRetain(e)) { 3455 result = EmitScalarExpr(e); 3456 doRetain = true; 3457 } else { 3458 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 3459 result = subresult.getPointer(); 3460 doRetain = !subresult.getInt(); 3461 } 3462 3463 if (doRetain) 3464 result = EmitARCRetainBlock(result, /*mandatory*/ true); 3465 return EmitObjCConsumeObject(e->getType(), result); 3466 } 3467 3468 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3469 // In ARC, retain and autorelease the expression. 3470 if (getLangOpts().ObjCAutoRefCount) { 3471 // Do so before running any cleanups for the full-expression. 3472 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3473 return EmitARCRetainAutoreleaseScalarExpr(expr); 3474 } 3475 3476 // Otherwise, use the normal scalar-expression emission. The 3477 // exception machinery doesn't do anything special with the 3478 // exception like retaining it, so there's no safety associated with 3479 // only running cleanups after the throw has started, and when it 3480 // matters it tends to be substantially inferior code. 3481 return EmitScalarExpr(expr); 3482 } 3483 3484 namespace { 3485 3486 /// An emitter for assigning into an __unsafe_unretained context. 3487 struct ARCUnsafeUnretainedExprEmitter : 3488 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3489 3490 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3491 3492 llvm::Value *getValueOfResult(llvm::Value *value) { 3493 return value; 3494 } 3495 3496 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3497 return CGF.Builder.CreateBitCast(value, resultType); 3498 } 3499 3500 llvm::Value *visitLValueToRValue(const Expr *e) { 3501 return CGF.EmitScalarExpr(e); 3502 } 3503 3504 /// For consumptions, just emit the subexpression and perform the 3505 /// consumption like normal. 3506 llvm::Value *visitConsumeObject(const Expr *e) { 3507 llvm::Value *value = CGF.EmitScalarExpr(e); 3508 return CGF.EmitObjCConsumeObject(e->getType(), value); 3509 } 3510 3511 /// No special logic for block extensions. (This probably can't 3512 /// actually happen in this emitter, though.) 3513 llvm::Value *visitExtendBlockObject(const Expr *e) { 3514 return CGF.EmitARCExtendBlockObject(e); 3515 } 3516 3517 /// For reclaims, perform an unsafeClaim if that's enabled. 3518 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3519 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3520 } 3521 3522 /// When we have an undecorated call, just emit it without adding 3523 /// the unsafeClaim. 3524 llvm::Value *visitCall(const Expr *e) { 3525 return CGF.EmitScalarExpr(e); 3526 } 3527 3528 /// Just do normal scalar emission in the default case. 3529 llvm::Value *visitExpr(const Expr *e) { 3530 return CGF.EmitScalarExpr(e); 3531 } 3532 }; 3533 } 3534 3535 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3536 const Expr *e) { 3537 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3538 } 3539 3540 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3541 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3542 /// avoiding any spurious retains, including by performing reclaims 3543 /// with objc_unsafeClaimAutoreleasedReturnValue. 3544 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3545 // Look through full-expressions. 3546 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3547 RunCleanupsScope scope(*this); 3548 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3549 } 3550 3551 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3552 } 3553 3554 std::pair<LValue,llvm::Value*> 3555 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3556 bool ignored) { 3557 // Evaluate the RHS first. If we're ignoring the result, assume 3558 // that we can emit at an unsafe +0. 3559 llvm::Value *value; 3560 if (ignored) { 3561 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3562 } else { 3563 value = EmitScalarExpr(e->getRHS()); 3564 } 3565 3566 // Emit the LHS and perform the store. 3567 LValue lvalue = EmitLValue(e->getLHS()); 3568 EmitStoreOfScalar(value, lvalue); 3569 3570 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3571 } 3572 3573 std::pair<LValue,llvm::Value*> 3574 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3575 bool ignored) { 3576 // Evaluate the RHS first. 3577 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3578 llvm::Value *value = result.getPointer(); 3579 3580 bool hasImmediateRetain = result.getInt(); 3581 3582 // If we didn't emit a retained object, and the l-value is of block 3583 // type, then we need to emit the block-retain immediately in case 3584 // it invalidates the l-value. 3585 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3586 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3587 hasImmediateRetain = true; 3588 } 3589 3590 LValue lvalue = EmitLValue(e->getLHS()); 3591 3592 // If the RHS was emitted retained, expand this. 3593 if (hasImmediateRetain) { 3594 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3595 EmitStoreOfScalar(value, lvalue); 3596 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3597 } else { 3598 value = EmitARCStoreStrong(lvalue, value, ignored); 3599 } 3600 3601 return std::pair<LValue,llvm::Value*>(lvalue, value); 3602 } 3603 3604 std::pair<LValue,llvm::Value*> 3605 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3606 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3607 LValue lvalue = EmitLValue(e->getLHS()); 3608 3609 EmitStoreOfScalar(value, lvalue); 3610 3611 return std::pair<LValue,llvm::Value*>(lvalue, value); 3612 } 3613 3614 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3615 const ObjCAutoreleasePoolStmt &ARPS) { 3616 const Stmt *subStmt = ARPS.getSubStmt(); 3617 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3618 3619 CGDebugInfo *DI = getDebugInfo(); 3620 if (DI) 3621 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3622 3623 // Keep track of the current cleanup stack depth. 3624 RunCleanupsScope Scope(*this); 3625 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3626 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3627 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3628 } else { 3629 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3630 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3631 } 3632 3633 for (const auto *I : S.body()) 3634 EmitStmt(I); 3635 3636 if (DI) 3637 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3638 } 3639 3640 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3641 /// make sure it survives garbage collection until this point. 3642 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3643 // We just use an inline assembly. 3644 llvm::FunctionType *extenderType 3645 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3646 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType, 3647 /* assembly */ "", 3648 /* constraints */ "r", 3649 /* side effects */ true); 3650 3651 object = Builder.CreateBitCast(object, VoidPtrTy); 3652 EmitNounwindRuntimeCall(extender, object); 3653 } 3654 3655 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3656 /// non-trivial copy assignment function, produce following helper function. 3657 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3658 /// 3659 llvm::Constant * 3660 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3661 const ObjCPropertyImplDecl *PID) { 3662 if (!getLangOpts().CPlusPlus || 3663 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3664 return nullptr; 3665 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3666 if (!Ty->isRecordType()) 3667 return nullptr; 3668 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3669 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3670 return nullptr; 3671 llvm::Constant *HelperFn = nullptr; 3672 if (hasTrivialSetExpr(PID)) 3673 return nullptr; 3674 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3675 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3676 return HelperFn; 3677 3678 ASTContext &C = getContext(); 3679 IdentifierInfo *II 3680 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3681 3682 QualType ReturnTy = C.VoidTy; 3683 QualType DestTy = C.getPointerType(Ty); 3684 QualType SrcTy = Ty; 3685 SrcTy.addConst(); 3686 SrcTy = C.getPointerType(SrcTy); 3687 3688 SmallVector<QualType, 2> ArgTys; 3689 ArgTys.push_back(DestTy); 3690 ArgTys.push_back(SrcTy); 3691 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3692 3693 FunctionDecl *FD = FunctionDecl::Create( 3694 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3695 FunctionTy, nullptr, SC_Static, false, false, false); 3696 3697 FunctionArgList args; 3698 ParmVarDecl *Params[2]; 3699 ParmVarDecl *DstDecl = ParmVarDecl::Create( 3700 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy, 3701 C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None, 3702 /*DefArg=*/nullptr); 3703 args.push_back(Params[0] = DstDecl); 3704 ParmVarDecl *SrcDecl = ParmVarDecl::Create( 3705 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy, 3706 C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None, 3707 /*DefArg=*/nullptr); 3708 args.push_back(Params[1] = SrcDecl); 3709 FD->setParams(Params); 3710 3711 const CGFunctionInfo &FI = 3712 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3713 3714 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3715 3716 llvm::Function *Fn = 3717 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3718 "__assign_helper_atomic_property_", 3719 &CGM.getModule()); 3720 3721 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3722 3723 StartFunction(FD, ReturnTy, Fn, FI, args); 3724 3725 DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation()); 3726 UnaryOperator *DST = UnaryOperator::Create( 3727 C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary, 3728 SourceLocation(), false, FPOptionsOverride()); 3729 3730 DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation()); 3731 UnaryOperator *SRC = UnaryOperator::Create( 3732 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3733 SourceLocation(), false, FPOptionsOverride()); 3734 3735 Expr *Args[2] = {DST, SRC}; 3736 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3737 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 3738 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(), 3739 VK_LValue, SourceLocation(), FPOptionsOverride()); 3740 3741 EmitStmt(TheCall); 3742 3743 FinishFunction(); 3744 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3745 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3746 return HelperFn; 3747 } 3748 3749 llvm::Constant * 3750 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3751 const ObjCPropertyImplDecl *PID) { 3752 if (!getLangOpts().CPlusPlus || 3753 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3754 return nullptr; 3755 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3756 QualType Ty = PD->getType(); 3757 if (!Ty->isRecordType()) 3758 return nullptr; 3759 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3760 return nullptr; 3761 llvm::Constant *HelperFn = nullptr; 3762 if (hasTrivialGetExpr(PID)) 3763 return nullptr; 3764 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3765 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3766 return HelperFn; 3767 3768 ASTContext &C = getContext(); 3769 IdentifierInfo *II = 3770 &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3771 3772 QualType ReturnTy = C.VoidTy; 3773 QualType DestTy = C.getPointerType(Ty); 3774 QualType SrcTy = Ty; 3775 SrcTy.addConst(); 3776 SrcTy = C.getPointerType(SrcTy); 3777 3778 SmallVector<QualType, 2> ArgTys; 3779 ArgTys.push_back(DestTy); 3780 ArgTys.push_back(SrcTy); 3781 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3782 3783 FunctionDecl *FD = FunctionDecl::Create( 3784 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3785 FunctionTy, nullptr, SC_Static, false, false, false); 3786 3787 FunctionArgList args; 3788 ParmVarDecl *Params[2]; 3789 ParmVarDecl *DstDecl = ParmVarDecl::Create( 3790 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy, 3791 C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None, 3792 /*DefArg=*/nullptr); 3793 args.push_back(Params[0] = DstDecl); 3794 ParmVarDecl *SrcDecl = ParmVarDecl::Create( 3795 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy, 3796 C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None, 3797 /*DefArg=*/nullptr); 3798 args.push_back(Params[1] = SrcDecl); 3799 FD->setParams(Params); 3800 3801 const CGFunctionInfo &FI = 3802 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3803 3804 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3805 3806 llvm::Function *Fn = llvm::Function::Create( 3807 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_", 3808 &CGM.getModule()); 3809 3810 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3811 3812 StartFunction(FD, ReturnTy, Fn, FI, args); 3813 3814 DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue, 3815 SourceLocation()); 3816 3817 UnaryOperator *SRC = UnaryOperator::Create( 3818 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3819 SourceLocation(), false, FPOptionsOverride()); 3820 3821 CXXConstructExpr *CXXConstExpr = 3822 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3823 3824 SmallVector<Expr*, 4> ConstructorArgs; 3825 ConstructorArgs.push_back(SRC); 3826 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3827 CXXConstExpr->arg_end()); 3828 3829 CXXConstructExpr *TheCXXConstructExpr = 3830 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3831 CXXConstExpr->getConstructor(), 3832 CXXConstExpr->isElidable(), 3833 ConstructorArgs, 3834 CXXConstExpr->hadMultipleCandidates(), 3835 CXXConstExpr->isListInitialization(), 3836 CXXConstExpr->isStdInitListInitialization(), 3837 CXXConstExpr->requiresZeroInitialization(), 3838 CXXConstExpr->getConstructionKind(), 3839 SourceRange()); 3840 3841 DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue, 3842 SourceLocation()); 3843 3844 RValue DV = EmitAnyExpr(&DstExpr); 3845 CharUnits Alignment 3846 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3847 EmitAggExpr(TheCXXConstructExpr, 3848 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3849 Qualifiers(), 3850 AggValueSlot::IsDestructed, 3851 AggValueSlot::DoesNotNeedGCBarriers, 3852 AggValueSlot::IsNotAliased, 3853 AggValueSlot::DoesNotOverlap)); 3854 3855 FinishFunction(); 3856 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3857 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3858 return HelperFn; 3859 } 3860 3861 llvm::Value * 3862 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3863 // Get selectors for retain/autorelease. 3864 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3865 Selector CopySelector = 3866 getContext().Selectors.getNullarySelector(CopyID); 3867 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3868 Selector AutoreleaseSelector = 3869 getContext().Selectors.getNullarySelector(AutoreleaseID); 3870 3871 // Emit calls to retain/autorelease. 3872 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3873 llvm::Value *Val = Block; 3874 RValue Result; 3875 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3876 Ty, CopySelector, 3877 Val, CallArgList(), nullptr, nullptr); 3878 Val = Result.getScalarVal(); 3879 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3880 Ty, AutoreleaseSelector, 3881 Val, CallArgList(), nullptr, nullptr); 3882 Val = Result.getScalarVal(); 3883 return Val; 3884 } 3885 3886 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) { 3887 switch (TT.getOS()) { 3888 case llvm::Triple::Darwin: 3889 case llvm::Triple::MacOSX: 3890 return llvm::MachO::PLATFORM_MACOS; 3891 case llvm::Triple::IOS: 3892 return llvm::MachO::PLATFORM_IOS; 3893 case llvm::Triple::TvOS: 3894 return llvm::MachO::PLATFORM_TVOS; 3895 case llvm::Triple::WatchOS: 3896 return llvm::MachO::PLATFORM_WATCHOS; 3897 default: 3898 return /*Unknown platform*/ 0; 3899 } 3900 } 3901 3902 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF, 3903 const VersionTuple &Version) { 3904 CodeGenModule &CGM = CGF.CGM; 3905 // Note: we intend to support multi-platform version checks, so reserve 3906 // the room for a dual platform checking invocation that will be 3907 // implemented in the future. 3908 llvm::SmallVector<llvm::Value *, 8> Args; 3909 3910 auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) { 3911 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 3912 Args.push_back( 3913 llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT))); 3914 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor())); 3915 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0)); 3916 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0)); 3917 }; 3918 3919 assert(!Version.empty() && "unexpected empty version"); 3920 EmitArgs(Version, CGM.getTarget().getTriple()); 3921 3922 if (!CGM.IsPlatformVersionAtLeastFn) { 3923 llvm::FunctionType *FTy = llvm::FunctionType::get( 3924 CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty}, 3925 false); 3926 CGM.IsPlatformVersionAtLeastFn = 3927 CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast"); 3928 } 3929 3930 llvm::Value *Check = 3931 CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args); 3932 return CGF.Builder.CreateICmpNE(Check, 3933 llvm::Constant::getNullValue(CGM.Int32Ty)); 3934 } 3935 3936 llvm::Value * 3937 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) { 3938 // Darwin uses the new __isPlatformVersionAtLeast family of routines. 3939 if (CGM.getTarget().getTriple().isOSDarwin()) 3940 return emitIsPlatformVersionAtLeast(*this, Version); 3941 3942 if (!CGM.IsOSVersionAtLeastFn) { 3943 llvm::FunctionType *FTy = 3944 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 3945 CGM.IsOSVersionAtLeastFn = 3946 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 3947 } 3948 3949 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 3950 llvm::Value *Args[] = { 3951 llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()), 3952 llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0), 3953 llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0), 3954 }; 3955 3956 llvm::Value *CallRes = 3957 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 3958 3959 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 3960 } 3961 3962 static bool isFoundationNeededForDarwinAvailabilityCheck( 3963 const llvm::Triple &TT, const VersionTuple &TargetVersion) { 3964 VersionTuple FoundationDroppedInVersion; 3965 switch (TT.getOS()) { 3966 case llvm::Triple::IOS: 3967 case llvm::Triple::TvOS: 3968 FoundationDroppedInVersion = VersionTuple(/*Major=*/13); 3969 break; 3970 case llvm::Triple::WatchOS: 3971 FoundationDroppedInVersion = VersionTuple(/*Major=*/6); 3972 break; 3973 case llvm::Triple::Darwin: 3974 case llvm::Triple::MacOSX: 3975 FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15); 3976 break; 3977 default: 3978 llvm_unreachable("Unexpected OS"); 3979 } 3980 return TargetVersion < FoundationDroppedInVersion; 3981 } 3982 3983 void CodeGenModule::emitAtAvailableLinkGuard() { 3984 if (!IsPlatformVersionAtLeastFn) 3985 return; 3986 // @available requires CoreFoundation only on Darwin. 3987 if (!Target.getTriple().isOSDarwin()) 3988 return; 3989 // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or 3990 // watchOS 6+. 3991 if (!isFoundationNeededForDarwinAvailabilityCheck( 3992 Target.getTriple(), Target.getPlatformMinVersion())) 3993 return; 3994 // Add -framework CoreFoundation to the linker commands. We still want to 3995 // emit the core foundation reference down below because otherwise if 3996 // CoreFoundation is not used in the code, the linker won't link the 3997 // framework. 3998 auto &Context = getLLVMContext(); 3999 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 4000 llvm::MDString::get(Context, "CoreFoundation")}; 4001 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 4002 // Emit a reference to a symbol from CoreFoundation to ensure that 4003 // CoreFoundation is linked into the final binary. 4004 llvm::FunctionType *FTy = 4005 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 4006 llvm::FunctionCallee CFFunc = 4007 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 4008 4009 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 4010 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction( 4011 CheckFTy, "__clang_at_available_requires_core_foundation_framework", 4012 llvm::AttributeList(), /*Local=*/true); 4013 llvm::Function *CFLinkCheckFunc = 4014 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts()); 4015 if (CFLinkCheckFunc->empty()) { 4016 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 4017 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 4018 CodeGenFunction CGF(*this); 4019 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 4020 CGF.EmitNounwindRuntimeCall(CFFunc, 4021 llvm::Constant::getNullValue(VoidPtrTy)); 4022 CGF.Builder.CreateUnreachable(); 4023 addCompilerUsedGlobal(CFLinkCheckFunc); 4024 } 4025 } 4026 4027 CGObjCRuntime::~CGObjCRuntime() {} 4028