1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Objective-C code as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/InlineAsm.h" 27 using namespace clang; 28 using namespace CodeGen; 29 30 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 31 static TryEmitResult 32 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 33 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 34 QualType ET, 35 RValue Result); 36 37 /// Given the address of a variable of pointer type, find the correct 38 /// null to store into it. 39 static llvm::Constant *getNullForVariable(Address addr) { 40 llvm::Type *type = addr.getElementType(); 41 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 42 } 43 44 /// Emits an instance of NSConstantString representing the object. 45 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 46 { 47 llvm::Constant *C = 48 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 49 // FIXME: This bitcast should just be made an invariant on the Runtime. 50 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 51 } 52 53 /// EmitObjCBoxedExpr - This routine generates code to call 54 /// the appropriate expression boxing method. This will either be 55 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 56 /// or [NSValue valueWithBytes:objCType:]. 57 /// 58 llvm::Value * 59 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 60 // Generate the correct selector for this literal's concrete type. 61 // Get the method. 62 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 63 const Expr *SubExpr = E->getSubExpr(); 64 65 if (E->isExpressibleAsConstantInitializer()) { 66 ConstantEmitter ConstEmitter(CGM); 67 return ConstEmitter.tryEmitAbstract(E, E->getType()); 68 } 69 70 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 71 Selector Sel = BoxingMethod->getSelector(); 72 73 // Generate a reference to the class pointer, which will be the receiver. 74 // Assumes that the method was introduced in the class that should be 75 // messaged (avoids pulling it out of the result type). 76 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 77 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 78 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 79 80 CallArgList Args; 81 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 82 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 83 84 // ObjCBoxedExpr supports boxing of structs and unions 85 // via [NSValue valueWithBytes:objCType:] 86 const QualType ValueType(SubExpr->getType().getCanonicalType()); 87 if (ValueType->isObjCBoxableRecordType()) { 88 // Emit CodeGen for first parameter 89 // and cast value to correct type 90 Address Temporary = CreateMemTemp(SubExpr->getType()); 91 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 92 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 93 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 94 95 // Create char array to store type encoding 96 std::string Str; 97 getContext().getObjCEncodingForType(ValueType, Str); 98 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 99 100 // Cast type encoding to correct type 101 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 102 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 103 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 104 105 Args.add(RValue::get(Cast), EncodingQT); 106 } else { 107 Args.add(EmitAnyExpr(SubExpr), ArgQT); 108 } 109 110 RValue result = Runtime.GenerateMessageSend( 111 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 112 Args, ClassDecl, BoxingMethod); 113 return Builder.CreateBitCast(result.getScalarVal(), 114 ConvertType(E->getType())); 115 } 116 117 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 118 const ObjCMethodDecl *MethodWithObjects) { 119 ASTContext &Context = CGM.getContext(); 120 const ObjCDictionaryLiteral *DLE = nullptr; 121 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 122 if (!ALE) 123 DLE = cast<ObjCDictionaryLiteral>(E); 124 125 // Optimize empty collections by referencing constants, when available. 126 uint64_t NumElements = 127 ALE ? ALE->getNumElements() : DLE->getNumElements(); 128 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 129 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 130 QualType IdTy(CGM.getContext().getObjCIdType()); 131 llvm::Constant *Constant = 132 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 133 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 134 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); 135 cast<llvm::LoadInst>(Ptr)->setMetadata( 136 CGM.getModule().getMDKindID("invariant.load"), 137 llvm::MDNode::get(getLLVMContext(), None)); 138 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 139 } 140 141 // Compute the type of the array we're initializing. 142 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 143 NumElements); 144 QualType ElementType = Context.getObjCIdType().withConst(); 145 QualType ElementArrayType 146 = Context.getConstantArrayType(ElementType, APNumElements, 147 ArrayType::Normal, /*IndexTypeQuals=*/0); 148 149 // Allocate the temporary array(s). 150 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 151 Address Keys = Address::invalid(); 152 if (DLE) 153 Keys = CreateMemTemp(ElementArrayType, "keys"); 154 155 // In ARC, we may need to do extra work to keep all the keys and 156 // values alive until after the call. 157 SmallVector<llvm::Value *, 16> NeededObjects; 158 bool TrackNeededObjects = 159 (getLangOpts().ObjCAutoRefCount && 160 CGM.getCodeGenOpts().OptimizationLevel != 0); 161 162 // Perform the actual initialialization of the array(s). 163 for (uint64_t i = 0; i < NumElements; i++) { 164 if (ALE) { 165 // Emit the element and store it to the appropriate array slot. 166 const Expr *Rhs = ALE->getElement(i); 167 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 168 ElementType, AlignmentSource::Decl); 169 170 llvm::Value *value = EmitScalarExpr(Rhs); 171 EmitStoreThroughLValue(RValue::get(value), LV, true); 172 if (TrackNeededObjects) { 173 NeededObjects.push_back(value); 174 } 175 } else { 176 // Emit the key and store it to the appropriate array slot. 177 const Expr *Key = DLE->getKeyValueElement(i).Key; 178 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i), 179 ElementType, AlignmentSource::Decl); 180 llvm::Value *keyValue = EmitScalarExpr(Key); 181 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 182 183 // Emit the value and store it to the appropriate array slot. 184 const Expr *Value = DLE->getKeyValueElement(i).Value; 185 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 186 ElementType, AlignmentSource::Decl); 187 llvm::Value *valueValue = EmitScalarExpr(Value); 188 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 189 if (TrackNeededObjects) { 190 NeededObjects.push_back(keyValue); 191 NeededObjects.push_back(valueValue); 192 } 193 } 194 } 195 196 // Generate the argument list. 197 CallArgList Args; 198 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 199 const ParmVarDecl *argDecl = *PI++; 200 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 201 Args.add(RValue::get(Objects.getPointer()), ArgQT); 202 if (DLE) { 203 argDecl = *PI++; 204 ArgQT = argDecl->getType().getUnqualifiedType(); 205 Args.add(RValue::get(Keys.getPointer()), ArgQT); 206 } 207 argDecl = *PI; 208 ArgQT = argDecl->getType().getUnqualifiedType(); 209 llvm::Value *Count = 210 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 211 Args.add(RValue::get(Count), ArgQT); 212 213 // Generate a reference to the class pointer, which will be the receiver. 214 Selector Sel = MethodWithObjects->getSelector(); 215 QualType ResultType = E->getType(); 216 const ObjCObjectPointerType *InterfacePointerType 217 = ResultType->getAsObjCInterfacePointerType(); 218 ObjCInterfaceDecl *Class 219 = InterfacePointerType->getObjectType()->getInterface(); 220 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 221 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 222 223 // Generate the message send. 224 RValue result = Runtime.GenerateMessageSend( 225 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 226 Receiver, Args, Class, MethodWithObjects); 227 228 // The above message send needs these objects, but in ARC they are 229 // passed in a buffer that is essentially __unsafe_unretained. 230 // Therefore we must prevent the optimizer from releasing them until 231 // after the call. 232 if (TrackNeededObjects) { 233 EmitARCIntrinsicUse(NeededObjects); 234 } 235 236 return Builder.CreateBitCast(result.getScalarVal(), 237 ConvertType(E->getType())); 238 } 239 240 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 241 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 242 } 243 244 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 245 const ObjCDictionaryLiteral *E) { 246 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 247 } 248 249 /// Emit a selector. 250 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 251 // Untyped selector. 252 // Note that this implementation allows for non-constant strings to be passed 253 // as arguments to @selector(). Currently, the only thing preventing this 254 // behaviour is the type checking in the front end. 255 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 256 } 257 258 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 259 // FIXME: This should pass the Decl not the name. 260 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 261 } 262 263 /// Adjust the type of an Objective-C object that doesn't match up due 264 /// to type erasure at various points, e.g., related result types or the use 265 /// of parameterized classes. 266 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 267 RValue Result) { 268 if (!ExpT->isObjCRetainableType()) 269 return Result; 270 271 // If the converted types are the same, we're done. 272 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 273 if (ExpLLVMTy == Result.getScalarVal()->getType()) 274 return Result; 275 276 // We have applied a substitution. Cast the rvalue appropriately. 277 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 278 ExpLLVMTy)); 279 } 280 281 /// Decide whether to extend the lifetime of the receiver of a 282 /// returns-inner-pointer message. 283 static bool 284 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 285 switch (message->getReceiverKind()) { 286 287 // For a normal instance message, we should extend unless the 288 // receiver is loaded from a variable with precise lifetime. 289 case ObjCMessageExpr::Instance: { 290 const Expr *receiver = message->getInstanceReceiver(); 291 292 // Look through OVEs. 293 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 294 if (opaque->getSourceExpr()) 295 receiver = opaque->getSourceExpr()->IgnoreParens(); 296 } 297 298 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 299 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 300 receiver = ice->getSubExpr()->IgnoreParens(); 301 302 // Look through OVEs. 303 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 304 if (opaque->getSourceExpr()) 305 receiver = opaque->getSourceExpr()->IgnoreParens(); 306 } 307 308 // Only __strong variables. 309 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 310 return true; 311 312 // All ivars and fields have precise lifetime. 313 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 314 return false; 315 316 // Otherwise, check for variables. 317 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 318 if (!declRef) return true; 319 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 320 if (!var) return true; 321 322 // All variables have precise lifetime except local variables with 323 // automatic storage duration that aren't specially marked. 324 return (var->hasLocalStorage() && 325 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 326 } 327 328 case ObjCMessageExpr::Class: 329 case ObjCMessageExpr::SuperClass: 330 // It's never necessary for class objects. 331 return false; 332 333 case ObjCMessageExpr::SuperInstance: 334 // We generally assume that 'self' lives throughout a method call. 335 return false; 336 } 337 338 llvm_unreachable("invalid receiver kind"); 339 } 340 341 /// Given an expression of ObjC pointer type, check whether it was 342 /// immediately loaded from an ARC __weak l-value. 343 static const Expr *findWeakLValue(const Expr *E) { 344 assert(E->getType()->isObjCRetainableType()); 345 E = E->IgnoreParens(); 346 if (auto CE = dyn_cast<CastExpr>(E)) { 347 if (CE->getCastKind() == CK_LValueToRValue) { 348 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 349 return CE->getSubExpr(); 350 } 351 } 352 353 return nullptr; 354 } 355 356 /// The ObjC runtime may provide entrypoints that are likely to be faster 357 /// than an ordinary message send of the appropriate selector. 358 /// 359 /// The entrypoints are guaranteed to be equivalent to just sending the 360 /// corresponding message. If the entrypoint is implemented naively as just a 361 /// message send, using it is a trade-off: it sacrifices a few cycles of 362 /// overhead to save a small amount of code. However, it's possible for 363 /// runtimes to detect and special-case classes that use "standard" 364 /// behavior; if that's dynamically a large proportion of all objects, using 365 /// the entrypoint will also be faster than using a message send. 366 /// 367 /// If the runtime does support a required entrypoint, then this method will 368 /// generate a call and return the resulting value. Otherwise it will return 369 /// None and the caller can generate a msgSend instead. 370 static Optional<llvm::Value *> 371 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType, 372 llvm::Value *Receiver, 373 const CallArgList& Args, Selector Sel, 374 const ObjCMethodDecl *method, 375 bool isClassMessage) { 376 auto &CGM = CGF.CGM; 377 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) 378 return None; 379 380 auto &Runtime = CGM.getLangOpts().ObjCRuntime; 381 switch (Sel.getMethodFamily()) { 382 case OMF_alloc: 383 if (isClassMessage && 384 Runtime.shouldUseRuntimeFunctionsForAlloc() && 385 ResultType->isObjCObjectPointerType()) { 386 // [Foo alloc] -> objc_alloc(Foo) 387 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc") 388 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType)); 389 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) 390 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && 391 Args.size() == 1 && Args.front().getType()->isPointerType() && 392 Sel.getNameForSlot(0) == "allocWithZone") { 393 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); 394 if (isa<llvm::ConstantPointerNull>(arg)) 395 return CGF.EmitObjCAllocWithZone(Receiver, 396 CGF.ConvertType(ResultType)); 397 return None; 398 } 399 } 400 break; 401 402 case OMF_autorelease: 403 if (ResultType->isObjCObjectPointerType() && 404 CGM.getLangOpts().getGC() == LangOptions::NonGC && 405 Runtime.shouldUseARCFunctionsForRetainRelease()) 406 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType)); 407 break; 408 409 case OMF_retain: 410 if (ResultType->isObjCObjectPointerType() && 411 CGM.getLangOpts().getGC() == LangOptions::NonGC && 412 Runtime.shouldUseARCFunctionsForRetainRelease()) 413 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType)); 414 break; 415 416 case OMF_release: 417 if (ResultType->isVoidType() && 418 CGM.getLangOpts().getGC() == LangOptions::NonGC && 419 Runtime.shouldUseARCFunctionsForRetainRelease()) { 420 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime); 421 return nullptr; 422 } 423 break; 424 425 default: 426 break; 427 } 428 return None; 429 } 430 431 /// Instead of '[[MyClass alloc] init]', try to generate 432 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the 433 /// caller side, as well as the optimized objc_alloc. 434 static Optional<llvm::Value *> 435 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) { 436 auto &Runtime = CGF.getLangOpts().ObjCRuntime; 437 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit()) 438 return None; 439 440 // Match the exact pattern '[[MyClass alloc] init]'. 441 Selector Sel = OME->getSelector(); 442 if (OME->getReceiverKind() != ObjCMessageExpr::Instance || 443 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() || 444 Sel.getNameForSlot(0) != "init") 445 return None; 446 447 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'. 448 auto *SubOME = 449 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParens()); 450 if (!SubOME) 451 return None; 452 Selector SubSel = SubOME->getSelector(); 453 if (SubOME->getReceiverKind() != ObjCMessageExpr::Class || 454 !SubOME->getType()->isObjCObjectPointerType() || 455 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc") 456 return None; 457 458 QualType ReceiverType = SubOME->getClassReceiver(); 459 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 460 const ObjCInterfaceDecl *ID = ObjTy->getInterface(); 461 assert(ID && "null interface should be impossible here"); 462 llvm::Value *Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID); 463 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType())); 464 } 465 466 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 467 ReturnValueSlot Return) { 468 // Only the lookup mechanism and first two arguments of the method 469 // implementation vary between runtimes. We can get the receiver and 470 // arguments in generic code. 471 472 bool isDelegateInit = E->isDelegateInitCall(); 473 474 const ObjCMethodDecl *method = E->getMethodDecl(); 475 476 // If the method is -retain, and the receiver's being loaded from 477 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 478 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 479 method->getMethodFamily() == OMF_retain) { 480 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 481 LValue lvalue = EmitLValue(lvalueExpr); 482 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress()); 483 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 484 } 485 } 486 487 if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E)) 488 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val)); 489 490 // We don't retain the receiver in delegate init calls, and this is 491 // safe because the receiver value is always loaded from 'self', 492 // which we zero out. We don't want to Block_copy block receivers, 493 // though. 494 bool retainSelf = 495 (!isDelegateInit && 496 CGM.getLangOpts().ObjCAutoRefCount && 497 method && 498 method->hasAttr<NSConsumesSelfAttr>()); 499 500 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 501 bool isSuperMessage = false; 502 bool isClassMessage = false; 503 ObjCInterfaceDecl *OID = nullptr; 504 // Find the receiver 505 QualType ReceiverType; 506 llvm::Value *Receiver = nullptr; 507 switch (E->getReceiverKind()) { 508 case ObjCMessageExpr::Instance: 509 ReceiverType = E->getInstanceReceiver()->getType(); 510 if (retainSelf) { 511 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 512 E->getInstanceReceiver()); 513 Receiver = ter.getPointer(); 514 if (ter.getInt()) retainSelf = false; 515 } else 516 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 517 break; 518 519 case ObjCMessageExpr::Class: { 520 ReceiverType = E->getClassReceiver(); 521 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 522 assert(ObjTy && "Invalid Objective-C class message send"); 523 OID = ObjTy->getInterface(); 524 assert(OID && "Invalid Objective-C class message send"); 525 Receiver = Runtime.GetClass(*this, OID); 526 isClassMessage = true; 527 break; 528 } 529 530 case ObjCMessageExpr::SuperInstance: 531 ReceiverType = E->getSuperType(); 532 Receiver = LoadObjCSelf(); 533 isSuperMessage = true; 534 break; 535 536 case ObjCMessageExpr::SuperClass: 537 ReceiverType = E->getSuperType(); 538 Receiver = LoadObjCSelf(); 539 isSuperMessage = true; 540 isClassMessage = true; 541 break; 542 } 543 544 if (retainSelf) 545 Receiver = EmitARCRetainNonBlock(Receiver); 546 547 // In ARC, we sometimes want to "extend the lifetime" 548 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 549 // messages. 550 if (getLangOpts().ObjCAutoRefCount && method && 551 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 552 shouldExtendReceiverForInnerPointerMessage(E)) 553 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 554 555 QualType ResultType = method ? method->getReturnType() : E->getType(); 556 557 CallArgList Args; 558 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 559 560 // For delegate init calls in ARC, do an unsafe store of null into 561 // self. This represents the call taking direct ownership of that 562 // value. We have to do this after emitting the other call 563 // arguments because they might also reference self, but we don't 564 // have to worry about any of them modifying self because that would 565 // be an undefined read and write of an object in unordered 566 // expressions. 567 if (isDelegateInit) { 568 assert(getLangOpts().ObjCAutoRefCount && 569 "delegate init calls should only be marked in ARC"); 570 571 // Do an unsafe store of null into self. 572 Address selfAddr = 573 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 574 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 575 } 576 577 RValue result; 578 if (isSuperMessage) { 579 // super is only valid in an Objective-C method 580 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 581 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 582 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 583 E->getSelector(), 584 OMD->getClassInterface(), 585 isCategoryImpl, 586 Receiver, 587 isClassMessage, 588 Args, 589 method); 590 } else { 591 // Call runtime methods directly if we can. 592 if (Optional<llvm::Value *> SpecializedResult = 593 tryGenerateSpecializedMessageSend(*this, ResultType, Receiver, Args, 594 E->getSelector(), method, 595 isClassMessage)) { 596 result = RValue::get(SpecializedResult.getValue()); 597 } else { 598 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 599 E->getSelector(), Receiver, Args, 600 OID, method); 601 } 602 } 603 604 // For delegate init calls in ARC, implicitly store the result of 605 // the call back into self. This takes ownership of the value. 606 if (isDelegateInit) { 607 Address selfAddr = 608 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 609 llvm::Value *newSelf = result.getScalarVal(); 610 611 // The delegate return type isn't necessarily a matching type; in 612 // fact, it's quite likely to be 'id'. 613 llvm::Type *selfTy = selfAddr.getElementType(); 614 newSelf = Builder.CreateBitCast(newSelf, selfTy); 615 616 Builder.CreateStore(newSelf, selfAddr); 617 } 618 619 return AdjustObjCObjectType(*this, E->getType(), result); 620 } 621 622 namespace { 623 struct FinishARCDealloc final : EHScopeStack::Cleanup { 624 void Emit(CodeGenFunction &CGF, Flags flags) override { 625 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 626 627 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 628 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 629 if (!iface->getSuperClass()) return; 630 631 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 632 633 // Call [super dealloc] if we have a superclass. 634 llvm::Value *self = CGF.LoadObjCSelf(); 635 636 CallArgList args; 637 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 638 CGF.getContext().VoidTy, 639 method->getSelector(), 640 iface, 641 isCategory, 642 self, 643 /*is class msg*/ false, 644 args, 645 method); 646 } 647 }; 648 } 649 650 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 651 /// the LLVM function and sets the other context used by 652 /// CodeGenFunction. 653 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 654 const ObjCContainerDecl *CD) { 655 SourceLocation StartLoc = OMD->getBeginLoc(); 656 FunctionArgList args; 657 // Check if we should generate debug info for this method. 658 if (OMD->hasAttr<NoDebugAttr>()) 659 DebugInfo = nullptr; // disable debug info indefinitely for this function 660 661 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 662 663 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 664 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 665 666 args.push_back(OMD->getSelfDecl()); 667 args.push_back(OMD->getCmdDecl()); 668 669 args.append(OMD->param_begin(), OMD->param_end()); 670 671 CurGD = OMD; 672 CurEHLocation = OMD->getEndLoc(); 673 674 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 675 OMD->getLocation(), StartLoc); 676 677 // In ARC, certain methods get an extra cleanup. 678 if (CGM.getLangOpts().ObjCAutoRefCount && 679 OMD->isInstanceMethod() && 680 OMD->getSelector().isUnarySelector()) { 681 const IdentifierInfo *ident = 682 OMD->getSelector().getIdentifierInfoForSlot(0); 683 if (ident->isStr("dealloc")) 684 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 685 } 686 } 687 688 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 689 LValue lvalue, QualType type); 690 691 /// Generate an Objective-C method. An Objective-C method is a C function with 692 /// its pointer, name, and types registered in the class structure. 693 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 694 StartObjCMethod(OMD, OMD->getClassInterface()); 695 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 696 assert(isa<CompoundStmt>(OMD->getBody())); 697 incrementProfileCounter(OMD->getBody()); 698 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 699 FinishFunction(OMD->getBodyRBrace()); 700 } 701 702 /// emitStructGetterCall - Call the runtime function to load a property 703 /// into the return value slot. 704 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 705 bool isAtomic, bool hasStrong) { 706 ASTContext &Context = CGF.getContext(); 707 708 Address src = 709 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 710 .getAddress(); 711 712 // objc_copyStruct (ReturnValue, &structIvar, 713 // sizeof (Type of Ivar), isAtomic, false); 714 CallArgList args; 715 716 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 717 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 718 719 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 720 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 721 722 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 723 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 724 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 725 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 726 727 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 728 CGCallee callee = CGCallee::forDirect(fn); 729 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 730 callee, ReturnValueSlot(), args); 731 } 732 733 /// Determine whether the given architecture supports unaligned atomic 734 /// accesses. They don't have to be fast, just faster than a function 735 /// call and a mutex. 736 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 737 // FIXME: Allow unaligned atomic load/store on x86. (It is not 738 // currently supported by the backend.) 739 return 0; 740 } 741 742 /// Return the maximum size that permits atomic accesses for the given 743 /// architecture. 744 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 745 llvm::Triple::ArchType arch) { 746 // ARM has 8-byte atomic accesses, but it's not clear whether we 747 // want to rely on them here. 748 749 // In the default case, just assume that any size up to a pointer is 750 // fine given adequate alignment. 751 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 752 } 753 754 namespace { 755 class PropertyImplStrategy { 756 public: 757 enum StrategyKind { 758 /// The 'native' strategy is to use the architecture's provided 759 /// reads and writes. 760 Native, 761 762 /// Use objc_setProperty and objc_getProperty. 763 GetSetProperty, 764 765 /// Use objc_setProperty for the setter, but use expression 766 /// evaluation for the getter. 767 SetPropertyAndExpressionGet, 768 769 /// Use objc_copyStruct. 770 CopyStruct, 771 772 /// The 'expression' strategy is to emit normal assignment or 773 /// lvalue-to-rvalue expressions. 774 Expression 775 }; 776 777 StrategyKind getKind() const { return StrategyKind(Kind); } 778 779 bool hasStrongMember() const { return HasStrong; } 780 bool isAtomic() const { return IsAtomic; } 781 bool isCopy() const { return IsCopy; } 782 783 CharUnits getIvarSize() const { return IvarSize; } 784 CharUnits getIvarAlignment() const { return IvarAlignment; } 785 786 PropertyImplStrategy(CodeGenModule &CGM, 787 const ObjCPropertyImplDecl *propImpl); 788 789 private: 790 unsigned Kind : 8; 791 unsigned IsAtomic : 1; 792 unsigned IsCopy : 1; 793 unsigned HasStrong : 1; 794 795 CharUnits IvarSize; 796 CharUnits IvarAlignment; 797 }; 798 } 799 800 /// Pick an implementation strategy for the given property synthesis. 801 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 802 const ObjCPropertyImplDecl *propImpl) { 803 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 804 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 805 806 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 807 IsAtomic = prop->isAtomic(); 808 HasStrong = false; // doesn't matter here. 809 810 // Evaluate the ivar's size and alignment. 811 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 812 QualType ivarType = ivar->getType(); 813 std::tie(IvarSize, IvarAlignment) = 814 CGM.getContext().getTypeInfoInChars(ivarType); 815 816 // If we have a copy property, we always have to use getProperty/setProperty. 817 // TODO: we could actually use setProperty and an expression for non-atomics. 818 if (IsCopy) { 819 Kind = GetSetProperty; 820 return; 821 } 822 823 // Handle retain. 824 if (setterKind == ObjCPropertyDecl::Retain) { 825 // In GC-only, there's nothing special that needs to be done. 826 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 827 // fallthrough 828 829 // In ARC, if the property is non-atomic, use expression emission, 830 // which translates to objc_storeStrong. This isn't required, but 831 // it's slightly nicer. 832 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 833 // Using standard expression emission for the setter is only 834 // acceptable if the ivar is __strong, which won't be true if 835 // the property is annotated with __attribute__((NSObject)). 836 // TODO: falling all the way back to objc_setProperty here is 837 // just laziness, though; we could still use objc_storeStrong 838 // if we hacked it right. 839 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 840 Kind = Expression; 841 else 842 Kind = SetPropertyAndExpressionGet; 843 return; 844 845 // Otherwise, we need to at least use setProperty. However, if 846 // the property isn't atomic, we can use normal expression 847 // emission for the getter. 848 } else if (!IsAtomic) { 849 Kind = SetPropertyAndExpressionGet; 850 return; 851 852 // Otherwise, we have to use both setProperty and getProperty. 853 } else { 854 Kind = GetSetProperty; 855 return; 856 } 857 } 858 859 // If we're not atomic, just use expression accesses. 860 if (!IsAtomic) { 861 Kind = Expression; 862 return; 863 } 864 865 // Properties on bitfield ivars need to be emitted using expression 866 // accesses even if they're nominally atomic. 867 if (ivar->isBitField()) { 868 Kind = Expression; 869 return; 870 } 871 872 // GC-qualified or ARC-qualified ivars need to be emitted as 873 // expressions. This actually works out to being atomic anyway, 874 // except for ARC __strong, but that should trigger the above code. 875 if (ivarType.hasNonTrivialObjCLifetime() || 876 (CGM.getLangOpts().getGC() && 877 CGM.getContext().getObjCGCAttrKind(ivarType))) { 878 Kind = Expression; 879 return; 880 } 881 882 // Compute whether the ivar has strong members. 883 if (CGM.getLangOpts().getGC()) 884 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 885 HasStrong = recordType->getDecl()->hasObjectMember(); 886 887 // We can never access structs with object members with a native 888 // access, because we need to use write barriers. This is what 889 // objc_copyStruct is for. 890 if (HasStrong) { 891 Kind = CopyStruct; 892 return; 893 } 894 895 // Otherwise, this is target-dependent and based on the size and 896 // alignment of the ivar. 897 898 // If the size of the ivar is not a power of two, give up. We don't 899 // want to get into the business of doing compare-and-swaps. 900 if (!IvarSize.isPowerOfTwo()) { 901 Kind = CopyStruct; 902 return; 903 } 904 905 llvm::Triple::ArchType arch = 906 CGM.getTarget().getTriple().getArch(); 907 908 // Most architectures require memory to fit within a single cache 909 // line, so the alignment has to be at least the size of the access. 910 // Otherwise we have to grab a lock. 911 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 912 Kind = CopyStruct; 913 return; 914 } 915 916 // If the ivar's size exceeds the architecture's maximum atomic 917 // access size, we have to use CopyStruct. 918 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 919 Kind = CopyStruct; 920 return; 921 } 922 923 // Otherwise, we can use native loads and stores. 924 Kind = Native; 925 } 926 927 /// Generate an Objective-C property getter function. 928 /// 929 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 930 /// is illegal within a category. 931 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 932 const ObjCPropertyImplDecl *PID) { 933 llvm::Constant *AtomicHelperFn = 934 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 935 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 936 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 937 assert(OMD && "Invalid call to generate getter (empty method)"); 938 StartObjCMethod(OMD, IMP->getClassInterface()); 939 940 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 941 942 FinishFunction(); 943 } 944 945 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 946 const Expr *getter = propImpl->getGetterCXXConstructor(); 947 if (!getter) return true; 948 949 // Sema only makes only of these when the ivar has a C++ class type, 950 // so the form is pretty constrained. 951 952 // If the property has a reference type, we might just be binding a 953 // reference, in which case the result will be a gl-value. We should 954 // treat this as a non-trivial operation. 955 if (getter->isGLValue()) 956 return false; 957 958 // If we selected a trivial copy-constructor, we're okay. 959 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 960 return (construct->getConstructor()->isTrivial()); 961 962 // The constructor might require cleanups (in which case it's never 963 // trivial). 964 assert(isa<ExprWithCleanups>(getter)); 965 return false; 966 } 967 968 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 969 /// copy the ivar into the resturn slot. 970 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 971 llvm::Value *returnAddr, 972 ObjCIvarDecl *ivar, 973 llvm::Constant *AtomicHelperFn) { 974 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 975 // AtomicHelperFn); 976 CallArgList args; 977 978 // The 1st argument is the return Slot. 979 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 980 981 // The 2nd argument is the address of the ivar. 982 llvm::Value *ivarAddr = 983 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 984 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 985 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 986 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 987 988 // Third argument is the helper function. 989 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 990 991 llvm::FunctionCallee copyCppAtomicObjectFn = 992 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 993 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 994 CGF.EmitCall( 995 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 996 callee, ReturnValueSlot(), args); 997 } 998 999 void 1000 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1001 const ObjCPropertyImplDecl *propImpl, 1002 const ObjCMethodDecl *GetterMethodDecl, 1003 llvm::Constant *AtomicHelperFn) { 1004 // If there's a non-trivial 'get' expression, we just have to emit that. 1005 if (!hasTrivialGetExpr(propImpl)) { 1006 if (!AtomicHelperFn) { 1007 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(), 1008 propImpl->getGetterCXXConstructor(), 1009 /* NRVOCandidate=*/nullptr); 1010 EmitReturnStmt(*ret); 1011 } 1012 else { 1013 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1014 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 1015 ivar, AtomicHelperFn); 1016 } 1017 return; 1018 } 1019 1020 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1021 QualType propType = prop->getType(); 1022 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 1023 1024 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1025 1026 // Pick an implementation strategy. 1027 PropertyImplStrategy strategy(CGM, propImpl); 1028 switch (strategy.getKind()) { 1029 case PropertyImplStrategy::Native: { 1030 // We don't need to do anything for a zero-size struct. 1031 if (strategy.getIvarSize().isZero()) 1032 return; 1033 1034 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1035 1036 // Currently, all atomic accesses have to be through integer 1037 // types, so there's no point in trying to pick a prettier type. 1038 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 1039 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 1040 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1041 1042 // Perform an atomic load. This does not impose ordering constraints. 1043 Address ivarAddr = LV.getAddress(); 1044 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1045 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 1046 load->setAtomic(llvm::AtomicOrdering::Unordered); 1047 1048 // Store that value into the return address. Doing this with a 1049 // bitcast is likely to produce some pretty ugly IR, but it's not 1050 // the *most* terrible thing in the world. 1051 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 1052 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 1053 llvm::Value *ivarVal = load; 1054 if (ivarSize > retTySize) { 1055 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 1056 ivarVal = Builder.CreateTrunc(load, newTy); 1057 bitcastType = newTy->getPointerTo(); 1058 } 1059 Builder.CreateStore(ivarVal, 1060 Builder.CreateBitCast(ReturnValue, bitcastType)); 1061 1062 // Make sure we don't do an autorelease. 1063 AutoreleaseResult = false; 1064 return; 1065 } 1066 1067 case PropertyImplStrategy::GetSetProperty: { 1068 llvm::FunctionCallee getPropertyFn = 1069 CGM.getObjCRuntime().GetPropertyGetFunction(); 1070 if (!getPropertyFn) { 1071 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 1072 return; 1073 } 1074 CGCallee callee = CGCallee::forDirect(getPropertyFn); 1075 1076 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 1077 // FIXME: Can't this be simpler? This might even be worse than the 1078 // corresponding gcc code. 1079 llvm::Value *cmd = 1080 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 1081 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1082 llvm::Value *ivarOffset = 1083 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1084 1085 CallArgList args; 1086 args.add(RValue::get(self), getContext().getObjCIdType()); 1087 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1088 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1089 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1090 getContext().BoolTy); 1091 1092 // FIXME: We shouldn't need to get the function info here, the 1093 // runtime already should have computed it to build the function. 1094 llvm::CallBase *CallInstruction; 1095 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall( 1096 getContext().getObjCIdType(), args), 1097 callee, ReturnValueSlot(), args, &CallInstruction); 1098 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 1099 call->setTailCall(); 1100 1101 // We need to fix the type here. Ivars with copy & retain are 1102 // always objects so we don't need to worry about complex or 1103 // aggregates. 1104 RV = RValue::get(Builder.CreateBitCast( 1105 RV.getScalarVal(), 1106 getTypes().ConvertType(getterMethod->getReturnType()))); 1107 1108 EmitReturnOfRValue(RV, propType); 1109 1110 // objc_getProperty does an autorelease, so we should suppress ours. 1111 AutoreleaseResult = false; 1112 1113 return; 1114 } 1115 1116 case PropertyImplStrategy::CopyStruct: 1117 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 1118 strategy.hasStrongMember()); 1119 return; 1120 1121 case PropertyImplStrategy::Expression: 1122 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1123 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1124 1125 QualType ivarType = ivar->getType(); 1126 switch (getEvaluationKind(ivarType)) { 1127 case TEK_Complex: { 1128 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1129 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1130 /*init*/ true); 1131 return; 1132 } 1133 case TEK_Aggregate: { 1134 // The return value slot is guaranteed to not be aliased, but 1135 // that's not necessarily the same as "on the stack", so 1136 // we still potentially need objc_memmove_collectable. 1137 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1138 /* Src= */ LV, ivarType, overlapForReturnValue()); 1139 return; 1140 } 1141 case TEK_Scalar: { 1142 llvm::Value *value; 1143 if (propType->isReferenceType()) { 1144 value = LV.getAddress().getPointer(); 1145 } else { 1146 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1147 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1148 if (getLangOpts().ObjCAutoRefCount) { 1149 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1150 } else { 1151 value = EmitARCLoadWeak(LV.getAddress()); 1152 } 1153 1154 // Otherwise we want to do a simple load, suppressing the 1155 // final autorelease. 1156 } else { 1157 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1158 AutoreleaseResult = false; 1159 } 1160 1161 value = Builder.CreateBitCast( 1162 value, ConvertType(GetterMethodDecl->getReturnType())); 1163 } 1164 1165 EmitReturnOfRValue(RValue::get(value), propType); 1166 return; 1167 } 1168 } 1169 llvm_unreachable("bad evaluation kind"); 1170 } 1171 1172 } 1173 llvm_unreachable("bad @property implementation strategy!"); 1174 } 1175 1176 /// emitStructSetterCall - Call the runtime function to store the value 1177 /// from the first formal parameter into the given ivar. 1178 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1179 ObjCIvarDecl *ivar) { 1180 // objc_copyStruct (&structIvar, &Arg, 1181 // sizeof (struct something), true, false); 1182 CallArgList args; 1183 1184 // The first argument is the address of the ivar. 1185 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1186 CGF.LoadObjCSelf(), ivar, 0) 1187 .getPointer(); 1188 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1189 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1190 1191 // The second argument is the address of the parameter variable. 1192 ParmVarDecl *argVar = *OMD->param_begin(); 1193 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1194 argVar->getType().getNonReferenceType(), VK_LValue, 1195 SourceLocation()); 1196 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1197 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1198 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1199 1200 // The third argument is the sizeof the type. 1201 llvm::Value *size = 1202 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1203 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1204 1205 // The fourth argument is the 'isAtomic' flag. 1206 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1207 1208 // The fifth argument is the 'hasStrong' flag. 1209 // FIXME: should this really always be false? 1210 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1211 1212 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1213 CGCallee callee = CGCallee::forDirect(fn); 1214 CGF.EmitCall( 1215 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1216 callee, ReturnValueSlot(), args); 1217 } 1218 1219 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1220 /// the value from the first formal parameter into the given ivar, using 1221 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1222 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1223 ObjCMethodDecl *OMD, 1224 ObjCIvarDecl *ivar, 1225 llvm::Constant *AtomicHelperFn) { 1226 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1227 // AtomicHelperFn); 1228 CallArgList args; 1229 1230 // The first argument is the address of the ivar. 1231 llvm::Value *ivarAddr = 1232 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1233 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 1234 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1235 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1236 1237 // The second argument is the address of the parameter variable. 1238 ParmVarDecl *argVar = *OMD->param_begin(); 1239 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1240 argVar->getType().getNonReferenceType(), VK_LValue, 1241 SourceLocation()); 1242 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1243 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1244 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1245 1246 // Third argument is the helper function. 1247 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1248 1249 llvm::FunctionCallee fn = 1250 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1251 CGCallee callee = CGCallee::forDirect(fn); 1252 CGF.EmitCall( 1253 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1254 callee, ReturnValueSlot(), args); 1255 } 1256 1257 1258 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1259 Expr *setter = PID->getSetterCXXAssignment(); 1260 if (!setter) return true; 1261 1262 // Sema only makes only of these when the ivar has a C++ class type, 1263 // so the form is pretty constrained. 1264 1265 // An operator call is trivial if the function it calls is trivial. 1266 // This also implies that there's nothing non-trivial going on with 1267 // the arguments, because operator= can only be trivial if it's a 1268 // synthesized assignment operator and therefore both parameters are 1269 // references. 1270 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1271 if (const FunctionDecl *callee 1272 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1273 if (callee->isTrivial()) 1274 return true; 1275 return false; 1276 } 1277 1278 assert(isa<ExprWithCleanups>(setter)); 1279 return false; 1280 } 1281 1282 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1283 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1284 return false; 1285 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1286 } 1287 1288 void 1289 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1290 const ObjCPropertyImplDecl *propImpl, 1291 llvm::Constant *AtomicHelperFn) { 1292 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1293 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1294 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1295 1296 // Just use the setter expression if Sema gave us one and it's 1297 // non-trivial. 1298 if (!hasTrivialSetExpr(propImpl)) { 1299 if (!AtomicHelperFn) 1300 // If non-atomic, assignment is called directly. 1301 EmitStmt(propImpl->getSetterCXXAssignment()); 1302 else 1303 // If atomic, assignment is called via a locking api. 1304 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1305 AtomicHelperFn); 1306 return; 1307 } 1308 1309 PropertyImplStrategy strategy(CGM, propImpl); 1310 switch (strategy.getKind()) { 1311 case PropertyImplStrategy::Native: { 1312 // We don't need to do anything for a zero-size struct. 1313 if (strategy.getIvarSize().isZero()) 1314 return; 1315 1316 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1317 1318 LValue ivarLValue = 1319 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1320 Address ivarAddr = ivarLValue.getAddress(); 1321 1322 // Currently, all atomic accesses have to be through integer 1323 // types, so there's no point in trying to pick a prettier type. 1324 llvm::Type *bitcastType = 1325 llvm::Type::getIntNTy(getLLVMContext(), 1326 getContext().toBits(strategy.getIvarSize())); 1327 1328 // Cast both arguments to the chosen operation type. 1329 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1330 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1331 1332 // This bitcast load is likely to cause some nasty IR. 1333 llvm::Value *load = Builder.CreateLoad(argAddr); 1334 1335 // Perform an atomic store. There are no memory ordering requirements. 1336 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1337 store->setAtomic(llvm::AtomicOrdering::Unordered); 1338 return; 1339 } 1340 1341 case PropertyImplStrategy::GetSetProperty: 1342 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1343 1344 llvm::FunctionCallee setOptimizedPropertyFn = nullptr; 1345 llvm::FunctionCallee setPropertyFn = nullptr; 1346 if (UseOptimizedSetter(CGM)) { 1347 // 10.8 and iOS 6.0 code and GC is off 1348 setOptimizedPropertyFn = 1349 CGM.getObjCRuntime().GetOptimizedPropertySetFunction( 1350 strategy.isAtomic(), strategy.isCopy()); 1351 if (!setOptimizedPropertyFn) { 1352 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1353 return; 1354 } 1355 } 1356 else { 1357 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1358 if (!setPropertyFn) { 1359 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1360 return; 1361 } 1362 } 1363 1364 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1365 // <is-atomic>, <is-copy>). 1366 llvm::Value *cmd = 1367 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1368 llvm::Value *self = 1369 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1370 llvm::Value *ivarOffset = 1371 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1372 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1373 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1374 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1375 1376 CallArgList args; 1377 args.add(RValue::get(self), getContext().getObjCIdType()); 1378 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1379 if (setOptimizedPropertyFn) { 1380 args.add(RValue::get(arg), getContext().getObjCIdType()); 1381 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1382 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1383 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1384 callee, ReturnValueSlot(), args); 1385 } else { 1386 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1387 args.add(RValue::get(arg), getContext().getObjCIdType()); 1388 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1389 getContext().BoolTy); 1390 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1391 getContext().BoolTy); 1392 // FIXME: We shouldn't need to get the function info here, the runtime 1393 // already should have computed it to build the function. 1394 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1395 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1396 callee, ReturnValueSlot(), args); 1397 } 1398 1399 return; 1400 } 1401 1402 case PropertyImplStrategy::CopyStruct: 1403 emitStructSetterCall(*this, setterMethod, ivar); 1404 return; 1405 1406 case PropertyImplStrategy::Expression: 1407 break; 1408 } 1409 1410 // Otherwise, fake up some ASTs and emit a normal assignment. 1411 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1412 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(), 1413 VK_LValue, SourceLocation()); 1414 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1415 selfDecl->getType(), CK_LValueToRValue, &self, 1416 VK_RValue); 1417 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1418 SourceLocation(), SourceLocation(), 1419 &selfLoad, true, true); 1420 1421 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1422 QualType argType = argDecl->getType().getNonReferenceType(); 1423 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue, 1424 SourceLocation()); 1425 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1426 argType.getUnqualifiedType(), CK_LValueToRValue, 1427 &arg, VK_RValue); 1428 1429 // The property type can differ from the ivar type in some situations with 1430 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1431 // The following absurdity is just to ensure well-formed IR. 1432 CastKind argCK = CK_NoOp; 1433 if (ivarRef.getType()->isObjCObjectPointerType()) { 1434 if (argLoad.getType()->isObjCObjectPointerType()) 1435 argCK = CK_BitCast; 1436 else if (argLoad.getType()->isBlockPointerType()) 1437 argCK = CK_BlockPointerToObjCPointerCast; 1438 else 1439 argCK = CK_CPointerToObjCPointerCast; 1440 } else if (ivarRef.getType()->isBlockPointerType()) { 1441 if (argLoad.getType()->isBlockPointerType()) 1442 argCK = CK_BitCast; 1443 else 1444 argCK = CK_AnyPointerToBlockPointerCast; 1445 } else if (ivarRef.getType()->isPointerType()) { 1446 argCK = CK_BitCast; 1447 } 1448 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1449 ivarRef.getType(), argCK, &argLoad, 1450 VK_RValue); 1451 Expr *finalArg = &argLoad; 1452 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1453 argLoad.getType())) 1454 finalArg = &argCast; 1455 1456 1457 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1458 ivarRef.getType(), VK_RValue, OK_Ordinary, 1459 SourceLocation(), FPOptions()); 1460 EmitStmt(&assign); 1461 } 1462 1463 /// Generate an Objective-C property setter function. 1464 /// 1465 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1466 /// is illegal within a category. 1467 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1468 const ObjCPropertyImplDecl *PID) { 1469 llvm::Constant *AtomicHelperFn = 1470 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1471 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1472 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1473 assert(OMD && "Invalid call to generate setter (empty method)"); 1474 StartObjCMethod(OMD, IMP->getClassInterface()); 1475 1476 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1477 1478 FinishFunction(); 1479 } 1480 1481 namespace { 1482 struct DestroyIvar final : EHScopeStack::Cleanup { 1483 private: 1484 llvm::Value *addr; 1485 const ObjCIvarDecl *ivar; 1486 CodeGenFunction::Destroyer *destroyer; 1487 bool useEHCleanupForArray; 1488 public: 1489 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1490 CodeGenFunction::Destroyer *destroyer, 1491 bool useEHCleanupForArray) 1492 : addr(addr), ivar(ivar), destroyer(destroyer), 1493 useEHCleanupForArray(useEHCleanupForArray) {} 1494 1495 void Emit(CodeGenFunction &CGF, Flags flags) override { 1496 LValue lvalue 1497 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1498 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1499 flags.isForNormalCleanup() && useEHCleanupForArray); 1500 } 1501 }; 1502 } 1503 1504 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1505 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1506 Address addr, 1507 QualType type) { 1508 llvm::Value *null = getNullForVariable(addr); 1509 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1510 } 1511 1512 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1513 ObjCImplementationDecl *impl) { 1514 CodeGenFunction::RunCleanupsScope scope(CGF); 1515 1516 llvm::Value *self = CGF.LoadObjCSelf(); 1517 1518 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1519 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1520 ivar; ivar = ivar->getNextIvar()) { 1521 QualType type = ivar->getType(); 1522 1523 // Check whether the ivar is a destructible type. 1524 QualType::DestructionKind dtorKind = type.isDestructedType(); 1525 if (!dtorKind) continue; 1526 1527 CodeGenFunction::Destroyer *destroyer = nullptr; 1528 1529 // Use a call to objc_storeStrong to destroy strong ivars, for the 1530 // general benefit of the tools. 1531 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1532 destroyer = destroyARCStrongWithStore; 1533 1534 // Otherwise use the default for the destruction kind. 1535 } else { 1536 destroyer = CGF.getDestroyer(dtorKind); 1537 } 1538 1539 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1540 1541 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1542 cleanupKind & EHCleanup); 1543 } 1544 1545 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1546 } 1547 1548 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1549 ObjCMethodDecl *MD, 1550 bool ctor) { 1551 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1552 StartObjCMethod(MD, IMP->getClassInterface()); 1553 1554 // Emit .cxx_construct. 1555 if (ctor) { 1556 // Suppress the final autorelease in ARC. 1557 AutoreleaseResult = false; 1558 1559 for (const auto *IvarInit : IMP->inits()) { 1560 FieldDecl *Field = IvarInit->getAnyMember(); 1561 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1562 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1563 LoadObjCSelf(), Ivar, 0); 1564 EmitAggExpr(IvarInit->getInit(), 1565 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1566 AggValueSlot::DoesNotNeedGCBarriers, 1567 AggValueSlot::IsNotAliased, 1568 AggValueSlot::DoesNotOverlap)); 1569 } 1570 // constructor returns 'self'. 1571 CodeGenTypes &Types = CGM.getTypes(); 1572 QualType IdTy(CGM.getContext().getObjCIdType()); 1573 llvm::Value *SelfAsId = 1574 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1575 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1576 1577 // Emit .cxx_destruct. 1578 } else { 1579 emitCXXDestructMethod(*this, IMP); 1580 } 1581 FinishFunction(); 1582 } 1583 1584 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1585 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1586 DeclRefExpr DRE(getContext(), Self, 1587 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1588 Self->getType(), VK_LValue, SourceLocation()); 1589 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1590 } 1591 1592 QualType CodeGenFunction::TypeOfSelfObject() { 1593 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1594 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1595 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1596 getContext().getCanonicalType(selfDecl->getType())); 1597 return PTy->getPointeeType(); 1598 } 1599 1600 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1601 llvm::FunctionCallee EnumerationMutationFnPtr = 1602 CGM.getObjCRuntime().EnumerationMutationFunction(); 1603 if (!EnumerationMutationFnPtr) { 1604 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1605 return; 1606 } 1607 CGCallee EnumerationMutationFn = 1608 CGCallee::forDirect(EnumerationMutationFnPtr); 1609 1610 CGDebugInfo *DI = getDebugInfo(); 1611 if (DI) 1612 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1613 1614 RunCleanupsScope ForScope(*this); 1615 1616 // The local variable comes into scope immediately. 1617 AutoVarEmission variable = AutoVarEmission::invalid(); 1618 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1619 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1620 1621 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1622 1623 // Fast enumeration state. 1624 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1625 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1626 EmitNullInitialization(StatePtr, StateTy); 1627 1628 // Number of elements in the items array. 1629 static const unsigned NumItems = 16; 1630 1631 // Fetch the countByEnumeratingWithState:objects:count: selector. 1632 IdentifierInfo *II[] = { 1633 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1634 &CGM.getContext().Idents.get("objects"), 1635 &CGM.getContext().Idents.get("count") 1636 }; 1637 Selector FastEnumSel = 1638 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1639 1640 QualType ItemsTy = 1641 getContext().getConstantArrayType(getContext().getObjCIdType(), 1642 llvm::APInt(32, NumItems), 1643 ArrayType::Normal, 0); 1644 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1645 1646 // Emit the collection pointer. In ARC, we do a retain. 1647 llvm::Value *Collection; 1648 if (getLangOpts().ObjCAutoRefCount) { 1649 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1650 1651 // Enter a cleanup to do the release. 1652 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1653 } else { 1654 Collection = EmitScalarExpr(S.getCollection()); 1655 } 1656 1657 // The 'continue' label needs to appear within the cleanup for the 1658 // collection object. 1659 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1660 1661 // Send it our message: 1662 CallArgList Args; 1663 1664 // The first argument is a temporary of the enumeration-state type. 1665 Args.add(RValue::get(StatePtr.getPointer()), 1666 getContext().getPointerType(StateTy)); 1667 1668 // The second argument is a temporary array with space for NumItems 1669 // pointers. We'll actually be loading elements from the array 1670 // pointer written into the control state; this buffer is so that 1671 // collections that *aren't* backed by arrays can still queue up 1672 // batches of elements. 1673 Args.add(RValue::get(ItemsPtr.getPointer()), 1674 getContext().getPointerType(ItemsTy)); 1675 1676 // The third argument is the capacity of that temporary array. 1677 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1678 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1679 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1680 1681 // Start the enumeration. 1682 RValue CountRV = 1683 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1684 getContext().getNSUIntegerType(), 1685 FastEnumSel, Collection, Args); 1686 1687 // The initial number of objects that were returned in the buffer. 1688 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1689 1690 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1691 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1692 1693 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1694 1695 // If the limit pointer was zero to begin with, the collection is 1696 // empty; skip all this. Set the branch weight assuming this has the same 1697 // probability of exiting the loop as any other loop exit. 1698 uint64_t EntryCount = getCurrentProfileCount(); 1699 Builder.CreateCondBr( 1700 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1701 LoopInitBB, 1702 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1703 1704 // Otherwise, initialize the loop. 1705 EmitBlock(LoopInitBB); 1706 1707 // Save the initial mutations value. This is the value at an 1708 // address that was written into the state object by 1709 // countByEnumeratingWithState:objects:count:. 1710 Address StateMutationsPtrPtr = 1711 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1712 llvm::Value *StateMutationsPtr 1713 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1714 1715 llvm::Value *initialMutations = 1716 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1717 "forcoll.initial-mutations"); 1718 1719 // Start looping. This is the point we return to whenever we have a 1720 // fresh, non-empty batch of objects. 1721 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1722 EmitBlock(LoopBodyBB); 1723 1724 // The current index into the buffer. 1725 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1726 index->addIncoming(zero, LoopInitBB); 1727 1728 // The current buffer size. 1729 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1730 count->addIncoming(initialBufferLimit, LoopInitBB); 1731 1732 incrementProfileCounter(&S); 1733 1734 // Check whether the mutations value has changed from where it was 1735 // at start. StateMutationsPtr should actually be invariant between 1736 // refreshes. 1737 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1738 llvm::Value *currentMutations 1739 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1740 "statemutations"); 1741 1742 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1743 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1744 1745 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1746 WasNotMutatedBB, WasMutatedBB); 1747 1748 // If so, call the enumeration-mutation function. 1749 EmitBlock(WasMutatedBB); 1750 llvm::Value *V = 1751 Builder.CreateBitCast(Collection, 1752 ConvertType(getContext().getObjCIdType())); 1753 CallArgList Args2; 1754 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1755 // FIXME: We shouldn't need to get the function info here, the runtime already 1756 // should have computed it to build the function. 1757 EmitCall( 1758 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1759 EnumerationMutationFn, ReturnValueSlot(), Args2); 1760 1761 // Otherwise, or if the mutation function returns, just continue. 1762 EmitBlock(WasNotMutatedBB); 1763 1764 // Initialize the element variable. 1765 RunCleanupsScope elementVariableScope(*this); 1766 bool elementIsVariable; 1767 LValue elementLValue; 1768 QualType elementType; 1769 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1770 // Initialize the variable, in case it's a __block variable or something. 1771 EmitAutoVarInit(variable); 1772 1773 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl()); 1774 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false, 1775 D->getType(), VK_LValue, SourceLocation()); 1776 elementLValue = EmitLValue(&tempDRE); 1777 elementType = D->getType(); 1778 elementIsVariable = true; 1779 1780 if (D->isARCPseudoStrong()) 1781 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1782 } else { 1783 elementLValue = LValue(); // suppress warning 1784 elementType = cast<Expr>(S.getElement())->getType(); 1785 elementIsVariable = false; 1786 } 1787 llvm::Type *convertedElementType = ConvertType(elementType); 1788 1789 // Fetch the buffer out of the enumeration state. 1790 // TODO: this pointer should actually be invariant between 1791 // refreshes, which would help us do certain loop optimizations. 1792 Address StateItemsPtr = 1793 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1794 llvm::Value *EnumStateItems = 1795 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1796 1797 // Fetch the value at the current index from the buffer. 1798 llvm::Value *CurrentItemPtr = 1799 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1800 llvm::Value *CurrentItem = 1801 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1802 1803 // Cast that value to the right type. 1804 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1805 "currentitem"); 1806 1807 // Make sure we have an l-value. Yes, this gets evaluated every 1808 // time through the loop. 1809 if (!elementIsVariable) { 1810 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1811 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1812 } else { 1813 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1814 /*isInit*/ true); 1815 } 1816 1817 // If we do have an element variable, this assignment is the end of 1818 // its initialization. 1819 if (elementIsVariable) 1820 EmitAutoVarCleanups(variable); 1821 1822 // Perform the loop body, setting up break and continue labels. 1823 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1824 { 1825 RunCleanupsScope Scope(*this); 1826 EmitStmt(S.getBody()); 1827 } 1828 BreakContinueStack.pop_back(); 1829 1830 // Destroy the element variable now. 1831 elementVariableScope.ForceCleanup(); 1832 1833 // Check whether there are more elements. 1834 EmitBlock(AfterBody.getBlock()); 1835 1836 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1837 1838 // First we check in the local buffer. 1839 llvm::Value *indexPlusOne = 1840 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 1841 1842 // If we haven't overrun the buffer yet, we can continue. 1843 // Set the branch weights based on the simplifying assumption that this is 1844 // like a while-loop, i.e., ignoring that the false branch fetches more 1845 // elements and then returns to the loop. 1846 Builder.CreateCondBr( 1847 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1848 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1849 1850 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1851 count->addIncoming(count, AfterBody.getBlock()); 1852 1853 // Otherwise, we have to fetch more elements. 1854 EmitBlock(FetchMoreBB); 1855 1856 CountRV = 1857 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1858 getContext().getNSUIntegerType(), 1859 FastEnumSel, Collection, Args); 1860 1861 // If we got a zero count, we're done. 1862 llvm::Value *refetchCount = CountRV.getScalarVal(); 1863 1864 // (note that the message send might split FetchMoreBB) 1865 index->addIncoming(zero, Builder.GetInsertBlock()); 1866 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1867 1868 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1869 EmptyBB, LoopBodyBB); 1870 1871 // No more elements. 1872 EmitBlock(EmptyBB); 1873 1874 if (!elementIsVariable) { 1875 // If the element was not a declaration, set it to be null. 1876 1877 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1878 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1879 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1880 } 1881 1882 if (DI) 1883 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1884 1885 ForScope.ForceCleanup(); 1886 EmitBlock(LoopEnd.getBlock()); 1887 } 1888 1889 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1890 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1891 } 1892 1893 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1894 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1895 } 1896 1897 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1898 const ObjCAtSynchronizedStmt &S) { 1899 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1900 } 1901 1902 namespace { 1903 struct CallObjCRelease final : EHScopeStack::Cleanup { 1904 CallObjCRelease(llvm::Value *object) : object(object) {} 1905 llvm::Value *object; 1906 1907 void Emit(CodeGenFunction &CGF, Flags flags) override { 1908 // Releases at the end of the full-expression are imprecise. 1909 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1910 } 1911 }; 1912 } 1913 1914 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1915 /// release at the end of the full-expression. 1916 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1917 llvm::Value *object) { 1918 // If we're in a conditional branch, we need to make the cleanup 1919 // conditional. 1920 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1921 return object; 1922 } 1923 1924 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1925 llvm::Value *value) { 1926 return EmitARCRetainAutorelease(type, value); 1927 } 1928 1929 /// Given a number of pointers, inform the optimizer that they're 1930 /// being intrinsically used up until this point in the program. 1931 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1932 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use; 1933 if (!fn) 1934 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use); 1935 1936 // This isn't really a "runtime" function, but as an intrinsic it 1937 // doesn't really matter as long as we align things up. 1938 EmitNounwindRuntimeCall(fn, values); 1939 } 1940 1941 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) { 1942 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 1943 // If the target runtime doesn't naturally support ARC, emit weak 1944 // references to the runtime support library. We don't really 1945 // permit this to fail, but we need a particular relocation style. 1946 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 1947 !CGM.getTriple().isOSBinFormatCOFF()) { 1948 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1949 } 1950 } 1951 } 1952 1953 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, 1954 llvm::FunctionCallee RTF) { 1955 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee()); 1956 } 1957 1958 /// Perform an operation having the signature 1959 /// i8* (i8*) 1960 /// where a null input causes a no-op and returns null. 1961 static llvm::Value *emitARCValueOperation( 1962 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, 1963 llvm::Function *&fn, llvm::Intrinsic::ID IntID, 1964 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) { 1965 if (isa<llvm::ConstantPointerNull>(value)) 1966 return value; 1967 1968 if (!fn) { 1969 fn = CGF.CGM.getIntrinsic(IntID); 1970 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 1971 } 1972 1973 // Cast the argument to 'id'. 1974 llvm::Type *origType = returnType ? returnType : value->getType(); 1975 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1976 1977 // Call the function. 1978 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1979 call->setTailCallKind(tailKind); 1980 1981 // Cast the result back to the original type. 1982 return CGF.Builder.CreateBitCast(call, origType); 1983 } 1984 1985 /// Perform an operation having the following signature: 1986 /// i8* (i8**) 1987 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr, 1988 llvm::Function *&fn, 1989 llvm::Intrinsic::ID IntID) { 1990 if (!fn) { 1991 fn = CGF.CGM.getIntrinsic(IntID); 1992 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 1993 } 1994 1995 // Cast the argument to 'id*'. 1996 llvm::Type *origType = addr.getElementType(); 1997 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1998 1999 // Call the function. 2000 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 2001 2002 // Cast the result back to a dereference of the original type. 2003 if (origType != CGF.Int8PtrTy) 2004 result = CGF.Builder.CreateBitCast(result, origType); 2005 2006 return result; 2007 } 2008 2009 /// Perform an operation having the following signature: 2010 /// i8* (i8**, i8*) 2011 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr, 2012 llvm::Value *value, 2013 llvm::Function *&fn, 2014 llvm::Intrinsic::ID IntID, 2015 bool ignored) { 2016 assert(addr.getElementType() == value->getType()); 2017 2018 if (!fn) { 2019 fn = CGF.CGM.getIntrinsic(IntID); 2020 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2021 } 2022 2023 llvm::Type *origType = value->getType(); 2024 2025 llvm::Value *args[] = { 2026 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 2027 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 2028 }; 2029 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 2030 2031 if (ignored) return nullptr; 2032 2033 return CGF.Builder.CreateBitCast(result, origType); 2034 } 2035 2036 /// Perform an operation having the following signature: 2037 /// void (i8**, i8**) 2038 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, 2039 llvm::Function *&fn, 2040 llvm::Intrinsic::ID IntID) { 2041 assert(dst.getType() == src.getType()); 2042 2043 if (!fn) { 2044 fn = CGF.CGM.getIntrinsic(IntID); 2045 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2046 } 2047 2048 llvm::Value *args[] = { 2049 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 2050 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 2051 }; 2052 CGF.EmitNounwindRuntimeCall(fn, args); 2053 } 2054 2055 /// Perform an operation having the signature 2056 /// i8* (i8*) 2057 /// where a null input causes a no-op and returns null. 2058 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, 2059 llvm::Value *value, 2060 llvm::Type *returnType, 2061 llvm::FunctionCallee &fn, 2062 StringRef fnName) { 2063 if (isa<llvm::ConstantPointerNull>(value)) 2064 return value; 2065 2066 if (!fn) { 2067 llvm::FunctionType *fnType = 2068 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 2069 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName); 2070 2071 // We have Native ARC, so set nonlazybind attribute for performance 2072 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2073 if (fnName == "objc_retain") 2074 f->addFnAttr(llvm::Attribute::NonLazyBind); 2075 } 2076 2077 // Cast the argument to 'id'. 2078 llvm::Type *origType = returnType ? returnType : value->getType(); 2079 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2080 2081 // Call the function. 2082 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value); 2083 2084 // Cast the result back to the original type. 2085 return CGF.Builder.CreateBitCast(Inst, origType); 2086 } 2087 2088 /// Produce the code to do a retain. Based on the type, calls one of: 2089 /// call i8* \@objc_retain(i8* %value) 2090 /// call i8* \@objc_retainBlock(i8* %value) 2091 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 2092 if (type->isBlockPointerType()) 2093 return EmitARCRetainBlock(value, /*mandatory*/ false); 2094 else 2095 return EmitARCRetainNonBlock(value); 2096 } 2097 2098 /// Retain the given object, with normal retain semantics. 2099 /// call i8* \@objc_retain(i8* %value) 2100 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 2101 return emitARCValueOperation(*this, value, nullptr, 2102 CGM.getObjCEntrypoints().objc_retain, 2103 llvm::Intrinsic::objc_retain); 2104 } 2105 2106 /// Retain the given block, with _Block_copy semantics. 2107 /// call i8* \@objc_retainBlock(i8* %value) 2108 /// 2109 /// \param mandatory - If false, emit the call with metadata 2110 /// indicating that it's okay for the optimizer to eliminate this call 2111 /// if it can prove that the block never escapes except down the stack. 2112 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 2113 bool mandatory) { 2114 llvm::Value *result 2115 = emitARCValueOperation(*this, value, nullptr, 2116 CGM.getObjCEntrypoints().objc_retainBlock, 2117 llvm::Intrinsic::objc_retainBlock); 2118 2119 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 2120 // tell the optimizer that it doesn't need to do this copy if the 2121 // block doesn't escape, where being passed as an argument doesn't 2122 // count as escaping. 2123 if (!mandatory && isa<llvm::Instruction>(result)) { 2124 llvm::CallInst *call 2125 = cast<llvm::CallInst>(result->stripPointerCasts()); 2126 assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock); 2127 2128 call->setMetadata("clang.arc.copy_on_escape", 2129 llvm::MDNode::get(Builder.getContext(), None)); 2130 } 2131 2132 return result; 2133 } 2134 2135 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 2136 // Fetch the void(void) inline asm which marks that we're going to 2137 // do something with the autoreleased return value. 2138 llvm::InlineAsm *&marker 2139 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2140 if (!marker) { 2141 StringRef assembly 2142 = CGF.CGM.getTargetCodeGenInfo() 2143 .getARCRetainAutoreleasedReturnValueMarker(); 2144 2145 // If we have an empty assembly string, there's nothing to do. 2146 if (assembly.empty()) { 2147 2148 // Otherwise, at -O0, build an inline asm that we're going to call 2149 // in a moment. 2150 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2151 llvm::FunctionType *type = 2152 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2153 2154 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2155 2156 // If we're at -O1 and above, we don't want to litter the code 2157 // with this marker yet, so leave a breadcrumb for the ARC 2158 // optimizer to pick up. 2159 } else { 2160 const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker"; 2161 if (!CGF.CGM.getModule().getModuleFlag(markerKey)) { 2162 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly); 2163 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str); 2164 } 2165 } 2166 } 2167 2168 // Call the marker asm if we made one, which we do only at -O0. 2169 if (marker) 2170 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker)); 2171 } 2172 2173 /// Retain the given object which is the result of a function call. 2174 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2175 /// 2176 /// Yes, this function name is one character away from a different 2177 /// call with completely different semantics. 2178 llvm::Value * 2179 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2180 emitAutoreleasedReturnValueMarker(*this); 2181 llvm::CallInst::TailCallKind tailKind = 2182 CGM.getTargetCodeGenInfo() 2183 .shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() 2184 ? llvm::CallInst::TCK_NoTail 2185 : llvm::CallInst::TCK_None; 2186 return emitARCValueOperation( 2187 *this, value, nullptr, 2188 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, 2189 llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind); 2190 } 2191 2192 /// Claim a possibly-autoreleased return value at +0. This is only 2193 /// valid to do in contexts which do not rely on the retain to keep 2194 /// the object valid for all of its uses; for example, when 2195 /// the value is ignored, or when it is being assigned to an 2196 /// __unsafe_unretained variable. 2197 /// 2198 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2199 llvm::Value * 2200 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2201 emitAutoreleasedReturnValueMarker(*this); 2202 return emitARCValueOperation(*this, value, nullptr, 2203 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, 2204 llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue); 2205 } 2206 2207 /// Release the given object. 2208 /// call void \@objc_release(i8* %value) 2209 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2210 ARCPreciseLifetime_t precise) { 2211 if (isa<llvm::ConstantPointerNull>(value)) return; 2212 2213 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release; 2214 if (!fn) { 2215 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release); 2216 setARCRuntimeFunctionLinkage(CGM, fn); 2217 } 2218 2219 // Cast the argument to 'id'. 2220 value = Builder.CreateBitCast(value, Int8PtrTy); 2221 2222 // Call objc_release. 2223 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2224 2225 if (precise == ARCImpreciseLifetime) { 2226 call->setMetadata("clang.imprecise_release", 2227 llvm::MDNode::get(Builder.getContext(), None)); 2228 } 2229 } 2230 2231 /// Destroy a __strong variable. 2232 /// 2233 /// At -O0, emit a call to store 'null' into the address; 2234 /// instrumenting tools prefer this because the address is exposed, 2235 /// but it's relatively cumbersome to optimize. 2236 /// 2237 /// At -O1 and above, just load and call objc_release. 2238 /// 2239 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2240 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2241 ARCPreciseLifetime_t precise) { 2242 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2243 llvm::Value *null = getNullForVariable(addr); 2244 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2245 return; 2246 } 2247 2248 llvm::Value *value = Builder.CreateLoad(addr); 2249 EmitARCRelease(value, precise); 2250 } 2251 2252 /// Store into a strong object. Always calls this: 2253 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2254 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2255 llvm::Value *value, 2256 bool ignored) { 2257 assert(addr.getElementType() == value->getType()); 2258 2259 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2260 if (!fn) { 2261 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong); 2262 setARCRuntimeFunctionLinkage(CGM, fn); 2263 } 2264 2265 llvm::Value *args[] = { 2266 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2267 Builder.CreateBitCast(value, Int8PtrTy) 2268 }; 2269 EmitNounwindRuntimeCall(fn, args); 2270 2271 if (ignored) return nullptr; 2272 return value; 2273 } 2274 2275 /// Store into a strong object. Sometimes calls this: 2276 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2277 /// Other times, breaks it down into components. 2278 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2279 llvm::Value *newValue, 2280 bool ignored) { 2281 QualType type = dst.getType(); 2282 bool isBlock = type->isBlockPointerType(); 2283 2284 // Use a store barrier at -O0 unless this is a block type or the 2285 // lvalue is inadequately aligned. 2286 if (shouldUseFusedARCCalls() && 2287 !isBlock && 2288 (dst.getAlignment().isZero() || 2289 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2290 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2291 } 2292 2293 // Otherwise, split it out. 2294 2295 // Retain the new value. 2296 newValue = EmitARCRetain(type, newValue); 2297 2298 // Read the old value. 2299 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2300 2301 // Store. We do this before the release so that any deallocs won't 2302 // see the old value. 2303 EmitStoreOfScalar(newValue, dst); 2304 2305 // Finally, release the old value. 2306 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2307 2308 return newValue; 2309 } 2310 2311 /// Autorelease the given object. 2312 /// call i8* \@objc_autorelease(i8* %value) 2313 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2314 return emitARCValueOperation(*this, value, nullptr, 2315 CGM.getObjCEntrypoints().objc_autorelease, 2316 llvm::Intrinsic::objc_autorelease); 2317 } 2318 2319 /// Autorelease the given object. 2320 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2321 llvm::Value * 2322 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2323 return emitARCValueOperation(*this, value, nullptr, 2324 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2325 llvm::Intrinsic::objc_autoreleaseReturnValue, 2326 llvm::CallInst::TCK_Tail); 2327 } 2328 2329 /// Do a fused retain/autorelease of the given object. 2330 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2331 llvm::Value * 2332 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2333 return emitARCValueOperation(*this, value, nullptr, 2334 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2335 llvm::Intrinsic::objc_retainAutoreleaseReturnValue, 2336 llvm::CallInst::TCK_Tail); 2337 } 2338 2339 /// Do a fused retain/autorelease of the given object. 2340 /// call i8* \@objc_retainAutorelease(i8* %value) 2341 /// or 2342 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2343 /// call i8* \@objc_autorelease(i8* %retain) 2344 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2345 llvm::Value *value) { 2346 if (!type->isBlockPointerType()) 2347 return EmitARCRetainAutoreleaseNonBlock(value); 2348 2349 if (isa<llvm::ConstantPointerNull>(value)) return value; 2350 2351 llvm::Type *origType = value->getType(); 2352 value = Builder.CreateBitCast(value, Int8PtrTy); 2353 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2354 value = EmitARCAutorelease(value); 2355 return Builder.CreateBitCast(value, origType); 2356 } 2357 2358 /// Do a fused retain/autorelease of the given object. 2359 /// call i8* \@objc_retainAutorelease(i8* %value) 2360 llvm::Value * 2361 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2362 return emitARCValueOperation(*this, value, nullptr, 2363 CGM.getObjCEntrypoints().objc_retainAutorelease, 2364 llvm::Intrinsic::objc_retainAutorelease); 2365 } 2366 2367 /// i8* \@objc_loadWeak(i8** %addr) 2368 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2369 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2370 return emitARCLoadOperation(*this, addr, 2371 CGM.getObjCEntrypoints().objc_loadWeak, 2372 llvm::Intrinsic::objc_loadWeak); 2373 } 2374 2375 /// i8* \@objc_loadWeakRetained(i8** %addr) 2376 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2377 return emitARCLoadOperation(*this, addr, 2378 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2379 llvm::Intrinsic::objc_loadWeakRetained); 2380 } 2381 2382 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2383 /// Returns %value. 2384 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2385 llvm::Value *value, 2386 bool ignored) { 2387 return emitARCStoreOperation(*this, addr, value, 2388 CGM.getObjCEntrypoints().objc_storeWeak, 2389 llvm::Intrinsic::objc_storeWeak, ignored); 2390 } 2391 2392 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2393 /// Returns %value. %addr is known to not have a current weak entry. 2394 /// Essentially equivalent to: 2395 /// *addr = nil; objc_storeWeak(addr, value); 2396 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2397 // If we're initializing to null, just write null to memory; no need 2398 // to get the runtime involved. But don't do this if optimization 2399 // is enabled, because accounting for this would make the optimizer 2400 // much more complicated. 2401 if (isa<llvm::ConstantPointerNull>(value) && 2402 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2403 Builder.CreateStore(value, addr); 2404 return; 2405 } 2406 2407 emitARCStoreOperation(*this, addr, value, 2408 CGM.getObjCEntrypoints().objc_initWeak, 2409 llvm::Intrinsic::objc_initWeak, /*ignored*/ true); 2410 } 2411 2412 /// void \@objc_destroyWeak(i8** %addr) 2413 /// Essentially objc_storeWeak(addr, nil). 2414 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2415 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2416 if (!fn) { 2417 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak); 2418 setARCRuntimeFunctionLinkage(CGM, fn); 2419 } 2420 2421 // Cast the argument to 'id*'. 2422 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2423 2424 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2425 } 2426 2427 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2428 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2429 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2430 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2431 emitARCCopyOperation(*this, dst, src, 2432 CGM.getObjCEntrypoints().objc_moveWeak, 2433 llvm::Intrinsic::objc_moveWeak); 2434 } 2435 2436 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2437 /// Disregards the current value in %dest. Essentially 2438 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2439 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2440 emitARCCopyOperation(*this, dst, src, 2441 CGM.getObjCEntrypoints().objc_copyWeak, 2442 llvm::Intrinsic::objc_copyWeak); 2443 } 2444 2445 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, 2446 Address SrcAddr) { 2447 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2448 Object = EmitObjCConsumeObject(Ty, Object); 2449 EmitARCStoreWeak(DstAddr, Object, false); 2450 } 2451 2452 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, 2453 Address SrcAddr) { 2454 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2455 Object = EmitObjCConsumeObject(Ty, Object); 2456 EmitARCStoreWeak(DstAddr, Object, false); 2457 EmitARCDestroyWeak(SrcAddr); 2458 } 2459 2460 /// Produce the code to do a objc_autoreleasepool_push. 2461 /// call i8* \@objc_autoreleasePoolPush(void) 2462 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2463 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2464 if (!fn) { 2465 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush); 2466 setARCRuntimeFunctionLinkage(CGM, fn); 2467 } 2468 2469 return EmitNounwindRuntimeCall(fn); 2470 } 2471 2472 /// Produce the code to do a primitive release. 2473 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2474 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2475 assert(value->getType() == Int8PtrTy); 2476 2477 if (getInvokeDest()) { 2478 // Call the runtime method not the intrinsic if we are handling exceptions 2479 llvm::FunctionCallee &fn = 2480 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; 2481 if (!fn) { 2482 llvm::FunctionType *fnType = 2483 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2484 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop"); 2485 setARCRuntimeFunctionLinkage(CGM, fn); 2486 } 2487 2488 // objc_autoreleasePoolPop can throw. 2489 EmitRuntimeCallOrInvoke(fn, value); 2490 } else { 2491 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2492 if (!fn) { 2493 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop); 2494 setARCRuntimeFunctionLinkage(CGM, fn); 2495 } 2496 2497 EmitRuntimeCall(fn, value); 2498 } 2499 } 2500 2501 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2502 /// Which is: [[NSAutoreleasePool alloc] init]; 2503 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2504 /// init is declared as: - (id) init; in its NSObject super class. 2505 /// 2506 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2507 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2508 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2509 // [NSAutoreleasePool alloc] 2510 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2511 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2512 CallArgList Args; 2513 RValue AllocRV = 2514 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2515 getContext().getObjCIdType(), 2516 AllocSel, Receiver, Args); 2517 2518 // [Receiver init] 2519 Receiver = AllocRV.getScalarVal(); 2520 II = &CGM.getContext().Idents.get("init"); 2521 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2522 RValue InitRV = 2523 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2524 getContext().getObjCIdType(), 2525 InitSel, Receiver, Args); 2526 return InitRV.getScalarVal(); 2527 } 2528 2529 /// Allocate the given objc object. 2530 /// call i8* \@objc_alloc(i8* %value) 2531 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, 2532 llvm::Type *resultType) { 2533 return emitObjCValueOperation(*this, value, resultType, 2534 CGM.getObjCEntrypoints().objc_alloc, 2535 "objc_alloc"); 2536 } 2537 2538 /// Allocate the given objc object. 2539 /// call i8* \@objc_allocWithZone(i8* %value) 2540 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, 2541 llvm::Type *resultType) { 2542 return emitObjCValueOperation(*this, value, resultType, 2543 CGM.getObjCEntrypoints().objc_allocWithZone, 2544 "objc_allocWithZone"); 2545 } 2546 2547 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value, 2548 llvm::Type *resultType) { 2549 return emitObjCValueOperation(*this, value, resultType, 2550 CGM.getObjCEntrypoints().objc_alloc_init, 2551 "objc_alloc_init"); 2552 } 2553 2554 /// Produce the code to do a primitive release. 2555 /// [tmp drain]; 2556 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2557 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2558 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2559 CallArgList Args; 2560 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2561 getContext().VoidTy, DrainSel, Arg, Args); 2562 } 2563 2564 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2565 Address addr, 2566 QualType type) { 2567 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2568 } 2569 2570 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2571 Address addr, 2572 QualType type) { 2573 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2574 } 2575 2576 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2577 Address addr, 2578 QualType type) { 2579 CGF.EmitARCDestroyWeak(addr); 2580 } 2581 2582 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2583 QualType type) { 2584 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2585 CGF.EmitARCIntrinsicUse(value); 2586 } 2587 2588 /// Autorelease the given object. 2589 /// call i8* \@objc_autorelease(i8* %value) 2590 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value, 2591 llvm::Type *returnType) { 2592 return emitObjCValueOperation( 2593 *this, value, returnType, 2594 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction, 2595 "objc_autorelease"); 2596 } 2597 2598 /// Retain the given object, with normal retain semantics. 2599 /// call i8* \@objc_retain(i8* %value) 2600 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value, 2601 llvm::Type *returnType) { 2602 return emitObjCValueOperation( 2603 *this, value, returnType, 2604 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain"); 2605 } 2606 2607 /// Release the given object. 2608 /// call void \@objc_release(i8* %value) 2609 void CodeGenFunction::EmitObjCRelease(llvm::Value *value, 2610 ARCPreciseLifetime_t precise) { 2611 if (isa<llvm::ConstantPointerNull>(value)) return; 2612 2613 llvm::FunctionCallee &fn = 2614 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction; 2615 if (!fn) { 2616 llvm::FunctionType *fnType = 2617 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2618 fn = CGM.CreateRuntimeFunction(fnType, "objc_release"); 2619 setARCRuntimeFunctionLinkage(CGM, fn); 2620 // We have Native ARC, so set nonlazybind attribute for performance 2621 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2622 f->addFnAttr(llvm::Attribute::NonLazyBind); 2623 } 2624 2625 // Cast the argument to 'id'. 2626 value = Builder.CreateBitCast(value, Int8PtrTy); 2627 2628 // Call objc_release. 2629 llvm::CallBase *call = EmitCallOrInvoke(fn, value); 2630 2631 if (precise == ARCImpreciseLifetime) { 2632 call->setMetadata("clang.imprecise_release", 2633 llvm::MDNode::get(Builder.getContext(), None)); 2634 } 2635 } 2636 2637 namespace { 2638 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2639 llvm::Value *Token; 2640 2641 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2642 2643 void Emit(CodeGenFunction &CGF, Flags flags) override { 2644 CGF.EmitObjCAutoreleasePoolPop(Token); 2645 } 2646 }; 2647 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2648 llvm::Value *Token; 2649 2650 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2651 2652 void Emit(CodeGenFunction &CGF, Flags flags) override { 2653 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2654 } 2655 }; 2656 } 2657 2658 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2659 if (CGM.getLangOpts().ObjCAutoRefCount) 2660 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2661 else 2662 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2663 } 2664 2665 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { 2666 switch (lifetime) { 2667 case Qualifiers::OCL_None: 2668 case Qualifiers::OCL_ExplicitNone: 2669 case Qualifiers::OCL_Strong: 2670 case Qualifiers::OCL_Autoreleasing: 2671 return true; 2672 2673 case Qualifiers::OCL_Weak: 2674 return false; 2675 } 2676 2677 llvm_unreachable("impossible lifetime!"); 2678 } 2679 2680 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2681 LValue lvalue, 2682 QualType type) { 2683 llvm::Value *result; 2684 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime()); 2685 if (shouldRetain) { 2686 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal(); 2687 } else { 2688 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); 2689 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress()); 2690 } 2691 return TryEmitResult(result, !shouldRetain); 2692 } 2693 2694 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2695 const Expr *e) { 2696 e = e->IgnoreParens(); 2697 QualType type = e->getType(); 2698 2699 // If we're loading retained from a __strong xvalue, we can avoid 2700 // an extra retain/release pair by zeroing out the source of this 2701 // "move" operation. 2702 if (e->isXValue() && 2703 !type.isConstQualified() && 2704 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2705 // Emit the lvalue. 2706 LValue lv = CGF.EmitLValue(e); 2707 2708 // Load the object pointer. 2709 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2710 SourceLocation()).getScalarVal(); 2711 2712 // Set the source pointer to NULL. 2713 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2714 2715 return TryEmitResult(result, true); 2716 } 2717 2718 // As a very special optimization, in ARC++, if the l-value is the 2719 // result of a non-volatile assignment, do a simple retain of the 2720 // result of the call to objc_storeWeak instead of reloading. 2721 if (CGF.getLangOpts().CPlusPlus && 2722 !type.isVolatileQualified() && 2723 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2724 isa<BinaryOperator>(e) && 2725 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2726 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2727 2728 // Try to emit code for scalar constant instead of emitting LValue and 2729 // loading it because we are not guaranteed to have an l-value. One of such 2730 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. 2731 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) { 2732 auto *DRE = const_cast<DeclRefExpr *>(decl_expr); 2733 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE)) 2734 return TryEmitResult(CGF.emitScalarConstant(constant, DRE), 2735 !shouldRetainObjCLifetime(type.getObjCLifetime())); 2736 } 2737 2738 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2739 } 2740 2741 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2742 llvm::Value *value)> 2743 ValueTransform; 2744 2745 /// Insert code immediately after a call. 2746 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2747 llvm::Value *value, 2748 ValueTransform doAfterCall, 2749 ValueTransform doFallback) { 2750 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2751 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2752 2753 // Place the retain immediately following the call. 2754 CGF.Builder.SetInsertPoint(call->getParent(), 2755 ++llvm::BasicBlock::iterator(call)); 2756 value = doAfterCall(CGF, value); 2757 2758 CGF.Builder.restoreIP(ip); 2759 return value; 2760 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2761 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2762 2763 // Place the retain at the beginning of the normal destination block. 2764 llvm::BasicBlock *BB = invoke->getNormalDest(); 2765 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2766 value = doAfterCall(CGF, value); 2767 2768 CGF.Builder.restoreIP(ip); 2769 return value; 2770 2771 // Bitcasts can arise because of related-result returns. Rewrite 2772 // the operand. 2773 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2774 llvm::Value *operand = bitcast->getOperand(0); 2775 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2776 bitcast->setOperand(0, operand); 2777 return bitcast; 2778 2779 // Generic fall-back case. 2780 } else { 2781 // Retain using the non-block variant: we never need to do a copy 2782 // of a block that's been returned to us. 2783 return doFallback(CGF, value); 2784 } 2785 } 2786 2787 /// Given that the given expression is some sort of call (which does 2788 /// not return retained), emit a retain following it. 2789 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2790 const Expr *e) { 2791 llvm::Value *value = CGF.EmitScalarExpr(e); 2792 return emitARCOperationAfterCall(CGF, value, 2793 [](CodeGenFunction &CGF, llvm::Value *value) { 2794 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2795 }, 2796 [](CodeGenFunction &CGF, llvm::Value *value) { 2797 return CGF.EmitARCRetainNonBlock(value); 2798 }); 2799 } 2800 2801 /// Given that the given expression is some sort of call (which does 2802 /// not return retained), perform an unsafeClaim following it. 2803 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 2804 const Expr *e) { 2805 llvm::Value *value = CGF.EmitScalarExpr(e); 2806 return emitARCOperationAfterCall(CGF, value, 2807 [](CodeGenFunction &CGF, llvm::Value *value) { 2808 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 2809 }, 2810 [](CodeGenFunction &CGF, llvm::Value *value) { 2811 return value; 2812 }); 2813 } 2814 2815 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 2816 bool allowUnsafeClaim) { 2817 if (allowUnsafeClaim && 2818 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 2819 return emitARCUnsafeClaimCallResult(*this, E); 2820 } else { 2821 llvm::Value *value = emitARCRetainCallResult(*this, E); 2822 return EmitObjCConsumeObject(E->getType(), value); 2823 } 2824 } 2825 2826 /// Determine whether it might be important to emit a separate 2827 /// objc_retain_block on the result of the given expression, or 2828 /// whether it's okay to just emit it in a +1 context. 2829 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2830 assert(e->getType()->isBlockPointerType()); 2831 e = e->IgnoreParens(); 2832 2833 // For future goodness, emit block expressions directly in +1 2834 // contexts if we can. 2835 if (isa<BlockExpr>(e)) 2836 return false; 2837 2838 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2839 switch (cast->getCastKind()) { 2840 // Emitting these operations in +1 contexts is goodness. 2841 case CK_LValueToRValue: 2842 case CK_ARCReclaimReturnedObject: 2843 case CK_ARCConsumeObject: 2844 case CK_ARCProduceObject: 2845 return false; 2846 2847 // These operations preserve a block type. 2848 case CK_NoOp: 2849 case CK_BitCast: 2850 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2851 2852 // These operations are known to be bad (or haven't been considered). 2853 case CK_AnyPointerToBlockPointerCast: 2854 default: 2855 return true; 2856 } 2857 } 2858 2859 return true; 2860 } 2861 2862 namespace { 2863 /// A CRTP base class for emitting expressions of retainable object 2864 /// pointer type in ARC. 2865 template <typename Impl, typename Result> class ARCExprEmitter { 2866 protected: 2867 CodeGenFunction &CGF; 2868 Impl &asImpl() { return *static_cast<Impl*>(this); } 2869 2870 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 2871 2872 public: 2873 Result visit(const Expr *e); 2874 Result visitCastExpr(const CastExpr *e); 2875 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 2876 Result visitBlockExpr(const BlockExpr *e); 2877 Result visitBinaryOperator(const BinaryOperator *e); 2878 Result visitBinAssign(const BinaryOperator *e); 2879 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 2880 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 2881 Result visitBinAssignWeak(const BinaryOperator *e); 2882 Result visitBinAssignStrong(const BinaryOperator *e); 2883 2884 // Minimal implementation: 2885 // Result visitLValueToRValue(const Expr *e) 2886 // Result visitConsumeObject(const Expr *e) 2887 // Result visitExtendBlockObject(const Expr *e) 2888 // Result visitReclaimReturnedObject(const Expr *e) 2889 // Result visitCall(const Expr *e) 2890 // Result visitExpr(const Expr *e) 2891 // 2892 // Result emitBitCast(Result result, llvm::Type *resultType) 2893 // llvm::Value *getValueOfResult(Result result) 2894 }; 2895 } 2896 2897 /// Try to emit a PseudoObjectExpr under special ARC rules. 2898 /// 2899 /// This massively duplicates emitPseudoObjectRValue. 2900 template <typename Impl, typename Result> 2901 Result 2902 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 2903 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2904 2905 // Find the result expression. 2906 const Expr *resultExpr = E->getResultExpr(); 2907 assert(resultExpr); 2908 Result result; 2909 2910 for (PseudoObjectExpr::const_semantics_iterator 2911 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2912 const Expr *semantic = *i; 2913 2914 // If this semantic expression is an opaque value, bind it 2915 // to the result of its source expression. 2916 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2917 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2918 OVMA opaqueData; 2919 2920 // If this semantic is the result of the pseudo-object 2921 // expression, try to evaluate the source as +1. 2922 if (ov == resultExpr) { 2923 assert(!OVMA::shouldBindAsLValue(ov)); 2924 result = asImpl().visit(ov->getSourceExpr()); 2925 opaqueData = OVMA::bind(CGF, ov, 2926 RValue::get(asImpl().getValueOfResult(result))); 2927 2928 // Otherwise, just bind it. 2929 } else { 2930 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2931 } 2932 opaques.push_back(opaqueData); 2933 2934 // Otherwise, if the expression is the result, evaluate it 2935 // and remember the result. 2936 } else if (semantic == resultExpr) { 2937 result = asImpl().visit(semantic); 2938 2939 // Otherwise, evaluate the expression in an ignored context. 2940 } else { 2941 CGF.EmitIgnoredExpr(semantic); 2942 } 2943 } 2944 2945 // Unbind all the opaques now. 2946 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2947 opaques[i].unbind(CGF); 2948 2949 return result; 2950 } 2951 2952 template <typename Impl, typename Result> 2953 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) { 2954 // The default implementation just forwards the expression to visitExpr. 2955 return asImpl().visitExpr(e); 2956 } 2957 2958 template <typename Impl, typename Result> 2959 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 2960 switch (e->getCastKind()) { 2961 2962 // No-op casts don't change the type, so we just ignore them. 2963 case CK_NoOp: 2964 return asImpl().visit(e->getSubExpr()); 2965 2966 // These casts can change the type. 2967 case CK_CPointerToObjCPointerCast: 2968 case CK_BlockPointerToObjCPointerCast: 2969 case CK_AnyPointerToBlockPointerCast: 2970 case CK_BitCast: { 2971 llvm::Type *resultType = CGF.ConvertType(e->getType()); 2972 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 2973 Result result = asImpl().visit(e->getSubExpr()); 2974 return asImpl().emitBitCast(result, resultType); 2975 } 2976 2977 // Handle some casts specially. 2978 case CK_LValueToRValue: 2979 return asImpl().visitLValueToRValue(e->getSubExpr()); 2980 case CK_ARCConsumeObject: 2981 return asImpl().visitConsumeObject(e->getSubExpr()); 2982 case CK_ARCExtendBlockObject: 2983 return asImpl().visitExtendBlockObject(e->getSubExpr()); 2984 case CK_ARCReclaimReturnedObject: 2985 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 2986 2987 // Otherwise, use the default logic. 2988 default: 2989 return asImpl().visitExpr(e); 2990 } 2991 } 2992 2993 template <typename Impl, typename Result> 2994 Result 2995 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 2996 switch (e->getOpcode()) { 2997 case BO_Comma: 2998 CGF.EmitIgnoredExpr(e->getLHS()); 2999 CGF.EnsureInsertPoint(); 3000 return asImpl().visit(e->getRHS()); 3001 3002 case BO_Assign: 3003 return asImpl().visitBinAssign(e); 3004 3005 default: 3006 return asImpl().visitExpr(e); 3007 } 3008 } 3009 3010 template <typename Impl, typename Result> 3011 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 3012 switch (e->getLHS()->getType().getObjCLifetime()) { 3013 case Qualifiers::OCL_ExplicitNone: 3014 return asImpl().visitBinAssignUnsafeUnretained(e); 3015 3016 case Qualifiers::OCL_Weak: 3017 return asImpl().visitBinAssignWeak(e); 3018 3019 case Qualifiers::OCL_Autoreleasing: 3020 return asImpl().visitBinAssignAutoreleasing(e); 3021 3022 case Qualifiers::OCL_Strong: 3023 return asImpl().visitBinAssignStrong(e); 3024 3025 case Qualifiers::OCL_None: 3026 return asImpl().visitExpr(e); 3027 } 3028 llvm_unreachable("bad ObjC ownership qualifier"); 3029 } 3030 3031 /// The default rule for __unsafe_unretained emits the RHS recursively, 3032 /// stores into the unsafe variable, and propagates the result outward. 3033 template <typename Impl, typename Result> 3034 Result ARCExprEmitter<Impl,Result>:: 3035 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 3036 // Recursively emit the RHS. 3037 // For __block safety, do this before emitting the LHS. 3038 Result result = asImpl().visit(e->getRHS()); 3039 3040 // Perform the store. 3041 LValue lvalue = 3042 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 3043 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 3044 lvalue); 3045 3046 return result; 3047 } 3048 3049 template <typename Impl, typename Result> 3050 Result 3051 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 3052 return asImpl().visitExpr(e); 3053 } 3054 3055 template <typename Impl, typename Result> 3056 Result 3057 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 3058 return asImpl().visitExpr(e); 3059 } 3060 3061 template <typename Impl, typename Result> 3062 Result 3063 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 3064 return asImpl().visitExpr(e); 3065 } 3066 3067 /// The general expression-emission logic. 3068 template <typename Impl, typename Result> 3069 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 3070 // We should *never* see a nested full-expression here, because if 3071 // we fail to emit at +1, our caller must not retain after we close 3072 // out the full-expression. This isn't as important in the unsafe 3073 // emitter. 3074 assert(!isa<ExprWithCleanups>(e)); 3075 3076 // Look through parens, __extension__, generic selection, etc. 3077 e = e->IgnoreParens(); 3078 3079 // Handle certain kinds of casts. 3080 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 3081 return asImpl().visitCastExpr(ce); 3082 3083 // Handle the comma operator. 3084 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 3085 return asImpl().visitBinaryOperator(op); 3086 3087 // TODO: handle conditional operators here 3088 3089 // For calls and message sends, use the retained-call logic. 3090 // Delegate inits are a special case in that they're the only 3091 // returns-retained expression that *isn't* surrounded by 3092 // a consume. 3093 } else if (isa<CallExpr>(e) || 3094 (isa<ObjCMessageExpr>(e) && 3095 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 3096 return asImpl().visitCall(e); 3097 3098 // Look through pseudo-object expressions. 3099 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 3100 return asImpl().visitPseudoObjectExpr(pseudo); 3101 } else if (auto *be = dyn_cast<BlockExpr>(e)) 3102 return asImpl().visitBlockExpr(be); 3103 3104 return asImpl().visitExpr(e); 3105 } 3106 3107 namespace { 3108 3109 /// An emitter for +1 results. 3110 struct ARCRetainExprEmitter : 3111 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 3112 3113 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3114 3115 llvm::Value *getValueOfResult(TryEmitResult result) { 3116 return result.getPointer(); 3117 } 3118 3119 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 3120 llvm::Value *value = result.getPointer(); 3121 value = CGF.Builder.CreateBitCast(value, resultType); 3122 result.setPointer(value); 3123 return result; 3124 } 3125 3126 TryEmitResult visitLValueToRValue(const Expr *e) { 3127 return tryEmitARCRetainLoadOfScalar(CGF, e); 3128 } 3129 3130 /// For consumptions, just emit the subexpression and thus elide 3131 /// the retain/release pair. 3132 TryEmitResult visitConsumeObject(const Expr *e) { 3133 llvm::Value *result = CGF.EmitScalarExpr(e); 3134 return TryEmitResult(result, true); 3135 } 3136 3137 TryEmitResult visitBlockExpr(const BlockExpr *e) { 3138 TryEmitResult result = visitExpr(e); 3139 // Avoid the block-retain if this is a block literal that doesn't need to be 3140 // copied to the heap. 3141 if (e->getBlockDecl()->canAvoidCopyToHeap()) 3142 result.setInt(true); 3143 return result; 3144 } 3145 3146 /// Block extends are net +0. Naively, we could just recurse on 3147 /// the subexpression, but actually we need to ensure that the 3148 /// value is copied as a block, so there's a little filter here. 3149 TryEmitResult visitExtendBlockObject(const Expr *e) { 3150 llvm::Value *result; // will be a +0 value 3151 3152 // If we can't safely assume the sub-expression will produce a 3153 // block-copied value, emit the sub-expression at +0. 3154 if (shouldEmitSeparateBlockRetain(e)) { 3155 result = CGF.EmitScalarExpr(e); 3156 3157 // Otherwise, try to emit the sub-expression at +1 recursively. 3158 } else { 3159 TryEmitResult subresult = asImpl().visit(e); 3160 3161 // If that produced a retained value, just use that. 3162 if (subresult.getInt()) { 3163 return subresult; 3164 } 3165 3166 // Otherwise it's +0. 3167 result = subresult.getPointer(); 3168 } 3169 3170 // Retain the object as a block. 3171 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 3172 return TryEmitResult(result, true); 3173 } 3174 3175 /// For reclaims, emit the subexpression as a retained call and 3176 /// skip the consumption. 3177 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 3178 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3179 return TryEmitResult(result, true); 3180 } 3181 3182 /// When we have an undecorated call, retroactively do a claim. 3183 TryEmitResult visitCall(const Expr *e) { 3184 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3185 return TryEmitResult(result, true); 3186 } 3187 3188 // TODO: maybe special-case visitBinAssignWeak? 3189 3190 TryEmitResult visitExpr(const Expr *e) { 3191 // We didn't find an obvious production, so emit what we've got and 3192 // tell the caller that we didn't manage to retain. 3193 llvm::Value *result = CGF.EmitScalarExpr(e); 3194 return TryEmitResult(result, false); 3195 } 3196 }; 3197 } 3198 3199 static TryEmitResult 3200 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 3201 return ARCRetainExprEmitter(CGF).visit(e); 3202 } 3203 3204 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 3205 LValue lvalue, 3206 QualType type) { 3207 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 3208 llvm::Value *value = result.getPointer(); 3209 if (!result.getInt()) 3210 value = CGF.EmitARCRetain(type, value); 3211 return value; 3212 } 3213 3214 /// EmitARCRetainScalarExpr - Semantically equivalent to 3215 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 3216 /// best-effort attempt to peephole expressions that naturally produce 3217 /// retained objects. 3218 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 3219 // The retain needs to happen within the full-expression. 3220 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3221 enterFullExpression(cleanups); 3222 RunCleanupsScope scope(*this); 3223 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 3224 } 3225 3226 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3227 llvm::Value *value = result.getPointer(); 3228 if (!result.getInt()) 3229 value = EmitARCRetain(e->getType(), value); 3230 return value; 3231 } 3232 3233 llvm::Value * 3234 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 3235 // The retain needs to happen within the full-expression. 3236 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3237 enterFullExpression(cleanups); 3238 RunCleanupsScope scope(*this); 3239 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 3240 } 3241 3242 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3243 llvm::Value *value = result.getPointer(); 3244 if (result.getInt()) 3245 value = EmitARCAutorelease(value); 3246 else 3247 value = EmitARCRetainAutorelease(e->getType(), value); 3248 return value; 3249 } 3250 3251 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 3252 llvm::Value *result; 3253 bool doRetain; 3254 3255 if (shouldEmitSeparateBlockRetain(e)) { 3256 result = EmitScalarExpr(e); 3257 doRetain = true; 3258 } else { 3259 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 3260 result = subresult.getPointer(); 3261 doRetain = !subresult.getInt(); 3262 } 3263 3264 if (doRetain) 3265 result = EmitARCRetainBlock(result, /*mandatory*/ true); 3266 return EmitObjCConsumeObject(e->getType(), result); 3267 } 3268 3269 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3270 // In ARC, retain and autorelease the expression. 3271 if (getLangOpts().ObjCAutoRefCount) { 3272 // Do so before running any cleanups for the full-expression. 3273 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3274 return EmitARCRetainAutoreleaseScalarExpr(expr); 3275 } 3276 3277 // Otherwise, use the normal scalar-expression emission. The 3278 // exception machinery doesn't do anything special with the 3279 // exception like retaining it, so there's no safety associated with 3280 // only running cleanups after the throw has started, and when it 3281 // matters it tends to be substantially inferior code. 3282 return EmitScalarExpr(expr); 3283 } 3284 3285 namespace { 3286 3287 /// An emitter for assigning into an __unsafe_unretained context. 3288 struct ARCUnsafeUnretainedExprEmitter : 3289 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3290 3291 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3292 3293 llvm::Value *getValueOfResult(llvm::Value *value) { 3294 return value; 3295 } 3296 3297 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3298 return CGF.Builder.CreateBitCast(value, resultType); 3299 } 3300 3301 llvm::Value *visitLValueToRValue(const Expr *e) { 3302 return CGF.EmitScalarExpr(e); 3303 } 3304 3305 /// For consumptions, just emit the subexpression and perform the 3306 /// consumption like normal. 3307 llvm::Value *visitConsumeObject(const Expr *e) { 3308 llvm::Value *value = CGF.EmitScalarExpr(e); 3309 return CGF.EmitObjCConsumeObject(e->getType(), value); 3310 } 3311 3312 /// No special logic for block extensions. (This probably can't 3313 /// actually happen in this emitter, though.) 3314 llvm::Value *visitExtendBlockObject(const Expr *e) { 3315 return CGF.EmitARCExtendBlockObject(e); 3316 } 3317 3318 /// For reclaims, perform an unsafeClaim if that's enabled. 3319 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3320 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3321 } 3322 3323 /// When we have an undecorated call, just emit it without adding 3324 /// the unsafeClaim. 3325 llvm::Value *visitCall(const Expr *e) { 3326 return CGF.EmitScalarExpr(e); 3327 } 3328 3329 /// Just do normal scalar emission in the default case. 3330 llvm::Value *visitExpr(const Expr *e) { 3331 return CGF.EmitScalarExpr(e); 3332 } 3333 }; 3334 } 3335 3336 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3337 const Expr *e) { 3338 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3339 } 3340 3341 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3342 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3343 /// avoiding any spurious retains, including by performing reclaims 3344 /// with objc_unsafeClaimAutoreleasedReturnValue. 3345 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3346 // Look through full-expressions. 3347 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3348 enterFullExpression(cleanups); 3349 RunCleanupsScope scope(*this); 3350 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3351 } 3352 3353 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3354 } 3355 3356 std::pair<LValue,llvm::Value*> 3357 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3358 bool ignored) { 3359 // Evaluate the RHS first. If we're ignoring the result, assume 3360 // that we can emit at an unsafe +0. 3361 llvm::Value *value; 3362 if (ignored) { 3363 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3364 } else { 3365 value = EmitScalarExpr(e->getRHS()); 3366 } 3367 3368 // Emit the LHS and perform the store. 3369 LValue lvalue = EmitLValue(e->getLHS()); 3370 EmitStoreOfScalar(value, lvalue); 3371 3372 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3373 } 3374 3375 std::pair<LValue,llvm::Value*> 3376 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3377 bool ignored) { 3378 // Evaluate the RHS first. 3379 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3380 llvm::Value *value = result.getPointer(); 3381 3382 bool hasImmediateRetain = result.getInt(); 3383 3384 // If we didn't emit a retained object, and the l-value is of block 3385 // type, then we need to emit the block-retain immediately in case 3386 // it invalidates the l-value. 3387 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3388 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3389 hasImmediateRetain = true; 3390 } 3391 3392 LValue lvalue = EmitLValue(e->getLHS()); 3393 3394 // If the RHS was emitted retained, expand this. 3395 if (hasImmediateRetain) { 3396 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3397 EmitStoreOfScalar(value, lvalue); 3398 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3399 } else { 3400 value = EmitARCStoreStrong(lvalue, value, ignored); 3401 } 3402 3403 return std::pair<LValue,llvm::Value*>(lvalue, value); 3404 } 3405 3406 std::pair<LValue,llvm::Value*> 3407 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3408 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3409 LValue lvalue = EmitLValue(e->getLHS()); 3410 3411 EmitStoreOfScalar(value, lvalue); 3412 3413 return std::pair<LValue,llvm::Value*>(lvalue, value); 3414 } 3415 3416 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3417 const ObjCAutoreleasePoolStmt &ARPS) { 3418 const Stmt *subStmt = ARPS.getSubStmt(); 3419 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3420 3421 CGDebugInfo *DI = getDebugInfo(); 3422 if (DI) 3423 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3424 3425 // Keep track of the current cleanup stack depth. 3426 RunCleanupsScope Scope(*this); 3427 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3428 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3429 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3430 } else { 3431 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3432 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3433 } 3434 3435 for (const auto *I : S.body()) 3436 EmitStmt(I); 3437 3438 if (DI) 3439 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3440 } 3441 3442 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3443 /// make sure it survives garbage collection until this point. 3444 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3445 // We just use an inline assembly. 3446 llvm::FunctionType *extenderType 3447 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3448 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType, 3449 /* assembly */ "", 3450 /* constraints */ "r", 3451 /* side effects */ true); 3452 3453 object = Builder.CreateBitCast(object, VoidPtrTy); 3454 EmitNounwindRuntimeCall(extender, object); 3455 } 3456 3457 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3458 /// non-trivial copy assignment function, produce following helper function. 3459 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3460 /// 3461 llvm::Constant * 3462 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3463 const ObjCPropertyImplDecl *PID) { 3464 if (!getLangOpts().CPlusPlus || 3465 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3466 return nullptr; 3467 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3468 if (!Ty->isRecordType()) 3469 return nullptr; 3470 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3471 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3472 return nullptr; 3473 llvm::Constant *HelperFn = nullptr; 3474 if (hasTrivialSetExpr(PID)) 3475 return nullptr; 3476 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3477 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3478 return HelperFn; 3479 3480 ASTContext &C = getContext(); 3481 IdentifierInfo *II 3482 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3483 3484 QualType ReturnTy = C.VoidTy; 3485 QualType DestTy = C.getPointerType(Ty); 3486 QualType SrcTy = Ty; 3487 SrcTy.addConst(); 3488 SrcTy = C.getPointerType(SrcTy); 3489 3490 SmallVector<QualType, 2> ArgTys; 3491 ArgTys.push_back(DestTy); 3492 ArgTys.push_back(SrcTy); 3493 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3494 3495 FunctionDecl *FD = FunctionDecl::Create( 3496 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3497 FunctionTy, nullptr, SC_Static, false, false); 3498 3499 FunctionArgList args; 3500 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3501 ImplicitParamDecl::Other); 3502 args.push_back(&DstDecl); 3503 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3504 ImplicitParamDecl::Other); 3505 args.push_back(&SrcDecl); 3506 3507 const CGFunctionInfo &FI = 3508 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3509 3510 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3511 3512 llvm::Function *Fn = 3513 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3514 "__assign_helper_atomic_property_", 3515 &CGM.getModule()); 3516 3517 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3518 3519 StartFunction(FD, ReturnTy, Fn, FI, args); 3520 3521 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue, 3522 SourceLocation()); 3523 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 3524 VK_LValue, OK_Ordinary, SourceLocation(), false); 3525 3526 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue, 3527 SourceLocation()); 3528 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3529 VK_LValue, OK_Ordinary, SourceLocation(), false); 3530 3531 Expr *Args[2] = { &DST, &SRC }; 3532 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3533 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 3534 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(), 3535 VK_LValue, SourceLocation(), FPOptions()); 3536 3537 EmitStmt(TheCall); 3538 3539 FinishFunction(); 3540 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3541 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3542 return HelperFn; 3543 } 3544 3545 llvm::Constant * 3546 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3547 const ObjCPropertyImplDecl *PID) { 3548 if (!getLangOpts().CPlusPlus || 3549 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3550 return nullptr; 3551 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3552 QualType Ty = PD->getType(); 3553 if (!Ty->isRecordType()) 3554 return nullptr; 3555 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3556 return nullptr; 3557 llvm::Constant *HelperFn = nullptr; 3558 if (hasTrivialGetExpr(PID)) 3559 return nullptr; 3560 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3561 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3562 return HelperFn; 3563 3564 ASTContext &C = getContext(); 3565 IdentifierInfo *II = 3566 &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3567 3568 QualType ReturnTy = C.VoidTy; 3569 QualType DestTy = C.getPointerType(Ty); 3570 QualType SrcTy = Ty; 3571 SrcTy.addConst(); 3572 SrcTy = C.getPointerType(SrcTy); 3573 3574 SmallVector<QualType, 2> ArgTys; 3575 ArgTys.push_back(DestTy); 3576 ArgTys.push_back(SrcTy); 3577 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3578 3579 FunctionDecl *FD = FunctionDecl::Create( 3580 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3581 FunctionTy, nullptr, SC_Static, false, false); 3582 3583 FunctionArgList args; 3584 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3585 ImplicitParamDecl::Other); 3586 args.push_back(&DstDecl); 3587 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3588 ImplicitParamDecl::Other); 3589 args.push_back(&SrcDecl); 3590 3591 const CGFunctionInfo &FI = 3592 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3593 3594 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3595 3596 llvm::Function *Fn = llvm::Function::Create( 3597 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_", 3598 &CGM.getModule()); 3599 3600 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3601 3602 StartFunction(FD, ReturnTy, Fn, FI, args); 3603 3604 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue, 3605 SourceLocation()); 3606 3607 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3608 VK_LValue, OK_Ordinary, SourceLocation(), false); 3609 3610 CXXConstructExpr *CXXConstExpr = 3611 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3612 3613 SmallVector<Expr*, 4> ConstructorArgs; 3614 ConstructorArgs.push_back(&SRC); 3615 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3616 CXXConstExpr->arg_end()); 3617 3618 CXXConstructExpr *TheCXXConstructExpr = 3619 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3620 CXXConstExpr->getConstructor(), 3621 CXXConstExpr->isElidable(), 3622 ConstructorArgs, 3623 CXXConstExpr->hadMultipleCandidates(), 3624 CXXConstExpr->isListInitialization(), 3625 CXXConstExpr->isStdInitListInitialization(), 3626 CXXConstExpr->requiresZeroInitialization(), 3627 CXXConstExpr->getConstructionKind(), 3628 SourceRange()); 3629 3630 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue, 3631 SourceLocation()); 3632 3633 RValue DV = EmitAnyExpr(&DstExpr); 3634 CharUnits Alignment 3635 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3636 EmitAggExpr(TheCXXConstructExpr, 3637 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3638 Qualifiers(), 3639 AggValueSlot::IsDestructed, 3640 AggValueSlot::DoesNotNeedGCBarriers, 3641 AggValueSlot::IsNotAliased, 3642 AggValueSlot::DoesNotOverlap)); 3643 3644 FinishFunction(); 3645 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3646 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3647 return HelperFn; 3648 } 3649 3650 llvm::Value * 3651 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3652 // Get selectors for retain/autorelease. 3653 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3654 Selector CopySelector = 3655 getContext().Selectors.getNullarySelector(CopyID); 3656 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3657 Selector AutoreleaseSelector = 3658 getContext().Selectors.getNullarySelector(AutoreleaseID); 3659 3660 // Emit calls to retain/autorelease. 3661 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3662 llvm::Value *Val = Block; 3663 RValue Result; 3664 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3665 Ty, CopySelector, 3666 Val, CallArgList(), nullptr, nullptr); 3667 Val = Result.getScalarVal(); 3668 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3669 Ty, AutoreleaseSelector, 3670 Val, CallArgList(), nullptr, nullptr); 3671 Val = Result.getScalarVal(); 3672 return Val; 3673 } 3674 3675 llvm::Value * 3676 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) { 3677 assert(Args.size() == 3 && "Expected 3 argument here!"); 3678 3679 if (!CGM.IsOSVersionAtLeastFn) { 3680 llvm::FunctionType *FTy = 3681 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 3682 CGM.IsOSVersionAtLeastFn = 3683 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 3684 } 3685 3686 llvm::Value *CallRes = 3687 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 3688 3689 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 3690 } 3691 3692 void CodeGenModule::emitAtAvailableLinkGuard() { 3693 if (!IsOSVersionAtLeastFn) 3694 return; 3695 // @available requires CoreFoundation only on Darwin. 3696 if (!Target.getTriple().isOSDarwin()) 3697 return; 3698 // Add -framework CoreFoundation to the linker commands. We still want to 3699 // emit the core foundation reference down below because otherwise if 3700 // CoreFoundation is not used in the code, the linker won't link the 3701 // framework. 3702 auto &Context = getLLVMContext(); 3703 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3704 llvm::MDString::get(Context, "CoreFoundation")}; 3705 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 3706 // Emit a reference to a symbol from CoreFoundation to ensure that 3707 // CoreFoundation is linked into the final binary. 3708 llvm::FunctionType *FTy = 3709 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 3710 llvm::FunctionCallee CFFunc = 3711 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 3712 3713 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 3714 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction( 3715 CheckFTy, "__clang_at_available_requires_core_foundation_framework", 3716 llvm::AttributeList(), /*IsLocal=*/true); 3717 llvm::Function *CFLinkCheckFunc = 3718 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts()); 3719 if (CFLinkCheckFunc->empty()) { 3720 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 3721 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 3722 CodeGenFunction CGF(*this); 3723 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 3724 CGF.EmitNounwindRuntimeCall(CFFunc, 3725 llvm::Constant::getNullValue(VoidPtrTy)); 3726 CGF.Builder.CreateUnreachable(); 3727 addCompilerUsedGlobal(CFLinkCheckFunc); 3728 } 3729 } 3730 3731 CGObjCRuntime::~CGObjCRuntime() {} 3732