1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/InlineAsm.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
30 static TryEmitResult
31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
32 
33 /// Given the address of a variable of pointer type, find the correct
34 /// null to store into it.
35 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
36   llvm::Type *type =
37     cast<llvm::PointerType>(addr->getType())->getElementType();
38   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
39 }
40 
41 /// Emits an instance of NSConstantString representing the object.
42 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
43 {
44   llvm::Constant *C =
45       CGM.getObjCRuntime().GenerateConstantString(E->getString());
46   // FIXME: This bitcast should just be made an invariant on the Runtime.
47   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
48 }
49 
50 /// Emit a selector.
51 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
52   // Untyped selector.
53   // Note that this implementation allows for non-constant strings to be passed
54   // as arguments to @selector().  Currently, the only thing preventing this
55   // behaviour is the type checking in the front end.
56   return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector());
57 }
58 
59 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
60   // FIXME: This should pass the Decl not the name.
61   return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol());
62 }
63 
64 /// \brief Adjust the type of the result of an Objective-C message send
65 /// expression when the method has a related result type.
66 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
67                                       const Expr *E,
68                                       const ObjCMethodDecl *Method,
69                                       RValue Result) {
70   if (!Method)
71     return Result;
72 
73   if (!Method->hasRelatedResultType() ||
74       CGF.getContext().hasSameType(E->getType(), Method->getResultType()) ||
75       !Result.isScalar())
76     return Result;
77 
78   // We have applied a related result type. Cast the rvalue appropriately.
79   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
80                                                CGF.ConvertType(E->getType())));
81 }
82 
83 /// Decide whether to extend the lifetime of the receiver of a
84 /// returns-inner-pointer message.
85 static bool
86 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
87   switch (message->getReceiverKind()) {
88 
89   // For a normal instance message, we should extend unless the
90   // receiver is loaded from a variable with precise lifetime.
91   case ObjCMessageExpr::Instance: {
92     const Expr *receiver = message->getInstanceReceiver();
93     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
94     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
95     receiver = ice->getSubExpr()->IgnoreParens();
96 
97     // Only __strong variables.
98     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
99       return true;
100 
101     // All ivars and fields have precise lifetime.
102     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
103       return false;
104 
105     // Otherwise, check for variables.
106     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
107     if (!declRef) return true;
108     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
109     if (!var) return true;
110 
111     // All variables have precise lifetime except local variables with
112     // automatic storage duration that aren't specially marked.
113     return (var->hasLocalStorage() &&
114             !var->hasAttr<ObjCPreciseLifetimeAttr>());
115   }
116 
117   case ObjCMessageExpr::Class:
118   case ObjCMessageExpr::SuperClass:
119     // It's never necessary for class objects.
120     return false;
121 
122   case ObjCMessageExpr::SuperInstance:
123     // We generally assume that 'self' lives throughout a method call.
124     return false;
125   }
126 
127   llvm_unreachable("invalid receiver kind");
128 }
129 
130 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
131                                             ReturnValueSlot Return) {
132   // Only the lookup mechanism and first two arguments of the method
133   // implementation vary between runtimes.  We can get the receiver and
134   // arguments in generic code.
135 
136   bool isDelegateInit = E->isDelegateInitCall();
137 
138   const ObjCMethodDecl *method = E->getMethodDecl();
139 
140   // We don't retain the receiver in delegate init calls, and this is
141   // safe because the receiver value is always loaded from 'self',
142   // which we zero out.  We don't want to Block_copy block receivers,
143   // though.
144   bool retainSelf =
145     (!isDelegateInit &&
146      CGM.getLangOptions().ObjCAutoRefCount &&
147      method &&
148      method->hasAttr<NSConsumesSelfAttr>());
149 
150   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
151   bool isSuperMessage = false;
152   bool isClassMessage = false;
153   ObjCInterfaceDecl *OID = 0;
154   // Find the receiver
155   QualType ReceiverType;
156   llvm::Value *Receiver = 0;
157   switch (E->getReceiverKind()) {
158   case ObjCMessageExpr::Instance:
159     ReceiverType = E->getInstanceReceiver()->getType();
160     if (retainSelf) {
161       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
162                                                    E->getInstanceReceiver());
163       Receiver = ter.getPointer();
164       if (ter.getInt()) retainSelf = false;
165     } else
166       Receiver = EmitScalarExpr(E->getInstanceReceiver());
167     break;
168 
169   case ObjCMessageExpr::Class: {
170     ReceiverType = E->getClassReceiver();
171     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
172     assert(ObjTy && "Invalid Objective-C class message send");
173     OID = ObjTy->getInterface();
174     assert(OID && "Invalid Objective-C class message send");
175     Receiver = Runtime.GetClass(Builder, OID);
176     isClassMessage = true;
177     break;
178   }
179 
180   case ObjCMessageExpr::SuperInstance:
181     ReceiverType = E->getSuperType();
182     Receiver = LoadObjCSelf();
183     isSuperMessage = true;
184     break;
185 
186   case ObjCMessageExpr::SuperClass:
187     ReceiverType = E->getSuperType();
188     Receiver = LoadObjCSelf();
189     isSuperMessage = true;
190     isClassMessage = true;
191     break;
192   }
193 
194   if (retainSelf)
195     Receiver = EmitARCRetainNonBlock(Receiver);
196 
197   // In ARC, we sometimes want to "extend the lifetime"
198   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
199   // messages.
200   if (getLangOptions().ObjCAutoRefCount && method &&
201       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
202       shouldExtendReceiverForInnerPointerMessage(E))
203     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
204 
205   QualType ResultType =
206     method ? method->getResultType() : E->getType();
207 
208   CallArgList Args;
209   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
210 
211   // For delegate init calls in ARC, do an unsafe store of null into
212   // self.  This represents the call taking direct ownership of that
213   // value.  We have to do this after emitting the other call
214   // arguments because they might also reference self, but we don't
215   // have to worry about any of them modifying self because that would
216   // be an undefined read and write of an object in unordered
217   // expressions.
218   if (isDelegateInit) {
219     assert(getLangOptions().ObjCAutoRefCount &&
220            "delegate init calls should only be marked in ARC");
221 
222     // Do an unsafe store of null into self.
223     llvm::Value *selfAddr =
224       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
225     assert(selfAddr && "no self entry for a delegate init call?");
226 
227     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
228   }
229 
230   RValue result;
231   if (isSuperMessage) {
232     // super is only valid in an Objective-C method
233     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
234     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
235     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
236                                               E->getSelector(),
237                                               OMD->getClassInterface(),
238                                               isCategoryImpl,
239                                               Receiver,
240                                               isClassMessage,
241                                               Args,
242                                               method);
243   } else {
244     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
245                                          E->getSelector(),
246                                          Receiver, Args, OID,
247                                          method);
248   }
249 
250   // For delegate init calls in ARC, implicitly store the result of
251   // the call back into self.  This takes ownership of the value.
252   if (isDelegateInit) {
253     llvm::Value *selfAddr =
254       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
255     llvm::Value *newSelf = result.getScalarVal();
256 
257     // The delegate return type isn't necessarily a matching type; in
258     // fact, it's quite likely to be 'id'.
259     llvm::Type *selfTy =
260       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
261     newSelf = Builder.CreateBitCast(newSelf, selfTy);
262 
263     Builder.CreateStore(newSelf, selfAddr);
264   }
265 
266   return AdjustRelatedResultType(*this, E, method, result);
267 }
268 
269 namespace {
270 struct FinishARCDealloc : EHScopeStack::Cleanup {
271   void Emit(CodeGenFunction &CGF, Flags flags) {
272     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
273 
274     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
275     const ObjCInterfaceDecl *iface = impl->getClassInterface();
276     if (!iface->getSuperClass()) return;
277 
278     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
279 
280     // Call [super dealloc] if we have a superclass.
281     llvm::Value *self = CGF.LoadObjCSelf();
282 
283     CallArgList args;
284     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
285                                                       CGF.getContext().VoidTy,
286                                                       method->getSelector(),
287                                                       iface,
288                                                       isCategory,
289                                                       self,
290                                                       /*is class msg*/ false,
291                                                       args,
292                                                       method);
293   }
294 };
295 }
296 
297 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
298 /// the LLVM function and sets the other context used by
299 /// CodeGenFunction.
300 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
301                                       const ObjCContainerDecl *CD,
302                                       SourceLocation StartLoc) {
303   FunctionArgList args;
304   // Check if we should generate debug info for this method.
305   if (CGM.getModuleDebugInfo() && !OMD->hasAttr<NoDebugAttr>())
306     DebugInfo = CGM.getModuleDebugInfo();
307 
308   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
309 
310   const CGFunctionInfo &FI = CGM.getTypes().getFunctionInfo(OMD);
311   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
312 
313   args.push_back(OMD->getSelfDecl());
314   args.push_back(OMD->getCmdDecl());
315 
316   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
317        E = OMD->param_end(); PI != E; ++PI)
318     args.push_back(*PI);
319 
320   CurGD = OMD;
321 
322   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
323 
324   // In ARC, certain methods get an extra cleanup.
325   if (CGM.getLangOptions().ObjCAutoRefCount &&
326       OMD->isInstanceMethod() &&
327       OMD->getSelector().isUnarySelector()) {
328     const IdentifierInfo *ident =
329       OMD->getSelector().getIdentifierInfoForSlot(0);
330     if (ident->isStr("dealloc"))
331       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
332   }
333 }
334 
335 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
336                                               LValue lvalue, QualType type);
337 
338 /// Generate an Objective-C method.  An Objective-C method is a C function with
339 /// its pointer, name, and types registered in the class struture.
340 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
341   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
342   EmitStmt(OMD->getBody());
343   FinishFunction(OMD->getBodyRBrace());
344 }
345 
346 /// emitStructGetterCall - Call the runtime function to load a property
347 /// into the return value slot.
348 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
349                                  bool isAtomic, bool hasStrong) {
350   ASTContext &Context = CGF.getContext();
351 
352   llvm::Value *src =
353     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
354                           ivar, 0).getAddress();
355 
356   // objc_copyStruct (ReturnValue, &structIvar,
357   //                  sizeof (Type of Ivar), isAtomic, false);
358   CallArgList args;
359 
360   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
361   args.add(RValue::get(dest), Context.VoidPtrTy);
362 
363   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
364   args.add(RValue::get(src), Context.VoidPtrTy);
365 
366   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
367   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
368   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
369   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
370 
371   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
372   CGF.EmitCall(CGF.getTypes().getFunctionInfo(Context.VoidTy, args,
373                                               FunctionType::ExtInfo()),
374                fn, ReturnValueSlot(), args);
375 }
376 
377 /// Determine whether the given architecture supports unaligned atomic
378 /// accesses.  They don't have to be fast, just faster than a function
379 /// call and a mutex.
380 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
381   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
382   // currently supported by the backend.)
383   return 0;
384 }
385 
386 /// Return the maximum size that permits atomic accesses for the given
387 /// architecture.
388 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
389                                         llvm::Triple::ArchType arch) {
390   // ARM has 8-byte atomic accesses, but it's not clear whether we
391   // want to rely on them here.
392 
393   // In the default case, just assume that any size up to a pointer is
394   // fine given adequate alignment.
395   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
396 }
397 
398 namespace {
399   class PropertyImplStrategy {
400   public:
401     enum StrategyKind {
402       /// The 'native' strategy is to use the architecture's provided
403       /// reads and writes.
404       Native,
405 
406       /// Use objc_setProperty and objc_getProperty.
407       GetSetProperty,
408 
409       /// Use objc_setProperty for the setter, but use expression
410       /// evaluation for the getter.
411       SetPropertyAndExpressionGet,
412 
413       /// Use objc_copyStruct.
414       CopyStruct,
415 
416       /// The 'expression' strategy is to emit normal assignment or
417       /// lvalue-to-rvalue expressions.
418       Expression
419     };
420 
421     StrategyKind getKind() const { return StrategyKind(Kind); }
422 
423     bool hasStrongMember() const { return HasStrong; }
424     bool isAtomic() const { return IsAtomic; }
425     bool isCopy() const { return IsCopy; }
426 
427     CharUnits getIvarSize() const { return IvarSize; }
428     CharUnits getIvarAlignment() const { return IvarAlignment; }
429 
430     PropertyImplStrategy(CodeGenModule &CGM,
431                          const ObjCPropertyImplDecl *propImpl);
432 
433   private:
434     unsigned Kind : 8;
435     unsigned IsAtomic : 1;
436     unsigned IsCopy : 1;
437     unsigned HasStrong : 1;
438 
439     CharUnits IvarSize;
440     CharUnits IvarAlignment;
441   };
442 }
443 
444 /// Pick an implementation strategy for the the given property synthesis.
445 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
446                                      const ObjCPropertyImplDecl *propImpl) {
447   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
448   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
449 
450   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
451   IsAtomic = prop->isAtomic();
452   HasStrong = false; // doesn't matter here.
453 
454   // Evaluate the ivar's size and alignment.
455   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
456   QualType ivarType = ivar->getType();
457   llvm::tie(IvarSize, IvarAlignment)
458     = CGM.getContext().getTypeInfoInChars(ivarType);
459 
460   // If we have a copy property, we always have to use getProperty/setProperty.
461   // TODO: we could actually use setProperty and an expression for non-atomics.
462   if (IsCopy) {
463     Kind = GetSetProperty;
464     return;
465   }
466 
467   // Handle retain.
468   if (setterKind == ObjCPropertyDecl::Retain) {
469     // In GC-only, there's nothing special that needs to be done.
470     if (CGM.getLangOptions().getGC() == LangOptions::GCOnly) {
471       // fallthrough
472 
473     // In ARC, if the property is non-atomic, use expression emission,
474     // which translates to objc_storeStrong.  This isn't required, but
475     // it's slightly nicer.
476     } else if (CGM.getLangOptions().ObjCAutoRefCount && !IsAtomic) {
477       Kind = Expression;
478       return;
479 
480     // Otherwise, we need to at least use setProperty.  However, if
481     // the property isn't atomic, we can use normal expression
482     // emission for the getter.
483     } else if (!IsAtomic) {
484       Kind = SetPropertyAndExpressionGet;
485       return;
486 
487     // Otherwise, we have to use both setProperty and getProperty.
488     } else {
489       Kind = GetSetProperty;
490       return;
491     }
492   }
493 
494   // If we're not atomic, just use expression accesses.
495   if (!IsAtomic) {
496     Kind = Expression;
497     return;
498   }
499 
500   // Properties on bitfield ivars need to be emitted using expression
501   // accesses even if they're nominally atomic.
502   if (ivar->isBitField()) {
503     Kind = Expression;
504     return;
505   }
506 
507   // GC-qualified or ARC-qualified ivars need to be emitted as
508   // expressions.  This actually works out to being atomic anyway,
509   // except for ARC __strong, but that should trigger the above code.
510   if (ivarType.hasNonTrivialObjCLifetime() ||
511       (CGM.getLangOptions().getGC() &&
512        CGM.getContext().getObjCGCAttrKind(ivarType))) {
513     Kind = Expression;
514     return;
515   }
516 
517   // Compute whether the ivar has strong members.
518   if (CGM.getLangOptions().getGC())
519     if (const RecordType *recordType = ivarType->getAs<RecordType>())
520       HasStrong = recordType->getDecl()->hasObjectMember();
521 
522   // We can never access structs with object members with a native
523   // access, because we need to use write barriers.  This is what
524   // objc_copyStruct is for.
525   if (HasStrong) {
526     Kind = CopyStruct;
527     return;
528   }
529 
530   // Otherwise, this is target-dependent and based on the size and
531   // alignment of the ivar.
532 
533   // If the size of the ivar is not a power of two, give up.  We don't
534   // want to get into the business of doing compare-and-swaps.
535   if (!IvarSize.isPowerOfTwo()) {
536     Kind = CopyStruct;
537     return;
538   }
539 
540   llvm::Triple::ArchType arch =
541     CGM.getContext().getTargetInfo().getTriple().getArch();
542 
543   // Most architectures require memory to fit within a single cache
544   // line, so the alignment has to be at least the size of the access.
545   // Otherwise we have to grab a lock.
546   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
547     Kind = CopyStruct;
548     return;
549   }
550 
551   // If the ivar's size exceeds the architecture's maximum atomic
552   // access size, we have to use CopyStruct.
553   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
554     Kind = CopyStruct;
555     return;
556   }
557 
558   // Otherwise, we can use native loads and stores.
559   Kind = Native;
560 }
561 
562 /// GenerateObjCGetter - Generate an Objective-C property getter
563 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize
564 /// is illegal within a category.
565 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
566                                          const ObjCPropertyImplDecl *PID) {
567   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
568   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
569   assert(OMD && "Invalid call to generate getter (empty method)");
570   StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart());
571 
572   generateObjCGetterBody(IMP, PID);
573 
574   FinishFunction();
575 }
576 
577 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
578   const Expr *getter = propImpl->getGetterCXXConstructor();
579   if (!getter) return true;
580 
581   // Sema only makes only of these when the ivar has a C++ class type,
582   // so the form is pretty constrained.
583 
584   // If the property has a reference type, we might just be binding a
585   // reference, in which case the result will be a gl-value.  We should
586   // treat this as a non-trivial operation.
587   if (getter->isGLValue())
588     return false;
589 
590   // If we selected a trivial copy-constructor, we're okay.
591   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
592     return (construct->getConstructor()->isTrivial());
593 
594   // The constructor might require cleanups (in which case it's never
595   // trivial).
596   assert(isa<ExprWithCleanups>(getter));
597   return false;
598 }
599 
600 void
601 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
602                                         const ObjCPropertyImplDecl *propImpl) {
603   // If there's a non-trivial 'get' expression, we just have to emit that.
604   if (!hasTrivialGetExpr(propImpl)) {
605     ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
606                    /*nrvo*/ 0);
607     EmitReturnStmt(ret);
608     return;
609   }
610 
611   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
612   QualType propType = prop->getType();
613   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
614 
615   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
616 
617   // Pick an implementation strategy.
618   PropertyImplStrategy strategy(CGM, propImpl);
619   switch (strategy.getKind()) {
620   case PropertyImplStrategy::Native: {
621     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
622 
623     // Currently, all atomic accesses have to be through integer
624     // types, so there's no point in trying to pick a prettier type.
625     llvm::Type *bitcastType =
626       llvm::Type::getIntNTy(getLLVMContext(),
627                             getContext().toBits(strategy.getIvarSize()));
628     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
629 
630     // Perform an atomic load.  This does not impose ordering constraints.
631     llvm::Value *ivarAddr = LV.getAddress();
632     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
633     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
634     load->setAlignment(strategy.getIvarAlignment().getQuantity());
635     load->setAtomic(llvm::Unordered);
636 
637     // Store that value into the return address.  Doing this with a
638     // bitcast is likely to produce some pretty ugly IR, but it's not
639     // the *most* terrible thing in the world.
640     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
641 
642     // Make sure we don't do an autorelease.
643     AutoreleaseResult = false;
644     return;
645   }
646 
647   case PropertyImplStrategy::GetSetProperty: {
648     llvm::Value *getPropertyFn =
649       CGM.getObjCRuntime().GetPropertyGetFunction();
650     if (!getPropertyFn) {
651       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
652       return;
653     }
654 
655     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
656     // FIXME: Can't this be simpler? This might even be worse than the
657     // corresponding gcc code.
658     llvm::Value *cmd =
659       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
660     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
661     llvm::Value *ivarOffset =
662       EmitIvarOffset(classImpl->getClassInterface(), ivar);
663 
664     CallArgList args;
665     args.add(RValue::get(self), getContext().getObjCIdType());
666     args.add(RValue::get(cmd), getContext().getObjCSelType());
667     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
668     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
669              getContext().BoolTy);
670 
671     // FIXME: We shouldn't need to get the function info here, the
672     // runtime already should have computed it to build the function.
673     RValue RV = EmitCall(getTypes().getFunctionInfo(propType, args,
674                                                     FunctionType::ExtInfo()),
675                          getPropertyFn, ReturnValueSlot(), args);
676 
677     // We need to fix the type here. Ivars with copy & retain are
678     // always objects so we don't need to worry about complex or
679     // aggregates.
680     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
681                                            getTypes().ConvertType(propType)));
682 
683     EmitReturnOfRValue(RV, propType);
684 
685     // objc_getProperty does an autorelease, so we should suppress ours.
686     AutoreleaseResult = false;
687 
688     return;
689   }
690 
691   case PropertyImplStrategy::CopyStruct:
692     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
693                          strategy.hasStrongMember());
694     return;
695 
696   case PropertyImplStrategy::Expression:
697   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
698     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
699 
700     QualType ivarType = ivar->getType();
701     if (ivarType->isAnyComplexType()) {
702       ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(),
703                                                LV.isVolatileQualified());
704       StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified());
705     } else if (hasAggregateLLVMType(ivarType)) {
706       // The return value slot is guaranteed to not be aliased, but
707       // that's not necessarily the same as "on the stack", so
708       // we still potentially need objc_memmove_collectable.
709       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
710     } else {
711       llvm::Value *value;
712       if (propType->isReferenceType()) {
713         value = LV.getAddress();
714       } else {
715         // We want to load and autoreleaseReturnValue ARC __weak ivars.
716         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
717           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
718 
719         // Otherwise we want to do a simple load, suppressing the
720         // final autorelease.
721         } else {
722           value = EmitLoadOfLValue(LV).getScalarVal();
723           AutoreleaseResult = false;
724         }
725 
726         value = Builder.CreateBitCast(value, ConvertType(propType));
727       }
728 
729       EmitReturnOfRValue(RValue::get(value), propType);
730     }
731     return;
732   }
733 
734   }
735   llvm_unreachable("bad @property implementation strategy!");
736 }
737 
738 /// emitStructSetterCall - Call the runtime function to store the value
739 /// from the first formal parameter into the given ivar.
740 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
741                                  ObjCIvarDecl *ivar) {
742   // objc_copyStruct (&structIvar, &Arg,
743   //                  sizeof (struct something), true, false);
744   CallArgList args;
745 
746   // The first argument is the address of the ivar.
747   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
748                                                 CGF.LoadObjCSelf(), ivar, 0)
749     .getAddress();
750   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
751   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
752 
753   // The second argument is the address of the parameter variable.
754   ParmVarDecl *argVar = *OMD->param_begin();
755   DeclRefExpr argRef(argVar, argVar->getType(), VK_LValue, SourceLocation());
756   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
757   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
758   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
759 
760   // The third argument is the sizeof the type.
761   llvm::Value *size =
762     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
763   args.add(RValue::get(size), CGF.getContext().getSizeType());
764 
765   // The fourth argument is the 'isAtomic' flag.
766   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
767 
768   // The fifth argument is the 'hasStrong' flag.
769   // FIXME: should this really always be false?
770   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
771 
772   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
773   CGF.EmitCall(CGF.getTypes().getFunctionInfo(CGF.getContext().VoidTy, args,
774                                               FunctionType::ExtInfo()),
775                copyStructFn, ReturnValueSlot(), args);
776 }
777 
778 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
779   Expr *setter = PID->getSetterCXXAssignment();
780   if (!setter) return true;
781 
782   // Sema only makes only of these when the ivar has a C++ class type,
783   // so the form is pretty constrained.
784 
785   // An operator call is trivial if the function it calls is trivial.
786   // This also implies that there's nothing non-trivial going on with
787   // the arguments, because operator= can only be trivial if it's a
788   // synthesized assignment operator and therefore both parameters are
789   // references.
790   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
791     if (const FunctionDecl *callee
792           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
793       if (callee->isTrivial())
794         return true;
795     return false;
796   }
797 
798   assert(isa<ExprWithCleanups>(setter));
799   return false;
800 }
801 
802 void
803 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
804                                         const ObjCPropertyImplDecl *propImpl) {
805   // Just use the setter expression if Sema gave us one and it's
806   // non-trivial.  There's no way to do this atomically.
807   if (!hasTrivialSetExpr(propImpl)) {
808     EmitStmt(propImpl->getSetterCXXAssignment());
809     return;
810   }
811 
812   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
813   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
814   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
815 
816   PropertyImplStrategy strategy(CGM, propImpl);
817   switch (strategy.getKind()) {
818   case PropertyImplStrategy::Native: {
819     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
820 
821     LValue ivarLValue =
822       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
823     llvm::Value *ivarAddr = ivarLValue.getAddress();
824 
825     // Currently, all atomic accesses have to be through integer
826     // types, so there's no point in trying to pick a prettier type.
827     llvm::Type *bitcastType =
828       llvm::Type::getIntNTy(getLLVMContext(),
829                             getContext().toBits(strategy.getIvarSize()));
830     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
831 
832     // Cast both arguments to the chosen operation type.
833     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
834     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
835 
836     // This bitcast load is likely to cause some nasty IR.
837     llvm::Value *load = Builder.CreateLoad(argAddr);
838 
839     // Perform an atomic store.  There are no memory ordering requirements.
840     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
841     store->setAlignment(strategy.getIvarAlignment().getQuantity());
842     store->setAtomic(llvm::Unordered);
843     return;
844   }
845 
846   case PropertyImplStrategy::GetSetProperty:
847   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
848     llvm::Value *setPropertyFn =
849       CGM.getObjCRuntime().GetPropertySetFunction();
850     if (!setPropertyFn) {
851       CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
852       return;
853     }
854 
855     // Emit objc_setProperty((id) self, _cmd, offset, arg,
856     //                       <is-atomic>, <is-copy>).
857     llvm::Value *cmd =
858       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
859     llvm::Value *self =
860       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
861     llvm::Value *ivarOffset =
862       EmitIvarOffset(classImpl->getClassInterface(), ivar);
863     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
864     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
865 
866     CallArgList args;
867     args.add(RValue::get(self), getContext().getObjCIdType());
868     args.add(RValue::get(cmd), getContext().getObjCSelType());
869     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
870     args.add(RValue::get(arg), getContext().getObjCIdType());
871     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
872              getContext().BoolTy);
873     args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
874              getContext().BoolTy);
875     // FIXME: We shouldn't need to get the function info here, the runtime
876     // already should have computed it to build the function.
877     EmitCall(getTypes().getFunctionInfo(getContext().VoidTy, args,
878                                         FunctionType::ExtInfo()),
879              setPropertyFn, ReturnValueSlot(), args);
880     return;
881   }
882 
883   case PropertyImplStrategy::CopyStruct:
884     emitStructSetterCall(*this, setterMethod, ivar);
885     return;
886 
887   case PropertyImplStrategy::Expression:
888     break;
889   }
890 
891   // Otherwise, fake up some ASTs and emit a normal assignment.
892   ValueDecl *selfDecl = setterMethod->getSelfDecl();
893   DeclRefExpr self(selfDecl, selfDecl->getType(), VK_LValue, SourceLocation());
894   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
895                             selfDecl->getType(), CK_LValueToRValue, &self,
896                             VK_RValue);
897   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
898                           SourceLocation(), &selfLoad, true, true);
899 
900   ParmVarDecl *argDecl = *setterMethod->param_begin();
901   QualType argType = argDecl->getType().getNonReferenceType();
902   DeclRefExpr arg(argDecl, argType, VK_LValue, SourceLocation());
903   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
904                            argType.getUnqualifiedType(), CK_LValueToRValue,
905                            &arg, VK_RValue);
906 
907   // The property type can differ from the ivar type in some situations with
908   // Objective-C pointer types, we can always bit cast the RHS in these cases.
909   // The following absurdity is just to ensure well-formed IR.
910   CastKind argCK = CK_NoOp;
911   if (ivarRef.getType()->isObjCObjectPointerType()) {
912     if (argLoad.getType()->isObjCObjectPointerType())
913       argCK = CK_BitCast;
914     else if (argLoad.getType()->isBlockPointerType())
915       argCK = CK_BlockPointerToObjCPointerCast;
916     else
917       argCK = CK_CPointerToObjCPointerCast;
918   } else if (ivarRef.getType()->isBlockPointerType()) {
919      if (argLoad.getType()->isBlockPointerType())
920       argCK = CK_BitCast;
921     else
922       argCK = CK_AnyPointerToBlockPointerCast;
923   } else if (ivarRef.getType()->isPointerType()) {
924     argCK = CK_BitCast;
925   }
926   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
927                            ivarRef.getType(), argCK, &argLoad,
928                            VK_RValue);
929   Expr *finalArg = &argLoad;
930   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
931                                            argLoad.getType()))
932     finalArg = &argCast;
933 
934 
935   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
936                         ivarRef.getType(), VK_RValue, OK_Ordinary,
937                         SourceLocation());
938   EmitStmt(&assign);
939 }
940 
941 /// GenerateObjCSetter - Generate an Objective-C property setter
942 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize
943 /// is illegal within a category.
944 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
945                                          const ObjCPropertyImplDecl *PID) {
946   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
947   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
948   assert(OMD && "Invalid call to generate setter (empty method)");
949   StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart());
950 
951   generateObjCSetterBody(IMP, PID);
952 
953   FinishFunction();
954 }
955 
956 namespace {
957   struct DestroyIvar : EHScopeStack::Cleanup {
958   private:
959     llvm::Value *addr;
960     const ObjCIvarDecl *ivar;
961     CodeGenFunction::Destroyer &destroyer;
962     bool useEHCleanupForArray;
963   public:
964     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
965                 CodeGenFunction::Destroyer *destroyer,
966                 bool useEHCleanupForArray)
967       : addr(addr), ivar(ivar), destroyer(*destroyer),
968         useEHCleanupForArray(useEHCleanupForArray) {}
969 
970     void Emit(CodeGenFunction &CGF, Flags flags) {
971       LValue lvalue
972         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
973       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
974                       flags.isForNormalCleanup() && useEHCleanupForArray);
975     }
976   };
977 }
978 
979 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
980 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
981                                       llvm::Value *addr,
982                                       QualType type) {
983   llvm::Value *null = getNullForVariable(addr);
984   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
985 }
986 
987 static void emitCXXDestructMethod(CodeGenFunction &CGF,
988                                   ObjCImplementationDecl *impl) {
989   CodeGenFunction::RunCleanupsScope scope(CGF);
990 
991   llvm::Value *self = CGF.LoadObjCSelf();
992 
993   const ObjCInterfaceDecl *iface = impl->getClassInterface();
994   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
995        ivar; ivar = ivar->getNextIvar()) {
996     QualType type = ivar->getType();
997 
998     // Check whether the ivar is a destructible type.
999     QualType::DestructionKind dtorKind = type.isDestructedType();
1000     if (!dtorKind) continue;
1001 
1002     CodeGenFunction::Destroyer *destroyer = 0;
1003 
1004     // Use a call to objc_storeStrong to destroy strong ivars, for the
1005     // general benefit of the tools.
1006     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1007       destroyer = &destroyARCStrongWithStore;
1008 
1009     // Otherwise use the default for the destruction kind.
1010     } else {
1011       destroyer = &CGF.getDestroyer(dtorKind);
1012     }
1013 
1014     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1015 
1016     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1017                                          cleanupKind & EHCleanup);
1018   }
1019 
1020   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1021 }
1022 
1023 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1024                                                  ObjCMethodDecl *MD,
1025                                                  bool ctor) {
1026   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1027   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1028 
1029   // Emit .cxx_construct.
1030   if (ctor) {
1031     // Suppress the final autorelease in ARC.
1032     AutoreleaseResult = false;
1033 
1034     SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
1035     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1036            E = IMP->init_end(); B != E; ++B) {
1037       CXXCtorInitializer *IvarInit = (*B);
1038       FieldDecl *Field = IvarInit->getAnyMember();
1039       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
1040       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1041                                     LoadObjCSelf(), Ivar, 0);
1042       EmitAggExpr(IvarInit->getInit(),
1043                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1044                                           AggValueSlot::DoesNotNeedGCBarriers,
1045                                           AggValueSlot::IsNotAliased));
1046     }
1047     // constructor returns 'self'.
1048     CodeGenTypes &Types = CGM.getTypes();
1049     QualType IdTy(CGM.getContext().getObjCIdType());
1050     llvm::Value *SelfAsId =
1051       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1052     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1053 
1054   // Emit .cxx_destruct.
1055   } else {
1056     emitCXXDestructMethod(*this, IMP);
1057   }
1058   FinishFunction();
1059 }
1060 
1061 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1062   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1063   it++; it++;
1064   const ABIArgInfo &AI = it->info;
1065   // FIXME. Is this sufficient check?
1066   return (AI.getKind() == ABIArgInfo::Indirect);
1067 }
1068 
1069 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1070   if (CGM.getLangOptions().getGC() == LangOptions::NonGC)
1071     return false;
1072   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1073     return FDTTy->getDecl()->hasObjectMember();
1074   return false;
1075 }
1076 
1077 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1078   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1079   return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self");
1080 }
1081 
1082 QualType CodeGenFunction::TypeOfSelfObject() {
1083   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1084   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1085   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1086     getContext().getCanonicalType(selfDecl->getType()));
1087   return PTy->getPointeeType();
1088 }
1089 
1090 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1091   llvm::Constant *EnumerationMutationFn =
1092     CGM.getObjCRuntime().EnumerationMutationFunction();
1093 
1094   if (!EnumerationMutationFn) {
1095     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1096     return;
1097   }
1098 
1099   CGDebugInfo *DI = getDebugInfo();
1100   if (DI)
1101     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1102 
1103   // The local variable comes into scope immediately.
1104   AutoVarEmission variable = AutoVarEmission::invalid();
1105   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1106     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1107 
1108   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1109 
1110   // Fast enumeration state.
1111   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1112   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1113   EmitNullInitialization(StatePtr, StateTy);
1114 
1115   // Number of elements in the items array.
1116   static const unsigned NumItems = 16;
1117 
1118   // Fetch the countByEnumeratingWithState:objects:count: selector.
1119   IdentifierInfo *II[] = {
1120     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1121     &CGM.getContext().Idents.get("objects"),
1122     &CGM.getContext().Idents.get("count")
1123   };
1124   Selector FastEnumSel =
1125     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1126 
1127   QualType ItemsTy =
1128     getContext().getConstantArrayType(getContext().getObjCIdType(),
1129                                       llvm::APInt(32, NumItems),
1130                                       ArrayType::Normal, 0);
1131   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1132 
1133   // Emit the collection pointer.  In ARC, we do a retain.
1134   llvm::Value *Collection;
1135   if (getLangOptions().ObjCAutoRefCount) {
1136     Collection = EmitARCRetainScalarExpr(S.getCollection());
1137 
1138     // Enter a cleanup to do the release.
1139     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1140   } else {
1141     Collection = EmitScalarExpr(S.getCollection());
1142   }
1143 
1144   // The 'continue' label needs to appear within the cleanup for the
1145   // collection object.
1146   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1147 
1148   // Send it our message:
1149   CallArgList Args;
1150 
1151   // The first argument is a temporary of the enumeration-state type.
1152   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1153 
1154   // The second argument is a temporary array with space for NumItems
1155   // pointers.  We'll actually be loading elements from the array
1156   // pointer written into the control state; this buffer is so that
1157   // collections that *aren't* backed by arrays can still queue up
1158   // batches of elements.
1159   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1160 
1161   // The third argument is the capacity of that temporary array.
1162   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1163   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1164   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1165 
1166   // Start the enumeration.
1167   RValue CountRV =
1168     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1169                                              getContext().UnsignedLongTy,
1170                                              FastEnumSel,
1171                                              Collection, Args);
1172 
1173   // The initial number of objects that were returned in the buffer.
1174   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1175 
1176   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1177   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1178 
1179   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1180 
1181   // If the limit pointer was zero to begin with, the collection is
1182   // empty; skip all this.
1183   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1184                        EmptyBB, LoopInitBB);
1185 
1186   // Otherwise, initialize the loop.
1187   EmitBlock(LoopInitBB);
1188 
1189   // Save the initial mutations value.  This is the value at an
1190   // address that was written into the state object by
1191   // countByEnumeratingWithState:objects:count:.
1192   llvm::Value *StateMutationsPtrPtr =
1193     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1194   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1195                                                       "mutationsptr");
1196 
1197   llvm::Value *initialMutations =
1198     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1199 
1200   // Start looping.  This is the point we return to whenever we have a
1201   // fresh, non-empty batch of objects.
1202   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1203   EmitBlock(LoopBodyBB);
1204 
1205   // The current index into the buffer.
1206   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1207   index->addIncoming(zero, LoopInitBB);
1208 
1209   // The current buffer size.
1210   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1211   count->addIncoming(initialBufferLimit, LoopInitBB);
1212 
1213   // Check whether the mutations value has changed from where it was
1214   // at start.  StateMutationsPtr should actually be invariant between
1215   // refreshes.
1216   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1217   llvm::Value *currentMutations
1218     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1219 
1220   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1221   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1222 
1223   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1224                        WasNotMutatedBB, WasMutatedBB);
1225 
1226   // If so, call the enumeration-mutation function.
1227   EmitBlock(WasMutatedBB);
1228   llvm::Value *V =
1229     Builder.CreateBitCast(Collection,
1230                           ConvertType(getContext().getObjCIdType()));
1231   CallArgList Args2;
1232   Args2.add(RValue::get(V), getContext().getObjCIdType());
1233   // FIXME: We shouldn't need to get the function info here, the runtime already
1234   // should have computed it to build the function.
1235   EmitCall(CGM.getTypes().getFunctionInfo(getContext().VoidTy, Args2,
1236                                           FunctionType::ExtInfo()),
1237            EnumerationMutationFn, ReturnValueSlot(), Args2);
1238 
1239   // Otherwise, or if the mutation function returns, just continue.
1240   EmitBlock(WasNotMutatedBB);
1241 
1242   // Initialize the element variable.
1243   RunCleanupsScope elementVariableScope(*this);
1244   bool elementIsVariable;
1245   LValue elementLValue;
1246   QualType elementType;
1247   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1248     // Initialize the variable, in case it's a __block variable or something.
1249     EmitAutoVarInit(variable);
1250 
1251     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1252     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), D->getType(),
1253                         VK_LValue, SourceLocation());
1254     elementLValue = EmitLValue(&tempDRE);
1255     elementType = D->getType();
1256     elementIsVariable = true;
1257 
1258     if (D->isARCPseudoStrong())
1259       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1260   } else {
1261     elementLValue = LValue(); // suppress warning
1262     elementType = cast<Expr>(S.getElement())->getType();
1263     elementIsVariable = false;
1264   }
1265   llvm::Type *convertedElementType = ConvertType(elementType);
1266 
1267   // Fetch the buffer out of the enumeration state.
1268   // TODO: this pointer should actually be invariant between
1269   // refreshes, which would help us do certain loop optimizations.
1270   llvm::Value *StateItemsPtr =
1271     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1272   llvm::Value *EnumStateItems =
1273     Builder.CreateLoad(StateItemsPtr, "stateitems");
1274 
1275   // Fetch the value at the current index from the buffer.
1276   llvm::Value *CurrentItemPtr =
1277     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1278   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1279 
1280   // Cast that value to the right type.
1281   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1282                                       "currentitem");
1283 
1284   // Make sure we have an l-value.  Yes, this gets evaluated every
1285   // time through the loop.
1286   if (!elementIsVariable) {
1287     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1288     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1289   } else {
1290     EmitScalarInit(CurrentItem, elementLValue);
1291   }
1292 
1293   // If we do have an element variable, this assignment is the end of
1294   // its initialization.
1295   if (elementIsVariable)
1296     EmitAutoVarCleanups(variable);
1297 
1298   // Perform the loop body, setting up break and continue labels.
1299   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1300   {
1301     RunCleanupsScope Scope(*this);
1302     EmitStmt(S.getBody());
1303   }
1304   BreakContinueStack.pop_back();
1305 
1306   // Destroy the element variable now.
1307   elementVariableScope.ForceCleanup();
1308 
1309   // Check whether there are more elements.
1310   EmitBlock(AfterBody.getBlock());
1311 
1312   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1313 
1314   // First we check in the local buffer.
1315   llvm::Value *indexPlusOne
1316     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1317 
1318   // If we haven't overrun the buffer yet, we can continue.
1319   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1320                        LoopBodyBB, FetchMoreBB);
1321 
1322   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1323   count->addIncoming(count, AfterBody.getBlock());
1324 
1325   // Otherwise, we have to fetch more elements.
1326   EmitBlock(FetchMoreBB);
1327 
1328   CountRV =
1329     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1330                                              getContext().UnsignedLongTy,
1331                                              FastEnumSel,
1332                                              Collection, Args);
1333 
1334   // If we got a zero count, we're done.
1335   llvm::Value *refetchCount = CountRV.getScalarVal();
1336 
1337   // (note that the message send might split FetchMoreBB)
1338   index->addIncoming(zero, Builder.GetInsertBlock());
1339   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1340 
1341   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1342                        EmptyBB, LoopBodyBB);
1343 
1344   // No more elements.
1345   EmitBlock(EmptyBB);
1346 
1347   if (!elementIsVariable) {
1348     // If the element was not a declaration, set it to be null.
1349 
1350     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1351     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1352     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1353   }
1354 
1355   if (DI)
1356     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1357 
1358   // Leave the cleanup we entered in ARC.
1359   if (getLangOptions().ObjCAutoRefCount)
1360     PopCleanupBlock();
1361 
1362   EmitBlock(LoopEnd.getBlock());
1363 }
1364 
1365 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1366   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1367 }
1368 
1369 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1370   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1371 }
1372 
1373 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1374                                               const ObjCAtSynchronizedStmt &S) {
1375   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1376 }
1377 
1378 /// Produce the code for a CK_ARCProduceObject.  Just does a
1379 /// primitive retain.
1380 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1381                                                     llvm::Value *value) {
1382   return EmitARCRetain(type, value);
1383 }
1384 
1385 namespace {
1386   struct CallObjCRelease : EHScopeStack::Cleanup {
1387     CallObjCRelease(llvm::Value *object) : object(object) {}
1388     llvm::Value *object;
1389 
1390     void Emit(CodeGenFunction &CGF, Flags flags) {
1391       CGF.EmitARCRelease(object, /*precise*/ true);
1392     }
1393   };
1394 }
1395 
1396 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1397 /// release at the end of the full-expression.
1398 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1399                                                     llvm::Value *object) {
1400   // If we're in a conditional branch, we need to make the cleanup
1401   // conditional.
1402   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1403   return object;
1404 }
1405 
1406 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1407                                                            llvm::Value *value) {
1408   return EmitARCRetainAutorelease(type, value);
1409 }
1410 
1411 
1412 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1413                                                 llvm::FunctionType *type,
1414                                                 StringRef fnName) {
1415   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1416 
1417   // In -fobjc-no-arc-runtime, emit weak references to the runtime
1418   // support library.
1419   if (!CGM.getCodeGenOpts().ObjCRuntimeHasARC)
1420     if (llvm::Function *f = dyn_cast<llvm::Function>(fn))
1421       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1422 
1423   return fn;
1424 }
1425 
1426 /// Perform an operation having the signature
1427 ///   i8* (i8*)
1428 /// where a null input causes a no-op and returns null.
1429 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1430                                           llvm::Value *value,
1431                                           llvm::Constant *&fn,
1432                                           StringRef fnName) {
1433   if (isa<llvm::ConstantPointerNull>(value)) return value;
1434 
1435   if (!fn) {
1436     std::vector<llvm::Type*> args(1, CGF.Int8PtrTy);
1437     llvm::FunctionType *fnType =
1438       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1439     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1440   }
1441 
1442   // Cast the argument to 'id'.
1443   llvm::Type *origType = value->getType();
1444   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1445 
1446   // Call the function.
1447   llvm::CallInst *call = CGF.Builder.CreateCall(fn, value);
1448   call->setDoesNotThrow();
1449 
1450   // Cast the result back to the original type.
1451   return CGF.Builder.CreateBitCast(call, origType);
1452 }
1453 
1454 /// Perform an operation having the following signature:
1455 ///   i8* (i8**)
1456 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1457                                          llvm::Value *addr,
1458                                          llvm::Constant *&fn,
1459                                          StringRef fnName) {
1460   if (!fn) {
1461     std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy);
1462     llvm::FunctionType *fnType =
1463       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1464     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1465   }
1466 
1467   // Cast the argument to 'id*'.
1468   llvm::Type *origType = addr->getType();
1469   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1470 
1471   // Call the function.
1472   llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr);
1473   call->setDoesNotThrow();
1474 
1475   // Cast the result back to a dereference of the original type.
1476   llvm::Value *result = call;
1477   if (origType != CGF.Int8PtrPtrTy)
1478     result = CGF.Builder.CreateBitCast(result,
1479                         cast<llvm::PointerType>(origType)->getElementType());
1480 
1481   return result;
1482 }
1483 
1484 /// Perform an operation having the following signature:
1485 ///   i8* (i8**, i8*)
1486 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1487                                           llvm::Value *addr,
1488                                           llvm::Value *value,
1489                                           llvm::Constant *&fn,
1490                                           StringRef fnName,
1491                                           bool ignored) {
1492   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1493            == value->getType());
1494 
1495   if (!fn) {
1496     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1497 
1498     llvm::FunctionType *fnType
1499       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1500     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1501   }
1502 
1503   llvm::Type *origType = value->getType();
1504 
1505   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1506   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1507 
1508   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value);
1509   result->setDoesNotThrow();
1510 
1511   if (ignored) return 0;
1512 
1513   return CGF.Builder.CreateBitCast(result, origType);
1514 }
1515 
1516 /// Perform an operation having the following signature:
1517 ///   void (i8**, i8**)
1518 static void emitARCCopyOperation(CodeGenFunction &CGF,
1519                                  llvm::Value *dst,
1520                                  llvm::Value *src,
1521                                  llvm::Constant *&fn,
1522                                  StringRef fnName) {
1523   assert(dst->getType() == src->getType());
1524 
1525   if (!fn) {
1526     std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy);
1527     llvm::FunctionType *fnType
1528       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1529     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1530   }
1531 
1532   dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy);
1533   src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy);
1534 
1535   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src);
1536   result->setDoesNotThrow();
1537 }
1538 
1539 /// Produce the code to do a retain.  Based on the type, calls one of:
1540 ///   call i8* @objc_retain(i8* %value)
1541 ///   call i8* @objc_retainBlock(i8* %value)
1542 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1543   if (type->isBlockPointerType())
1544     return EmitARCRetainBlock(value, /*mandatory*/ false);
1545   else
1546     return EmitARCRetainNonBlock(value);
1547 }
1548 
1549 /// Retain the given object, with normal retain semantics.
1550 ///   call i8* @objc_retain(i8* %value)
1551 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1552   return emitARCValueOperation(*this, value,
1553                                CGM.getARCEntrypoints().objc_retain,
1554                                "objc_retain");
1555 }
1556 
1557 /// Retain the given block, with _Block_copy semantics.
1558 ///   call i8* @objc_retainBlock(i8* %value)
1559 ///
1560 /// \param mandatory - If false, emit the call with metadata
1561 /// indicating that it's okay for the optimizer to eliminate this call
1562 /// if it can prove that the block never escapes except down the stack.
1563 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1564                                                  bool mandatory) {
1565   llvm::Value *result
1566     = emitARCValueOperation(*this, value,
1567                             CGM.getARCEntrypoints().objc_retainBlock,
1568                             "objc_retainBlock");
1569 
1570   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1571   // tell the optimizer that it doesn't need to do this copy if the
1572   // block doesn't escape, where being passed as an argument doesn't
1573   // count as escaping.
1574   if (!mandatory && isa<llvm::Instruction>(result)) {
1575     llvm::CallInst *call
1576       = cast<llvm::CallInst>(result->stripPointerCasts());
1577     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1578 
1579     SmallVector<llvm::Value*,1> args;
1580     call->setMetadata("clang.arc.copy_on_escape",
1581                       llvm::MDNode::get(Builder.getContext(), args));
1582   }
1583 
1584   return result;
1585 }
1586 
1587 /// Retain the given object which is the result of a function call.
1588 ///   call i8* @objc_retainAutoreleasedReturnValue(i8* %value)
1589 ///
1590 /// Yes, this function name is one character away from a different
1591 /// call with completely different semantics.
1592 llvm::Value *
1593 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1594   // Fetch the void(void) inline asm which marks that we're going to
1595   // retain the autoreleased return value.
1596   llvm::InlineAsm *&marker
1597     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1598   if (!marker) {
1599     StringRef assembly
1600       = CGM.getTargetCodeGenInfo()
1601            .getARCRetainAutoreleasedReturnValueMarker();
1602 
1603     // If we have an empty assembly string, there's nothing to do.
1604     if (assembly.empty()) {
1605 
1606     // Otherwise, at -O0, build an inline asm that we're going to call
1607     // in a moment.
1608     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1609       llvm::FunctionType *type =
1610         llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
1611                                 /*variadic*/ false);
1612 
1613       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1614 
1615     // If we're at -O1 and above, we don't want to litter the code
1616     // with this marker yet, so leave a breadcrumb for the ARC
1617     // optimizer to pick up.
1618     } else {
1619       llvm::NamedMDNode *metadata =
1620         CGM.getModule().getOrInsertNamedMetadata(
1621                             "clang.arc.retainAutoreleasedReturnValueMarker");
1622       assert(metadata->getNumOperands() <= 1);
1623       if (metadata->getNumOperands() == 0) {
1624         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1625         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1626       }
1627     }
1628   }
1629 
1630   // Call the marker asm if we made one, which we do only at -O0.
1631   if (marker) Builder.CreateCall(marker);
1632 
1633   return emitARCValueOperation(*this, value,
1634                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1635                                "objc_retainAutoreleasedReturnValue");
1636 }
1637 
1638 /// Release the given object.
1639 ///   call void @objc_release(i8* %value)
1640 void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) {
1641   if (isa<llvm::ConstantPointerNull>(value)) return;
1642 
1643   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
1644   if (!fn) {
1645     std::vector<llvm::Type*> args(1, Int8PtrTy);
1646     llvm::FunctionType *fnType =
1647       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
1648     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
1649   }
1650 
1651   // Cast the argument to 'id'.
1652   value = Builder.CreateBitCast(value, Int8PtrTy);
1653 
1654   // Call objc_release.
1655   llvm::CallInst *call = Builder.CreateCall(fn, value);
1656   call->setDoesNotThrow();
1657 
1658   if (!precise) {
1659     SmallVector<llvm::Value*,1> args;
1660     call->setMetadata("clang.imprecise_release",
1661                       llvm::MDNode::get(Builder.getContext(), args));
1662   }
1663 }
1664 
1665 /// Store into a strong object.  Always calls this:
1666 ///   call void @objc_storeStrong(i8** %addr, i8* %value)
1667 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
1668                                                      llvm::Value *value,
1669                                                      bool ignored) {
1670   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1671            == value->getType());
1672 
1673   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
1674   if (!fn) {
1675     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
1676     llvm::FunctionType *fnType
1677       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
1678     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
1679   }
1680 
1681   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
1682   llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy);
1683 
1684   Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow();
1685 
1686   if (ignored) return 0;
1687   return value;
1688 }
1689 
1690 /// Store into a strong object.  Sometimes calls this:
1691 ///   call void @objc_storeStrong(i8** %addr, i8* %value)
1692 /// Other times, breaks it down into components.
1693 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
1694                                                  llvm::Value *newValue,
1695                                                  bool ignored) {
1696   QualType type = dst.getType();
1697   bool isBlock = type->isBlockPointerType();
1698 
1699   // Use a store barrier at -O0 unless this is a block type or the
1700   // lvalue is inadequately aligned.
1701   if (shouldUseFusedARCCalls() &&
1702       !isBlock &&
1703       (dst.getAlignment().isZero() ||
1704        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
1705     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
1706   }
1707 
1708   // Otherwise, split it out.
1709 
1710   // Retain the new value.
1711   newValue = EmitARCRetain(type, newValue);
1712 
1713   // Read the old value.
1714   llvm::Value *oldValue = EmitLoadOfScalar(dst);
1715 
1716   // Store.  We do this before the release so that any deallocs won't
1717   // see the old value.
1718   EmitStoreOfScalar(newValue, dst);
1719 
1720   // Finally, release the old value.
1721   EmitARCRelease(oldValue, /*precise*/ false);
1722 
1723   return newValue;
1724 }
1725 
1726 /// Autorelease the given object.
1727 ///   call i8* @objc_autorelease(i8* %value)
1728 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
1729   return emitARCValueOperation(*this, value,
1730                                CGM.getARCEntrypoints().objc_autorelease,
1731                                "objc_autorelease");
1732 }
1733 
1734 /// Autorelease the given object.
1735 ///   call i8* @objc_autoreleaseReturnValue(i8* %value)
1736 llvm::Value *
1737 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
1738   return emitARCValueOperation(*this, value,
1739                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
1740                                "objc_autoreleaseReturnValue");
1741 }
1742 
1743 /// Do a fused retain/autorelease of the given object.
1744 ///   call i8* @objc_retainAutoreleaseReturnValue(i8* %value)
1745 llvm::Value *
1746 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
1747   return emitARCValueOperation(*this, value,
1748                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
1749                                "objc_retainAutoreleaseReturnValue");
1750 }
1751 
1752 /// Do a fused retain/autorelease of the given object.
1753 ///   call i8* @objc_retainAutorelease(i8* %value)
1754 /// or
1755 ///   %retain = call i8* @objc_retainBlock(i8* %value)
1756 ///   call i8* @objc_autorelease(i8* %retain)
1757 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
1758                                                        llvm::Value *value) {
1759   if (!type->isBlockPointerType())
1760     return EmitARCRetainAutoreleaseNonBlock(value);
1761 
1762   if (isa<llvm::ConstantPointerNull>(value)) return value;
1763 
1764   llvm::Type *origType = value->getType();
1765   value = Builder.CreateBitCast(value, Int8PtrTy);
1766   value = EmitARCRetainBlock(value, /*mandatory*/ true);
1767   value = EmitARCAutorelease(value);
1768   return Builder.CreateBitCast(value, origType);
1769 }
1770 
1771 /// Do a fused retain/autorelease of the given object.
1772 ///   call i8* @objc_retainAutorelease(i8* %value)
1773 llvm::Value *
1774 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
1775   return emitARCValueOperation(*this, value,
1776                                CGM.getARCEntrypoints().objc_retainAutorelease,
1777                                "objc_retainAutorelease");
1778 }
1779 
1780 /// i8* @objc_loadWeak(i8** %addr)
1781 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
1782 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
1783   return emitARCLoadOperation(*this, addr,
1784                               CGM.getARCEntrypoints().objc_loadWeak,
1785                               "objc_loadWeak");
1786 }
1787 
1788 /// i8* @objc_loadWeakRetained(i8** %addr)
1789 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
1790   return emitARCLoadOperation(*this, addr,
1791                               CGM.getARCEntrypoints().objc_loadWeakRetained,
1792                               "objc_loadWeakRetained");
1793 }
1794 
1795 /// i8* @objc_storeWeak(i8** %addr, i8* %value)
1796 /// Returns %value.
1797 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
1798                                                llvm::Value *value,
1799                                                bool ignored) {
1800   return emitARCStoreOperation(*this, addr, value,
1801                                CGM.getARCEntrypoints().objc_storeWeak,
1802                                "objc_storeWeak", ignored);
1803 }
1804 
1805 /// i8* @objc_initWeak(i8** %addr, i8* %value)
1806 /// Returns %value.  %addr is known to not have a current weak entry.
1807 /// Essentially equivalent to:
1808 ///   *addr = nil; objc_storeWeak(addr, value);
1809 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
1810   // If we're initializing to null, just write null to memory; no need
1811   // to get the runtime involved.  But don't do this if optimization
1812   // is enabled, because accounting for this would make the optimizer
1813   // much more complicated.
1814   if (isa<llvm::ConstantPointerNull>(value) &&
1815       CGM.getCodeGenOpts().OptimizationLevel == 0) {
1816     Builder.CreateStore(value, addr);
1817     return;
1818   }
1819 
1820   emitARCStoreOperation(*this, addr, value,
1821                         CGM.getARCEntrypoints().objc_initWeak,
1822                         "objc_initWeak", /*ignored*/ true);
1823 }
1824 
1825 /// void @objc_destroyWeak(i8** %addr)
1826 /// Essentially objc_storeWeak(addr, nil).
1827 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
1828   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
1829   if (!fn) {
1830     std::vector<llvm::Type*> args(1, Int8PtrPtrTy);
1831     llvm::FunctionType *fnType =
1832       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
1833     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
1834   }
1835 
1836   // Cast the argument to 'id*'.
1837   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
1838 
1839   llvm::CallInst *call = Builder.CreateCall(fn, addr);
1840   call->setDoesNotThrow();
1841 }
1842 
1843 /// void @objc_moveWeak(i8** %dest, i8** %src)
1844 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
1845 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
1846 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
1847   emitARCCopyOperation(*this, dst, src,
1848                        CGM.getARCEntrypoints().objc_moveWeak,
1849                        "objc_moveWeak");
1850 }
1851 
1852 /// void @objc_copyWeak(i8** %dest, i8** %src)
1853 /// Disregards the current value in %dest.  Essentially
1854 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
1855 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
1856   emitARCCopyOperation(*this, dst, src,
1857                        CGM.getARCEntrypoints().objc_copyWeak,
1858                        "objc_copyWeak");
1859 }
1860 
1861 /// Produce the code to do a objc_autoreleasepool_push.
1862 ///   call i8* @objc_autoreleasePoolPush(void)
1863 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
1864   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
1865   if (!fn) {
1866     llvm::FunctionType *fnType =
1867       llvm::FunctionType::get(Int8PtrTy, false);
1868     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
1869   }
1870 
1871   llvm::CallInst *call = Builder.CreateCall(fn);
1872   call->setDoesNotThrow();
1873 
1874   return call;
1875 }
1876 
1877 /// Produce the code to do a primitive release.
1878 ///   call void @objc_autoreleasePoolPop(i8* %ptr)
1879 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
1880   assert(value->getType() == Int8PtrTy);
1881 
1882   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
1883   if (!fn) {
1884     std::vector<llvm::Type*> args(1, Int8PtrTy);
1885     llvm::FunctionType *fnType =
1886       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
1887 
1888     // We don't want to use a weak import here; instead we should not
1889     // fall into this path.
1890     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
1891   }
1892 
1893   llvm::CallInst *call = Builder.CreateCall(fn, value);
1894   call->setDoesNotThrow();
1895 }
1896 
1897 /// Produce the code to do an MRR version objc_autoreleasepool_push.
1898 /// Which is: [[NSAutoreleasePool alloc] init];
1899 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
1900 /// init is declared as: - (id) init; in its NSObject super class.
1901 ///
1902 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
1903   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
1904   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder);
1905   // [NSAutoreleasePool alloc]
1906   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
1907   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
1908   CallArgList Args;
1909   RValue AllocRV =
1910     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
1911                                 getContext().getObjCIdType(),
1912                                 AllocSel, Receiver, Args);
1913 
1914   // [Receiver init]
1915   Receiver = AllocRV.getScalarVal();
1916   II = &CGM.getContext().Idents.get("init");
1917   Selector InitSel = getContext().Selectors.getSelector(0, &II);
1918   RValue InitRV =
1919     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
1920                                 getContext().getObjCIdType(),
1921                                 InitSel, Receiver, Args);
1922   return InitRV.getScalarVal();
1923 }
1924 
1925 /// Produce the code to do a primitive release.
1926 /// [tmp drain];
1927 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
1928   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
1929   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
1930   CallArgList Args;
1931   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1932                               getContext().VoidTy, DrainSel, Arg, Args);
1933 }
1934 
1935 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
1936                                               llvm::Value *addr,
1937                                               QualType type) {
1938   llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
1939   CGF.EmitARCRelease(ptr, /*precise*/ true);
1940 }
1941 
1942 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
1943                                                 llvm::Value *addr,
1944                                                 QualType type) {
1945   llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
1946   CGF.EmitARCRelease(ptr, /*precise*/ false);
1947 }
1948 
1949 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
1950                                      llvm::Value *addr,
1951                                      QualType type) {
1952   CGF.EmitARCDestroyWeak(addr);
1953 }
1954 
1955 namespace {
1956   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
1957     llvm::Value *Token;
1958 
1959     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
1960 
1961     void Emit(CodeGenFunction &CGF, Flags flags) {
1962       CGF.EmitObjCAutoreleasePoolPop(Token);
1963     }
1964   };
1965   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
1966     llvm::Value *Token;
1967 
1968     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
1969 
1970     void Emit(CodeGenFunction &CGF, Flags flags) {
1971       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
1972     }
1973   };
1974 }
1975 
1976 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
1977   if (CGM.getLangOptions().ObjCAutoRefCount)
1978     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
1979   else
1980     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
1981 }
1982 
1983 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
1984                                                   LValue lvalue,
1985                                                   QualType type) {
1986   switch (type.getObjCLifetime()) {
1987   case Qualifiers::OCL_None:
1988   case Qualifiers::OCL_ExplicitNone:
1989   case Qualifiers::OCL_Strong:
1990   case Qualifiers::OCL_Autoreleasing:
1991     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
1992                          false);
1993 
1994   case Qualifiers::OCL_Weak:
1995     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
1996                          true);
1997   }
1998 
1999   llvm_unreachable("impossible lifetime!");
2000   return TryEmitResult();
2001 }
2002 
2003 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2004                                                   const Expr *e) {
2005   e = e->IgnoreParens();
2006   QualType type = e->getType();
2007 
2008   // If we're loading retained from a __strong xvalue, we can avoid
2009   // an extra retain/release pair by zeroing out the source of this
2010   // "move" operation.
2011   if (e->isXValue() &&
2012       !type.isConstQualified() &&
2013       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2014     // Emit the lvalue.
2015     LValue lv = CGF.EmitLValue(e);
2016 
2017     // Load the object pointer.
2018     llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
2019 
2020     // Set the source pointer to NULL.
2021     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2022 
2023     return TryEmitResult(result, true);
2024   }
2025 
2026   // As a very special optimization, in ARC++, if the l-value is the
2027   // result of a non-volatile assignment, do a simple retain of the
2028   // result of the call to objc_storeWeak instead of reloading.
2029   if (CGF.getLangOptions().CPlusPlus &&
2030       !type.isVolatileQualified() &&
2031       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2032       isa<BinaryOperator>(e) &&
2033       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2034     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2035 
2036   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2037 }
2038 
2039 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2040                                            llvm::Value *value);
2041 
2042 /// Given that the given expression is some sort of call (which does
2043 /// not return retained), emit a retain following it.
2044 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2045   llvm::Value *value = CGF.EmitScalarExpr(e);
2046   return emitARCRetainAfterCall(CGF, value);
2047 }
2048 
2049 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2050                                            llvm::Value *value) {
2051   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2052     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2053 
2054     // Place the retain immediately following the call.
2055     CGF.Builder.SetInsertPoint(call->getParent(),
2056                                ++llvm::BasicBlock::iterator(call));
2057     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2058 
2059     CGF.Builder.restoreIP(ip);
2060     return value;
2061   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2062     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2063 
2064     // Place the retain at the beginning of the normal destination block.
2065     llvm::BasicBlock *BB = invoke->getNormalDest();
2066     CGF.Builder.SetInsertPoint(BB, BB->begin());
2067     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2068 
2069     CGF.Builder.restoreIP(ip);
2070     return value;
2071 
2072   // Bitcasts can arise because of related-result returns.  Rewrite
2073   // the operand.
2074   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2075     llvm::Value *operand = bitcast->getOperand(0);
2076     operand = emitARCRetainAfterCall(CGF, operand);
2077     bitcast->setOperand(0, operand);
2078     return bitcast;
2079 
2080   // Generic fall-back case.
2081   } else {
2082     // Retain using the non-block variant: we never need to do a copy
2083     // of a block that's been returned to us.
2084     return CGF.EmitARCRetainNonBlock(value);
2085   }
2086 }
2087 
2088 /// Determine whether it might be important to emit a separate
2089 /// objc_retain_block on the result of the given expression, or
2090 /// whether it's okay to just emit it in a +1 context.
2091 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2092   assert(e->getType()->isBlockPointerType());
2093   e = e->IgnoreParens();
2094 
2095   // For future goodness, emit block expressions directly in +1
2096   // contexts if we can.
2097   if (isa<BlockExpr>(e))
2098     return false;
2099 
2100   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2101     switch (cast->getCastKind()) {
2102     // Emitting these operations in +1 contexts is goodness.
2103     case CK_LValueToRValue:
2104     case CK_ARCReclaimReturnedObject:
2105     case CK_ARCConsumeObject:
2106     case CK_ARCProduceObject:
2107       return false;
2108 
2109     // These operations preserve a block type.
2110     case CK_NoOp:
2111     case CK_BitCast:
2112       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2113 
2114     // These operations are known to be bad (or haven't been considered).
2115     case CK_AnyPointerToBlockPointerCast:
2116     default:
2117       return true;
2118     }
2119   }
2120 
2121   return true;
2122 }
2123 
2124 /// Try to emit a PseudoObjectExpr at +1.
2125 ///
2126 /// This massively duplicates emitPseudoObjectRValue.
2127 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2128                                                   const PseudoObjectExpr *E) {
2129   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2130 
2131   // Find the result expression.
2132   const Expr *resultExpr = E->getResultExpr();
2133   assert(resultExpr);
2134   TryEmitResult result;
2135 
2136   for (PseudoObjectExpr::const_semantics_iterator
2137          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2138     const Expr *semantic = *i;
2139 
2140     // If this semantic expression is an opaque value, bind it
2141     // to the result of its source expression.
2142     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2143       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2144       OVMA opaqueData;
2145 
2146       // If this semantic is the result of the pseudo-object
2147       // expression, try to evaluate the source as +1.
2148       if (ov == resultExpr) {
2149         assert(!OVMA::shouldBindAsLValue(ov));
2150         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2151         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2152 
2153       // Otherwise, just bind it.
2154       } else {
2155         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2156       }
2157       opaques.push_back(opaqueData);
2158 
2159     // Otherwise, if the expression is the result, evaluate it
2160     // and remember the result.
2161     } else if (semantic == resultExpr) {
2162       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2163 
2164     // Otherwise, evaluate the expression in an ignored context.
2165     } else {
2166       CGF.EmitIgnoredExpr(semantic);
2167     }
2168   }
2169 
2170   // Unbind all the opaques now.
2171   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2172     opaques[i].unbind(CGF);
2173 
2174   return result;
2175 }
2176 
2177 static TryEmitResult
2178 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2179   // Look through cleanups.
2180   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2181     CGF.enterFullExpression(cleanups);
2182     CodeGenFunction::RunCleanupsScope scope(CGF);
2183     return tryEmitARCRetainScalarExpr(CGF, cleanups->getSubExpr());
2184   }
2185 
2186   // The desired result type, if it differs from the type of the
2187   // ultimate opaque expression.
2188   llvm::Type *resultType = 0;
2189 
2190   while (true) {
2191     e = e->IgnoreParens();
2192 
2193     // There's a break at the end of this if-chain;  anything
2194     // that wants to keep looping has to explicitly continue.
2195     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2196       switch (ce->getCastKind()) {
2197       // No-op casts don't change the type, so we just ignore them.
2198       case CK_NoOp:
2199         e = ce->getSubExpr();
2200         continue;
2201 
2202       case CK_LValueToRValue: {
2203         TryEmitResult loadResult
2204           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2205         if (resultType) {
2206           llvm::Value *value = loadResult.getPointer();
2207           value = CGF.Builder.CreateBitCast(value, resultType);
2208           loadResult.setPointer(value);
2209         }
2210         return loadResult;
2211       }
2212 
2213       // These casts can change the type, so remember that and
2214       // soldier on.  We only need to remember the outermost such
2215       // cast, though.
2216       case CK_CPointerToObjCPointerCast:
2217       case CK_BlockPointerToObjCPointerCast:
2218       case CK_AnyPointerToBlockPointerCast:
2219       case CK_BitCast:
2220         if (!resultType)
2221           resultType = CGF.ConvertType(ce->getType());
2222         e = ce->getSubExpr();
2223         assert(e->getType()->hasPointerRepresentation());
2224         continue;
2225 
2226       // For consumptions, just emit the subexpression and thus elide
2227       // the retain/release pair.
2228       case CK_ARCConsumeObject: {
2229         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2230         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2231         return TryEmitResult(result, true);
2232       }
2233 
2234       // Block extends are net +0.  Naively, we could just recurse on
2235       // the subexpression, but actually we need to ensure that the
2236       // value is copied as a block, so there's a little filter here.
2237       case CK_ARCExtendBlockObject: {
2238         llvm::Value *result; // will be a +0 value
2239 
2240         // If we can't safely assume the sub-expression will produce a
2241         // block-copied value, emit the sub-expression at +0.
2242         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2243           result = CGF.EmitScalarExpr(ce->getSubExpr());
2244 
2245         // Otherwise, try to emit the sub-expression at +1 recursively.
2246         } else {
2247           TryEmitResult subresult
2248             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2249           result = subresult.getPointer();
2250 
2251           // If that produced a retained value, just use that,
2252           // possibly casting down.
2253           if (subresult.getInt()) {
2254             if (resultType)
2255               result = CGF.Builder.CreateBitCast(result, resultType);
2256             return TryEmitResult(result, true);
2257           }
2258 
2259           // Otherwise it's +0.
2260         }
2261 
2262         // Retain the object as a block, then cast down.
2263         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2264         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2265         return TryEmitResult(result, true);
2266       }
2267 
2268       // For reclaims, emit the subexpression as a retained call and
2269       // skip the consumption.
2270       case CK_ARCReclaimReturnedObject: {
2271         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2272         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2273         return TryEmitResult(result, true);
2274       }
2275 
2276       default:
2277         break;
2278       }
2279 
2280     // Skip __extension__.
2281     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2282       if (op->getOpcode() == UO_Extension) {
2283         e = op->getSubExpr();
2284         continue;
2285       }
2286 
2287     // For calls and message sends, use the retained-call logic.
2288     // Delegate inits are a special case in that they're the only
2289     // returns-retained expression that *isn't* surrounded by
2290     // a consume.
2291     } else if (isa<CallExpr>(e) ||
2292                (isa<ObjCMessageExpr>(e) &&
2293                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2294       llvm::Value *result = emitARCRetainCall(CGF, e);
2295       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2296       return TryEmitResult(result, true);
2297 
2298     // Look through pseudo-object expressions.
2299     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2300       TryEmitResult result
2301         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2302       if (resultType) {
2303         llvm::Value *value = result.getPointer();
2304         value = CGF.Builder.CreateBitCast(value, resultType);
2305         result.setPointer(value);
2306       }
2307       return result;
2308     }
2309 
2310     // Conservatively halt the search at any other expression kind.
2311     break;
2312   }
2313 
2314   // We didn't find an obvious production, so emit what we've got and
2315   // tell the caller that we didn't manage to retain.
2316   llvm::Value *result = CGF.EmitScalarExpr(e);
2317   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2318   return TryEmitResult(result, false);
2319 }
2320 
2321 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2322                                                 LValue lvalue,
2323                                                 QualType type) {
2324   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2325   llvm::Value *value = result.getPointer();
2326   if (!result.getInt())
2327     value = CGF.EmitARCRetain(type, value);
2328   return value;
2329 }
2330 
2331 /// EmitARCRetainScalarExpr - Semantically equivalent to
2332 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2333 /// best-effort attempt to peephole expressions that naturally produce
2334 /// retained objects.
2335 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2336   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2337   llvm::Value *value = result.getPointer();
2338   if (!result.getInt())
2339     value = EmitARCRetain(e->getType(), value);
2340   return value;
2341 }
2342 
2343 llvm::Value *
2344 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2345   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2346   llvm::Value *value = result.getPointer();
2347   if (result.getInt())
2348     value = EmitARCAutorelease(value);
2349   else
2350     value = EmitARCRetainAutorelease(e->getType(), value);
2351   return value;
2352 }
2353 
2354 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2355   llvm::Value *result;
2356   bool doRetain;
2357 
2358   if (shouldEmitSeparateBlockRetain(e)) {
2359     result = EmitScalarExpr(e);
2360     doRetain = true;
2361   } else {
2362     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2363     result = subresult.getPointer();
2364     doRetain = !subresult.getInt();
2365   }
2366 
2367   if (doRetain)
2368     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2369   return EmitObjCConsumeObject(e->getType(), result);
2370 }
2371 
2372 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2373   // In ARC, retain and autorelease the expression.
2374   if (getLangOptions().ObjCAutoRefCount) {
2375     // Do so before running any cleanups for the full-expression.
2376     // tryEmitARCRetainScalarExpr does make an effort to do things
2377     // inside cleanups, but there are crazy cases like
2378     //   @throw A().foo;
2379     // where a full retain+autorelease is required and would
2380     // otherwise happen after the destructor for the temporary.
2381     if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(expr)) {
2382       enterFullExpression(ewc);
2383       expr = ewc->getSubExpr();
2384     }
2385 
2386     CodeGenFunction::RunCleanupsScope cleanups(*this);
2387     return EmitARCRetainAutoreleaseScalarExpr(expr);
2388   }
2389 
2390   // Otherwise, use the normal scalar-expression emission.  The
2391   // exception machinery doesn't do anything special with the
2392   // exception like retaining it, so there's no safety associated with
2393   // only running cleanups after the throw has started, and when it
2394   // matters it tends to be substantially inferior code.
2395   return EmitScalarExpr(expr);
2396 }
2397 
2398 std::pair<LValue,llvm::Value*>
2399 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2400                                     bool ignored) {
2401   // Evaluate the RHS first.
2402   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2403   llvm::Value *value = result.getPointer();
2404 
2405   bool hasImmediateRetain = result.getInt();
2406 
2407   // If we didn't emit a retained object, and the l-value is of block
2408   // type, then we need to emit the block-retain immediately in case
2409   // it invalidates the l-value.
2410   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2411     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2412     hasImmediateRetain = true;
2413   }
2414 
2415   LValue lvalue = EmitLValue(e->getLHS());
2416 
2417   // If the RHS was emitted retained, expand this.
2418   if (hasImmediateRetain) {
2419     llvm::Value *oldValue =
2420       EmitLoadOfScalar(lvalue);
2421     EmitStoreOfScalar(value, lvalue);
2422     EmitARCRelease(oldValue, /*precise*/ false);
2423   } else {
2424     value = EmitARCStoreStrong(lvalue, value, ignored);
2425   }
2426 
2427   return std::pair<LValue,llvm::Value*>(lvalue, value);
2428 }
2429 
2430 std::pair<LValue,llvm::Value*>
2431 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2432   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2433   LValue lvalue = EmitLValue(e->getLHS());
2434 
2435   EmitStoreOfScalar(value, lvalue);
2436 
2437   return std::pair<LValue,llvm::Value*>(lvalue, value);
2438 }
2439 
2440 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2441                                              const ObjCAutoreleasePoolStmt &ARPS) {
2442   const Stmt *subStmt = ARPS.getSubStmt();
2443   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2444 
2445   CGDebugInfo *DI = getDebugInfo();
2446   if (DI)
2447     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2448 
2449   // Keep track of the current cleanup stack depth.
2450   RunCleanupsScope Scope(*this);
2451   if (CGM.getCodeGenOpts().ObjCRuntimeHasARC) {
2452     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2453     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2454   } else {
2455     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2456     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2457   }
2458 
2459   for (CompoundStmt::const_body_iterator I = S.body_begin(),
2460        E = S.body_end(); I != E; ++I)
2461     EmitStmt(*I);
2462 
2463   if (DI)
2464     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2465 }
2466 
2467 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2468 /// make sure it survives garbage collection until this point.
2469 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2470   // We just use an inline assembly.
2471   llvm::FunctionType *extenderType
2472     = llvm::FunctionType::get(VoidTy, VoidPtrTy, /*variadic*/ false);
2473   llvm::Value *extender
2474     = llvm::InlineAsm::get(extenderType,
2475                            /* assembly */ "",
2476                            /* constraints */ "r",
2477                            /* side effects */ true);
2478 
2479   object = Builder.CreateBitCast(object, VoidPtrTy);
2480   Builder.CreateCall(extender, object)->setDoesNotThrow();
2481 }
2482 
2483 CGObjCRuntime::~CGObjCRuntime() {}
2484