1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/DataLayout.h"
25 #include "llvm/InlineAsm.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
30 static TryEmitResult
31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
32 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
33                                       QualType ET,
34                                       const ObjCMethodDecl *Method,
35                                       RValue Result);
36 
37 /// Given the address of a variable of pointer type, find the correct
38 /// null to store into it.
39 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
40   llvm::Type *type =
41     cast<llvm::PointerType>(addr->getType())->getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString());
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
57 ///
58 llvm::Value *
59 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
60   // Generate the correct selector for this literal's concrete type.
61   const Expr *SubExpr = E->getSubExpr();
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   assert(BoxingMethod && "BoxingMethod is null");
65   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
66   Selector Sel = BoxingMethod->getSelector();
67 
68   // Generate a reference to the class pointer, which will be the receiver.
69   // Assumes that the method was introduced in the class that should be
70   // messaged (avoids pulling it out of the result type).
71   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
72   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
73   llvm::Value *Receiver = Runtime.GetClass(Builder, ClassDecl);
74 
75   const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
76   QualType ArgQT = argDecl->getType().getUnqualifiedType();
77   RValue RV = EmitAnyExpr(SubExpr);
78   CallArgList Args;
79   Args.add(RV, ArgQT);
80 
81   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
82                                               BoxingMethod->getResultType(), Sel, Receiver, Args,
83                                               ClassDecl, BoxingMethod);
84   return Builder.CreateBitCast(result.getScalarVal(),
85                                ConvertType(E->getType()));
86 }
87 
88 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
89                                     const ObjCMethodDecl *MethodWithObjects) {
90   ASTContext &Context = CGM.getContext();
91   const ObjCDictionaryLiteral *DLE = 0;
92   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
93   if (!ALE)
94     DLE = cast<ObjCDictionaryLiteral>(E);
95 
96   // Compute the type of the array we're initializing.
97   uint64_t NumElements =
98     ALE ? ALE->getNumElements() : DLE->getNumElements();
99   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
100                             NumElements);
101   QualType ElementType = Context.getObjCIdType().withConst();
102   QualType ElementArrayType
103     = Context.getConstantArrayType(ElementType, APNumElements,
104                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
105 
106   // Allocate the temporary array(s).
107   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
108   llvm::Value *Keys = 0;
109   if (DLE)
110     Keys = CreateMemTemp(ElementArrayType, "keys");
111 
112   // Perform the actual initialialization of the array(s).
113   for (uint64_t i = 0; i < NumElements; i++) {
114     if (ALE) {
115       // Emit the initializer.
116       const Expr *Rhs = ALE->getElement(i);
117       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
118                                    ElementType,
119                                    Context.getTypeAlignInChars(Rhs->getType()),
120                                    Context);
121       EmitScalarInit(Rhs, /*D=*/0, LV, /*capturedByInit=*/false);
122     } else {
123       // Emit the key initializer.
124       const Expr *Key = DLE->getKeyValueElement(i).Key;
125       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
126                                       ElementType,
127                                     Context.getTypeAlignInChars(Key->getType()),
128                                       Context);
129       EmitScalarInit(Key, /*D=*/0, KeyLV, /*capturedByInit=*/false);
130 
131       // Emit the value initializer.
132       const Expr *Value = DLE->getKeyValueElement(i).Value;
133       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
134                                         ElementType,
135                                   Context.getTypeAlignInChars(Value->getType()),
136                                         Context);
137       EmitScalarInit(Value, /*D=*/0, ValueLV, /*capturedByInit=*/false);
138     }
139   }
140 
141   // Generate the argument list.
142   CallArgList Args;
143   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
144   const ParmVarDecl *argDecl = *PI++;
145   QualType ArgQT = argDecl->getType().getUnqualifiedType();
146   Args.add(RValue::get(Objects), ArgQT);
147   if (DLE) {
148     argDecl = *PI++;
149     ArgQT = argDecl->getType().getUnqualifiedType();
150     Args.add(RValue::get(Keys), ArgQT);
151   }
152   argDecl = *PI;
153   ArgQT = argDecl->getType().getUnqualifiedType();
154   llvm::Value *Count =
155     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
156   Args.add(RValue::get(Count), ArgQT);
157 
158   // Generate a reference to the class pointer, which will be the receiver.
159   Selector Sel = MethodWithObjects->getSelector();
160   QualType ResultType = E->getType();
161   const ObjCObjectPointerType *InterfacePointerType
162     = ResultType->getAsObjCInterfacePointerType();
163   ObjCInterfaceDecl *Class
164     = InterfacePointerType->getObjectType()->getInterface();
165   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
166   llvm::Value *Receiver = Runtime.GetClass(Builder, Class);
167 
168   // Generate the message send.
169   RValue result
170     = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
171                                   MethodWithObjects->getResultType(),
172                                   Sel,
173                                   Receiver, Args, Class,
174                                   MethodWithObjects);
175   return Builder.CreateBitCast(result.getScalarVal(),
176                                ConvertType(E->getType()));
177 }
178 
179 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
180   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
181 }
182 
183 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
184                                             const ObjCDictionaryLiteral *E) {
185   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
186 }
187 
188 /// Emit a selector.
189 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
190   // Untyped selector.
191   // Note that this implementation allows for non-constant strings to be passed
192   // as arguments to @selector().  Currently, the only thing preventing this
193   // behaviour is the type checking in the front end.
194   return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector());
195 }
196 
197 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
198   // FIXME: This should pass the Decl not the name.
199   return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol());
200 }
201 
202 /// \brief Adjust the type of the result of an Objective-C message send
203 /// expression when the method has a related result type.
204 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
205                                       QualType ExpT,
206                                       const ObjCMethodDecl *Method,
207                                       RValue Result) {
208   if (!Method)
209     return Result;
210 
211   if (!Method->hasRelatedResultType() ||
212       CGF.getContext().hasSameType(ExpT, Method->getResultType()) ||
213       !Result.isScalar())
214     return Result;
215 
216   // We have applied a related result type. Cast the rvalue appropriately.
217   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
218                                                CGF.ConvertType(ExpT)));
219 }
220 
221 /// Decide whether to extend the lifetime of the receiver of a
222 /// returns-inner-pointer message.
223 static bool
224 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
225   switch (message->getReceiverKind()) {
226 
227   // For a normal instance message, we should extend unless the
228   // receiver is loaded from a variable with precise lifetime.
229   case ObjCMessageExpr::Instance: {
230     const Expr *receiver = message->getInstanceReceiver();
231     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
232     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
233     receiver = ice->getSubExpr()->IgnoreParens();
234 
235     // Only __strong variables.
236     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
237       return true;
238 
239     // All ivars and fields have precise lifetime.
240     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
241       return false;
242 
243     // Otherwise, check for variables.
244     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
245     if (!declRef) return true;
246     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
247     if (!var) return true;
248 
249     // All variables have precise lifetime except local variables with
250     // automatic storage duration that aren't specially marked.
251     return (var->hasLocalStorage() &&
252             !var->hasAttr<ObjCPreciseLifetimeAttr>());
253   }
254 
255   case ObjCMessageExpr::Class:
256   case ObjCMessageExpr::SuperClass:
257     // It's never necessary for class objects.
258     return false;
259 
260   case ObjCMessageExpr::SuperInstance:
261     // We generally assume that 'self' lives throughout a method call.
262     return false;
263   }
264 
265   llvm_unreachable("invalid receiver kind");
266 }
267 
268 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
269                                             ReturnValueSlot Return) {
270   // Only the lookup mechanism and first two arguments of the method
271   // implementation vary between runtimes.  We can get the receiver and
272   // arguments in generic code.
273 
274   bool isDelegateInit = E->isDelegateInitCall();
275 
276   const ObjCMethodDecl *method = E->getMethodDecl();
277 
278   // We don't retain the receiver in delegate init calls, and this is
279   // safe because the receiver value is always loaded from 'self',
280   // which we zero out.  We don't want to Block_copy block receivers,
281   // though.
282   bool retainSelf =
283     (!isDelegateInit &&
284      CGM.getLangOpts().ObjCAutoRefCount &&
285      method &&
286      method->hasAttr<NSConsumesSelfAttr>());
287 
288   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
289   bool isSuperMessage = false;
290   bool isClassMessage = false;
291   ObjCInterfaceDecl *OID = 0;
292   // Find the receiver
293   QualType ReceiverType;
294   llvm::Value *Receiver = 0;
295   switch (E->getReceiverKind()) {
296   case ObjCMessageExpr::Instance:
297     ReceiverType = E->getInstanceReceiver()->getType();
298     if (retainSelf) {
299       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
300                                                    E->getInstanceReceiver());
301       Receiver = ter.getPointer();
302       if (ter.getInt()) retainSelf = false;
303     } else
304       Receiver = EmitScalarExpr(E->getInstanceReceiver());
305     break;
306 
307   case ObjCMessageExpr::Class: {
308     ReceiverType = E->getClassReceiver();
309     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
310     assert(ObjTy && "Invalid Objective-C class message send");
311     OID = ObjTy->getInterface();
312     assert(OID && "Invalid Objective-C class message send");
313     Receiver = Runtime.GetClass(Builder, OID);
314     isClassMessage = true;
315     break;
316   }
317 
318   case ObjCMessageExpr::SuperInstance:
319     ReceiverType = E->getSuperType();
320     Receiver = LoadObjCSelf();
321     isSuperMessage = true;
322     break;
323 
324   case ObjCMessageExpr::SuperClass:
325     ReceiverType = E->getSuperType();
326     Receiver = LoadObjCSelf();
327     isSuperMessage = true;
328     isClassMessage = true;
329     break;
330   }
331 
332   if (retainSelf)
333     Receiver = EmitARCRetainNonBlock(Receiver);
334 
335   // In ARC, we sometimes want to "extend the lifetime"
336   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
337   // messages.
338   if (getLangOpts().ObjCAutoRefCount && method &&
339       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
340       shouldExtendReceiverForInnerPointerMessage(E))
341     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
342 
343   QualType ResultType =
344     method ? method->getResultType() : E->getType();
345 
346   CallArgList Args;
347   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
348 
349   // For delegate init calls in ARC, do an unsafe store of null into
350   // self.  This represents the call taking direct ownership of that
351   // value.  We have to do this after emitting the other call
352   // arguments because they might also reference self, but we don't
353   // have to worry about any of them modifying self because that would
354   // be an undefined read and write of an object in unordered
355   // expressions.
356   if (isDelegateInit) {
357     assert(getLangOpts().ObjCAutoRefCount &&
358            "delegate init calls should only be marked in ARC");
359 
360     // Do an unsafe store of null into self.
361     llvm::Value *selfAddr =
362       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
363     assert(selfAddr && "no self entry for a delegate init call?");
364 
365     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
366   }
367 
368   RValue result;
369   if (isSuperMessage) {
370     // super is only valid in an Objective-C method
371     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
372     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
373     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
374                                               E->getSelector(),
375                                               OMD->getClassInterface(),
376                                               isCategoryImpl,
377                                               Receiver,
378                                               isClassMessage,
379                                               Args,
380                                               method);
381   } else {
382     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
383                                          E->getSelector(),
384                                          Receiver, Args, OID,
385                                          method);
386   }
387 
388   // For delegate init calls in ARC, implicitly store the result of
389   // the call back into self.  This takes ownership of the value.
390   if (isDelegateInit) {
391     llvm::Value *selfAddr =
392       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
393     llvm::Value *newSelf = result.getScalarVal();
394 
395     // The delegate return type isn't necessarily a matching type; in
396     // fact, it's quite likely to be 'id'.
397     llvm::Type *selfTy =
398       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
399     newSelf = Builder.CreateBitCast(newSelf, selfTy);
400 
401     Builder.CreateStore(newSelf, selfAddr);
402   }
403 
404   return AdjustRelatedResultType(*this, E->getType(), method, result);
405 }
406 
407 namespace {
408 struct FinishARCDealloc : EHScopeStack::Cleanup {
409   void Emit(CodeGenFunction &CGF, Flags flags) {
410     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
411 
412     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
413     const ObjCInterfaceDecl *iface = impl->getClassInterface();
414     if (!iface->getSuperClass()) return;
415 
416     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
417 
418     // Call [super dealloc] if we have a superclass.
419     llvm::Value *self = CGF.LoadObjCSelf();
420 
421     CallArgList args;
422     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
423                                                       CGF.getContext().VoidTy,
424                                                       method->getSelector(),
425                                                       iface,
426                                                       isCategory,
427                                                       self,
428                                                       /*is class msg*/ false,
429                                                       args,
430                                                       method);
431   }
432 };
433 }
434 
435 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
436 /// the LLVM function and sets the other context used by
437 /// CodeGenFunction.
438 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
439                                       const ObjCContainerDecl *CD,
440                                       SourceLocation StartLoc) {
441   FunctionArgList args;
442   // Check if we should generate debug info for this method.
443   if (!OMD->hasAttr<NoDebugAttr>())
444     maybeInitializeDebugInfo();
445 
446   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
447 
448   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
449   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
450 
451   args.push_back(OMD->getSelfDecl());
452   args.push_back(OMD->getCmdDecl());
453 
454   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
455          E = OMD->param_end(); PI != E; ++PI)
456     args.push_back(*PI);
457 
458   CurGD = OMD;
459 
460   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
461 
462   // In ARC, certain methods get an extra cleanup.
463   if (CGM.getLangOpts().ObjCAutoRefCount &&
464       OMD->isInstanceMethod() &&
465       OMD->getSelector().isUnarySelector()) {
466     const IdentifierInfo *ident =
467       OMD->getSelector().getIdentifierInfoForSlot(0);
468     if (ident->isStr("dealloc"))
469       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
470   }
471 }
472 
473 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
474                                               LValue lvalue, QualType type);
475 
476 /// Generate an Objective-C method.  An Objective-C method is a C function with
477 /// its pointer, name, and types registered in the class struture.
478 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
479   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
480   EmitStmt(OMD->getBody());
481   FinishFunction(OMD->getBodyRBrace());
482 }
483 
484 /// emitStructGetterCall - Call the runtime function to load a property
485 /// into the return value slot.
486 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
487                                  bool isAtomic, bool hasStrong) {
488   ASTContext &Context = CGF.getContext();
489 
490   llvm::Value *src =
491     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
492                           ivar, 0).getAddress();
493 
494   // objc_copyStruct (ReturnValue, &structIvar,
495   //                  sizeof (Type of Ivar), isAtomic, false);
496   CallArgList args;
497 
498   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
499   args.add(RValue::get(dest), Context.VoidPtrTy);
500 
501   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
502   args.add(RValue::get(src), Context.VoidPtrTy);
503 
504   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
505   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
506   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
507   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
508 
509   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
510   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
511                                                       FunctionType::ExtInfo(),
512                                                       RequiredArgs::All),
513                fn, ReturnValueSlot(), args);
514 }
515 
516 /// Determine whether the given architecture supports unaligned atomic
517 /// accesses.  They don't have to be fast, just faster than a function
518 /// call and a mutex.
519 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
520   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
521   // currently supported by the backend.)
522   return 0;
523 }
524 
525 /// Return the maximum size that permits atomic accesses for the given
526 /// architecture.
527 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
528                                         llvm::Triple::ArchType arch) {
529   // ARM has 8-byte atomic accesses, but it's not clear whether we
530   // want to rely on them here.
531 
532   // In the default case, just assume that any size up to a pointer is
533   // fine given adequate alignment.
534   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
535 }
536 
537 namespace {
538   class PropertyImplStrategy {
539   public:
540     enum StrategyKind {
541       /// The 'native' strategy is to use the architecture's provided
542       /// reads and writes.
543       Native,
544 
545       /// Use objc_setProperty and objc_getProperty.
546       GetSetProperty,
547 
548       /// Use objc_setProperty for the setter, but use expression
549       /// evaluation for the getter.
550       SetPropertyAndExpressionGet,
551 
552       /// Use objc_copyStruct.
553       CopyStruct,
554 
555       /// The 'expression' strategy is to emit normal assignment or
556       /// lvalue-to-rvalue expressions.
557       Expression
558     };
559 
560     StrategyKind getKind() const { return StrategyKind(Kind); }
561 
562     bool hasStrongMember() const { return HasStrong; }
563     bool isAtomic() const { return IsAtomic; }
564     bool isCopy() const { return IsCopy; }
565 
566     CharUnits getIvarSize() const { return IvarSize; }
567     CharUnits getIvarAlignment() const { return IvarAlignment; }
568 
569     PropertyImplStrategy(CodeGenModule &CGM,
570                          const ObjCPropertyImplDecl *propImpl);
571 
572   private:
573     unsigned Kind : 8;
574     unsigned IsAtomic : 1;
575     unsigned IsCopy : 1;
576     unsigned HasStrong : 1;
577 
578     CharUnits IvarSize;
579     CharUnits IvarAlignment;
580   };
581 }
582 
583 /// Pick an implementation strategy for the given property synthesis.
584 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
585                                      const ObjCPropertyImplDecl *propImpl) {
586   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
587   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
588 
589   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
590   IsAtomic = prop->isAtomic();
591   HasStrong = false; // doesn't matter here.
592 
593   // Evaluate the ivar's size and alignment.
594   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
595   QualType ivarType = ivar->getType();
596   llvm::tie(IvarSize, IvarAlignment)
597     = CGM.getContext().getTypeInfoInChars(ivarType);
598 
599   // If we have a copy property, we always have to use getProperty/setProperty.
600   // TODO: we could actually use setProperty and an expression for non-atomics.
601   if (IsCopy) {
602     Kind = GetSetProperty;
603     return;
604   }
605 
606   // Handle retain.
607   if (setterKind == ObjCPropertyDecl::Retain) {
608     // In GC-only, there's nothing special that needs to be done.
609     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
610       // fallthrough
611 
612     // In ARC, if the property is non-atomic, use expression emission,
613     // which translates to objc_storeStrong.  This isn't required, but
614     // it's slightly nicer.
615     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
616       // Using standard expression emission for the setter is only
617       // acceptable if the ivar is __strong, which won't be true if
618       // the property is annotated with __attribute__((NSObject)).
619       // TODO: falling all the way back to objc_setProperty here is
620       // just laziness, though;  we could still use objc_storeStrong
621       // if we hacked it right.
622       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
623         Kind = Expression;
624       else
625         Kind = SetPropertyAndExpressionGet;
626       return;
627 
628     // Otherwise, we need to at least use setProperty.  However, if
629     // the property isn't atomic, we can use normal expression
630     // emission for the getter.
631     } else if (!IsAtomic) {
632       Kind = SetPropertyAndExpressionGet;
633       return;
634 
635     // Otherwise, we have to use both setProperty and getProperty.
636     } else {
637       Kind = GetSetProperty;
638       return;
639     }
640   }
641 
642   // If we're not atomic, just use expression accesses.
643   if (!IsAtomic) {
644     Kind = Expression;
645     return;
646   }
647 
648   // Properties on bitfield ivars need to be emitted using expression
649   // accesses even if they're nominally atomic.
650   if (ivar->isBitField()) {
651     Kind = Expression;
652     return;
653   }
654 
655   // GC-qualified or ARC-qualified ivars need to be emitted as
656   // expressions.  This actually works out to being atomic anyway,
657   // except for ARC __strong, but that should trigger the above code.
658   if (ivarType.hasNonTrivialObjCLifetime() ||
659       (CGM.getLangOpts().getGC() &&
660        CGM.getContext().getObjCGCAttrKind(ivarType))) {
661     Kind = Expression;
662     return;
663   }
664 
665   // Compute whether the ivar has strong members.
666   if (CGM.getLangOpts().getGC())
667     if (const RecordType *recordType = ivarType->getAs<RecordType>())
668       HasStrong = recordType->getDecl()->hasObjectMember();
669 
670   // We can never access structs with object members with a native
671   // access, because we need to use write barriers.  This is what
672   // objc_copyStruct is for.
673   if (HasStrong) {
674     Kind = CopyStruct;
675     return;
676   }
677 
678   // Otherwise, this is target-dependent and based on the size and
679   // alignment of the ivar.
680 
681   // If the size of the ivar is not a power of two, give up.  We don't
682   // want to get into the business of doing compare-and-swaps.
683   if (!IvarSize.isPowerOfTwo()) {
684     Kind = CopyStruct;
685     return;
686   }
687 
688   llvm::Triple::ArchType arch =
689     CGM.getContext().getTargetInfo().getTriple().getArch();
690 
691   // Most architectures require memory to fit within a single cache
692   // line, so the alignment has to be at least the size of the access.
693   // Otherwise we have to grab a lock.
694   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
695     Kind = CopyStruct;
696     return;
697   }
698 
699   // If the ivar's size exceeds the architecture's maximum atomic
700   // access size, we have to use CopyStruct.
701   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
702     Kind = CopyStruct;
703     return;
704   }
705 
706   // Otherwise, we can use native loads and stores.
707   Kind = Native;
708 }
709 
710 /// \brief Generate an Objective-C property getter function.
711 ///
712 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
713 /// is illegal within a category.
714 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
715                                          const ObjCPropertyImplDecl *PID) {
716   llvm::Constant *AtomicHelperFn =
717     GenerateObjCAtomicGetterCopyHelperFunction(PID);
718   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
719   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
720   assert(OMD && "Invalid call to generate getter (empty method)");
721   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
722 
723   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
724 
725   FinishFunction();
726 }
727 
728 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
729   const Expr *getter = propImpl->getGetterCXXConstructor();
730   if (!getter) return true;
731 
732   // Sema only makes only of these when the ivar has a C++ class type,
733   // so the form is pretty constrained.
734 
735   // If the property has a reference type, we might just be binding a
736   // reference, in which case the result will be a gl-value.  We should
737   // treat this as a non-trivial operation.
738   if (getter->isGLValue())
739     return false;
740 
741   // If we selected a trivial copy-constructor, we're okay.
742   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
743     return (construct->getConstructor()->isTrivial());
744 
745   // The constructor might require cleanups (in which case it's never
746   // trivial).
747   assert(isa<ExprWithCleanups>(getter));
748   return false;
749 }
750 
751 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
752 /// copy the ivar into the resturn slot.
753 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
754                                           llvm::Value *returnAddr,
755                                           ObjCIvarDecl *ivar,
756                                           llvm::Constant *AtomicHelperFn) {
757   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
758   //                           AtomicHelperFn);
759   CallArgList args;
760 
761   // The 1st argument is the return Slot.
762   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
763 
764   // The 2nd argument is the address of the ivar.
765   llvm::Value *ivarAddr =
766   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
767                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
768   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
769   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
770 
771   // Third argument is the helper function.
772   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
773 
774   llvm::Value *copyCppAtomicObjectFn =
775   CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
776   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
777                                                       args,
778                                                       FunctionType::ExtInfo(),
779                                                       RequiredArgs::All),
780                copyCppAtomicObjectFn, ReturnValueSlot(), args);
781 }
782 
783 void
784 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
785                                         const ObjCPropertyImplDecl *propImpl,
786                                         const ObjCMethodDecl *GetterMethodDecl,
787                                         llvm::Constant *AtomicHelperFn) {
788   // If there's a non-trivial 'get' expression, we just have to emit that.
789   if (!hasTrivialGetExpr(propImpl)) {
790     if (!AtomicHelperFn) {
791       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
792                      /*nrvo*/ 0);
793       EmitReturnStmt(ret);
794     }
795     else {
796       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
797       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
798                                     ivar, AtomicHelperFn);
799     }
800     return;
801   }
802 
803   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
804   QualType propType = prop->getType();
805   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
806 
807   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
808 
809   // Pick an implementation strategy.
810   PropertyImplStrategy strategy(CGM, propImpl);
811   switch (strategy.getKind()) {
812   case PropertyImplStrategy::Native: {
813     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
814 
815     // Currently, all atomic accesses have to be through integer
816     // types, so there's no point in trying to pick a prettier type.
817     llvm::Type *bitcastType =
818       llvm::Type::getIntNTy(getLLVMContext(),
819                             getContext().toBits(strategy.getIvarSize()));
820     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
821 
822     // Perform an atomic load.  This does not impose ordering constraints.
823     llvm::Value *ivarAddr = LV.getAddress();
824     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
825     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
826     load->setAlignment(strategy.getIvarAlignment().getQuantity());
827     load->setAtomic(llvm::Unordered);
828 
829     // Store that value into the return address.  Doing this with a
830     // bitcast is likely to produce some pretty ugly IR, but it's not
831     // the *most* terrible thing in the world.
832     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
833 
834     // Make sure we don't do an autorelease.
835     AutoreleaseResult = false;
836     return;
837   }
838 
839   case PropertyImplStrategy::GetSetProperty: {
840     llvm::Value *getPropertyFn =
841       CGM.getObjCRuntime().GetPropertyGetFunction();
842     if (!getPropertyFn) {
843       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
844       return;
845     }
846 
847     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
848     // FIXME: Can't this be simpler? This might even be worse than the
849     // corresponding gcc code.
850     llvm::Value *cmd =
851       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
852     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
853     llvm::Value *ivarOffset =
854       EmitIvarOffset(classImpl->getClassInterface(), ivar);
855 
856     CallArgList args;
857     args.add(RValue::get(self), getContext().getObjCIdType());
858     args.add(RValue::get(cmd), getContext().getObjCSelType());
859     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
860     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
861              getContext().BoolTy);
862 
863     // FIXME: We shouldn't need to get the function info here, the
864     // runtime already should have computed it to build the function.
865     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
866                                                        FunctionType::ExtInfo(),
867                                                             RequiredArgs::All),
868                          getPropertyFn, ReturnValueSlot(), args);
869 
870     // We need to fix the type here. Ivars with copy & retain are
871     // always objects so we don't need to worry about complex or
872     // aggregates.
873     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
874            getTypes().ConvertType(getterMethod->getResultType())));
875 
876     EmitReturnOfRValue(RV, propType);
877 
878     // objc_getProperty does an autorelease, so we should suppress ours.
879     AutoreleaseResult = false;
880 
881     return;
882   }
883 
884   case PropertyImplStrategy::CopyStruct:
885     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
886                          strategy.hasStrongMember());
887     return;
888 
889   case PropertyImplStrategy::Expression:
890   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
891     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
892 
893     QualType ivarType = ivar->getType();
894     if (ivarType->isAnyComplexType()) {
895       ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(),
896                                                LV.isVolatileQualified());
897       StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified());
898     } else if (hasAggregateLLVMType(ivarType)) {
899       // The return value slot is guaranteed to not be aliased, but
900       // that's not necessarily the same as "on the stack", so
901       // we still potentially need objc_memmove_collectable.
902       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
903     } else {
904       llvm::Value *value;
905       if (propType->isReferenceType()) {
906         value = LV.getAddress();
907       } else {
908         // We want to load and autoreleaseReturnValue ARC __weak ivars.
909         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
910           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
911 
912         // Otherwise we want to do a simple load, suppressing the
913         // final autorelease.
914         } else {
915           value = EmitLoadOfLValue(LV).getScalarVal();
916           AutoreleaseResult = false;
917         }
918 
919         value = Builder.CreateBitCast(value, ConvertType(propType));
920         value = Builder.CreateBitCast(value,
921                   ConvertType(GetterMethodDecl->getResultType()));
922       }
923 
924       EmitReturnOfRValue(RValue::get(value), propType);
925     }
926     return;
927   }
928 
929   }
930   llvm_unreachable("bad @property implementation strategy!");
931 }
932 
933 /// emitStructSetterCall - Call the runtime function to store the value
934 /// from the first formal parameter into the given ivar.
935 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
936                                  ObjCIvarDecl *ivar) {
937   // objc_copyStruct (&structIvar, &Arg,
938   //                  sizeof (struct something), true, false);
939   CallArgList args;
940 
941   // The first argument is the address of the ivar.
942   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
943                                                 CGF.LoadObjCSelf(), ivar, 0)
944     .getAddress();
945   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
946   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
947 
948   // The second argument is the address of the parameter variable.
949   ParmVarDecl *argVar = *OMD->param_begin();
950   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
951                      VK_LValue, SourceLocation());
952   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
953   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
954   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
955 
956   // The third argument is the sizeof the type.
957   llvm::Value *size =
958     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
959   args.add(RValue::get(size), CGF.getContext().getSizeType());
960 
961   // The fourth argument is the 'isAtomic' flag.
962   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
963 
964   // The fifth argument is the 'hasStrong' flag.
965   // FIXME: should this really always be false?
966   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
967 
968   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
969   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
970                                                       args,
971                                                       FunctionType::ExtInfo(),
972                                                       RequiredArgs::All),
973                copyStructFn, ReturnValueSlot(), args);
974 }
975 
976 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
977 /// the value from the first formal parameter into the given ivar, using
978 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
979 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
980                                           ObjCMethodDecl *OMD,
981                                           ObjCIvarDecl *ivar,
982                                           llvm::Constant *AtomicHelperFn) {
983   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
984   //                           AtomicHelperFn);
985   CallArgList args;
986 
987   // The first argument is the address of the ivar.
988   llvm::Value *ivarAddr =
989     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
990                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
991   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
992   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
993 
994   // The second argument is the address of the parameter variable.
995   ParmVarDecl *argVar = *OMD->param_begin();
996   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
997                      VK_LValue, SourceLocation());
998   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
999   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1000   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1001 
1002   // Third argument is the helper function.
1003   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1004 
1005   llvm::Value *copyCppAtomicObjectFn =
1006     CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
1007   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1008                                                       args,
1009                                                       FunctionType::ExtInfo(),
1010                                                       RequiredArgs::All),
1011                copyCppAtomicObjectFn, ReturnValueSlot(), args);
1012 
1013 
1014 }
1015 
1016 
1017 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1018   Expr *setter = PID->getSetterCXXAssignment();
1019   if (!setter) return true;
1020 
1021   // Sema only makes only of these when the ivar has a C++ class type,
1022   // so the form is pretty constrained.
1023 
1024   // An operator call is trivial if the function it calls is trivial.
1025   // This also implies that there's nothing non-trivial going on with
1026   // the arguments, because operator= can only be trivial if it's a
1027   // synthesized assignment operator and therefore both parameters are
1028   // references.
1029   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1030     if (const FunctionDecl *callee
1031           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1032       if (callee->isTrivial())
1033         return true;
1034     return false;
1035   }
1036 
1037   assert(isa<ExprWithCleanups>(setter));
1038   return false;
1039 }
1040 
1041 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1042   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1043     return false;
1044   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1045 }
1046 
1047 void
1048 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1049                                         const ObjCPropertyImplDecl *propImpl,
1050                                         llvm::Constant *AtomicHelperFn) {
1051   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1052   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1053   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1054 
1055   // Just use the setter expression if Sema gave us one and it's
1056   // non-trivial.
1057   if (!hasTrivialSetExpr(propImpl)) {
1058     if (!AtomicHelperFn)
1059       // If non-atomic, assignment is called directly.
1060       EmitStmt(propImpl->getSetterCXXAssignment());
1061     else
1062       // If atomic, assignment is called via a locking api.
1063       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1064                                     AtomicHelperFn);
1065     return;
1066   }
1067 
1068   PropertyImplStrategy strategy(CGM, propImpl);
1069   switch (strategy.getKind()) {
1070   case PropertyImplStrategy::Native: {
1071     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1072 
1073     LValue ivarLValue =
1074       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1075     llvm::Value *ivarAddr = ivarLValue.getAddress();
1076 
1077     // Currently, all atomic accesses have to be through integer
1078     // types, so there's no point in trying to pick a prettier type.
1079     llvm::Type *bitcastType =
1080       llvm::Type::getIntNTy(getLLVMContext(),
1081                             getContext().toBits(strategy.getIvarSize()));
1082     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1083 
1084     // Cast both arguments to the chosen operation type.
1085     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1086     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1087 
1088     // This bitcast load is likely to cause some nasty IR.
1089     llvm::Value *load = Builder.CreateLoad(argAddr);
1090 
1091     // Perform an atomic store.  There are no memory ordering requirements.
1092     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1093     store->setAlignment(strategy.getIvarAlignment().getQuantity());
1094     store->setAtomic(llvm::Unordered);
1095     return;
1096   }
1097 
1098   case PropertyImplStrategy::GetSetProperty:
1099   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1100 
1101     llvm::Value *setOptimizedPropertyFn = 0;
1102     llvm::Value *setPropertyFn = 0;
1103     if (UseOptimizedSetter(CGM)) {
1104       // 10.8 and iOS 6.0 code and GC is off
1105       setOptimizedPropertyFn =
1106         CGM.getObjCRuntime()
1107            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1108                                             strategy.isCopy());
1109       if (!setOptimizedPropertyFn) {
1110         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1111         return;
1112       }
1113     }
1114     else {
1115       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1116       if (!setPropertyFn) {
1117         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1118         return;
1119       }
1120     }
1121 
1122     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1123     //                       <is-atomic>, <is-copy>).
1124     llvm::Value *cmd =
1125       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1126     llvm::Value *self =
1127       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1128     llvm::Value *ivarOffset =
1129       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1130     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1131     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1132 
1133     CallArgList args;
1134     args.add(RValue::get(self), getContext().getObjCIdType());
1135     args.add(RValue::get(cmd), getContext().getObjCSelType());
1136     if (setOptimizedPropertyFn) {
1137       args.add(RValue::get(arg), getContext().getObjCIdType());
1138       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1139       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1140                                                   FunctionType::ExtInfo(),
1141                                                   RequiredArgs::All),
1142                setOptimizedPropertyFn, ReturnValueSlot(), args);
1143     } else {
1144       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1145       args.add(RValue::get(arg), getContext().getObjCIdType());
1146       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1147                getContext().BoolTy);
1148       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1149                getContext().BoolTy);
1150       // FIXME: We shouldn't need to get the function info here, the runtime
1151       // already should have computed it to build the function.
1152       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1153                                                   FunctionType::ExtInfo(),
1154                                                   RequiredArgs::All),
1155                setPropertyFn, ReturnValueSlot(), args);
1156     }
1157 
1158     return;
1159   }
1160 
1161   case PropertyImplStrategy::CopyStruct:
1162     emitStructSetterCall(*this, setterMethod, ivar);
1163     return;
1164 
1165   case PropertyImplStrategy::Expression:
1166     break;
1167   }
1168 
1169   // Otherwise, fake up some ASTs and emit a normal assignment.
1170   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1171   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1172                    VK_LValue, SourceLocation());
1173   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1174                             selfDecl->getType(), CK_LValueToRValue, &self,
1175                             VK_RValue);
1176   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1177                           SourceLocation(), &selfLoad, true, true);
1178 
1179   ParmVarDecl *argDecl = *setterMethod->param_begin();
1180   QualType argType = argDecl->getType().getNonReferenceType();
1181   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1182   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1183                            argType.getUnqualifiedType(), CK_LValueToRValue,
1184                            &arg, VK_RValue);
1185 
1186   // The property type can differ from the ivar type in some situations with
1187   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1188   // The following absurdity is just to ensure well-formed IR.
1189   CastKind argCK = CK_NoOp;
1190   if (ivarRef.getType()->isObjCObjectPointerType()) {
1191     if (argLoad.getType()->isObjCObjectPointerType())
1192       argCK = CK_BitCast;
1193     else if (argLoad.getType()->isBlockPointerType())
1194       argCK = CK_BlockPointerToObjCPointerCast;
1195     else
1196       argCK = CK_CPointerToObjCPointerCast;
1197   } else if (ivarRef.getType()->isBlockPointerType()) {
1198      if (argLoad.getType()->isBlockPointerType())
1199       argCK = CK_BitCast;
1200     else
1201       argCK = CK_AnyPointerToBlockPointerCast;
1202   } else if (ivarRef.getType()->isPointerType()) {
1203     argCK = CK_BitCast;
1204   }
1205   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1206                            ivarRef.getType(), argCK, &argLoad,
1207                            VK_RValue);
1208   Expr *finalArg = &argLoad;
1209   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1210                                            argLoad.getType()))
1211     finalArg = &argCast;
1212 
1213 
1214   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1215                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1216                         SourceLocation(), false);
1217   EmitStmt(&assign);
1218 }
1219 
1220 /// \brief Generate an Objective-C property setter function.
1221 ///
1222 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1223 /// is illegal within a category.
1224 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1225                                          const ObjCPropertyImplDecl *PID) {
1226   llvm::Constant *AtomicHelperFn =
1227     GenerateObjCAtomicSetterCopyHelperFunction(PID);
1228   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1229   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1230   assert(OMD && "Invalid call to generate setter (empty method)");
1231   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
1232 
1233   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1234 
1235   FinishFunction();
1236 }
1237 
1238 namespace {
1239   struct DestroyIvar : EHScopeStack::Cleanup {
1240   private:
1241     llvm::Value *addr;
1242     const ObjCIvarDecl *ivar;
1243     CodeGenFunction::Destroyer *destroyer;
1244     bool useEHCleanupForArray;
1245   public:
1246     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1247                 CodeGenFunction::Destroyer *destroyer,
1248                 bool useEHCleanupForArray)
1249       : addr(addr), ivar(ivar), destroyer(destroyer),
1250         useEHCleanupForArray(useEHCleanupForArray) {}
1251 
1252     void Emit(CodeGenFunction &CGF, Flags flags) {
1253       LValue lvalue
1254         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1255       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1256                       flags.isForNormalCleanup() && useEHCleanupForArray);
1257     }
1258   };
1259 }
1260 
1261 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1262 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1263                                       llvm::Value *addr,
1264                                       QualType type) {
1265   llvm::Value *null = getNullForVariable(addr);
1266   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1267 }
1268 
1269 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1270                                   ObjCImplementationDecl *impl) {
1271   CodeGenFunction::RunCleanupsScope scope(CGF);
1272 
1273   llvm::Value *self = CGF.LoadObjCSelf();
1274 
1275   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1276   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1277        ivar; ivar = ivar->getNextIvar()) {
1278     QualType type = ivar->getType();
1279 
1280     // Check whether the ivar is a destructible type.
1281     QualType::DestructionKind dtorKind = type.isDestructedType();
1282     if (!dtorKind) continue;
1283 
1284     CodeGenFunction::Destroyer *destroyer = 0;
1285 
1286     // Use a call to objc_storeStrong to destroy strong ivars, for the
1287     // general benefit of the tools.
1288     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1289       destroyer = destroyARCStrongWithStore;
1290 
1291     // Otherwise use the default for the destruction kind.
1292     } else {
1293       destroyer = CGF.getDestroyer(dtorKind);
1294     }
1295 
1296     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1297 
1298     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1299                                          cleanupKind & EHCleanup);
1300   }
1301 
1302   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1303 }
1304 
1305 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1306                                                  ObjCMethodDecl *MD,
1307                                                  bool ctor) {
1308   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1309   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1310 
1311   // Emit .cxx_construct.
1312   if (ctor) {
1313     // Suppress the final autorelease in ARC.
1314     AutoreleaseResult = false;
1315 
1316     SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
1317     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1318            E = IMP->init_end(); B != E; ++B) {
1319       CXXCtorInitializer *IvarInit = (*B);
1320       FieldDecl *Field = IvarInit->getAnyMember();
1321       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
1322       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1323                                     LoadObjCSelf(), Ivar, 0);
1324       EmitAggExpr(IvarInit->getInit(),
1325                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1326                                           AggValueSlot::DoesNotNeedGCBarriers,
1327                                           AggValueSlot::IsNotAliased));
1328     }
1329     // constructor returns 'self'.
1330     CodeGenTypes &Types = CGM.getTypes();
1331     QualType IdTy(CGM.getContext().getObjCIdType());
1332     llvm::Value *SelfAsId =
1333       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1334     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1335 
1336   // Emit .cxx_destruct.
1337   } else {
1338     emitCXXDestructMethod(*this, IMP);
1339   }
1340   FinishFunction();
1341 }
1342 
1343 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1344   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1345   it++; it++;
1346   const ABIArgInfo &AI = it->info;
1347   // FIXME. Is this sufficient check?
1348   return (AI.getKind() == ABIArgInfo::Indirect);
1349 }
1350 
1351 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1352   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1353     return false;
1354   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1355     return FDTTy->getDecl()->hasObjectMember();
1356   return false;
1357 }
1358 
1359 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1360   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1361   return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self");
1362 }
1363 
1364 QualType CodeGenFunction::TypeOfSelfObject() {
1365   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1366   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1367   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1368     getContext().getCanonicalType(selfDecl->getType()));
1369   return PTy->getPointeeType();
1370 }
1371 
1372 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1373   llvm::Constant *EnumerationMutationFn =
1374     CGM.getObjCRuntime().EnumerationMutationFunction();
1375 
1376   if (!EnumerationMutationFn) {
1377     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1378     return;
1379   }
1380 
1381   CGDebugInfo *DI = getDebugInfo();
1382   if (DI)
1383     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1384 
1385   // The local variable comes into scope immediately.
1386   AutoVarEmission variable = AutoVarEmission::invalid();
1387   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1388     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1389 
1390   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1391 
1392   // Fast enumeration state.
1393   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1394   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1395   EmitNullInitialization(StatePtr, StateTy);
1396 
1397   // Number of elements in the items array.
1398   static const unsigned NumItems = 16;
1399 
1400   // Fetch the countByEnumeratingWithState:objects:count: selector.
1401   IdentifierInfo *II[] = {
1402     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1403     &CGM.getContext().Idents.get("objects"),
1404     &CGM.getContext().Idents.get("count")
1405   };
1406   Selector FastEnumSel =
1407     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1408 
1409   QualType ItemsTy =
1410     getContext().getConstantArrayType(getContext().getObjCIdType(),
1411                                       llvm::APInt(32, NumItems),
1412                                       ArrayType::Normal, 0);
1413   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1414 
1415   // Emit the collection pointer.  In ARC, we do a retain.
1416   llvm::Value *Collection;
1417   if (getLangOpts().ObjCAutoRefCount) {
1418     Collection = EmitARCRetainScalarExpr(S.getCollection());
1419 
1420     // Enter a cleanup to do the release.
1421     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1422   } else {
1423     Collection = EmitScalarExpr(S.getCollection());
1424   }
1425 
1426   // The 'continue' label needs to appear within the cleanup for the
1427   // collection object.
1428   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1429 
1430   // Send it our message:
1431   CallArgList Args;
1432 
1433   // The first argument is a temporary of the enumeration-state type.
1434   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1435 
1436   // The second argument is a temporary array with space for NumItems
1437   // pointers.  We'll actually be loading elements from the array
1438   // pointer written into the control state; this buffer is so that
1439   // collections that *aren't* backed by arrays can still queue up
1440   // batches of elements.
1441   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1442 
1443   // The third argument is the capacity of that temporary array.
1444   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1445   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1446   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1447 
1448   // Start the enumeration.
1449   RValue CountRV =
1450     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1451                                              getContext().UnsignedLongTy,
1452                                              FastEnumSel,
1453                                              Collection, Args);
1454 
1455   // The initial number of objects that were returned in the buffer.
1456   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1457 
1458   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1459   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1460 
1461   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1462 
1463   // If the limit pointer was zero to begin with, the collection is
1464   // empty; skip all this.
1465   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1466                        EmptyBB, LoopInitBB);
1467 
1468   // Otherwise, initialize the loop.
1469   EmitBlock(LoopInitBB);
1470 
1471   // Save the initial mutations value.  This is the value at an
1472   // address that was written into the state object by
1473   // countByEnumeratingWithState:objects:count:.
1474   llvm::Value *StateMutationsPtrPtr =
1475     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1476   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1477                                                       "mutationsptr");
1478 
1479   llvm::Value *initialMutations =
1480     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1481 
1482   // Start looping.  This is the point we return to whenever we have a
1483   // fresh, non-empty batch of objects.
1484   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1485   EmitBlock(LoopBodyBB);
1486 
1487   // The current index into the buffer.
1488   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1489   index->addIncoming(zero, LoopInitBB);
1490 
1491   // The current buffer size.
1492   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1493   count->addIncoming(initialBufferLimit, LoopInitBB);
1494 
1495   // Check whether the mutations value has changed from where it was
1496   // at start.  StateMutationsPtr should actually be invariant between
1497   // refreshes.
1498   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1499   llvm::Value *currentMutations
1500     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1501 
1502   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1503   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1504 
1505   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1506                        WasNotMutatedBB, WasMutatedBB);
1507 
1508   // If so, call the enumeration-mutation function.
1509   EmitBlock(WasMutatedBB);
1510   llvm::Value *V =
1511     Builder.CreateBitCast(Collection,
1512                           ConvertType(getContext().getObjCIdType()));
1513   CallArgList Args2;
1514   Args2.add(RValue::get(V), getContext().getObjCIdType());
1515   // FIXME: We shouldn't need to get the function info here, the runtime already
1516   // should have computed it to build the function.
1517   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1518                                                   FunctionType::ExtInfo(),
1519                                                   RequiredArgs::All),
1520            EnumerationMutationFn, ReturnValueSlot(), Args2);
1521 
1522   // Otherwise, or if the mutation function returns, just continue.
1523   EmitBlock(WasNotMutatedBB);
1524 
1525   // Initialize the element variable.
1526   RunCleanupsScope elementVariableScope(*this);
1527   bool elementIsVariable;
1528   LValue elementLValue;
1529   QualType elementType;
1530   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1531     // Initialize the variable, in case it's a __block variable or something.
1532     EmitAutoVarInit(variable);
1533 
1534     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1535     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1536                         VK_LValue, SourceLocation());
1537     elementLValue = EmitLValue(&tempDRE);
1538     elementType = D->getType();
1539     elementIsVariable = true;
1540 
1541     if (D->isARCPseudoStrong())
1542       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1543   } else {
1544     elementLValue = LValue(); // suppress warning
1545     elementType = cast<Expr>(S.getElement())->getType();
1546     elementIsVariable = false;
1547   }
1548   llvm::Type *convertedElementType = ConvertType(elementType);
1549 
1550   // Fetch the buffer out of the enumeration state.
1551   // TODO: this pointer should actually be invariant between
1552   // refreshes, which would help us do certain loop optimizations.
1553   llvm::Value *StateItemsPtr =
1554     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1555   llvm::Value *EnumStateItems =
1556     Builder.CreateLoad(StateItemsPtr, "stateitems");
1557 
1558   // Fetch the value at the current index from the buffer.
1559   llvm::Value *CurrentItemPtr =
1560     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1561   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1562 
1563   // Cast that value to the right type.
1564   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1565                                       "currentitem");
1566 
1567   // Make sure we have an l-value.  Yes, this gets evaluated every
1568   // time through the loop.
1569   if (!elementIsVariable) {
1570     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1571     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1572   } else {
1573     EmitScalarInit(CurrentItem, elementLValue);
1574   }
1575 
1576   // If we do have an element variable, this assignment is the end of
1577   // its initialization.
1578   if (elementIsVariable)
1579     EmitAutoVarCleanups(variable);
1580 
1581   // Perform the loop body, setting up break and continue labels.
1582   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1583   {
1584     RunCleanupsScope Scope(*this);
1585     EmitStmt(S.getBody());
1586   }
1587   BreakContinueStack.pop_back();
1588 
1589   // Destroy the element variable now.
1590   elementVariableScope.ForceCleanup();
1591 
1592   // Check whether there are more elements.
1593   EmitBlock(AfterBody.getBlock());
1594 
1595   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1596 
1597   // First we check in the local buffer.
1598   llvm::Value *indexPlusOne
1599     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1600 
1601   // If we haven't overrun the buffer yet, we can continue.
1602   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1603                        LoopBodyBB, FetchMoreBB);
1604 
1605   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1606   count->addIncoming(count, AfterBody.getBlock());
1607 
1608   // Otherwise, we have to fetch more elements.
1609   EmitBlock(FetchMoreBB);
1610 
1611   CountRV =
1612     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1613                                              getContext().UnsignedLongTy,
1614                                              FastEnumSel,
1615                                              Collection, Args);
1616 
1617   // If we got a zero count, we're done.
1618   llvm::Value *refetchCount = CountRV.getScalarVal();
1619 
1620   // (note that the message send might split FetchMoreBB)
1621   index->addIncoming(zero, Builder.GetInsertBlock());
1622   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1623 
1624   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1625                        EmptyBB, LoopBodyBB);
1626 
1627   // No more elements.
1628   EmitBlock(EmptyBB);
1629 
1630   if (!elementIsVariable) {
1631     // If the element was not a declaration, set it to be null.
1632 
1633     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1634     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1635     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1636   }
1637 
1638   if (DI)
1639     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1640 
1641   // Leave the cleanup we entered in ARC.
1642   if (getLangOpts().ObjCAutoRefCount)
1643     PopCleanupBlock();
1644 
1645   EmitBlock(LoopEnd.getBlock());
1646 }
1647 
1648 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1649   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1650 }
1651 
1652 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1653   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1654 }
1655 
1656 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1657                                               const ObjCAtSynchronizedStmt &S) {
1658   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1659 }
1660 
1661 /// Produce the code for a CK_ARCProduceObject.  Just does a
1662 /// primitive retain.
1663 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1664                                                     llvm::Value *value) {
1665   return EmitARCRetain(type, value);
1666 }
1667 
1668 namespace {
1669   struct CallObjCRelease : EHScopeStack::Cleanup {
1670     CallObjCRelease(llvm::Value *object) : object(object) {}
1671     llvm::Value *object;
1672 
1673     void Emit(CodeGenFunction &CGF, Flags flags) {
1674       CGF.EmitARCRelease(object, /*precise*/ true);
1675     }
1676   };
1677 }
1678 
1679 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1680 /// release at the end of the full-expression.
1681 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1682                                                     llvm::Value *object) {
1683   // If we're in a conditional branch, we need to make the cleanup
1684   // conditional.
1685   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1686   return object;
1687 }
1688 
1689 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1690                                                            llvm::Value *value) {
1691   return EmitARCRetainAutorelease(type, value);
1692 }
1693 
1694 
1695 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1696                                                 llvm::FunctionType *type,
1697                                                 StringRef fnName) {
1698   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1699 
1700   // If the target runtime doesn't naturally support ARC, emit weak
1701   // references to the runtime support library.  We don't really
1702   // permit this to fail, but we need a particular relocation style.
1703   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1704     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC())
1705       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1706     // set nonlazybind attribute for these APIs for performance.
1707     if (fnName == "objc_retain" || fnName  == "objc_release")
1708       f->addFnAttr(llvm::Attributes::NonLazyBind);
1709   }
1710 
1711   return fn;
1712 }
1713 
1714 /// Perform an operation having the signature
1715 ///   i8* (i8*)
1716 /// where a null input causes a no-op and returns null.
1717 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1718                                           llvm::Value *value,
1719                                           llvm::Constant *&fn,
1720                                           StringRef fnName) {
1721   if (isa<llvm::ConstantPointerNull>(value)) return value;
1722 
1723   if (!fn) {
1724     std::vector<llvm::Type*> args(1, CGF.Int8PtrTy);
1725     llvm::FunctionType *fnType =
1726       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1727     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1728   }
1729 
1730   // Cast the argument to 'id'.
1731   llvm::Type *origType = value->getType();
1732   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1733 
1734   // Call the function.
1735   llvm::CallInst *call = CGF.Builder.CreateCall(fn, value);
1736   call->setDoesNotThrow();
1737 
1738   // Cast the result back to the original type.
1739   return CGF.Builder.CreateBitCast(call, origType);
1740 }
1741 
1742 /// Perform an operation having the following signature:
1743 ///   i8* (i8**)
1744 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1745                                          llvm::Value *addr,
1746                                          llvm::Constant *&fn,
1747                                          StringRef fnName) {
1748   if (!fn) {
1749     std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy);
1750     llvm::FunctionType *fnType =
1751       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1752     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1753   }
1754 
1755   // Cast the argument to 'id*'.
1756   llvm::Type *origType = addr->getType();
1757   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1758 
1759   // Call the function.
1760   llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr);
1761   call->setDoesNotThrow();
1762 
1763   // Cast the result back to a dereference of the original type.
1764   llvm::Value *result = call;
1765   if (origType != CGF.Int8PtrPtrTy)
1766     result = CGF.Builder.CreateBitCast(result,
1767                         cast<llvm::PointerType>(origType)->getElementType());
1768 
1769   return result;
1770 }
1771 
1772 /// Perform an operation having the following signature:
1773 ///   i8* (i8**, i8*)
1774 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1775                                           llvm::Value *addr,
1776                                           llvm::Value *value,
1777                                           llvm::Constant *&fn,
1778                                           StringRef fnName,
1779                                           bool ignored) {
1780   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1781            == value->getType());
1782 
1783   if (!fn) {
1784     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1785 
1786     llvm::FunctionType *fnType
1787       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1788     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1789   }
1790 
1791   llvm::Type *origType = value->getType();
1792 
1793   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1794   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1795 
1796   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value);
1797   result->setDoesNotThrow();
1798 
1799   if (ignored) return 0;
1800 
1801   return CGF.Builder.CreateBitCast(result, origType);
1802 }
1803 
1804 /// Perform an operation having the following signature:
1805 ///   void (i8**, i8**)
1806 static void emitARCCopyOperation(CodeGenFunction &CGF,
1807                                  llvm::Value *dst,
1808                                  llvm::Value *src,
1809                                  llvm::Constant *&fn,
1810                                  StringRef fnName) {
1811   assert(dst->getType() == src->getType());
1812 
1813   if (!fn) {
1814     std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy);
1815     llvm::FunctionType *fnType
1816       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1817     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1818   }
1819 
1820   dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy);
1821   src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy);
1822 
1823   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src);
1824   result->setDoesNotThrow();
1825 }
1826 
1827 /// Produce the code to do a retain.  Based on the type, calls one of:
1828 ///   call i8* \@objc_retain(i8* %value)
1829 ///   call i8* \@objc_retainBlock(i8* %value)
1830 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1831   if (type->isBlockPointerType())
1832     return EmitARCRetainBlock(value, /*mandatory*/ false);
1833   else
1834     return EmitARCRetainNonBlock(value);
1835 }
1836 
1837 /// Retain the given object, with normal retain semantics.
1838 ///   call i8* \@objc_retain(i8* %value)
1839 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1840   return emitARCValueOperation(*this, value,
1841                                CGM.getARCEntrypoints().objc_retain,
1842                                "objc_retain");
1843 }
1844 
1845 /// Retain the given block, with _Block_copy semantics.
1846 ///   call i8* \@objc_retainBlock(i8* %value)
1847 ///
1848 /// \param mandatory - If false, emit the call with metadata
1849 /// indicating that it's okay for the optimizer to eliminate this call
1850 /// if it can prove that the block never escapes except down the stack.
1851 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1852                                                  bool mandatory) {
1853   llvm::Value *result
1854     = emitARCValueOperation(*this, value,
1855                             CGM.getARCEntrypoints().objc_retainBlock,
1856                             "objc_retainBlock");
1857 
1858   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1859   // tell the optimizer that it doesn't need to do this copy if the
1860   // block doesn't escape, where being passed as an argument doesn't
1861   // count as escaping.
1862   if (!mandatory && isa<llvm::Instruction>(result)) {
1863     llvm::CallInst *call
1864       = cast<llvm::CallInst>(result->stripPointerCasts());
1865     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1866 
1867     SmallVector<llvm::Value*,1> args;
1868     call->setMetadata("clang.arc.copy_on_escape",
1869                       llvm::MDNode::get(Builder.getContext(), args));
1870   }
1871 
1872   return result;
1873 }
1874 
1875 /// Retain the given object which is the result of a function call.
1876 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1877 ///
1878 /// Yes, this function name is one character away from a different
1879 /// call with completely different semantics.
1880 llvm::Value *
1881 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1882   // Fetch the void(void) inline asm which marks that we're going to
1883   // retain the autoreleased return value.
1884   llvm::InlineAsm *&marker
1885     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1886   if (!marker) {
1887     StringRef assembly
1888       = CGM.getTargetCodeGenInfo()
1889            .getARCRetainAutoreleasedReturnValueMarker();
1890 
1891     // If we have an empty assembly string, there's nothing to do.
1892     if (assembly.empty()) {
1893 
1894     // Otherwise, at -O0, build an inline asm that we're going to call
1895     // in a moment.
1896     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1897       llvm::FunctionType *type =
1898         llvm::FunctionType::get(VoidTy, /*variadic*/false);
1899 
1900       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1901 
1902     // If we're at -O1 and above, we don't want to litter the code
1903     // with this marker yet, so leave a breadcrumb for the ARC
1904     // optimizer to pick up.
1905     } else {
1906       llvm::NamedMDNode *metadata =
1907         CGM.getModule().getOrInsertNamedMetadata(
1908                             "clang.arc.retainAutoreleasedReturnValueMarker");
1909       assert(metadata->getNumOperands() <= 1);
1910       if (metadata->getNumOperands() == 0) {
1911         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1912         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1913       }
1914     }
1915   }
1916 
1917   // Call the marker asm if we made one, which we do only at -O0.
1918   if (marker) Builder.CreateCall(marker);
1919 
1920   return emitARCValueOperation(*this, value,
1921                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1922                                "objc_retainAutoreleasedReturnValue");
1923 }
1924 
1925 /// Release the given object.
1926 ///   call void \@objc_release(i8* %value)
1927 void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) {
1928   if (isa<llvm::ConstantPointerNull>(value)) return;
1929 
1930   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
1931   if (!fn) {
1932     std::vector<llvm::Type*> args(1, Int8PtrTy);
1933     llvm::FunctionType *fnType =
1934       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
1935     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
1936   }
1937 
1938   // Cast the argument to 'id'.
1939   value = Builder.CreateBitCast(value, Int8PtrTy);
1940 
1941   // Call objc_release.
1942   llvm::CallInst *call = Builder.CreateCall(fn, value);
1943   call->setDoesNotThrow();
1944 
1945   if (!precise) {
1946     SmallVector<llvm::Value*,1> args;
1947     call->setMetadata("clang.imprecise_release",
1948                       llvm::MDNode::get(Builder.getContext(), args));
1949   }
1950 }
1951 
1952 /// Destroy a __strong variable.
1953 ///
1954 /// At -O0, emit a call to store 'null' into the address;
1955 /// instrumenting tools prefer this because the address is exposed,
1956 /// but it's relatively cumbersome to optimize.
1957 ///
1958 /// At -O1 and above, just load and call objc_release.
1959 ///
1960 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
1961 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr, bool precise) {
1962   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1963     llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
1964     llvm::Value *null = llvm::ConstantPointerNull::get(
1965                           cast<llvm::PointerType>(addrTy->getElementType()));
1966     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1967     return;
1968   }
1969 
1970   llvm::Value *value = Builder.CreateLoad(addr);
1971   EmitARCRelease(value, precise);
1972 }
1973 
1974 /// Store into a strong object.  Always calls this:
1975 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
1976 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
1977                                                      llvm::Value *value,
1978                                                      bool ignored) {
1979   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1980            == value->getType());
1981 
1982   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
1983   if (!fn) {
1984     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
1985     llvm::FunctionType *fnType
1986       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
1987     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
1988   }
1989 
1990   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
1991   llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy);
1992 
1993   Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow();
1994 
1995   if (ignored) return 0;
1996   return value;
1997 }
1998 
1999 /// Store into a strong object.  Sometimes calls this:
2000 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2001 /// Other times, breaks it down into components.
2002 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2003                                                  llvm::Value *newValue,
2004                                                  bool ignored) {
2005   QualType type = dst.getType();
2006   bool isBlock = type->isBlockPointerType();
2007 
2008   // Use a store barrier at -O0 unless this is a block type or the
2009   // lvalue is inadequately aligned.
2010   if (shouldUseFusedARCCalls() &&
2011       !isBlock &&
2012       (dst.getAlignment().isZero() ||
2013        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2014     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2015   }
2016 
2017   // Otherwise, split it out.
2018 
2019   // Retain the new value.
2020   newValue = EmitARCRetain(type, newValue);
2021 
2022   // Read the old value.
2023   llvm::Value *oldValue = EmitLoadOfScalar(dst);
2024 
2025   // Store.  We do this before the release so that any deallocs won't
2026   // see the old value.
2027   EmitStoreOfScalar(newValue, dst);
2028 
2029   // Finally, release the old value.
2030   EmitARCRelease(oldValue, /*precise*/ false);
2031 
2032   return newValue;
2033 }
2034 
2035 /// Autorelease the given object.
2036 ///   call i8* \@objc_autorelease(i8* %value)
2037 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2038   return emitARCValueOperation(*this, value,
2039                                CGM.getARCEntrypoints().objc_autorelease,
2040                                "objc_autorelease");
2041 }
2042 
2043 /// Autorelease the given object.
2044 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2045 llvm::Value *
2046 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2047   return emitARCValueOperation(*this, value,
2048                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2049                                "objc_autoreleaseReturnValue");
2050 }
2051 
2052 /// Do a fused retain/autorelease of the given object.
2053 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2054 llvm::Value *
2055 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2056   return emitARCValueOperation(*this, value,
2057                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2058                                "objc_retainAutoreleaseReturnValue");
2059 }
2060 
2061 /// Do a fused retain/autorelease of the given object.
2062 ///   call i8* \@objc_retainAutorelease(i8* %value)
2063 /// or
2064 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2065 ///   call i8* \@objc_autorelease(i8* %retain)
2066 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2067                                                        llvm::Value *value) {
2068   if (!type->isBlockPointerType())
2069     return EmitARCRetainAutoreleaseNonBlock(value);
2070 
2071   if (isa<llvm::ConstantPointerNull>(value)) return value;
2072 
2073   llvm::Type *origType = value->getType();
2074   value = Builder.CreateBitCast(value, Int8PtrTy);
2075   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2076   value = EmitARCAutorelease(value);
2077   return Builder.CreateBitCast(value, origType);
2078 }
2079 
2080 /// Do a fused retain/autorelease of the given object.
2081 ///   call i8* \@objc_retainAutorelease(i8* %value)
2082 llvm::Value *
2083 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2084   return emitARCValueOperation(*this, value,
2085                                CGM.getARCEntrypoints().objc_retainAutorelease,
2086                                "objc_retainAutorelease");
2087 }
2088 
2089 /// i8* \@objc_loadWeak(i8** %addr)
2090 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2091 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2092   return emitARCLoadOperation(*this, addr,
2093                               CGM.getARCEntrypoints().objc_loadWeak,
2094                               "objc_loadWeak");
2095 }
2096 
2097 /// i8* \@objc_loadWeakRetained(i8** %addr)
2098 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2099   return emitARCLoadOperation(*this, addr,
2100                               CGM.getARCEntrypoints().objc_loadWeakRetained,
2101                               "objc_loadWeakRetained");
2102 }
2103 
2104 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2105 /// Returns %value.
2106 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2107                                                llvm::Value *value,
2108                                                bool ignored) {
2109   return emitARCStoreOperation(*this, addr, value,
2110                                CGM.getARCEntrypoints().objc_storeWeak,
2111                                "objc_storeWeak", ignored);
2112 }
2113 
2114 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2115 /// Returns %value.  %addr is known to not have a current weak entry.
2116 /// Essentially equivalent to:
2117 ///   *addr = nil; objc_storeWeak(addr, value);
2118 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2119   // If we're initializing to null, just write null to memory; no need
2120   // to get the runtime involved.  But don't do this if optimization
2121   // is enabled, because accounting for this would make the optimizer
2122   // much more complicated.
2123   if (isa<llvm::ConstantPointerNull>(value) &&
2124       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2125     Builder.CreateStore(value, addr);
2126     return;
2127   }
2128 
2129   emitARCStoreOperation(*this, addr, value,
2130                         CGM.getARCEntrypoints().objc_initWeak,
2131                         "objc_initWeak", /*ignored*/ true);
2132 }
2133 
2134 /// void \@objc_destroyWeak(i8** %addr)
2135 /// Essentially objc_storeWeak(addr, nil).
2136 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2137   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2138   if (!fn) {
2139     std::vector<llvm::Type*> args(1, Int8PtrPtrTy);
2140     llvm::FunctionType *fnType =
2141       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
2142     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2143   }
2144 
2145   // Cast the argument to 'id*'.
2146   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2147 
2148   llvm::CallInst *call = Builder.CreateCall(fn, addr);
2149   call->setDoesNotThrow();
2150 }
2151 
2152 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2153 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2154 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2155 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2156   emitARCCopyOperation(*this, dst, src,
2157                        CGM.getARCEntrypoints().objc_moveWeak,
2158                        "objc_moveWeak");
2159 }
2160 
2161 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2162 /// Disregards the current value in %dest.  Essentially
2163 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2164 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2165   emitARCCopyOperation(*this, dst, src,
2166                        CGM.getARCEntrypoints().objc_copyWeak,
2167                        "objc_copyWeak");
2168 }
2169 
2170 /// Produce the code to do a objc_autoreleasepool_push.
2171 ///   call i8* \@objc_autoreleasePoolPush(void)
2172 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2173   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2174   if (!fn) {
2175     llvm::FunctionType *fnType =
2176       llvm::FunctionType::get(Int8PtrTy, false);
2177     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2178   }
2179 
2180   llvm::CallInst *call = Builder.CreateCall(fn);
2181   call->setDoesNotThrow();
2182 
2183   return call;
2184 }
2185 
2186 /// Produce the code to do a primitive release.
2187 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2188 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2189   assert(value->getType() == Int8PtrTy);
2190 
2191   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2192   if (!fn) {
2193     std::vector<llvm::Type*> args(1, Int8PtrTy);
2194     llvm::FunctionType *fnType =
2195       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
2196 
2197     // We don't want to use a weak import here; instead we should not
2198     // fall into this path.
2199     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2200   }
2201 
2202   llvm::CallInst *call = Builder.CreateCall(fn, value);
2203   call->setDoesNotThrow();
2204 }
2205 
2206 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2207 /// Which is: [[NSAutoreleasePool alloc] init];
2208 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2209 /// init is declared as: - (id) init; in its NSObject super class.
2210 ///
2211 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2212   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2213   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder);
2214   // [NSAutoreleasePool alloc]
2215   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2216   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2217   CallArgList Args;
2218   RValue AllocRV =
2219     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2220                                 getContext().getObjCIdType(),
2221                                 AllocSel, Receiver, Args);
2222 
2223   // [Receiver init]
2224   Receiver = AllocRV.getScalarVal();
2225   II = &CGM.getContext().Idents.get("init");
2226   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2227   RValue InitRV =
2228     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2229                                 getContext().getObjCIdType(),
2230                                 InitSel, Receiver, Args);
2231   return InitRV.getScalarVal();
2232 }
2233 
2234 /// Produce the code to do a primitive release.
2235 /// [tmp drain];
2236 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2237   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2238   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2239   CallArgList Args;
2240   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2241                               getContext().VoidTy, DrainSel, Arg, Args);
2242 }
2243 
2244 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2245                                               llvm::Value *addr,
2246                                               QualType type) {
2247   CGF.EmitARCDestroyStrong(addr, /*precise*/ true);
2248 }
2249 
2250 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2251                                                 llvm::Value *addr,
2252                                                 QualType type) {
2253   CGF.EmitARCDestroyStrong(addr, /*precise*/ false);
2254 }
2255 
2256 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2257                                      llvm::Value *addr,
2258                                      QualType type) {
2259   CGF.EmitARCDestroyWeak(addr);
2260 }
2261 
2262 namespace {
2263   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2264     llvm::Value *Token;
2265 
2266     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2267 
2268     void Emit(CodeGenFunction &CGF, Flags flags) {
2269       CGF.EmitObjCAutoreleasePoolPop(Token);
2270     }
2271   };
2272   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2273     llvm::Value *Token;
2274 
2275     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2276 
2277     void Emit(CodeGenFunction &CGF, Flags flags) {
2278       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2279     }
2280   };
2281 }
2282 
2283 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2284   if (CGM.getLangOpts().ObjCAutoRefCount)
2285     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2286   else
2287     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2288 }
2289 
2290 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2291                                                   LValue lvalue,
2292                                                   QualType type) {
2293   switch (type.getObjCLifetime()) {
2294   case Qualifiers::OCL_None:
2295   case Qualifiers::OCL_ExplicitNone:
2296   case Qualifiers::OCL_Strong:
2297   case Qualifiers::OCL_Autoreleasing:
2298     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
2299                          false);
2300 
2301   case Qualifiers::OCL_Weak:
2302     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2303                          true);
2304   }
2305 
2306   llvm_unreachable("impossible lifetime!");
2307 }
2308 
2309 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2310                                                   const Expr *e) {
2311   e = e->IgnoreParens();
2312   QualType type = e->getType();
2313 
2314   // If we're loading retained from a __strong xvalue, we can avoid
2315   // an extra retain/release pair by zeroing out the source of this
2316   // "move" operation.
2317   if (e->isXValue() &&
2318       !type.isConstQualified() &&
2319       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2320     // Emit the lvalue.
2321     LValue lv = CGF.EmitLValue(e);
2322 
2323     // Load the object pointer.
2324     llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
2325 
2326     // Set the source pointer to NULL.
2327     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2328 
2329     return TryEmitResult(result, true);
2330   }
2331 
2332   // As a very special optimization, in ARC++, if the l-value is the
2333   // result of a non-volatile assignment, do a simple retain of the
2334   // result of the call to objc_storeWeak instead of reloading.
2335   if (CGF.getLangOpts().CPlusPlus &&
2336       !type.isVolatileQualified() &&
2337       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2338       isa<BinaryOperator>(e) &&
2339       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2340     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2341 
2342   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2343 }
2344 
2345 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2346                                            llvm::Value *value);
2347 
2348 /// Given that the given expression is some sort of call (which does
2349 /// not return retained), emit a retain following it.
2350 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2351   llvm::Value *value = CGF.EmitScalarExpr(e);
2352   return emitARCRetainAfterCall(CGF, value);
2353 }
2354 
2355 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2356                                            llvm::Value *value) {
2357   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2358     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2359 
2360     // Place the retain immediately following the call.
2361     CGF.Builder.SetInsertPoint(call->getParent(),
2362                                ++llvm::BasicBlock::iterator(call));
2363     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2364 
2365     CGF.Builder.restoreIP(ip);
2366     return value;
2367   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2368     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2369 
2370     // Place the retain at the beginning of the normal destination block.
2371     llvm::BasicBlock *BB = invoke->getNormalDest();
2372     CGF.Builder.SetInsertPoint(BB, BB->begin());
2373     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2374 
2375     CGF.Builder.restoreIP(ip);
2376     return value;
2377 
2378   // Bitcasts can arise because of related-result returns.  Rewrite
2379   // the operand.
2380   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2381     llvm::Value *operand = bitcast->getOperand(0);
2382     operand = emitARCRetainAfterCall(CGF, operand);
2383     bitcast->setOperand(0, operand);
2384     return bitcast;
2385 
2386   // Generic fall-back case.
2387   } else {
2388     // Retain using the non-block variant: we never need to do a copy
2389     // of a block that's been returned to us.
2390     return CGF.EmitARCRetainNonBlock(value);
2391   }
2392 }
2393 
2394 /// Determine whether it might be important to emit a separate
2395 /// objc_retain_block on the result of the given expression, or
2396 /// whether it's okay to just emit it in a +1 context.
2397 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2398   assert(e->getType()->isBlockPointerType());
2399   e = e->IgnoreParens();
2400 
2401   // For future goodness, emit block expressions directly in +1
2402   // contexts if we can.
2403   if (isa<BlockExpr>(e))
2404     return false;
2405 
2406   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2407     switch (cast->getCastKind()) {
2408     // Emitting these operations in +1 contexts is goodness.
2409     case CK_LValueToRValue:
2410     case CK_ARCReclaimReturnedObject:
2411     case CK_ARCConsumeObject:
2412     case CK_ARCProduceObject:
2413       return false;
2414 
2415     // These operations preserve a block type.
2416     case CK_NoOp:
2417     case CK_BitCast:
2418       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2419 
2420     // These operations are known to be bad (or haven't been considered).
2421     case CK_AnyPointerToBlockPointerCast:
2422     default:
2423       return true;
2424     }
2425   }
2426 
2427   return true;
2428 }
2429 
2430 /// Try to emit a PseudoObjectExpr at +1.
2431 ///
2432 /// This massively duplicates emitPseudoObjectRValue.
2433 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2434                                                   const PseudoObjectExpr *E) {
2435   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2436 
2437   // Find the result expression.
2438   const Expr *resultExpr = E->getResultExpr();
2439   assert(resultExpr);
2440   TryEmitResult result;
2441 
2442   for (PseudoObjectExpr::const_semantics_iterator
2443          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2444     const Expr *semantic = *i;
2445 
2446     // If this semantic expression is an opaque value, bind it
2447     // to the result of its source expression.
2448     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2449       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2450       OVMA opaqueData;
2451 
2452       // If this semantic is the result of the pseudo-object
2453       // expression, try to evaluate the source as +1.
2454       if (ov == resultExpr) {
2455         assert(!OVMA::shouldBindAsLValue(ov));
2456         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2457         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2458 
2459       // Otherwise, just bind it.
2460       } else {
2461         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2462       }
2463       opaques.push_back(opaqueData);
2464 
2465     // Otherwise, if the expression is the result, evaluate it
2466     // and remember the result.
2467     } else if (semantic == resultExpr) {
2468       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2469 
2470     // Otherwise, evaluate the expression in an ignored context.
2471     } else {
2472       CGF.EmitIgnoredExpr(semantic);
2473     }
2474   }
2475 
2476   // Unbind all the opaques now.
2477   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2478     opaques[i].unbind(CGF);
2479 
2480   return result;
2481 }
2482 
2483 static TryEmitResult
2484 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2485   // Look through cleanups.
2486   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2487     CGF.enterFullExpression(cleanups);
2488     CodeGenFunction::RunCleanupsScope scope(CGF);
2489     return tryEmitARCRetainScalarExpr(CGF, cleanups->getSubExpr());
2490   }
2491 
2492   // The desired result type, if it differs from the type of the
2493   // ultimate opaque expression.
2494   llvm::Type *resultType = 0;
2495 
2496   while (true) {
2497     e = e->IgnoreParens();
2498 
2499     // There's a break at the end of this if-chain;  anything
2500     // that wants to keep looping has to explicitly continue.
2501     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2502       switch (ce->getCastKind()) {
2503       // No-op casts don't change the type, so we just ignore them.
2504       case CK_NoOp:
2505         e = ce->getSubExpr();
2506         continue;
2507 
2508       case CK_LValueToRValue: {
2509         TryEmitResult loadResult
2510           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2511         if (resultType) {
2512           llvm::Value *value = loadResult.getPointer();
2513           value = CGF.Builder.CreateBitCast(value, resultType);
2514           loadResult.setPointer(value);
2515         }
2516         return loadResult;
2517       }
2518 
2519       // These casts can change the type, so remember that and
2520       // soldier on.  We only need to remember the outermost such
2521       // cast, though.
2522       case CK_CPointerToObjCPointerCast:
2523       case CK_BlockPointerToObjCPointerCast:
2524       case CK_AnyPointerToBlockPointerCast:
2525       case CK_BitCast:
2526         if (!resultType)
2527           resultType = CGF.ConvertType(ce->getType());
2528         e = ce->getSubExpr();
2529         assert(e->getType()->hasPointerRepresentation());
2530         continue;
2531 
2532       // For consumptions, just emit the subexpression and thus elide
2533       // the retain/release pair.
2534       case CK_ARCConsumeObject: {
2535         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2536         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2537         return TryEmitResult(result, true);
2538       }
2539 
2540       // Block extends are net +0.  Naively, we could just recurse on
2541       // the subexpression, but actually we need to ensure that the
2542       // value is copied as a block, so there's a little filter here.
2543       case CK_ARCExtendBlockObject: {
2544         llvm::Value *result; // will be a +0 value
2545 
2546         // If we can't safely assume the sub-expression will produce a
2547         // block-copied value, emit the sub-expression at +0.
2548         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2549           result = CGF.EmitScalarExpr(ce->getSubExpr());
2550 
2551         // Otherwise, try to emit the sub-expression at +1 recursively.
2552         } else {
2553           TryEmitResult subresult
2554             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2555           result = subresult.getPointer();
2556 
2557           // If that produced a retained value, just use that,
2558           // possibly casting down.
2559           if (subresult.getInt()) {
2560             if (resultType)
2561               result = CGF.Builder.CreateBitCast(result, resultType);
2562             return TryEmitResult(result, true);
2563           }
2564 
2565           // Otherwise it's +0.
2566         }
2567 
2568         // Retain the object as a block, then cast down.
2569         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2570         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2571         return TryEmitResult(result, true);
2572       }
2573 
2574       // For reclaims, emit the subexpression as a retained call and
2575       // skip the consumption.
2576       case CK_ARCReclaimReturnedObject: {
2577         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2578         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2579         return TryEmitResult(result, true);
2580       }
2581 
2582       default:
2583         break;
2584       }
2585 
2586     // Skip __extension__.
2587     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2588       if (op->getOpcode() == UO_Extension) {
2589         e = op->getSubExpr();
2590         continue;
2591       }
2592 
2593     // For calls and message sends, use the retained-call logic.
2594     // Delegate inits are a special case in that they're the only
2595     // returns-retained expression that *isn't* surrounded by
2596     // a consume.
2597     } else if (isa<CallExpr>(e) ||
2598                (isa<ObjCMessageExpr>(e) &&
2599                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2600       llvm::Value *result = emitARCRetainCall(CGF, e);
2601       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2602       return TryEmitResult(result, true);
2603 
2604     // Look through pseudo-object expressions.
2605     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2606       TryEmitResult result
2607         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2608       if (resultType) {
2609         llvm::Value *value = result.getPointer();
2610         value = CGF.Builder.CreateBitCast(value, resultType);
2611         result.setPointer(value);
2612       }
2613       return result;
2614     }
2615 
2616     // Conservatively halt the search at any other expression kind.
2617     break;
2618   }
2619 
2620   // We didn't find an obvious production, so emit what we've got and
2621   // tell the caller that we didn't manage to retain.
2622   llvm::Value *result = CGF.EmitScalarExpr(e);
2623   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2624   return TryEmitResult(result, false);
2625 }
2626 
2627 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2628                                                 LValue lvalue,
2629                                                 QualType type) {
2630   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2631   llvm::Value *value = result.getPointer();
2632   if (!result.getInt())
2633     value = CGF.EmitARCRetain(type, value);
2634   return value;
2635 }
2636 
2637 /// EmitARCRetainScalarExpr - Semantically equivalent to
2638 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2639 /// best-effort attempt to peephole expressions that naturally produce
2640 /// retained objects.
2641 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2642   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2643   llvm::Value *value = result.getPointer();
2644   if (!result.getInt())
2645     value = EmitARCRetain(e->getType(), value);
2646   return value;
2647 }
2648 
2649 llvm::Value *
2650 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2651   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2652   llvm::Value *value = result.getPointer();
2653   if (result.getInt())
2654     value = EmitARCAutorelease(value);
2655   else
2656     value = EmitARCRetainAutorelease(e->getType(), value);
2657   return value;
2658 }
2659 
2660 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2661   llvm::Value *result;
2662   bool doRetain;
2663 
2664   if (shouldEmitSeparateBlockRetain(e)) {
2665     result = EmitScalarExpr(e);
2666     doRetain = true;
2667   } else {
2668     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2669     result = subresult.getPointer();
2670     doRetain = !subresult.getInt();
2671   }
2672 
2673   if (doRetain)
2674     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2675   return EmitObjCConsumeObject(e->getType(), result);
2676 }
2677 
2678 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2679   // In ARC, retain and autorelease the expression.
2680   if (getLangOpts().ObjCAutoRefCount) {
2681     // Do so before running any cleanups for the full-expression.
2682     // tryEmitARCRetainScalarExpr does make an effort to do things
2683     // inside cleanups, but there are crazy cases like
2684     //   @throw A().foo;
2685     // where a full retain+autorelease is required and would
2686     // otherwise happen after the destructor for the temporary.
2687     if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(expr)) {
2688       enterFullExpression(ewc);
2689       expr = ewc->getSubExpr();
2690     }
2691 
2692     CodeGenFunction::RunCleanupsScope cleanups(*this);
2693     return EmitARCRetainAutoreleaseScalarExpr(expr);
2694   }
2695 
2696   // Otherwise, use the normal scalar-expression emission.  The
2697   // exception machinery doesn't do anything special with the
2698   // exception like retaining it, so there's no safety associated with
2699   // only running cleanups after the throw has started, and when it
2700   // matters it tends to be substantially inferior code.
2701   return EmitScalarExpr(expr);
2702 }
2703 
2704 std::pair<LValue,llvm::Value*>
2705 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2706                                     bool ignored) {
2707   // Evaluate the RHS first.
2708   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2709   llvm::Value *value = result.getPointer();
2710 
2711   bool hasImmediateRetain = result.getInt();
2712 
2713   // If we didn't emit a retained object, and the l-value is of block
2714   // type, then we need to emit the block-retain immediately in case
2715   // it invalidates the l-value.
2716   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2717     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2718     hasImmediateRetain = true;
2719   }
2720 
2721   LValue lvalue = EmitLValue(e->getLHS());
2722 
2723   // If the RHS was emitted retained, expand this.
2724   if (hasImmediateRetain) {
2725     llvm::Value *oldValue =
2726       EmitLoadOfScalar(lvalue);
2727     EmitStoreOfScalar(value, lvalue);
2728     EmitARCRelease(oldValue, /*precise*/ false);
2729   } else {
2730     value = EmitARCStoreStrong(lvalue, value, ignored);
2731   }
2732 
2733   return std::pair<LValue,llvm::Value*>(lvalue, value);
2734 }
2735 
2736 std::pair<LValue,llvm::Value*>
2737 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2738   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2739   LValue lvalue = EmitLValue(e->getLHS());
2740 
2741   EmitStoreOfScalar(value, lvalue);
2742 
2743   return std::pair<LValue,llvm::Value*>(lvalue, value);
2744 }
2745 
2746 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2747                                           const ObjCAutoreleasePoolStmt &ARPS) {
2748   const Stmt *subStmt = ARPS.getSubStmt();
2749   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2750 
2751   CGDebugInfo *DI = getDebugInfo();
2752   if (DI)
2753     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2754 
2755   // Keep track of the current cleanup stack depth.
2756   RunCleanupsScope Scope(*this);
2757   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2758     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2759     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2760   } else {
2761     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2762     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2763   }
2764 
2765   for (CompoundStmt::const_body_iterator I = S.body_begin(),
2766        E = S.body_end(); I != E; ++I)
2767     EmitStmt(*I);
2768 
2769   if (DI)
2770     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2771 }
2772 
2773 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2774 /// make sure it survives garbage collection until this point.
2775 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2776   // We just use an inline assembly.
2777   llvm::FunctionType *extenderType
2778     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2779   llvm::Value *extender
2780     = llvm::InlineAsm::get(extenderType,
2781                            /* assembly */ "",
2782                            /* constraints */ "r",
2783                            /* side effects */ true);
2784 
2785   object = Builder.CreateBitCast(object, VoidPtrTy);
2786   Builder.CreateCall(extender, object)->setDoesNotThrow();
2787 }
2788 
2789 static bool hasAtomicCopyHelperAPI(const ObjCRuntime &runtime) {
2790   // For now, only NeXT has these APIs.
2791   return runtime.isNeXTFamily();
2792 }
2793 
2794 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2795 /// non-trivial copy assignment function, produce following helper function.
2796 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2797 ///
2798 llvm::Constant *
2799 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2800                                         const ObjCPropertyImplDecl *PID) {
2801   // FIXME. This api is for NeXt runtime only for now.
2802   if (!getLangOpts().CPlusPlus ||
2803       !hasAtomicCopyHelperAPI(getLangOpts().ObjCRuntime))
2804     return 0;
2805   QualType Ty = PID->getPropertyIvarDecl()->getType();
2806   if (!Ty->isRecordType())
2807     return 0;
2808   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2809   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2810     return 0;
2811   llvm::Constant * HelperFn = 0;
2812   if (hasTrivialSetExpr(PID))
2813     return 0;
2814   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2815   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2816     return HelperFn;
2817 
2818   ASTContext &C = getContext();
2819   IdentifierInfo *II
2820     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2821   FunctionDecl *FD = FunctionDecl::Create(C,
2822                                           C.getTranslationUnitDecl(),
2823                                           SourceLocation(),
2824                                           SourceLocation(), II, C.VoidTy, 0,
2825                                           SC_Static,
2826                                           SC_None,
2827                                           false,
2828                                           false);
2829 
2830   QualType DestTy = C.getPointerType(Ty);
2831   QualType SrcTy = Ty;
2832   SrcTy.addConst();
2833   SrcTy = C.getPointerType(SrcTy);
2834 
2835   FunctionArgList args;
2836   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2837   args.push_back(&dstDecl);
2838   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2839   args.push_back(&srcDecl);
2840 
2841   const CGFunctionInfo &FI =
2842     CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2843                                               FunctionType::ExtInfo(),
2844                                               RequiredArgs::All);
2845 
2846   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2847 
2848   llvm::Function *Fn =
2849     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2850                            "__assign_helper_atomic_property_",
2851                            &CGM.getModule());
2852 
2853   // Initialize debug info if needed.
2854   maybeInitializeDebugInfo();
2855 
2856   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2857 
2858   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2859                       VK_RValue, SourceLocation());
2860   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2861                     VK_LValue, OK_Ordinary, SourceLocation());
2862 
2863   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2864                       VK_RValue, SourceLocation());
2865   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2866                     VK_LValue, OK_Ordinary, SourceLocation());
2867 
2868   Expr *Args[2] = { &DST, &SRC };
2869   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2870   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2871                               Args, DestTy->getPointeeType(),
2872                               VK_LValue, SourceLocation(), false);
2873 
2874   EmitStmt(&TheCall);
2875 
2876   FinishFunction();
2877   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2878   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2879   return HelperFn;
2880 }
2881 
2882 llvm::Constant *
2883 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2884                                             const ObjCPropertyImplDecl *PID) {
2885   // FIXME. This api is for NeXt runtime only for now.
2886   if (!getLangOpts().CPlusPlus ||
2887       !hasAtomicCopyHelperAPI(getLangOpts().ObjCRuntime))
2888     return 0;
2889   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2890   QualType Ty = PD->getType();
2891   if (!Ty->isRecordType())
2892     return 0;
2893   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2894     return 0;
2895   llvm::Constant * HelperFn = 0;
2896 
2897   if (hasTrivialGetExpr(PID))
2898     return 0;
2899   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2900   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2901     return HelperFn;
2902 
2903 
2904   ASTContext &C = getContext();
2905   IdentifierInfo *II
2906   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2907   FunctionDecl *FD = FunctionDecl::Create(C,
2908                                           C.getTranslationUnitDecl(),
2909                                           SourceLocation(),
2910                                           SourceLocation(), II, C.VoidTy, 0,
2911                                           SC_Static,
2912                                           SC_None,
2913                                           false,
2914                                           false);
2915 
2916   QualType DestTy = C.getPointerType(Ty);
2917   QualType SrcTy = Ty;
2918   SrcTy.addConst();
2919   SrcTy = C.getPointerType(SrcTy);
2920 
2921   FunctionArgList args;
2922   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2923   args.push_back(&dstDecl);
2924   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2925   args.push_back(&srcDecl);
2926 
2927   const CGFunctionInfo &FI =
2928   CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2929                                             FunctionType::ExtInfo(),
2930                                             RequiredArgs::All);
2931 
2932   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2933 
2934   llvm::Function *Fn =
2935   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2936                          "__copy_helper_atomic_property_", &CGM.getModule());
2937 
2938   // Initialize debug info if needed.
2939   maybeInitializeDebugInfo();
2940 
2941   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2942 
2943   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2944                       VK_RValue, SourceLocation());
2945 
2946   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2947                     VK_LValue, OK_Ordinary, SourceLocation());
2948 
2949   CXXConstructExpr *CXXConstExpr =
2950     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
2951 
2952   SmallVector<Expr*, 4> ConstructorArgs;
2953   ConstructorArgs.push_back(&SRC);
2954   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
2955   ++A;
2956 
2957   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
2958        A != AEnd; ++A)
2959     ConstructorArgs.push_back(*A);
2960 
2961   CXXConstructExpr *TheCXXConstructExpr =
2962     CXXConstructExpr::Create(C, Ty, SourceLocation(),
2963                              CXXConstExpr->getConstructor(),
2964                              CXXConstExpr->isElidable(),
2965                              ConstructorArgs,
2966                              CXXConstExpr->hadMultipleCandidates(),
2967                              CXXConstExpr->isListInitialization(),
2968                              CXXConstExpr->requiresZeroInitialization(),
2969                              CXXConstExpr->getConstructionKind(),
2970                              SourceRange());
2971 
2972   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2973                       VK_RValue, SourceLocation());
2974 
2975   RValue DV = EmitAnyExpr(&DstExpr);
2976   CharUnits Alignment
2977     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
2978   EmitAggExpr(TheCXXConstructExpr,
2979               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
2980                                     AggValueSlot::IsDestructed,
2981                                     AggValueSlot::DoesNotNeedGCBarriers,
2982                                     AggValueSlot::IsNotAliased));
2983 
2984   FinishFunction();
2985   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2986   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
2987   return HelperFn;
2988 }
2989 
2990 llvm::Value *
2991 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
2992   // Get selectors for retain/autorelease.
2993   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
2994   Selector CopySelector =
2995       getContext().Selectors.getNullarySelector(CopyID);
2996   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
2997   Selector AutoreleaseSelector =
2998       getContext().Selectors.getNullarySelector(AutoreleaseID);
2999 
3000   // Emit calls to retain/autorelease.
3001   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3002   llvm::Value *Val = Block;
3003   RValue Result;
3004   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3005                                        Ty, CopySelector,
3006                                        Val, CallArgList(), 0, 0);
3007   Val = Result.getScalarVal();
3008   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3009                                        Ty, AutoreleaseSelector,
3010                                        Val, CallArgList(), 0, 0);
3011   Val = Result.getScalarVal();
3012   return Val;
3013 }
3014 
3015 
3016 CGObjCRuntime::~CGObjCRuntime() {}
3017