1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/DataLayout.h" 25 #include "llvm/InlineAsm.h" 26 using namespace clang; 27 using namespace CodeGen; 28 29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 30 static TryEmitResult 31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 32 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 33 QualType ET, 34 const ObjCMethodDecl *Method, 35 RValue Result); 36 37 /// Given the address of a variable of pointer type, find the correct 38 /// null to store into it. 39 static llvm::Constant *getNullForVariable(llvm::Value *addr) { 40 llvm::Type *type = 41 cast<llvm::PointerType>(addr->getType())->getElementType(); 42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 43 } 44 45 /// Emits an instance of NSConstantString representing the object. 46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 47 { 48 llvm::Constant *C = 49 CGM.getObjCRuntime().GenerateConstantString(E->getString()); 50 // FIXME: This bitcast should just be made an invariant on the Runtime. 51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 52 } 53 54 /// EmitObjCBoxedExpr - This routine generates code to call 55 /// the appropriate expression boxing method. This will either be 56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:]. 57 /// 58 llvm::Value * 59 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 60 // Generate the correct selector for this literal's concrete type. 61 const Expr *SubExpr = E->getSubExpr(); 62 // Get the method. 63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 64 assert(BoxingMethod && "BoxingMethod is null"); 65 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 66 Selector Sel = BoxingMethod->getSelector(); 67 68 // Generate a reference to the class pointer, which will be the receiver. 69 // Assumes that the method was introduced in the class that should be 70 // messaged (avoids pulling it out of the result type). 71 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 72 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 73 llvm::Value *Receiver = Runtime.GetClass(Builder, ClassDecl); 74 75 const ParmVarDecl *argDecl = *BoxingMethod->param_begin(); 76 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 77 RValue RV = EmitAnyExpr(SubExpr); 78 CallArgList Args; 79 Args.add(RV, ArgQT); 80 81 RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 82 BoxingMethod->getResultType(), Sel, Receiver, Args, 83 ClassDecl, BoxingMethod); 84 return Builder.CreateBitCast(result.getScalarVal(), 85 ConvertType(E->getType())); 86 } 87 88 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 89 const ObjCMethodDecl *MethodWithObjects) { 90 ASTContext &Context = CGM.getContext(); 91 const ObjCDictionaryLiteral *DLE = 0; 92 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 93 if (!ALE) 94 DLE = cast<ObjCDictionaryLiteral>(E); 95 96 // Compute the type of the array we're initializing. 97 uint64_t NumElements = 98 ALE ? ALE->getNumElements() : DLE->getNumElements(); 99 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 100 NumElements); 101 QualType ElementType = Context.getObjCIdType().withConst(); 102 QualType ElementArrayType 103 = Context.getConstantArrayType(ElementType, APNumElements, 104 ArrayType::Normal, /*IndexTypeQuals=*/0); 105 106 // Allocate the temporary array(s). 107 llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects"); 108 llvm::Value *Keys = 0; 109 if (DLE) 110 Keys = CreateMemTemp(ElementArrayType, "keys"); 111 112 // Perform the actual initialialization of the array(s). 113 for (uint64_t i = 0; i < NumElements; i++) { 114 if (ALE) { 115 // Emit the initializer. 116 const Expr *Rhs = ALE->getElement(i); 117 LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i), 118 ElementType, 119 Context.getTypeAlignInChars(Rhs->getType()), 120 Context); 121 EmitScalarInit(Rhs, /*D=*/0, LV, /*capturedByInit=*/false); 122 } else { 123 // Emit the key initializer. 124 const Expr *Key = DLE->getKeyValueElement(i).Key; 125 LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i), 126 ElementType, 127 Context.getTypeAlignInChars(Key->getType()), 128 Context); 129 EmitScalarInit(Key, /*D=*/0, KeyLV, /*capturedByInit=*/false); 130 131 // Emit the value initializer. 132 const Expr *Value = DLE->getKeyValueElement(i).Value; 133 LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i), 134 ElementType, 135 Context.getTypeAlignInChars(Value->getType()), 136 Context); 137 EmitScalarInit(Value, /*D=*/0, ValueLV, /*capturedByInit=*/false); 138 } 139 } 140 141 // Generate the argument list. 142 CallArgList Args; 143 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 144 const ParmVarDecl *argDecl = *PI++; 145 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 146 Args.add(RValue::get(Objects), ArgQT); 147 if (DLE) { 148 argDecl = *PI++; 149 ArgQT = argDecl->getType().getUnqualifiedType(); 150 Args.add(RValue::get(Keys), ArgQT); 151 } 152 argDecl = *PI; 153 ArgQT = argDecl->getType().getUnqualifiedType(); 154 llvm::Value *Count = 155 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 156 Args.add(RValue::get(Count), ArgQT); 157 158 // Generate a reference to the class pointer, which will be the receiver. 159 Selector Sel = MethodWithObjects->getSelector(); 160 QualType ResultType = E->getType(); 161 const ObjCObjectPointerType *InterfacePointerType 162 = ResultType->getAsObjCInterfacePointerType(); 163 ObjCInterfaceDecl *Class 164 = InterfacePointerType->getObjectType()->getInterface(); 165 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 166 llvm::Value *Receiver = Runtime.GetClass(Builder, Class); 167 168 // Generate the message send. 169 RValue result 170 = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 171 MethodWithObjects->getResultType(), 172 Sel, 173 Receiver, Args, Class, 174 MethodWithObjects); 175 return Builder.CreateBitCast(result.getScalarVal(), 176 ConvertType(E->getType())); 177 } 178 179 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 180 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 181 } 182 183 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 184 const ObjCDictionaryLiteral *E) { 185 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 186 } 187 188 /// Emit a selector. 189 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 190 // Untyped selector. 191 // Note that this implementation allows for non-constant strings to be passed 192 // as arguments to @selector(). Currently, the only thing preventing this 193 // behaviour is the type checking in the front end. 194 return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector()); 195 } 196 197 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 198 // FIXME: This should pass the Decl not the name. 199 return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol()); 200 } 201 202 /// \brief Adjust the type of the result of an Objective-C message send 203 /// expression when the method has a related result type. 204 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 205 QualType ExpT, 206 const ObjCMethodDecl *Method, 207 RValue Result) { 208 if (!Method) 209 return Result; 210 211 if (!Method->hasRelatedResultType() || 212 CGF.getContext().hasSameType(ExpT, Method->getResultType()) || 213 !Result.isScalar()) 214 return Result; 215 216 // We have applied a related result type. Cast the rvalue appropriately. 217 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 218 CGF.ConvertType(ExpT))); 219 } 220 221 /// Decide whether to extend the lifetime of the receiver of a 222 /// returns-inner-pointer message. 223 static bool 224 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 225 switch (message->getReceiverKind()) { 226 227 // For a normal instance message, we should extend unless the 228 // receiver is loaded from a variable with precise lifetime. 229 case ObjCMessageExpr::Instance: { 230 const Expr *receiver = message->getInstanceReceiver(); 231 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 232 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 233 receiver = ice->getSubExpr()->IgnoreParens(); 234 235 // Only __strong variables. 236 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 237 return true; 238 239 // All ivars and fields have precise lifetime. 240 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 241 return false; 242 243 // Otherwise, check for variables. 244 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 245 if (!declRef) return true; 246 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 247 if (!var) return true; 248 249 // All variables have precise lifetime except local variables with 250 // automatic storage duration that aren't specially marked. 251 return (var->hasLocalStorage() && 252 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 253 } 254 255 case ObjCMessageExpr::Class: 256 case ObjCMessageExpr::SuperClass: 257 // It's never necessary for class objects. 258 return false; 259 260 case ObjCMessageExpr::SuperInstance: 261 // We generally assume that 'self' lives throughout a method call. 262 return false; 263 } 264 265 llvm_unreachable("invalid receiver kind"); 266 } 267 268 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 269 ReturnValueSlot Return) { 270 // Only the lookup mechanism and first two arguments of the method 271 // implementation vary between runtimes. We can get the receiver and 272 // arguments in generic code. 273 274 bool isDelegateInit = E->isDelegateInitCall(); 275 276 const ObjCMethodDecl *method = E->getMethodDecl(); 277 278 // We don't retain the receiver in delegate init calls, and this is 279 // safe because the receiver value is always loaded from 'self', 280 // which we zero out. We don't want to Block_copy block receivers, 281 // though. 282 bool retainSelf = 283 (!isDelegateInit && 284 CGM.getLangOpts().ObjCAutoRefCount && 285 method && 286 method->hasAttr<NSConsumesSelfAttr>()); 287 288 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 289 bool isSuperMessage = false; 290 bool isClassMessage = false; 291 ObjCInterfaceDecl *OID = 0; 292 // Find the receiver 293 QualType ReceiverType; 294 llvm::Value *Receiver = 0; 295 switch (E->getReceiverKind()) { 296 case ObjCMessageExpr::Instance: 297 ReceiverType = E->getInstanceReceiver()->getType(); 298 if (retainSelf) { 299 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 300 E->getInstanceReceiver()); 301 Receiver = ter.getPointer(); 302 if (ter.getInt()) retainSelf = false; 303 } else 304 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 305 break; 306 307 case ObjCMessageExpr::Class: { 308 ReceiverType = E->getClassReceiver(); 309 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 310 assert(ObjTy && "Invalid Objective-C class message send"); 311 OID = ObjTy->getInterface(); 312 assert(OID && "Invalid Objective-C class message send"); 313 Receiver = Runtime.GetClass(Builder, OID); 314 isClassMessage = true; 315 break; 316 } 317 318 case ObjCMessageExpr::SuperInstance: 319 ReceiverType = E->getSuperType(); 320 Receiver = LoadObjCSelf(); 321 isSuperMessage = true; 322 break; 323 324 case ObjCMessageExpr::SuperClass: 325 ReceiverType = E->getSuperType(); 326 Receiver = LoadObjCSelf(); 327 isSuperMessage = true; 328 isClassMessage = true; 329 break; 330 } 331 332 if (retainSelf) 333 Receiver = EmitARCRetainNonBlock(Receiver); 334 335 // In ARC, we sometimes want to "extend the lifetime" 336 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 337 // messages. 338 if (getLangOpts().ObjCAutoRefCount && method && 339 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 340 shouldExtendReceiverForInnerPointerMessage(E)) 341 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 342 343 QualType ResultType = 344 method ? method->getResultType() : E->getType(); 345 346 CallArgList Args; 347 EmitCallArgs(Args, method, E->arg_begin(), E->arg_end()); 348 349 // For delegate init calls in ARC, do an unsafe store of null into 350 // self. This represents the call taking direct ownership of that 351 // value. We have to do this after emitting the other call 352 // arguments because they might also reference self, but we don't 353 // have to worry about any of them modifying self because that would 354 // be an undefined read and write of an object in unordered 355 // expressions. 356 if (isDelegateInit) { 357 assert(getLangOpts().ObjCAutoRefCount && 358 "delegate init calls should only be marked in ARC"); 359 360 // Do an unsafe store of null into self. 361 llvm::Value *selfAddr = 362 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 363 assert(selfAddr && "no self entry for a delegate init call?"); 364 365 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 366 } 367 368 RValue result; 369 if (isSuperMessage) { 370 // super is only valid in an Objective-C method 371 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 372 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 373 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 374 E->getSelector(), 375 OMD->getClassInterface(), 376 isCategoryImpl, 377 Receiver, 378 isClassMessage, 379 Args, 380 method); 381 } else { 382 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 383 E->getSelector(), 384 Receiver, Args, OID, 385 method); 386 } 387 388 // For delegate init calls in ARC, implicitly store the result of 389 // the call back into self. This takes ownership of the value. 390 if (isDelegateInit) { 391 llvm::Value *selfAddr = 392 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 393 llvm::Value *newSelf = result.getScalarVal(); 394 395 // The delegate return type isn't necessarily a matching type; in 396 // fact, it's quite likely to be 'id'. 397 llvm::Type *selfTy = 398 cast<llvm::PointerType>(selfAddr->getType())->getElementType(); 399 newSelf = Builder.CreateBitCast(newSelf, selfTy); 400 401 Builder.CreateStore(newSelf, selfAddr); 402 } 403 404 return AdjustRelatedResultType(*this, E->getType(), method, result); 405 } 406 407 namespace { 408 struct FinishARCDealloc : EHScopeStack::Cleanup { 409 void Emit(CodeGenFunction &CGF, Flags flags) { 410 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 411 412 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 413 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 414 if (!iface->getSuperClass()) return; 415 416 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 417 418 // Call [super dealloc] if we have a superclass. 419 llvm::Value *self = CGF.LoadObjCSelf(); 420 421 CallArgList args; 422 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 423 CGF.getContext().VoidTy, 424 method->getSelector(), 425 iface, 426 isCategory, 427 self, 428 /*is class msg*/ false, 429 args, 430 method); 431 } 432 }; 433 } 434 435 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 436 /// the LLVM function and sets the other context used by 437 /// CodeGenFunction. 438 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 439 const ObjCContainerDecl *CD, 440 SourceLocation StartLoc) { 441 FunctionArgList args; 442 // Check if we should generate debug info for this method. 443 if (!OMD->hasAttr<NoDebugAttr>()) 444 maybeInitializeDebugInfo(); 445 446 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 447 448 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 449 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 450 451 args.push_back(OMD->getSelfDecl()); 452 args.push_back(OMD->getCmdDecl()); 453 454 for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(), 455 E = OMD->param_end(); PI != E; ++PI) 456 args.push_back(*PI); 457 458 CurGD = OMD; 459 460 StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc); 461 462 // In ARC, certain methods get an extra cleanup. 463 if (CGM.getLangOpts().ObjCAutoRefCount && 464 OMD->isInstanceMethod() && 465 OMD->getSelector().isUnarySelector()) { 466 const IdentifierInfo *ident = 467 OMD->getSelector().getIdentifierInfoForSlot(0); 468 if (ident->isStr("dealloc")) 469 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 470 } 471 } 472 473 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 474 LValue lvalue, QualType type); 475 476 /// Generate an Objective-C method. An Objective-C method is a C function with 477 /// its pointer, name, and types registered in the class struture. 478 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 479 StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart()); 480 EmitStmt(OMD->getBody()); 481 FinishFunction(OMD->getBodyRBrace()); 482 } 483 484 /// emitStructGetterCall - Call the runtime function to load a property 485 /// into the return value slot. 486 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 487 bool isAtomic, bool hasStrong) { 488 ASTContext &Context = CGF.getContext(); 489 490 llvm::Value *src = 491 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), 492 ivar, 0).getAddress(); 493 494 // objc_copyStruct (ReturnValue, &structIvar, 495 // sizeof (Type of Ivar), isAtomic, false); 496 CallArgList args; 497 498 llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 499 args.add(RValue::get(dest), Context.VoidPtrTy); 500 501 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 502 args.add(RValue::get(src), Context.VoidPtrTy); 503 504 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 505 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 506 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 507 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 508 509 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 510 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args, 511 FunctionType::ExtInfo(), 512 RequiredArgs::All), 513 fn, ReturnValueSlot(), args); 514 } 515 516 /// Determine whether the given architecture supports unaligned atomic 517 /// accesses. They don't have to be fast, just faster than a function 518 /// call and a mutex. 519 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 520 // FIXME: Allow unaligned atomic load/store on x86. (It is not 521 // currently supported by the backend.) 522 return 0; 523 } 524 525 /// Return the maximum size that permits atomic accesses for the given 526 /// architecture. 527 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 528 llvm::Triple::ArchType arch) { 529 // ARM has 8-byte atomic accesses, but it's not clear whether we 530 // want to rely on them here. 531 532 // In the default case, just assume that any size up to a pointer is 533 // fine given adequate alignment. 534 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 535 } 536 537 namespace { 538 class PropertyImplStrategy { 539 public: 540 enum StrategyKind { 541 /// The 'native' strategy is to use the architecture's provided 542 /// reads and writes. 543 Native, 544 545 /// Use objc_setProperty and objc_getProperty. 546 GetSetProperty, 547 548 /// Use objc_setProperty for the setter, but use expression 549 /// evaluation for the getter. 550 SetPropertyAndExpressionGet, 551 552 /// Use objc_copyStruct. 553 CopyStruct, 554 555 /// The 'expression' strategy is to emit normal assignment or 556 /// lvalue-to-rvalue expressions. 557 Expression 558 }; 559 560 StrategyKind getKind() const { return StrategyKind(Kind); } 561 562 bool hasStrongMember() const { return HasStrong; } 563 bool isAtomic() const { return IsAtomic; } 564 bool isCopy() const { return IsCopy; } 565 566 CharUnits getIvarSize() const { return IvarSize; } 567 CharUnits getIvarAlignment() const { return IvarAlignment; } 568 569 PropertyImplStrategy(CodeGenModule &CGM, 570 const ObjCPropertyImplDecl *propImpl); 571 572 private: 573 unsigned Kind : 8; 574 unsigned IsAtomic : 1; 575 unsigned IsCopy : 1; 576 unsigned HasStrong : 1; 577 578 CharUnits IvarSize; 579 CharUnits IvarAlignment; 580 }; 581 } 582 583 /// Pick an implementation strategy for the given property synthesis. 584 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 585 const ObjCPropertyImplDecl *propImpl) { 586 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 587 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 588 589 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 590 IsAtomic = prop->isAtomic(); 591 HasStrong = false; // doesn't matter here. 592 593 // Evaluate the ivar's size and alignment. 594 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 595 QualType ivarType = ivar->getType(); 596 llvm::tie(IvarSize, IvarAlignment) 597 = CGM.getContext().getTypeInfoInChars(ivarType); 598 599 // If we have a copy property, we always have to use getProperty/setProperty. 600 // TODO: we could actually use setProperty and an expression for non-atomics. 601 if (IsCopy) { 602 Kind = GetSetProperty; 603 return; 604 } 605 606 // Handle retain. 607 if (setterKind == ObjCPropertyDecl::Retain) { 608 // In GC-only, there's nothing special that needs to be done. 609 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 610 // fallthrough 611 612 // In ARC, if the property is non-atomic, use expression emission, 613 // which translates to objc_storeStrong. This isn't required, but 614 // it's slightly nicer. 615 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 616 // Using standard expression emission for the setter is only 617 // acceptable if the ivar is __strong, which won't be true if 618 // the property is annotated with __attribute__((NSObject)). 619 // TODO: falling all the way back to objc_setProperty here is 620 // just laziness, though; we could still use objc_storeStrong 621 // if we hacked it right. 622 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 623 Kind = Expression; 624 else 625 Kind = SetPropertyAndExpressionGet; 626 return; 627 628 // Otherwise, we need to at least use setProperty. However, if 629 // the property isn't atomic, we can use normal expression 630 // emission for the getter. 631 } else if (!IsAtomic) { 632 Kind = SetPropertyAndExpressionGet; 633 return; 634 635 // Otherwise, we have to use both setProperty and getProperty. 636 } else { 637 Kind = GetSetProperty; 638 return; 639 } 640 } 641 642 // If we're not atomic, just use expression accesses. 643 if (!IsAtomic) { 644 Kind = Expression; 645 return; 646 } 647 648 // Properties on bitfield ivars need to be emitted using expression 649 // accesses even if they're nominally atomic. 650 if (ivar->isBitField()) { 651 Kind = Expression; 652 return; 653 } 654 655 // GC-qualified or ARC-qualified ivars need to be emitted as 656 // expressions. This actually works out to being atomic anyway, 657 // except for ARC __strong, but that should trigger the above code. 658 if (ivarType.hasNonTrivialObjCLifetime() || 659 (CGM.getLangOpts().getGC() && 660 CGM.getContext().getObjCGCAttrKind(ivarType))) { 661 Kind = Expression; 662 return; 663 } 664 665 // Compute whether the ivar has strong members. 666 if (CGM.getLangOpts().getGC()) 667 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 668 HasStrong = recordType->getDecl()->hasObjectMember(); 669 670 // We can never access structs with object members with a native 671 // access, because we need to use write barriers. This is what 672 // objc_copyStruct is for. 673 if (HasStrong) { 674 Kind = CopyStruct; 675 return; 676 } 677 678 // Otherwise, this is target-dependent and based on the size and 679 // alignment of the ivar. 680 681 // If the size of the ivar is not a power of two, give up. We don't 682 // want to get into the business of doing compare-and-swaps. 683 if (!IvarSize.isPowerOfTwo()) { 684 Kind = CopyStruct; 685 return; 686 } 687 688 llvm::Triple::ArchType arch = 689 CGM.getContext().getTargetInfo().getTriple().getArch(); 690 691 // Most architectures require memory to fit within a single cache 692 // line, so the alignment has to be at least the size of the access. 693 // Otherwise we have to grab a lock. 694 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 695 Kind = CopyStruct; 696 return; 697 } 698 699 // If the ivar's size exceeds the architecture's maximum atomic 700 // access size, we have to use CopyStruct. 701 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 702 Kind = CopyStruct; 703 return; 704 } 705 706 // Otherwise, we can use native loads and stores. 707 Kind = Native; 708 } 709 710 /// \brief Generate an Objective-C property getter function. 711 /// 712 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 713 /// is illegal within a category. 714 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 715 const ObjCPropertyImplDecl *PID) { 716 llvm::Constant *AtomicHelperFn = 717 GenerateObjCAtomicGetterCopyHelperFunction(PID); 718 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 719 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 720 assert(OMD && "Invalid call to generate getter (empty method)"); 721 StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart()); 722 723 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 724 725 FinishFunction(); 726 } 727 728 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 729 const Expr *getter = propImpl->getGetterCXXConstructor(); 730 if (!getter) return true; 731 732 // Sema only makes only of these when the ivar has a C++ class type, 733 // so the form is pretty constrained. 734 735 // If the property has a reference type, we might just be binding a 736 // reference, in which case the result will be a gl-value. We should 737 // treat this as a non-trivial operation. 738 if (getter->isGLValue()) 739 return false; 740 741 // If we selected a trivial copy-constructor, we're okay. 742 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 743 return (construct->getConstructor()->isTrivial()); 744 745 // The constructor might require cleanups (in which case it's never 746 // trivial). 747 assert(isa<ExprWithCleanups>(getter)); 748 return false; 749 } 750 751 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 752 /// copy the ivar into the resturn slot. 753 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 754 llvm::Value *returnAddr, 755 ObjCIvarDecl *ivar, 756 llvm::Constant *AtomicHelperFn) { 757 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 758 // AtomicHelperFn); 759 CallArgList args; 760 761 // The 1st argument is the return Slot. 762 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 763 764 // The 2nd argument is the address of the ivar. 765 llvm::Value *ivarAddr = 766 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 767 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 768 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 769 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 770 771 // Third argument is the helper function. 772 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 773 774 llvm::Value *copyCppAtomicObjectFn = 775 CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction(); 776 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 777 args, 778 FunctionType::ExtInfo(), 779 RequiredArgs::All), 780 copyCppAtomicObjectFn, ReturnValueSlot(), args); 781 } 782 783 void 784 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 785 const ObjCPropertyImplDecl *propImpl, 786 const ObjCMethodDecl *GetterMethodDecl, 787 llvm::Constant *AtomicHelperFn) { 788 // If there's a non-trivial 'get' expression, we just have to emit that. 789 if (!hasTrivialGetExpr(propImpl)) { 790 if (!AtomicHelperFn) { 791 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 792 /*nrvo*/ 0); 793 EmitReturnStmt(ret); 794 } 795 else { 796 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 797 emitCPPObjectAtomicGetterCall(*this, ReturnValue, 798 ivar, AtomicHelperFn); 799 } 800 return; 801 } 802 803 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 804 QualType propType = prop->getType(); 805 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 806 807 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 808 809 // Pick an implementation strategy. 810 PropertyImplStrategy strategy(CGM, propImpl); 811 switch (strategy.getKind()) { 812 case PropertyImplStrategy::Native: { 813 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 814 815 // Currently, all atomic accesses have to be through integer 816 // types, so there's no point in trying to pick a prettier type. 817 llvm::Type *bitcastType = 818 llvm::Type::getIntNTy(getLLVMContext(), 819 getContext().toBits(strategy.getIvarSize())); 820 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 821 822 // Perform an atomic load. This does not impose ordering constraints. 823 llvm::Value *ivarAddr = LV.getAddress(); 824 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 825 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 826 load->setAlignment(strategy.getIvarAlignment().getQuantity()); 827 load->setAtomic(llvm::Unordered); 828 829 // Store that value into the return address. Doing this with a 830 // bitcast is likely to produce some pretty ugly IR, but it's not 831 // the *most* terrible thing in the world. 832 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType)); 833 834 // Make sure we don't do an autorelease. 835 AutoreleaseResult = false; 836 return; 837 } 838 839 case PropertyImplStrategy::GetSetProperty: { 840 llvm::Value *getPropertyFn = 841 CGM.getObjCRuntime().GetPropertyGetFunction(); 842 if (!getPropertyFn) { 843 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 844 return; 845 } 846 847 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 848 // FIXME: Can't this be simpler? This might even be worse than the 849 // corresponding gcc code. 850 llvm::Value *cmd = 851 Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd"); 852 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 853 llvm::Value *ivarOffset = 854 EmitIvarOffset(classImpl->getClassInterface(), ivar); 855 856 CallArgList args; 857 args.add(RValue::get(self), getContext().getObjCIdType()); 858 args.add(RValue::get(cmd), getContext().getObjCSelType()); 859 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 860 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 861 getContext().BoolTy); 862 863 // FIXME: We shouldn't need to get the function info here, the 864 // runtime already should have computed it to build the function. 865 RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args, 866 FunctionType::ExtInfo(), 867 RequiredArgs::All), 868 getPropertyFn, ReturnValueSlot(), args); 869 870 // We need to fix the type here. Ivars with copy & retain are 871 // always objects so we don't need to worry about complex or 872 // aggregates. 873 RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(), 874 getTypes().ConvertType(getterMethod->getResultType()))); 875 876 EmitReturnOfRValue(RV, propType); 877 878 // objc_getProperty does an autorelease, so we should suppress ours. 879 AutoreleaseResult = false; 880 881 return; 882 } 883 884 case PropertyImplStrategy::CopyStruct: 885 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 886 strategy.hasStrongMember()); 887 return; 888 889 case PropertyImplStrategy::Expression: 890 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 891 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 892 893 QualType ivarType = ivar->getType(); 894 if (ivarType->isAnyComplexType()) { 895 ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(), 896 LV.isVolatileQualified()); 897 StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified()); 898 } else if (hasAggregateLLVMType(ivarType)) { 899 // The return value slot is guaranteed to not be aliased, but 900 // that's not necessarily the same as "on the stack", so 901 // we still potentially need objc_memmove_collectable. 902 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 903 } else { 904 llvm::Value *value; 905 if (propType->isReferenceType()) { 906 value = LV.getAddress(); 907 } else { 908 // We want to load and autoreleaseReturnValue ARC __weak ivars. 909 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 910 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 911 912 // Otherwise we want to do a simple load, suppressing the 913 // final autorelease. 914 } else { 915 value = EmitLoadOfLValue(LV).getScalarVal(); 916 AutoreleaseResult = false; 917 } 918 919 value = Builder.CreateBitCast(value, ConvertType(propType)); 920 value = Builder.CreateBitCast(value, 921 ConvertType(GetterMethodDecl->getResultType())); 922 } 923 924 EmitReturnOfRValue(RValue::get(value), propType); 925 } 926 return; 927 } 928 929 } 930 llvm_unreachable("bad @property implementation strategy!"); 931 } 932 933 /// emitStructSetterCall - Call the runtime function to store the value 934 /// from the first formal parameter into the given ivar. 935 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 936 ObjCIvarDecl *ivar) { 937 // objc_copyStruct (&structIvar, &Arg, 938 // sizeof (struct something), true, false); 939 CallArgList args; 940 941 // The first argument is the address of the ivar. 942 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 943 CGF.LoadObjCSelf(), ivar, 0) 944 .getAddress(); 945 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 946 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 947 948 // The second argument is the address of the parameter variable. 949 ParmVarDecl *argVar = *OMD->param_begin(); 950 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 951 VK_LValue, SourceLocation()); 952 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 953 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 954 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 955 956 // The third argument is the sizeof the type. 957 llvm::Value *size = 958 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 959 args.add(RValue::get(size), CGF.getContext().getSizeType()); 960 961 // The fourth argument is the 'isAtomic' flag. 962 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 963 964 // The fifth argument is the 'hasStrong' flag. 965 // FIXME: should this really always be false? 966 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 967 968 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 969 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 970 args, 971 FunctionType::ExtInfo(), 972 RequiredArgs::All), 973 copyStructFn, ReturnValueSlot(), args); 974 } 975 976 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 977 /// the value from the first formal parameter into the given ivar, using 978 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 979 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 980 ObjCMethodDecl *OMD, 981 ObjCIvarDecl *ivar, 982 llvm::Constant *AtomicHelperFn) { 983 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 984 // AtomicHelperFn); 985 CallArgList args; 986 987 // The first argument is the address of the ivar. 988 llvm::Value *ivarAddr = 989 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 990 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 991 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 992 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 993 994 // The second argument is the address of the parameter variable. 995 ParmVarDecl *argVar = *OMD->param_begin(); 996 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 997 VK_LValue, SourceLocation()); 998 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 999 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1000 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1001 1002 // Third argument is the helper function. 1003 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1004 1005 llvm::Value *copyCppAtomicObjectFn = 1006 CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction(); 1007 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1008 args, 1009 FunctionType::ExtInfo(), 1010 RequiredArgs::All), 1011 copyCppAtomicObjectFn, ReturnValueSlot(), args); 1012 1013 1014 } 1015 1016 1017 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1018 Expr *setter = PID->getSetterCXXAssignment(); 1019 if (!setter) return true; 1020 1021 // Sema only makes only of these when the ivar has a C++ class type, 1022 // so the form is pretty constrained. 1023 1024 // An operator call is trivial if the function it calls is trivial. 1025 // This also implies that there's nothing non-trivial going on with 1026 // the arguments, because operator= can only be trivial if it's a 1027 // synthesized assignment operator and therefore both parameters are 1028 // references. 1029 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1030 if (const FunctionDecl *callee 1031 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1032 if (callee->isTrivial()) 1033 return true; 1034 return false; 1035 } 1036 1037 assert(isa<ExprWithCleanups>(setter)); 1038 return false; 1039 } 1040 1041 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1042 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1043 return false; 1044 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1045 } 1046 1047 void 1048 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1049 const ObjCPropertyImplDecl *propImpl, 1050 llvm::Constant *AtomicHelperFn) { 1051 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1052 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1053 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1054 1055 // Just use the setter expression if Sema gave us one and it's 1056 // non-trivial. 1057 if (!hasTrivialSetExpr(propImpl)) { 1058 if (!AtomicHelperFn) 1059 // If non-atomic, assignment is called directly. 1060 EmitStmt(propImpl->getSetterCXXAssignment()); 1061 else 1062 // If atomic, assignment is called via a locking api. 1063 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1064 AtomicHelperFn); 1065 return; 1066 } 1067 1068 PropertyImplStrategy strategy(CGM, propImpl); 1069 switch (strategy.getKind()) { 1070 case PropertyImplStrategy::Native: { 1071 llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()]; 1072 1073 LValue ivarLValue = 1074 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1075 llvm::Value *ivarAddr = ivarLValue.getAddress(); 1076 1077 // Currently, all atomic accesses have to be through integer 1078 // types, so there's no point in trying to pick a prettier type. 1079 llvm::Type *bitcastType = 1080 llvm::Type::getIntNTy(getLLVMContext(), 1081 getContext().toBits(strategy.getIvarSize())); 1082 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1083 1084 // Cast both arguments to the chosen operation type. 1085 argAddr = Builder.CreateBitCast(argAddr, bitcastType); 1086 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1087 1088 // This bitcast load is likely to cause some nasty IR. 1089 llvm::Value *load = Builder.CreateLoad(argAddr); 1090 1091 // Perform an atomic store. There are no memory ordering requirements. 1092 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1093 store->setAlignment(strategy.getIvarAlignment().getQuantity()); 1094 store->setAtomic(llvm::Unordered); 1095 return; 1096 } 1097 1098 case PropertyImplStrategy::GetSetProperty: 1099 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1100 1101 llvm::Value *setOptimizedPropertyFn = 0; 1102 llvm::Value *setPropertyFn = 0; 1103 if (UseOptimizedSetter(CGM)) { 1104 // 10.8 and iOS 6.0 code and GC is off 1105 setOptimizedPropertyFn = 1106 CGM.getObjCRuntime() 1107 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1108 strategy.isCopy()); 1109 if (!setOptimizedPropertyFn) { 1110 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1111 return; 1112 } 1113 } 1114 else { 1115 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1116 if (!setPropertyFn) { 1117 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1118 return; 1119 } 1120 } 1121 1122 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1123 // <is-atomic>, <is-copy>). 1124 llvm::Value *cmd = 1125 Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]); 1126 llvm::Value *self = 1127 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1128 llvm::Value *ivarOffset = 1129 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1130 llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()]; 1131 arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy); 1132 1133 CallArgList args; 1134 args.add(RValue::get(self), getContext().getObjCIdType()); 1135 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1136 if (setOptimizedPropertyFn) { 1137 args.add(RValue::get(arg), getContext().getObjCIdType()); 1138 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1139 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1140 FunctionType::ExtInfo(), 1141 RequiredArgs::All), 1142 setOptimizedPropertyFn, ReturnValueSlot(), args); 1143 } else { 1144 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1145 args.add(RValue::get(arg), getContext().getObjCIdType()); 1146 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1147 getContext().BoolTy); 1148 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1149 getContext().BoolTy); 1150 // FIXME: We shouldn't need to get the function info here, the runtime 1151 // already should have computed it to build the function. 1152 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1153 FunctionType::ExtInfo(), 1154 RequiredArgs::All), 1155 setPropertyFn, ReturnValueSlot(), args); 1156 } 1157 1158 return; 1159 } 1160 1161 case PropertyImplStrategy::CopyStruct: 1162 emitStructSetterCall(*this, setterMethod, ivar); 1163 return; 1164 1165 case PropertyImplStrategy::Expression: 1166 break; 1167 } 1168 1169 // Otherwise, fake up some ASTs and emit a normal assignment. 1170 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1171 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1172 VK_LValue, SourceLocation()); 1173 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1174 selfDecl->getType(), CK_LValueToRValue, &self, 1175 VK_RValue); 1176 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1177 SourceLocation(), &selfLoad, true, true); 1178 1179 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1180 QualType argType = argDecl->getType().getNonReferenceType(); 1181 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1182 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1183 argType.getUnqualifiedType(), CK_LValueToRValue, 1184 &arg, VK_RValue); 1185 1186 // The property type can differ from the ivar type in some situations with 1187 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1188 // The following absurdity is just to ensure well-formed IR. 1189 CastKind argCK = CK_NoOp; 1190 if (ivarRef.getType()->isObjCObjectPointerType()) { 1191 if (argLoad.getType()->isObjCObjectPointerType()) 1192 argCK = CK_BitCast; 1193 else if (argLoad.getType()->isBlockPointerType()) 1194 argCK = CK_BlockPointerToObjCPointerCast; 1195 else 1196 argCK = CK_CPointerToObjCPointerCast; 1197 } else if (ivarRef.getType()->isBlockPointerType()) { 1198 if (argLoad.getType()->isBlockPointerType()) 1199 argCK = CK_BitCast; 1200 else 1201 argCK = CK_AnyPointerToBlockPointerCast; 1202 } else if (ivarRef.getType()->isPointerType()) { 1203 argCK = CK_BitCast; 1204 } 1205 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1206 ivarRef.getType(), argCK, &argLoad, 1207 VK_RValue); 1208 Expr *finalArg = &argLoad; 1209 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1210 argLoad.getType())) 1211 finalArg = &argCast; 1212 1213 1214 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1215 ivarRef.getType(), VK_RValue, OK_Ordinary, 1216 SourceLocation(), false); 1217 EmitStmt(&assign); 1218 } 1219 1220 /// \brief Generate an Objective-C property setter function. 1221 /// 1222 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1223 /// is illegal within a category. 1224 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1225 const ObjCPropertyImplDecl *PID) { 1226 llvm::Constant *AtomicHelperFn = 1227 GenerateObjCAtomicSetterCopyHelperFunction(PID); 1228 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1229 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1230 assert(OMD && "Invalid call to generate setter (empty method)"); 1231 StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart()); 1232 1233 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1234 1235 FinishFunction(); 1236 } 1237 1238 namespace { 1239 struct DestroyIvar : EHScopeStack::Cleanup { 1240 private: 1241 llvm::Value *addr; 1242 const ObjCIvarDecl *ivar; 1243 CodeGenFunction::Destroyer *destroyer; 1244 bool useEHCleanupForArray; 1245 public: 1246 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1247 CodeGenFunction::Destroyer *destroyer, 1248 bool useEHCleanupForArray) 1249 : addr(addr), ivar(ivar), destroyer(destroyer), 1250 useEHCleanupForArray(useEHCleanupForArray) {} 1251 1252 void Emit(CodeGenFunction &CGF, Flags flags) { 1253 LValue lvalue 1254 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1255 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1256 flags.isForNormalCleanup() && useEHCleanupForArray); 1257 } 1258 }; 1259 } 1260 1261 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1262 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1263 llvm::Value *addr, 1264 QualType type) { 1265 llvm::Value *null = getNullForVariable(addr); 1266 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1267 } 1268 1269 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1270 ObjCImplementationDecl *impl) { 1271 CodeGenFunction::RunCleanupsScope scope(CGF); 1272 1273 llvm::Value *self = CGF.LoadObjCSelf(); 1274 1275 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1276 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1277 ivar; ivar = ivar->getNextIvar()) { 1278 QualType type = ivar->getType(); 1279 1280 // Check whether the ivar is a destructible type. 1281 QualType::DestructionKind dtorKind = type.isDestructedType(); 1282 if (!dtorKind) continue; 1283 1284 CodeGenFunction::Destroyer *destroyer = 0; 1285 1286 // Use a call to objc_storeStrong to destroy strong ivars, for the 1287 // general benefit of the tools. 1288 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1289 destroyer = destroyARCStrongWithStore; 1290 1291 // Otherwise use the default for the destruction kind. 1292 } else { 1293 destroyer = CGF.getDestroyer(dtorKind); 1294 } 1295 1296 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1297 1298 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1299 cleanupKind & EHCleanup); 1300 } 1301 1302 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1303 } 1304 1305 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1306 ObjCMethodDecl *MD, 1307 bool ctor) { 1308 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1309 StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart()); 1310 1311 // Emit .cxx_construct. 1312 if (ctor) { 1313 // Suppress the final autorelease in ARC. 1314 AutoreleaseResult = false; 1315 1316 SmallVector<CXXCtorInitializer *, 8> IvarInitializers; 1317 for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(), 1318 E = IMP->init_end(); B != E; ++B) { 1319 CXXCtorInitializer *IvarInit = (*B); 1320 FieldDecl *Field = IvarInit->getAnyMember(); 1321 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1322 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1323 LoadObjCSelf(), Ivar, 0); 1324 EmitAggExpr(IvarInit->getInit(), 1325 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1326 AggValueSlot::DoesNotNeedGCBarriers, 1327 AggValueSlot::IsNotAliased)); 1328 } 1329 // constructor returns 'self'. 1330 CodeGenTypes &Types = CGM.getTypes(); 1331 QualType IdTy(CGM.getContext().getObjCIdType()); 1332 llvm::Value *SelfAsId = 1333 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1334 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1335 1336 // Emit .cxx_destruct. 1337 } else { 1338 emitCXXDestructMethod(*this, IMP); 1339 } 1340 FinishFunction(); 1341 } 1342 1343 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) { 1344 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(); 1345 it++; it++; 1346 const ABIArgInfo &AI = it->info; 1347 // FIXME. Is this sufficient check? 1348 return (AI.getKind() == ABIArgInfo::Indirect); 1349 } 1350 1351 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) { 1352 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 1353 return false; 1354 if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>()) 1355 return FDTTy->getDecl()->hasObjectMember(); 1356 return false; 1357 } 1358 1359 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1360 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1361 return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self"); 1362 } 1363 1364 QualType CodeGenFunction::TypeOfSelfObject() { 1365 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1366 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1367 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1368 getContext().getCanonicalType(selfDecl->getType())); 1369 return PTy->getPointeeType(); 1370 } 1371 1372 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1373 llvm::Constant *EnumerationMutationFn = 1374 CGM.getObjCRuntime().EnumerationMutationFunction(); 1375 1376 if (!EnumerationMutationFn) { 1377 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1378 return; 1379 } 1380 1381 CGDebugInfo *DI = getDebugInfo(); 1382 if (DI) 1383 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1384 1385 // The local variable comes into scope immediately. 1386 AutoVarEmission variable = AutoVarEmission::invalid(); 1387 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1388 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1389 1390 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1391 1392 // Fast enumeration state. 1393 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1394 llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1395 EmitNullInitialization(StatePtr, StateTy); 1396 1397 // Number of elements in the items array. 1398 static const unsigned NumItems = 16; 1399 1400 // Fetch the countByEnumeratingWithState:objects:count: selector. 1401 IdentifierInfo *II[] = { 1402 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1403 &CGM.getContext().Idents.get("objects"), 1404 &CGM.getContext().Idents.get("count") 1405 }; 1406 Selector FastEnumSel = 1407 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1408 1409 QualType ItemsTy = 1410 getContext().getConstantArrayType(getContext().getObjCIdType(), 1411 llvm::APInt(32, NumItems), 1412 ArrayType::Normal, 0); 1413 llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1414 1415 // Emit the collection pointer. In ARC, we do a retain. 1416 llvm::Value *Collection; 1417 if (getLangOpts().ObjCAutoRefCount) { 1418 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1419 1420 // Enter a cleanup to do the release. 1421 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1422 } else { 1423 Collection = EmitScalarExpr(S.getCollection()); 1424 } 1425 1426 // The 'continue' label needs to appear within the cleanup for the 1427 // collection object. 1428 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1429 1430 // Send it our message: 1431 CallArgList Args; 1432 1433 // The first argument is a temporary of the enumeration-state type. 1434 Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy)); 1435 1436 // The second argument is a temporary array with space for NumItems 1437 // pointers. We'll actually be loading elements from the array 1438 // pointer written into the control state; this buffer is so that 1439 // collections that *aren't* backed by arrays can still queue up 1440 // batches of elements. 1441 Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy)); 1442 1443 // The third argument is the capacity of that temporary array. 1444 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1445 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1446 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1447 1448 // Start the enumeration. 1449 RValue CountRV = 1450 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1451 getContext().UnsignedLongTy, 1452 FastEnumSel, 1453 Collection, Args); 1454 1455 // The initial number of objects that were returned in the buffer. 1456 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1457 1458 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1459 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1460 1461 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1462 1463 // If the limit pointer was zero to begin with, the collection is 1464 // empty; skip all this. 1465 Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), 1466 EmptyBB, LoopInitBB); 1467 1468 // Otherwise, initialize the loop. 1469 EmitBlock(LoopInitBB); 1470 1471 // Save the initial mutations value. This is the value at an 1472 // address that was written into the state object by 1473 // countByEnumeratingWithState:objects:count:. 1474 llvm::Value *StateMutationsPtrPtr = 1475 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1476 llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, 1477 "mutationsptr"); 1478 1479 llvm::Value *initialMutations = 1480 Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations"); 1481 1482 // Start looping. This is the point we return to whenever we have a 1483 // fresh, non-empty batch of objects. 1484 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1485 EmitBlock(LoopBodyBB); 1486 1487 // The current index into the buffer. 1488 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1489 index->addIncoming(zero, LoopInitBB); 1490 1491 // The current buffer size. 1492 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1493 count->addIncoming(initialBufferLimit, LoopInitBB); 1494 1495 // Check whether the mutations value has changed from where it was 1496 // at start. StateMutationsPtr should actually be invariant between 1497 // refreshes. 1498 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1499 llvm::Value *currentMutations 1500 = Builder.CreateLoad(StateMutationsPtr, "statemutations"); 1501 1502 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1503 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1504 1505 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1506 WasNotMutatedBB, WasMutatedBB); 1507 1508 // If so, call the enumeration-mutation function. 1509 EmitBlock(WasMutatedBB); 1510 llvm::Value *V = 1511 Builder.CreateBitCast(Collection, 1512 ConvertType(getContext().getObjCIdType())); 1513 CallArgList Args2; 1514 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1515 // FIXME: We shouldn't need to get the function info here, the runtime already 1516 // should have computed it to build the function. 1517 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2, 1518 FunctionType::ExtInfo(), 1519 RequiredArgs::All), 1520 EnumerationMutationFn, ReturnValueSlot(), Args2); 1521 1522 // Otherwise, or if the mutation function returns, just continue. 1523 EmitBlock(WasNotMutatedBB); 1524 1525 // Initialize the element variable. 1526 RunCleanupsScope elementVariableScope(*this); 1527 bool elementIsVariable; 1528 LValue elementLValue; 1529 QualType elementType; 1530 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1531 // Initialize the variable, in case it's a __block variable or something. 1532 EmitAutoVarInit(variable); 1533 1534 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1535 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1536 VK_LValue, SourceLocation()); 1537 elementLValue = EmitLValue(&tempDRE); 1538 elementType = D->getType(); 1539 elementIsVariable = true; 1540 1541 if (D->isARCPseudoStrong()) 1542 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1543 } else { 1544 elementLValue = LValue(); // suppress warning 1545 elementType = cast<Expr>(S.getElement())->getType(); 1546 elementIsVariable = false; 1547 } 1548 llvm::Type *convertedElementType = ConvertType(elementType); 1549 1550 // Fetch the buffer out of the enumeration state. 1551 // TODO: this pointer should actually be invariant between 1552 // refreshes, which would help us do certain loop optimizations. 1553 llvm::Value *StateItemsPtr = 1554 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1555 llvm::Value *EnumStateItems = 1556 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1557 1558 // Fetch the value at the current index from the buffer. 1559 llvm::Value *CurrentItemPtr = 1560 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1561 llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr); 1562 1563 // Cast that value to the right type. 1564 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1565 "currentitem"); 1566 1567 // Make sure we have an l-value. Yes, this gets evaluated every 1568 // time through the loop. 1569 if (!elementIsVariable) { 1570 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1571 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1572 } else { 1573 EmitScalarInit(CurrentItem, elementLValue); 1574 } 1575 1576 // If we do have an element variable, this assignment is the end of 1577 // its initialization. 1578 if (elementIsVariable) 1579 EmitAutoVarCleanups(variable); 1580 1581 // Perform the loop body, setting up break and continue labels. 1582 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1583 { 1584 RunCleanupsScope Scope(*this); 1585 EmitStmt(S.getBody()); 1586 } 1587 BreakContinueStack.pop_back(); 1588 1589 // Destroy the element variable now. 1590 elementVariableScope.ForceCleanup(); 1591 1592 // Check whether there are more elements. 1593 EmitBlock(AfterBody.getBlock()); 1594 1595 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1596 1597 // First we check in the local buffer. 1598 llvm::Value *indexPlusOne 1599 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1600 1601 // If we haven't overrun the buffer yet, we can continue. 1602 Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count), 1603 LoopBodyBB, FetchMoreBB); 1604 1605 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1606 count->addIncoming(count, AfterBody.getBlock()); 1607 1608 // Otherwise, we have to fetch more elements. 1609 EmitBlock(FetchMoreBB); 1610 1611 CountRV = 1612 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1613 getContext().UnsignedLongTy, 1614 FastEnumSel, 1615 Collection, Args); 1616 1617 // If we got a zero count, we're done. 1618 llvm::Value *refetchCount = CountRV.getScalarVal(); 1619 1620 // (note that the message send might split FetchMoreBB) 1621 index->addIncoming(zero, Builder.GetInsertBlock()); 1622 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1623 1624 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1625 EmptyBB, LoopBodyBB); 1626 1627 // No more elements. 1628 EmitBlock(EmptyBB); 1629 1630 if (!elementIsVariable) { 1631 // If the element was not a declaration, set it to be null. 1632 1633 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1634 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1635 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1636 } 1637 1638 if (DI) 1639 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1640 1641 // Leave the cleanup we entered in ARC. 1642 if (getLangOpts().ObjCAutoRefCount) 1643 PopCleanupBlock(); 1644 1645 EmitBlock(LoopEnd.getBlock()); 1646 } 1647 1648 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1649 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1650 } 1651 1652 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1653 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1654 } 1655 1656 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1657 const ObjCAtSynchronizedStmt &S) { 1658 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1659 } 1660 1661 /// Produce the code for a CK_ARCProduceObject. Just does a 1662 /// primitive retain. 1663 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type, 1664 llvm::Value *value) { 1665 return EmitARCRetain(type, value); 1666 } 1667 1668 namespace { 1669 struct CallObjCRelease : EHScopeStack::Cleanup { 1670 CallObjCRelease(llvm::Value *object) : object(object) {} 1671 llvm::Value *object; 1672 1673 void Emit(CodeGenFunction &CGF, Flags flags) { 1674 CGF.EmitARCRelease(object, /*precise*/ true); 1675 } 1676 }; 1677 } 1678 1679 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1680 /// release at the end of the full-expression. 1681 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1682 llvm::Value *object) { 1683 // If we're in a conditional branch, we need to make the cleanup 1684 // conditional. 1685 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1686 return object; 1687 } 1688 1689 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1690 llvm::Value *value) { 1691 return EmitARCRetainAutorelease(type, value); 1692 } 1693 1694 1695 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1696 llvm::FunctionType *type, 1697 StringRef fnName) { 1698 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1699 1700 // If the target runtime doesn't naturally support ARC, emit weak 1701 // references to the runtime support library. We don't really 1702 // permit this to fail, but we need a particular relocation style. 1703 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) { 1704 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) 1705 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1706 // set nonlazybind attribute for these APIs for performance. 1707 if (fnName == "objc_retain" || fnName == "objc_release") 1708 f->addFnAttr(llvm::Attributes::NonLazyBind); 1709 } 1710 1711 return fn; 1712 } 1713 1714 /// Perform an operation having the signature 1715 /// i8* (i8*) 1716 /// where a null input causes a no-op and returns null. 1717 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1718 llvm::Value *value, 1719 llvm::Constant *&fn, 1720 StringRef fnName) { 1721 if (isa<llvm::ConstantPointerNull>(value)) return value; 1722 1723 if (!fn) { 1724 std::vector<llvm::Type*> args(1, CGF.Int8PtrTy); 1725 llvm::FunctionType *fnType = 1726 llvm::FunctionType::get(CGF.Int8PtrTy, args, false); 1727 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1728 } 1729 1730 // Cast the argument to 'id'. 1731 llvm::Type *origType = value->getType(); 1732 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1733 1734 // Call the function. 1735 llvm::CallInst *call = CGF.Builder.CreateCall(fn, value); 1736 call->setDoesNotThrow(); 1737 1738 // Cast the result back to the original type. 1739 return CGF.Builder.CreateBitCast(call, origType); 1740 } 1741 1742 /// Perform an operation having the following signature: 1743 /// i8* (i8**) 1744 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1745 llvm::Value *addr, 1746 llvm::Constant *&fn, 1747 StringRef fnName) { 1748 if (!fn) { 1749 std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy); 1750 llvm::FunctionType *fnType = 1751 llvm::FunctionType::get(CGF.Int8PtrTy, args, false); 1752 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1753 } 1754 1755 // Cast the argument to 'id*'. 1756 llvm::Type *origType = addr->getType(); 1757 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1758 1759 // Call the function. 1760 llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr); 1761 call->setDoesNotThrow(); 1762 1763 // Cast the result back to a dereference of the original type. 1764 llvm::Value *result = call; 1765 if (origType != CGF.Int8PtrPtrTy) 1766 result = CGF.Builder.CreateBitCast(result, 1767 cast<llvm::PointerType>(origType)->getElementType()); 1768 1769 return result; 1770 } 1771 1772 /// Perform an operation having the following signature: 1773 /// i8* (i8**, i8*) 1774 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1775 llvm::Value *addr, 1776 llvm::Value *value, 1777 llvm::Constant *&fn, 1778 StringRef fnName, 1779 bool ignored) { 1780 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 1781 == value->getType()); 1782 1783 if (!fn) { 1784 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1785 1786 llvm::FunctionType *fnType 1787 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1788 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1789 } 1790 1791 llvm::Type *origType = value->getType(); 1792 1793 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1794 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1795 1796 llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value); 1797 result->setDoesNotThrow(); 1798 1799 if (ignored) return 0; 1800 1801 return CGF.Builder.CreateBitCast(result, origType); 1802 } 1803 1804 /// Perform an operation having the following signature: 1805 /// void (i8**, i8**) 1806 static void emitARCCopyOperation(CodeGenFunction &CGF, 1807 llvm::Value *dst, 1808 llvm::Value *src, 1809 llvm::Constant *&fn, 1810 StringRef fnName) { 1811 assert(dst->getType() == src->getType()); 1812 1813 if (!fn) { 1814 std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy); 1815 llvm::FunctionType *fnType 1816 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1817 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1818 } 1819 1820 dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy); 1821 src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy); 1822 1823 llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src); 1824 result->setDoesNotThrow(); 1825 } 1826 1827 /// Produce the code to do a retain. Based on the type, calls one of: 1828 /// call i8* \@objc_retain(i8* %value) 1829 /// call i8* \@objc_retainBlock(i8* %value) 1830 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1831 if (type->isBlockPointerType()) 1832 return EmitARCRetainBlock(value, /*mandatory*/ false); 1833 else 1834 return EmitARCRetainNonBlock(value); 1835 } 1836 1837 /// Retain the given object, with normal retain semantics. 1838 /// call i8* \@objc_retain(i8* %value) 1839 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1840 return emitARCValueOperation(*this, value, 1841 CGM.getARCEntrypoints().objc_retain, 1842 "objc_retain"); 1843 } 1844 1845 /// Retain the given block, with _Block_copy semantics. 1846 /// call i8* \@objc_retainBlock(i8* %value) 1847 /// 1848 /// \param mandatory - If false, emit the call with metadata 1849 /// indicating that it's okay for the optimizer to eliminate this call 1850 /// if it can prove that the block never escapes except down the stack. 1851 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1852 bool mandatory) { 1853 llvm::Value *result 1854 = emitARCValueOperation(*this, value, 1855 CGM.getARCEntrypoints().objc_retainBlock, 1856 "objc_retainBlock"); 1857 1858 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1859 // tell the optimizer that it doesn't need to do this copy if the 1860 // block doesn't escape, where being passed as an argument doesn't 1861 // count as escaping. 1862 if (!mandatory && isa<llvm::Instruction>(result)) { 1863 llvm::CallInst *call 1864 = cast<llvm::CallInst>(result->stripPointerCasts()); 1865 assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock); 1866 1867 SmallVector<llvm::Value*,1> args; 1868 call->setMetadata("clang.arc.copy_on_escape", 1869 llvm::MDNode::get(Builder.getContext(), args)); 1870 } 1871 1872 return result; 1873 } 1874 1875 /// Retain the given object which is the result of a function call. 1876 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 1877 /// 1878 /// Yes, this function name is one character away from a different 1879 /// call with completely different semantics. 1880 llvm::Value * 1881 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 1882 // Fetch the void(void) inline asm which marks that we're going to 1883 // retain the autoreleased return value. 1884 llvm::InlineAsm *&marker 1885 = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker; 1886 if (!marker) { 1887 StringRef assembly 1888 = CGM.getTargetCodeGenInfo() 1889 .getARCRetainAutoreleasedReturnValueMarker(); 1890 1891 // If we have an empty assembly string, there's nothing to do. 1892 if (assembly.empty()) { 1893 1894 // Otherwise, at -O0, build an inline asm that we're going to call 1895 // in a moment. 1896 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1897 llvm::FunctionType *type = 1898 llvm::FunctionType::get(VoidTy, /*variadic*/false); 1899 1900 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 1901 1902 // If we're at -O1 and above, we don't want to litter the code 1903 // with this marker yet, so leave a breadcrumb for the ARC 1904 // optimizer to pick up. 1905 } else { 1906 llvm::NamedMDNode *metadata = 1907 CGM.getModule().getOrInsertNamedMetadata( 1908 "clang.arc.retainAutoreleasedReturnValueMarker"); 1909 assert(metadata->getNumOperands() <= 1); 1910 if (metadata->getNumOperands() == 0) { 1911 llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly); 1912 metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string)); 1913 } 1914 } 1915 } 1916 1917 // Call the marker asm if we made one, which we do only at -O0. 1918 if (marker) Builder.CreateCall(marker); 1919 1920 return emitARCValueOperation(*this, value, 1921 CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue, 1922 "objc_retainAutoreleasedReturnValue"); 1923 } 1924 1925 /// Release the given object. 1926 /// call void \@objc_release(i8* %value) 1927 void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) { 1928 if (isa<llvm::ConstantPointerNull>(value)) return; 1929 1930 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release; 1931 if (!fn) { 1932 std::vector<llvm::Type*> args(1, Int8PtrTy); 1933 llvm::FunctionType *fnType = 1934 llvm::FunctionType::get(Builder.getVoidTy(), args, false); 1935 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 1936 } 1937 1938 // Cast the argument to 'id'. 1939 value = Builder.CreateBitCast(value, Int8PtrTy); 1940 1941 // Call objc_release. 1942 llvm::CallInst *call = Builder.CreateCall(fn, value); 1943 call->setDoesNotThrow(); 1944 1945 if (!precise) { 1946 SmallVector<llvm::Value*,1> args; 1947 call->setMetadata("clang.imprecise_release", 1948 llvm::MDNode::get(Builder.getContext(), args)); 1949 } 1950 } 1951 1952 /// Destroy a __strong variable. 1953 /// 1954 /// At -O0, emit a call to store 'null' into the address; 1955 /// instrumenting tools prefer this because the address is exposed, 1956 /// but it's relatively cumbersome to optimize. 1957 /// 1958 /// At -O1 and above, just load and call objc_release. 1959 /// 1960 /// call void \@objc_storeStrong(i8** %addr, i8* null) 1961 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr, bool precise) { 1962 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1963 llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType()); 1964 llvm::Value *null = llvm::ConstantPointerNull::get( 1965 cast<llvm::PointerType>(addrTy->getElementType())); 1966 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1967 return; 1968 } 1969 1970 llvm::Value *value = Builder.CreateLoad(addr); 1971 EmitARCRelease(value, precise); 1972 } 1973 1974 /// Store into a strong object. Always calls this: 1975 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 1976 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr, 1977 llvm::Value *value, 1978 bool ignored) { 1979 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 1980 == value->getType()); 1981 1982 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong; 1983 if (!fn) { 1984 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 1985 llvm::FunctionType *fnType 1986 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 1987 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 1988 } 1989 1990 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 1991 llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy); 1992 1993 Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow(); 1994 1995 if (ignored) return 0; 1996 return value; 1997 } 1998 1999 /// Store into a strong object. Sometimes calls this: 2000 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2001 /// Other times, breaks it down into components. 2002 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2003 llvm::Value *newValue, 2004 bool ignored) { 2005 QualType type = dst.getType(); 2006 bool isBlock = type->isBlockPointerType(); 2007 2008 // Use a store barrier at -O0 unless this is a block type or the 2009 // lvalue is inadequately aligned. 2010 if (shouldUseFusedARCCalls() && 2011 !isBlock && 2012 (dst.getAlignment().isZero() || 2013 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2014 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2015 } 2016 2017 // Otherwise, split it out. 2018 2019 // Retain the new value. 2020 newValue = EmitARCRetain(type, newValue); 2021 2022 // Read the old value. 2023 llvm::Value *oldValue = EmitLoadOfScalar(dst); 2024 2025 // Store. We do this before the release so that any deallocs won't 2026 // see the old value. 2027 EmitStoreOfScalar(newValue, dst); 2028 2029 // Finally, release the old value. 2030 EmitARCRelease(oldValue, /*precise*/ false); 2031 2032 return newValue; 2033 } 2034 2035 /// Autorelease the given object. 2036 /// call i8* \@objc_autorelease(i8* %value) 2037 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2038 return emitARCValueOperation(*this, value, 2039 CGM.getARCEntrypoints().objc_autorelease, 2040 "objc_autorelease"); 2041 } 2042 2043 /// Autorelease the given object. 2044 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2045 llvm::Value * 2046 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2047 return emitARCValueOperation(*this, value, 2048 CGM.getARCEntrypoints().objc_autoreleaseReturnValue, 2049 "objc_autoreleaseReturnValue"); 2050 } 2051 2052 /// Do a fused retain/autorelease of the given object. 2053 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2054 llvm::Value * 2055 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2056 return emitARCValueOperation(*this, value, 2057 CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue, 2058 "objc_retainAutoreleaseReturnValue"); 2059 } 2060 2061 /// Do a fused retain/autorelease of the given object. 2062 /// call i8* \@objc_retainAutorelease(i8* %value) 2063 /// or 2064 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2065 /// call i8* \@objc_autorelease(i8* %retain) 2066 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2067 llvm::Value *value) { 2068 if (!type->isBlockPointerType()) 2069 return EmitARCRetainAutoreleaseNonBlock(value); 2070 2071 if (isa<llvm::ConstantPointerNull>(value)) return value; 2072 2073 llvm::Type *origType = value->getType(); 2074 value = Builder.CreateBitCast(value, Int8PtrTy); 2075 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2076 value = EmitARCAutorelease(value); 2077 return Builder.CreateBitCast(value, origType); 2078 } 2079 2080 /// Do a fused retain/autorelease of the given object. 2081 /// call i8* \@objc_retainAutorelease(i8* %value) 2082 llvm::Value * 2083 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2084 return emitARCValueOperation(*this, value, 2085 CGM.getARCEntrypoints().objc_retainAutorelease, 2086 "objc_retainAutorelease"); 2087 } 2088 2089 /// i8* \@objc_loadWeak(i8** %addr) 2090 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2091 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) { 2092 return emitARCLoadOperation(*this, addr, 2093 CGM.getARCEntrypoints().objc_loadWeak, 2094 "objc_loadWeak"); 2095 } 2096 2097 /// i8* \@objc_loadWeakRetained(i8** %addr) 2098 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) { 2099 return emitARCLoadOperation(*this, addr, 2100 CGM.getARCEntrypoints().objc_loadWeakRetained, 2101 "objc_loadWeakRetained"); 2102 } 2103 2104 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2105 /// Returns %value. 2106 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr, 2107 llvm::Value *value, 2108 bool ignored) { 2109 return emitARCStoreOperation(*this, addr, value, 2110 CGM.getARCEntrypoints().objc_storeWeak, 2111 "objc_storeWeak", ignored); 2112 } 2113 2114 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2115 /// Returns %value. %addr is known to not have a current weak entry. 2116 /// Essentially equivalent to: 2117 /// *addr = nil; objc_storeWeak(addr, value); 2118 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) { 2119 // If we're initializing to null, just write null to memory; no need 2120 // to get the runtime involved. But don't do this if optimization 2121 // is enabled, because accounting for this would make the optimizer 2122 // much more complicated. 2123 if (isa<llvm::ConstantPointerNull>(value) && 2124 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2125 Builder.CreateStore(value, addr); 2126 return; 2127 } 2128 2129 emitARCStoreOperation(*this, addr, value, 2130 CGM.getARCEntrypoints().objc_initWeak, 2131 "objc_initWeak", /*ignored*/ true); 2132 } 2133 2134 /// void \@objc_destroyWeak(i8** %addr) 2135 /// Essentially objc_storeWeak(addr, nil). 2136 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) { 2137 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak; 2138 if (!fn) { 2139 std::vector<llvm::Type*> args(1, Int8PtrPtrTy); 2140 llvm::FunctionType *fnType = 2141 llvm::FunctionType::get(Builder.getVoidTy(), args, false); 2142 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 2143 } 2144 2145 // Cast the argument to 'id*'. 2146 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2147 2148 llvm::CallInst *call = Builder.CreateCall(fn, addr); 2149 call->setDoesNotThrow(); 2150 } 2151 2152 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2153 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2154 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2155 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) { 2156 emitARCCopyOperation(*this, dst, src, 2157 CGM.getARCEntrypoints().objc_moveWeak, 2158 "objc_moveWeak"); 2159 } 2160 2161 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2162 /// Disregards the current value in %dest. Essentially 2163 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2164 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) { 2165 emitARCCopyOperation(*this, dst, src, 2166 CGM.getARCEntrypoints().objc_copyWeak, 2167 "objc_copyWeak"); 2168 } 2169 2170 /// Produce the code to do a objc_autoreleasepool_push. 2171 /// call i8* \@objc_autoreleasePoolPush(void) 2172 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2173 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush; 2174 if (!fn) { 2175 llvm::FunctionType *fnType = 2176 llvm::FunctionType::get(Int8PtrTy, false); 2177 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 2178 } 2179 2180 llvm::CallInst *call = Builder.CreateCall(fn); 2181 call->setDoesNotThrow(); 2182 2183 return call; 2184 } 2185 2186 /// Produce the code to do a primitive release. 2187 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2188 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2189 assert(value->getType() == Int8PtrTy); 2190 2191 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop; 2192 if (!fn) { 2193 std::vector<llvm::Type*> args(1, Int8PtrTy); 2194 llvm::FunctionType *fnType = 2195 llvm::FunctionType::get(Builder.getVoidTy(), args, false); 2196 2197 // We don't want to use a weak import here; instead we should not 2198 // fall into this path. 2199 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 2200 } 2201 2202 llvm::CallInst *call = Builder.CreateCall(fn, value); 2203 call->setDoesNotThrow(); 2204 } 2205 2206 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2207 /// Which is: [[NSAutoreleasePool alloc] init]; 2208 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2209 /// init is declared as: - (id) init; in its NSObject super class. 2210 /// 2211 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2212 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2213 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder); 2214 // [NSAutoreleasePool alloc] 2215 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2216 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2217 CallArgList Args; 2218 RValue AllocRV = 2219 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2220 getContext().getObjCIdType(), 2221 AllocSel, Receiver, Args); 2222 2223 // [Receiver init] 2224 Receiver = AllocRV.getScalarVal(); 2225 II = &CGM.getContext().Idents.get("init"); 2226 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2227 RValue InitRV = 2228 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2229 getContext().getObjCIdType(), 2230 InitSel, Receiver, Args); 2231 return InitRV.getScalarVal(); 2232 } 2233 2234 /// Produce the code to do a primitive release. 2235 /// [tmp drain]; 2236 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2237 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2238 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2239 CallArgList Args; 2240 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2241 getContext().VoidTy, DrainSel, Arg, Args); 2242 } 2243 2244 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2245 llvm::Value *addr, 2246 QualType type) { 2247 CGF.EmitARCDestroyStrong(addr, /*precise*/ true); 2248 } 2249 2250 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2251 llvm::Value *addr, 2252 QualType type) { 2253 CGF.EmitARCDestroyStrong(addr, /*precise*/ false); 2254 } 2255 2256 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2257 llvm::Value *addr, 2258 QualType type) { 2259 CGF.EmitARCDestroyWeak(addr); 2260 } 2261 2262 namespace { 2263 struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup { 2264 llvm::Value *Token; 2265 2266 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2267 2268 void Emit(CodeGenFunction &CGF, Flags flags) { 2269 CGF.EmitObjCAutoreleasePoolPop(Token); 2270 } 2271 }; 2272 struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup { 2273 llvm::Value *Token; 2274 2275 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2276 2277 void Emit(CodeGenFunction &CGF, Flags flags) { 2278 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2279 } 2280 }; 2281 } 2282 2283 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2284 if (CGM.getLangOpts().ObjCAutoRefCount) 2285 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2286 else 2287 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2288 } 2289 2290 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2291 LValue lvalue, 2292 QualType type) { 2293 switch (type.getObjCLifetime()) { 2294 case Qualifiers::OCL_None: 2295 case Qualifiers::OCL_ExplicitNone: 2296 case Qualifiers::OCL_Strong: 2297 case Qualifiers::OCL_Autoreleasing: 2298 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(), 2299 false); 2300 2301 case Qualifiers::OCL_Weak: 2302 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2303 true); 2304 } 2305 2306 llvm_unreachable("impossible lifetime!"); 2307 } 2308 2309 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2310 const Expr *e) { 2311 e = e->IgnoreParens(); 2312 QualType type = e->getType(); 2313 2314 // If we're loading retained from a __strong xvalue, we can avoid 2315 // an extra retain/release pair by zeroing out the source of this 2316 // "move" operation. 2317 if (e->isXValue() && 2318 !type.isConstQualified() && 2319 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2320 // Emit the lvalue. 2321 LValue lv = CGF.EmitLValue(e); 2322 2323 // Load the object pointer. 2324 llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal(); 2325 2326 // Set the source pointer to NULL. 2327 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2328 2329 return TryEmitResult(result, true); 2330 } 2331 2332 // As a very special optimization, in ARC++, if the l-value is the 2333 // result of a non-volatile assignment, do a simple retain of the 2334 // result of the call to objc_storeWeak instead of reloading. 2335 if (CGF.getLangOpts().CPlusPlus && 2336 !type.isVolatileQualified() && 2337 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2338 isa<BinaryOperator>(e) && 2339 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2340 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2341 2342 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2343 } 2344 2345 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2346 llvm::Value *value); 2347 2348 /// Given that the given expression is some sort of call (which does 2349 /// not return retained), emit a retain following it. 2350 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) { 2351 llvm::Value *value = CGF.EmitScalarExpr(e); 2352 return emitARCRetainAfterCall(CGF, value); 2353 } 2354 2355 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2356 llvm::Value *value) { 2357 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2358 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2359 2360 // Place the retain immediately following the call. 2361 CGF.Builder.SetInsertPoint(call->getParent(), 2362 ++llvm::BasicBlock::iterator(call)); 2363 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2364 2365 CGF.Builder.restoreIP(ip); 2366 return value; 2367 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2368 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2369 2370 // Place the retain at the beginning of the normal destination block. 2371 llvm::BasicBlock *BB = invoke->getNormalDest(); 2372 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2373 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2374 2375 CGF.Builder.restoreIP(ip); 2376 return value; 2377 2378 // Bitcasts can arise because of related-result returns. Rewrite 2379 // the operand. 2380 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2381 llvm::Value *operand = bitcast->getOperand(0); 2382 operand = emitARCRetainAfterCall(CGF, operand); 2383 bitcast->setOperand(0, operand); 2384 return bitcast; 2385 2386 // Generic fall-back case. 2387 } else { 2388 // Retain using the non-block variant: we never need to do a copy 2389 // of a block that's been returned to us. 2390 return CGF.EmitARCRetainNonBlock(value); 2391 } 2392 } 2393 2394 /// Determine whether it might be important to emit a separate 2395 /// objc_retain_block on the result of the given expression, or 2396 /// whether it's okay to just emit it in a +1 context. 2397 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2398 assert(e->getType()->isBlockPointerType()); 2399 e = e->IgnoreParens(); 2400 2401 // For future goodness, emit block expressions directly in +1 2402 // contexts if we can. 2403 if (isa<BlockExpr>(e)) 2404 return false; 2405 2406 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2407 switch (cast->getCastKind()) { 2408 // Emitting these operations in +1 contexts is goodness. 2409 case CK_LValueToRValue: 2410 case CK_ARCReclaimReturnedObject: 2411 case CK_ARCConsumeObject: 2412 case CK_ARCProduceObject: 2413 return false; 2414 2415 // These operations preserve a block type. 2416 case CK_NoOp: 2417 case CK_BitCast: 2418 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2419 2420 // These operations are known to be bad (or haven't been considered). 2421 case CK_AnyPointerToBlockPointerCast: 2422 default: 2423 return true; 2424 } 2425 } 2426 2427 return true; 2428 } 2429 2430 /// Try to emit a PseudoObjectExpr at +1. 2431 /// 2432 /// This massively duplicates emitPseudoObjectRValue. 2433 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF, 2434 const PseudoObjectExpr *E) { 2435 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2436 2437 // Find the result expression. 2438 const Expr *resultExpr = E->getResultExpr(); 2439 assert(resultExpr); 2440 TryEmitResult result; 2441 2442 for (PseudoObjectExpr::const_semantics_iterator 2443 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2444 const Expr *semantic = *i; 2445 2446 // If this semantic expression is an opaque value, bind it 2447 // to the result of its source expression. 2448 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2449 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2450 OVMA opaqueData; 2451 2452 // If this semantic is the result of the pseudo-object 2453 // expression, try to evaluate the source as +1. 2454 if (ov == resultExpr) { 2455 assert(!OVMA::shouldBindAsLValue(ov)); 2456 result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr()); 2457 opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer())); 2458 2459 // Otherwise, just bind it. 2460 } else { 2461 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2462 } 2463 opaques.push_back(opaqueData); 2464 2465 // Otherwise, if the expression is the result, evaluate it 2466 // and remember the result. 2467 } else if (semantic == resultExpr) { 2468 result = tryEmitARCRetainScalarExpr(CGF, semantic); 2469 2470 // Otherwise, evaluate the expression in an ignored context. 2471 } else { 2472 CGF.EmitIgnoredExpr(semantic); 2473 } 2474 } 2475 2476 // Unbind all the opaques now. 2477 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2478 opaques[i].unbind(CGF); 2479 2480 return result; 2481 } 2482 2483 static TryEmitResult 2484 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2485 // Look through cleanups. 2486 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2487 CGF.enterFullExpression(cleanups); 2488 CodeGenFunction::RunCleanupsScope scope(CGF); 2489 return tryEmitARCRetainScalarExpr(CGF, cleanups->getSubExpr()); 2490 } 2491 2492 // The desired result type, if it differs from the type of the 2493 // ultimate opaque expression. 2494 llvm::Type *resultType = 0; 2495 2496 while (true) { 2497 e = e->IgnoreParens(); 2498 2499 // There's a break at the end of this if-chain; anything 2500 // that wants to keep looping has to explicitly continue. 2501 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2502 switch (ce->getCastKind()) { 2503 // No-op casts don't change the type, so we just ignore them. 2504 case CK_NoOp: 2505 e = ce->getSubExpr(); 2506 continue; 2507 2508 case CK_LValueToRValue: { 2509 TryEmitResult loadResult 2510 = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr()); 2511 if (resultType) { 2512 llvm::Value *value = loadResult.getPointer(); 2513 value = CGF.Builder.CreateBitCast(value, resultType); 2514 loadResult.setPointer(value); 2515 } 2516 return loadResult; 2517 } 2518 2519 // These casts can change the type, so remember that and 2520 // soldier on. We only need to remember the outermost such 2521 // cast, though. 2522 case CK_CPointerToObjCPointerCast: 2523 case CK_BlockPointerToObjCPointerCast: 2524 case CK_AnyPointerToBlockPointerCast: 2525 case CK_BitCast: 2526 if (!resultType) 2527 resultType = CGF.ConvertType(ce->getType()); 2528 e = ce->getSubExpr(); 2529 assert(e->getType()->hasPointerRepresentation()); 2530 continue; 2531 2532 // For consumptions, just emit the subexpression and thus elide 2533 // the retain/release pair. 2534 case CK_ARCConsumeObject: { 2535 llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr()); 2536 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2537 return TryEmitResult(result, true); 2538 } 2539 2540 // Block extends are net +0. Naively, we could just recurse on 2541 // the subexpression, but actually we need to ensure that the 2542 // value is copied as a block, so there's a little filter here. 2543 case CK_ARCExtendBlockObject: { 2544 llvm::Value *result; // will be a +0 value 2545 2546 // If we can't safely assume the sub-expression will produce a 2547 // block-copied value, emit the sub-expression at +0. 2548 if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) { 2549 result = CGF.EmitScalarExpr(ce->getSubExpr()); 2550 2551 // Otherwise, try to emit the sub-expression at +1 recursively. 2552 } else { 2553 TryEmitResult subresult 2554 = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr()); 2555 result = subresult.getPointer(); 2556 2557 // If that produced a retained value, just use that, 2558 // possibly casting down. 2559 if (subresult.getInt()) { 2560 if (resultType) 2561 result = CGF.Builder.CreateBitCast(result, resultType); 2562 return TryEmitResult(result, true); 2563 } 2564 2565 // Otherwise it's +0. 2566 } 2567 2568 // Retain the object as a block, then cast down. 2569 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2570 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2571 return TryEmitResult(result, true); 2572 } 2573 2574 // For reclaims, emit the subexpression as a retained call and 2575 // skip the consumption. 2576 case CK_ARCReclaimReturnedObject: { 2577 llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr()); 2578 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2579 return TryEmitResult(result, true); 2580 } 2581 2582 default: 2583 break; 2584 } 2585 2586 // Skip __extension__. 2587 } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 2588 if (op->getOpcode() == UO_Extension) { 2589 e = op->getSubExpr(); 2590 continue; 2591 } 2592 2593 // For calls and message sends, use the retained-call logic. 2594 // Delegate inits are a special case in that they're the only 2595 // returns-retained expression that *isn't* surrounded by 2596 // a consume. 2597 } else if (isa<CallExpr>(e) || 2598 (isa<ObjCMessageExpr>(e) && 2599 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2600 llvm::Value *result = emitARCRetainCall(CGF, e); 2601 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2602 return TryEmitResult(result, true); 2603 2604 // Look through pseudo-object expressions. 2605 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2606 TryEmitResult result 2607 = tryEmitARCRetainPseudoObject(CGF, pseudo); 2608 if (resultType) { 2609 llvm::Value *value = result.getPointer(); 2610 value = CGF.Builder.CreateBitCast(value, resultType); 2611 result.setPointer(value); 2612 } 2613 return result; 2614 } 2615 2616 // Conservatively halt the search at any other expression kind. 2617 break; 2618 } 2619 2620 // We didn't find an obvious production, so emit what we've got and 2621 // tell the caller that we didn't manage to retain. 2622 llvm::Value *result = CGF.EmitScalarExpr(e); 2623 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2624 return TryEmitResult(result, false); 2625 } 2626 2627 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2628 LValue lvalue, 2629 QualType type) { 2630 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2631 llvm::Value *value = result.getPointer(); 2632 if (!result.getInt()) 2633 value = CGF.EmitARCRetain(type, value); 2634 return value; 2635 } 2636 2637 /// EmitARCRetainScalarExpr - Semantically equivalent to 2638 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2639 /// best-effort attempt to peephole expressions that naturally produce 2640 /// retained objects. 2641 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2642 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2643 llvm::Value *value = result.getPointer(); 2644 if (!result.getInt()) 2645 value = EmitARCRetain(e->getType(), value); 2646 return value; 2647 } 2648 2649 llvm::Value * 2650 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2651 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2652 llvm::Value *value = result.getPointer(); 2653 if (result.getInt()) 2654 value = EmitARCAutorelease(value); 2655 else 2656 value = EmitARCRetainAutorelease(e->getType(), value); 2657 return value; 2658 } 2659 2660 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2661 llvm::Value *result; 2662 bool doRetain; 2663 2664 if (shouldEmitSeparateBlockRetain(e)) { 2665 result = EmitScalarExpr(e); 2666 doRetain = true; 2667 } else { 2668 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2669 result = subresult.getPointer(); 2670 doRetain = !subresult.getInt(); 2671 } 2672 2673 if (doRetain) 2674 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2675 return EmitObjCConsumeObject(e->getType(), result); 2676 } 2677 2678 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2679 // In ARC, retain and autorelease the expression. 2680 if (getLangOpts().ObjCAutoRefCount) { 2681 // Do so before running any cleanups for the full-expression. 2682 // tryEmitARCRetainScalarExpr does make an effort to do things 2683 // inside cleanups, but there are crazy cases like 2684 // @throw A().foo; 2685 // where a full retain+autorelease is required and would 2686 // otherwise happen after the destructor for the temporary. 2687 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(expr)) { 2688 enterFullExpression(ewc); 2689 expr = ewc->getSubExpr(); 2690 } 2691 2692 CodeGenFunction::RunCleanupsScope cleanups(*this); 2693 return EmitARCRetainAutoreleaseScalarExpr(expr); 2694 } 2695 2696 // Otherwise, use the normal scalar-expression emission. The 2697 // exception machinery doesn't do anything special with the 2698 // exception like retaining it, so there's no safety associated with 2699 // only running cleanups after the throw has started, and when it 2700 // matters it tends to be substantially inferior code. 2701 return EmitScalarExpr(expr); 2702 } 2703 2704 std::pair<LValue,llvm::Value*> 2705 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 2706 bool ignored) { 2707 // Evaluate the RHS first. 2708 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 2709 llvm::Value *value = result.getPointer(); 2710 2711 bool hasImmediateRetain = result.getInt(); 2712 2713 // If we didn't emit a retained object, and the l-value is of block 2714 // type, then we need to emit the block-retain immediately in case 2715 // it invalidates the l-value. 2716 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 2717 value = EmitARCRetainBlock(value, /*mandatory*/ false); 2718 hasImmediateRetain = true; 2719 } 2720 2721 LValue lvalue = EmitLValue(e->getLHS()); 2722 2723 // If the RHS was emitted retained, expand this. 2724 if (hasImmediateRetain) { 2725 llvm::Value *oldValue = 2726 EmitLoadOfScalar(lvalue); 2727 EmitStoreOfScalar(value, lvalue); 2728 EmitARCRelease(oldValue, /*precise*/ false); 2729 } else { 2730 value = EmitARCStoreStrong(lvalue, value, ignored); 2731 } 2732 2733 return std::pair<LValue,llvm::Value*>(lvalue, value); 2734 } 2735 2736 std::pair<LValue,llvm::Value*> 2737 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 2738 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 2739 LValue lvalue = EmitLValue(e->getLHS()); 2740 2741 EmitStoreOfScalar(value, lvalue); 2742 2743 return std::pair<LValue,llvm::Value*>(lvalue, value); 2744 } 2745 2746 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 2747 const ObjCAutoreleasePoolStmt &ARPS) { 2748 const Stmt *subStmt = ARPS.getSubStmt(); 2749 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 2750 2751 CGDebugInfo *DI = getDebugInfo(); 2752 if (DI) 2753 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 2754 2755 // Keep track of the current cleanup stack depth. 2756 RunCleanupsScope Scope(*this); 2757 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 2758 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 2759 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 2760 } else { 2761 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 2762 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 2763 } 2764 2765 for (CompoundStmt::const_body_iterator I = S.body_begin(), 2766 E = S.body_end(); I != E; ++I) 2767 EmitStmt(*I); 2768 2769 if (DI) 2770 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 2771 } 2772 2773 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2774 /// make sure it survives garbage collection until this point. 2775 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 2776 // We just use an inline assembly. 2777 llvm::FunctionType *extenderType 2778 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 2779 llvm::Value *extender 2780 = llvm::InlineAsm::get(extenderType, 2781 /* assembly */ "", 2782 /* constraints */ "r", 2783 /* side effects */ true); 2784 2785 object = Builder.CreateBitCast(object, VoidPtrTy); 2786 Builder.CreateCall(extender, object)->setDoesNotThrow(); 2787 } 2788 2789 static bool hasAtomicCopyHelperAPI(const ObjCRuntime &runtime) { 2790 // For now, only NeXT has these APIs. 2791 return runtime.isNeXTFamily(); 2792 } 2793 2794 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 2795 /// non-trivial copy assignment function, produce following helper function. 2796 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 2797 /// 2798 llvm::Constant * 2799 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 2800 const ObjCPropertyImplDecl *PID) { 2801 // FIXME. This api is for NeXt runtime only for now. 2802 if (!getLangOpts().CPlusPlus || 2803 !hasAtomicCopyHelperAPI(getLangOpts().ObjCRuntime)) 2804 return 0; 2805 QualType Ty = PID->getPropertyIvarDecl()->getType(); 2806 if (!Ty->isRecordType()) 2807 return 0; 2808 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2809 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2810 return 0; 2811 llvm::Constant * HelperFn = 0; 2812 if (hasTrivialSetExpr(PID)) 2813 return 0; 2814 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 2815 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 2816 return HelperFn; 2817 2818 ASTContext &C = getContext(); 2819 IdentifierInfo *II 2820 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 2821 FunctionDecl *FD = FunctionDecl::Create(C, 2822 C.getTranslationUnitDecl(), 2823 SourceLocation(), 2824 SourceLocation(), II, C.VoidTy, 0, 2825 SC_Static, 2826 SC_None, 2827 false, 2828 false); 2829 2830 QualType DestTy = C.getPointerType(Ty); 2831 QualType SrcTy = Ty; 2832 SrcTy.addConst(); 2833 SrcTy = C.getPointerType(SrcTy); 2834 2835 FunctionArgList args; 2836 ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy); 2837 args.push_back(&dstDecl); 2838 ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy); 2839 args.push_back(&srcDecl); 2840 2841 const CGFunctionInfo &FI = 2842 CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args, 2843 FunctionType::ExtInfo(), 2844 RequiredArgs::All); 2845 2846 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2847 2848 llvm::Function *Fn = 2849 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2850 "__assign_helper_atomic_property_", 2851 &CGM.getModule()); 2852 2853 // Initialize debug info if needed. 2854 maybeInitializeDebugInfo(); 2855 2856 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation()); 2857 2858 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 2859 VK_RValue, SourceLocation()); 2860 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 2861 VK_LValue, OK_Ordinary, SourceLocation()); 2862 2863 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2864 VK_RValue, SourceLocation()); 2865 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2866 VK_LValue, OK_Ordinary, SourceLocation()); 2867 2868 Expr *Args[2] = { &DST, &SRC }; 2869 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 2870 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 2871 Args, DestTy->getPointeeType(), 2872 VK_LValue, SourceLocation(), false); 2873 2874 EmitStmt(&TheCall); 2875 2876 FinishFunction(); 2877 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 2878 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 2879 return HelperFn; 2880 } 2881 2882 llvm::Constant * 2883 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 2884 const ObjCPropertyImplDecl *PID) { 2885 // FIXME. This api is for NeXt runtime only for now. 2886 if (!getLangOpts().CPlusPlus || 2887 !hasAtomicCopyHelperAPI(getLangOpts().ObjCRuntime)) 2888 return 0; 2889 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2890 QualType Ty = PD->getType(); 2891 if (!Ty->isRecordType()) 2892 return 0; 2893 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2894 return 0; 2895 llvm::Constant * HelperFn = 0; 2896 2897 if (hasTrivialGetExpr(PID)) 2898 return 0; 2899 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 2900 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 2901 return HelperFn; 2902 2903 2904 ASTContext &C = getContext(); 2905 IdentifierInfo *II 2906 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 2907 FunctionDecl *FD = FunctionDecl::Create(C, 2908 C.getTranslationUnitDecl(), 2909 SourceLocation(), 2910 SourceLocation(), II, C.VoidTy, 0, 2911 SC_Static, 2912 SC_None, 2913 false, 2914 false); 2915 2916 QualType DestTy = C.getPointerType(Ty); 2917 QualType SrcTy = Ty; 2918 SrcTy.addConst(); 2919 SrcTy = C.getPointerType(SrcTy); 2920 2921 FunctionArgList args; 2922 ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy); 2923 args.push_back(&dstDecl); 2924 ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy); 2925 args.push_back(&srcDecl); 2926 2927 const CGFunctionInfo &FI = 2928 CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args, 2929 FunctionType::ExtInfo(), 2930 RequiredArgs::All); 2931 2932 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2933 2934 llvm::Function *Fn = 2935 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2936 "__copy_helper_atomic_property_", &CGM.getModule()); 2937 2938 // Initialize debug info if needed. 2939 maybeInitializeDebugInfo(); 2940 2941 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation()); 2942 2943 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2944 VK_RValue, SourceLocation()); 2945 2946 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2947 VK_LValue, OK_Ordinary, SourceLocation()); 2948 2949 CXXConstructExpr *CXXConstExpr = 2950 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 2951 2952 SmallVector<Expr*, 4> ConstructorArgs; 2953 ConstructorArgs.push_back(&SRC); 2954 CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin(); 2955 ++A; 2956 2957 for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end(); 2958 A != AEnd; ++A) 2959 ConstructorArgs.push_back(*A); 2960 2961 CXXConstructExpr *TheCXXConstructExpr = 2962 CXXConstructExpr::Create(C, Ty, SourceLocation(), 2963 CXXConstExpr->getConstructor(), 2964 CXXConstExpr->isElidable(), 2965 ConstructorArgs, 2966 CXXConstExpr->hadMultipleCandidates(), 2967 CXXConstExpr->isListInitialization(), 2968 CXXConstExpr->requiresZeroInitialization(), 2969 CXXConstExpr->getConstructionKind(), 2970 SourceRange()); 2971 2972 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 2973 VK_RValue, SourceLocation()); 2974 2975 RValue DV = EmitAnyExpr(&DstExpr); 2976 CharUnits Alignment 2977 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 2978 EmitAggExpr(TheCXXConstructExpr, 2979 AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(), 2980 AggValueSlot::IsDestructed, 2981 AggValueSlot::DoesNotNeedGCBarriers, 2982 AggValueSlot::IsNotAliased)); 2983 2984 FinishFunction(); 2985 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 2986 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 2987 return HelperFn; 2988 } 2989 2990 llvm::Value * 2991 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 2992 // Get selectors for retain/autorelease. 2993 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 2994 Selector CopySelector = 2995 getContext().Selectors.getNullarySelector(CopyID); 2996 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 2997 Selector AutoreleaseSelector = 2998 getContext().Selectors.getNullarySelector(AutoreleaseID); 2999 3000 // Emit calls to retain/autorelease. 3001 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3002 llvm::Value *Val = Block; 3003 RValue Result; 3004 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3005 Ty, CopySelector, 3006 Val, CallArgList(), 0, 0); 3007 Val = Result.getScalarVal(); 3008 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3009 Ty, AutoreleaseSelector, 3010 Val, CallArgList(), 0, 0); 3011 Val = Result.getScalarVal(); 3012 return Val; 3013 } 3014 3015 3016 CGObjCRuntime::~CGObjCRuntime() {} 3017