1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/InlineAsm.h" 26 using namespace clang; 27 using namespace CodeGen; 28 29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 30 static TryEmitResult 31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 32 33 /// Given the address of a variable of pointer type, find the correct 34 /// null to store into it. 35 static llvm::Constant *getNullForVariable(llvm::Value *addr) { 36 llvm::Type *type = 37 cast<llvm::PointerType>(addr->getType())->getElementType(); 38 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 39 } 40 41 /// Emits an instance of NSConstantString representing the object. 42 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 43 { 44 llvm::Constant *C = 45 CGM.getObjCRuntime().GenerateConstantString(E->getString()); 46 // FIXME: This bitcast should just be made an invariant on the Runtime. 47 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 48 } 49 50 /// Emit a selector. 51 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 52 // Untyped selector. 53 // Note that this implementation allows for non-constant strings to be passed 54 // as arguments to @selector(). Currently, the only thing preventing this 55 // behaviour is the type checking in the front end. 56 return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector()); 57 } 58 59 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 60 // FIXME: This should pass the Decl not the name. 61 return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol()); 62 } 63 64 /// \brief Adjust the type of the result of an Objective-C message send 65 /// expression when the method has a related result type. 66 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 67 const Expr *E, 68 const ObjCMethodDecl *Method, 69 RValue Result) { 70 if (!Method) 71 return Result; 72 73 if (!Method->hasRelatedResultType() || 74 CGF.getContext().hasSameType(E->getType(), Method->getResultType()) || 75 !Result.isScalar()) 76 return Result; 77 78 // We have applied a related result type. Cast the rvalue appropriately. 79 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 80 CGF.ConvertType(E->getType()))); 81 } 82 83 /// Decide whether to extend the lifetime of the receiver of a 84 /// returns-inner-pointer message. 85 static bool 86 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 87 switch (message->getReceiverKind()) { 88 89 // For a normal instance message, we should extend unless the 90 // receiver is loaded from a variable with precise lifetime. 91 case ObjCMessageExpr::Instance: { 92 const Expr *receiver = message->getInstanceReceiver(); 93 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 94 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 95 receiver = ice->getSubExpr()->IgnoreParens(); 96 97 // Only __strong variables. 98 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 99 return true; 100 101 // All ivars and fields have precise lifetime. 102 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 103 return false; 104 105 // Otherwise, check for variables. 106 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 107 if (!declRef) return true; 108 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 109 if (!var) return true; 110 111 // All variables have precise lifetime except local variables with 112 // automatic storage duration that aren't specially marked. 113 return (var->hasLocalStorage() && 114 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 115 } 116 117 case ObjCMessageExpr::Class: 118 case ObjCMessageExpr::SuperClass: 119 // It's never necessary for class objects. 120 return false; 121 122 case ObjCMessageExpr::SuperInstance: 123 // We generally assume that 'self' lives throughout a method call. 124 return false; 125 } 126 127 llvm_unreachable("invalid receiver kind"); 128 } 129 130 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 131 ReturnValueSlot Return) { 132 // Only the lookup mechanism and first two arguments of the method 133 // implementation vary between runtimes. We can get the receiver and 134 // arguments in generic code. 135 136 bool isDelegateInit = E->isDelegateInitCall(); 137 138 const ObjCMethodDecl *method = E->getMethodDecl(); 139 140 // We don't retain the receiver in delegate init calls, and this is 141 // safe because the receiver value is always loaded from 'self', 142 // which we zero out. We don't want to Block_copy block receivers, 143 // though. 144 bool retainSelf = 145 (!isDelegateInit && 146 CGM.getLangOptions().ObjCAutoRefCount && 147 method && 148 method->hasAttr<NSConsumesSelfAttr>()); 149 150 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 151 bool isSuperMessage = false; 152 bool isClassMessage = false; 153 ObjCInterfaceDecl *OID = 0; 154 // Find the receiver 155 QualType ReceiverType; 156 llvm::Value *Receiver = 0; 157 switch (E->getReceiverKind()) { 158 case ObjCMessageExpr::Instance: 159 ReceiverType = E->getInstanceReceiver()->getType(); 160 if (retainSelf) { 161 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 162 E->getInstanceReceiver()); 163 Receiver = ter.getPointer(); 164 if (ter.getInt()) retainSelf = false; 165 } else 166 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 167 break; 168 169 case ObjCMessageExpr::Class: { 170 ReceiverType = E->getClassReceiver(); 171 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 172 assert(ObjTy && "Invalid Objective-C class message send"); 173 OID = ObjTy->getInterface(); 174 assert(OID && "Invalid Objective-C class message send"); 175 Receiver = Runtime.GetClass(Builder, OID); 176 isClassMessage = true; 177 break; 178 } 179 180 case ObjCMessageExpr::SuperInstance: 181 ReceiverType = E->getSuperType(); 182 Receiver = LoadObjCSelf(); 183 isSuperMessage = true; 184 break; 185 186 case ObjCMessageExpr::SuperClass: 187 ReceiverType = E->getSuperType(); 188 Receiver = LoadObjCSelf(); 189 isSuperMessage = true; 190 isClassMessage = true; 191 break; 192 } 193 194 if (retainSelf) 195 Receiver = EmitARCRetainNonBlock(Receiver); 196 197 // In ARC, we sometimes want to "extend the lifetime" 198 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 199 // messages. 200 if (getLangOptions().ObjCAutoRefCount && method && 201 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 202 shouldExtendReceiverForInnerPointerMessage(E)) 203 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 204 205 QualType ResultType = 206 method ? method->getResultType() : E->getType(); 207 208 CallArgList Args; 209 EmitCallArgs(Args, method, E->arg_begin(), E->arg_end()); 210 211 // For delegate init calls in ARC, do an unsafe store of null into 212 // self. This represents the call taking direct ownership of that 213 // value. We have to do this after emitting the other call 214 // arguments because they might also reference self, but we don't 215 // have to worry about any of them modifying self because that would 216 // be an undefined read and write of an object in unordered 217 // expressions. 218 if (isDelegateInit) { 219 assert(getLangOptions().ObjCAutoRefCount && 220 "delegate init calls should only be marked in ARC"); 221 222 // Do an unsafe store of null into self. 223 llvm::Value *selfAddr = 224 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 225 assert(selfAddr && "no self entry for a delegate init call?"); 226 227 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 228 } 229 230 RValue result; 231 if (isSuperMessage) { 232 // super is only valid in an Objective-C method 233 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 234 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 235 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 236 E->getSelector(), 237 OMD->getClassInterface(), 238 isCategoryImpl, 239 Receiver, 240 isClassMessage, 241 Args, 242 method); 243 } else { 244 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 245 E->getSelector(), 246 Receiver, Args, OID, 247 method); 248 } 249 250 // For delegate init calls in ARC, implicitly store the result of 251 // the call back into self. This takes ownership of the value. 252 if (isDelegateInit) { 253 llvm::Value *selfAddr = 254 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 255 llvm::Value *newSelf = result.getScalarVal(); 256 257 // The delegate return type isn't necessarily a matching type; in 258 // fact, it's quite likely to be 'id'. 259 llvm::Type *selfTy = 260 cast<llvm::PointerType>(selfAddr->getType())->getElementType(); 261 newSelf = Builder.CreateBitCast(newSelf, selfTy); 262 263 Builder.CreateStore(newSelf, selfAddr); 264 } 265 266 return AdjustRelatedResultType(*this, E, method, result); 267 } 268 269 namespace { 270 struct FinishARCDealloc : EHScopeStack::Cleanup { 271 void Emit(CodeGenFunction &CGF, Flags flags) { 272 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 273 274 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 275 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 276 if (!iface->getSuperClass()) return; 277 278 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 279 280 // Call [super dealloc] if we have a superclass. 281 llvm::Value *self = CGF.LoadObjCSelf(); 282 283 CallArgList args; 284 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 285 CGF.getContext().VoidTy, 286 method->getSelector(), 287 iface, 288 isCategory, 289 self, 290 /*is class msg*/ false, 291 args, 292 method); 293 } 294 }; 295 } 296 297 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 298 /// the LLVM function and sets the other context used by 299 /// CodeGenFunction. 300 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 301 const ObjCContainerDecl *CD, 302 SourceLocation StartLoc) { 303 FunctionArgList args; 304 // Check if we should generate debug info for this method. 305 if (CGM.getModuleDebugInfo() && !OMD->hasAttr<NoDebugAttr>()) 306 DebugInfo = CGM.getModuleDebugInfo(); 307 308 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 309 310 const CGFunctionInfo &FI = CGM.getTypes().getFunctionInfo(OMD); 311 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 312 313 args.push_back(OMD->getSelfDecl()); 314 args.push_back(OMD->getCmdDecl()); 315 316 for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(), 317 E = OMD->param_end(); PI != E; ++PI) 318 args.push_back(*PI); 319 320 CurGD = OMD; 321 322 StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc); 323 324 // In ARC, certain methods get an extra cleanup. 325 if (CGM.getLangOptions().ObjCAutoRefCount && 326 OMD->isInstanceMethod() && 327 OMD->getSelector().isUnarySelector()) { 328 const IdentifierInfo *ident = 329 OMD->getSelector().getIdentifierInfoForSlot(0); 330 if (ident->isStr("dealloc")) 331 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 332 } 333 } 334 335 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 336 LValue lvalue, QualType type); 337 338 /// Generate an Objective-C method. An Objective-C method is a C function with 339 /// its pointer, name, and types registered in the class struture. 340 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 341 StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart()); 342 EmitStmt(OMD->getBody()); 343 FinishFunction(OMD->getBodyRBrace()); 344 } 345 346 /// emitStructGetterCall - Call the runtime function to load a property 347 /// into the return value slot. 348 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 349 bool isAtomic, bool hasStrong) { 350 ASTContext &Context = CGF.getContext(); 351 352 llvm::Value *src = 353 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), 354 ivar, 0).getAddress(); 355 356 // objc_copyStruct (ReturnValue, &structIvar, 357 // sizeof (Type of Ivar), isAtomic, false); 358 CallArgList args; 359 360 llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 361 args.add(RValue::get(dest), Context.VoidPtrTy); 362 363 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 364 args.add(RValue::get(src), Context.VoidPtrTy); 365 366 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 367 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 368 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 369 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 370 371 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 372 CGF.EmitCall(CGF.getTypes().getFunctionInfo(Context.VoidTy, args, 373 FunctionType::ExtInfo()), 374 fn, ReturnValueSlot(), args); 375 } 376 377 /// Determine whether the given architecture supports unaligned atomic 378 /// accesses. They don't have to be fast, just faster than a function 379 /// call and a mutex. 380 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 381 // FIXME: Allow unaligned atomic load/store on x86. (It is not 382 // currently supported by the backend.) 383 return 0; 384 } 385 386 /// Return the maximum size that permits atomic accesses for the given 387 /// architecture. 388 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 389 llvm::Triple::ArchType arch) { 390 // ARM has 8-byte atomic accesses, but it's not clear whether we 391 // want to rely on them here. 392 393 // In the default case, just assume that any size up to a pointer is 394 // fine given adequate alignment. 395 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 396 } 397 398 namespace { 399 class PropertyImplStrategy { 400 public: 401 enum StrategyKind { 402 /// The 'native' strategy is to use the architecture's provided 403 /// reads and writes. 404 Native, 405 406 /// Use objc_setProperty and objc_getProperty. 407 GetSetProperty, 408 409 /// Use objc_setProperty for the setter, but use expression 410 /// evaluation for the getter. 411 SetPropertyAndExpressionGet, 412 413 /// Use objc_copyStruct. 414 CopyStruct, 415 416 /// The 'expression' strategy is to emit normal assignment or 417 /// lvalue-to-rvalue expressions. 418 Expression 419 }; 420 421 StrategyKind getKind() const { return StrategyKind(Kind); } 422 423 bool hasStrongMember() const { return HasStrong; } 424 bool isAtomic() const { return IsAtomic; } 425 bool isCopy() const { return IsCopy; } 426 427 CharUnits getIvarSize() const { return IvarSize; } 428 CharUnits getIvarAlignment() const { return IvarAlignment; } 429 430 PropertyImplStrategy(CodeGenModule &CGM, 431 const ObjCPropertyImplDecl *propImpl); 432 433 private: 434 unsigned Kind : 8; 435 unsigned IsAtomic : 1; 436 unsigned IsCopy : 1; 437 unsigned HasStrong : 1; 438 439 CharUnits IvarSize; 440 CharUnits IvarAlignment; 441 }; 442 } 443 444 /// Pick an implementation strategy for the the given property synthesis. 445 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 446 const ObjCPropertyImplDecl *propImpl) { 447 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 448 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 449 450 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 451 IsAtomic = prop->isAtomic(); 452 HasStrong = false; // doesn't matter here. 453 454 // Evaluate the ivar's size and alignment. 455 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 456 QualType ivarType = ivar->getType(); 457 llvm::tie(IvarSize, IvarAlignment) 458 = CGM.getContext().getTypeInfoInChars(ivarType); 459 460 // If we have a copy property, we always have to use getProperty/setProperty. 461 // TODO: we could actually use setProperty and an expression for non-atomics. 462 if (IsCopy) { 463 Kind = GetSetProperty; 464 return; 465 } 466 467 // Handle retain. 468 if (setterKind == ObjCPropertyDecl::Retain) { 469 // In GC-only, there's nothing special that needs to be done. 470 if (CGM.getLangOptions().getGC() == LangOptions::GCOnly) { 471 // fallthrough 472 473 // In ARC, if the property is non-atomic, use expression emission, 474 // which translates to objc_storeStrong. This isn't required, but 475 // it's slightly nicer. 476 } else if (CGM.getLangOptions().ObjCAutoRefCount && !IsAtomic) { 477 Kind = Expression; 478 return; 479 480 // Otherwise, we need to at least use setProperty. However, if 481 // the property isn't atomic, we can use normal expression 482 // emission for the getter. 483 } else if (!IsAtomic) { 484 Kind = SetPropertyAndExpressionGet; 485 return; 486 487 // Otherwise, we have to use both setProperty and getProperty. 488 } else { 489 Kind = GetSetProperty; 490 return; 491 } 492 } 493 494 // If we're not atomic, just use expression accesses. 495 if (!IsAtomic) { 496 Kind = Expression; 497 return; 498 } 499 500 // Properties on bitfield ivars need to be emitted using expression 501 // accesses even if they're nominally atomic. 502 if (ivar->isBitField()) { 503 Kind = Expression; 504 return; 505 } 506 507 // GC-qualified or ARC-qualified ivars need to be emitted as 508 // expressions. This actually works out to being atomic anyway, 509 // except for ARC __strong, but that should trigger the above code. 510 if (ivarType.hasNonTrivialObjCLifetime() || 511 (CGM.getLangOptions().getGC() && 512 CGM.getContext().getObjCGCAttrKind(ivarType))) { 513 Kind = Expression; 514 return; 515 } 516 517 // Compute whether the ivar has strong members. 518 if (CGM.getLangOptions().getGC()) 519 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 520 HasStrong = recordType->getDecl()->hasObjectMember(); 521 522 // We can never access structs with object members with a native 523 // access, because we need to use write barriers. This is what 524 // objc_copyStruct is for. 525 if (HasStrong) { 526 Kind = CopyStruct; 527 return; 528 } 529 530 // Otherwise, this is target-dependent and based on the size and 531 // alignment of the ivar. 532 533 // If the size of the ivar is not a power of two, give up. We don't 534 // want to get into the business of doing compare-and-swaps. 535 if (!IvarSize.isPowerOfTwo()) { 536 Kind = CopyStruct; 537 return; 538 } 539 540 llvm::Triple::ArchType arch = 541 CGM.getContext().getTargetInfo().getTriple().getArch(); 542 543 // Most architectures require memory to fit within a single cache 544 // line, so the alignment has to be at least the size of the access. 545 // Otherwise we have to grab a lock. 546 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 547 Kind = CopyStruct; 548 return; 549 } 550 551 // If the ivar's size exceeds the architecture's maximum atomic 552 // access size, we have to use CopyStruct. 553 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 554 Kind = CopyStruct; 555 return; 556 } 557 558 // Otherwise, we can use native loads and stores. 559 Kind = Native; 560 } 561 562 /// GenerateObjCGetter - Generate an Objective-C property getter 563 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize 564 /// is illegal within a category. 565 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 566 const ObjCPropertyImplDecl *PID) { 567 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 568 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 569 assert(OMD && "Invalid call to generate getter (empty method)"); 570 StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart()); 571 572 generateObjCGetterBody(IMP, PID); 573 574 FinishFunction(); 575 } 576 577 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 578 const Expr *getter = propImpl->getGetterCXXConstructor(); 579 if (!getter) return true; 580 581 // Sema only makes only of these when the ivar has a C++ class type, 582 // so the form is pretty constrained. 583 584 // If the property has a reference type, we might just be binding a 585 // reference, in which case the result will be a gl-value. We should 586 // treat this as a non-trivial operation. 587 if (getter->isGLValue()) 588 return false; 589 590 // If we selected a trivial copy-constructor, we're okay. 591 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 592 return (construct->getConstructor()->isTrivial()); 593 594 // The constructor might require cleanups (in which case it's never 595 // trivial). 596 assert(isa<ExprWithCleanups>(getter)); 597 return false; 598 } 599 600 void 601 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 602 const ObjCPropertyImplDecl *propImpl) { 603 // If there's a non-trivial 'get' expression, we just have to emit that. 604 if (!hasTrivialGetExpr(propImpl)) { 605 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 606 /*nrvo*/ 0); 607 EmitReturnStmt(ret); 608 return; 609 } 610 611 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 612 QualType propType = prop->getType(); 613 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 614 615 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 616 617 // Pick an implementation strategy. 618 PropertyImplStrategy strategy(CGM, propImpl); 619 switch (strategy.getKind()) { 620 case PropertyImplStrategy::Native: { 621 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 622 623 // Currently, all atomic accesses have to be through integer 624 // types, so there's no point in trying to pick a prettier type. 625 llvm::Type *bitcastType = 626 llvm::Type::getIntNTy(getLLVMContext(), 627 getContext().toBits(strategy.getIvarSize())); 628 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 629 630 // Perform an atomic load. This does not impose ordering constraints. 631 llvm::Value *ivarAddr = LV.getAddress(); 632 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 633 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 634 load->setAlignment(strategy.getIvarAlignment().getQuantity()); 635 load->setAtomic(llvm::Unordered); 636 637 // Store that value into the return address. Doing this with a 638 // bitcast is likely to produce some pretty ugly IR, but it's not 639 // the *most* terrible thing in the world. 640 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType)); 641 642 // Make sure we don't do an autorelease. 643 AutoreleaseResult = false; 644 return; 645 } 646 647 case PropertyImplStrategy::GetSetProperty: { 648 llvm::Value *getPropertyFn = 649 CGM.getObjCRuntime().GetPropertyGetFunction(); 650 if (!getPropertyFn) { 651 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 652 return; 653 } 654 655 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 656 // FIXME: Can't this be simpler? This might even be worse than the 657 // corresponding gcc code. 658 llvm::Value *cmd = 659 Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd"); 660 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 661 llvm::Value *ivarOffset = 662 EmitIvarOffset(classImpl->getClassInterface(), ivar); 663 664 CallArgList args; 665 args.add(RValue::get(self), getContext().getObjCIdType()); 666 args.add(RValue::get(cmd), getContext().getObjCSelType()); 667 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 668 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 669 getContext().BoolTy); 670 671 // FIXME: We shouldn't need to get the function info here, the 672 // runtime already should have computed it to build the function. 673 RValue RV = EmitCall(getTypes().getFunctionInfo(propType, args, 674 FunctionType::ExtInfo()), 675 getPropertyFn, ReturnValueSlot(), args); 676 677 // We need to fix the type here. Ivars with copy & retain are 678 // always objects so we don't need to worry about complex or 679 // aggregates. 680 RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(), 681 getTypes().ConvertType(propType))); 682 683 EmitReturnOfRValue(RV, propType); 684 685 // objc_getProperty does an autorelease, so we should suppress ours. 686 AutoreleaseResult = false; 687 688 return; 689 } 690 691 case PropertyImplStrategy::CopyStruct: 692 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 693 strategy.hasStrongMember()); 694 return; 695 696 case PropertyImplStrategy::Expression: 697 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 698 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 699 700 QualType ivarType = ivar->getType(); 701 if (ivarType->isAnyComplexType()) { 702 ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(), 703 LV.isVolatileQualified()); 704 StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified()); 705 } else if (hasAggregateLLVMType(ivarType)) { 706 // The return value slot is guaranteed to not be aliased, but 707 // that's not necessarily the same as "on the stack", so 708 // we still potentially need objc_memmove_collectable. 709 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 710 } else { 711 llvm::Value *value; 712 if (propType->isReferenceType()) { 713 value = LV.getAddress(); 714 } else { 715 // We want to load and autoreleaseReturnValue ARC __weak ivars. 716 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 717 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 718 719 // Otherwise we want to do a simple load, suppressing the 720 // final autorelease. 721 } else { 722 value = EmitLoadOfLValue(LV).getScalarVal(); 723 AutoreleaseResult = false; 724 } 725 726 value = Builder.CreateBitCast(value, ConvertType(propType)); 727 } 728 729 EmitReturnOfRValue(RValue::get(value), propType); 730 } 731 return; 732 } 733 734 } 735 llvm_unreachable("bad @property implementation strategy!"); 736 } 737 738 /// emitStructSetterCall - Call the runtime function to store the value 739 /// from the first formal parameter into the given ivar. 740 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 741 ObjCIvarDecl *ivar) { 742 // objc_copyStruct (&structIvar, &Arg, 743 // sizeof (struct something), true, false); 744 CallArgList args; 745 746 // The first argument is the address of the ivar. 747 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 748 CGF.LoadObjCSelf(), ivar, 0) 749 .getAddress(); 750 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 751 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 752 753 // The second argument is the address of the parameter variable. 754 ParmVarDecl *argVar = *OMD->param_begin(); 755 DeclRefExpr argRef(argVar, argVar->getType(), VK_LValue, SourceLocation()); 756 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 757 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 758 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 759 760 // The third argument is the sizeof the type. 761 llvm::Value *size = 762 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 763 args.add(RValue::get(size), CGF.getContext().getSizeType()); 764 765 // The fourth argument is the 'isAtomic' flag. 766 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 767 768 // The fifth argument is the 'hasStrong' flag. 769 // FIXME: should this really always be false? 770 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 771 772 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 773 CGF.EmitCall(CGF.getTypes().getFunctionInfo(CGF.getContext().VoidTy, args, 774 FunctionType::ExtInfo()), 775 copyStructFn, ReturnValueSlot(), args); 776 } 777 778 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 779 Expr *setter = PID->getSetterCXXAssignment(); 780 if (!setter) return true; 781 782 // Sema only makes only of these when the ivar has a C++ class type, 783 // so the form is pretty constrained. 784 785 // An operator call is trivial if the function it calls is trivial. 786 // This also implies that there's nothing non-trivial going on with 787 // the arguments, because operator= can only be trivial if it's a 788 // synthesized assignment operator and therefore both parameters are 789 // references. 790 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 791 if (const FunctionDecl *callee 792 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 793 if (callee->isTrivial()) 794 return true; 795 return false; 796 } 797 798 assert(isa<ExprWithCleanups>(setter)); 799 return false; 800 } 801 802 void 803 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 804 const ObjCPropertyImplDecl *propImpl) { 805 // Just use the setter expression if Sema gave us one and it's 806 // non-trivial. There's no way to do this atomically. 807 if (!hasTrivialSetExpr(propImpl)) { 808 EmitStmt(propImpl->getSetterCXXAssignment()); 809 return; 810 } 811 812 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 813 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 814 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 815 816 PropertyImplStrategy strategy(CGM, propImpl); 817 switch (strategy.getKind()) { 818 case PropertyImplStrategy::Native: { 819 llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()]; 820 821 LValue ivarLValue = 822 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 823 llvm::Value *ivarAddr = ivarLValue.getAddress(); 824 825 // Currently, all atomic accesses have to be through integer 826 // types, so there's no point in trying to pick a prettier type. 827 llvm::Type *bitcastType = 828 llvm::Type::getIntNTy(getLLVMContext(), 829 getContext().toBits(strategy.getIvarSize())); 830 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 831 832 // Cast both arguments to the chosen operation type. 833 argAddr = Builder.CreateBitCast(argAddr, bitcastType); 834 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 835 836 // This bitcast load is likely to cause some nasty IR. 837 llvm::Value *load = Builder.CreateLoad(argAddr); 838 839 // Perform an atomic store. There are no memory ordering requirements. 840 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 841 store->setAlignment(strategy.getIvarAlignment().getQuantity()); 842 store->setAtomic(llvm::Unordered); 843 return; 844 } 845 846 case PropertyImplStrategy::GetSetProperty: 847 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 848 llvm::Value *setPropertyFn = 849 CGM.getObjCRuntime().GetPropertySetFunction(); 850 if (!setPropertyFn) { 851 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 852 return; 853 } 854 855 // Emit objc_setProperty((id) self, _cmd, offset, arg, 856 // <is-atomic>, <is-copy>). 857 llvm::Value *cmd = 858 Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]); 859 llvm::Value *self = 860 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 861 llvm::Value *ivarOffset = 862 EmitIvarOffset(classImpl->getClassInterface(), ivar); 863 llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()]; 864 arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy); 865 866 CallArgList args; 867 args.add(RValue::get(self), getContext().getObjCIdType()); 868 args.add(RValue::get(cmd), getContext().getObjCSelType()); 869 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 870 args.add(RValue::get(arg), getContext().getObjCIdType()); 871 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 872 getContext().BoolTy); 873 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 874 getContext().BoolTy); 875 // FIXME: We shouldn't need to get the function info here, the runtime 876 // already should have computed it to build the function. 877 EmitCall(getTypes().getFunctionInfo(getContext().VoidTy, args, 878 FunctionType::ExtInfo()), 879 setPropertyFn, ReturnValueSlot(), args); 880 return; 881 } 882 883 case PropertyImplStrategy::CopyStruct: 884 emitStructSetterCall(*this, setterMethod, ivar); 885 return; 886 887 case PropertyImplStrategy::Expression: 888 break; 889 } 890 891 // Otherwise, fake up some ASTs and emit a normal assignment. 892 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 893 DeclRefExpr self(selfDecl, selfDecl->getType(), VK_LValue, SourceLocation()); 894 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 895 selfDecl->getType(), CK_LValueToRValue, &self, 896 VK_RValue); 897 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 898 SourceLocation(), &selfLoad, true, true); 899 900 ParmVarDecl *argDecl = *setterMethod->param_begin(); 901 QualType argType = argDecl->getType().getNonReferenceType(); 902 DeclRefExpr arg(argDecl, argType, VK_LValue, SourceLocation()); 903 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 904 argType.getUnqualifiedType(), CK_LValueToRValue, 905 &arg, VK_RValue); 906 907 // The property type can differ from the ivar type in some situations with 908 // Objective-C pointer types, we can always bit cast the RHS in these cases. 909 // The following absurdity is just to ensure well-formed IR. 910 CastKind argCK = CK_NoOp; 911 if (ivarRef.getType()->isObjCObjectPointerType()) { 912 if (argLoad.getType()->isObjCObjectPointerType()) 913 argCK = CK_BitCast; 914 else if (argLoad.getType()->isBlockPointerType()) 915 argCK = CK_BlockPointerToObjCPointerCast; 916 else 917 argCK = CK_CPointerToObjCPointerCast; 918 } else if (ivarRef.getType()->isBlockPointerType()) { 919 if (argLoad.getType()->isBlockPointerType()) 920 argCK = CK_BitCast; 921 else 922 argCK = CK_AnyPointerToBlockPointerCast; 923 } else if (ivarRef.getType()->isPointerType()) { 924 argCK = CK_BitCast; 925 } 926 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 927 ivarRef.getType(), argCK, &argLoad, 928 VK_RValue); 929 Expr *finalArg = &argLoad; 930 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 931 argLoad.getType())) 932 finalArg = &argCast; 933 934 935 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 936 ivarRef.getType(), VK_RValue, OK_Ordinary, 937 SourceLocation()); 938 EmitStmt(&assign); 939 } 940 941 /// GenerateObjCSetter - Generate an Objective-C property setter 942 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize 943 /// is illegal within a category. 944 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 945 const ObjCPropertyImplDecl *PID) { 946 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 947 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 948 assert(OMD && "Invalid call to generate setter (empty method)"); 949 StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart()); 950 951 generateObjCSetterBody(IMP, PID); 952 953 FinishFunction(); 954 } 955 956 namespace { 957 struct DestroyIvar : EHScopeStack::Cleanup { 958 private: 959 llvm::Value *addr; 960 const ObjCIvarDecl *ivar; 961 CodeGenFunction::Destroyer &destroyer; 962 bool useEHCleanupForArray; 963 public: 964 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 965 CodeGenFunction::Destroyer *destroyer, 966 bool useEHCleanupForArray) 967 : addr(addr), ivar(ivar), destroyer(*destroyer), 968 useEHCleanupForArray(useEHCleanupForArray) {} 969 970 void Emit(CodeGenFunction &CGF, Flags flags) { 971 LValue lvalue 972 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 973 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 974 flags.isForNormalCleanup() && useEHCleanupForArray); 975 } 976 }; 977 } 978 979 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 980 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 981 llvm::Value *addr, 982 QualType type) { 983 llvm::Value *null = getNullForVariable(addr); 984 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 985 } 986 987 static void emitCXXDestructMethod(CodeGenFunction &CGF, 988 ObjCImplementationDecl *impl) { 989 CodeGenFunction::RunCleanupsScope scope(CGF); 990 991 llvm::Value *self = CGF.LoadObjCSelf(); 992 993 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 994 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 995 ivar; ivar = ivar->getNextIvar()) { 996 QualType type = ivar->getType(); 997 998 // Check whether the ivar is a destructible type. 999 QualType::DestructionKind dtorKind = type.isDestructedType(); 1000 if (!dtorKind) continue; 1001 1002 CodeGenFunction::Destroyer *destroyer = 0; 1003 1004 // Use a call to objc_storeStrong to destroy strong ivars, for the 1005 // general benefit of the tools. 1006 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1007 destroyer = &destroyARCStrongWithStore; 1008 1009 // Otherwise use the default for the destruction kind. 1010 } else { 1011 destroyer = &CGF.getDestroyer(dtorKind); 1012 } 1013 1014 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1015 1016 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1017 cleanupKind & EHCleanup); 1018 } 1019 1020 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1021 } 1022 1023 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1024 ObjCMethodDecl *MD, 1025 bool ctor) { 1026 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1027 StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart()); 1028 1029 // Emit .cxx_construct. 1030 if (ctor) { 1031 // Suppress the final autorelease in ARC. 1032 AutoreleaseResult = false; 1033 1034 SmallVector<CXXCtorInitializer *, 8> IvarInitializers; 1035 for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(), 1036 E = IMP->init_end(); B != E; ++B) { 1037 CXXCtorInitializer *IvarInit = (*B); 1038 FieldDecl *Field = IvarInit->getAnyMember(); 1039 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1040 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1041 LoadObjCSelf(), Ivar, 0); 1042 EmitAggExpr(IvarInit->getInit(), 1043 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1044 AggValueSlot::DoesNotNeedGCBarriers, 1045 AggValueSlot::IsNotAliased)); 1046 } 1047 // constructor returns 'self'. 1048 CodeGenTypes &Types = CGM.getTypes(); 1049 QualType IdTy(CGM.getContext().getObjCIdType()); 1050 llvm::Value *SelfAsId = 1051 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1052 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1053 1054 // Emit .cxx_destruct. 1055 } else { 1056 emitCXXDestructMethod(*this, IMP); 1057 } 1058 FinishFunction(); 1059 } 1060 1061 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) { 1062 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(); 1063 it++; it++; 1064 const ABIArgInfo &AI = it->info; 1065 // FIXME. Is this sufficient check? 1066 return (AI.getKind() == ABIArgInfo::Indirect); 1067 } 1068 1069 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) { 1070 if (CGM.getLangOptions().getGC() == LangOptions::NonGC) 1071 return false; 1072 if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>()) 1073 return FDTTy->getDecl()->hasObjectMember(); 1074 return false; 1075 } 1076 1077 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1078 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1079 return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self"); 1080 } 1081 1082 QualType CodeGenFunction::TypeOfSelfObject() { 1083 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1084 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1085 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1086 getContext().getCanonicalType(selfDecl->getType())); 1087 return PTy->getPointeeType(); 1088 } 1089 1090 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1091 llvm::Constant *EnumerationMutationFn = 1092 CGM.getObjCRuntime().EnumerationMutationFunction(); 1093 1094 if (!EnumerationMutationFn) { 1095 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1096 return; 1097 } 1098 1099 CGDebugInfo *DI = getDebugInfo(); 1100 if (DI) 1101 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1102 1103 // The local variable comes into scope immediately. 1104 AutoVarEmission variable = AutoVarEmission::invalid(); 1105 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1106 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1107 1108 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1109 1110 // Fast enumeration state. 1111 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1112 llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1113 EmitNullInitialization(StatePtr, StateTy); 1114 1115 // Number of elements in the items array. 1116 static const unsigned NumItems = 16; 1117 1118 // Fetch the countByEnumeratingWithState:objects:count: selector. 1119 IdentifierInfo *II[] = { 1120 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1121 &CGM.getContext().Idents.get("objects"), 1122 &CGM.getContext().Idents.get("count") 1123 }; 1124 Selector FastEnumSel = 1125 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1126 1127 QualType ItemsTy = 1128 getContext().getConstantArrayType(getContext().getObjCIdType(), 1129 llvm::APInt(32, NumItems), 1130 ArrayType::Normal, 0); 1131 llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1132 1133 // Emit the collection pointer. In ARC, we do a retain. 1134 llvm::Value *Collection; 1135 if (getLangOptions().ObjCAutoRefCount) { 1136 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1137 1138 // Enter a cleanup to do the release. 1139 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1140 } else { 1141 Collection = EmitScalarExpr(S.getCollection()); 1142 } 1143 1144 // The 'continue' label needs to appear within the cleanup for the 1145 // collection object. 1146 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1147 1148 // Send it our message: 1149 CallArgList Args; 1150 1151 // The first argument is a temporary of the enumeration-state type. 1152 Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy)); 1153 1154 // The second argument is a temporary array with space for NumItems 1155 // pointers. We'll actually be loading elements from the array 1156 // pointer written into the control state; this buffer is so that 1157 // collections that *aren't* backed by arrays can still queue up 1158 // batches of elements. 1159 Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy)); 1160 1161 // The third argument is the capacity of that temporary array. 1162 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1163 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1164 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1165 1166 // Start the enumeration. 1167 RValue CountRV = 1168 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1169 getContext().UnsignedLongTy, 1170 FastEnumSel, 1171 Collection, Args); 1172 1173 // The initial number of objects that were returned in the buffer. 1174 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1175 1176 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1177 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1178 1179 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1180 1181 // If the limit pointer was zero to begin with, the collection is 1182 // empty; skip all this. 1183 Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), 1184 EmptyBB, LoopInitBB); 1185 1186 // Otherwise, initialize the loop. 1187 EmitBlock(LoopInitBB); 1188 1189 // Save the initial mutations value. This is the value at an 1190 // address that was written into the state object by 1191 // countByEnumeratingWithState:objects:count:. 1192 llvm::Value *StateMutationsPtrPtr = 1193 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1194 llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, 1195 "mutationsptr"); 1196 1197 llvm::Value *initialMutations = 1198 Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations"); 1199 1200 // Start looping. This is the point we return to whenever we have a 1201 // fresh, non-empty batch of objects. 1202 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1203 EmitBlock(LoopBodyBB); 1204 1205 // The current index into the buffer. 1206 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1207 index->addIncoming(zero, LoopInitBB); 1208 1209 // The current buffer size. 1210 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1211 count->addIncoming(initialBufferLimit, LoopInitBB); 1212 1213 // Check whether the mutations value has changed from where it was 1214 // at start. StateMutationsPtr should actually be invariant between 1215 // refreshes. 1216 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1217 llvm::Value *currentMutations 1218 = Builder.CreateLoad(StateMutationsPtr, "statemutations"); 1219 1220 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1221 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1222 1223 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1224 WasNotMutatedBB, WasMutatedBB); 1225 1226 // If so, call the enumeration-mutation function. 1227 EmitBlock(WasMutatedBB); 1228 llvm::Value *V = 1229 Builder.CreateBitCast(Collection, 1230 ConvertType(getContext().getObjCIdType())); 1231 CallArgList Args2; 1232 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1233 // FIXME: We shouldn't need to get the function info here, the runtime already 1234 // should have computed it to build the function. 1235 EmitCall(CGM.getTypes().getFunctionInfo(getContext().VoidTy, Args2, 1236 FunctionType::ExtInfo()), 1237 EnumerationMutationFn, ReturnValueSlot(), Args2); 1238 1239 // Otherwise, or if the mutation function returns, just continue. 1240 EmitBlock(WasNotMutatedBB); 1241 1242 // Initialize the element variable. 1243 RunCleanupsScope elementVariableScope(*this); 1244 bool elementIsVariable; 1245 LValue elementLValue; 1246 QualType elementType; 1247 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1248 // Initialize the variable, in case it's a __block variable or something. 1249 EmitAutoVarInit(variable); 1250 1251 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1252 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), D->getType(), 1253 VK_LValue, SourceLocation()); 1254 elementLValue = EmitLValue(&tempDRE); 1255 elementType = D->getType(); 1256 elementIsVariable = true; 1257 1258 if (D->isARCPseudoStrong()) 1259 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1260 } else { 1261 elementLValue = LValue(); // suppress warning 1262 elementType = cast<Expr>(S.getElement())->getType(); 1263 elementIsVariable = false; 1264 } 1265 llvm::Type *convertedElementType = ConvertType(elementType); 1266 1267 // Fetch the buffer out of the enumeration state. 1268 // TODO: this pointer should actually be invariant between 1269 // refreshes, which would help us do certain loop optimizations. 1270 llvm::Value *StateItemsPtr = 1271 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1272 llvm::Value *EnumStateItems = 1273 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1274 1275 // Fetch the value at the current index from the buffer. 1276 llvm::Value *CurrentItemPtr = 1277 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1278 llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr); 1279 1280 // Cast that value to the right type. 1281 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1282 "currentitem"); 1283 1284 // Make sure we have an l-value. Yes, this gets evaluated every 1285 // time through the loop. 1286 if (!elementIsVariable) { 1287 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1288 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1289 } else { 1290 EmitScalarInit(CurrentItem, elementLValue); 1291 } 1292 1293 // If we do have an element variable, this assignment is the end of 1294 // its initialization. 1295 if (elementIsVariable) 1296 EmitAutoVarCleanups(variable); 1297 1298 // Perform the loop body, setting up break and continue labels. 1299 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1300 { 1301 RunCleanupsScope Scope(*this); 1302 EmitStmt(S.getBody()); 1303 } 1304 BreakContinueStack.pop_back(); 1305 1306 // Destroy the element variable now. 1307 elementVariableScope.ForceCleanup(); 1308 1309 // Check whether there are more elements. 1310 EmitBlock(AfterBody.getBlock()); 1311 1312 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1313 1314 // First we check in the local buffer. 1315 llvm::Value *indexPlusOne 1316 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1317 1318 // If we haven't overrun the buffer yet, we can continue. 1319 Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count), 1320 LoopBodyBB, FetchMoreBB); 1321 1322 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1323 count->addIncoming(count, AfterBody.getBlock()); 1324 1325 // Otherwise, we have to fetch more elements. 1326 EmitBlock(FetchMoreBB); 1327 1328 CountRV = 1329 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1330 getContext().UnsignedLongTy, 1331 FastEnumSel, 1332 Collection, Args); 1333 1334 // If we got a zero count, we're done. 1335 llvm::Value *refetchCount = CountRV.getScalarVal(); 1336 1337 // (note that the message send might split FetchMoreBB) 1338 index->addIncoming(zero, Builder.GetInsertBlock()); 1339 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1340 1341 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1342 EmptyBB, LoopBodyBB); 1343 1344 // No more elements. 1345 EmitBlock(EmptyBB); 1346 1347 if (!elementIsVariable) { 1348 // If the element was not a declaration, set it to be null. 1349 1350 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1351 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1352 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1353 } 1354 1355 if (DI) 1356 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1357 1358 // Leave the cleanup we entered in ARC. 1359 if (getLangOptions().ObjCAutoRefCount) 1360 PopCleanupBlock(); 1361 1362 EmitBlock(LoopEnd.getBlock()); 1363 } 1364 1365 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1366 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1367 } 1368 1369 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1370 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1371 } 1372 1373 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1374 const ObjCAtSynchronizedStmt &S) { 1375 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1376 } 1377 1378 /// Produce the code for a CK_ARCProduceObject. Just does a 1379 /// primitive retain. 1380 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type, 1381 llvm::Value *value) { 1382 return EmitARCRetain(type, value); 1383 } 1384 1385 namespace { 1386 struct CallObjCRelease : EHScopeStack::Cleanup { 1387 CallObjCRelease(llvm::Value *object) : object(object) {} 1388 llvm::Value *object; 1389 1390 void Emit(CodeGenFunction &CGF, Flags flags) { 1391 CGF.EmitARCRelease(object, /*precise*/ true); 1392 } 1393 }; 1394 } 1395 1396 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1397 /// release at the end of the full-expression. 1398 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1399 llvm::Value *object) { 1400 // If we're in a conditional branch, we need to make the cleanup 1401 // conditional. 1402 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1403 return object; 1404 } 1405 1406 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1407 llvm::Value *value) { 1408 return EmitARCRetainAutorelease(type, value); 1409 } 1410 1411 1412 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1413 llvm::FunctionType *type, 1414 StringRef fnName) { 1415 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1416 1417 // In -fobjc-no-arc-runtime, emit weak references to the runtime 1418 // support library. 1419 if (!CGM.getCodeGenOpts().ObjCRuntimeHasARC) 1420 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) 1421 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1422 1423 return fn; 1424 } 1425 1426 /// Perform an operation having the signature 1427 /// i8* (i8*) 1428 /// where a null input causes a no-op and returns null. 1429 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1430 llvm::Value *value, 1431 llvm::Constant *&fn, 1432 StringRef fnName) { 1433 if (isa<llvm::ConstantPointerNull>(value)) return value; 1434 1435 if (!fn) { 1436 std::vector<llvm::Type*> args(1, CGF.Int8PtrTy); 1437 llvm::FunctionType *fnType = 1438 llvm::FunctionType::get(CGF.Int8PtrTy, args, false); 1439 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1440 } 1441 1442 // Cast the argument to 'id'. 1443 llvm::Type *origType = value->getType(); 1444 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1445 1446 // Call the function. 1447 llvm::CallInst *call = CGF.Builder.CreateCall(fn, value); 1448 call->setDoesNotThrow(); 1449 1450 // Cast the result back to the original type. 1451 return CGF.Builder.CreateBitCast(call, origType); 1452 } 1453 1454 /// Perform an operation having the following signature: 1455 /// i8* (i8**) 1456 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1457 llvm::Value *addr, 1458 llvm::Constant *&fn, 1459 StringRef fnName) { 1460 if (!fn) { 1461 std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy); 1462 llvm::FunctionType *fnType = 1463 llvm::FunctionType::get(CGF.Int8PtrTy, args, false); 1464 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1465 } 1466 1467 // Cast the argument to 'id*'. 1468 llvm::Type *origType = addr->getType(); 1469 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1470 1471 // Call the function. 1472 llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr); 1473 call->setDoesNotThrow(); 1474 1475 // Cast the result back to a dereference of the original type. 1476 llvm::Value *result = call; 1477 if (origType != CGF.Int8PtrPtrTy) 1478 result = CGF.Builder.CreateBitCast(result, 1479 cast<llvm::PointerType>(origType)->getElementType()); 1480 1481 return result; 1482 } 1483 1484 /// Perform an operation having the following signature: 1485 /// i8* (i8**, i8*) 1486 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1487 llvm::Value *addr, 1488 llvm::Value *value, 1489 llvm::Constant *&fn, 1490 StringRef fnName, 1491 bool ignored) { 1492 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 1493 == value->getType()); 1494 1495 if (!fn) { 1496 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1497 1498 llvm::FunctionType *fnType 1499 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1500 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1501 } 1502 1503 llvm::Type *origType = value->getType(); 1504 1505 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1506 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1507 1508 llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value); 1509 result->setDoesNotThrow(); 1510 1511 if (ignored) return 0; 1512 1513 return CGF.Builder.CreateBitCast(result, origType); 1514 } 1515 1516 /// Perform an operation having the following signature: 1517 /// void (i8**, i8**) 1518 static void emitARCCopyOperation(CodeGenFunction &CGF, 1519 llvm::Value *dst, 1520 llvm::Value *src, 1521 llvm::Constant *&fn, 1522 StringRef fnName) { 1523 assert(dst->getType() == src->getType()); 1524 1525 if (!fn) { 1526 std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy); 1527 llvm::FunctionType *fnType 1528 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1529 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1530 } 1531 1532 dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy); 1533 src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy); 1534 1535 llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src); 1536 result->setDoesNotThrow(); 1537 } 1538 1539 /// Produce the code to do a retain. Based on the type, calls one of: 1540 /// call i8* @objc_retain(i8* %value) 1541 /// call i8* @objc_retainBlock(i8* %value) 1542 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1543 if (type->isBlockPointerType()) 1544 return EmitARCRetainBlock(value, /*mandatory*/ false); 1545 else 1546 return EmitARCRetainNonBlock(value); 1547 } 1548 1549 /// Retain the given object, with normal retain semantics. 1550 /// call i8* @objc_retain(i8* %value) 1551 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1552 return emitARCValueOperation(*this, value, 1553 CGM.getARCEntrypoints().objc_retain, 1554 "objc_retain"); 1555 } 1556 1557 /// Retain the given block, with _Block_copy semantics. 1558 /// call i8* @objc_retainBlock(i8* %value) 1559 /// 1560 /// \param mandatory - If false, emit the call with metadata 1561 /// indicating that it's okay for the optimizer to eliminate this call 1562 /// if it can prove that the block never escapes except down the stack. 1563 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1564 bool mandatory) { 1565 llvm::Value *result 1566 = emitARCValueOperation(*this, value, 1567 CGM.getARCEntrypoints().objc_retainBlock, 1568 "objc_retainBlock"); 1569 1570 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1571 // tell the optimizer that it doesn't need to do this copy if the 1572 // block doesn't escape, where being passed as an argument doesn't 1573 // count as escaping. 1574 if (!mandatory && isa<llvm::Instruction>(result)) { 1575 llvm::CallInst *call 1576 = cast<llvm::CallInst>(result->stripPointerCasts()); 1577 assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock); 1578 1579 SmallVector<llvm::Value*,1> args; 1580 call->setMetadata("clang.arc.copy_on_escape", 1581 llvm::MDNode::get(Builder.getContext(), args)); 1582 } 1583 1584 return result; 1585 } 1586 1587 /// Retain the given object which is the result of a function call. 1588 /// call i8* @objc_retainAutoreleasedReturnValue(i8* %value) 1589 /// 1590 /// Yes, this function name is one character away from a different 1591 /// call with completely different semantics. 1592 llvm::Value * 1593 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 1594 // Fetch the void(void) inline asm which marks that we're going to 1595 // retain the autoreleased return value. 1596 llvm::InlineAsm *&marker 1597 = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker; 1598 if (!marker) { 1599 StringRef assembly 1600 = CGM.getTargetCodeGenInfo() 1601 .getARCRetainAutoreleasedReturnValueMarker(); 1602 1603 // If we have an empty assembly string, there's nothing to do. 1604 if (assembly.empty()) { 1605 1606 // Otherwise, at -O0, build an inline asm that we're going to call 1607 // in a moment. 1608 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1609 llvm::FunctionType *type = 1610 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), 1611 /*variadic*/ false); 1612 1613 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 1614 1615 // If we're at -O1 and above, we don't want to litter the code 1616 // with this marker yet, so leave a breadcrumb for the ARC 1617 // optimizer to pick up. 1618 } else { 1619 llvm::NamedMDNode *metadata = 1620 CGM.getModule().getOrInsertNamedMetadata( 1621 "clang.arc.retainAutoreleasedReturnValueMarker"); 1622 assert(metadata->getNumOperands() <= 1); 1623 if (metadata->getNumOperands() == 0) { 1624 llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly); 1625 metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string)); 1626 } 1627 } 1628 } 1629 1630 // Call the marker asm if we made one, which we do only at -O0. 1631 if (marker) Builder.CreateCall(marker); 1632 1633 return emitARCValueOperation(*this, value, 1634 CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue, 1635 "objc_retainAutoreleasedReturnValue"); 1636 } 1637 1638 /// Release the given object. 1639 /// call void @objc_release(i8* %value) 1640 void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) { 1641 if (isa<llvm::ConstantPointerNull>(value)) return; 1642 1643 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release; 1644 if (!fn) { 1645 std::vector<llvm::Type*> args(1, Int8PtrTy); 1646 llvm::FunctionType *fnType = 1647 llvm::FunctionType::get(Builder.getVoidTy(), args, false); 1648 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 1649 } 1650 1651 // Cast the argument to 'id'. 1652 value = Builder.CreateBitCast(value, Int8PtrTy); 1653 1654 // Call objc_release. 1655 llvm::CallInst *call = Builder.CreateCall(fn, value); 1656 call->setDoesNotThrow(); 1657 1658 if (!precise) { 1659 SmallVector<llvm::Value*,1> args; 1660 call->setMetadata("clang.imprecise_release", 1661 llvm::MDNode::get(Builder.getContext(), args)); 1662 } 1663 } 1664 1665 /// Store into a strong object. Always calls this: 1666 /// call void @objc_storeStrong(i8** %addr, i8* %value) 1667 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr, 1668 llvm::Value *value, 1669 bool ignored) { 1670 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 1671 == value->getType()); 1672 1673 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong; 1674 if (!fn) { 1675 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 1676 llvm::FunctionType *fnType 1677 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 1678 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 1679 } 1680 1681 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 1682 llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy); 1683 1684 Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow(); 1685 1686 if (ignored) return 0; 1687 return value; 1688 } 1689 1690 /// Store into a strong object. Sometimes calls this: 1691 /// call void @objc_storeStrong(i8** %addr, i8* %value) 1692 /// Other times, breaks it down into components. 1693 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 1694 llvm::Value *newValue, 1695 bool ignored) { 1696 QualType type = dst.getType(); 1697 bool isBlock = type->isBlockPointerType(); 1698 1699 // Use a store barrier at -O0 unless this is a block type or the 1700 // lvalue is inadequately aligned. 1701 if (shouldUseFusedARCCalls() && 1702 !isBlock && 1703 (dst.getAlignment().isZero() || 1704 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 1705 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 1706 } 1707 1708 // Otherwise, split it out. 1709 1710 // Retain the new value. 1711 newValue = EmitARCRetain(type, newValue); 1712 1713 // Read the old value. 1714 llvm::Value *oldValue = EmitLoadOfScalar(dst); 1715 1716 // Store. We do this before the release so that any deallocs won't 1717 // see the old value. 1718 EmitStoreOfScalar(newValue, dst); 1719 1720 // Finally, release the old value. 1721 EmitARCRelease(oldValue, /*precise*/ false); 1722 1723 return newValue; 1724 } 1725 1726 /// Autorelease the given object. 1727 /// call i8* @objc_autorelease(i8* %value) 1728 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 1729 return emitARCValueOperation(*this, value, 1730 CGM.getARCEntrypoints().objc_autorelease, 1731 "objc_autorelease"); 1732 } 1733 1734 /// Autorelease the given object. 1735 /// call i8* @objc_autoreleaseReturnValue(i8* %value) 1736 llvm::Value * 1737 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 1738 return emitARCValueOperation(*this, value, 1739 CGM.getARCEntrypoints().objc_autoreleaseReturnValue, 1740 "objc_autoreleaseReturnValue"); 1741 } 1742 1743 /// Do a fused retain/autorelease of the given object. 1744 /// call i8* @objc_retainAutoreleaseReturnValue(i8* %value) 1745 llvm::Value * 1746 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 1747 return emitARCValueOperation(*this, value, 1748 CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue, 1749 "objc_retainAutoreleaseReturnValue"); 1750 } 1751 1752 /// Do a fused retain/autorelease of the given object. 1753 /// call i8* @objc_retainAutorelease(i8* %value) 1754 /// or 1755 /// %retain = call i8* @objc_retainBlock(i8* %value) 1756 /// call i8* @objc_autorelease(i8* %retain) 1757 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 1758 llvm::Value *value) { 1759 if (!type->isBlockPointerType()) 1760 return EmitARCRetainAutoreleaseNonBlock(value); 1761 1762 if (isa<llvm::ConstantPointerNull>(value)) return value; 1763 1764 llvm::Type *origType = value->getType(); 1765 value = Builder.CreateBitCast(value, Int8PtrTy); 1766 value = EmitARCRetainBlock(value, /*mandatory*/ true); 1767 value = EmitARCAutorelease(value); 1768 return Builder.CreateBitCast(value, origType); 1769 } 1770 1771 /// Do a fused retain/autorelease of the given object. 1772 /// call i8* @objc_retainAutorelease(i8* %value) 1773 llvm::Value * 1774 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 1775 return emitARCValueOperation(*this, value, 1776 CGM.getARCEntrypoints().objc_retainAutorelease, 1777 "objc_retainAutorelease"); 1778 } 1779 1780 /// i8* @objc_loadWeak(i8** %addr) 1781 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 1782 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) { 1783 return emitARCLoadOperation(*this, addr, 1784 CGM.getARCEntrypoints().objc_loadWeak, 1785 "objc_loadWeak"); 1786 } 1787 1788 /// i8* @objc_loadWeakRetained(i8** %addr) 1789 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) { 1790 return emitARCLoadOperation(*this, addr, 1791 CGM.getARCEntrypoints().objc_loadWeakRetained, 1792 "objc_loadWeakRetained"); 1793 } 1794 1795 /// i8* @objc_storeWeak(i8** %addr, i8* %value) 1796 /// Returns %value. 1797 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr, 1798 llvm::Value *value, 1799 bool ignored) { 1800 return emitARCStoreOperation(*this, addr, value, 1801 CGM.getARCEntrypoints().objc_storeWeak, 1802 "objc_storeWeak", ignored); 1803 } 1804 1805 /// i8* @objc_initWeak(i8** %addr, i8* %value) 1806 /// Returns %value. %addr is known to not have a current weak entry. 1807 /// Essentially equivalent to: 1808 /// *addr = nil; objc_storeWeak(addr, value); 1809 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) { 1810 // If we're initializing to null, just write null to memory; no need 1811 // to get the runtime involved. But don't do this if optimization 1812 // is enabled, because accounting for this would make the optimizer 1813 // much more complicated. 1814 if (isa<llvm::ConstantPointerNull>(value) && 1815 CGM.getCodeGenOpts().OptimizationLevel == 0) { 1816 Builder.CreateStore(value, addr); 1817 return; 1818 } 1819 1820 emitARCStoreOperation(*this, addr, value, 1821 CGM.getARCEntrypoints().objc_initWeak, 1822 "objc_initWeak", /*ignored*/ true); 1823 } 1824 1825 /// void @objc_destroyWeak(i8** %addr) 1826 /// Essentially objc_storeWeak(addr, nil). 1827 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) { 1828 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak; 1829 if (!fn) { 1830 std::vector<llvm::Type*> args(1, Int8PtrPtrTy); 1831 llvm::FunctionType *fnType = 1832 llvm::FunctionType::get(Builder.getVoidTy(), args, false); 1833 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 1834 } 1835 1836 // Cast the argument to 'id*'. 1837 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 1838 1839 llvm::CallInst *call = Builder.CreateCall(fn, addr); 1840 call->setDoesNotThrow(); 1841 } 1842 1843 /// void @objc_moveWeak(i8** %dest, i8** %src) 1844 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 1845 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 1846 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) { 1847 emitARCCopyOperation(*this, dst, src, 1848 CGM.getARCEntrypoints().objc_moveWeak, 1849 "objc_moveWeak"); 1850 } 1851 1852 /// void @objc_copyWeak(i8** %dest, i8** %src) 1853 /// Disregards the current value in %dest. Essentially 1854 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 1855 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) { 1856 emitARCCopyOperation(*this, dst, src, 1857 CGM.getARCEntrypoints().objc_copyWeak, 1858 "objc_copyWeak"); 1859 } 1860 1861 /// Produce the code to do a objc_autoreleasepool_push. 1862 /// call i8* @objc_autoreleasePoolPush(void) 1863 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 1864 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush; 1865 if (!fn) { 1866 llvm::FunctionType *fnType = 1867 llvm::FunctionType::get(Int8PtrTy, false); 1868 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 1869 } 1870 1871 llvm::CallInst *call = Builder.CreateCall(fn); 1872 call->setDoesNotThrow(); 1873 1874 return call; 1875 } 1876 1877 /// Produce the code to do a primitive release. 1878 /// call void @objc_autoreleasePoolPop(i8* %ptr) 1879 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 1880 assert(value->getType() == Int8PtrTy); 1881 1882 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop; 1883 if (!fn) { 1884 std::vector<llvm::Type*> args(1, Int8PtrTy); 1885 llvm::FunctionType *fnType = 1886 llvm::FunctionType::get(Builder.getVoidTy(), args, false); 1887 1888 // We don't want to use a weak import here; instead we should not 1889 // fall into this path. 1890 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 1891 } 1892 1893 llvm::CallInst *call = Builder.CreateCall(fn, value); 1894 call->setDoesNotThrow(); 1895 } 1896 1897 /// Produce the code to do an MRR version objc_autoreleasepool_push. 1898 /// Which is: [[NSAutoreleasePool alloc] init]; 1899 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 1900 /// init is declared as: - (id) init; in its NSObject super class. 1901 /// 1902 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 1903 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 1904 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder); 1905 // [NSAutoreleasePool alloc] 1906 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 1907 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 1908 CallArgList Args; 1909 RValue AllocRV = 1910 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 1911 getContext().getObjCIdType(), 1912 AllocSel, Receiver, Args); 1913 1914 // [Receiver init] 1915 Receiver = AllocRV.getScalarVal(); 1916 II = &CGM.getContext().Idents.get("init"); 1917 Selector InitSel = getContext().Selectors.getSelector(0, &II); 1918 RValue InitRV = 1919 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 1920 getContext().getObjCIdType(), 1921 InitSel, Receiver, Args); 1922 return InitRV.getScalarVal(); 1923 } 1924 1925 /// Produce the code to do a primitive release. 1926 /// [tmp drain]; 1927 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 1928 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 1929 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 1930 CallArgList Args; 1931 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1932 getContext().VoidTy, DrainSel, Arg, Args); 1933 } 1934 1935 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 1936 llvm::Value *addr, 1937 QualType type) { 1938 llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy"); 1939 CGF.EmitARCRelease(ptr, /*precise*/ true); 1940 } 1941 1942 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 1943 llvm::Value *addr, 1944 QualType type) { 1945 llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy"); 1946 CGF.EmitARCRelease(ptr, /*precise*/ false); 1947 } 1948 1949 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 1950 llvm::Value *addr, 1951 QualType type) { 1952 CGF.EmitARCDestroyWeak(addr); 1953 } 1954 1955 namespace { 1956 struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup { 1957 llvm::Value *Token; 1958 1959 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 1960 1961 void Emit(CodeGenFunction &CGF, Flags flags) { 1962 CGF.EmitObjCAutoreleasePoolPop(Token); 1963 } 1964 }; 1965 struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup { 1966 llvm::Value *Token; 1967 1968 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 1969 1970 void Emit(CodeGenFunction &CGF, Flags flags) { 1971 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 1972 } 1973 }; 1974 } 1975 1976 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 1977 if (CGM.getLangOptions().ObjCAutoRefCount) 1978 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 1979 else 1980 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 1981 } 1982 1983 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 1984 LValue lvalue, 1985 QualType type) { 1986 switch (type.getObjCLifetime()) { 1987 case Qualifiers::OCL_None: 1988 case Qualifiers::OCL_ExplicitNone: 1989 case Qualifiers::OCL_Strong: 1990 case Qualifiers::OCL_Autoreleasing: 1991 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(), 1992 false); 1993 1994 case Qualifiers::OCL_Weak: 1995 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 1996 true); 1997 } 1998 1999 llvm_unreachable("impossible lifetime!"); 2000 return TryEmitResult(); 2001 } 2002 2003 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2004 const Expr *e) { 2005 e = e->IgnoreParens(); 2006 QualType type = e->getType(); 2007 2008 // If we're loading retained from a __strong xvalue, we can avoid 2009 // an extra retain/release pair by zeroing out the source of this 2010 // "move" operation. 2011 if (e->isXValue() && 2012 !type.isConstQualified() && 2013 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2014 // Emit the lvalue. 2015 LValue lv = CGF.EmitLValue(e); 2016 2017 // Load the object pointer. 2018 llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal(); 2019 2020 // Set the source pointer to NULL. 2021 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2022 2023 return TryEmitResult(result, true); 2024 } 2025 2026 // As a very special optimization, in ARC++, if the l-value is the 2027 // result of a non-volatile assignment, do a simple retain of the 2028 // result of the call to objc_storeWeak instead of reloading. 2029 if (CGF.getLangOptions().CPlusPlus && 2030 !type.isVolatileQualified() && 2031 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2032 isa<BinaryOperator>(e) && 2033 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2034 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2035 2036 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2037 } 2038 2039 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2040 llvm::Value *value); 2041 2042 /// Given that the given expression is some sort of call (which does 2043 /// not return retained), emit a retain following it. 2044 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) { 2045 llvm::Value *value = CGF.EmitScalarExpr(e); 2046 return emitARCRetainAfterCall(CGF, value); 2047 } 2048 2049 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2050 llvm::Value *value) { 2051 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2052 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2053 2054 // Place the retain immediately following the call. 2055 CGF.Builder.SetInsertPoint(call->getParent(), 2056 ++llvm::BasicBlock::iterator(call)); 2057 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2058 2059 CGF.Builder.restoreIP(ip); 2060 return value; 2061 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2062 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2063 2064 // Place the retain at the beginning of the normal destination block. 2065 llvm::BasicBlock *BB = invoke->getNormalDest(); 2066 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2067 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2068 2069 CGF.Builder.restoreIP(ip); 2070 return value; 2071 2072 // Bitcasts can arise because of related-result returns. Rewrite 2073 // the operand. 2074 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2075 llvm::Value *operand = bitcast->getOperand(0); 2076 operand = emitARCRetainAfterCall(CGF, operand); 2077 bitcast->setOperand(0, operand); 2078 return bitcast; 2079 2080 // Generic fall-back case. 2081 } else { 2082 // Retain using the non-block variant: we never need to do a copy 2083 // of a block that's been returned to us. 2084 return CGF.EmitARCRetainNonBlock(value); 2085 } 2086 } 2087 2088 /// Determine whether it might be important to emit a separate 2089 /// objc_retain_block on the result of the given expression, or 2090 /// whether it's okay to just emit it in a +1 context. 2091 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2092 assert(e->getType()->isBlockPointerType()); 2093 e = e->IgnoreParens(); 2094 2095 // For future goodness, emit block expressions directly in +1 2096 // contexts if we can. 2097 if (isa<BlockExpr>(e)) 2098 return false; 2099 2100 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2101 switch (cast->getCastKind()) { 2102 // Emitting these operations in +1 contexts is goodness. 2103 case CK_LValueToRValue: 2104 case CK_ARCReclaimReturnedObject: 2105 case CK_ARCConsumeObject: 2106 case CK_ARCProduceObject: 2107 return false; 2108 2109 // These operations preserve a block type. 2110 case CK_NoOp: 2111 case CK_BitCast: 2112 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2113 2114 // These operations are known to be bad (or haven't been considered). 2115 case CK_AnyPointerToBlockPointerCast: 2116 default: 2117 return true; 2118 } 2119 } 2120 2121 return true; 2122 } 2123 2124 /// Try to emit a PseudoObjectExpr at +1. 2125 /// 2126 /// This massively duplicates emitPseudoObjectRValue. 2127 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF, 2128 const PseudoObjectExpr *E) { 2129 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2130 2131 // Find the result expression. 2132 const Expr *resultExpr = E->getResultExpr(); 2133 assert(resultExpr); 2134 TryEmitResult result; 2135 2136 for (PseudoObjectExpr::const_semantics_iterator 2137 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2138 const Expr *semantic = *i; 2139 2140 // If this semantic expression is an opaque value, bind it 2141 // to the result of its source expression. 2142 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2143 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2144 OVMA opaqueData; 2145 2146 // If this semantic is the result of the pseudo-object 2147 // expression, try to evaluate the source as +1. 2148 if (ov == resultExpr) { 2149 assert(!OVMA::shouldBindAsLValue(ov)); 2150 result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr()); 2151 opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer())); 2152 2153 // Otherwise, just bind it. 2154 } else { 2155 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2156 } 2157 opaques.push_back(opaqueData); 2158 2159 // Otherwise, if the expression is the result, evaluate it 2160 // and remember the result. 2161 } else if (semantic == resultExpr) { 2162 result = tryEmitARCRetainScalarExpr(CGF, semantic); 2163 2164 // Otherwise, evaluate the expression in an ignored context. 2165 } else { 2166 CGF.EmitIgnoredExpr(semantic); 2167 } 2168 } 2169 2170 // Unbind all the opaques now. 2171 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2172 opaques[i].unbind(CGF); 2173 2174 return result; 2175 } 2176 2177 static TryEmitResult 2178 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2179 // Look through cleanups. 2180 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2181 CGF.enterFullExpression(cleanups); 2182 CodeGenFunction::RunCleanupsScope scope(CGF); 2183 return tryEmitARCRetainScalarExpr(CGF, cleanups->getSubExpr()); 2184 } 2185 2186 // The desired result type, if it differs from the type of the 2187 // ultimate opaque expression. 2188 llvm::Type *resultType = 0; 2189 2190 while (true) { 2191 e = e->IgnoreParens(); 2192 2193 // There's a break at the end of this if-chain; anything 2194 // that wants to keep looping has to explicitly continue. 2195 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2196 switch (ce->getCastKind()) { 2197 // No-op casts don't change the type, so we just ignore them. 2198 case CK_NoOp: 2199 e = ce->getSubExpr(); 2200 continue; 2201 2202 case CK_LValueToRValue: { 2203 TryEmitResult loadResult 2204 = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr()); 2205 if (resultType) { 2206 llvm::Value *value = loadResult.getPointer(); 2207 value = CGF.Builder.CreateBitCast(value, resultType); 2208 loadResult.setPointer(value); 2209 } 2210 return loadResult; 2211 } 2212 2213 // These casts can change the type, so remember that and 2214 // soldier on. We only need to remember the outermost such 2215 // cast, though. 2216 case CK_CPointerToObjCPointerCast: 2217 case CK_BlockPointerToObjCPointerCast: 2218 case CK_AnyPointerToBlockPointerCast: 2219 case CK_BitCast: 2220 if (!resultType) 2221 resultType = CGF.ConvertType(ce->getType()); 2222 e = ce->getSubExpr(); 2223 assert(e->getType()->hasPointerRepresentation()); 2224 continue; 2225 2226 // For consumptions, just emit the subexpression and thus elide 2227 // the retain/release pair. 2228 case CK_ARCConsumeObject: { 2229 llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr()); 2230 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2231 return TryEmitResult(result, true); 2232 } 2233 2234 // Block extends are net +0. Naively, we could just recurse on 2235 // the subexpression, but actually we need to ensure that the 2236 // value is copied as a block, so there's a little filter here. 2237 case CK_ARCExtendBlockObject: { 2238 llvm::Value *result; // will be a +0 value 2239 2240 // If we can't safely assume the sub-expression will produce a 2241 // block-copied value, emit the sub-expression at +0. 2242 if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) { 2243 result = CGF.EmitScalarExpr(ce->getSubExpr()); 2244 2245 // Otherwise, try to emit the sub-expression at +1 recursively. 2246 } else { 2247 TryEmitResult subresult 2248 = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr()); 2249 result = subresult.getPointer(); 2250 2251 // If that produced a retained value, just use that, 2252 // possibly casting down. 2253 if (subresult.getInt()) { 2254 if (resultType) 2255 result = CGF.Builder.CreateBitCast(result, resultType); 2256 return TryEmitResult(result, true); 2257 } 2258 2259 // Otherwise it's +0. 2260 } 2261 2262 // Retain the object as a block, then cast down. 2263 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2264 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2265 return TryEmitResult(result, true); 2266 } 2267 2268 // For reclaims, emit the subexpression as a retained call and 2269 // skip the consumption. 2270 case CK_ARCReclaimReturnedObject: { 2271 llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr()); 2272 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2273 return TryEmitResult(result, true); 2274 } 2275 2276 default: 2277 break; 2278 } 2279 2280 // Skip __extension__. 2281 } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 2282 if (op->getOpcode() == UO_Extension) { 2283 e = op->getSubExpr(); 2284 continue; 2285 } 2286 2287 // For calls and message sends, use the retained-call logic. 2288 // Delegate inits are a special case in that they're the only 2289 // returns-retained expression that *isn't* surrounded by 2290 // a consume. 2291 } else if (isa<CallExpr>(e) || 2292 (isa<ObjCMessageExpr>(e) && 2293 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2294 llvm::Value *result = emitARCRetainCall(CGF, e); 2295 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2296 return TryEmitResult(result, true); 2297 2298 // Look through pseudo-object expressions. 2299 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2300 TryEmitResult result 2301 = tryEmitARCRetainPseudoObject(CGF, pseudo); 2302 if (resultType) { 2303 llvm::Value *value = result.getPointer(); 2304 value = CGF.Builder.CreateBitCast(value, resultType); 2305 result.setPointer(value); 2306 } 2307 return result; 2308 } 2309 2310 // Conservatively halt the search at any other expression kind. 2311 break; 2312 } 2313 2314 // We didn't find an obvious production, so emit what we've got and 2315 // tell the caller that we didn't manage to retain. 2316 llvm::Value *result = CGF.EmitScalarExpr(e); 2317 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2318 return TryEmitResult(result, false); 2319 } 2320 2321 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2322 LValue lvalue, 2323 QualType type) { 2324 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2325 llvm::Value *value = result.getPointer(); 2326 if (!result.getInt()) 2327 value = CGF.EmitARCRetain(type, value); 2328 return value; 2329 } 2330 2331 /// EmitARCRetainScalarExpr - Semantically equivalent to 2332 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2333 /// best-effort attempt to peephole expressions that naturally produce 2334 /// retained objects. 2335 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2336 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2337 llvm::Value *value = result.getPointer(); 2338 if (!result.getInt()) 2339 value = EmitARCRetain(e->getType(), value); 2340 return value; 2341 } 2342 2343 llvm::Value * 2344 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2345 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2346 llvm::Value *value = result.getPointer(); 2347 if (result.getInt()) 2348 value = EmitARCAutorelease(value); 2349 else 2350 value = EmitARCRetainAutorelease(e->getType(), value); 2351 return value; 2352 } 2353 2354 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2355 llvm::Value *result; 2356 bool doRetain; 2357 2358 if (shouldEmitSeparateBlockRetain(e)) { 2359 result = EmitScalarExpr(e); 2360 doRetain = true; 2361 } else { 2362 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2363 result = subresult.getPointer(); 2364 doRetain = !subresult.getInt(); 2365 } 2366 2367 if (doRetain) 2368 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2369 return EmitObjCConsumeObject(e->getType(), result); 2370 } 2371 2372 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2373 // In ARC, retain and autorelease the expression. 2374 if (getLangOptions().ObjCAutoRefCount) { 2375 // Do so before running any cleanups for the full-expression. 2376 // tryEmitARCRetainScalarExpr does make an effort to do things 2377 // inside cleanups, but there are crazy cases like 2378 // @throw A().foo; 2379 // where a full retain+autorelease is required and would 2380 // otherwise happen after the destructor for the temporary. 2381 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(expr)) { 2382 enterFullExpression(ewc); 2383 expr = ewc->getSubExpr(); 2384 } 2385 2386 CodeGenFunction::RunCleanupsScope cleanups(*this); 2387 return EmitARCRetainAutoreleaseScalarExpr(expr); 2388 } 2389 2390 // Otherwise, use the normal scalar-expression emission. The 2391 // exception machinery doesn't do anything special with the 2392 // exception like retaining it, so there's no safety associated with 2393 // only running cleanups after the throw has started, and when it 2394 // matters it tends to be substantially inferior code. 2395 return EmitScalarExpr(expr); 2396 } 2397 2398 std::pair<LValue,llvm::Value*> 2399 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 2400 bool ignored) { 2401 // Evaluate the RHS first. 2402 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 2403 llvm::Value *value = result.getPointer(); 2404 2405 bool hasImmediateRetain = result.getInt(); 2406 2407 // If we didn't emit a retained object, and the l-value is of block 2408 // type, then we need to emit the block-retain immediately in case 2409 // it invalidates the l-value. 2410 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 2411 value = EmitARCRetainBlock(value, /*mandatory*/ false); 2412 hasImmediateRetain = true; 2413 } 2414 2415 LValue lvalue = EmitLValue(e->getLHS()); 2416 2417 // If the RHS was emitted retained, expand this. 2418 if (hasImmediateRetain) { 2419 llvm::Value *oldValue = 2420 EmitLoadOfScalar(lvalue); 2421 EmitStoreOfScalar(value, lvalue); 2422 EmitARCRelease(oldValue, /*precise*/ false); 2423 } else { 2424 value = EmitARCStoreStrong(lvalue, value, ignored); 2425 } 2426 2427 return std::pair<LValue,llvm::Value*>(lvalue, value); 2428 } 2429 2430 std::pair<LValue,llvm::Value*> 2431 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 2432 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 2433 LValue lvalue = EmitLValue(e->getLHS()); 2434 2435 EmitStoreOfScalar(value, lvalue); 2436 2437 return std::pair<LValue,llvm::Value*>(lvalue, value); 2438 } 2439 2440 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 2441 const ObjCAutoreleasePoolStmt &ARPS) { 2442 const Stmt *subStmt = ARPS.getSubStmt(); 2443 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 2444 2445 CGDebugInfo *DI = getDebugInfo(); 2446 if (DI) 2447 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 2448 2449 // Keep track of the current cleanup stack depth. 2450 RunCleanupsScope Scope(*this); 2451 if (CGM.getCodeGenOpts().ObjCRuntimeHasARC) { 2452 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 2453 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 2454 } else { 2455 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 2456 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 2457 } 2458 2459 for (CompoundStmt::const_body_iterator I = S.body_begin(), 2460 E = S.body_end(); I != E; ++I) 2461 EmitStmt(*I); 2462 2463 if (DI) 2464 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 2465 } 2466 2467 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2468 /// make sure it survives garbage collection until this point. 2469 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 2470 // We just use an inline assembly. 2471 llvm::FunctionType *extenderType 2472 = llvm::FunctionType::get(VoidTy, VoidPtrTy, /*variadic*/ false); 2473 llvm::Value *extender 2474 = llvm::InlineAsm::get(extenderType, 2475 /* assembly */ "", 2476 /* constraints */ "r", 2477 /* side effects */ true); 2478 2479 object = Builder.CreateBitCast(object, VoidPtrTy); 2480 Builder.CreateCall(extender, object)->setDoesNotThrow(); 2481 } 2482 2483 CGObjCRuntime::~CGObjCRuntime() {} 2484