1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 35 QualType ET, 36 RValue Result); 37 38 /// Given the address of a variable of pointer type, find the correct 39 /// null to store into it. 40 static llvm::Constant *getNullForVariable(Address addr) { 41 llvm::Type *type = addr.getElementType(); 42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 43 } 44 45 /// Emits an instance of NSConstantString representing the object. 46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 47 { 48 llvm::Constant *C = 49 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 50 // FIXME: This bitcast should just be made an invariant on the Runtime. 51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 52 } 53 54 /// EmitObjCBoxedExpr - This routine generates code to call 55 /// the appropriate expression boxing method. This will either be 56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 57 /// or [NSValue valueWithBytes:objCType:]. 58 /// 59 llvm::Value * 60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 61 // Generate the correct selector for this literal's concrete type. 62 // Get the method. 63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 64 const Expr *SubExpr = E->getSubExpr(); 65 assert(BoxingMethod && "BoxingMethod is null"); 66 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 67 Selector Sel = BoxingMethod->getSelector(); 68 69 // Generate a reference to the class pointer, which will be the receiver. 70 // Assumes that the method was introduced in the class that should be 71 // messaged (avoids pulling it out of the result type). 72 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 73 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 74 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 75 76 CallArgList Args; 77 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 78 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 79 80 // ObjCBoxedExpr supports boxing of structs and unions 81 // via [NSValue valueWithBytes:objCType:] 82 const QualType ValueType(SubExpr->getType().getCanonicalType()); 83 if (ValueType->isObjCBoxableRecordType()) { 84 // Emit CodeGen for first parameter 85 // and cast value to correct type 86 Address Temporary = CreateMemTemp(SubExpr->getType()); 87 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 88 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 89 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 90 91 // Create char array to store type encoding 92 std::string Str; 93 getContext().getObjCEncodingForType(ValueType, Str); 94 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 95 96 // Cast type encoding to correct type 97 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 98 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 99 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 100 101 Args.add(RValue::get(Cast), EncodingQT); 102 } else { 103 Args.add(EmitAnyExpr(SubExpr), ArgQT); 104 } 105 106 RValue result = Runtime.GenerateMessageSend( 107 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 108 Args, ClassDecl, BoxingMethod); 109 return Builder.CreateBitCast(result.getScalarVal(), 110 ConvertType(E->getType())); 111 } 112 113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 114 const ObjCMethodDecl *MethodWithObjects) { 115 ASTContext &Context = CGM.getContext(); 116 const ObjCDictionaryLiteral *DLE = nullptr; 117 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 118 if (!ALE) 119 DLE = cast<ObjCDictionaryLiteral>(E); 120 121 // Optimize empty collections by referencing constants, when available. 122 uint64_t NumElements = 123 ALE ? ALE->getNumElements() : DLE->getNumElements(); 124 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 125 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 126 QualType IdTy(CGM.getContext().getObjCIdType()); 127 llvm::Constant *Constant = 128 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 129 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 130 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); 131 cast<llvm::LoadInst>(Ptr)->setMetadata( 132 CGM.getModule().getMDKindID("invariant.load"), 133 llvm::MDNode::get(getLLVMContext(), None)); 134 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 135 } 136 137 // Compute the type of the array we're initializing. 138 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 139 NumElements); 140 QualType ElementType = Context.getObjCIdType().withConst(); 141 QualType ElementArrayType 142 = Context.getConstantArrayType(ElementType, APNumElements, 143 ArrayType::Normal, /*IndexTypeQuals=*/0); 144 145 // Allocate the temporary array(s). 146 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 147 Address Keys = Address::invalid(); 148 if (DLE) 149 Keys = CreateMemTemp(ElementArrayType, "keys"); 150 151 // In ARC, we may need to do extra work to keep all the keys and 152 // values alive until after the call. 153 SmallVector<llvm::Value *, 16> NeededObjects; 154 bool TrackNeededObjects = 155 (getLangOpts().ObjCAutoRefCount && 156 CGM.getCodeGenOpts().OptimizationLevel != 0); 157 158 // Perform the actual initialialization of the array(s). 159 for (uint64_t i = 0; i < NumElements; i++) { 160 if (ALE) { 161 // Emit the element and store it to the appropriate array slot. 162 const Expr *Rhs = ALE->getElement(i); 163 LValue LV = MakeAddrLValue( 164 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 165 ElementType, AlignmentSource::Decl); 166 167 llvm::Value *value = EmitScalarExpr(Rhs); 168 EmitStoreThroughLValue(RValue::get(value), LV, true); 169 if (TrackNeededObjects) { 170 NeededObjects.push_back(value); 171 } 172 } else { 173 // Emit the key and store it to the appropriate array slot. 174 const Expr *Key = DLE->getKeyValueElement(i).Key; 175 LValue KeyLV = MakeAddrLValue( 176 Builder.CreateConstArrayGEP(Keys, i, getPointerSize()), 177 ElementType, AlignmentSource::Decl); 178 llvm::Value *keyValue = EmitScalarExpr(Key); 179 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 180 181 // Emit the value and store it to the appropriate array slot. 182 const Expr *Value = DLE->getKeyValueElement(i).Value; 183 LValue ValueLV = MakeAddrLValue( 184 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 185 ElementType, AlignmentSource::Decl); 186 llvm::Value *valueValue = EmitScalarExpr(Value); 187 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 188 if (TrackNeededObjects) { 189 NeededObjects.push_back(keyValue); 190 NeededObjects.push_back(valueValue); 191 } 192 } 193 } 194 195 // Generate the argument list. 196 CallArgList Args; 197 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 198 const ParmVarDecl *argDecl = *PI++; 199 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 200 Args.add(RValue::get(Objects.getPointer()), ArgQT); 201 if (DLE) { 202 argDecl = *PI++; 203 ArgQT = argDecl->getType().getUnqualifiedType(); 204 Args.add(RValue::get(Keys.getPointer()), ArgQT); 205 } 206 argDecl = *PI; 207 ArgQT = argDecl->getType().getUnqualifiedType(); 208 llvm::Value *Count = 209 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 210 Args.add(RValue::get(Count), ArgQT); 211 212 // Generate a reference to the class pointer, which will be the receiver. 213 Selector Sel = MethodWithObjects->getSelector(); 214 QualType ResultType = E->getType(); 215 const ObjCObjectPointerType *InterfacePointerType 216 = ResultType->getAsObjCInterfacePointerType(); 217 ObjCInterfaceDecl *Class 218 = InterfacePointerType->getObjectType()->getInterface(); 219 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 220 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 221 222 // Generate the message send. 223 RValue result = Runtime.GenerateMessageSend( 224 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 225 Receiver, Args, Class, MethodWithObjects); 226 227 // The above message send needs these objects, but in ARC they are 228 // passed in a buffer that is essentially __unsafe_unretained. 229 // Therefore we must prevent the optimizer from releasing them until 230 // after the call. 231 if (TrackNeededObjects) { 232 EmitARCIntrinsicUse(NeededObjects); 233 } 234 235 return Builder.CreateBitCast(result.getScalarVal(), 236 ConvertType(E->getType())); 237 } 238 239 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 240 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 241 } 242 243 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 244 const ObjCDictionaryLiteral *E) { 245 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 246 } 247 248 /// Emit a selector. 249 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 250 // Untyped selector. 251 // Note that this implementation allows for non-constant strings to be passed 252 // as arguments to @selector(). Currently, the only thing preventing this 253 // behaviour is the type checking in the front end. 254 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 255 } 256 257 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 258 // FIXME: This should pass the Decl not the name. 259 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 260 } 261 262 /// Adjust the type of an Objective-C object that doesn't match up due 263 /// to type erasure at various points, e.g., related result types or the use 264 /// of parameterized classes. 265 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 266 RValue Result) { 267 if (!ExpT->isObjCRetainableType()) 268 return Result; 269 270 // If the converted types are the same, we're done. 271 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 272 if (ExpLLVMTy == Result.getScalarVal()->getType()) 273 return Result; 274 275 // We have applied a substitution. Cast the rvalue appropriately. 276 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 277 ExpLLVMTy)); 278 } 279 280 /// Decide whether to extend the lifetime of the receiver of a 281 /// returns-inner-pointer message. 282 static bool 283 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 284 switch (message->getReceiverKind()) { 285 286 // For a normal instance message, we should extend unless the 287 // receiver is loaded from a variable with precise lifetime. 288 case ObjCMessageExpr::Instance: { 289 const Expr *receiver = message->getInstanceReceiver(); 290 291 // Look through OVEs. 292 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 293 if (opaque->getSourceExpr()) 294 receiver = opaque->getSourceExpr()->IgnoreParens(); 295 } 296 297 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 298 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 299 receiver = ice->getSubExpr()->IgnoreParens(); 300 301 // Look through OVEs. 302 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 303 if (opaque->getSourceExpr()) 304 receiver = opaque->getSourceExpr()->IgnoreParens(); 305 } 306 307 // Only __strong variables. 308 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 309 return true; 310 311 // All ivars and fields have precise lifetime. 312 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 313 return false; 314 315 // Otherwise, check for variables. 316 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 317 if (!declRef) return true; 318 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 319 if (!var) return true; 320 321 // All variables have precise lifetime except local variables with 322 // automatic storage duration that aren't specially marked. 323 return (var->hasLocalStorage() && 324 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 325 } 326 327 case ObjCMessageExpr::Class: 328 case ObjCMessageExpr::SuperClass: 329 // It's never necessary for class objects. 330 return false; 331 332 case ObjCMessageExpr::SuperInstance: 333 // We generally assume that 'self' lives throughout a method call. 334 return false; 335 } 336 337 llvm_unreachable("invalid receiver kind"); 338 } 339 340 /// Given an expression of ObjC pointer type, check whether it was 341 /// immediately loaded from an ARC __weak l-value. 342 static const Expr *findWeakLValue(const Expr *E) { 343 assert(E->getType()->isObjCRetainableType()); 344 E = E->IgnoreParens(); 345 if (auto CE = dyn_cast<CastExpr>(E)) { 346 if (CE->getCastKind() == CK_LValueToRValue) { 347 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 348 return CE->getSubExpr(); 349 } 350 } 351 352 return nullptr; 353 } 354 355 /// The ObjC runtime may provide entrypoints that are likely to be faster 356 /// than an ordinary message send of the appropriate selector. 357 /// 358 /// The entrypoints are guaranteed to be equivalent to just sending the 359 /// corresponding message. If the entrypoint is implemented naively as just a 360 /// message send, using it is a trade-off: it sacrifices a few cycles of 361 /// overhead to save a small amount of code. However, it's possible for 362 /// runtimes to detect and special-case classes that use "standard" 363 /// behavior; if that's dynamically a large proportion of all objects, using 364 /// the entrypoint will also be faster than using a message send. 365 /// 366 /// If the runtime does support a required entrypoint, then this method will 367 /// generate a call and return the resulting value. Otherwise it will return 368 /// None and the caller can generate a msgSend instead. 369 static Optional<llvm::Value *> 370 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType, 371 llvm::Value *Receiver, 372 const CallArgList& Args, Selector Sel, 373 const ObjCMethodDecl *method) { 374 auto &CGM = CGF.CGM; 375 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) 376 return None; 377 378 auto &Runtime = CGM.getLangOpts().ObjCRuntime; 379 switch (Sel.getMethodFamily()) { 380 case OMF_alloc: 381 if (Runtime.shouldUseRuntimeFunctionsForAlloc() && 382 ResultType->isObjCObjectPointerType()) { 383 // [Foo alloc] -> objc_alloc(Foo) 384 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc") 385 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType)); 386 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) 387 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && 388 Args.size() == 1 && Args.front().getType()->isPointerType() && 389 Sel.getNameForSlot(0) == "allocWithZone") { 390 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); 391 if (isa<llvm::ConstantPointerNull>(arg)) 392 return CGF.EmitObjCAllocWithZone(Receiver, 393 CGF.ConvertType(ResultType)); 394 return None; 395 } 396 } 397 break; 398 399 default: 400 break; 401 } 402 return None; 403 } 404 405 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 406 ReturnValueSlot Return) { 407 // Only the lookup mechanism and first two arguments of the method 408 // implementation vary between runtimes. We can get the receiver and 409 // arguments in generic code. 410 411 bool isDelegateInit = E->isDelegateInitCall(); 412 413 const ObjCMethodDecl *method = E->getMethodDecl(); 414 415 // If the method is -retain, and the receiver's being loaded from 416 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 417 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 418 method->getMethodFamily() == OMF_retain) { 419 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 420 LValue lvalue = EmitLValue(lvalueExpr); 421 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress()); 422 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 423 } 424 } 425 426 // We don't retain the receiver in delegate init calls, and this is 427 // safe because the receiver value is always loaded from 'self', 428 // which we zero out. We don't want to Block_copy block receivers, 429 // though. 430 bool retainSelf = 431 (!isDelegateInit && 432 CGM.getLangOpts().ObjCAutoRefCount && 433 method && 434 method->hasAttr<NSConsumesSelfAttr>()); 435 436 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 437 bool isSuperMessage = false; 438 bool isClassMessage = false; 439 ObjCInterfaceDecl *OID = nullptr; 440 // Find the receiver 441 QualType ReceiverType; 442 llvm::Value *Receiver = nullptr; 443 switch (E->getReceiverKind()) { 444 case ObjCMessageExpr::Instance: 445 ReceiverType = E->getInstanceReceiver()->getType(); 446 if (retainSelf) { 447 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 448 E->getInstanceReceiver()); 449 Receiver = ter.getPointer(); 450 if (ter.getInt()) retainSelf = false; 451 } else 452 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 453 break; 454 455 case ObjCMessageExpr::Class: { 456 ReceiverType = E->getClassReceiver(); 457 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 458 assert(ObjTy && "Invalid Objective-C class message send"); 459 OID = ObjTy->getInterface(); 460 assert(OID && "Invalid Objective-C class message send"); 461 Receiver = Runtime.GetClass(*this, OID); 462 isClassMessage = true; 463 break; 464 } 465 466 case ObjCMessageExpr::SuperInstance: 467 ReceiverType = E->getSuperType(); 468 Receiver = LoadObjCSelf(); 469 isSuperMessage = true; 470 break; 471 472 case ObjCMessageExpr::SuperClass: 473 ReceiverType = E->getSuperType(); 474 Receiver = LoadObjCSelf(); 475 isSuperMessage = true; 476 isClassMessage = true; 477 break; 478 } 479 480 if (retainSelf) 481 Receiver = EmitARCRetainNonBlock(Receiver); 482 483 // In ARC, we sometimes want to "extend the lifetime" 484 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 485 // messages. 486 if (getLangOpts().ObjCAutoRefCount && method && 487 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 488 shouldExtendReceiverForInnerPointerMessage(E)) 489 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 490 491 QualType ResultType = method ? method->getReturnType() : E->getType(); 492 493 CallArgList Args; 494 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 495 496 // For delegate init calls in ARC, do an unsafe store of null into 497 // self. This represents the call taking direct ownership of that 498 // value. We have to do this after emitting the other call 499 // arguments because they might also reference self, but we don't 500 // have to worry about any of them modifying self because that would 501 // be an undefined read and write of an object in unordered 502 // expressions. 503 if (isDelegateInit) { 504 assert(getLangOpts().ObjCAutoRefCount && 505 "delegate init calls should only be marked in ARC"); 506 507 // Do an unsafe store of null into self. 508 Address selfAddr = 509 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 510 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 511 } 512 513 RValue result; 514 if (isSuperMessage) { 515 // super is only valid in an Objective-C method 516 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 517 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 518 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 519 E->getSelector(), 520 OMD->getClassInterface(), 521 isCategoryImpl, 522 Receiver, 523 isClassMessage, 524 Args, 525 method); 526 } else { 527 // Call runtime methods directly if we can. 528 if (Optional<llvm::Value *> SpecializedResult = 529 tryGenerateSpecializedMessageSend(*this, ResultType, Receiver, Args, 530 E->getSelector(), method)) { 531 result = RValue::get(SpecializedResult.getValue()); 532 } else { 533 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 534 E->getSelector(), Receiver, Args, 535 OID, method); 536 } 537 } 538 539 // For delegate init calls in ARC, implicitly store the result of 540 // the call back into self. This takes ownership of the value. 541 if (isDelegateInit) { 542 Address selfAddr = 543 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 544 llvm::Value *newSelf = result.getScalarVal(); 545 546 // The delegate return type isn't necessarily a matching type; in 547 // fact, it's quite likely to be 'id'. 548 llvm::Type *selfTy = selfAddr.getElementType(); 549 newSelf = Builder.CreateBitCast(newSelf, selfTy); 550 551 Builder.CreateStore(newSelf, selfAddr); 552 } 553 554 return AdjustObjCObjectType(*this, E->getType(), result); 555 } 556 557 namespace { 558 struct FinishARCDealloc final : EHScopeStack::Cleanup { 559 void Emit(CodeGenFunction &CGF, Flags flags) override { 560 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 561 562 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 563 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 564 if (!iface->getSuperClass()) return; 565 566 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 567 568 // Call [super dealloc] if we have a superclass. 569 llvm::Value *self = CGF.LoadObjCSelf(); 570 571 CallArgList args; 572 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 573 CGF.getContext().VoidTy, 574 method->getSelector(), 575 iface, 576 isCategory, 577 self, 578 /*is class msg*/ false, 579 args, 580 method); 581 } 582 }; 583 } 584 585 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 586 /// the LLVM function and sets the other context used by 587 /// CodeGenFunction. 588 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 589 const ObjCContainerDecl *CD) { 590 SourceLocation StartLoc = OMD->getBeginLoc(); 591 FunctionArgList args; 592 // Check if we should generate debug info for this method. 593 if (OMD->hasAttr<NoDebugAttr>()) 594 DebugInfo = nullptr; // disable debug info indefinitely for this function 595 596 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 597 598 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 599 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 600 601 args.push_back(OMD->getSelfDecl()); 602 args.push_back(OMD->getCmdDecl()); 603 604 args.append(OMD->param_begin(), OMD->param_end()); 605 606 CurGD = OMD; 607 CurEHLocation = OMD->getEndLoc(); 608 609 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 610 OMD->getLocation(), StartLoc); 611 612 // In ARC, certain methods get an extra cleanup. 613 if (CGM.getLangOpts().ObjCAutoRefCount && 614 OMD->isInstanceMethod() && 615 OMD->getSelector().isUnarySelector()) { 616 const IdentifierInfo *ident = 617 OMD->getSelector().getIdentifierInfoForSlot(0); 618 if (ident->isStr("dealloc")) 619 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 620 } 621 } 622 623 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 624 LValue lvalue, QualType type); 625 626 /// Generate an Objective-C method. An Objective-C method is a C function with 627 /// its pointer, name, and types registered in the class structure. 628 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 629 StartObjCMethod(OMD, OMD->getClassInterface()); 630 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 631 assert(isa<CompoundStmt>(OMD->getBody())); 632 incrementProfileCounter(OMD->getBody()); 633 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 634 FinishFunction(OMD->getBodyRBrace()); 635 } 636 637 /// emitStructGetterCall - Call the runtime function to load a property 638 /// into the return value slot. 639 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 640 bool isAtomic, bool hasStrong) { 641 ASTContext &Context = CGF.getContext(); 642 643 Address src = 644 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 645 .getAddress(); 646 647 // objc_copyStruct (ReturnValue, &structIvar, 648 // sizeof (Type of Ivar), isAtomic, false); 649 CallArgList args; 650 651 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 652 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 653 654 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 655 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 656 657 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 658 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 659 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 660 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 661 662 llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 663 CGCallee callee = CGCallee::forDirect(fn); 664 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 665 callee, ReturnValueSlot(), args); 666 } 667 668 /// Determine whether the given architecture supports unaligned atomic 669 /// accesses. They don't have to be fast, just faster than a function 670 /// call and a mutex. 671 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 672 // FIXME: Allow unaligned atomic load/store on x86. (It is not 673 // currently supported by the backend.) 674 return 0; 675 } 676 677 /// Return the maximum size that permits atomic accesses for the given 678 /// architecture. 679 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 680 llvm::Triple::ArchType arch) { 681 // ARM has 8-byte atomic accesses, but it's not clear whether we 682 // want to rely on them here. 683 684 // In the default case, just assume that any size up to a pointer is 685 // fine given adequate alignment. 686 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 687 } 688 689 namespace { 690 class PropertyImplStrategy { 691 public: 692 enum StrategyKind { 693 /// The 'native' strategy is to use the architecture's provided 694 /// reads and writes. 695 Native, 696 697 /// Use objc_setProperty and objc_getProperty. 698 GetSetProperty, 699 700 /// Use objc_setProperty for the setter, but use expression 701 /// evaluation for the getter. 702 SetPropertyAndExpressionGet, 703 704 /// Use objc_copyStruct. 705 CopyStruct, 706 707 /// The 'expression' strategy is to emit normal assignment or 708 /// lvalue-to-rvalue expressions. 709 Expression 710 }; 711 712 StrategyKind getKind() const { return StrategyKind(Kind); } 713 714 bool hasStrongMember() const { return HasStrong; } 715 bool isAtomic() const { return IsAtomic; } 716 bool isCopy() const { return IsCopy; } 717 718 CharUnits getIvarSize() const { return IvarSize; } 719 CharUnits getIvarAlignment() const { return IvarAlignment; } 720 721 PropertyImplStrategy(CodeGenModule &CGM, 722 const ObjCPropertyImplDecl *propImpl); 723 724 private: 725 unsigned Kind : 8; 726 unsigned IsAtomic : 1; 727 unsigned IsCopy : 1; 728 unsigned HasStrong : 1; 729 730 CharUnits IvarSize; 731 CharUnits IvarAlignment; 732 }; 733 } 734 735 /// Pick an implementation strategy for the given property synthesis. 736 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 737 const ObjCPropertyImplDecl *propImpl) { 738 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 739 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 740 741 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 742 IsAtomic = prop->isAtomic(); 743 HasStrong = false; // doesn't matter here. 744 745 // Evaluate the ivar's size and alignment. 746 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 747 QualType ivarType = ivar->getType(); 748 std::tie(IvarSize, IvarAlignment) = 749 CGM.getContext().getTypeInfoInChars(ivarType); 750 751 // If we have a copy property, we always have to use getProperty/setProperty. 752 // TODO: we could actually use setProperty and an expression for non-atomics. 753 if (IsCopy) { 754 Kind = GetSetProperty; 755 return; 756 } 757 758 // Handle retain. 759 if (setterKind == ObjCPropertyDecl::Retain) { 760 // In GC-only, there's nothing special that needs to be done. 761 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 762 // fallthrough 763 764 // In ARC, if the property is non-atomic, use expression emission, 765 // which translates to objc_storeStrong. This isn't required, but 766 // it's slightly nicer. 767 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 768 // Using standard expression emission for the setter is only 769 // acceptable if the ivar is __strong, which won't be true if 770 // the property is annotated with __attribute__((NSObject)). 771 // TODO: falling all the way back to objc_setProperty here is 772 // just laziness, though; we could still use objc_storeStrong 773 // if we hacked it right. 774 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 775 Kind = Expression; 776 else 777 Kind = SetPropertyAndExpressionGet; 778 return; 779 780 // Otherwise, we need to at least use setProperty. However, if 781 // the property isn't atomic, we can use normal expression 782 // emission for the getter. 783 } else if (!IsAtomic) { 784 Kind = SetPropertyAndExpressionGet; 785 return; 786 787 // Otherwise, we have to use both setProperty and getProperty. 788 } else { 789 Kind = GetSetProperty; 790 return; 791 } 792 } 793 794 // If we're not atomic, just use expression accesses. 795 if (!IsAtomic) { 796 Kind = Expression; 797 return; 798 } 799 800 // Properties on bitfield ivars need to be emitted using expression 801 // accesses even if they're nominally atomic. 802 if (ivar->isBitField()) { 803 Kind = Expression; 804 return; 805 } 806 807 // GC-qualified or ARC-qualified ivars need to be emitted as 808 // expressions. This actually works out to being atomic anyway, 809 // except for ARC __strong, but that should trigger the above code. 810 if (ivarType.hasNonTrivialObjCLifetime() || 811 (CGM.getLangOpts().getGC() && 812 CGM.getContext().getObjCGCAttrKind(ivarType))) { 813 Kind = Expression; 814 return; 815 } 816 817 // Compute whether the ivar has strong members. 818 if (CGM.getLangOpts().getGC()) 819 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 820 HasStrong = recordType->getDecl()->hasObjectMember(); 821 822 // We can never access structs with object members with a native 823 // access, because we need to use write barriers. This is what 824 // objc_copyStruct is for. 825 if (HasStrong) { 826 Kind = CopyStruct; 827 return; 828 } 829 830 // Otherwise, this is target-dependent and based on the size and 831 // alignment of the ivar. 832 833 // If the size of the ivar is not a power of two, give up. We don't 834 // want to get into the business of doing compare-and-swaps. 835 if (!IvarSize.isPowerOfTwo()) { 836 Kind = CopyStruct; 837 return; 838 } 839 840 llvm::Triple::ArchType arch = 841 CGM.getTarget().getTriple().getArch(); 842 843 // Most architectures require memory to fit within a single cache 844 // line, so the alignment has to be at least the size of the access. 845 // Otherwise we have to grab a lock. 846 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 847 Kind = CopyStruct; 848 return; 849 } 850 851 // If the ivar's size exceeds the architecture's maximum atomic 852 // access size, we have to use CopyStruct. 853 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 854 Kind = CopyStruct; 855 return; 856 } 857 858 // Otherwise, we can use native loads and stores. 859 Kind = Native; 860 } 861 862 /// Generate an Objective-C property getter function. 863 /// 864 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 865 /// is illegal within a category. 866 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 867 const ObjCPropertyImplDecl *PID) { 868 llvm::Constant *AtomicHelperFn = 869 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 870 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 871 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 872 assert(OMD && "Invalid call to generate getter (empty method)"); 873 StartObjCMethod(OMD, IMP->getClassInterface()); 874 875 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 876 877 FinishFunction(); 878 } 879 880 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 881 const Expr *getter = propImpl->getGetterCXXConstructor(); 882 if (!getter) return true; 883 884 // Sema only makes only of these when the ivar has a C++ class type, 885 // so the form is pretty constrained. 886 887 // If the property has a reference type, we might just be binding a 888 // reference, in which case the result will be a gl-value. We should 889 // treat this as a non-trivial operation. 890 if (getter->isGLValue()) 891 return false; 892 893 // If we selected a trivial copy-constructor, we're okay. 894 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 895 return (construct->getConstructor()->isTrivial()); 896 897 // The constructor might require cleanups (in which case it's never 898 // trivial). 899 assert(isa<ExprWithCleanups>(getter)); 900 return false; 901 } 902 903 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 904 /// copy the ivar into the resturn slot. 905 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 906 llvm::Value *returnAddr, 907 ObjCIvarDecl *ivar, 908 llvm::Constant *AtomicHelperFn) { 909 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 910 // AtomicHelperFn); 911 CallArgList args; 912 913 // The 1st argument is the return Slot. 914 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 915 916 // The 2nd argument is the address of the ivar. 917 llvm::Value *ivarAddr = 918 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 919 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 920 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 921 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 922 923 // Third argument is the helper function. 924 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 925 926 llvm::Constant *copyCppAtomicObjectFn = 927 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 928 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 929 CGF.EmitCall( 930 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 931 callee, ReturnValueSlot(), args); 932 } 933 934 void 935 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 936 const ObjCPropertyImplDecl *propImpl, 937 const ObjCMethodDecl *GetterMethodDecl, 938 llvm::Constant *AtomicHelperFn) { 939 // If there's a non-trivial 'get' expression, we just have to emit that. 940 if (!hasTrivialGetExpr(propImpl)) { 941 if (!AtomicHelperFn) { 942 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(), 943 propImpl->getGetterCXXConstructor(), 944 /* NRVOCandidate=*/nullptr); 945 EmitReturnStmt(*ret); 946 } 947 else { 948 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 949 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 950 ivar, AtomicHelperFn); 951 } 952 return; 953 } 954 955 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 956 QualType propType = prop->getType(); 957 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 958 959 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 960 961 // Pick an implementation strategy. 962 PropertyImplStrategy strategy(CGM, propImpl); 963 switch (strategy.getKind()) { 964 case PropertyImplStrategy::Native: { 965 // We don't need to do anything for a zero-size struct. 966 if (strategy.getIvarSize().isZero()) 967 return; 968 969 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 970 971 // Currently, all atomic accesses have to be through integer 972 // types, so there's no point in trying to pick a prettier type. 973 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 974 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 975 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 976 977 // Perform an atomic load. This does not impose ordering constraints. 978 Address ivarAddr = LV.getAddress(); 979 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 980 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 981 load->setAtomic(llvm::AtomicOrdering::Unordered); 982 983 // Store that value into the return address. Doing this with a 984 // bitcast is likely to produce some pretty ugly IR, but it's not 985 // the *most* terrible thing in the world. 986 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 987 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 988 llvm::Value *ivarVal = load; 989 if (ivarSize > retTySize) { 990 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 991 ivarVal = Builder.CreateTrunc(load, newTy); 992 bitcastType = newTy->getPointerTo(); 993 } 994 Builder.CreateStore(ivarVal, 995 Builder.CreateBitCast(ReturnValue, bitcastType)); 996 997 // Make sure we don't do an autorelease. 998 AutoreleaseResult = false; 999 return; 1000 } 1001 1002 case PropertyImplStrategy::GetSetProperty: { 1003 llvm::Constant *getPropertyFn = 1004 CGM.getObjCRuntime().GetPropertyGetFunction(); 1005 if (!getPropertyFn) { 1006 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 1007 return; 1008 } 1009 CGCallee callee = CGCallee::forDirect(getPropertyFn); 1010 1011 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 1012 // FIXME: Can't this be simpler? This might even be worse than the 1013 // corresponding gcc code. 1014 llvm::Value *cmd = 1015 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 1016 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1017 llvm::Value *ivarOffset = 1018 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1019 1020 CallArgList args; 1021 args.add(RValue::get(self), getContext().getObjCIdType()); 1022 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1023 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1024 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1025 getContext().BoolTy); 1026 1027 // FIXME: We shouldn't need to get the function info here, the 1028 // runtime already should have computed it to build the function. 1029 llvm::Instruction *CallInstruction; 1030 RValue RV = EmitCall( 1031 getTypes().arrangeBuiltinFunctionCall(propType, args), 1032 callee, ReturnValueSlot(), args, &CallInstruction); 1033 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 1034 call->setTailCall(); 1035 1036 // We need to fix the type here. Ivars with copy & retain are 1037 // always objects so we don't need to worry about complex or 1038 // aggregates. 1039 RV = RValue::get(Builder.CreateBitCast( 1040 RV.getScalarVal(), 1041 getTypes().ConvertType(getterMethod->getReturnType()))); 1042 1043 EmitReturnOfRValue(RV, propType); 1044 1045 // objc_getProperty does an autorelease, so we should suppress ours. 1046 AutoreleaseResult = false; 1047 1048 return; 1049 } 1050 1051 case PropertyImplStrategy::CopyStruct: 1052 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 1053 strategy.hasStrongMember()); 1054 return; 1055 1056 case PropertyImplStrategy::Expression: 1057 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1058 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1059 1060 QualType ivarType = ivar->getType(); 1061 switch (getEvaluationKind(ivarType)) { 1062 case TEK_Complex: { 1063 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1064 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1065 /*init*/ true); 1066 return; 1067 } 1068 case TEK_Aggregate: { 1069 // The return value slot is guaranteed to not be aliased, but 1070 // that's not necessarily the same as "on the stack", so 1071 // we still potentially need objc_memmove_collectable. 1072 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1073 /* Src= */ LV, ivarType, overlapForReturnValue()); 1074 return; 1075 } 1076 case TEK_Scalar: { 1077 llvm::Value *value; 1078 if (propType->isReferenceType()) { 1079 value = LV.getAddress().getPointer(); 1080 } else { 1081 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1082 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1083 if (getLangOpts().ObjCAutoRefCount) { 1084 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1085 } else { 1086 value = EmitARCLoadWeak(LV.getAddress()); 1087 } 1088 1089 // Otherwise we want to do a simple load, suppressing the 1090 // final autorelease. 1091 } else { 1092 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1093 AutoreleaseResult = false; 1094 } 1095 1096 value = Builder.CreateBitCast( 1097 value, ConvertType(GetterMethodDecl->getReturnType())); 1098 } 1099 1100 EmitReturnOfRValue(RValue::get(value), propType); 1101 return; 1102 } 1103 } 1104 llvm_unreachable("bad evaluation kind"); 1105 } 1106 1107 } 1108 llvm_unreachable("bad @property implementation strategy!"); 1109 } 1110 1111 /// emitStructSetterCall - Call the runtime function to store the value 1112 /// from the first formal parameter into the given ivar. 1113 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1114 ObjCIvarDecl *ivar) { 1115 // objc_copyStruct (&structIvar, &Arg, 1116 // sizeof (struct something), true, false); 1117 CallArgList args; 1118 1119 // The first argument is the address of the ivar. 1120 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1121 CGF.LoadObjCSelf(), ivar, 0) 1122 .getPointer(); 1123 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1124 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1125 1126 // The second argument is the address of the parameter variable. 1127 ParmVarDecl *argVar = *OMD->param_begin(); 1128 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1129 VK_LValue, SourceLocation()); 1130 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1131 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1132 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1133 1134 // The third argument is the sizeof the type. 1135 llvm::Value *size = 1136 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1137 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1138 1139 // The fourth argument is the 'isAtomic' flag. 1140 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1141 1142 // The fifth argument is the 'hasStrong' flag. 1143 // FIXME: should this really always be false? 1144 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1145 1146 llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1147 CGCallee callee = CGCallee::forDirect(fn); 1148 CGF.EmitCall( 1149 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1150 callee, ReturnValueSlot(), args); 1151 } 1152 1153 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1154 /// the value from the first formal parameter into the given ivar, using 1155 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1156 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1157 ObjCMethodDecl *OMD, 1158 ObjCIvarDecl *ivar, 1159 llvm::Constant *AtomicHelperFn) { 1160 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1161 // AtomicHelperFn); 1162 CallArgList args; 1163 1164 // The first argument is the address of the ivar. 1165 llvm::Value *ivarAddr = 1166 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1167 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 1168 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1169 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1170 1171 // The second argument is the address of the parameter variable. 1172 ParmVarDecl *argVar = *OMD->param_begin(); 1173 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1174 VK_LValue, SourceLocation()); 1175 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1176 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1177 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1178 1179 // Third argument is the helper function. 1180 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1181 1182 llvm::Constant *fn = 1183 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1184 CGCallee callee = CGCallee::forDirect(fn); 1185 CGF.EmitCall( 1186 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1187 callee, ReturnValueSlot(), args); 1188 } 1189 1190 1191 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1192 Expr *setter = PID->getSetterCXXAssignment(); 1193 if (!setter) return true; 1194 1195 // Sema only makes only of these when the ivar has a C++ class type, 1196 // so the form is pretty constrained. 1197 1198 // An operator call is trivial if the function it calls is trivial. 1199 // This also implies that there's nothing non-trivial going on with 1200 // the arguments, because operator= can only be trivial if it's a 1201 // synthesized assignment operator and therefore both parameters are 1202 // references. 1203 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1204 if (const FunctionDecl *callee 1205 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1206 if (callee->isTrivial()) 1207 return true; 1208 return false; 1209 } 1210 1211 assert(isa<ExprWithCleanups>(setter)); 1212 return false; 1213 } 1214 1215 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1216 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1217 return false; 1218 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1219 } 1220 1221 void 1222 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1223 const ObjCPropertyImplDecl *propImpl, 1224 llvm::Constant *AtomicHelperFn) { 1225 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1226 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1227 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1228 1229 // Just use the setter expression if Sema gave us one and it's 1230 // non-trivial. 1231 if (!hasTrivialSetExpr(propImpl)) { 1232 if (!AtomicHelperFn) 1233 // If non-atomic, assignment is called directly. 1234 EmitStmt(propImpl->getSetterCXXAssignment()); 1235 else 1236 // If atomic, assignment is called via a locking api. 1237 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1238 AtomicHelperFn); 1239 return; 1240 } 1241 1242 PropertyImplStrategy strategy(CGM, propImpl); 1243 switch (strategy.getKind()) { 1244 case PropertyImplStrategy::Native: { 1245 // We don't need to do anything for a zero-size struct. 1246 if (strategy.getIvarSize().isZero()) 1247 return; 1248 1249 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1250 1251 LValue ivarLValue = 1252 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1253 Address ivarAddr = ivarLValue.getAddress(); 1254 1255 // Currently, all atomic accesses have to be through integer 1256 // types, so there's no point in trying to pick a prettier type. 1257 llvm::Type *bitcastType = 1258 llvm::Type::getIntNTy(getLLVMContext(), 1259 getContext().toBits(strategy.getIvarSize())); 1260 1261 // Cast both arguments to the chosen operation type. 1262 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1263 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1264 1265 // This bitcast load is likely to cause some nasty IR. 1266 llvm::Value *load = Builder.CreateLoad(argAddr); 1267 1268 // Perform an atomic store. There are no memory ordering requirements. 1269 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1270 store->setAtomic(llvm::AtomicOrdering::Unordered); 1271 return; 1272 } 1273 1274 case PropertyImplStrategy::GetSetProperty: 1275 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1276 1277 llvm::Constant *setOptimizedPropertyFn = nullptr; 1278 llvm::Constant *setPropertyFn = nullptr; 1279 if (UseOptimizedSetter(CGM)) { 1280 // 10.8 and iOS 6.0 code and GC is off 1281 setOptimizedPropertyFn = 1282 CGM.getObjCRuntime() 1283 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1284 strategy.isCopy()); 1285 if (!setOptimizedPropertyFn) { 1286 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1287 return; 1288 } 1289 } 1290 else { 1291 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1292 if (!setPropertyFn) { 1293 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1294 return; 1295 } 1296 } 1297 1298 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1299 // <is-atomic>, <is-copy>). 1300 llvm::Value *cmd = 1301 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1302 llvm::Value *self = 1303 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1304 llvm::Value *ivarOffset = 1305 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1306 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1307 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1308 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1309 1310 CallArgList args; 1311 args.add(RValue::get(self), getContext().getObjCIdType()); 1312 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1313 if (setOptimizedPropertyFn) { 1314 args.add(RValue::get(arg), getContext().getObjCIdType()); 1315 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1316 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1317 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1318 callee, ReturnValueSlot(), args); 1319 } else { 1320 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1321 args.add(RValue::get(arg), getContext().getObjCIdType()); 1322 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1323 getContext().BoolTy); 1324 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1325 getContext().BoolTy); 1326 // FIXME: We shouldn't need to get the function info here, the runtime 1327 // already should have computed it to build the function. 1328 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1329 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1330 callee, ReturnValueSlot(), args); 1331 } 1332 1333 return; 1334 } 1335 1336 case PropertyImplStrategy::CopyStruct: 1337 emitStructSetterCall(*this, setterMethod, ivar); 1338 return; 1339 1340 case PropertyImplStrategy::Expression: 1341 break; 1342 } 1343 1344 // Otherwise, fake up some ASTs and emit a normal assignment. 1345 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1346 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1347 VK_LValue, SourceLocation()); 1348 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1349 selfDecl->getType(), CK_LValueToRValue, &self, 1350 VK_RValue); 1351 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1352 SourceLocation(), SourceLocation(), 1353 &selfLoad, true, true); 1354 1355 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1356 QualType argType = argDecl->getType().getNonReferenceType(); 1357 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1358 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1359 argType.getUnqualifiedType(), CK_LValueToRValue, 1360 &arg, VK_RValue); 1361 1362 // The property type can differ from the ivar type in some situations with 1363 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1364 // The following absurdity is just to ensure well-formed IR. 1365 CastKind argCK = CK_NoOp; 1366 if (ivarRef.getType()->isObjCObjectPointerType()) { 1367 if (argLoad.getType()->isObjCObjectPointerType()) 1368 argCK = CK_BitCast; 1369 else if (argLoad.getType()->isBlockPointerType()) 1370 argCK = CK_BlockPointerToObjCPointerCast; 1371 else 1372 argCK = CK_CPointerToObjCPointerCast; 1373 } else if (ivarRef.getType()->isBlockPointerType()) { 1374 if (argLoad.getType()->isBlockPointerType()) 1375 argCK = CK_BitCast; 1376 else 1377 argCK = CK_AnyPointerToBlockPointerCast; 1378 } else if (ivarRef.getType()->isPointerType()) { 1379 argCK = CK_BitCast; 1380 } 1381 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1382 ivarRef.getType(), argCK, &argLoad, 1383 VK_RValue); 1384 Expr *finalArg = &argLoad; 1385 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1386 argLoad.getType())) 1387 finalArg = &argCast; 1388 1389 1390 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1391 ivarRef.getType(), VK_RValue, OK_Ordinary, 1392 SourceLocation(), FPOptions()); 1393 EmitStmt(&assign); 1394 } 1395 1396 /// Generate an Objective-C property setter function. 1397 /// 1398 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1399 /// is illegal within a category. 1400 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1401 const ObjCPropertyImplDecl *PID) { 1402 llvm::Constant *AtomicHelperFn = 1403 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1404 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1405 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1406 assert(OMD && "Invalid call to generate setter (empty method)"); 1407 StartObjCMethod(OMD, IMP->getClassInterface()); 1408 1409 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1410 1411 FinishFunction(); 1412 } 1413 1414 namespace { 1415 struct DestroyIvar final : EHScopeStack::Cleanup { 1416 private: 1417 llvm::Value *addr; 1418 const ObjCIvarDecl *ivar; 1419 CodeGenFunction::Destroyer *destroyer; 1420 bool useEHCleanupForArray; 1421 public: 1422 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1423 CodeGenFunction::Destroyer *destroyer, 1424 bool useEHCleanupForArray) 1425 : addr(addr), ivar(ivar), destroyer(destroyer), 1426 useEHCleanupForArray(useEHCleanupForArray) {} 1427 1428 void Emit(CodeGenFunction &CGF, Flags flags) override { 1429 LValue lvalue 1430 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1431 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1432 flags.isForNormalCleanup() && useEHCleanupForArray); 1433 } 1434 }; 1435 } 1436 1437 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1438 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1439 Address addr, 1440 QualType type) { 1441 llvm::Value *null = getNullForVariable(addr); 1442 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1443 } 1444 1445 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1446 ObjCImplementationDecl *impl) { 1447 CodeGenFunction::RunCleanupsScope scope(CGF); 1448 1449 llvm::Value *self = CGF.LoadObjCSelf(); 1450 1451 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1452 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1453 ivar; ivar = ivar->getNextIvar()) { 1454 QualType type = ivar->getType(); 1455 1456 // Check whether the ivar is a destructible type. 1457 QualType::DestructionKind dtorKind = type.isDestructedType(); 1458 if (!dtorKind) continue; 1459 1460 CodeGenFunction::Destroyer *destroyer = nullptr; 1461 1462 // Use a call to objc_storeStrong to destroy strong ivars, for the 1463 // general benefit of the tools. 1464 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1465 destroyer = destroyARCStrongWithStore; 1466 1467 // Otherwise use the default for the destruction kind. 1468 } else { 1469 destroyer = CGF.getDestroyer(dtorKind); 1470 } 1471 1472 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1473 1474 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1475 cleanupKind & EHCleanup); 1476 } 1477 1478 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1479 } 1480 1481 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1482 ObjCMethodDecl *MD, 1483 bool ctor) { 1484 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1485 StartObjCMethod(MD, IMP->getClassInterface()); 1486 1487 // Emit .cxx_construct. 1488 if (ctor) { 1489 // Suppress the final autorelease in ARC. 1490 AutoreleaseResult = false; 1491 1492 for (const auto *IvarInit : IMP->inits()) { 1493 FieldDecl *Field = IvarInit->getAnyMember(); 1494 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1495 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1496 LoadObjCSelf(), Ivar, 0); 1497 EmitAggExpr(IvarInit->getInit(), 1498 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1499 AggValueSlot::DoesNotNeedGCBarriers, 1500 AggValueSlot::IsNotAliased, 1501 AggValueSlot::DoesNotOverlap)); 1502 } 1503 // constructor returns 'self'. 1504 CodeGenTypes &Types = CGM.getTypes(); 1505 QualType IdTy(CGM.getContext().getObjCIdType()); 1506 llvm::Value *SelfAsId = 1507 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1508 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1509 1510 // Emit .cxx_destruct. 1511 } else { 1512 emitCXXDestructMethod(*this, IMP); 1513 } 1514 FinishFunction(); 1515 } 1516 1517 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1518 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1519 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1520 Self->getType(), VK_LValue, SourceLocation()); 1521 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1522 } 1523 1524 QualType CodeGenFunction::TypeOfSelfObject() { 1525 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1526 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1527 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1528 getContext().getCanonicalType(selfDecl->getType())); 1529 return PTy->getPointeeType(); 1530 } 1531 1532 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1533 llvm::Constant *EnumerationMutationFnPtr = 1534 CGM.getObjCRuntime().EnumerationMutationFunction(); 1535 if (!EnumerationMutationFnPtr) { 1536 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1537 return; 1538 } 1539 CGCallee EnumerationMutationFn = 1540 CGCallee::forDirect(EnumerationMutationFnPtr); 1541 1542 CGDebugInfo *DI = getDebugInfo(); 1543 if (DI) 1544 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1545 1546 RunCleanupsScope ForScope(*this); 1547 1548 // The local variable comes into scope immediately. 1549 AutoVarEmission variable = AutoVarEmission::invalid(); 1550 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1551 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1552 1553 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1554 1555 // Fast enumeration state. 1556 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1557 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1558 EmitNullInitialization(StatePtr, StateTy); 1559 1560 // Number of elements in the items array. 1561 static const unsigned NumItems = 16; 1562 1563 // Fetch the countByEnumeratingWithState:objects:count: selector. 1564 IdentifierInfo *II[] = { 1565 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1566 &CGM.getContext().Idents.get("objects"), 1567 &CGM.getContext().Idents.get("count") 1568 }; 1569 Selector FastEnumSel = 1570 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1571 1572 QualType ItemsTy = 1573 getContext().getConstantArrayType(getContext().getObjCIdType(), 1574 llvm::APInt(32, NumItems), 1575 ArrayType::Normal, 0); 1576 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1577 1578 // Emit the collection pointer. In ARC, we do a retain. 1579 llvm::Value *Collection; 1580 if (getLangOpts().ObjCAutoRefCount) { 1581 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1582 1583 // Enter a cleanup to do the release. 1584 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1585 } else { 1586 Collection = EmitScalarExpr(S.getCollection()); 1587 } 1588 1589 // The 'continue' label needs to appear within the cleanup for the 1590 // collection object. 1591 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1592 1593 // Send it our message: 1594 CallArgList Args; 1595 1596 // The first argument is a temporary of the enumeration-state type. 1597 Args.add(RValue::get(StatePtr.getPointer()), 1598 getContext().getPointerType(StateTy)); 1599 1600 // The second argument is a temporary array with space for NumItems 1601 // pointers. We'll actually be loading elements from the array 1602 // pointer written into the control state; this buffer is so that 1603 // collections that *aren't* backed by arrays can still queue up 1604 // batches of elements. 1605 Args.add(RValue::get(ItemsPtr.getPointer()), 1606 getContext().getPointerType(ItemsTy)); 1607 1608 // The third argument is the capacity of that temporary array. 1609 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1610 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1611 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1612 1613 // Start the enumeration. 1614 RValue CountRV = 1615 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1616 getContext().getNSUIntegerType(), 1617 FastEnumSel, Collection, Args); 1618 1619 // The initial number of objects that were returned in the buffer. 1620 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1621 1622 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1623 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1624 1625 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1626 1627 // If the limit pointer was zero to begin with, the collection is 1628 // empty; skip all this. Set the branch weight assuming this has the same 1629 // probability of exiting the loop as any other loop exit. 1630 uint64_t EntryCount = getCurrentProfileCount(); 1631 Builder.CreateCondBr( 1632 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1633 LoopInitBB, 1634 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1635 1636 // Otherwise, initialize the loop. 1637 EmitBlock(LoopInitBB); 1638 1639 // Save the initial mutations value. This is the value at an 1640 // address that was written into the state object by 1641 // countByEnumeratingWithState:objects:count:. 1642 Address StateMutationsPtrPtr = Builder.CreateStructGEP( 1643 StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr"); 1644 llvm::Value *StateMutationsPtr 1645 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1646 1647 llvm::Value *initialMutations = 1648 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1649 "forcoll.initial-mutations"); 1650 1651 // Start looping. This is the point we return to whenever we have a 1652 // fresh, non-empty batch of objects. 1653 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1654 EmitBlock(LoopBodyBB); 1655 1656 // The current index into the buffer. 1657 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1658 index->addIncoming(zero, LoopInitBB); 1659 1660 // The current buffer size. 1661 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1662 count->addIncoming(initialBufferLimit, LoopInitBB); 1663 1664 incrementProfileCounter(&S); 1665 1666 // Check whether the mutations value has changed from where it was 1667 // at start. StateMutationsPtr should actually be invariant between 1668 // refreshes. 1669 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1670 llvm::Value *currentMutations 1671 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1672 "statemutations"); 1673 1674 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1675 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1676 1677 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1678 WasNotMutatedBB, WasMutatedBB); 1679 1680 // If so, call the enumeration-mutation function. 1681 EmitBlock(WasMutatedBB); 1682 llvm::Value *V = 1683 Builder.CreateBitCast(Collection, 1684 ConvertType(getContext().getObjCIdType())); 1685 CallArgList Args2; 1686 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1687 // FIXME: We shouldn't need to get the function info here, the runtime already 1688 // should have computed it to build the function. 1689 EmitCall( 1690 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1691 EnumerationMutationFn, ReturnValueSlot(), Args2); 1692 1693 // Otherwise, or if the mutation function returns, just continue. 1694 EmitBlock(WasNotMutatedBB); 1695 1696 // Initialize the element variable. 1697 RunCleanupsScope elementVariableScope(*this); 1698 bool elementIsVariable; 1699 LValue elementLValue; 1700 QualType elementType; 1701 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1702 // Initialize the variable, in case it's a __block variable or something. 1703 EmitAutoVarInit(variable); 1704 1705 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1706 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1707 VK_LValue, SourceLocation()); 1708 elementLValue = EmitLValue(&tempDRE); 1709 elementType = D->getType(); 1710 elementIsVariable = true; 1711 1712 if (D->isARCPseudoStrong()) 1713 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1714 } else { 1715 elementLValue = LValue(); // suppress warning 1716 elementType = cast<Expr>(S.getElement())->getType(); 1717 elementIsVariable = false; 1718 } 1719 llvm::Type *convertedElementType = ConvertType(elementType); 1720 1721 // Fetch the buffer out of the enumeration state. 1722 // TODO: this pointer should actually be invariant between 1723 // refreshes, which would help us do certain loop optimizations. 1724 Address StateItemsPtr = Builder.CreateStructGEP( 1725 StatePtr, 1, getPointerSize(), "stateitems.ptr"); 1726 llvm::Value *EnumStateItems = 1727 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1728 1729 // Fetch the value at the current index from the buffer. 1730 llvm::Value *CurrentItemPtr = 1731 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1732 llvm::Value *CurrentItem = 1733 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1734 1735 // Cast that value to the right type. 1736 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1737 "currentitem"); 1738 1739 // Make sure we have an l-value. Yes, this gets evaluated every 1740 // time through the loop. 1741 if (!elementIsVariable) { 1742 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1743 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1744 } else { 1745 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1746 /*isInit*/ true); 1747 } 1748 1749 // If we do have an element variable, this assignment is the end of 1750 // its initialization. 1751 if (elementIsVariable) 1752 EmitAutoVarCleanups(variable); 1753 1754 // Perform the loop body, setting up break and continue labels. 1755 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1756 { 1757 RunCleanupsScope Scope(*this); 1758 EmitStmt(S.getBody()); 1759 } 1760 BreakContinueStack.pop_back(); 1761 1762 // Destroy the element variable now. 1763 elementVariableScope.ForceCleanup(); 1764 1765 // Check whether there are more elements. 1766 EmitBlock(AfterBody.getBlock()); 1767 1768 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1769 1770 // First we check in the local buffer. 1771 llvm::Value *indexPlusOne = 1772 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 1773 1774 // If we haven't overrun the buffer yet, we can continue. 1775 // Set the branch weights based on the simplifying assumption that this is 1776 // like a while-loop, i.e., ignoring that the false branch fetches more 1777 // elements and then returns to the loop. 1778 Builder.CreateCondBr( 1779 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1780 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1781 1782 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1783 count->addIncoming(count, AfterBody.getBlock()); 1784 1785 // Otherwise, we have to fetch more elements. 1786 EmitBlock(FetchMoreBB); 1787 1788 CountRV = 1789 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1790 getContext().getNSUIntegerType(), 1791 FastEnumSel, Collection, Args); 1792 1793 // If we got a zero count, we're done. 1794 llvm::Value *refetchCount = CountRV.getScalarVal(); 1795 1796 // (note that the message send might split FetchMoreBB) 1797 index->addIncoming(zero, Builder.GetInsertBlock()); 1798 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1799 1800 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1801 EmptyBB, LoopBodyBB); 1802 1803 // No more elements. 1804 EmitBlock(EmptyBB); 1805 1806 if (!elementIsVariable) { 1807 // If the element was not a declaration, set it to be null. 1808 1809 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1810 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1811 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1812 } 1813 1814 if (DI) 1815 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1816 1817 ForScope.ForceCleanup(); 1818 EmitBlock(LoopEnd.getBlock()); 1819 } 1820 1821 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1822 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1823 } 1824 1825 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1826 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1827 } 1828 1829 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1830 const ObjCAtSynchronizedStmt &S) { 1831 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1832 } 1833 1834 namespace { 1835 struct CallObjCRelease final : EHScopeStack::Cleanup { 1836 CallObjCRelease(llvm::Value *object) : object(object) {} 1837 llvm::Value *object; 1838 1839 void Emit(CodeGenFunction &CGF, Flags flags) override { 1840 // Releases at the end of the full-expression are imprecise. 1841 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1842 } 1843 }; 1844 } 1845 1846 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1847 /// release at the end of the full-expression. 1848 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1849 llvm::Value *object) { 1850 // If we're in a conditional branch, we need to make the cleanup 1851 // conditional. 1852 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1853 return object; 1854 } 1855 1856 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1857 llvm::Value *value) { 1858 return EmitARCRetainAutorelease(type, value); 1859 } 1860 1861 /// Given a number of pointers, inform the optimizer that they're 1862 /// being intrinsically used up until this point in the program. 1863 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1864 llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use; 1865 if (!fn) 1866 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use); 1867 1868 // This isn't really a "runtime" function, but as an intrinsic it 1869 // doesn't really matter as long as we align things up. 1870 EmitNounwindRuntimeCall(fn, values); 1871 } 1872 1873 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, 1874 llvm::Constant *RTF) { 1875 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 1876 // If the target runtime doesn't naturally support ARC, emit weak 1877 // references to the runtime support library. We don't really 1878 // permit this to fail, but we need a particular relocation style. 1879 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 1880 !CGM.getTriple().isOSBinFormatCOFF()) { 1881 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1882 } 1883 } 1884 } 1885 1886 /// Perform an operation having the signature 1887 /// i8* (i8*) 1888 /// where a null input causes a no-op and returns null. 1889 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1890 llvm::Value *value, 1891 llvm::Type *returnType, 1892 llvm::Constant *&fn, 1893 llvm::Intrinsic::ID IntID, 1894 bool isTailCall = false) { 1895 if (isa<llvm::ConstantPointerNull>(value)) 1896 return value; 1897 1898 if (!fn) { 1899 fn = CGF.CGM.getIntrinsic(IntID); 1900 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 1901 } 1902 1903 // Cast the argument to 'id'. 1904 llvm::Type *origType = returnType ? returnType : value->getType(); 1905 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1906 1907 // Call the function. 1908 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1909 if (isTailCall) 1910 call->setTailCall(); 1911 1912 // Cast the result back to the original type. 1913 return CGF.Builder.CreateBitCast(call, origType); 1914 } 1915 1916 /// Perform an operation having the following signature: 1917 /// i8* (i8**) 1918 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1919 Address addr, 1920 llvm::Constant *&fn, 1921 llvm::Intrinsic::ID IntID) { 1922 if (!fn) { 1923 fn = CGF.CGM.getIntrinsic(IntID); 1924 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 1925 } 1926 1927 // Cast the argument to 'id*'. 1928 llvm::Type *origType = addr.getElementType(); 1929 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1930 1931 // Call the function. 1932 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 1933 1934 // Cast the result back to a dereference of the original type. 1935 if (origType != CGF.Int8PtrTy) 1936 result = CGF.Builder.CreateBitCast(result, origType); 1937 1938 return result; 1939 } 1940 1941 /// Perform an operation having the following signature: 1942 /// i8* (i8**, i8*) 1943 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1944 Address addr, 1945 llvm::Value *value, 1946 llvm::Constant *&fn, 1947 llvm::Intrinsic::ID IntID, 1948 bool ignored) { 1949 assert(addr.getElementType() == value->getType()); 1950 1951 if (!fn) { 1952 fn = CGF.CGM.getIntrinsic(IntID); 1953 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 1954 } 1955 1956 llvm::Type *origType = value->getType(); 1957 1958 llvm::Value *args[] = { 1959 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 1960 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 1961 }; 1962 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 1963 1964 if (ignored) return nullptr; 1965 1966 return CGF.Builder.CreateBitCast(result, origType); 1967 } 1968 1969 /// Perform an operation having the following signature: 1970 /// void (i8**, i8**) 1971 static void emitARCCopyOperation(CodeGenFunction &CGF, 1972 Address dst, 1973 Address src, 1974 llvm::Constant *&fn, 1975 llvm::Intrinsic::ID IntID) { 1976 assert(dst.getType() == src.getType()); 1977 1978 if (!fn) { 1979 fn = CGF.CGM.getIntrinsic(IntID); 1980 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 1981 } 1982 1983 llvm::Value *args[] = { 1984 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 1985 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 1986 }; 1987 CGF.EmitNounwindRuntimeCall(fn, args); 1988 } 1989 1990 /// Perform an operation having the signature 1991 /// i8* (i8*) 1992 /// where a null input causes a no-op and returns null. 1993 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, 1994 llvm::Value *value, 1995 llvm::Type *returnType, 1996 llvm::Constant *&fn, 1997 StringRef fnName) { 1998 if (isa<llvm::ConstantPointerNull>(value)) 1999 return value; 2000 2001 if (!fn) { 2002 llvm::FunctionType *fnType = 2003 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 2004 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName); 2005 } 2006 2007 // Cast the argument to 'id'. 2008 llvm::Type *origType = returnType ? returnType : value->getType(); 2009 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2010 2011 // Call the function. 2012 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 2013 2014 // Cast the result back to the original type. 2015 return CGF.Builder.CreateBitCast(call, origType); 2016 } 2017 2018 /// Produce the code to do a retain. Based on the type, calls one of: 2019 /// call i8* \@objc_retain(i8* %value) 2020 /// call i8* \@objc_retainBlock(i8* %value) 2021 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 2022 if (type->isBlockPointerType()) 2023 return EmitARCRetainBlock(value, /*mandatory*/ false); 2024 else 2025 return EmitARCRetainNonBlock(value); 2026 } 2027 2028 /// Retain the given object, with normal retain semantics. 2029 /// call i8* \@objc_retain(i8* %value) 2030 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 2031 return emitARCValueOperation(*this, value, nullptr, 2032 CGM.getObjCEntrypoints().objc_retain, 2033 llvm::Intrinsic::objc_retain); 2034 } 2035 2036 /// Retain the given block, with _Block_copy semantics. 2037 /// call i8* \@objc_retainBlock(i8* %value) 2038 /// 2039 /// \param mandatory - If false, emit the call with metadata 2040 /// indicating that it's okay for the optimizer to eliminate this call 2041 /// if it can prove that the block never escapes except down the stack. 2042 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 2043 bool mandatory) { 2044 llvm::Value *result 2045 = emitARCValueOperation(*this, value, nullptr, 2046 CGM.getObjCEntrypoints().objc_retainBlock, 2047 llvm::Intrinsic::objc_retainBlock); 2048 2049 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 2050 // tell the optimizer that it doesn't need to do this copy if the 2051 // block doesn't escape, where being passed as an argument doesn't 2052 // count as escaping. 2053 if (!mandatory && isa<llvm::Instruction>(result)) { 2054 llvm::CallInst *call 2055 = cast<llvm::CallInst>(result->stripPointerCasts()); 2056 assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock); 2057 2058 call->setMetadata("clang.arc.copy_on_escape", 2059 llvm::MDNode::get(Builder.getContext(), None)); 2060 } 2061 2062 return result; 2063 } 2064 2065 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 2066 // Fetch the void(void) inline asm which marks that we're going to 2067 // do something with the autoreleased return value. 2068 llvm::InlineAsm *&marker 2069 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2070 if (!marker) { 2071 StringRef assembly 2072 = CGF.CGM.getTargetCodeGenInfo() 2073 .getARCRetainAutoreleasedReturnValueMarker(); 2074 2075 // If we have an empty assembly string, there's nothing to do. 2076 if (assembly.empty()) { 2077 2078 // Otherwise, at -O0, build an inline asm that we're going to call 2079 // in a moment. 2080 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2081 llvm::FunctionType *type = 2082 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2083 2084 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2085 2086 // If we're at -O1 and above, we don't want to litter the code 2087 // with this marker yet, so leave a breadcrumb for the ARC 2088 // optimizer to pick up. 2089 } else { 2090 llvm::NamedMDNode *metadata = 2091 CGF.CGM.getModule().getOrInsertNamedMetadata( 2092 "clang.arc.retainAutoreleasedReturnValueMarker"); 2093 assert(metadata->getNumOperands() <= 1); 2094 if (metadata->getNumOperands() == 0) { 2095 auto &ctx = CGF.getLLVMContext(); 2096 metadata->addOperand(llvm::MDNode::get(ctx, 2097 llvm::MDString::get(ctx, assembly))); 2098 } 2099 } 2100 } 2101 2102 // Call the marker asm if we made one, which we do only at -O0. 2103 if (marker) 2104 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker)); 2105 } 2106 2107 /// Retain the given object which is the result of a function call. 2108 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2109 /// 2110 /// Yes, this function name is one character away from a different 2111 /// call with completely different semantics. 2112 llvm::Value * 2113 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2114 emitAutoreleasedReturnValueMarker(*this); 2115 return emitARCValueOperation(*this, value, nullptr, 2116 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, 2117 llvm::Intrinsic::objc_retainAutoreleasedReturnValue); 2118 } 2119 2120 /// Claim a possibly-autoreleased return value at +0. This is only 2121 /// valid to do in contexts which do not rely on the retain to keep 2122 /// the object valid for all of its uses; for example, when 2123 /// the value is ignored, or when it is being assigned to an 2124 /// __unsafe_unretained variable. 2125 /// 2126 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2127 llvm::Value * 2128 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2129 emitAutoreleasedReturnValueMarker(*this); 2130 return emitARCValueOperation(*this, value, nullptr, 2131 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, 2132 llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue); 2133 } 2134 2135 /// Release the given object. 2136 /// call void \@objc_release(i8* %value) 2137 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2138 ARCPreciseLifetime_t precise) { 2139 if (isa<llvm::ConstantPointerNull>(value)) return; 2140 2141 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release; 2142 if (!fn) { 2143 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release); 2144 setARCRuntimeFunctionLinkage(CGM, fn); 2145 } 2146 2147 // Cast the argument to 'id'. 2148 value = Builder.CreateBitCast(value, Int8PtrTy); 2149 2150 // Call objc_release. 2151 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2152 2153 if (precise == ARCImpreciseLifetime) { 2154 call->setMetadata("clang.imprecise_release", 2155 llvm::MDNode::get(Builder.getContext(), None)); 2156 } 2157 } 2158 2159 /// Destroy a __strong variable. 2160 /// 2161 /// At -O0, emit a call to store 'null' into the address; 2162 /// instrumenting tools prefer this because the address is exposed, 2163 /// but it's relatively cumbersome to optimize. 2164 /// 2165 /// At -O1 and above, just load and call objc_release. 2166 /// 2167 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2168 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2169 ARCPreciseLifetime_t precise) { 2170 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2171 llvm::Value *null = getNullForVariable(addr); 2172 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2173 return; 2174 } 2175 2176 llvm::Value *value = Builder.CreateLoad(addr); 2177 EmitARCRelease(value, precise); 2178 } 2179 2180 /// Store into a strong object. Always calls this: 2181 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2182 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2183 llvm::Value *value, 2184 bool ignored) { 2185 assert(addr.getElementType() == value->getType()); 2186 2187 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2188 if (!fn) { 2189 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong); 2190 setARCRuntimeFunctionLinkage(CGM, fn); 2191 } 2192 2193 llvm::Value *args[] = { 2194 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2195 Builder.CreateBitCast(value, Int8PtrTy) 2196 }; 2197 EmitNounwindRuntimeCall(fn, args); 2198 2199 if (ignored) return nullptr; 2200 return value; 2201 } 2202 2203 /// Store into a strong object. Sometimes calls this: 2204 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2205 /// Other times, breaks it down into components. 2206 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2207 llvm::Value *newValue, 2208 bool ignored) { 2209 QualType type = dst.getType(); 2210 bool isBlock = type->isBlockPointerType(); 2211 2212 // Use a store barrier at -O0 unless this is a block type or the 2213 // lvalue is inadequately aligned. 2214 if (shouldUseFusedARCCalls() && 2215 !isBlock && 2216 (dst.getAlignment().isZero() || 2217 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2218 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2219 } 2220 2221 // Otherwise, split it out. 2222 2223 // Retain the new value. 2224 newValue = EmitARCRetain(type, newValue); 2225 2226 // Read the old value. 2227 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2228 2229 // Store. We do this before the release so that any deallocs won't 2230 // see the old value. 2231 EmitStoreOfScalar(newValue, dst); 2232 2233 // Finally, release the old value. 2234 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2235 2236 return newValue; 2237 } 2238 2239 /// Autorelease the given object. 2240 /// call i8* \@objc_autorelease(i8* %value) 2241 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2242 return emitARCValueOperation(*this, value, nullptr, 2243 CGM.getObjCEntrypoints().objc_autorelease, 2244 llvm::Intrinsic::objc_autorelease); 2245 } 2246 2247 /// Autorelease the given object. 2248 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2249 llvm::Value * 2250 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2251 return emitARCValueOperation(*this, value, nullptr, 2252 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2253 llvm::Intrinsic::objc_autoreleaseReturnValue, 2254 /*isTailCall*/ true); 2255 } 2256 2257 /// Do a fused retain/autorelease of the given object. 2258 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2259 llvm::Value * 2260 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2261 return emitARCValueOperation(*this, value, nullptr, 2262 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2263 llvm::Intrinsic::objc_retainAutoreleaseReturnValue, 2264 /*isTailCall*/ true); 2265 } 2266 2267 /// Do a fused retain/autorelease of the given object. 2268 /// call i8* \@objc_retainAutorelease(i8* %value) 2269 /// or 2270 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2271 /// call i8* \@objc_autorelease(i8* %retain) 2272 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2273 llvm::Value *value) { 2274 if (!type->isBlockPointerType()) 2275 return EmitARCRetainAutoreleaseNonBlock(value); 2276 2277 if (isa<llvm::ConstantPointerNull>(value)) return value; 2278 2279 llvm::Type *origType = value->getType(); 2280 value = Builder.CreateBitCast(value, Int8PtrTy); 2281 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2282 value = EmitARCAutorelease(value); 2283 return Builder.CreateBitCast(value, origType); 2284 } 2285 2286 /// Do a fused retain/autorelease of the given object. 2287 /// call i8* \@objc_retainAutorelease(i8* %value) 2288 llvm::Value * 2289 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2290 return emitARCValueOperation(*this, value, nullptr, 2291 CGM.getObjCEntrypoints().objc_retainAutorelease, 2292 llvm::Intrinsic::objc_retainAutorelease); 2293 } 2294 2295 /// i8* \@objc_loadWeak(i8** %addr) 2296 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2297 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2298 return emitARCLoadOperation(*this, addr, 2299 CGM.getObjCEntrypoints().objc_loadWeak, 2300 llvm::Intrinsic::objc_loadWeak); 2301 } 2302 2303 /// i8* \@objc_loadWeakRetained(i8** %addr) 2304 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2305 return emitARCLoadOperation(*this, addr, 2306 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2307 llvm::Intrinsic::objc_loadWeakRetained); 2308 } 2309 2310 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2311 /// Returns %value. 2312 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2313 llvm::Value *value, 2314 bool ignored) { 2315 return emitARCStoreOperation(*this, addr, value, 2316 CGM.getObjCEntrypoints().objc_storeWeak, 2317 llvm::Intrinsic::objc_storeWeak, ignored); 2318 } 2319 2320 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2321 /// Returns %value. %addr is known to not have a current weak entry. 2322 /// Essentially equivalent to: 2323 /// *addr = nil; objc_storeWeak(addr, value); 2324 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2325 // If we're initializing to null, just write null to memory; no need 2326 // to get the runtime involved. But don't do this if optimization 2327 // is enabled, because accounting for this would make the optimizer 2328 // much more complicated. 2329 if (isa<llvm::ConstantPointerNull>(value) && 2330 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2331 Builder.CreateStore(value, addr); 2332 return; 2333 } 2334 2335 emitARCStoreOperation(*this, addr, value, 2336 CGM.getObjCEntrypoints().objc_initWeak, 2337 llvm::Intrinsic::objc_initWeak, /*ignored*/ true); 2338 } 2339 2340 /// void \@objc_destroyWeak(i8** %addr) 2341 /// Essentially objc_storeWeak(addr, nil). 2342 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2343 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2344 if (!fn) { 2345 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak); 2346 setARCRuntimeFunctionLinkage(CGM, fn); 2347 } 2348 2349 // Cast the argument to 'id*'. 2350 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2351 2352 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2353 } 2354 2355 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2356 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2357 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2358 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2359 emitARCCopyOperation(*this, dst, src, 2360 CGM.getObjCEntrypoints().objc_moveWeak, 2361 llvm::Intrinsic::objc_moveWeak); 2362 } 2363 2364 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2365 /// Disregards the current value in %dest. Essentially 2366 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2367 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2368 emitARCCopyOperation(*this, dst, src, 2369 CGM.getObjCEntrypoints().objc_copyWeak, 2370 llvm::Intrinsic::objc_copyWeak); 2371 } 2372 2373 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, 2374 Address SrcAddr) { 2375 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2376 Object = EmitObjCConsumeObject(Ty, Object); 2377 EmitARCStoreWeak(DstAddr, Object, false); 2378 } 2379 2380 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, 2381 Address SrcAddr) { 2382 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2383 Object = EmitObjCConsumeObject(Ty, Object); 2384 EmitARCStoreWeak(DstAddr, Object, false); 2385 EmitARCDestroyWeak(SrcAddr); 2386 } 2387 2388 /// Produce the code to do a objc_autoreleasepool_push. 2389 /// call i8* \@objc_autoreleasePoolPush(void) 2390 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2391 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2392 if (!fn) { 2393 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush); 2394 setARCRuntimeFunctionLinkage(CGM, fn); 2395 } 2396 2397 return EmitNounwindRuntimeCall(fn); 2398 } 2399 2400 /// Produce the code to do a primitive release. 2401 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2402 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2403 assert(value->getType() == Int8PtrTy); 2404 2405 if (getInvokeDest()) { 2406 // Call the runtime method not the intrinsic if we are handling exceptions 2407 llvm::Constant *&fn = 2408 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; 2409 if (!fn) { 2410 llvm::FunctionType *fnType = 2411 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2412 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop"); 2413 setARCRuntimeFunctionLinkage(CGM, fn); 2414 } 2415 2416 // objc_autoreleasePoolPop can throw. 2417 EmitRuntimeCallOrInvoke(fn, value); 2418 } else { 2419 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2420 if (!fn) { 2421 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop); 2422 setARCRuntimeFunctionLinkage(CGM, fn); 2423 } 2424 2425 EmitRuntimeCall(fn, value); 2426 } 2427 } 2428 2429 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2430 /// Which is: [[NSAutoreleasePool alloc] init]; 2431 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2432 /// init is declared as: - (id) init; in its NSObject super class. 2433 /// 2434 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2435 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2436 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2437 // [NSAutoreleasePool alloc] 2438 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2439 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2440 CallArgList Args; 2441 RValue AllocRV = 2442 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2443 getContext().getObjCIdType(), 2444 AllocSel, Receiver, Args); 2445 2446 // [Receiver init] 2447 Receiver = AllocRV.getScalarVal(); 2448 II = &CGM.getContext().Idents.get("init"); 2449 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2450 RValue InitRV = 2451 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2452 getContext().getObjCIdType(), 2453 InitSel, Receiver, Args); 2454 return InitRV.getScalarVal(); 2455 } 2456 2457 /// Allocate the given objc object. 2458 /// call i8* \@objc_alloc(i8* %value) 2459 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, 2460 llvm::Type *resultType) { 2461 return emitObjCValueOperation(*this, value, resultType, 2462 CGM.getObjCEntrypoints().objc_alloc, 2463 "objc_alloc"); 2464 } 2465 2466 /// Allocate the given objc object. 2467 /// call i8* \@objc_allocWithZone(i8* %value) 2468 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, 2469 llvm::Type *resultType) { 2470 return emitObjCValueOperation(*this, value, resultType, 2471 CGM.getObjCEntrypoints().objc_allocWithZone, 2472 "objc_allocWithZone"); 2473 } 2474 2475 /// Produce the code to do a primitive release. 2476 /// [tmp drain]; 2477 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2478 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2479 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2480 CallArgList Args; 2481 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2482 getContext().VoidTy, DrainSel, Arg, Args); 2483 } 2484 2485 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2486 Address addr, 2487 QualType type) { 2488 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2489 } 2490 2491 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2492 Address addr, 2493 QualType type) { 2494 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2495 } 2496 2497 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2498 Address addr, 2499 QualType type) { 2500 CGF.EmitARCDestroyWeak(addr); 2501 } 2502 2503 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2504 QualType type) { 2505 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2506 CGF.EmitARCIntrinsicUse(value); 2507 } 2508 2509 namespace { 2510 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2511 llvm::Value *Token; 2512 2513 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2514 2515 void Emit(CodeGenFunction &CGF, Flags flags) override { 2516 CGF.EmitObjCAutoreleasePoolPop(Token); 2517 } 2518 }; 2519 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2520 llvm::Value *Token; 2521 2522 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2523 2524 void Emit(CodeGenFunction &CGF, Flags flags) override { 2525 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2526 } 2527 }; 2528 } 2529 2530 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2531 if (CGM.getLangOpts().ObjCAutoRefCount) 2532 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2533 else 2534 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2535 } 2536 2537 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { 2538 switch (lifetime) { 2539 case Qualifiers::OCL_None: 2540 case Qualifiers::OCL_ExplicitNone: 2541 case Qualifiers::OCL_Strong: 2542 case Qualifiers::OCL_Autoreleasing: 2543 return true; 2544 2545 case Qualifiers::OCL_Weak: 2546 return false; 2547 } 2548 2549 llvm_unreachable("impossible lifetime!"); 2550 } 2551 2552 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2553 LValue lvalue, 2554 QualType type) { 2555 llvm::Value *result; 2556 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime()); 2557 if (shouldRetain) { 2558 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal(); 2559 } else { 2560 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); 2561 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress()); 2562 } 2563 return TryEmitResult(result, !shouldRetain); 2564 } 2565 2566 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2567 const Expr *e) { 2568 e = e->IgnoreParens(); 2569 QualType type = e->getType(); 2570 2571 // If we're loading retained from a __strong xvalue, we can avoid 2572 // an extra retain/release pair by zeroing out the source of this 2573 // "move" operation. 2574 if (e->isXValue() && 2575 !type.isConstQualified() && 2576 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2577 // Emit the lvalue. 2578 LValue lv = CGF.EmitLValue(e); 2579 2580 // Load the object pointer. 2581 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2582 SourceLocation()).getScalarVal(); 2583 2584 // Set the source pointer to NULL. 2585 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2586 2587 return TryEmitResult(result, true); 2588 } 2589 2590 // As a very special optimization, in ARC++, if the l-value is the 2591 // result of a non-volatile assignment, do a simple retain of the 2592 // result of the call to objc_storeWeak instead of reloading. 2593 if (CGF.getLangOpts().CPlusPlus && 2594 !type.isVolatileQualified() && 2595 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2596 isa<BinaryOperator>(e) && 2597 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2598 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2599 2600 // Try to emit code for scalar constant instead of emitting LValue and 2601 // loading it because we are not guaranteed to have an l-value. One of such 2602 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. 2603 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) { 2604 auto *DRE = const_cast<DeclRefExpr *>(decl_expr); 2605 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE)) 2606 return TryEmitResult(CGF.emitScalarConstant(constant, DRE), 2607 !shouldRetainObjCLifetime(type.getObjCLifetime())); 2608 } 2609 2610 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2611 } 2612 2613 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2614 llvm::Value *value)> 2615 ValueTransform; 2616 2617 /// Insert code immediately after a call. 2618 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2619 llvm::Value *value, 2620 ValueTransform doAfterCall, 2621 ValueTransform doFallback) { 2622 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2623 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2624 2625 // Place the retain immediately following the call. 2626 CGF.Builder.SetInsertPoint(call->getParent(), 2627 ++llvm::BasicBlock::iterator(call)); 2628 value = doAfterCall(CGF, value); 2629 2630 CGF.Builder.restoreIP(ip); 2631 return value; 2632 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2633 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2634 2635 // Place the retain at the beginning of the normal destination block. 2636 llvm::BasicBlock *BB = invoke->getNormalDest(); 2637 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2638 value = doAfterCall(CGF, value); 2639 2640 CGF.Builder.restoreIP(ip); 2641 return value; 2642 2643 // Bitcasts can arise because of related-result returns. Rewrite 2644 // the operand. 2645 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2646 llvm::Value *operand = bitcast->getOperand(0); 2647 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2648 bitcast->setOperand(0, operand); 2649 return bitcast; 2650 2651 // Generic fall-back case. 2652 } else { 2653 // Retain using the non-block variant: we never need to do a copy 2654 // of a block that's been returned to us. 2655 return doFallback(CGF, value); 2656 } 2657 } 2658 2659 /// Given that the given expression is some sort of call (which does 2660 /// not return retained), emit a retain following it. 2661 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2662 const Expr *e) { 2663 llvm::Value *value = CGF.EmitScalarExpr(e); 2664 return emitARCOperationAfterCall(CGF, value, 2665 [](CodeGenFunction &CGF, llvm::Value *value) { 2666 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2667 }, 2668 [](CodeGenFunction &CGF, llvm::Value *value) { 2669 return CGF.EmitARCRetainNonBlock(value); 2670 }); 2671 } 2672 2673 /// Given that the given expression is some sort of call (which does 2674 /// not return retained), perform an unsafeClaim following it. 2675 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 2676 const Expr *e) { 2677 llvm::Value *value = CGF.EmitScalarExpr(e); 2678 return emitARCOperationAfterCall(CGF, value, 2679 [](CodeGenFunction &CGF, llvm::Value *value) { 2680 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 2681 }, 2682 [](CodeGenFunction &CGF, llvm::Value *value) { 2683 return value; 2684 }); 2685 } 2686 2687 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 2688 bool allowUnsafeClaim) { 2689 if (allowUnsafeClaim && 2690 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 2691 return emitARCUnsafeClaimCallResult(*this, E); 2692 } else { 2693 llvm::Value *value = emitARCRetainCallResult(*this, E); 2694 return EmitObjCConsumeObject(E->getType(), value); 2695 } 2696 } 2697 2698 /// Determine whether it might be important to emit a separate 2699 /// objc_retain_block on the result of the given expression, or 2700 /// whether it's okay to just emit it in a +1 context. 2701 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2702 assert(e->getType()->isBlockPointerType()); 2703 e = e->IgnoreParens(); 2704 2705 // For future goodness, emit block expressions directly in +1 2706 // contexts if we can. 2707 if (isa<BlockExpr>(e)) 2708 return false; 2709 2710 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2711 switch (cast->getCastKind()) { 2712 // Emitting these operations in +1 contexts is goodness. 2713 case CK_LValueToRValue: 2714 case CK_ARCReclaimReturnedObject: 2715 case CK_ARCConsumeObject: 2716 case CK_ARCProduceObject: 2717 return false; 2718 2719 // These operations preserve a block type. 2720 case CK_NoOp: 2721 case CK_BitCast: 2722 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2723 2724 // These operations are known to be bad (or haven't been considered). 2725 case CK_AnyPointerToBlockPointerCast: 2726 default: 2727 return true; 2728 } 2729 } 2730 2731 return true; 2732 } 2733 2734 namespace { 2735 /// A CRTP base class for emitting expressions of retainable object 2736 /// pointer type in ARC. 2737 template <typename Impl, typename Result> class ARCExprEmitter { 2738 protected: 2739 CodeGenFunction &CGF; 2740 Impl &asImpl() { return *static_cast<Impl*>(this); } 2741 2742 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 2743 2744 public: 2745 Result visit(const Expr *e); 2746 Result visitCastExpr(const CastExpr *e); 2747 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 2748 Result visitBinaryOperator(const BinaryOperator *e); 2749 Result visitBinAssign(const BinaryOperator *e); 2750 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 2751 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 2752 Result visitBinAssignWeak(const BinaryOperator *e); 2753 Result visitBinAssignStrong(const BinaryOperator *e); 2754 2755 // Minimal implementation: 2756 // Result visitLValueToRValue(const Expr *e) 2757 // Result visitConsumeObject(const Expr *e) 2758 // Result visitExtendBlockObject(const Expr *e) 2759 // Result visitReclaimReturnedObject(const Expr *e) 2760 // Result visitCall(const Expr *e) 2761 // Result visitExpr(const Expr *e) 2762 // 2763 // Result emitBitCast(Result result, llvm::Type *resultType) 2764 // llvm::Value *getValueOfResult(Result result) 2765 }; 2766 } 2767 2768 /// Try to emit a PseudoObjectExpr under special ARC rules. 2769 /// 2770 /// This massively duplicates emitPseudoObjectRValue. 2771 template <typename Impl, typename Result> 2772 Result 2773 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 2774 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2775 2776 // Find the result expression. 2777 const Expr *resultExpr = E->getResultExpr(); 2778 assert(resultExpr); 2779 Result result; 2780 2781 for (PseudoObjectExpr::const_semantics_iterator 2782 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2783 const Expr *semantic = *i; 2784 2785 // If this semantic expression is an opaque value, bind it 2786 // to the result of its source expression. 2787 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2788 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2789 OVMA opaqueData; 2790 2791 // If this semantic is the result of the pseudo-object 2792 // expression, try to evaluate the source as +1. 2793 if (ov == resultExpr) { 2794 assert(!OVMA::shouldBindAsLValue(ov)); 2795 result = asImpl().visit(ov->getSourceExpr()); 2796 opaqueData = OVMA::bind(CGF, ov, 2797 RValue::get(asImpl().getValueOfResult(result))); 2798 2799 // Otherwise, just bind it. 2800 } else { 2801 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2802 } 2803 opaques.push_back(opaqueData); 2804 2805 // Otherwise, if the expression is the result, evaluate it 2806 // and remember the result. 2807 } else if (semantic == resultExpr) { 2808 result = asImpl().visit(semantic); 2809 2810 // Otherwise, evaluate the expression in an ignored context. 2811 } else { 2812 CGF.EmitIgnoredExpr(semantic); 2813 } 2814 } 2815 2816 // Unbind all the opaques now. 2817 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2818 opaques[i].unbind(CGF); 2819 2820 return result; 2821 } 2822 2823 template <typename Impl, typename Result> 2824 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 2825 switch (e->getCastKind()) { 2826 2827 // No-op casts don't change the type, so we just ignore them. 2828 case CK_NoOp: 2829 return asImpl().visit(e->getSubExpr()); 2830 2831 // These casts can change the type. 2832 case CK_CPointerToObjCPointerCast: 2833 case CK_BlockPointerToObjCPointerCast: 2834 case CK_AnyPointerToBlockPointerCast: 2835 case CK_BitCast: { 2836 llvm::Type *resultType = CGF.ConvertType(e->getType()); 2837 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 2838 Result result = asImpl().visit(e->getSubExpr()); 2839 return asImpl().emitBitCast(result, resultType); 2840 } 2841 2842 // Handle some casts specially. 2843 case CK_LValueToRValue: 2844 return asImpl().visitLValueToRValue(e->getSubExpr()); 2845 case CK_ARCConsumeObject: 2846 return asImpl().visitConsumeObject(e->getSubExpr()); 2847 case CK_ARCExtendBlockObject: 2848 return asImpl().visitExtendBlockObject(e->getSubExpr()); 2849 case CK_ARCReclaimReturnedObject: 2850 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 2851 2852 // Otherwise, use the default logic. 2853 default: 2854 return asImpl().visitExpr(e); 2855 } 2856 } 2857 2858 template <typename Impl, typename Result> 2859 Result 2860 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 2861 switch (e->getOpcode()) { 2862 case BO_Comma: 2863 CGF.EmitIgnoredExpr(e->getLHS()); 2864 CGF.EnsureInsertPoint(); 2865 return asImpl().visit(e->getRHS()); 2866 2867 case BO_Assign: 2868 return asImpl().visitBinAssign(e); 2869 2870 default: 2871 return asImpl().visitExpr(e); 2872 } 2873 } 2874 2875 template <typename Impl, typename Result> 2876 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 2877 switch (e->getLHS()->getType().getObjCLifetime()) { 2878 case Qualifiers::OCL_ExplicitNone: 2879 return asImpl().visitBinAssignUnsafeUnretained(e); 2880 2881 case Qualifiers::OCL_Weak: 2882 return asImpl().visitBinAssignWeak(e); 2883 2884 case Qualifiers::OCL_Autoreleasing: 2885 return asImpl().visitBinAssignAutoreleasing(e); 2886 2887 case Qualifiers::OCL_Strong: 2888 return asImpl().visitBinAssignStrong(e); 2889 2890 case Qualifiers::OCL_None: 2891 return asImpl().visitExpr(e); 2892 } 2893 llvm_unreachable("bad ObjC ownership qualifier"); 2894 } 2895 2896 /// The default rule for __unsafe_unretained emits the RHS recursively, 2897 /// stores into the unsafe variable, and propagates the result outward. 2898 template <typename Impl, typename Result> 2899 Result ARCExprEmitter<Impl,Result>:: 2900 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 2901 // Recursively emit the RHS. 2902 // For __block safety, do this before emitting the LHS. 2903 Result result = asImpl().visit(e->getRHS()); 2904 2905 // Perform the store. 2906 LValue lvalue = 2907 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 2908 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 2909 lvalue); 2910 2911 return result; 2912 } 2913 2914 template <typename Impl, typename Result> 2915 Result 2916 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 2917 return asImpl().visitExpr(e); 2918 } 2919 2920 template <typename Impl, typename Result> 2921 Result 2922 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 2923 return asImpl().visitExpr(e); 2924 } 2925 2926 template <typename Impl, typename Result> 2927 Result 2928 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 2929 return asImpl().visitExpr(e); 2930 } 2931 2932 /// The general expression-emission logic. 2933 template <typename Impl, typename Result> 2934 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 2935 // We should *never* see a nested full-expression here, because if 2936 // we fail to emit at +1, our caller must not retain after we close 2937 // out the full-expression. This isn't as important in the unsafe 2938 // emitter. 2939 assert(!isa<ExprWithCleanups>(e)); 2940 2941 // Look through parens, __extension__, generic selection, etc. 2942 e = e->IgnoreParens(); 2943 2944 // Handle certain kinds of casts. 2945 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2946 return asImpl().visitCastExpr(ce); 2947 2948 // Handle the comma operator. 2949 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 2950 return asImpl().visitBinaryOperator(op); 2951 2952 // TODO: handle conditional operators here 2953 2954 // For calls and message sends, use the retained-call logic. 2955 // Delegate inits are a special case in that they're the only 2956 // returns-retained expression that *isn't* surrounded by 2957 // a consume. 2958 } else if (isa<CallExpr>(e) || 2959 (isa<ObjCMessageExpr>(e) && 2960 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2961 return asImpl().visitCall(e); 2962 2963 // Look through pseudo-object expressions. 2964 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2965 return asImpl().visitPseudoObjectExpr(pseudo); 2966 } 2967 2968 return asImpl().visitExpr(e); 2969 } 2970 2971 namespace { 2972 2973 /// An emitter for +1 results. 2974 struct ARCRetainExprEmitter : 2975 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 2976 2977 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 2978 2979 llvm::Value *getValueOfResult(TryEmitResult result) { 2980 return result.getPointer(); 2981 } 2982 2983 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 2984 llvm::Value *value = result.getPointer(); 2985 value = CGF.Builder.CreateBitCast(value, resultType); 2986 result.setPointer(value); 2987 return result; 2988 } 2989 2990 TryEmitResult visitLValueToRValue(const Expr *e) { 2991 return tryEmitARCRetainLoadOfScalar(CGF, e); 2992 } 2993 2994 /// For consumptions, just emit the subexpression and thus elide 2995 /// the retain/release pair. 2996 TryEmitResult visitConsumeObject(const Expr *e) { 2997 llvm::Value *result = CGF.EmitScalarExpr(e); 2998 return TryEmitResult(result, true); 2999 } 3000 3001 /// Block extends are net +0. Naively, we could just recurse on 3002 /// the subexpression, but actually we need to ensure that the 3003 /// value is copied as a block, so there's a little filter here. 3004 TryEmitResult visitExtendBlockObject(const Expr *e) { 3005 llvm::Value *result; // will be a +0 value 3006 3007 // If we can't safely assume the sub-expression will produce a 3008 // block-copied value, emit the sub-expression at +0. 3009 if (shouldEmitSeparateBlockRetain(e)) { 3010 result = CGF.EmitScalarExpr(e); 3011 3012 // Otherwise, try to emit the sub-expression at +1 recursively. 3013 } else { 3014 TryEmitResult subresult = asImpl().visit(e); 3015 3016 // If that produced a retained value, just use that. 3017 if (subresult.getInt()) { 3018 return subresult; 3019 } 3020 3021 // Otherwise it's +0. 3022 result = subresult.getPointer(); 3023 } 3024 3025 // Retain the object as a block. 3026 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 3027 return TryEmitResult(result, true); 3028 } 3029 3030 /// For reclaims, emit the subexpression as a retained call and 3031 /// skip the consumption. 3032 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 3033 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3034 return TryEmitResult(result, true); 3035 } 3036 3037 /// When we have an undecorated call, retroactively do a claim. 3038 TryEmitResult visitCall(const Expr *e) { 3039 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3040 return TryEmitResult(result, true); 3041 } 3042 3043 // TODO: maybe special-case visitBinAssignWeak? 3044 3045 TryEmitResult visitExpr(const Expr *e) { 3046 // We didn't find an obvious production, so emit what we've got and 3047 // tell the caller that we didn't manage to retain. 3048 llvm::Value *result = CGF.EmitScalarExpr(e); 3049 return TryEmitResult(result, false); 3050 } 3051 }; 3052 } 3053 3054 static TryEmitResult 3055 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 3056 return ARCRetainExprEmitter(CGF).visit(e); 3057 } 3058 3059 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 3060 LValue lvalue, 3061 QualType type) { 3062 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 3063 llvm::Value *value = result.getPointer(); 3064 if (!result.getInt()) 3065 value = CGF.EmitARCRetain(type, value); 3066 return value; 3067 } 3068 3069 /// EmitARCRetainScalarExpr - Semantically equivalent to 3070 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 3071 /// best-effort attempt to peephole expressions that naturally produce 3072 /// retained objects. 3073 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 3074 // The retain needs to happen within the full-expression. 3075 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3076 enterFullExpression(cleanups); 3077 RunCleanupsScope scope(*this); 3078 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 3079 } 3080 3081 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3082 llvm::Value *value = result.getPointer(); 3083 if (!result.getInt()) 3084 value = EmitARCRetain(e->getType(), value); 3085 return value; 3086 } 3087 3088 llvm::Value * 3089 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 3090 // The retain needs to happen within the full-expression. 3091 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3092 enterFullExpression(cleanups); 3093 RunCleanupsScope scope(*this); 3094 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 3095 } 3096 3097 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3098 llvm::Value *value = result.getPointer(); 3099 if (result.getInt()) 3100 value = EmitARCAutorelease(value); 3101 else 3102 value = EmitARCRetainAutorelease(e->getType(), value); 3103 return value; 3104 } 3105 3106 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 3107 llvm::Value *result; 3108 bool doRetain; 3109 3110 if (shouldEmitSeparateBlockRetain(e)) { 3111 result = EmitScalarExpr(e); 3112 doRetain = true; 3113 } else { 3114 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 3115 result = subresult.getPointer(); 3116 doRetain = !subresult.getInt(); 3117 } 3118 3119 if (doRetain) 3120 result = EmitARCRetainBlock(result, /*mandatory*/ true); 3121 return EmitObjCConsumeObject(e->getType(), result); 3122 } 3123 3124 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3125 // In ARC, retain and autorelease the expression. 3126 if (getLangOpts().ObjCAutoRefCount) { 3127 // Do so before running any cleanups for the full-expression. 3128 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3129 return EmitARCRetainAutoreleaseScalarExpr(expr); 3130 } 3131 3132 // Otherwise, use the normal scalar-expression emission. The 3133 // exception machinery doesn't do anything special with the 3134 // exception like retaining it, so there's no safety associated with 3135 // only running cleanups after the throw has started, and when it 3136 // matters it tends to be substantially inferior code. 3137 return EmitScalarExpr(expr); 3138 } 3139 3140 namespace { 3141 3142 /// An emitter for assigning into an __unsafe_unretained context. 3143 struct ARCUnsafeUnretainedExprEmitter : 3144 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3145 3146 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3147 3148 llvm::Value *getValueOfResult(llvm::Value *value) { 3149 return value; 3150 } 3151 3152 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3153 return CGF.Builder.CreateBitCast(value, resultType); 3154 } 3155 3156 llvm::Value *visitLValueToRValue(const Expr *e) { 3157 return CGF.EmitScalarExpr(e); 3158 } 3159 3160 /// For consumptions, just emit the subexpression and perform the 3161 /// consumption like normal. 3162 llvm::Value *visitConsumeObject(const Expr *e) { 3163 llvm::Value *value = CGF.EmitScalarExpr(e); 3164 return CGF.EmitObjCConsumeObject(e->getType(), value); 3165 } 3166 3167 /// No special logic for block extensions. (This probably can't 3168 /// actually happen in this emitter, though.) 3169 llvm::Value *visitExtendBlockObject(const Expr *e) { 3170 return CGF.EmitARCExtendBlockObject(e); 3171 } 3172 3173 /// For reclaims, perform an unsafeClaim if that's enabled. 3174 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3175 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3176 } 3177 3178 /// When we have an undecorated call, just emit it without adding 3179 /// the unsafeClaim. 3180 llvm::Value *visitCall(const Expr *e) { 3181 return CGF.EmitScalarExpr(e); 3182 } 3183 3184 /// Just do normal scalar emission in the default case. 3185 llvm::Value *visitExpr(const Expr *e) { 3186 return CGF.EmitScalarExpr(e); 3187 } 3188 }; 3189 } 3190 3191 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3192 const Expr *e) { 3193 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3194 } 3195 3196 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3197 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3198 /// avoiding any spurious retains, including by performing reclaims 3199 /// with objc_unsafeClaimAutoreleasedReturnValue. 3200 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3201 // Look through full-expressions. 3202 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3203 enterFullExpression(cleanups); 3204 RunCleanupsScope scope(*this); 3205 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3206 } 3207 3208 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3209 } 3210 3211 std::pair<LValue,llvm::Value*> 3212 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3213 bool ignored) { 3214 // Evaluate the RHS first. If we're ignoring the result, assume 3215 // that we can emit at an unsafe +0. 3216 llvm::Value *value; 3217 if (ignored) { 3218 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3219 } else { 3220 value = EmitScalarExpr(e->getRHS()); 3221 } 3222 3223 // Emit the LHS and perform the store. 3224 LValue lvalue = EmitLValue(e->getLHS()); 3225 EmitStoreOfScalar(value, lvalue); 3226 3227 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3228 } 3229 3230 std::pair<LValue,llvm::Value*> 3231 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3232 bool ignored) { 3233 // Evaluate the RHS first. 3234 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3235 llvm::Value *value = result.getPointer(); 3236 3237 bool hasImmediateRetain = result.getInt(); 3238 3239 // If we didn't emit a retained object, and the l-value is of block 3240 // type, then we need to emit the block-retain immediately in case 3241 // it invalidates the l-value. 3242 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3243 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3244 hasImmediateRetain = true; 3245 } 3246 3247 LValue lvalue = EmitLValue(e->getLHS()); 3248 3249 // If the RHS was emitted retained, expand this. 3250 if (hasImmediateRetain) { 3251 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3252 EmitStoreOfScalar(value, lvalue); 3253 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3254 } else { 3255 value = EmitARCStoreStrong(lvalue, value, ignored); 3256 } 3257 3258 return std::pair<LValue,llvm::Value*>(lvalue, value); 3259 } 3260 3261 std::pair<LValue,llvm::Value*> 3262 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3263 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3264 LValue lvalue = EmitLValue(e->getLHS()); 3265 3266 EmitStoreOfScalar(value, lvalue); 3267 3268 return std::pair<LValue,llvm::Value*>(lvalue, value); 3269 } 3270 3271 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3272 const ObjCAutoreleasePoolStmt &ARPS) { 3273 const Stmt *subStmt = ARPS.getSubStmt(); 3274 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3275 3276 CGDebugInfo *DI = getDebugInfo(); 3277 if (DI) 3278 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3279 3280 // Keep track of the current cleanup stack depth. 3281 RunCleanupsScope Scope(*this); 3282 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3283 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3284 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3285 } else { 3286 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3287 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3288 } 3289 3290 for (const auto *I : S.body()) 3291 EmitStmt(I); 3292 3293 if (DI) 3294 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3295 } 3296 3297 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3298 /// make sure it survives garbage collection until this point. 3299 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3300 // We just use an inline assembly. 3301 llvm::FunctionType *extenderType 3302 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3303 llvm::Value *extender 3304 = llvm::InlineAsm::get(extenderType, 3305 /* assembly */ "", 3306 /* constraints */ "r", 3307 /* side effects */ true); 3308 3309 object = Builder.CreateBitCast(object, VoidPtrTy); 3310 EmitNounwindRuntimeCall(extender, object); 3311 } 3312 3313 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3314 /// non-trivial copy assignment function, produce following helper function. 3315 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3316 /// 3317 llvm::Constant * 3318 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3319 const ObjCPropertyImplDecl *PID) { 3320 if (!getLangOpts().CPlusPlus || 3321 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3322 return nullptr; 3323 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3324 if (!Ty->isRecordType()) 3325 return nullptr; 3326 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3327 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3328 return nullptr; 3329 llvm::Constant *HelperFn = nullptr; 3330 if (hasTrivialSetExpr(PID)) 3331 return nullptr; 3332 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3333 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3334 return HelperFn; 3335 3336 ASTContext &C = getContext(); 3337 IdentifierInfo *II 3338 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3339 3340 QualType ReturnTy = C.VoidTy; 3341 QualType DestTy = C.getPointerType(Ty); 3342 QualType SrcTy = Ty; 3343 SrcTy.addConst(); 3344 SrcTy = C.getPointerType(SrcTy); 3345 3346 SmallVector<QualType, 2> ArgTys; 3347 ArgTys.push_back(DestTy); 3348 ArgTys.push_back(SrcTy); 3349 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3350 3351 FunctionDecl *FD = FunctionDecl::Create( 3352 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3353 FunctionTy, nullptr, SC_Static, false, false); 3354 3355 FunctionArgList args; 3356 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3357 ImplicitParamDecl::Other); 3358 args.push_back(&DstDecl); 3359 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3360 ImplicitParamDecl::Other); 3361 args.push_back(&SrcDecl); 3362 3363 const CGFunctionInfo &FI = 3364 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3365 3366 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3367 3368 llvm::Function *Fn = 3369 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3370 "__assign_helper_atomic_property_", 3371 &CGM.getModule()); 3372 3373 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3374 3375 StartFunction(FD, ReturnTy, Fn, FI, args); 3376 3377 DeclRefExpr DstExpr(&DstDecl, false, DestTy, 3378 VK_RValue, SourceLocation()); 3379 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 3380 VK_LValue, OK_Ordinary, SourceLocation(), false); 3381 3382 DeclRefExpr SrcExpr(&SrcDecl, false, SrcTy, 3383 VK_RValue, SourceLocation()); 3384 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3385 VK_LValue, OK_Ordinary, SourceLocation(), false); 3386 3387 Expr *Args[2] = { &DST, &SRC }; 3388 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3389 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 3390 Args, DestTy->getPointeeType(), 3391 VK_LValue, SourceLocation(), FPOptions()); 3392 3393 EmitStmt(&TheCall); 3394 3395 FinishFunction(); 3396 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3397 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3398 return HelperFn; 3399 } 3400 3401 llvm::Constant * 3402 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3403 const ObjCPropertyImplDecl *PID) { 3404 if (!getLangOpts().CPlusPlus || 3405 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3406 return nullptr; 3407 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3408 QualType Ty = PD->getType(); 3409 if (!Ty->isRecordType()) 3410 return nullptr; 3411 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3412 return nullptr; 3413 llvm::Constant *HelperFn = nullptr; 3414 if (hasTrivialGetExpr(PID)) 3415 return nullptr; 3416 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3417 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3418 return HelperFn; 3419 3420 ASTContext &C = getContext(); 3421 IdentifierInfo *II = 3422 &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3423 3424 QualType ReturnTy = C.VoidTy; 3425 QualType DestTy = C.getPointerType(Ty); 3426 QualType SrcTy = Ty; 3427 SrcTy.addConst(); 3428 SrcTy = C.getPointerType(SrcTy); 3429 3430 SmallVector<QualType, 2> ArgTys; 3431 ArgTys.push_back(DestTy); 3432 ArgTys.push_back(SrcTy); 3433 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3434 3435 FunctionDecl *FD = FunctionDecl::Create( 3436 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3437 FunctionTy, nullptr, SC_Static, false, false); 3438 3439 FunctionArgList args; 3440 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3441 ImplicitParamDecl::Other); 3442 args.push_back(&DstDecl); 3443 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3444 ImplicitParamDecl::Other); 3445 args.push_back(&SrcDecl); 3446 3447 const CGFunctionInfo &FI = 3448 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3449 3450 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3451 3452 llvm::Function *Fn = llvm::Function::Create( 3453 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_", 3454 &CGM.getModule()); 3455 3456 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3457 3458 StartFunction(FD, ReturnTy, Fn, FI, args); 3459 3460 DeclRefExpr SrcExpr(&SrcDecl, false, SrcTy, 3461 VK_RValue, SourceLocation()); 3462 3463 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3464 VK_LValue, OK_Ordinary, SourceLocation(), false); 3465 3466 CXXConstructExpr *CXXConstExpr = 3467 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3468 3469 SmallVector<Expr*, 4> ConstructorArgs; 3470 ConstructorArgs.push_back(&SRC); 3471 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3472 CXXConstExpr->arg_end()); 3473 3474 CXXConstructExpr *TheCXXConstructExpr = 3475 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3476 CXXConstExpr->getConstructor(), 3477 CXXConstExpr->isElidable(), 3478 ConstructorArgs, 3479 CXXConstExpr->hadMultipleCandidates(), 3480 CXXConstExpr->isListInitialization(), 3481 CXXConstExpr->isStdInitListInitialization(), 3482 CXXConstExpr->requiresZeroInitialization(), 3483 CXXConstExpr->getConstructionKind(), 3484 SourceRange()); 3485 3486 DeclRefExpr DstExpr(&DstDecl, false, DestTy, 3487 VK_RValue, SourceLocation()); 3488 3489 RValue DV = EmitAnyExpr(&DstExpr); 3490 CharUnits Alignment 3491 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3492 EmitAggExpr(TheCXXConstructExpr, 3493 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3494 Qualifiers(), 3495 AggValueSlot::IsDestructed, 3496 AggValueSlot::DoesNotNeedGCBarriers, 3497 AggValueSlot::IsNotAliased, 3498 AggValueSlot::DoesNotOverlap)); 3499 3500 FinishFunction(); 3501 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3502 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3503 return HelperFn; 3504 } 3505 3506 llvm::Value * 3507 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3508 // Get selectors for retain/autorelease. 3509 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3510 Selector CopySelector = 3511 getContext().Selectors.getNullarySelector(CopyID); 3512 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3513 Selector AutoreleaseSelector = 3514 getContext().Selectors.getNullarySelector(AutoreleaseID); 3515 3516 // Emit calls to retain/autorelease. 3517 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3518 llvm::Value *Val = Block; 3519 RValue Result; 3520 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3521 Ty, CopySelector, 3522 Val, CallArgList(), nullptr, nullptr); 3523 Val = Result.getScalarVal(); 3524 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3525 Ty, AutoreleaseSelector, 3526 Val, CallArgList(), nullptr, nullptr); 3527 Val = Result.getScalarVal(); 3528 return Val; 3529 } 3530 3531 llvm::Value * 3532 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) { 3533 assert(Args.size() == 3 && "Expected 3 argument here!"); 3534 3535 if (!CGM.IsOSVersionAtLeastFn) { 3536 llvm::FunctionType *FTy = 3537 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 3538 CGM.IsOSVersionAtLeastFn = 3539 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 3540 } 3541 3542 llvm::Value *CallRes = 3543 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 3544 3545 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 3546 } 3547 3548 void CodeGenModule::emitAtAvailableLinkGuard() { 3549 if (!IsOSVersionAtLeastFn) 3550 return; 3551 // @available requires CoreFoundation only on Darwin. 3552 if (!Target.getTriple().isOSDarwin()) 3553 return; 3554 // Add -framework CoreFoundation to the linker commands. We still want to 3555 // emit the core foundation reference down below because otherwise if 3556 // CoreFoundation is not used in the code, the linker won't link the 3557 // framework. 3558 auto &Context = getLLVMContext(); 3559 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3560 llvm::MDString::get(Context, "CoreFoundation")}; 3561 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 3562 // Emit a reference to a symbol from CoreFoundation to ensure that 3563 // CoreFoundation is linked into the final binary. 3564 llvm::FunctionType *FTy = 3565 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 3566 llvm::Constant *CFFunc = 3567 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 3568 3569 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 3570 llvm::Function *CFLinkCheckFunc = cast<llvm::Function>(CreateBuiltinFunction( 3571 CheckFTy, "__clang_at_available_requires_core_foundation_framework")); 3572 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 3573 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 3574 CodeGenFunction CGF(*this); 3575 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 3576 CGF.EmitNounwindRuntimeCall(CFFunc, llvm::Constant::getNullValue(VoidPtrTy)); 3577 CGF.Builder.CreateUnreachable(); 3578 addCompilerUsedGlobal(CFLinkCheckFunc); 3579 } 3580 3581 CGObjCRuntime::~CGObjCRuntime() {} 3582