1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
35                                    QualType ET,
36                                    RValue Result);
37 
38 /// Given the address of a variable of pointer type, find the correct
39 /// null to store into it.
40 static llvm::Constant *getNullForVariable(Address addr) {
41   llvm::Type *type = addr.getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57 /// or [NSValue valueWithBytes:objCType:].
58 ///
59 llvm::Value *
60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61   // Generate the correct selector for this literal's concrete type.
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   const Expr *SubExpr = E->getSubExpr();
65 
66   if (E->isExpressibleAsConstantInitializer()) {
67     ConstantEmitter ConstEmitter(CGM);
68     return ConstEmitter.tryEmitAbstract(E, E->getType());
69   }
70 
71   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
72   Selector Sel = BoxingMethod->getSelector();
73 
74   // Generate a reference to the class pointer, which will be the receiver.
75   // Assumes that the method was introduced in the class that should be
76   // messaged (avoids pulling it out of the result type).
77   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
78   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
79   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
80 
81   CallArgList Args;
82   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
83   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
84 
85   // ObjCBoxedExpr supports boxing of structs and unions
86   // via [NSValue valueWithBytes:objCType:]
87   const QualType ValueType(SubExpr->getType().getCanonicalType());
88   if (ValueType->isObjCBoxableRecordType()) {
89     // Emit CodeGen for first parameter
90     // and cast value to correct type
91     Address Temporary = CreateMemTemp(SubExpr->getType());
92     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
93     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
94     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
95 
96     // Create char array to store type encoding
97     std::string Str;
98     getContext().getObjCEncodingForType(ValueType, Str);
99     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
100 
101     // Cast type encoding to correct type
102     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
103     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
104     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
105 
106     Args.add(RValue::get(Cast), EncodingQT);
107   } else {
108     Args.add(EmitAnyExpr(SubExpr), ArgQT);
109   }
110 
111   RValue result = Runtime.GenerateMessageSend(
112       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
113       Args, ClassDecl, BoxingMethod);
114   return Builder.CreateBitCast(result.getScalarVal(),
115                                ConvertType(E->getType()));
116 }
117 
118 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
119                                     const ObjCMethodDecl *MethodWithObjects) {
120   ASTContext &Context = CGM.getContext();
121   const ObjCDictionaryLiteral *DLE = nullptr;
122   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
123   if (!ALE)
124     DLE = cast<ObjCDictionaryLiteral>(E);
125 
126   // Optimize empty collections by referencing constants, when available.
127   uint64_t NumElements =
128     ALE ? ALE->getNumElements() : DLE->getNumElements();
129   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
130     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
131     QualType IdTy(CGM.getContext().getObjCIdType());
132     llvm::Constant *Constant =
133         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
134     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
135     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
136     cast<llvm::LoadInst>(Ptr)->setMetadata(
137         CGM.getModule().getMDKindID("invariant.load"),
138         llvm::MDNode::get(getLLVMContext(), None));
139     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
140   }
141 
142   // Compute the type of the array we're initializing.
143   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
144                             NumElements);
145   QualType ElementType = Context.getObjCIdType().withConst();
146   QualType ElementArrayType
147     = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
148                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
149 
150   // Allocate the temporary array(s).
151   Address Objects = CreateMemTemp(ElementArrayType, "objects");
152   Address Keys = Address::invalid();
153   if (DLE)
154     Keys = CreateMemTemp(ElementArrayType, "keys");
155 
156   // In ARC, we may need to do extra work to keep all the keys and
157   // values alive until after the call.
158   SmallVector<llvm::Value *, 16> NeededObjects;
159   bool TrackNeededObjects =
160     (getLangOpts().ObjCAutoRefCount &&
161     CGM.getCodeGenOpts().OptimizationLevel != 0);
162 
163   // Perform the actual initialialization of the array(s).
164   for (uint64_t i = 0; i < NumElements; i++) {
165     if (ALE) {
166       // Emit the element and store it to the appropriate array slot.
167       const Expr *Rhs = ALE->getElement(i);
168       LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
169                                  ElementType, AlignmentSource::Decl);
170 
171       llvm::Value *value = EmitScalarExpr(Rhs);
172       EmitStoreThroughLValue(RValue::get(value), LV, true);
173       if (TrackNeededObjects) {
174         NeededObjects.push_back(value);
175       }
176     } else {
177       // Emit the key and store it to the appropriate array slot.
178       const Expr *Key = DLE->getKeyValueElement(i).Key;
179       LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
180                                     ElementType, AlignmentSource::Decl);
181       llvm::Value *keyValue = EmitScalarExpr(Key);
182       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
183 
184       // Emit the value and store it to the appropriate array slot.
185       const Expr *Value = DLE->getKeyValueElement(i).Value;
186       LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
187                                       ElementType, AlignmentSource::Decl);
188       llvm::Value *valueValue = EmitScalarExpr(Value);
189       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
190       if (TrackNeededObjects) {
191         NeededObjects.push_back(keyValue);
192         NeededObjects.push_back(valueValue);
193       }
194     }
195   }
196 
197   // Generate the argument list.
198   CallArgList Args;
199   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
200   const ParmVarDecl *argDecl = *PI++;
201   QualType ArgQT = argDecl->getType().getUnqualifiedType();
202   Args.add(RValue::get(Objects.getPointer()), ArgQT);
203   if (DLE) {
204     argDecl = *PI++;
205     ArgQT = argDecl->getType().getUnqualifiedType();
206     Args.add(RValue::get(Keys.getPointer()), ArgQT);
207   }
208   argDecl = *PI;
209   ArgQT = argDecl->getType().getUnqualifiedType();
210   llvm::Value *Count =
211     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
212   Args.add(RValue::get(Count), ArgQT);
213 
214   // Generate a reference to the class pointer, which will be the receiver.
215   Selector Sel = MethodWithObjects->getSelector();
216   QualType ResultType = E->getType();
217   const ObjCObjectPointerType *InterfacePointerType
218     = ResultType->getAsObjCInterfacePointerType();
219   ObjCInterfaceDecl *Class
220     = InterfacePointerType->getObjectType()->getInterface();
221   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
222   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
223 
224   // Generate the message send.
225   RValue result = Runtime.GenerateMessageSend(
226       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
227       Receiver, Args, Class, MethodWithObjects);
228 
229   // The above message send needs these objects, but in ARC they are
230   // passed in a buffer that is essentially __unsafe_unretained.
231   // Therefore we must prevent the optimizer from releasing them until
232   // after the call.
233   if (TrackNeededObjects) {
234     EmitARCIntrinsicUse(NeededObjects);
235   }
236 
237   return Builder.CreateBitCast(result.getScalarVal(),
238                                ConvertType(E->getType()));
239 }
240 
241 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
242   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
243 }
244 
245 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
246                                             const ObjCDictionaryLiteral *E) {
247   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
248 }
249 
250 /// Emit a selector.
251 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
252   // Untyped selector.
253   // Note that this implementation allows for non-constant strings to be passed
254   // as arguments to @selector().  Currently, the only thing preventing this
255   // behaviour is the type checking in the front end.
256   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
257 }
258 
259 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
260   // FIXME: This should pass the Decl not the name.
261   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
262 }
263 
264 /// Adjust the type of an Objective-C object that doesn't match up due
265 /// to type erasure at various points, e.g., related result types or the use
266 /// of parameterized classes.
267 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
268                                    RValue Result) {
269   if (!ExpT->isObjCRetainableType())
270     return Result;
271 
272   // If the converted types are the same, we're done.
273   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
274   if (ExpLLVMTy == Result.getScalarVal()->getType())
275     return Result;
276 
277   // We have applied a substitution. Cast the rvalue appropriately.
278   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
279                                                ExpLLVMTy));
280 }
281 
282 /// Decide whether to extend the lifetime of the receiver of a
283 /// returns-inner-pointer message.
284 static bool
285 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
286   switch (message->getReceiverKind()) {
287 
288   // For a normal instance message, we should extend unless the
289   // receiver is loaded from a variable with precise lifetime.
290   case ObjCMessageExpr::Instance: {
291     const Expr *receiver = message->getInstanceReceiver();
292 
293     // Look through OVEs.
294     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
295       if (opaque->getSourceExpr())
296         receiver = opaque->getSourceExpr()->IgnoreParens();
297     }
298 
299     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
300     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
301     receiver = ice->getSubExpr()->IgnoreParens();
302 
303     // Look through OVEs.
304     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
305       if (opaque->getSourceExpr())
306         receiver = opaque->getSourceExpr()->IgnoreParens();
307     }
308 
309     // Only __strong variables.
310     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
311       return true;
312 
313     // All ivars and fields have precise lifetime.
314     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
315       return false;
316 
317     // Otherwise, check for variables.
318     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
319     if (!declRef) return true;
320     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
321     if (!var) return true;
322 
323     // All variables have precise lifetime except local variables with
324     // automatic storage duration that aren't specially marked.
325     return (var->hasLocalStorage() &&
326             !var->hasAttr<ObjCPreciseLifetimeAttr>());
327   }
328 
329   case ObjCMessageExpr::Class:
330   case ObjCMessageExpr::SuperClass:
331     // It's never necessary for class objects.
332     return false;
333 
334   case ObjCMessageExpr::SuperInstance:
335     // We generally assume that 'self' lives throughout a method call.
336     return false;
337   }
338 
339   llvm_unreachable("invalid receiver kind");
340 }
341 
342 /// Given an expression of ObjC pointer type, check whether it was
343 /// immediately loaded from an ARC __weak l-value.
344 static const Expr *findWeakLValue(const Expr *E) {
345   assert(E->getType()->isObjCRetainableType());
346   E = E->IgnoreParens();
347   if (auto CE = dyn_cast<CastExpr>(E)) {
348     if (CE->getCastKind() == CK_LValueToRValue) {
349       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
350         return CE->getSubExpr();
351     }
352   }
353 
354   return nullptr;
355 }
356 
357 /// The ObjC runtime may provide entrypoints that are likely to be faster
358 /// than an ordinary message send of the appropriate selector.
359 ///
360 /// The entrypoints are guaranteed to be equivalent to just sending the
361 /// corresponding message.  If the entrypoint is implemented naively as just a
362 /// message send, using it is a trade-off: it sacrifices a few cycles of
363 /// overhead to save a small amount of code.  However, it's possible for
364 /// runtimes to detect and special-case classes that use "standard"
365 /// behavior; if that's dynamically a large proportion of all objects, using
366 /// the entrypoint will also be faster than using a message send.
367 ///
368 /// If the runtime does support a required entrypoint, then this method will
369 /// generate a call and return the resulting value.  Otherwise it will return
370 /// None and the caller can generate a msgSend instead.
371 static Optional<llvm::Value *>
372 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
373                                   llvm::Value *Receiver,
374                                   const CallArgList& Args, Selector Sel,
375                                   const ObjCMethodDecl *method,
376                                   bool isClassMessage) {
377   auto &CGM = CGF.CGM;
378   if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
379     return None;
380 
381   auto &Runtime = CGM.getLangOpts().ObjCRuntime;
382   switch (Sel.getMethodFamily()) {
383   case OMF_alloc:
384     if (isClassMessage &&
385         Runtime.shouldUseRuntimeFunctionsForAlloc() &&
386         ResultType->isObjCObjectPointerType()) {
387         // [Foo alloc] -> objc_alloc(Foo) or
388         // [self alloc] -> objc_alloc(self)
389         if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
390           return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
391         // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
392         // [self allocWithZone:nil] -> objc_allocWithZone(self)
393         if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
394             Args.size() == 1 && Args.front().getType()->isPointerType() &&
395             Sel.getNameForSlot(0) == "allocWithZone") {
396           const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
397           if (isa<llvm::ConstantPointerNull>(arg))
398             return CGF.EmitObjCAllocWithZone(Receiver,
399                                              CGF.ConvertType(ResultType));
400           return None;
401         }
402     }
403     break;
404 
405   case OMF_autorelease:
406     if (ResultType->isObjCObjectPointerType() &&
407         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
408         Runtime.shouldUseARCFunctionsForRetainRelease())
409       return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
410     break;
411 
412   case OMF_retain:
413     if (ResultType->isObjCObjectPointerType() &&
414         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
415         Runtime.shouldUseARCFunctionsForRetainRelease())
416       return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
417     break;
418 
419   case OMF_release:
420     if (ResultType->isVoidType() &&
421         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
422         Runtime.shouldUseARCFunctionsForRetainRelease()) {
423       CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
424       return nullptr;
425     }
426     break;
427 
428   default:
429     break;
430   }
431   return None;
432 }
433 
434 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
435     CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
436     Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
437     const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
438     bool isClassMessage) {
439   if (Optional<llvm::Value *> SpecializedResult =
440           tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
441                                             Sel, Method, isClassMessage)) {
442     return RValue::get(SpecializedResult.getValue());
443   }
444   return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
445                              Method);
446 }
447 
448 /// Instead of '[[MyClass alloc] init]', try to generate
449 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
450 /// caller side, as well as the optimized objc_alloc.
451 static Optional<llvm::Value *>
452 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
453   auto &Runtime = CGF.getLangOpts().ObjCRuntime;
454   if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
455     return None;
456 
457   // Match the exact pattern '[[MyClass alloc] init]'.
458   Selector Sel = OME->getSelector();
459   if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
460       !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
461       Sel.getNameForSlot(0) != "init")
462     return None;
463 
464   // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' or
465   // we are in an ObjC class method and 'receiver' is '[self alloc]'.
466   auto *SubOME =
467       dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
468   if (!SubOME)
469     return None;
470   Selector SubSel = SubOME->getSelector();
471 
472   // Check if we are in an ObjC class method and the receiver expression is
473   // 'self'.
474   const Expr *SelfInClassMethod = nullptr;
475   if (const auto *CurMD = dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl))
476     if (CurMD->isClassMethod())
477       if ((SelfInClassMethod = SubOME->getInstanceReceiver()))
478         if (!SelfInClassMethod->isObjCSelfExpr())
479           SelfInClassMethod = nullptr;
480 
481   if ((SubOME->getReceiverKind() != ObjCMessageExpr::Class &&
482        !SelfInClassMethod) || !SubOME->getType()->isObjCObjectPointerType() ||
483       !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
484     return None;
485 
486   llvm::Value *Receiver;
487   if (SelfInClassMethod) {
488     Receiver = CGF.EmitScalarExpr(SelfInClassMethod);
489   } else {
490     QualType ReceiverType = SubOME->getClassReceiver();
491     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
492     const ObjCInterfaceDecl *ID = ObjTy->getInterface();
493     assert(ID && "null interface should be impossible here");
494     Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
495   }
496   return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
497 }
498 
499 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
500                                             ReturnValueSlot Return) {
501   // Only the lookup mechanism and first two arguments of the method
502   // implementation vary between runtimes.  We can get the receiver and
503   // arguments in generic code.
504 
505   bool isDelegateInit = E->isDelegateInitCall();
506 
507   const ObjCMethodDecl *method = E->getMethodDecl();
508 
509   // If the method is -retain, and the receiver's being loaded from
510   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
511   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
512       method->getMethodFamily() == OMF_retain) {
513     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
514       LValue lvalue = EmitLValue(lvalueExpr);
515       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
516       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
517     }
518   }
519 
520   if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
521     return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
522 
523   // We don't retain the receiver in delegate init calls, and this is
524   // safe because the receiver value is always loaded from 'self',
525   // which we zero out.  We don't want to Block_copy block receivers,
526   // though.
527   bool retainSelf =
528     (!isDelegateInit &&
529      CGM.getLangOpts().ObjCAutoRefCount &&
530      method &&
531      method->hasAttr<NSConsumesSelfAttr>());
532 
533   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
534   bool isSuperMessage = false;
535   bool isClassMessage = false;
536   ObjCInterfaceDecl *OID = nullptr;
537   // Find the receiver
538   QualType ReceiverType;
539   llvm::Value *Receiver = nullptr;
540   switch (E->getReceiverKind()) {
541   case ObjCMessageExpr::Instance:
542     ReceiverType = E->getInstanceReceiver()->getType();
543     if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(CurFuncDecl))
544       if (OMD->isClassMethod())
545         if (E->getInstanceReceiver()->isObjCSelfExpr())
546           isClassMessage = true;
547     if (retainSelf) {
548       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
549                                                    E->getInstanceReceiver());
550       Receiver = ter.getPointer();
551       if (ter.getInt()) retainSelf = false;
552     } else
553       Receiver = EmitScalarExpr(E->getInstanceReceiver());
554     break;
555 
556   case ObjCMessageExpr::Class: {
557     ReceiverType = E->getClassReceiver();
558     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
559     assert(ObjTy && "Invalid Objective-C class message send");
560     OID = ObjTy->getInterface();
561     assert(OID && "Invalid Objective-C class message send");
562     Receiver = Runtime.GetClass(*this, OID);
563     isClassMessage = true;
564     break;
565   }
566 
567   case ObjCMessageExpr::SuperInstance:
568     ReceiverType = E->getSuperType();
569     Receiver = LoadObjCSelf();
570     isSuperMessage = true;
571     break;
572 
573   case ObjCMessageExpr::SuperClass:
574     ReceiverType = E->getSuperType();
575     Receiver = LoadObjCSelf();
576     isSuperMessage = true;
577     isClassMessage = true;
578     break;
579   }
580 
581   if (retainSelf)
582     Receiver = EmitARCRetainNonBlock(Receiver);
583 
584   // In ARC, we sometimes want to "extend the lifetime"
585   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
586   // messages.
587   if (getLangOpts().ObjCAutoRefCount && method &&
588       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
589       shouldExtendReceiverForInnerPointerMessage(E))
590     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
591 
592   QualType ResultType = method ? method->getReturnType() : E->getType();
593 
594   CallArgList Args;
595   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
596 
597   // For delegate init calls in ARC, do an unsafe store of null into
598   // self.  This represents the call taking direct ownership of that
599   // value.  We have to do this after emitting the other call
600   // arguments because they might also reference self, but we don't
601   // have to worry about any of them modifying self because that would
602   // be an undefined read and write of an object in unordered
603   // expressions.
604   if (isDelegateInit) {
605     assert(getLangOpts().ObjCAutoRefCount &&
606            "delegate init calls should only be marked in ARC");
607 
608     // Do an unsafe store of null into self.
609     Address selfAddr =
610       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
611     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
612   }
613 
614   RValue result;
615   if (isSuperMessage) {
616     // super is only valid in an Objective-C method
617     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
618     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
619     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
620                                               E->getSelector(),
621                                               OMD->getClassInterface(),
622                                               isCategoryImpl,
623                                               Receiver,
624                                               isClassMessage,
625                                               Args,
626                                               method);
627   } else {
628     // Call runtime methods directly if we can.
629     result = Runtime.GeneratePossiblySpecializedMessageSend(
630         *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
631         method, isClassMessage);
632   }
633 
634   // For delegate init calls in ARC, implicitly store the result of
635   // the call back into self.  This takes ownership of the value.
636   if (isDelegateInit) {
637     Address selfAddr =
638       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
639     llvm::Value *newSelf = result.getScalarVal();
640 
641     // The delegate return type isn't necessarily a matching type; in
642     // fact, it's quite likely to be 'id'.
643     llvm::Type *selfTy = selfAddr.getElementType();
644     newSelf = Builder.CreateBitCast(newSelf, selfTy);
645 
646     Builder.CreateStore(newSelf, selfAddr);
647   }
648 
649   return AdjustObjCObjectType(*this, E->getType(), result);
650 }
651 
652 namespace {
653 struct FinishARCDealloc final : EHScopeStack::Cleanup {
654   void Emit(CodeGenFunction &CGF, Flags flags) override {
655     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
656 
657     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
658     const ObjCInterfaceDecl *iface = impl->getClassInterface();
659     if (!iface->getSuperClass()) return;
660 
661     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
662 
663     // Call [super dealloc] if we have a superclass.
664     llvm::Value *self = CGF.LoadObjCSelf();
665 
666     CallArgList args;
667     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
668                                                       CGF.getContext().VoidTy,
669                                                       method->getSelector(),
670                                                       iface,
671                                                       isCategory,
672                                                       self,
673                                                       /*is class msg*/ false,
674                                                       args,
675                                                       method);
676   }
677 };
678 }
679 
680 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
681 /// the LLVM function and sets the other context used by
682 /// CodeGenFunction.
683 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
684                                       const ObjCContainerDecl *CD) {
685   SourceLocation StartLoc = OMD->getBeginLoc();
686   FunctionArgList args;
687   // Check if we should generate debug info for this method.
688   if (OMD->hasAttr<NoDebugAttr>())
689     DebugInfo = nullptr; // disable debug info indefinitely for this function
690 
691   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
692 
693   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
694   if (OMD->isDirectMethod()) {
695     Fn->setVisibility(llvm::Function::HiddenVisibility);
696     CGM.SetLLVMFunctionAttributes(OMD, FI, Fn);
697     CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
698   } else {
699     CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
700   }
701 
702   args.push_back(OMD->getSelfDecl());
703   args.push_back(OMD->getCmdDecl());
704 
705   args.append(OMD->param_begin(), OMD->param_end());
706 
707   CurGD = OMD;
708   CurEHLocation = OMD->getEndLoc();
709 
710   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
711                 OMD->getLocation(), StartLoc);
712 
713   if (OMD->isDirectMethod()) {
714     // This function is a direct call, it has to implement a nil check
715     // on entry.
716     //
717     // TODO: possibly have several entry points to elide the check
718     CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
719   }
720 
721   // In ARC, certain methods get an extra cleanup.
722   if (CGM.getLangOpts().ObjCAutoRefCount &&
723       OMD->isInstanceMethod() &&
724       OMD->getSelector().isUnarySelector()) {
725     const IdentifierInfo *ident =
726       OMD->getSelector().getIdentifierInfoForSlot(0);
727     if (ident->isStr("dealloc"))
728       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
729   }
730 }
731 
732 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
733                                               LValue lvalue, QualType type);
734 
735 /// Generate an Objective-C method.  An Objective-C method is a C function with
736 /// its pointer, name, and types registered in the class structure.
737 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
738   StartObjCMethod(OMD, OMD->getClassInterface());
739   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
740   assert(isa<CompoundStmt>(OMD->getBody()));
741   incrementProfileCounter(OMD->getBody());
742   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
743   FinishFunction(OMD->getBodyRBrace());
744 }
745 
746 /// emitStructGetterCall - Call the runtime function to load a property
747 /// into the return value slot.
748 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
749                                  bool isAtomic, bool hasStrong) {
750   ASTContext &Context = CGF.getContext();
751 
752   Address src =
753       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
754           .getAddress(CGF);
755 
756   // objc_copyStruct (ReturnValue, &structIvar,
757   //                  sizeof (Type of Ivar), isAtomic, false);
758   CallArgList args;
759 
760   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
761   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
762 
763   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
764   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
765 
766   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
767   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
768   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
769   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
770 
771   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
772   CGCallee callee = CGCallee::forDirect(fn);
773   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
774                callee, ReturnValueSlot(), args);
775 }
776 
777 /// Determine whether the given architecture supports unaligned atomic
778 /// accesses.  They don't have to be fast, just faster than a function
779 /// call and a mutex.
780 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
781   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
782   // currently supported by the backend.)
783   return 0;
784 }
785 
786 /// Return the maximum size that permits atomic accesses for the given
787 /// architecture.
788 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
789                                         llvm::Triple::ArchType arch) {
790   // ARM has 8-byte atomic accesses, but it's not clear whether we
791   // want to rely on them here.
792 
793   // In the default case, just assume that any size up to a pointer is
794   // fine given adequate alignment.
795   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
796 }
797 
798 namespace {
799   class PropertyImplStrategy {
800   public:
801     enum StrategyKind {
802       /// The 'native' strategy is to use the architecture's provided
803       /// reads and writes.
804       Native,
805 
806       /// Use objc_setProperty and objc_getProperty.
807       GetSetProperty,
808 
809       /// Use objc_setProperty for the setter, but use expression
810       /// evaluation for the getter.
811       SetPropertyAndExpressionGet,
812 
813       /// Use objc_copyStruct.
814       CopyStruct,
815 
816       /// The 'expression' strategy is to emit normal assignment or
817       /// lvalue-to-rvalue expressions.
818       Expression
819     };
820 
821     StrategyKind getKind() const { return StrategyKind(Kind); }
822 
823     bool hasStrongMember() const { return HasStrong; }
824     bool isAtomic() const { return IsAtomic; }
825     bool isCopy() const { return IsCopy; }
826 
827     CharUnits getIvarSize() const { return IvarSize; }
828     CharUnits getIvarAlignment() const { return IvarAlignment; }
829 
830     PropertyImplStrategy(CodeGenModule &CGM,
831                          const ObjCPropertyImplDecl *propImpl);
832 
833   private:
834     unsigned Kind : 8;
835     unsigned IsAtomic : 1;
836     unsigned IsCopy : 1;
837     unsigned HasStrong : 1;
838 
839     CharUnits IvarSize;
840     CharUnits IvarAlignment;
841   };
842 }
843 
844 /// Pick an implementation strategy for the given property synthesis.
845 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
846                                      const ObjCPropertyImplDecl *propImpl) {
847   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
848   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
849 
850   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
851   IsAtomic = prop->isAtomic();
852   HasStrong = false; // doesn't matter here.
853 
854   // Evaluate the ivar's size and alignment.
855   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
856   QualType ivarType = ivar->getType();
857   std::tie(IvarSize, IvarAlignment) =
858       CGM.getContext().getTypeInfoInChars(ivarType);
859 
860   // If we have a copy property, we always have to use getProperty/setProperty.
861   // TODO: we could actually use setProperty and an expression for non-atomics.
862   if (IsCopy) {
863     Kind = GetSetProperty;
864     return;
865   }
866 
867   // Handle retain.
868   if (setterKind == ObjCPropertyDecl::Retain) {
869     // In GC-only, there's nothing special that needs to be done.
870     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
871       // fallthrough
872 
873     // In ARC, if the property is non-atomic, use expression emission,
874     // which translates to objc_storeStrong.  This isn't required, but
875     // it's slightly nicer.
876     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
877       // Using standard expression emission for the setter is only
878       // acceptable if the ivar is __strong, which won't be true if
879       // the property is annotated with __attribute__((NSObject)).
880       // TODO: falling all the way back to objc_setProperty here is
881       // just laziness, though;  we could still use objc_storeStrong
882       // if we hacked it right.
883       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
884         Kind = Expression;
885       else
886         Kind = SetPropertyAndExpressionGet;
887       return;
888 
889     // Otherwise, we need to at least use setProperty.  However, if
890     // the property isn't atomic, we can use normal expression
891     // emission for the getter.
892     } else if (!IsAtomic) {
893       Kind = SetPropertyAndExpressionGet;
894       return;
895 
896     // Otherwise, we have to use both setProperty and getProperty.
897     } else {
898       Kind = GetSetProperty;
899       return;
900     }
901   }
902 
903   // If we're not atomic, just use expression accesses.
904   if (!IsAtomic) {
905     Kind = Expression;
906     return;
907   }
908 
909   // Properties on bitfield ivars need to be emitted using expression
910   // accesses even if they're nominally atomic.
911   if (ivar->isBitField()) {
912     Kind = Expression;
913     return;
914   }
915 
916   // GC-qualified or ARC-qualified ivars need to be emitted as
917   // expressions.  This actually works out to being atomic anyway,
918   // except for ARC __strong, but that should trigger the above code.
919   if (ivarType.hasNonTrivialObjCLifetime() ||
920       (CGM.getLangOpts().getGC() &&
921        CGM.getContext().getObjCGCAttrKind(ivarType))) {
922     Kind = Expression;
923     return;
924   }
925 
926   // Compute whether the ivar has strong members.
927   if (CGM.getLangOpts().getGC())
928     if (const RecordType *recordType = ivarType->getAs<RecordType>())
929       HasStrong = recordType->getDecl()->hasObjectMember();
930 
931   // We can never access structs with object members with a native
932   // access, because we need to use write barriers.  This is what
933   // objc_copyStruct is for.
934   if (HasStrong) {
935     Kind = CopyStruct;
936     return;
937   }
938 
939   // Otherwise, this is target-dependent and based on the size and
940   // alignment of the ivar.
941 
942   // If the size of the ivar is not a power of two, give up.  We don't
943   // want to get into the business of doing compare-and-swaps.
944   if (!IvarSize.isPowerOfTwo()) {
945     Kind = CopyStruct;
946     return;
947   }
948 
949   llvm::Triple::ArchType arch =
950     CGM.getTarget().getTriple().getArch();
951 
952   // Most architectures require memory to fit within a single cache
953   // line, so the alignment has to be at least the size of the access.
954   // Otherwise we have to grab a lock.
955   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
956     Kind = CopyStruct;
957     return;
958   }
959 
960   // If the ivar's size exceeds the architecture's maximum atomic
961   // access size, we have to use CopyStruct.
962   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
963     Kind = CopyStruct;
964     return;
965   }
966 
967   // Otherwise, we can use native loads and stores.
968   Kind = Native;
969 }
970 
971 /// Generate an Objective-C property getter function.
972 ///
973 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
974 /// is illegal within a category.
975 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
976                                          const ObjCPropertyImplDecl *PID) {
977   llvm::Constant *AtomicHelperFn =
978       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
979   ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
980   assert(OMD && "Invalid call to generate getter (empty method)");
981   StartObjCMethod(OMD, IMP->getClassInterface());
982 
983   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
984 
985   FinishFunction(OMD->getEndLoc());
986 }
987 
988 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
989   const Expr *getter = propImpl->getGetterCXXConstructor();
990   if (!getter) return true;
991 
992   // Sema only makes only of these when the ivar has a C++ class type,
993   // so the form is pretty constrained.
994 
995   // If the property has a reference type, we might just be binding a
996   // reference, in which case the result will be a gl-value.  We should
997   // treat this as a non-trivial operation.
998   if (getter->isGLValue())
999     return false;
1000 
1001   // If we selected a trivial copy-constructor, we're okay.
1002   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1003     return (construct->getConstructor()->isTrivial());
1004 
1005   // The constructor might require cleanups (in which case it's never
1006   // trivial).
1007   assert(isa<ExprWithCleanups>(getter));
1008   return false;
1009 }
1010 
1011 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1012 /// copy the ivar into the resturn slot.
1013 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1014                                           llvm::Value *returnAddr,
1015                                           ObjCIvarDecl *ivar,
1016                                           llvm::Constant *AtomicHelperFn) {
1017   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1018   //                           AtomicHelperFn);
1019   CallArgList args;
1020 
1021   // The 1st argument is the return Slot.
1022   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1023 
1024   // The 2nd argument is the address of the ivar.
1025   llvm::Value *ivarAddr =
1026       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1027           .getPointer(CGF);
1028   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1029   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1030 
1031   // Third argument is the helper function.
1032   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1033 
1034   llvm::FunctionCallee copyCppAtomicObjectFn =
1035       CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1036   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1037   CGF.EmitCall(
1038       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1039                callee, ReturnValueSlot(), args);
1040 }
1041 
1042 void
1043 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1044                                         const ObjCPropertyImplDecl *propImpl,
1045                                         const ObjCMethodDecl *GetterMethodDecl,
1046                                         llvm::Constant *AtomicHelperFn) {
1047   // If there's a non-trivial 'get' expression, we just have to emit that.
1048   if (!hasTrivialGetExpr(propImpl)) {
1049     if (!AtomicHelperFn) {
1050       auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1051                                      propImpl->getGetterCXXConstructor(),
1052                                      /* NRVOCandidate=*/nullptr);
1053       EmitReturnStmt(*ret);
1054     }
1055     else {
1056       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1057       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1058                                     ivar, AtomicHelperFn);
1059     }
1060     return;
1061   }
1062 
1063   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1064   QualType propType = prop->getType();
1065   ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1066 
1067   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1068 
1069   // Pick an implementation strategy.
1070   PropertyImplStrategy strategy(CGM, propImpl);
1071   switch (strategy.getKind()) {
1072   case PropertyImplStrategy::Native: {
1073     // We don't need to do anything for a zero-size struct.
1074     if (strategy.getIvarSize().isZero())
1075       return;
1076 
1077     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1078 
1079     // Currently, all atomic accesses have to be through integer
1080     // types, so there's no point in trying to pick a prettier type.
1081     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1082     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1083     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1084 
1085     // Perform an atomic load.  This does not impose ordering constraints.
1086     Address ivarAddr = LV.getAddress(*this);
1087     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1088     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1089     load->setAtomic(llvm::AtomicOrdering::Unordered);
1090 
1091     // Store that value into the return address.  Doing this with a
1092     // bitcast is likely to produce some pretty ugly IR, but it's not
1093     // the *most* terrible thing in the world.
1094     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1095     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1096     llvm::Value *ivarVal = load;
1097     if (ivarSize > retTySize) {
1098       llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1099       ivarVal = Builder.CreateTrunc(load, newTy);
1100       bitcastType = newTy->getPointerTo();
1101     }
1102     Builder.CreateStore(ivarVal,
1103                         Builder.CreateBitCast(ReturnValue, bitcastType));
1104 
1105     // Make sure we don't do an autorelease.
1106     AutoreleaseResult = false;
1107     return;
1108   }
1109 
1110   case PropertyImplStrategy::GetSetProperty: {
1111     llvm::FunctionCallee getPropertyFn =
1112         CGM.getObjCRuntime().GetPropertyGetFunction();
1113     if (!getPropertyFn) {
1114       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1115       return;
1116     }
1117     CGCallee callee = CGCallee::forDirect(getPropertyFn);
1118 
1119     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1120     // FIXME: Can't this be simpler? This might even be worse than the
1121     // corresponding gcc code.
1122     llvm::Value *cmd =
1123       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1124     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1125     llvm::Value *ivarOffset =
1126       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1127 
1128     CallArgList args;
1129     args.add(RValue::get(self), getContext().getObjCIdType());
1130     args.add(RValue::get(cmd), getContext().getObjCSelType());
1131     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1132     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1133              getContext().BoolTy);
1134 
1135     // FIXME: We shouldn't need to get the function info here, the
1136     // runtime already should have computed it to build the function.
1137     llvm::CallBase *CallInstruction;
1138     RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1139                              getContext().getObjCIdType(), args),
1140                          callee, ReturnValueSlot(), args, &CallInstruction);
1141     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1142       call->setTailCall();
1143 
1144     // We need to fix the type here. Ivars with copy & retain are
1145     // always objects so we don't need to worry about complex or
1146     // aggregates.
1147     RV = RValue::get(Builder.CreateBitCast(
1148         RV.getScalarVal(),
1149         getTypes().ConvertType(getterMethod->getReturnType())));
1150 
1151     EmitReturnOfRValue(RV, propType);
1152 
1153     // objc_getProperty does an autorelease, so we should suppress ours.
1154     AutoreleaseResult = false;
1155 
1156     return;
1157   }
1158 
1159   case PropertyImplStrategy::CopyStruct:
1160     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1161                          strategy.hasStrongMember());
1162     return;
1163 
1164   case PropertyImplStrategy::Expression:
1165   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1166     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1167 
1168     QualType ivarType = ivar->getType();
1169     switch (getEvaluationKind(ivarType)) {
1170     case TEK_Complex: {
1171       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1172       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1173                          /*init*/ true);
1174       return;
1175     }
1176     case TEK_Aggregate: {
1177       // The return value slot is guaranteed to not be aliased, but
1178       // that's not necessarily the same as "on the stack", so
1179       // we still potentially need objc_memmove_collectable.
1180       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1181                         /* Src= */ LV, ivarType, getOverlapForReturnValue());
1182       return;
1183     }
1184     case TEK_Scalar: {
1185       llvm::Value *value;
1186       if (propType->isReferenceType()) {
1187         value = LV.getAddress(*this).getPointer();
1188       } else {
1189         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1190         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1191           if (getLangOpts().ObjCAutoRefCount) {
1192             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1193           } else {
1194             value = EmitARCLoadWeak(LV.getAddress(*this));
1195           }
1196 
1197         // Otherwise we want to do a simple load, suppressing the
1198         // final autorelease.
1199         } else {
1200           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1201           AutoreleaseResult = false;
1202         }
1203 
1204         value = Builder.CreateBitCast(
1205             value, ConvertType(GetterMethodDecl->getReturnType()));
1206       }
1207 
1208       EmitReturnOfRValue(RValue::get(value), propType);
1209       return;
1210     }
1211     }
1212     llvm_unreachable("bad evaluation kind");
1213   }
1214 
1215   }
1216   llvm_unreachable("bad @property implementation strategy!");
1217 }
1218 
1219 /// emitStructSetterCall - Call the runtime function to store the value
1220 /// from the first formal parameter into the given ivar.
1221 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1222                                  ObjCIvarDecl *ivar) {
1223   // objc_copyStruct (&structIvar, &Arg,
1224   //                  sizeof (struct something), true, false);
1225   CallArgList args;
1226 
1227   // The first argument is the address of the ivar.
1228   llvm::Value *ivarAddr =
1229       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1230           .getPointer(CGF);
1231   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1232   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1233 
1234   // The second argument is the address of the parameter variable.
1235   ParmVarDecl *argVar = *OMD->param_begin();
1236   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1237                      argVar->getType().getNonReferenceType(), VK_LValue,
1238                      SourceLocation());
1239   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1240   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1241   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1242 
1243   // The third argument is the sizeof the type.
1244   llvm::Value *size =
1245     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1246   args.add(RValue::get(size), CGF.getContext().getSizeType());
1247 
1248   // The fourth argument is the 'isAtomic' flag.
1249   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1250 
1251   // The fifth argument is the 'hasStrong' flag.
1252   // FIXME: should this really always be false?
1253   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1254 
1255   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1256   CGCallee callee = CGCallee::forDirect(fn);
1257   CGF.EmitCall(
1258       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1259                callee, ReturnValueSlot(), args);
1260 }
1261 
1262 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1263 /// the value from the first formal parameter into the given ivar, using
1264 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1265 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1266                                           ObjCMethodDecl *OMD,
1267                                           ObjCIvarDecl *ivar,
1268                                           llvm::Constant *AtomicHelperFn) {
1269   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1270   //                           AtomicHelperFn);
1271   CallArgList args;
1272 
1273   // The first argument is the address of the ivar.
1274   llvm::Value *ivarAddr =
1275       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1276           .getPointer(CGF);
1277   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1278   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1279 
1280   // The second argument is the address of the parameter variable.
1281   ParmVarDecl *argVar = *OMD->param_begin();
1282   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1283                      argVar->getType().getNonReferenceType(), VK_LValue,
1284                      SourceLocation());
1285   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1286   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1287   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1288 
1289   // Third argument is the helper function.
1290   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1291 
1292   llvm::FunctionCallee fn =
1293       CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1294   CGCallee callee = CGCallee::forDirect(fn);
1295   CGF.EmitCall(
1296       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1297                callee, ReturnValueSlot(), args);
1298 }
1299 
1300 
1301 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1302   Expr *setter = PID->getSetterCXXAssignment();
1303   if (!setter) return true;
1304 
1305   // Sema only makes only of these when the ivar has a C++ class type,
1306   // so the form is pretty constrained.
1307 
1308   // An operator call is trivial if the function it calls is trivial.
1309   // This also implies that there's nothing non-trivial going on with
1310   // the arguments, because operator= can only be trivial if it's a
1311   // synthesized assignment operator and therefore both parameters are
1312   // references.
1313   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1314     if (const FunctionDecl *callee
1315           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1316       if (callee->isTrivial())
1317         return true;
1318     return false;
1319   }
1320 
1321   assert(isa<ExprWithCleanups>(setter));
1322   return false;
1323 }
1324 
1325 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1326   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1327     return false;
1328   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1329 }
1330 
1331 void
1332 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1333                                         const ObjCPropertyImplDecl *propImpl,
1334                                         llvm::Constant *AtomicHelperFn) {
1335   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1336   ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1337 
1338   // Just use the setter expression if Sema gave us one and it's
1339   // non-trivial.
1340   if (!hasTrivialSetExpr(propImpl)) {
1341     if (!AtomicHelperFn)
1342       // If non-atomic, assignment is called directly.
1343       EmitStmt(propImpl->getSetterCXXAssignment());
1344     else
1345       // If atomic, assignment is called via a locking api.
1346       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1347                                     AtomicHelperFn);
1348     return;
1349   }
1350 
1351   PropertyImplStrategy strategy(CGM, propImpl);
1352   switch (strategy.getKind()) {
1353   case PropertyImplStrategy::Native: {
1354     // We don't need to do anything for a zero-size struct.
1355     if (strategy.getIvarSize().isZero())
1356       return;
1357 
1358     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1359 
1360     LValue ivarLValue =
1361       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1362     Address ivarAddr = ivarLValue.getAddress(*this);
1363 
1364     // Currently, all atomic accesses have to be through integer
1365     // types, so there's no point in trying to pick a prettier type.
1366     llvm::Type *bitcastType =
1367       llvm::Type::getIntNTy(getLLVMContext(),
1368                             getContext().toBits(strategy.getIvarSize()));
1369 
1370     // Cast both arguments to the chosen operation type.
1371     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1372     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1373 
1374     // This bitcast load is likely to cause some nasty IR.
1375     llvm::Value *load = Builder.CreateLoad(argAddr);
1376 
1377     // Perform an atomic store.  There are no memory ordering requirements.
1378     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1379     store->setAtomic(llvm::AtomicOrdering::Unordered);
1380     return;
1381   }
1382 
1383   case PropertyImplStrategy::GetSetProperty:
1384   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1385 
1386     llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1387     llvm::FunctionCallee setPropertyFn = nullptr;
1388     if (UseOptimizedSetter(CGM)) {
1389       // 10.8 and iOS 6.0 code and GC is off
1390       setOptimizedPropertyFn =
1391           CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1392               strategy.isAtomic(), strategy.isCopy());
1393       if (!setOptimizedPropertyFn) {
1394         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1395         return;
1396       }
1397     }
1398     else {
1399       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1400       if (!setPropertyFn) {
1401         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1402         return;
1403       }
1404     }
1405 
1406     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1407     //                       <is-atomic>, <is-copy>).
1408     llvm::Value *cmd =
1409       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1410     llvm::Value *self =
1411       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1412     llvm::Value *ivarOffset =
1413       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1414     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1415     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1416     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1417 
1418     CallArgList args;
1419     args.add(RValue::get(self), getContext().getObjCIdType());
1420     args.add(RValue::get(cmd), getContext().getObjCSelType());
1421     if (setOptimizedPropertyFn) {
1422       args.add(RValue::get(arg), getContext().getObjCIdType());
1423       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1424       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1425       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1426                callee, ReturnValueSlot(), args);
1427     } else {
1428       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1429       args.add(RValue::get(arg), getContext().getObjCIdType());
1430       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1431                getContext().BoolTy);
1432       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1433                getContext().BoolTy);
1434       // FIXME: We shouldn't need to get the function info here, the runtime
1435       // already should have computed it to build the function.
1436       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1437       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1438                callee, ReturnValueSlot(), args);
1439     }
1440 
1441     return;
1442   }
1443 
1444   case PropertyImplStrategy::CopyStruct:
1445     emitStructSetterCall(*this, setterMethod, ivar);
1446     return;
1447 
1448   case PropertyImplStrategy::Expression:
1449     break;
1450   }
1451 
1452   // Otherwise, fake up some ASTs and emit a normal assignment.
1453   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1454   DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1455                    VK_LValue, SourceLocation());
1456   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1457                             selfDecl->getType(), CK_LValueToRValue, &self,
1458                             VK_RValue);
1459   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1460                           SourceLocation(), SourceLocation(),
1461                           &selfLoad, true, true);
1462 
1463   ParmVarDecl *argDecl = *setterMethod->param_begin();
1464   QualType argType = argDecl->getType().getNonReferenceType();
1465   DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1466                   SourceLocation());
1467   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1468                            argType.getUnqualifiedType(), CK_LValueToRValue,
1469                            &arg, VK_RValue);
1470 
1471   // The property type can differ from the ivar type in some situations with
1472   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1473   // The following absurdity is just to ensure well-formed IR.
1474   CastKind argCK = CK_NoOp;
1475   if (ivarRef.getType()->isObjCObjectPointerType()) {
1476     if (argLoad.getType()->isObjCObjectPointerType())
1477       argCK = CK_BitCast;
1478     else if (argLoad.getType()->isBlockPointerType())
1479       argCK = CK_BlockPointerToObjCPointerCast;
1480     else
1481       argCK = CK_CPointerToObjCPointerCast;
1482   } else if (ivarRef.getType()->isBlockPointerType()) {
1483      if (argLoad.getType()->isBlockPointerType())
1484       argCK = CK_BitCast;
1485     else
1486       argCK = CK_AnyPointerToBlockPointerCast;
1487   } else if (ivarRef.getType()->isPointerType()) {
1488     argCK = CK_BitCast;
1489   }
1490   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1491                            ivarRef.getType(), argCK, &argLoad,
1492                            VK_RValue);
1493   Expr *finalArg = &argLoad;
1494   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1495                                            argLoad.getType()))
1496     finalArg = &argCast;
1497 
1498 
1499   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1500                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1501                         SourceLocation(), FPOptions());
1502   EmitStmt(&assign);
1503 }
1504 
1505 /// Generate an Objective-C property setter function.
1506 ///
1507 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1508 /// is illegal within a category.
1509 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1510                                          const ObjCPropertyImplDecl *PID) {
1511   llvm::Constant *AtomicHelperFn =
1512       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1513   ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1514   assert(OMD && "Invalid call to generate setter (empty method)");
1515   StartObjCMethod(OMD, IMP->getClassInterface());
1516 
1517   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1518 
1519   FinishFunction(OMD->getEndLoc());
1520 }
1521 
1522 namespace {
1523   struct DestroyIvar final : EHScopeStack::Cleanup {
1524   private:
1525     llvm::Value *addr;
1526     const ObjCIvarDecl *ivar;
1527     CodeGenFunction::Destroyer *destroyer;
1528     bool useEHCleanupForArray;
1529   public:
1530     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1531                 CodeGenFunction::Destroyer *destroyer,
1532                 bool useEHCleanupForArray)
1533       : addr(addr), ivar(ivar), destroyer(destroyer),
1534         useEHCleanupForArray(useEHCleanupForArray) {}
1535 
1536     void Emit(CodeGenFunction &CGF, Flags flags) override {
1537       LValue lvalue
1538         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1539       CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1540                       flags.isForNormalCleanup() && useEHCleanupForArray);
1541     }
1542   };
1543 }
1544 
1545 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1546 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1547                                       Address addr,
1548                                       QualType type) {
1549   llvm::Value *null = getNullForVariable(addr);
1550   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1551 }
1552 
1553 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1554                                   ObjCImplementationDecl *impl) {
1555   CodeGenFunction::RunCleanupsScope scope(CGF);
1556 
1557   llvm::Value *self = CGF.LoadObjCSelf();
1558 
1559   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1560   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1561        ivar; ivar = ivar->getNextIvar()) {
1562     QualType type = ivar->getType();
1563 
1564     // Check whether the ivar is a destructible type.
1565     QualType::DestructionKind dtorKind = type.isDestructedType();
1566     if (!dtorKind) continue;
1567 
1568     CodeGenFunction::Destroyer *destroyer = nullptr;
1569 
1570     // Use a call to objc_storeStrong to destroy strong ivars, for the
1571     // general benefit of the tools.
1572     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1573       destroyer = destroyARCStrongWithStore;
1574 
1575     // Otherwise use the default for the destruction kind.
1576     } else {
1577       destroyer = CGF.getDestroyer(dtorKind);
1578     }
1579 
1580     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1581 
1582     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1583                                          cleanupKind & EHCleanup);
1584   }
1585 
1586   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1587 }
1588 
1589 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1590                                                  ObjCMethodDecl *MD,
1591                                                  bool ctor) {
1592   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1593   StartObjCMethod(MD, IMP->getClassInterface());
1594 
1595   // Emit .cxx_construct.
1596   if (ctor) {
1597     // Suppress the final autorelease in ARC.
1598     AutoreleaseResult = false;
1599 
1600     for (const auto *IvarInit : IMP->inits()) {
1601       FieldDecl *Field = IvarInit->getAnyMember();
1602       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1603       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1604                                     LoadObjCSelf(), Ivar, 0);
1605       EmitAggExpr(IvarInit->getInit(),
1606                   AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1607                                           AggValueSlot::DoesNotNeedGCBarriers,
1608                                           AggValueSlot::IsNotAliased,
1609                                           AggValueSlot::DoesNotOverlap));
1610     }
1611     // constructor returns 'self'.
1612     CodeGenTypes &Types = CGM.getTypes();
1613     QualType IdTy(CGM.getContext().getObjCIdType());
1614     llvm::Value *SelfAsId =
1615       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1616     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1617 
1618   // Emit .cxx_destruct.
1619   } else {
1620     emitCXXDestructMethod(*this, IMP);
1621   }
1622   FinishFunction();
1623 }
1624 
1625 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1626   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1627   DeclRefExpr DRE(getContext(), Self,
1628                   /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1629                   Self->getType(), VK_LValue, SourceLocation());
1630   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1631 }
1632 
1633 QualType CodeGenFunction::TypeOfSelfObject() {
1634   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1635   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1636   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1637     getContext().getCanonicalType(selfDecl->getType()));
1638   return PTy->getPointeeType();
1639 }
1640 
1641 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1642   llvm::FunctionCallee EnumerationMutationFnPtr =
1643       CGM.getObjCRuntime().EnumerationMutationFunction();
1644   if (!EnumerationMutationFnPtr) {
1645     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1646     return;
1647   }
1648   CGCallee EnumerationMutationFn =
1649     CGCallee::forDirect(EnumerationMutationFnPtr);
1650 
1651   CGDebugInfo *DI = getDebugInfo();
1652   if (DI)
1653     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1654 
1655   RunCleanupsScope ForScope(*this);
1656 
1657   // The local variable comes into scope immediately.
1658   AutoVarEmission variable = AutoVarEmission::invalid();
1659   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1660     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1661 
1662   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1663 
1664   // Fast enumeration state.
1665   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1666   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1667   EmitNullInitialization(StatePtr, StateTy);
1668 
1669   // Number of elements in the items array.
1670   static const unsigned NumItems = 16;
1671 
1672   // Fetch the countByEnumeratingWithState:objects:count: selector.
1673   IdentifierInfo *II[] = {
1674     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1675     &CGM.getContext().Idents.get("objects"),
1676     &CGM.getContext().Idents.get("count")
1677   };
1678   Selector FastEnumSel =
1679     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1680 
1681   QualType ItemsTy =
1682     getContext().getConstantArrayType(getContext().getObjCIdType(),
1683                                       llvm::APInt(32, NumItems), nullptr,
1684                                       ArrayType::Normal, 0);
1685   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1686 
1687   // Emit the collection pointer.  In ARC, we do a retain.
1688   llvm::Value *Collection;
1689   if (getLangOpts().ObjCAutoRefCount) {
1690     Collection = EmitARCRetainScalarExpr(S.getCollection());
1691 
1692     // Enter a cleanup to do the release.
1693     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1694   } else {
1695     Collection = EmitScalarExpr(S.getCollection());
1696   }
1697 
1698   // The 'continue' label needs to appear within the cleanup for the
1699   // collection object.
1700   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1701 
1702   // Send it our message:
1703   CallArgList Args;
1704 
1705   // The first argument is a temporary of the enumeration-state type.
1706   Args.add(RValue::get(StatePtr.getPointer()),
1707            getContext().getPointerType(StateTy));
1708 
1709   // The second argument is a temporary array with space for NumItems
1710   // pointers.  We'll actually be loading elements from the array
1711   // pointer written into the control state; this buffer is so that
1712   // collections that *aren't* backed by arrays can still queue up
1713   // batches of elements.
1714   Args.add(RValue::get(ItemsPtr.getPointer()),
1715            getContext().getPointerType(ItemsTy));
1716 
1717   // The third argument is the capacity of that temporary array.
1718   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1719   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1720   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1721 
1722   // Start the enumeration.
1723   RValue CountRV =
1724       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1725                                                getContext().getNSUIntegerType(),
1726                                                FastEnumSel, Collection, Args);
1727 
1728   // The initial number of objects that were returned in the buffer.
1729   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1730 
1731   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1732   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1733 
1734   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1735 
1736   // If the limit pointer was zero to begin with, the collection is
1737   // empty; skip all this. Set the branch weight assuming this has the same
1738   // probability of exiting the loop as any other loop exit.
1739   uint64_t EntryCount = getCurrentProfileCount();
1740   Builder.CreateCondBr(
1741       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1742       LoopInitBB,
1743       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1744 
1745   // Otherwise, initialize the loop.
1746   EmitBlock(LoopInitBB);
1747 
1748   // Save the initial mutations value.  This is the value at an
1749   // address that was written into the state object by
1750   // countByEnumeratingWithState:objects:count:.
1751   Address StateMutationsPtrPtr =
1752       Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1753   llvm::Value *StateMutationsPtr
1754     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1755 
1756   llvm::Value *initialMutations =
1757     Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1758                               "forcoll.initial-mutations");
1759 
1760   // Start looping.  This is the point we return to whenever we have a
1761   // fresh, non-empty batch of objects.
1762   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1763   EmitBlock(LoopBodyBB);
1764 
1765   // The current index into the buffer.
1766   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1767   index->addIncoming(zero, LoopInitBB);
1768 
1769   // The current buffer size.
1770   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1771   count->addIncoming(initialBufferLimit, LoopInitBB);
1772 
1773   incrementProfileCounter(&S);
1774 
1775   // Check whether the mutations value has changed from where it was
1776   // at start.  StateMutationsPtr should actually be invariant between
1777   // refreshes.
1778   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1779   llvm::Value *currentMutations
1780     = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1781                                 "statemutations");
1782 
1783   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1784   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1785 
1786   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1787                        WasNotMutatedBB, WasMutatedBB);
1788 
1789   // If so, call the enumeration-mutation function.
1790   EmitBlock(WasMutatedBB);
1791   llvm::Value *V =
1792     Builder.CreateBitCast(Collection,
1793                           ConvertType(getContext().getObjCIdType()));
1794   CallArgList Args2;
1795   Args2.add(RValue::get(V), getContext().getObjCIdType());
1796   // FIXME: We shouldn't need to get the function info here, the runtime already
1797   // should have computed it to build the function.
1798   EmitCall(
1799           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1800            EnumerationMutationFn, ReturnValueSlot(), Args2);
1801 
1802   // Otherwise, or if the mutation function returns, just continue.
1803   EmitBlock(WasNotMutatedBB);
1804 
1805   // Initialize the element variable.
1806   RunCleanupsScope elementVariableScope(*this);
1807   bool elementIsVariable;
1808   LValue elementLValue;
1809   QualType elementType;
1810   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1811     // Initialize the variable, in case it's a __block variable or something.
1812     EmitAutoVarInit(variable);
1813 
1814     const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1815     DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1816                         D->getType(), VK_LValue, SourceLocation());
1817     elementLValue = EmitLValue(&tempDRE);
1818     elementType = D->getType();
1819     elementIsVariable = true;
1820 
1821     if (D->isARCPseudoStrong())
1822       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1823   } else {
1824     elementLValue = LValue(); // suppress warning
1825     elementType = cast<Expr>(S.getElement())->getType();
1826     elementIsVariable = false;
1827   }
1828   llvm::Type *convertedElementType = ConvertType(elementType);
1829 
1830   // Fetch the buffer out of the enumeration state.
1831   // TODO: this pointer should actually be invariant between
1832   // refreshes, which would help us do certain loop optimizations.
1833   Address StateItemsPtr =
1834       Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1835   llvm::Value *EnumStateItems =
1836     Builder.CreateLoad(StateItemsPtr, "stateitems");
1837 
1838   // Fetch the value at the current index from the buffer.
1839   llvm::Value *CurrentItemPtr =
1840     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1841   llvm::Value *CurrentItem =
1842     Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1843 
1844   // Cast that value to the right type.
1845   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1846                                       "currentitem");
1847 
1848   // Make sure we have an l-value.  Yes, this gets evaluated every
1849   // time through the loop.
1850   if (!elementIsVariable) {
1851     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1852     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1853   } else {
1854     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1855                            /*isInit*/ true);
1856   }
1857 
1858   // If we do have an element variable, this assignment is the end of
1859   // its initialization.
1860   if (elementIsVariable)
1861     EmitAutoVarCleanups(variable);
1862 
1863   // Perform the loop body, setting up break and continue labels.
1864   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1865   {
1866     RunCleanupsScope Scope(*this);
1867     EmitStmt(S.getBody());
1868   }
1869   BreakContinueStack.pop_back();
1870 
1871   // Destroy the element variable now.
1872   elementVariableScope.ForceCleanup();
1873 
1874   // Check whether there are more elements.
1875   EmitBlock(AfterBody.getBlock());
1876 
1877   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1878 
1879   // First we check in the local buffer.
1880   llvm::Value *indexPlusOne =
1881       Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1882 
1883   // If we haven't overrun the buffer yet, we can continue.
1884   // Set the branch weights based on the simplifying assumption that this is
1885   // like a while-loop, i.e., ignoring that the false branch fetches more
1886   // elements and then returns to the loop.
1887   Builder.CreateCondBr(
1888       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1889       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1890 
1891   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1892   count->addIncoming(count, AfterBody.getBlock());
1893 
1894   // Otherwise, we have to fetch more elements.
1895   EmitBlock(FetchMoreBB);
1896 
1897   CountRV =
1898       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1899                                                getContext().getNSUIntegerType(),
1900                                                FastEnumSel, Collection, Args);
1901 
1902   // If we got a zero count, we're done.
1903   llvm::Value *refetchCount = CountRV.getScalarVal();
1904 
1905   // (note that the message send might split FetchMoreBB)
1906   index->addIncoming(zero, Builder.GetInsertBlock());
1907   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1908 
1909   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1910                        EmptyBB, LoopBodyBB);
1911 
1912   // No more elements.
1913   EmitBlock(EmptyBB);
1914 
1915   if (!elementIsVariable) {
1916     // If the element was not a declaration, set it to be null.
1917 
1918     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1919     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1920     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1921   }
1922 
1923   if (DI)
1924     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1925 
1926   ForScope.ForceCleanup();
1927   EmitBlock(LoopEnd.getBlock());
1928 }
1929 
1930 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1931   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1932 }
1933 
1934 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1935   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1936 }
1937 
1938 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1939                                               const ObjCAtSynchronizedStmt &S) {
1940   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1941 }
1942 
1943 namespace {
1944   struct CallObjCRelease final : EHScopeStack::Cleanup {
1945     CallObjCRelease(llvm::Value *object) : object(object) {}
1946     llvm::Value *object;
1947 
1948     void Emit(CodeGenFunction &CGF, Flags flags) override {
1949       // Releases at the end of the full-expression are imprecise.
1950       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1951     }
1952   };
1953 }
1954 
1955 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1956 /// release at the end of the full-expression.
1957 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1958                                                     llvm::Value *object) {
1959   // If we're in a conditional branch, we need to make the cleanup
1960   // conditional.
1961   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1962   return object;
1963 }
1964 
1965 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1966                                                            llvm::Value *value) {
1967   return EmitARCRetainAutorelease(type, value);
1968 }
1969 
1970 /// Given a number of pointers, inform the optimizer that they're
1971 /// being intrinsically used up until this point in the program.
1972 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1973   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1974   if (!fn)
1975     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
1976 
1977   // This isn't really a "runtime" function, but as an intrinsic it
1978   // doesn't really matter as long as we align things up.
1979   EmitNounwindRuntimeCall(fn, values);
1980 }
1981 
1982 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
1983   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
1984     // If the target runtime doesn't naturally support ARC, emit weak
1985     // references to the runtime support library.  We don't really
1986     // permit this to fail, but we need a particular relocation style.
1987     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
1988         !CGM.getTriple().isOSBinFormatCOFF()) {
1989       F->setLinkage(llvm::Function::ExternalWeakLinkage);
1990     }
1991   }
1992 }
1993 
1994 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
1995                                          llvm::FunctionCallee RTF) {
1996   setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
1997 }
1998 
1999 /// Perform an operation having the signature
2000 ///   i8* (i8*)
2001 /// where a null input causes a no-op and returns null.
2002 static llvm::Value *emitARCValueOperation(
2003     CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2004     llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2005     llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2006   if (isa<llvm::ConstantPointerNull>(value))
2007     return value;
2008 
2009   if (!fn) {
2010     fn = CGF.CGM.getIntrinsic(IntID);
2011     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2012   }
2013 
2014   // Cast the argument to 'id'.
2015   llvm::Type *origType = returnType ? returnType : value->getType();
2016   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2017 
2018   // Call the function.
2019   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2020   call->setTailCallKind(tailKind);
2021 
2022   // Cast the result back to the original type.
2023   return CGF.Builder.CreateBitCast(call, origType);
2024 }
2025 
2026 /// Perform an operation having the following signature:
2027 ///   i8* (i8**)
2028 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2029                                          llvm::Function *&fn,
2030                                          llvm::Intrinsic::ID IntID) {
2031   if (!fn) {
2032     fn = CGF.CGM.getIntrinsic(IntID);
2033     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2034   }
2035 
2036   // Cast the argument to 'id*'.
2037   llvm::Type *origType = addr.getElementType();
2038   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
2039 
2040   // Call the function.
2041   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2042 
2043   // Cast the result back to a dereference of the original type.
2044   if (origType != CGF.Int8PtrTy)
2045     result = CGF.Builder.CreateBitCast(result, origType);
2046 
2047   return result;
2048 }
2049 
2050 /// Perform an operation having the following signature:
2051 ///   i8* (i8**, i8*)
2052 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2053                                           llvm::Value *value,
2054                                           llvm::Function *&fn,
2055                                           llvm::Intrinsic::ID IntID,
2056                                           bool ignored) {
2057   assert(addr.getElementType() == value->getType());
2058 
2059   if (!fn) {
2060     fn = CGF.CGM.getIntrinsic(IntID);
2061     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2062   }
2063 
2064   llvm::Type *origType = value->getType();
2065 
2066   llvm::Value *args[] = {
2067     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2068     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2069   };
2070   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2071 
2072   if (ignored) return nullptr;
2073 
2074   return CGF.Builder.CreateBitCast(result, origType);
2075 }
2076 
2077 /// Perform an operation having the following signature:
2078 ///   void (i8**, i8**)
2079 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2080                                  llvm::Function *&fn,
2081                                  llvm::Intrinsic::ID IntID) {
2082   assert(dst.getType() == src.getType());
2083 
2084   if (!fn) {
2085     fn = CGF.CGM.getIntrinsic(IntID);
2086     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2087   }
2088 
2089   llvm::Value *args[] = {
2090     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2091     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2092   };
2093   CGF.EmitNounwindRuntimeCall(fn, args);
2094 }
2095 
2096 /// Perform an operation having the signature
2097 ///   i8* (i8*)
2098 /// where a null input causes a no-op and returns null.
2099 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2100                                            llvm::Value *value,
2101                                            llvm::Type *returnType,
2102                                            llvm::FunctionCallee &fn,
2103                                            StringRef fnName) {
2104   if (isa<llvm::ConstantPointerNull>(value))
2105     return value;
2106 
2107   if (!fn) {
2108     llvm::FunctionType *fnType =
2109       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2110     fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2111 
2112     // We have Native ARC, so set nonlazybind attribute for performance
2113     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2114       if (fnName == "objc_retain")
2115         f->addFnAttr(llvm::Attribute::NonLazyBind);
2116   }
2117 
2118   // Cast the argument to 'id'.
2119   llvm::Type *origType = returnType ? returnType : value->getType();
2120   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2121 
2122   // Call the function.
2123   llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2124 
2125   // Cast the result back to the original type.
2126   return CGF.Builder.CreateBitCast(Inst, origType);
2127 }
2128 
2129 /// Produce the code to do a retain.  Based on the type, calls one of:
2130 ///   call i8* \@objc_retain(i8* %value)
2131 ///   call i8* \@objc_retainBlock(i8* %value)
2132 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2133   if (type->isBlockPointerType())
2134     return EmitARCRetainBlock(value, /*mandatory*/ false);
2135   else
2136     return EmitARCRetainNonBlock(value);
2137 }
2138 
2139 /// Retain the given object, with normal retain semantics.
2140 ///   call i8* \@objc_retain(i8* %value)
2141 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2142   return emitARCValueOperation(*this, value, nullptr,
2143                                CGM.getObjCEntrypoints().objc_retain,
2144                                llvm::Intrinsic::objc_retain);
2145 }
2146 
2147 /// Retain the given block, with _Block_copy semantics.
2148 ///   call i8* \@objc_retainBlock(i8* %value)
2149 ///
2150 /// \param mandatory - If false, emit the call with metadata
2151 /// indicating that it's okay for the optimizer to eliminate this call
2152 /// if it can prove that the block never escapes except down the stack.
2153 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2154                                                  bool mandatory) {
2155   llvm::Value *result
2156     = emitARCValueOperation(*this, value, nullptr,
2157                             CGM.getObjCEntrypoints().objc_retainBlock,
2158                             llvm::Intrinsic::objc_retainBlock);
2159 
2160   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2161   // tell the optimizer that it doesn't need to do this copy if the
2162   // block doesn't escape, where being passed as an argument doesn't
2163   // count as escaping.
2164   if (!mandatory && isa<llvm::Instruction>(result)) {
2165     llvm::CallInst *call
2166       = cast<llvm::CallInst>(result->stripPointerCasts());
2167     assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock);
2168 
2169     call->setMetadata("clang.arc.copy_on_escape",
2170                       llvm::MDNode::get(Builder.getContext(), None));
2171   }
2172 
2173   return result;
2174 }
2175 
2176 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2177   // Fetch the void(void) inline asm which marks that we're going to
2178   // do something with the autoreleased return value.
2179   llvm::InlineAsm *&marker
2180     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2181   if (!marker) {
2182     StringRef assembly
2183       = CGF.CGM.getTargetCodeGenInfo()
2184            .getARCRetainAutoreleasedReturnValueMarker();
2185 
2186     // If we have an empty assembly string, there's nothing to do.
2187     if (assembly.empty()) {
2188 
2189     // Otherwise, at -O0, build an inline asm that we're going to call
2190     // in a moment.
2191     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2192       llvm::FunctionType *type =
2193         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2194 
2195       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2196 
2197     // If we're at -O1 and above, we don't want to litter the code
2198     // with this marker yet, so leave a breadcrumb for the ARC
2199     // optimizer to pick up.
2200     } else {
2201       const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker";
2202       if (!CGF.CGM.getModule().getModuleFlag(markerKey)) {
2203         auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2204         CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str);
2205       }
2206     }
2207   }
2208 
2209   // Call the marker asm if we made one, which we do only at -O0.
2210   if (marker)
2211     CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2212 }
2213 
2214 /// Retain the given object which is the result of a function call.
2215 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2216 ///
2217 /// Yes, this function name is one character away from a different
2218 /// call with completely different semantics.
2219 llvm::Value *
2220 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2221   emitAutoreleasedReturnValueMarker(*this);
2222   llvm::CallInst::TailCallKind tailKind =
2223       CGM.getTargetCodeGenInfo()
2224               .shouldSuppressTailCallsOfRetainAutoreleasedReturnValue()
2225           ? llvm::CallInst::TCK_NoTail
2226           : llvm::CallInst::TCK_None;
2227   return emitARCValueOperation(
2228       *this, value, nullptr,
2229       CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2230       llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind);
2231 }
2232 
2233 /// Claim a possibly-autoreleased return value at +0.  This is only
2234 /// valid to do in contexts which do not rely on the retain to keep
2235 /// the object valid for all of its uses; for example, when
2236 /// the value is ignored, or when it is being assigned to an
2237 /// __unsafe_unretained variable.
2238 ///
2239 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2240 llvm::Value *
2241 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2242   emitAutoreleasedReturnValueMarker(*this);
2243   return emitARCValueOperation(*this, value, nullptr,
2244               CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2245                      llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue);
2246 }
2247 
2248 /// Release the given object.
2249 ///   call void \@objc_release(i8* %value)
2250 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2251                                      ARCPreciseLifetime_t precise) {
2252   if (isa<llvm::ConstantPointerNull>(value)) return;
2253 
2254   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2255   if (!fn) {
2256     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release);
2257     setARCRuntimeFunctionLinkage(CGM, fn);
2258   }
2259 
2260   // Cast the argument to 'id'.
2261   value = Builder.CreateBitCast(value, Int8PtrTy);
2262 
2263   // Call objc_release.
2264   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2265 
2266   if (precise == ARCImpreciseLifetime) {
2267     call->setMetadata("clang.imprecise_release",
2268                       llvm::MDNode::get(Builder.getContext(), None));
2269   }
2270 }
2271 
2272 /// Destroy a __strong variable.
2273 ///
2274 /// At -O0, emit a call to store 'null' into the address;
2275 /// instrumenting tools prefer this because the address is exposed,
2276 /// but it's relatively cumbersome to optimize.
2277 ///
2278 /// At -O1 and above, just load and call objc_release.
2279 ///
2280 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2281 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2282                                            ARCPreciseLifetime_t precise) {
2283   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2284     llvm::Value *null = getNullForVariable(addr);
2285     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2286     return;
2287   }
2288 
2289   llvm::Value *value = Builder.CreateLoad(addr);
2290   EmitARCRelease(value, precise);
2291 }
2292 
2293 /// Store into a strong object.  Always calls this:
2294 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2295 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2296                                                      llvm::Value *value,
2297                                                      bool ignored) {
2298   assert(addr.getElementType() == value->getType());
2299 
2300   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2301   if (!fn) {
2302     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong);
2303     setARCRuntimeFunctionLinkage(CGM, fn);
2304   }
2305 
2306   llvm::Value *args[] = {
2307     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2308     Builder.CreateBitCast(value, Int8PtrTy)
2309   };
2310   EmitNounwindRuntimeCall(fn, args);
2311 
2312   if (ignored) return nullptr;
2313   return value;
2314 }
2315 
2316 /// Store into a strong object.  Sometimes calls this:
2317 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2318 /// Other times, breaks it down into components.
2319 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2320                                                  llvm::Value *newValue,
2321                                                  bool ignored) {
2322   QualType type = dst.getType();
2323   bool isBlock = type->isBlockPointerType();
2324 
2325   // Use a store barrier at -O0 unless this is a block type or the
2326   // lvalue is inadequately aligned.
2327   if (shouldUseFusedARCCalls() &&
2328       !isBlock &&
2329       (dst.getAlignment().isZero() ||
2330        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2331     return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2332   }
2333 
2334   // Otherwise, split it out.
2335 
2336   // Retain the new value.
2337   newValue = EmitARCRetain(type, newValue);
2338 
2339   // Read the old value.
2340   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2341 
2342   // Store.  We do this before the release so that any deallocs won't
2343   // see the old value.
2344   EmitStoreOfScalar(newValue, dst);
2345 
2346   // Finally, release the old value.
2347   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2348 
2349   return newValue;
2350 }
2351 
2352 /// Autorelease the given object.
2353 ///   call i8* \@objc_autorelease(i8* %value)
2354 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2355   return emitARCValueOperation(*this, value, nullptr,
2356                                CGM.getObjCEntrypoints().objc_autorelease,
2357                                llvm::Intrinsic::objc_autorelease);
2358 }
2359 
2360 /// Autorelease the given object.
2361 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2362 llvm::Value *
2363 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2364   return emitARCValueOperation(*this, value, nullptr,
2365                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2366                                llvm::Intrinsic::objc_autoreleaseReturnValue,
2367                                llvm::CallInst::TCK_Tail);
2368 }
2369 
2370 /// Do a fused retain/autorelease of the given object.
2371 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2372 llvm::Value *
2373 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2374   return emitARCValueOperation(*this, value, nullptr,
2375                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2376                              llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2377                                llvm::CallInst::TCK_Tail);
2378 }
2379 
2380 /// Do a fused retain/autorelease of the given object.
2381 ///   call i8* \@objc_retainAutorelease(i8* %value)
2382 /// or
2383 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2384 ///   call i8* \@objc_autorelease(i8* %retain)
2385 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2386                                                        llvm::Value *value) {
2387   if (!type->isBlockPointerType())
2388     return EmitARCRetainAutoreleaseNonBlock(value);
2389 
2390   if (isa<llvm::ConstantPointerNull>(value)) return value;
2391 
2392   llvm::Type *origType = value->getType();
2393   value = Builder.CreateBitCast(value, Int8PtrTy);
2394   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2395   value = EmitARCAutorelease(value);
2396   return Builder.CreateBitCast(value, origType);
2397 }
2398 
2399 /// Do a fused retain/autorelease of the given object.
2400 ///   call i8* \@objc_retainAutorelease(i8* %value)
2401 llvm::Value *
2402 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2403   return emitARCValueOperation(*this, value, nullptr,
2404                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2405                                llvm::Intrinsic::objc_retainAutorelease);
2406 }
2407 
2408 /// i8* \@objc_loadWeak(i8** %addr)
2409 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2410 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2411   return emitARCLoadOperation(*this, addr,
2412                               CGM.getObjCEntrypoints().objc_loadWeak,
2413                               llvm::Intrinsic::objc_loadWeak);
2414 }
2415 
2416 /// i8* \@objc_loadWeakRetained(i8** %addr)
2417 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2418   return emitARCLoadOperation(*this, addr,
2419                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2420                               llvm::Intrinsic::objc_loadWeakRetained);
2421 }
2422 
2423 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2424 /// Returns %value.
2425 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2426                                                llvm::Value *value,
2427                                                bool ignored) {
2428   return emitARCStoreOperation(*this, addr, value,
2429                                CGM.getObjCEntrypoints().objc_storeWeak,
2430                                llvm::Intrinsic::objc_storeWeak, ignored);
2431 }
2432 
2433 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2434 /// Returns %value.  %addr is known to not have a current weak entry.
2435 /// Essentially equivalent to:
2436 ///   *addr = nil; objc_storeWeak(addr, value);
2437 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2438   // If we're initializing to null, just write null to memory; no need
2439   // to get the runtime involved.  But don't do this if optimization
2440   // is enabled, because accounting for this would make the optimizer
2441   // much more complicated.
2442   if (isa<llvm::ConstantPointerNull>(value) &&
2443       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2444     Builder.CreateStore(value, addr);
2445     return;
2446   }
2447 
2448   emitARCStoreOperation(*this, addr, value,
2449                         CGM.getObjCEntrypoints().objc_initWeak,
2450                         llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2451 }
2452 
2453 /// void \@objc_destroyWeak(i8** %addr)
2454 /// Essentially objc_storeWeak(addr, nil).
2455 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2456   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2457   if (!fn) {
2458     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak);
2459     setARCRuntimeFunctionLinkage(CGM, fn);
2460   }
2461 
2462   // Cast the argument to 'id*'.
2463   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2464 
2465   EmitNounwindRuntimeCall(fn, addr.getPointer());
2466 }
2467 
2468 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2469 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2470 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2471 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2472   emitARCCopyOperation(*this, dst, src,
2473                        CGM.getObjCEntrypoints().objc_moveWeak,
2474                        llvm::Intrinsic::objc_moveWeak);
2475 }
2476 
2477 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2478 /// Disregards the current value in %dest.  Essentially
2479 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2480 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2481   emitARCCopyOperation(*this, dst, src,
2482                        CGM.getObjCEntrypoints().objc_copyWeak,
2483                        llvm::Intrinsic::objc_copyWeak);
2484 }
2485 
2486 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2487                                             Address SrcAddr) {
2488   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2489   Object = EmitObjCConsumeObject(Ty, Object);
2490   EmitARCStoreWeak(DstAddr, Object, false);
2491 }
2492 
2493 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2494                                             Address SrcAddr) {
2495   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2496   Object = EmitObjCConsumeObject(Ty, Object);
2497   EmitARCStoreWeak(DstAddr, Object, false);
2498   EmitARCDestroyWeak(SrcAddr);
2499 }
2500 
2501 /// Produce the code to do a objc_autoreleasepool_push.
2502 ///   call i8* \@objc_autoreleasePoolPush(void)
2503 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2504   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2505   if (!fn) {
2506     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush);
2507     setARCRuntimeFunctionLinkage(CGM, fn);
2508   }
2509 
2510   return EmitNounwindRuntimeCall(fn);
2511 }
2512 
2513 /// Produce the code to do a primitive release.
2514 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2515 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2516   assert(value->getType() == Int8PtrTy);
2517 
2518   if (getInvokeDest()) {
2519     // Call the runtime method not the intrinsic if we are handling exceptions
2520     llvm::FunctionCallee &fn =
2521         CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2522     if (!fn) {
2523       llvm::FunctionType *fnType =
2524         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2525       fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2526       setARCRuntimeFunctionLinkage(CGM, fn);
2527     }
2528 
2529     // objc_autoreleasePoolPop can throw.
2530     EmitRuntimeCallOrInvoke(fn, value);
2531   } else {
2532     llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2533     if (!fn) {
2534       fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop);
2535       setARCRuntimeFunctionLinkage(CGM, fn);
2536     }
2537 
2538     EmitRuntimeCall(fn, value);
2539   }
2540 }
2541 
2542 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2543 /// Which is: [[NSAutoreleasePool alloc] init];
2544 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2545 /// init is declared as: - (id) init; in its NSObject super class.
2546 ///
2547 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2548   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2549   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2550   // [NSAutoreleasePool alloc]
2551   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2552   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2553   CallArgList Args;
2554   RValue AllocRV =
2555     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2556                                 getContext().getObjCIdType(),
2557                                 AllocSel, Receiver, Args);
2558 
2559   // [Receiver init]
2560   Receiver = AllocRV.getScalarVal();
2561   II = &CGM.getContext().Idents.get("init");
2562   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2563   RValue InitRV =
2564     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2565                                 getContext().getObjCIdType(),
2566                                 InitSel, Receiver, Args);
2567   return InitRV.getScalarVal();
2568 }
2569 
2570 /// Allocate the given objc object.
2571 ///   call i8* \@objc_alloc(i8* %value)
2572 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2573                                             llvm::Type *resultType) {
2574   return emitObjCValueOperation(*this, value, resultType,
2575                                 CGM.getObjCEntrypoints().objc_alloc,
2576                                 "objc_alloc");
2577 }
2578 
2579 /// Allocate the given objc object.
2580 ///   call i8* \@objc_allocWithZone(i8* %value)
2581 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2582                                                     llvm::Type *resultType) {
2583   return emitObjCValueOperation(*this, value, resultType,
2584                                 CGM.getObjCEntrypoints().objc_allocWithZone,
2585                                 "objc_allocWithZone");
2586 }
2587 
2588 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2589                                                 llvm::Type *resultType) {
2590   return emitObjCValueOperation(*this, value, resultType,
2591                                 CGM.getObjCEntrypoints().objc_alloc_init,
2592                                 "objc_alloc_init");
2593 }
2594 
2595 /// Produce the code to do a primitive release.
2596 /// [tmp drain];
2597 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2598   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2599   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2600   CallArgList Args;
2601   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2602                               getContext().VoidTy, DrainSel, Arg, Args);
2603 }
2604 
2605 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2606                                               Address addr,
2607                                               QualType type) {
2608   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2609 }
2610 
2611 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2612                                                 Address addr,
2613                                                 QualType type) {
2614   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2615 }
2616 
2617 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2618                                      Address addr,
2619                                      QualType type) {
2620   CGF.EmitARCDestroyWeak(addr);
2621 }
2622 
2623 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2624                                           QualType type) {
2625   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2626   CGF.EmitARCIntrinsicUse(value);
2627 }
2628 
2629 /// Autorelease the given object.
2630 ///   call i8* \@objc_autorelease(i8* %value)
2631 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2632                                                   llvm::Type *returnType) {
2633   return emitObjCValueOperation(
2634       *this, value, returnType,
2635       CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2636       "objc_autorelease");
2637 }
2638 
2639 /// Retain the given object, with normal retain semantics.
2640 ///   call i8* \@objc_retain(i8* %value)
2641 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2642                                                      llvm::Type *returnType) {
2643   return emitObjCValueOperation(
2644       *this, value, returnType,
2645       CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2646 }
2647 
2648 /// Release the given object.
2649 ///   call void \@objc_release(i8* %value)
2650 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2651                                       ARCPreciseLifetime_t precise) {
2652   if (isa<llvm::ConstantPointerNull>(value)) return;
2653 
2654   llvm::FunctionCallee &fn =
2655       CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2656   if (!fn) {
2657     llvm::FunctionType *fnType =
2658         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2659     fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2660     setARCRuntimeFunctionLinkage(CGM, fn);
2661     // We have Native ARC, so set nonlazybind attribute for performance
2662     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2663       f->addFnAttr(llvm::Attribute::NonLazyBind);
2664   }
2665 
2666   // Cast the argument to 'id'.
2667   value = Builder.CreateBitCast(value, Int8PtrTy);
2668 
2669   // Call objc_release.
2670   llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2671 
2672   if (precise == ARCImpreciseLifetime) {
2673     call->setMetadata("clang.imprecise_release",
2674                       llvm::MDNode::get(Builder.getContext(), None));
2675   }
2676 }
2677 
2678 namespace {
2679   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2680     llvm::Value *Token;
2681 
2682     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2683 
2684     void Emit(CodeGenFunction &CGF, Flags flags) override {
2685       CGF.EmitObjCAutoreleasePoolPop(Token);
2686     }
2687   };
2688   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2689     llvm::Value *Token;
2690 
2691     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2692 
2693     void Emit(CodeGenFunction &CGF, Flags flags) override {
2694       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2695     }
2696   };
2697 }
2698 
2699 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2700   if (CGM.getLangOpts().ObjCAutoRefCount)
2701     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2702   else
2703     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2704 }
2705 
2706 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2707   switch (lifetime) {
2708   case Qualifiers::OCL_None:
2709   case Qualifiers::OCL_ExplicitNone:
2710   case Qualifiers::OCL_Strong:
2711   case Qualifiers::OCL_Autoreleasing:
2712     return true;
2713 
2714   case Qualifiers::OCL_Weak:
2715     return false;
2716   }
2717 
2718   llvm_unreachable("impossible lifetime!");
2719 }
2720 
2721 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2722                                                   LValue lvalue,
2723                                                   QualType type) {
2724   llvm::Value *result;
2725   bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2726   if (shouldRetain) {
2727     result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2728   } else {
2729     assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2730     result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2731   }
2732   return TryEmitResult(result, !shouldRetain);
2733 }
2734 
2735 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2736                                                   const Expr *e) {
2737   e = e->IgnoreParens();
2738   QualType type = e->getType();
2739 
2740   // If we're loading retained from a __strong xvalue, we can avoid
2741   // an extra retain/release pair by zeroing out the source of this
2742   // "move" operation.
2743   if (e->isXValue() &&
2744       !type.isConstQualified() &&
2745       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2746     // Emit the lvalue.
2747     LValue lv = CGF.EmitLValue(e);
2748 
2749     // Load the object pointer.
2750     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2751                                                SourceLocation()).getScalarVal();
2752 
2753     // Set the source pointer to NULL.
2754     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2755 
2756     return TryEmitResult(result, true);
2757   }
2758 
2759   // As a very special optimization, in ARC++, if the l-value is the
2760   // result of a non-volatile assignment, do a simple retain of the
2761   // result of the call to objc_storeWeak instead of reloading.
2762   if (CGF.getLangOpts().CPlusPlus &&
2763       !type.isVolatileQualified() &&
2764       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2765       isa<BinaryOperator>(e) &&
2766       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2767     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2768 
2769   // Try to emit code for scalar constant instead of emitting LValue and
2770   // loading it because we are not guaranteed to have an l-value. One of such
2771   // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2772   if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2773     auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2774     if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2775       return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2776                            !shouldRetainObjCLifetime(type.getObjCLifetime()));
2777   }
2778 
2779   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2780 }
2781 
2782 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2783                                          llvm::Value *value)>
2784   ValueTransform;
2785 
2786 /// Insert code immediately after a call.
2787 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2788                                               llvm::Value *value,
2789                                               ValueTransform doAfterCall,
2790                                               ValueTransform doFallback) {
2791   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2792     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2793 
2794     // Place the retain immediately following the call.
2795     CGF.Builder.SetInsertPoint(call->getParent(),
2796                                ++llvm::BasicBlock::iterator(call));
2797     value = doAfterCall(CGF, value);
2798 
2799     CGF.Builder.restoreIP(ip);
2800     return value;
2801   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2802     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2803 
2804     // Place the retain at the beginning of the normal destination block.
2805     llvm::BasicBlock *BB = invoke->getNormalDest();
2806     CGF.Builder.SetInsertPoint(BB, BB->begin());
2807     value = doAfterCall(CGF, value);
2808 
2809     CGF.Builder.restoreIP(ip);
2810     return value;
2811 
2812   // Bitcasts can arise because of related-result returns.  Rewrite
2813   // the operand.
2814   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2815     llvm::Value *operand = bitcast->getOperand(0);
2816     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2817     bitcast->setOperand(0, operand);
2818     return bitcast;
2819 
2820   // Generic fall-back case.
2821   } else {
2822     // Retain using the non-block variant: we never need to do a copy
2823     // of a block that's been returned to us.
2824     return doFallback(CGF, value);
2825   }
2826 }
2827 
2828 /// Given that the given expression is some sort of call (which does
2829 /// not return retained), emit a retain following it.
2830 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2831                                             const Expr *e) {
2832   llvm::Value *value = CGF.EmitScalarExpr(e);
2833   return emitARCOperationAfterCall(CGF, value,
2834            [](CodeGenFunction &CGF, llvm::Value *value) {
2835              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2836            },
2837            [](CodeGenFunction &CGF, llvm::Value *value) {
2838              return CGF.EmitARCRetainNonBlock(value);
2839            });
2840 }
2841 
2842 /// Given that the given expression is some sort of call (which does
2843 /// not return retained), perform an unsafeClaim following it.
2844 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2845                                                  const Expr *e) {
2846   llvm::Value *value = CGF.EmitScalarExpr(e);
2847   return emitARCOperationAfterCall(CGF, value,
2848            [](CodeGenFunction &CGF, llvm::Value *value) {
2849              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2850            },
2851            [](CodeGenFunction &CGF, llvm::Value *value) {
2852              return value;
2853            });
2854 }
2855 
2856 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2857                                                       bool allowUnsafeClaim) {
2858   if (allowUnsafeClaim &&
2859       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2860     return emitARCUnsafeClaimCallResult(*this, E);
2861   } else {
2862     llvm::Value *value = emitARCRetainCallResult(*this, E);
2863     return EmitObjCConsumeObject(E->getType(), value);
2864   }
2865 }
2866 
2867 /// Determine whether it might be important to emit a separate
2868 /// objc_retain_block on the result of the given expression, or
2869 /// whether it's okay to just emit it in a +1 context.
2870 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2871   assert(e->getType()->isBlockPointerType());
2872   e = e->IgnoreParens();
2873 
2874   // For future goodness, emit block expressions directly in +1
2875   // contexts if we can.
2876   if (isa<BlockExpr>(e))
2877     return false;
2878 
2879   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2880     switch (cast->getCastKind()) {
2881     // Emitting these operations in +1 contexts is goodness.
2882     case CK_LValueToRValue:
2883     case CK_ARCReclaimReturnedObject:
2884     case CK_ARCConsumeObject:
2885     case CK_ARCProduceObject:
2886       return false;
2887 
2888     // These operations preserve a block type.
2889     case CK_NoOp:
2890     case CK_BitCast:
2891       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2892 
2893     // These operations are known to be bad (or haven't been considered).
2894     case CK_AnyPointerToBlockPointerCast:
2895     default:
2896       return true;
2897     }
2898   }
2899 
2900   return true;
2901 }
2902 
2903 namespace {
2904 /// A CRTP base class for emitting expressions of retainable object
2905 /// pointer type in ARC.
2906 template <typename Impl, typename Result> class ARCExprEmitter {
2907 protected:
2908   CodeGenFunction &CGF;
2909   Impl &asImpl() { return *static_cast<Impl*>(this); }
2910 
2911   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2912 
2913 public:
2914   Result visit(const Expr *e);
2915   Result visitCastExpr(const CastExpr *e);
2916   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2917   Result visitBlockExpr(const BlockExpr *e);
2918   Result visitBinaryOperator(const BinaryOperator *e);
2919   Result visitBinAssign(const BinaryOperator *e);
2920   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2921   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2922   Result visitBinAssignWeak(const BinaryOperator *e);
2923   Result visitBinAssignStrong(const BinaryOperator *e);
2924 
2925   // Minimal implementation:
2926   //   Result visitLValueToRValue(const Expr *e)
2927   //   Result visitConsumeObject(const Expr *e)
2928   //   Result visitExtendBlockObject(const Expr *e)
2929   //   Result visitReclaimReturnedObject(const Expr *e)
2930   //   Result visitCall(const Expr *e)
2931   //   Result visitExpr(const Expr *e)
2932   //
2933   //   Result emitBitCast(Result result, llvm::Type *resultType)
2934   //   llvm::Value *getValueOfResult(Result result)
2935 };
2936 }
2937 
2938 /// Try to emit a PseudoObjectExpr under special ARC rules.
2939 ///
2940 /// This massively duplicates emitPseudoObjectRValue.
2941 template <typename Impl, typename Result>
2942 Result
2943 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2944   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2945 
2946   // Find the result expression.
2947   const Expr *resultExpr = E->getResultExpr();
2948   assert(resultExpr);
2949   Result result;
2950 
2951   for (PseudoObjectExpr::const_semantics_iterator
2952          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2953     const Expr *semantic = *i;
2954 
2955     // If this semantic expression is an opaque value, bind it
2956     // to the result of its source expression.
2957     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2958       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2959       OVMA opaqueData;
2960 
2961       // If this semantic is the result of the pseudo-object
2962       // expression, try to evaluate the source as +1.
2963       if (ov == resultExpr) {
2964         assert(!OVMA::shouldBindAsLValue(ov));
2965         result = asImpl().visit(ov->getSourceExpr());
2966         opaqueData = OVMA::bind(CGF, ov,
2967                             RValue::get(asImpl().getValueOfResult(result)));
2968 
2969       // Otherwise, just bind it.
2970       } else {
2971         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2972       }
2973       opaques.push_back(opaqueData);
2974 
2975     // Otherwise, if the expression is the result, evaluate it
2976     // and remember the result.
2977     } else if (semantic == resultExpr) {
2978       result = asImpl().visit(semantic);
2979 
2980     // Otherwise, evaluate the expression in an ignored context.
2981     } else {
2982       CGF.EmitIgnoredExpr(semantic);
2983     }
2984   }
2985 
2986   // Unbind all the opaques now.
2987   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2988     opaques[i].unbind(CGF);
2989 
2990   return result;
2991 }
2992 
2993 template <typename Impl, typename Result>
2994 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
2995   // The default implementation just forwards the expression to visitExpr.
2996   return asImpl().visitExpr(e);
2997 }
2998 
2999 template <typename Impl, typename Result>
3000 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3001   switch (e->getCastKind()) {
3002 
3003   // No-op casts don't change the type, so we just ignore them.
3004   case CK_NoOp:
3005     return asImpl().visit(e->getSubExpr());
3006 
3007   // These casts can change the type.
3008   case CK_CPointerToObjCPointerCast:
3009   case CK_BlockPointerToObjCPointerCast:
3010   case CK_AnyPointerToBlockPointerCast:
3011   case CK_BitCast: {
3012     llvm::Type *resultType = CGF.ConvertType(e->getType());
3013     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3014     Result result = asImpl().visit(e->getSubExpr());
3015     return asImpl().emitBitCast(result, resultType);
3016   }
3017 
3018   // Handle some casts specially.
3019   case CK_LValueToRValue:
3020     return asImpl().visitLValueToRValue(e->getSubExpr());
3021   case CK_ARCConsumeObject:
3022     return asImpl().visitConsumeObject(e->getSubExpr());
3023   case CK_ARCExtendBlockObject:
3024     return asImpl().visitExtendBlockObject(e->getSubExpr());
3025   case CK_ARCReclaimReturnedObject:
3026     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3027 
3028   // Otherwise, use the default logic.
3029   default:
3030     return asImpl().visitExpr(e);
3031   }
3032 }
3033 
3034 template <typename Impl, typename Result>
3035 Result
3036 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3037   switch (e->getOpcode()) {
3038   case BO_Comma:
3039     CGF.EmitIgnoredExpr(e->getLHS());
3040     CGF.EnsureInsertPoint();
3041     return asImpl().visit(e->getRHS());
3042 
3043   case BO_Assign:
3044     return asImpl().visitBinAssign(e);
3045 
3046   default:
3047     return asImpl().visitExpr(e);
3048   }
3049 }
3050 
3051 template <typename Impl, typename Result>
3052 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3053   switch (e->getLHS()->getType().getObjCLifetime()) {
3054   case Qualifiers::OCL_ExplicitNone:
3055     return asImpl().visitBinAssignUnsafeUnretained(e);
3056 
3057   case Qualifiers::OCL_Weak:
3058     return asImpl().visitBinAssignWeak(e);
3059 
3060   case Qualifiers::OCL_Autoreleasing:
3061     return asImpl().visitBinAssignAutoreleasing(e);
3062 
3063   case Qualifiers::OCL_Strong:
3064     return asImpl().visitBinAssignStrong(e);
3065 
3066   case Qualifiers::OCL_None:
3067     return asImpl().visitExpr(e);
3068   }
3069   llvm_unreachable("bad ObjC ownership qualifier");
3070 }
3071 
3072 /// The default rule for __unsafe_unretained emits the RHS recursively,
3073 /// stores into the unsafe variable, and propagates the result outward.
3074 template <typename Impl, typename Result>
3075 Result ARCExprEmitter<Impl,Result>::
3076                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3077   // Recursively emit the RHS.
3078   // For __block safety, do this before emitting the LHS.
3079   Result result = asImpl().visit(e->getRHS());
3080 
3081   // Perform the store.
3082   LValue lvalue =
3083     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3084   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3085                              lvalue);
3086 
3087   return result;
3088 }
3089 
3090 template <typename Impl, typename Result>
3091 Result
3092 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3093   return asImpl().visitExpr(e);
3094 }
3095 
3096 template <typename Impl, typename Result>
3097 Result
3098 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3099   return asImpl().visitExpr(e);
3100 }
3101 
3102 template <typename Impl, typename Result>
3103 Result
3104 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3105   return asImpl().visitExpr(e);
3106 }
3107 
3108 /// The general expression-emission logic.
3109 template <typename Impl, typename Result>
3110 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3111   // We should *never* see a nested full-expression here, because if
3112   // we fail to emit at +1, our caller must not retain after we close
3113   // out the full-expression.  This isn't as important in the unsafe
3114   // emitter.
3115   assert(!isa<ExprWithCleanups>(e));
3116 
3117   // Look through parens, __extension__, generic selection, etc.
3118   e = e->IgnoreParens();
3119 
3120   // Handle certain kinds of casts.
3121   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3122     return asImpl().visitCastExpr(ce);
3123 
3124   // Handle the comma operator.
3125   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3126     return asImpl().visitBinaryOperator(op);
3127 
3128   // TODO: handle conditional operators here
3129 
3130   // For calls and message sends, use the retained-call logic.
3131   // Delegate inits are a special case in that they're the only
3132   // returns-retained expression that *isn't* surrounded by
3133   // a consume.
3134   } else if (isa<CallExpr>(e) ||
3135              (isa<ObjCMessageExpr>(e) &&
3136               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3137     return asImpl().visitCall(e);
3138 
3139   // Look through pseudo-object expressions.
3140   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3141     return asImpl().visitPseudoObjectExpr(pseudo);
3142   } else if (auto *be = dyn_cast<BlockExpr>(e))
3143     return asImpl().visitBlockExpr(be);
3144 
3145   return asImpl().visitExpr(e);
3146 }
3147 
3148 namespace {
3149 
3150 /// An emitter for +1 results.
3151 struct ARCRetainExprEmitter :
3152   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3153 
3154   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3155 
3156   llvm::Value *getValueOfResult(TryEmitResult result) {
3157     return result.getPointer();
3158   }
3159 
3160   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3161     llvm::Value *value = result.getPointer();
3162     value = CGF.Builder.CreateBitCast(value, resultType);
3163     result.setPointer(value);
3164     return result;
3165   }
3166 
3167   TryEmitResult visitLValueToRValue(const Expr *e) {
3168     return tryEmitARCRetainLoadOfScalar(CGF, e);
3169   }
3170 
3171   /// For consumptions, just emit the subexpression and thus elide
3172   /// the retain/release pair.
3173   TryEmitResult visitConsumeObject(const Expr *e) {
3174     llvm::Value *result = CGF.EmitScalarExpr(e);
3175     return TryEmitResult(result, true);
3176   }
3177 
3178   TryEmitResult visitBlockExpr(const BlockExpr *e) {
3179     TryEmitResult result = visitExpr(e);
3180     // Avoid the block-retain if this is a block literal that doesn't need to be
3181     // copied to the heap.
3182     if (e->getBlockDecl()->canAvoidCopyToHeap())
3183       result.setInt(true);
3184     return result;
3185   }
3186 
3187   /// Block extends are net +0.  Naively, we could just recurse on
3188   /// the subexpression, but actually we need to ensure that the
3189   /// value is copied as a block, so there's a little filter here.
3190   TryEmitResult visitExtendBlockObject(const Expr *e) {
3191     llvm::Value *result; // will be a +0 value
3192 
3193     // If we can't safely assume the sub-expression will produce a
3194     // block-copied value, emit the sub-expression at +0.
3195     if (shouldEmitSeparateBlockRetain(e)) {
3196       result = CGF.EmitScalarExpr(e);
3197 
3198     // Otherwise, try to emit the sub-expression at +1 recursively.
3199     } else {
3200       TryEmitResult subresult = asImpl().visit(e);
3201 
3202       // If that produced a retained value, just use that.
3203       if (subresult.getInt()) {
3204         return subresult;
3205       }
3206 
3207       // Otherwise it's +0.
3208       result = subresult.getPointer();
3209     }
3210 
3211     // Retain the object as a block.
3212     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3213     return TryEmitResult(result, true);
3214   }
3215 
3216   /// For reclaims, emit the subexpression as a retained call and
3217   /// skip the consumption.
3218   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3219     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3220     return TryEmitResult(result, true);
3221   }
3222 
3223   /// When we have an undecorated call, retroactively do a claim.
3224   TryEmitResult visitCall(const Expr *e) {
3225     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3226     return TryEmitResult(result, true);
3227   }
3228 
3229   // TODO: maybe special-case visitBinAssignWeak?
3230 
3231   TryEmitResult visitExpr(const Expr *e) {
3232     // We didn't find an obvious production, so emit what we've got and
3233     // tell the caller that we didn't manage to retain.
3234     llvm::Value *result = CGF.EmitScalarExpr(e);
3235     return TryEmitResult(result, false);
3236   }
3237 };
3238 }
3239 
3240 static TryEmitResult
3241 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3242   return ARCRetainExprEmitter(CGF).visit(e);
3243 }
3244 
3245 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3246                                                 LValue lvalue,
3247                                                 QualType type) {
3248   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3249   llvm::Value *value = result.getPointer();
3250   if (!result.getInt())
3251     value = CGF.EmitARCRetain(type, value);
3252   return value;
3253 }
3254 
3255 /// EmitARCRetainScalarExpr - Semantically equivalent to
3256 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3257 /// best-effort attempt to peephole expressions that naturally produce
3258 /// retained objects.
3259 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3260   // The retain needs to happen within the full-expression.
3261   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3262     enterFullExpression(cleanups);
3263     RunCleanupsScope scope(*this);
3264     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3265   }
3266 
3267   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3268   llvm::Value *value = result.getPointer();
3269   if (!result.getInt())
3270     value = EmitARCRetain(e->getType(), value);
3271   return value;
3272 }
3273 
3274 llvm::Value *
3275 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3276   // The retain needs to happen within the full-expression.
3277   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3278     enterFullExpression(cleanups);
3279     RunCleanupsScope scope(*this);
3280     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3281   }
3282 
3283   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3284   llvm::Value *value = result.getPointer();
3285   if (result.getInt())
3286     value = EmitARCAutorelease(value);
3287   else
3288     value = EmitARCRetainAutorelease(e->getType(), value);
3289   return value;
3290 }
3291 
3292 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3293   llvm::Value *result;
3294   bool doRetain;
3295 
3296   if (shouldEmitSeparateBlockRetain(e)) {
3297     result = EmitScalarExpr(e);
3298     doRetain = true;
3299   } else {
3300     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3301     result = subresult.getPointer();
3302     doRetain = !subresult.getInt();
3303   }
3304 
3305   if (doRetain)
3306     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3307   return EmitObjCConsumeObject(e->getType(), result);
3308 }
3309 
3310 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3311   // In ARC, retain and autorelease the expression.
3312   if (getLangOpts().ObjCAutoRefCount) {
3313     // Do so before running any cleanups for the full-expression.
3314     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3315     return EmitARCRetainAutoreleaseScalarExpr(expr);
3316   }
3317 
3318   // Otherwise, use the normal scalar-expression emission.  The
3319   // exception machinery doesn't do anything special with the
3320   // exception like retaining it, so there's no safety associated with
3321   // only running cleanups after the throw has started, and when it
3322   // matters it tends to be substantially inferior code.
3323   return EmitScalarExpr(expr);
3324 }
3325 
3326 namespace {
3327 
3328 /// An emitter for assigning into an __unsafe_unretained context.
3329 struct ARCUnsafeUnretainedExprEmitter :
3330   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3331 
3332   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3333 
3334   llvm::Value *getValueOfResult(llvm::Value *value) {
3335     return value;
3336   }
3337 
3338   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3339     return CGF.Builder.CreateBitCast(value, resultType);
3340   }
3341 
3342   llvm::Value *visitLValueToRValue(const Expr *e) {
3343     return CGF.EmitScalarExpr(e);
3344   }
3345 
3346   /// For consumptions, just emit the subexpression and perform the
3347   /// consumption like normal.
3348   llvm::Value *visitConsumeObject(const Expr *e) {
3349     llvm::Value *value = CGF.EmitScalarExpr(e);
3350     return CGF.EmitObjCConsumeObject(e->getType(), value);
3351   }
3352 
3353   /// No special logic for block extensions.  (This probably can't
3354   /// actually happen in this emitter, though.)
3355   llvm::Value *visitExtendBlockObject(const Expr *e) {
3356     return CGF.EmitARCExtendBlockObject(e);
3357   }
3358 
3359   /// For reclaims, perform an unsafeClaim if that's enabled.
3360   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3361     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3362   }
3363 
3364   /// When we have an undecorated call, just emit it without adding
3365   /// the unsafeClaim.
3366   llvm::Value *visitCall(const Expr *e) {
3367     return CGF.EmitScalarExpr(e);
3368   }
3369 
3370   /// Just do normal scalar emission in the default case.
3371   llvm::Value *visitExpr(const Expr *e) {
3372     return CGF.EmitScalarExpr(e);
3373   }
3374 };
3375 }
3376 
3377 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3378                                                       const Expr *e) {
3379   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3380 }
3381 
3382 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3383 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3384 /// avoiding any spurious retains, including by performing reclaims
3385 /// with objc_unsafeClaimAutoreleasedReturnValue.
3386 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3387   // Look through full-expressions.
3388   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3389     enterFullExpression(cleanups);
3390     RunCleanupsScope scope(*this);
3391     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3392   }
3393 
3394   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3395 }
3396 
3397 std::pair<LValue,llvm::Value*>
3398 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3399                                               bool ignored) {
3400   // Evaluate the RHS first.  If we're ignoring the result, assume
3401   // that we can emit at an unsafe +0.
3402   llvm::Value *value;
3403   if (ignored) {
3404     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3405   } else {
3406     value = EmitScalarExpr(e->getRHS());
3407   }
3408 
3409   // Emit the LHS and perform the store.
3410   LValue lvalue = EmitLValue(e->getLHS());
3411   EmitStoreOfScalar(value, lvalue);
3412 
3413   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3414 }
3415 
3416 std::pair<LValue,llvm::Value*>
3417 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3418                                     bool ignored) {
3419   // Evaluate the RHS first.
3420   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3421   llvm::Value *value = result.getPointer();
3422 
3423   bool hasImmediateRetain = result.getInt();
3424 
3425   // If we didn't emit a retained object, and the l-value is of block
3426   // type, then we need to emit the block-retain immediately in case
3427   // it invalidates the l-value.
3428   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3429     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3430     hasImmediateRetain = true;
3431   }
3432 
3433   LValue lvalue = EmitLValue(e->getLHS());
3434 
3435   // If the RHS was emitted retained, expand this.
3436   if (hasImmediateRetain) {
3437     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3438     EmitStoreOfScalar(value, lvalue);
3439     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3440   } else {
3441     value = EmitARCStoreStrong(lvalue, value, ignored);
3442   }
3443 
3444   return std::pair<LValue,llvm::Value*>(lvalue, value);
3445 }
3446 
3447 std::pair<LValue,llvm::Value*>
3448 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3449   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3450   LValue lvalue = EmitLValue(e->getLHS());
3451 
3452   EmitStoreOfScalar(value, lvalue);
3453 
3454   return std::pair<LValue,llvm::Value*>(lvalue, value);
3455 }
3456 
3457 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3458                                           const ObjCAutoreleasePoolStmt &ARPS) {
3459   const Stmt *subStmt = ARPS.getSubStmt();
3460   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3461 
3462   CGDebugInfo *DI = getDebugInfo();
3463   if (DI)
3464     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3465 
3466   // Keep track of the current cleanup stack depth.
3467   RunCleanupsScope Scope(*this);
3468   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3469     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3470     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3471   } else {
3472     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3473     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3474   }
3475 
3476   for (const auto *I : S.body())
3477     EmitStmt(I);
3478 
3479   if (DI)
3480     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3481 }
3482 
3483 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3484 /// make sure it survives garbage collection until this point.
3485 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3486   // We just use an inline assembly.
3487   llvm::FunctionType *extenderType
3488     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3489   llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3490                                                    /* assembly */ "",
3491                                                    /* constraints */ "r",
3492                                                    /* side effects */ true);
3493 
3494   object = Builder.CreateBitCast(object, VoidPtrTy);
3495   EmitNounwindRuntimeCall(extender, object);
3496 }
3497 
3498 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3499 /// non-trivial copy assignment function, produce following helper function.
3500 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3501 ///
3502 llvm::Constant *
3503 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3504                                         const ObjCPropertyImplDecl *PID) {
3505   if (!getLangOpts().CPlusPlus ||
3506       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3507     return nullptr;
3508   QualType Ty = PID->getPropertyIvarDecl()->getType();
3509   if (!Ty->isRecordType())
3510     return nullptr;
3511   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3512   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3513     return nullptr;
3514   llvm::Constant *HelperFn = nullptr;
3515   if (hasTrivialSetExpr(PID))
3516     return nullptr;
3517   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3518   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3519     return HelperFn;
3520 
3521   ASTContext &C = getContext();
3522   IdentifierInfo *II
3523     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3524 
3525   QualType ReturnTy = C.VoidTy;
3526   QualType DestTy = C.getPointerType(Ty);
3527   QualType SrcTy = Ty;
3528   SrcTy.addConst();
3529   SrcTy = C.getPointerType(SrcTy);
3530 
3531   SmallVector<QualType, 2> ArgTys;
3532   ArgTys.push_back(DestTy);
3533   ArgTys.push_back(SrcTy);
3534   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3535 
3536   FunctionDecl *FD = FunctionDecl::Create(
3537       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3538       FunctionTy, nullptr, SC_Static, false, false);
3539 
3540   FunctionArgList args;
3541   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3542                             ImplicitParamDecl::Other);
3543   args.push_back(&DstDecl);
3544   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3545                             ImplicitParamDecl::Other);
3546   args.push_back(&SrcDecl);
3547 
3548   const CGFunctionInfo &FI =
3549       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3550 
3551   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3552 
3553   llvm::Function *Fn =
3554     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3555                            "__assign_helper_atomic_property_",
3556                            &CGM.getModule());
3557 
3558   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3559 
3560   StartFunction(FD, ReturnTy, Fn, FI, args);
3561 
3562   DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3563                       SourceLocation());
3564   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
3565                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3566 
3567   DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3568                       SourceLocation());
3569   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3570                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3571 
3572   Expr *Args[2] = { &DST, &SRC };
3573   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3574   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3575       C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3576       VK_LValue, SourceLocation(), FPOptions());
3577 
3578   EmitStmt(TheCall);
3579 
3580   FinishFunction();
3581   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3582   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3583   return HelperFn;
3584 }
3585 
3586 llvm::Constant *
3587 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3588                                             const ObjCPropertyImplDecl *PID) {
3589   if (!getLangOpts().CPlusPlus ||
3590       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3591     return nullptr;
3592   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3593   QualType Ty = PD->getType();
3594   if (!Ty->isRecordType())
3595     return nullptr;
3596   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3597     return nullptr;
3598   llvm::Constant *HelperFn = nullptr;
3599   if (hasTrivialGetExpr(PID))
3600     return nullptr;
3601   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3602   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3603     return HelperFn;
3604 
3605   ASTContext &C = getContext();
3606   IdentifierInfo *II =
3607       &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3608 
3609   QualType ReturnTy = C.VoidTy;
3610   QualType DestTy = C.getPointerType(Ty);
3611   QualType SrcTy = Ty;
3612   SrcTy.addConst();
3613   SrcTy = C.getPointerType(SrcTy);
3614 
3615   SmallVector<QualType, 2> ArgTys;
3616   ArgTys.push_back(DestTy);
3617   ArgTys.push_back(SrcTy);
3618   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3619 
3620   FunctionDecl *FD = FunctionDecl::Create(
3621       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3622       FunctionTy, nullptr, SC_Static, false, false);
3623 
3624   FunctionArgList args;
3625   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3626                             ImplicitParamDecl::Other);
3627   args.push_back(&DstDecl);
3628   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3629                             ImplicitParamDecl::Other);
3630   args.push_back(&SrcDecl);
3631 
3632   const CGFunctionInfo &FI =
3633       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3634 
3635   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3636 
3637   llvm::Function *Fn = llvm::Function::Create(
3638       LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3639       &CGM.getModule());
3640 
3641   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3642 
3643   StartFunction(FD, ReturnTy, Fn, FI, args);
3644 
3645   DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3646                       SourceLocation());
3647 
3648   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3649                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3650 
3651   CXXConstructExpr *CXXConstExpr =
3652     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3653 
3654   SmallVector<Expr*, 4> ConstructorArgs;
3655   ConstructorArgs.push_back(&SRC);
3656   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3657                          CXXConstExpr->arg_end());
3658 
3659   CXXConstructExpr *TheCXXConstructExpr =
3660     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3661                              CXXConstExpr->getConstructor(),
3662                              CXXConstExpr->isElidable(),
3663                              ConstructorArgs,
3664                              CXXConstExpr->hadMultipleCandidates(),
3665                              CXXConstExpr->isListInitialization(),
3666                              CXXConstExpr->isStdInitListInitialization(),
3667                              CXXConstExpr->requiresZeroInitialization(),
3668                              CXXConstExpr->getConstructionKind(),
3669                              SourceRange());
3670 
3671   DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3672                       SourceLocation());
3673 
3674   RValue DV = EmitAnyExpr(&DstExpr);
3675   CharUnits Alignment
3676     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3677   EmitAggExpr(TheCXXConstructExpr,
3678               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3679                                     Qualifiers(),
3680                                     AggValueSlot::IsDestructed,
3681                                     AggValueSlot::DoesNotNeedGCBarriers,
3682                                     AggValueSlot::IsNotAliased,
3683                                     AggValueSlot::DoesNotOverlap));
3684 
3685   FinishFunction();
3686   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3687   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3688   return HelperFn;
3689 }
3690 
3691 llvm::Value *
3692 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3693   // Get selectors for retain/autorelease.
3694   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3695   Selector CopySelector =
3696       getContext().Selectors.getNullarySelector(CopyID);
3697   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3698   Selector AutoreleaseSelector =
3699       getContext().Selectors.getNullarySelector(AutoreleaseID);
3700 
3701   // Emit calls to retain/autorelease.
3702   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3703   llvm::Value *Val = Block;
3704   RValue Result;
3705   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3706                                        Ty, CopySelector,
3707                                        Val, CallArgList(), nullptr, nullptr);
3708   Val = Result.getScalarVal();
3709   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3710                                        Ty, AutoreleaseSelector,
3711                                        Val, CallArgList(), nullptr, nullptr);
3712   Val = Result.getScalarVal();
3713   return Val;
3714 }
3715 
3716 llvm::Value *
3717 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) {
3718   assert(Args.size() == 3 && "Expected 3 argument here!");
3719 
3720   if (!CGM.IsOSVersionAtLeastFn) {
3721     llvm::FunctionType *FTy =
3722         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3723     CGM.IsOSVersionAtLeastFn =
3724         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3725   }
3726 
3727   llvm::Value *CallRes =
3728       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3729 
3730   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3731 }
3732 
3733 void CodeGenModule::emitAtAvailableLinkGuard() {
3734   if (!IsOSVersionAtLeastFn)
3735     return;
3736   // @available requires CoreFoundation only on Darwin.
3737   if (!Target.getTriple().isOSDarwin())
3738     return;
3739   // Add -framework CoreFoundation to the linker commands. We still want to
3740   // emit the core foundation reference down below because otherwise if
3741   // CoreFoundation is not used in the code, the linker won't link the
3742   // framework.
3743   auto &Context = getLLVMContext();
3744   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3745                              llvm::MDString::get(Context, "CoreFoundation")};
3746   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3747   // Emit a reference to a symbol from CoreFoundation to ensure that
3748   // CoreFoundation is linked into the final binary.
3749   llvm::FunctionType *FTy =
3750       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3751   llvm::FunctionCallee CFFunc =
3752       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3753 
3754   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3755   llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
3756       CheckFTy, "__clang_at_available_requires_core_foundation_framework",
3757       llvm::AttributeList(), /*Local=*/true);
3758   llvm::Function *CFLinkCheckFunc =
3759       cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
3760   if (CFLinkCheckFunc->empty()) {
3761     CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3762     CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3763     CodeGenFunction CGF(*this);
3764     CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3765     CGF.EmitNounwindRuntimeCall(CFFunc,
3766                                 llvm::Constant::getNullValue(VoidPtrTy));
3767     CGF.Builder.CreateUnreachable();
3768     addCompilerUsedGlobal(CFLinkCheckFunc);
3769   }
3770 }
3771 
3772 CGObjCRuntime::~CGObjCRuntime() {}
3773