1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
35                                       QualType ET,
36                                       const ObjCMethodDecl *Method,
37                                       RValue Result);
38 
39 /// Given the address of a variable of pointer type, find the correct
40 /// null to store into it.
41 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
42   llvm::Type *type =
43     cast<llvm::PointerType>(addr->getType())->getElementType();
44   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
45 }
46 
47 /// Emits an instance of NSConstantString representing the object.
48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
49 {
50   llvm::Constant *C =
51       CGM.getObjCRuntime().GenerateConstantString(E->getString());
52   // FIXME: This bitcast should just be made an invariant on the Runtime.
53   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
54 }
55 
56 /// EmitObjCBoxedExpr - This routine generates code to call
57 /// the appropriate expression boxing method. This will either be
58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
59 ///
60 llvm::Value *
61 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
62   // Generate the correct selector for this literal's concrete type.
63   const Expr *SubExpr = E->getSubExpr();
64   // Get the method.
65   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
66   assert(BoxingMethod && "BoxingMethod is null");
67   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
68   Selector Sel = BoxingMethod->getSelector();
69 
70   // Generate a reference to the class pointer, which will be the receiver.
71   // Assumes that the method was introduced in the class that should be
72   // messaged (avoids pulling it out of the result type).
73   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
74   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
75   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
76 
77   const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
78   QualType ArgQT = argDecl->getType().getUnqualifiedType();
79   RValue RV = EmitAnyExpr(SubExpr);
80   CallArgList Args;
81   Args.add(RV, ArgQT);
82 
83   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
84                                               BoxingMethod->getResultType(), Sel, Receiver, Args,
85                                               ClassDecl, BoxingMethod);
86   return Builder.CreateBitCast(result.getScalarVal(),
87                                ConvertType(E->getType()));
88 }
89 
90 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
91                                     const ObjCMethodDecl *MethodWithObjects) {
92   ASTContext &Context = CGM.getContext();
93   const ObjCDictionaryLiteral *DLE = 0;
94   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
95   if (!ALE)
96     DLE = cast<ObjCDictionaryLiteral>(E);
97 
98   // Compute the type of the array we're initializing.
99   uint64_t NumElements =
100     ALE ? ALE->getNumElements() : DLE->getNumElements();
101   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
102                             NumElements);
103   QualType ElementType = Context.getObjCIdType().withConst();
104   QualType ElementArrayType
105     = Context.getConstantArrayType(ElementType, APNumElements,
106                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
107 
108   // Allocate the temporary array(s).
109   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
110   llvm::Value *Keys = 0;
111   if (DLE)
112     Keys = CreateMemTemp(ElementArrayType, "keys");
113 
114   // In ARC, we may need to do extra work to keep all the keys and
115   // values alive until after the call.
116   SmallVector<llvm::Value *, 16> NeededObjects;
117   bool TrackNeededObjects =
118     (getLangOpts().ObjCAutoRefCount &&
119     CGM.getCodeGenOpts().OptimizationLevel != 0);
120 
121   // Perform the actual initialialization of the array(s).
122   for (uint64_t i = 0; i < NumElements; i++) {
123     if (ALE) {
124       // Emit the element and store it to the appropriate array slot.
125       const Expr *Rhs = ALE->getElement(i);
126       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
127                                    ElementType,
128                                    Context.getTypeAlignInChars(Rhs->getType()),
129                                    Context);
130 
131       llvm::Value *value = EmitScalarExpr(Rhs);
132       EmitStoreThroughLValue(RValue::get(value), LV, true);
133       if (TrackNeededObjects) {
134         NeededObjects.push_back(value);
135       }
136     } else {
137       // Emit the key and store it to the appropriate array slot.
138       const Expr *Key = DLE->getKeyValueElement(i).Key;
139       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
140                                       ElementType,
141                                     Context.getTypeAlignInChars(Key->getType()),
142                                       Context);
143       llvm::Value *keyValue = EmitScalarExpr(Key);
144       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
145 
146       // Emit the value and store it to the appropriate array slot.
147       const Expr *Value = DLE->getKeyValueElement(i).Value;
148       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
149                                         ElementType,
150                                   Context.getTypeAlignInChars(Value->getType()),
151                                         Context);
152       llvm::Value *valueValue = EmitScalarExpr(Value);
153       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
154       if (TrackNeededObjects) {
155         NeededObjects.push_back(keyValue);
156         NeededObjects.push_back(valueValue);
157       }
158     }
159   }
160 
161   // Generate the argument list.
162   CallArgList Args;
163   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
164   const ParmVarDecl *argDecl = *PI++;
165   QualType ArgQT = argDecl->getType().getUnqualifiedType();
166   Args.add(RValue::get(Objects), ArgQT);
167   if (DLE) {
168     argDecl = *PI++;
169     ArgQT = argDecl->getType().getUnqualifiedType();
170     Args.add(RValue::get(Keys), ArgQT);
171   }
172   argDecl = *PI;
173   ArgQT = argDecl->getType().getUnqualifiedType();
174   llvm::Value *Count =
175     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
176   Args.add(RValue::get(Count), ArgQT);
177 
178   // Generate a reference to the class pointer, which will be the receiver.
179   Selector Sel = MethodWithObjects->getSelector();
180   QualType ResultType = E->getType();
181   const ObjCObjectPointerType *InterfacePointerType
182     = ResultType->getAsObjCInterfacePointerType();
183   ObjCInterfaceDecl *Class
184     = InterfacePointerType->getObjectType()->getInterface();
185   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
186   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
187 
188   // Generate the message send.
189   RValue result
190     = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
191                                   MethodWithObjects->getResultType(),
192                                   Sel,
193                                   Receiver, Args, Class,
194                                   MethodWithObjects);
195 
196   // The above message send needs these objects, but in ARC they are
197   // passed in a buffer that is essentially __unsafe_unretained.
198   // Therefore we must prevent the optimizer from releasing them until
199   // after the call.
200   if (TrackNeededObjects) {
201     EmitARCIntrinsicUse(NeededObjects);
202   }
203 
204   return Builder.CreateBitCast(result.getScalarVal(),
205                                ConvertType(E->getType()));
206 }
207 
208 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
209   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
210 }
211 
212 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
213                                             const ObjCDictionaryLiteral *E) {
214   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
215 }
216 
217 /// Emit a selector.
218 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
219   // Untyped selector.
220   // Note that this implementation allows for non-constant strings to be passed
221   // as arguments to @selector().  Currently, the only thing preventing this
222   // behaviour is the type checking in the front end.
223   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
224 }
225 
226 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
227   // FIXME: This should pass the Decl not the name.
228   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
229 }
230 
231 /// \brief Adjust the type of the result of an Objective-C message send
232 /// expression when the method has a related result type.
233 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
234                                       QualType ExpT,
235                                       const ObjCMethodDecl *Method,
236                                       RValue Result) {
237   if (!Method)
238     return Result;
239 
240   if (!Method->hasRelatedResultType() ||
241       CGF.getContext().hasSameType(ExpT, Method->getResultType()) ||
242       !Result.isScalar())
243     return Result;
244 
245   // We have applied a related result type. Cast the rvalue appropriately.
246   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
247                                                CGF.ConvertType(ExpT)));
248 }
249 
250 /// Decide whether to extend the lifetime of the receiver of a
251 /// returns-inner-pointer message.
252 static bool
253 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
254   switch (message->getReceiverKind()) {
255 
256   // For a normal instance message, we should extend unless the
257   // receiver is loaded from a variable with precise lifetime.
258   case ObjCMessageExpr::Instance: {
259     const Expr *receiver = message->getInstanceReceiver();
260     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
261     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
262     receiver = ice->getSubExpr()->IgnoreParens();
263 
264     // Only __strong variables.
265     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
266       return true;
267 
268     // All ivars and fields have precise lifetime.
269     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
270       return false;
271 
272     // Otherwise, check for variables.
273     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
274     if (!declRef) return true;
275     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
276     if (!var) return true;
277 
278     // All variables have precise lifetime except local variables with
279     // automatic storage duration that aren't specially marked.
280     return (var->hasLocalStorage() &&
281             !var->hasAttr<ObjCPreciseLifetimeAttr>());
282   }
283 
284   case ObjCMessageExpr::Class:
285   case ObjCMessageExpr::SuperClass:
286     // It's never necessary for class objects.
287     return false;
288 
289   case ObjCMessageExpr::SuperInstance:
290     // We generally assume that 'self' lives throughout a method call.
291     return false;
292   }
293 
294   llvm_unreachable("invalid receiver kind");
295 }
296 
297 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
298                                             ReturnValueSlot Return) {
299   // Only the lookup mechanism and first two arguments of the method
300   // implementation vary between runtimes.  We can get the receiver and
301   // arguments in generic code.
302 
303   bool isDelegateInit = E->isDelegateInitCall();
304 
305   const ObjCMethodDecl *method = E->getMethodDecl();
306 
307   // We don't retain the receiver in delegate init calls, and this is
308   // safe because the receiver value is always loaded from 'self',
309   // which we zero out.  We don't want to Block_copy block receivers,
310   // though.
311   bool retainSelf =
312     (!isDelegateInit &&
313      CGM.getLangOpts().ObjCAutoRefCount &&
314      method &&
315      method->hasAttr<NSConsumesSelfAttr>());
316 
317   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
318   bool isSuperMessage = false;
319   bool isClassMessage = false;
320   ObjCInterfaceDecl *OID = 0;
321   // Find the receiver
322   QualType ReceiverType;
323   llvm::Value *Receiver = 0;
324   switch (E->getReceiverKind()) {
325   case ObjCMessageExpr::Instance:
326     ReceiverType = E->getInstanceReceiver()->getType();
327     if (retainSelf) {
328       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
329                                                    E->getInstanceReceiver());
330       Receiver = ter.getPointer();
331       if (ter.getInt()) retainSelf = false;
332     } else
333       Receiver = EmitScalarExpr(E->getInstanceReceiver());
334     break;
335 
336   case ObjCMessageExpr::Class: {
337     ReceiverType = E->getClassReceiver();
338     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
339     assert(ObjTy && "Invalid Objective-C class message send");
340     OID = ObjTy->getInterface();
341     assert(OID && "Invalid Objective-C class message send");
342     Receiver = Runtime.GetClass(*this, OID);
343     isClassMessage = true;
344     break;
345   }
346 
347   case ObjCMessageExpr::SuperInstance:
348     ReceiverType = E->getSuperType();
349     Receiver = LoadObjCSelf();
350     isSuperMessage = true;
351     break;
352 
353   case ObjCMessageExpr::SuperClass:
354     ReceiverType = E->getSuperType();
355     Receiver = LoadObjCSelf();
356     isSuperMessage = true;
357     isClassMessage = true;
358     break;
359   }
360 
361   if (retainSelf)
362     Receiver = EmitARCRetainNonBlock(Receiver);
363 
364   // In ARC, we sometimes want to "extend the lifetime"
365   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
366   // messages.
367   if (getLangOpts().ObjCAutoRefCount && method &&
368       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
369       shouldExtendReceiverForInnerPointerMessage(E))
370     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
371 
372   QualType ResultType =
373     method ? method->getResultType() : E->getType();
374 
375   CallArgList Args;
376   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
377 
378   // For delegate init calls in ARC, do an unsafe store of null into
379   // self.  This represents the call taking direct ownership of that
380   // value.  We have to do this after emitting the other call
381   // arguments because they might also reference self, but we don't
382   // have to worry about any of them modifying self because that would
383   // be an undefined read and write of an object in unordered
384   // expressions.
385   if (isDelegateInit) {
386     assert(getLangOpts().ObjCAutoRefCount &&
387            "delegate init calls should only be marked in ARC");
388 
389     // Do an unsafe store of null into self.
390     llvm::Value *selfAddr =
391       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
392     assert(selfAddr && "no self entry for a delegate init call?");
393 
394     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
395   }
396 
397   RValue result;
398   if (isSuperMessage) {
399     // super is only valid in an Objective-C method
400     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
401     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
402     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
403                                               E->getSelector(),
404                                               OMD->getClassInterface(),
405                                               isCategoryImpl,
406                                               Receiver,
407                                               isClassMessage,
408                                               Args,
409                                               method);
410   } else {
411     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
412                                          E->getSelector(),
413                                          Receiver, Args, OID,
414                                          method);
415   }
416 
417   // For delegate init calls in ARC, implicitly store the result of
418   // the call back into self.  This takes ownership of the value.
419   if (isDelegateInit) {
420     llvm::Value *selfAddr =
421       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
422     llvm::Value *newSelf = result.getScalarVal();
423 
424     // The delegate return type isn't necessarily a matching type; in
425     // fact, it's quite likely to be 'id'.
426     llvm::Type *selfTy =
427       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
428     newSelf = Builder.CreateBitCast(newSelf, selfTy);
429 
430     Builder.CreateStore(newSelf, selfAddr);
431   }
432 
433   return AdjustRelatedResultType(*this, E->getType(), method, result);
434 }
435 
436 namespace {
437 struct FinishARCDealloc : EHScopeStack::Cleanup {
438   void Emit(CodeGenFunction &CGF, Flags flags) {
439     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
440 
441     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
442     const ObjCInterfaceDecl *iface = impl->getClassInterface();
443     if (!iface->getSuperClass()) return;
444 
445     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
446 
447     // Call [super dealloc] if we have a superclass.
448     llvm::Value *self = CGF.LoadObjCSelf();
449 
450     CallArgList args;
451     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
452                                                       CGF.getContext().VoidTy,
453                                                       method->getSelector(),
454                                                       iface,
455                                                       isCategory,
456                                                       self,
457                                                       /*is class msg*/ false,
458                                                       args,
459                                                       method);
460   }
461 };
462 }
463 
464 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
465 /// the LLVM function and sets the other context used by
466 /// CodeGenFunction.
467 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
468                                       const ObjCContainerDecl *CD,
469                                       SourceLocation StartLoc) {
470   FunctionArgList args;
471   // Check if we should generate debug info for this method.
472   if (OMD->hasAttr<NoDebugAttr>())
473     DebugInfo = NULL; // disable debug info indefinitely for this function
474 
475   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
476 
477   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
478   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
479 
480   args.push_back(OMD->getSelfDecl());
481   args.push_back(OMD->getCmdDecl());
482 
483   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
484          E = OMD->param_end(); PI != E; ++PI)
485     args.push_back(*PI);
486 
487   CurGD = OMD;
488 
489   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
490 
491   // In ARC, certain methods get an extra cleanup.
492   if (CGM.getLangOpts().ObjCAutoRefCount &&
493       OMD->isInstanceMethod() &&
494       OMD->getSelector().isUnarySelector()) {
495     const IdentifierInfo *ident =
496       OMD->getSelector().getIdentifierInfoForSlot(0);
497     if (ident->isStr("dealloc"))
498       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
499   }
500 }
501 
502 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
503                                               LValue lvalue, QualType type);
504 
505 /// Generate an Objective-C method.  An Objective-C method is a C function with
506 /// its pointer, name, and types registered in the class struture.
507 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
508   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
509   EmitStmt(OMD->getBody());
510   FinishFunction(OMD->getBodyRBrace());
511 }
512 
513 /// emitStructGetterCall - Call the runtime function to load a property
514 /// into the return value slot.
515 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
516                                  bool isAtomic, bool hasStrong) {
517   ASTContext &Context = CGF.getContext();
518 
519   llvm::Value *src =
520     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
521                           ivar, 0).getAddress();
522 
523   // objc_copyStruct (ReturnValue, &structIvar,
524   //                  sizeof (Type of Ivar), isAtomic, false);
525   CallArgList args;
526 
527   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
528   args.add(RValue::get(dest), Context.VoidPtrTy);
529 
530   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
531   args.add(RValue::get(src), Context.VoidPtrTy);
532 
533   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
534   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
535   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
536   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
537 
538   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
539   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
540                                                       FunctionType::ExtInfo(),
541                                                       RequiredArgs::All),
542                fn, ReturnValueSlot(), args);
543 }
544 
545 /// Determine whether the given architecture supports unaligned atomic
546 /// accesses.  They don't have to be fast, just faster than a function
547 /// call and a mutex.
548 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
549   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
550   // currently supported by the backend.)
551   return 0;
552 }
553 
554 /// Return the maximum size that permits atomic accesses for the given
555 /// architecture.
556 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
557                                         llvm::Triple::ArchType arch) {
558   // ARM has 8-byte atomic accesses, but it's not clear whether we
559   // want to rely on them here.
560 
561   // In the default case, just assume that any size up to a pointer is
562   // fine given adequate alignment.
563   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
564 }
565 
566 namespace {
567   class PropertyImplStrategy {
568   public:
569     enum StrategyKind {
570       /// The 'native' strategy is to use the architecture's provided
571       /// reads and writes.
572       Native,
573 
574       /// Use objc_setProperty and objc_getProperty.
575       GetSetProperty,
576 
577       /// Use objc_setProperty for the setter, but use expression
578       /// evaluation for the getter.
579       SetPropertyAndExpressionGet,
580 
581       /// Use objc_copyStruct.
582       CopyStruct,
583 
584       /// The 'expression' strategy is to emit normal assignment or
585       /// lvalue-to-rvalue expressions.
586       Expression
587     };
588 
589     StrategyKind getKind() const { return StrategyKind(Kind); }
590 
591     bool hasStrongMember() const { return HasStrong; }
592     bool isAtomic() const { return IsAtomic; }
593     bool isCopy() const { return IsCopy; }
594 
595     CharUnits getIvarSize() const { return IvarSize; }
596     CharUnits getIvarAlignment() const { return IvarAlignment; }
597 
598     PropertyImplStrategy(CodeGenModule &CGM,
599                          const ObjCPropertyImplDecl *propImpl);
600 
601   private:
602     unsigned Kind : 8;
603     unsigned IsAtomic : 1;
604     unsigned IsCopy : 1;
605     unsigned HasStrong : 1;
606 
607     CharUnits IvarSize;
608     CharUnits IvarAlignment;
609   };
610 }
611 
612 /// Pick an implementation strategy for the given property synthesis.
613 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
614                                      const ObjCPropertyImplDecl *propImpl) {
615   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
616   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
617 
618   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
619   IsAtomic = prop->isAtomic();
620   HasStrong = false; // doesn't matter here.
621 
622   // Evaluate the ivar's size and alignment.
623   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
624   QualType ivarType = ivar->getType();
625   llvm::tie(IvarSize, IvarAlignment)
626     = CGM.getContext().getTypeInfoInChars(ivarType);
627 
628   // If we have a copy property, we always have to use getProperty/setProperty.
629   // TODO: we could actually use setProperty and an expression for non-atomics.
630   if (IsCopy) {
631     Kind = GetSetProperty;
632     return;
633   }
634 
635   // Handle retain.
636   if (setterKind == ObjCPropertyDecl::Retain) {
637     // In GC-only, there's nothing special that needs to be done.
638     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
639       // fallthrough
640 
641     // In ARC, if the property is non-atomic, use expression emission,
642     // which translates to objc_storeStrong.  This isn't required, but
643     // it's slightly nicer.
644     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
645       // Using standard expression emission for the setter is only
646       // acceptable if the ivar is __strong, which won't be true if
647       // the property is annotated with __attribute__((NSObject)).
648       // TODO: falling all the way back to objc_setProperty here is
649       // just laziness, though;  we could still use objc_storeStrong
650       // if we hacked it right.
651       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
652         Kind = Expression;
653       else
654         Kind = SetPropertyAndExpressionGet;
655       return;
656 
657     // Otherwise, we need to at least use setProperty.  However, if
658     // the property isn't atomic, we can use normal expression
659     // emission for the getter.
660     } else if (!IsAtomic) {
661       Kind = SetPropertyAndExpressionGet;
662       return;
663 
664     // Otherwise, we have to use both setProperty and getProperty.
665     } else {
666       Kind = GetSetProperty;
667       return;
668     }
669   }
670 
671   // If we're not atomic, just use expression accesses.
672   if (!IsAtomic) {
673     Kind = Expression;
674     return;
675   }
676 
677   // Properties on bitfield ivars need to be emitted using expression
678   // accesses even if they're nominally atomic.
679   if (ivar->isBitField()) {
680     Kind = Expression;
681     return;
682   }
683 
684   // GC-qualified or ARC-qualified ivars need to be emitted as
685   // expressions.  This actually works out to being atomic anyway,
686   // except for ARC __strong, but that should trigger the above code.
687   if (ivarType.hasNonTrivialObjCLifetime() ||
688       (CGM.getLangOpts().getGC() &&
689        CGM.getContext().getObjCGCAttrKind(ivarType))) {
690     Kind = Expression;
691     return;
692   }
693 
694   // Compute whether the ivar has strong members.
695   if (CGM.getLangOpts().getGC())
696     if (const RecordType *recordType = ivarType->getAs<RecordType>())
697       HasStrong = recordType->getDecl()->hasObjectMember();
698 
699   // We can never access structs with object members with a native
700   // access, because we need to use write barriers.  This is what
701   // objc_copyStruct is for.
702   if (HasStrong) {
703     Kind = CopyStruct;
704     return;
705   }
706 
707   // Otherwise, this is target-dependent and based on the size and
708   // alignment of the ivar.
709 
710   // If the size of the ivar is not a power of two, give up.  We don't
711   // want to get into the business of doing compare-and-swaps.
712   if (!IvarSize.isPowerOfTwo()) {
713     Kind = CopyStruct;
714     return;
715   }
716 
717   llvm::Triple::ArchType arch =
718     CGM.getTarget().getTriple().getArch();
719 
720   // Most architectures require memory to fit within a single cache
721   // line, so the alignment has to be at least the size of the access.
722   // Otherwise we have to grab a lock.
723   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
724     Kind = CopyStruct;
725     return;
726   }
727 
728   // If the ivar's size exceeds the architecture's maximum atomic
729   // access size, we have to use CopyStruct.
730   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
731     Kind = CopyStruct;
732     return;
733   }
734 
735   // Otherwise, we can use native loads and stores.
736   Kind = Native;
737 }
738 
739 /// \brief Generate an Objective-C property getter function.
740 ///
741 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
742 /// is illegal within a category.
743 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
744                                          const ObjCPropertyImplDecl *PID) {
745   llvm::Constant *AtomicHelperFn =
746     GenerateObjCAtomicGetterCopyHelperFunction(PID);
747   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
748   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
749   assert(OMD && "Invalid call to generate getter (empty method)");
750   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
751 
752   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
753 
754   FinishFunction();
755 }
756 
757 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
758   const Expr *getter = propImpl->getGetterCXXConstructor();
759   if (!getter) return true;
760 
761   // Sema only makes only of these when the ivar has a C++ class type,
762   // so the form is pretty constrained.
763 
764   // If the property has a reference type, we might just be binding a
765   // reference, in which case the result will be a gl-value.  We should
766   // treat this as a non-trivial operation.
767   if (getter->isGLValue())
768     return false;
769 
770   // If we selected a trivial copy-constructor, we're okay.
771   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
772     return (construct->getConstructor()->isTrivial());
773 
774   // The constructor might require cleanups (in which case it's never
775   // trivial).
776   assert(isa<ExprWithCleanups>(getter));
777   return false;
778 }
779 
780 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
781 /// copy the ivar into the resturn slot.
782 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
783                                           llvm::Value *returnAddr,
784                                           ObjCIvarDecl *ivar,
785                                           llvm::Constant *AtomicHelperFn) {
786   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
787   //                           AtomicHelperFn);
788   CallArgList args;
789 
790   // The 1st argument is the return Slot.
791   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
792 
793   // The 2nd argument is the address of the ivar.
794   llvm::Value *ivarAddr =
795   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
796                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
797   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
798   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
799 
800   // Third argument is the helper function.
801   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
802 
803   llvm::Value *copyCppAtomicObjectFn =
804     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
805   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
806                                                       args,
807                                                       FunctionType::ExtInfo(),
808                                                       RequiredArgs::All),
809                copyCppAtomicObjectFn, ReturnValueSlot(), args);
810 }
811 
812 void
813 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
814                                         const ObjCPropertyImplDecl *propImpl,
815                                         const ObjCMethodDecl *GetterMethodDecl,
816                                         llvm::Constant *AtomicHelperFn) {
817   // If there's a non-trivial 'get' expression, we just have to emit that.
818   if (!hasTrivialGetExpr(propImpl)) {
819     if (!AtomicHelperFn) {
820       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
821                      /*nrvo*/ 0);
822       EmitReturnStmt(ret);
823     }
824     else {
825       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
826       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
827                                     ivar, AtomicHelperFn);
828     }
829     return;
830   }
831 
832   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
833   QualType propType = prop->getType();
834   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
835 
836   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
837 
838   // Pick an implementation strategy.
839   PropertyImplStrategy strategy(CGM, propImpl);
840   switch (strategy.getKind()) {
841   case PropertyImplStrategy::Native: {
842     // We don't need to do anything for a zero-size struct.
843     if (strategy.getIvarSize().isZero())
844       return;
845 
846     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
847 
848     // Currently, all atomic accesses have to be through integer
849     // types, so there's no point in trying to pick a prettier type.
850     llvm::Type *bitcastType =
851       llvm::Type::getIntNTy(getLLVMContext(),
852                             getContext().toBits(strategy.getIvarSize()));
853     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
854 
855     // Perform an atomic load.  This does not impose ordering constraints.
856     llvm::Value *ivarAddr = LV.getAddress();
857     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
858     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
859     load->setAlignment(strategy.getIvarAlignment().getQuantity());
860     load->setAtomic(llvm::Unordered);
861 
862     // Store that value into the return address.  Doing this with a
863     // bitcast is likely to produce some pretty ugly IR, but it's not
864     // the *most* terrible thing in the world.
865     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
866 
867     // Make sure we don't do an autorelease.
868     AutoreleaseResult = false;
869     return;
870   }
871 
872   case PropertyImplStrategy::GetSetProperty: {
873     llvm::Value *getPropertyFn =
874       CGM.getObjCRuntime().GetPropertyGetFunction();
875     if (!getPropertyFn) {
876       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
877       return;
878     }
879 
880     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
881     // FIXME: Can't this be simpler? This might even be worse than the
882     // corresponding gcc code.
883     llvm::Value *cmd =
884       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
885     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
886     llvm::Value *ivarOffset =
887       EmitIvarOffset(classImpl->getClassInterface(), ivar);
888 
889     CallArgList args;
890     args.add(RValue::get(self), getContext().getObjCIdType());
891     args.add(RValue::get(cmd), getContext().getObjCSelType());
892     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
893     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
894              getContext().BoolTy);
895 
896     // FIXME: We shouldn't need to get the function info here, the
897     // runtime already should have computed it to build the function.
898     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
899                                                        FunctionType::ExtInfo(),
900                                                             RequiredArgs::All),
901                          getPropertyFn, ReturnValueSlot(), args);
902 
903     // We need to fix the type here. Ivars with copy & retain are
904     // always objects so we don't need to worry about complex or
905     // aggregates.
906     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
907            getTypes().ConvertType(getterMethod->getResultType())));
908 
909     EmitReturnOfRValue(RV, propType);
910 
911     // objc_getProperty does an autorelease, so we should suppress ours.
912     AutoreleaseResult = false;
913 
914     return;
915   }
916 
917   case PropertyImplStrategy::CopyStruct:
918     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
919                          strategy.hasStrongMember());
920     return;
921 
922   case PropertyImplStrategy::Expression:
923   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
924     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
925 
926     QualType ivarType = ivar->getType();
927     switch (getEvaluationKind(ivarType)) {
928     case TEK_Complex: {
929       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
930       EmitStoreOfComplex(pair,
931                          MakeNaturalAlignAddrLValue(ReturnValue, ivarType),
932                          /*init*/ true);
933       return;
934     }
935     case TEK_Aggregate:
936       // The return value slot is guaranteed to not be aliased, but
937       // that's not necessarily the same as "on the stack", so
938       // we still potentially need objc_memmove_collectable.
939       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
940       return;
941     case TEK_Scalar: {
942       llvm::Value *value;
943       if (propType->isReferenceType()) {
944         value = LV.getAddress();
945       } else {
946         // We want to load and autoreleaseReturnValue ARC __weak ivars.
947         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
948           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
949 
950         // Otherwise we want to do a simple load, suppressing the
951         // final autorelease.
952         } else {
953           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
954           AutoreleaseResult = false;
955         }
956 
957         value = Builder.CreateBitCast(value, ConvertType(propType));
958         value = Builder.CreateBitCast(value,
959                   ConvertType(GetterMethodDecl->getResultType()));
960       }
961 
962       EmitReturnOfRValue(RValue::get(value), propType);
963       return;
964     }
965     }
966     llvm_unreachable("bad evaluation kind");
967   }
968 
969   }
970   llvm_unreachable("bad @property implementation strategy!");
971 }
972 
973 /// emitStructSetterCall - Call the runtime function to store the value
974 /// from the first formal parameter into the given ivar.
975 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
976                                  ObjCIvarDecl *ivar) {
977   // objc_copyStruct (&structIvar, &Arg,
978   //                  sizeof (struct something), true, false);
979   CallArgList args;
980 
981   // The first argument is the address of the ivar.
982   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
983                                                 CGF.LoadObjCSelf(), ivar, 0)
984     .getAddress();
985   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
986   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
987 
988   // The second argument is the address of the parameter variable.
989   ParmVarDecl *argVar = *OMD->param_begin();
990   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
991                      VK_LValue, SourceLocation());
992   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
993   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
994   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
995 
996   // The third argument is the sizeof the type.
997   llvm::Value *size =
998     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
999   args.add(RValue::get(size), CGF.getContext().getSizeType());
1000 
1001   // The fourth argument is the 'isAtomic' flag.
1002   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1003 
1004   // The fifth argument is the 'hasStrong' flag.
1005   // FIXME: should this really always be false?
1006   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1007 
1008   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1009   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1010                                                       args,
1011                                                       FunctionType::ExtInfo(),
1012                                                       RequiredArgs::All),
1013                copyStructFn, ReturnValueSlot(), args);
1014 }
1015 
1016 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1017 /// the value from the first formal parameter into the given ivar, using
1018 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1019 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1020                                           ObjCMethodDecl *OMD,
1021                                           ObjCIvarDecl *ivar,
1022                                           llvm::Constant *AtomicHelperFn) {
1023   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1024   //                           AtomicHelperFn);
1025   CallArgList args;
1026 
1027   // The first argument is the address of the ivar.
1028   llvm::Value *ivarAddr =
1029     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1030                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
1031   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1032   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1033 
1034   // The second argument is the address of the parameter variable.
1035   ParmVarDecl *argVar = *OMD->param_begin();
1036   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1037                      VK_LValue, SourceLocation());
1038   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1039   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1040   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1041 
1042   // Third argument is the helper function.
1043   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1044 
1045   llvm::Value *copyCppAtomicObjectFn =
1046     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1047   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1048                                                       args,
1049                                                       FunctionType::ExtInfo(),
1050                                                       RequiredArgs::All),
1051                copyCppAtomicObjectFn, ReturnValueSlot(), args);
1052 }
1053 
1054 
1055 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1056   Expr *setter = PID->getSetterCXXAssignment();
1057   if (!setter) return true;
1058 
1059   // Sema only makes only of these when the ivar has a C++ class type,
1060   // so the form is pretty constrained.
1061 
1062   // An operator call is trivial if the function it calls is trivial.
1063   // This also implies that there's nothing non-trivial going on with
1064   // the arguments, because operator= can only be trivial if it's a
1065   // synthesized assignment operator and therefore both parameters are
1066   // references.
1067   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1068     if (const FunctionDecl *callee
1069           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1070       if (callee->isTrivial())
1071         return true;
1072     return false;
1073   }
1074 
1075   assert(isa<ExprWithCleanups>(setter));
1076   return false;
1077 }
1078 
1079 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1080   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1081     return false;
1082   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1083 }
1084 
1085 void
1086 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1087                                         const ObjCPropertyImplDecl *propImpl,
1088                                         llvm::Constant *AtomicHelperFn) {
1089   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1090   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1091   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1092 
1093   // Just use the setter expression if Sema gave us one and it's
1094   // non-trivial.
1095   if (!hasTrivialSetExpr(propImpl)) {
1096     if (!AtomicHelperFn)
1097       // If non-atomic, assignment is called directly.
1098       EmitStmt(propImpl->getSetterCXXAssignment());
1099     else
1100       // If atomic, assignment is called via a locking api.
1101       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1102                                     AtomicHelperFn);
1103     return;
1104   }
1105 
1106   PropertyImplStrategy strategy(CGM, propImpl);
1107   switch (strategy.getKind()) {
1108   case PropertyImplStrategy::Native: {
1109     // We don't need to do anything for a zero-size struct.
1110     if (strategy.getIvarSize().isZero())
1111       return;
1112 
1113     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1114 
1115     LValue ivarLValue =
1116       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1117     llvm::Value *ivarAddr = ivarLValue.getAddress();
1118 
1119     // Currently, all atomic accesses have to be through integer
1120     // types, so there's no point in trying to pick a prettier type.
1121     llvm::Type *bitcastType =
1122       llvm::Type::getIntNTy(getLLVMContext(),
1123                             getContext().toBits(strategy.getIvarSize()));
1124     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1125 
1126     // Cast both arguments to the chosen operation type.
1127     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1128     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1129 
1130     // This bitcast load is likely to cause some nasty IR.
1131     llvm::Value *load = Builder.CreateLoad(argAddr);
1132 
1133     // Perform an atomic store.  There are no memory ordering requirements.
1134     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1135     store->setAlignment(strategy.getIvarAlignment().getQuantity());
1136     store->setAtomic(llvm::Unordered);
1137     return;
1138   }
1139 
1140   case PropertyImplStrategy::GetSetProperty:
1141   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1142 
1143     llvm::Value *setOptimizedPropertyFn = 0;
1144     llvm::Value *setPropertyFn = 0;
1145     if (UseOptimizedSetter(CGM)) {
1146       // 10.8 and iOS 6.0 code and GC is off
1147       setOptimizedPropertyFn =
1148         CGM.getObjCRuntime()
1149            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1150                                             strategy.isCopy());
1151       if (!setOptimizedPropertyFn) {
1152         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1153         return;
1154       }
1155     }
1156     else {
1157       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1158       if (!setPropertyFn) {
1159         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1160         return;
1161       }
1162     }
1163 
1164     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1165     //                       <is-atomic>, <is-copy>).
1166     llvm::Value *cmd =
1167       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1168     llvm::Value *self =
1169       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1170     llvm::Value *ivarOffset =
1171       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1172     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1173     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1174 
1175     CallArgList args;
1176     args.add(RValue::get(self), getContext().getObjCIdType());
1177     args.add(RValue::get(cmd), getContext().getObjCSelType());
1178     if (setOptimizedPropertyFn) {
1179       args.add(RValue::get(arg), getContext().getObjCIdType());
1180       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1181       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1182                                                   FunctionType::ExtInfo(),
1183                                                   RequiredArgs::All),
1184                setOptimizedPropertyFn, ReturnValueSlot(), args);
1185     } else {
1186       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1187       args.add(RValue::get(arg), getContext().getObjCIdType());
1188       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1189                getContext().BoolTy);
1190       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1191                getContext().BoolTy);
1192       // FIXME: We shouldn't need to get the function info here, the runtime
1193       // already should have computed it to build the function.
1194       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1195                                                   FunctionType::ExtInfo(),
1196                                                   RequiredArgs::All),
1197                setPropertyFn, ReturnValueSlot(), args);
1198     }
1199 
1200     return;
1201   }
1202 
1203   case PropertyImplStrategy::CopyStruct:
1204     emitStructSetterCall(*this, setterMethod, ivar);
1205     return;
1206 
1207   case PropertyImplStrategy::Expression:
1208     break;
1209   }
1210 
1211   // Otherwise, fake up some ASTs and emit a normal assignment.
1212   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1213   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1214                    VK_LValue, SourceLocation());
1215   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1216                             selfDecl->getType(), CK_LValueToRValue, &self,
1217                             VK_RValue);
1218   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1219                           SourceLocation(), SourceLocation(),
1220                           &selfLoad, true, true);
1221 
1222   ParmVarDecl *argDecl = *setterMethod->param_begin();
1223   QualType argType = argDecl->getType().getNonReferenceType();
1224   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1225   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1226                            argType.getUnqualifiedType(), CK_LValueToRValue,
1227                            &arg, VK_RValue);
1228 
1229   // The property type can differ from the ivar type in some situations with
1230   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1231   // The following absurdity is just to ensure well-formed IR.
1232   CastKind argCK = CK_NoOp;
1233   if (ivarRef.getType()->isObjCObjectPointerType()) {
1234     if (argLoad.getType()->isObjCObjectPointerType())
1235       argCK = CK_BitCast;
1236     else if (argLoad.getType()->isBlockPointerType())
1237       argCK = CK_BlockPointerToObjCPointerCast;
1238     else
1239       argCK = CK_CPointerToObjCPointerCast;
1240   } else if (ivarRef.getType()->isBlockPointerType()) {
1241      if (argLoad.getType()->isBlockPointerType())
1242       argCK = CK_BitCast;
1243     else
1244       argCK = CK_AnyPointerToBlockPointerCast;
1245   } else if (ivarRef.getType()->isPointerType()) {
1246     argCK = CK_BitCast;
1247   }
1248   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1249                            ivarRef.getType(), argCK, &argLoad,
1250                            VK_RValue);
1251   Expr *finalArg = &argLoad;
1252   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1253                                            argLoad.getType()))
1254     finalArg = &argCast;
1255 
1256 
1257   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1258                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1259                         SourceLocation(), false);
1260   EmitStmt(&assign);
1261 }
1262 
1263 /// \brief Generate an Objective-C property setter function.
1264 ///
1265 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1266 /// is illegal within a category.
1267 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1268                                          const ObjCPropertyImplDecl *PID) {
1269   llvm::Constant *AtomicHelperFn =
1270     GenerateObjCAtomicSetterCopyHelperFunction(PID);
1271   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1272   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1273   assert(OMD && "Invalid call to generate setter (empty method)");
1274   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
1275 
1276   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1277 
1278   FinishFunction();
1279 }
1280 
1281 namespace {
1282   struct DestroyIvar : EHScopeStack::Cleanup {
1283   private:
1284     llvm::Value *addr;
1285     const ObjCIvarDecl *ivar;
1286     CodeGenFunction::Destroyer *destroyer;
1287     bool useEHCleanupForArray;
1288   public:
1289     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1290                 CodeGenFunction::Destroyer *destroyer,
1291                 bool useEHCleanupForArray)
1292       : addr(addr), ivar(ivar), destroyer(destroyer),
1293         useEHCleanupForArray(useEHCleanupForArray) {}
1294 
1295     void Emit(CodeGenFunction &CGF, Flags flags) {
1296       LValue lvalue
1297         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1298       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1299                       flags.isForNormalCleanup() && useEHCleanupForArray);
1300     }
1301   };
1302 }
1303 
1304 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1305 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1306                                       llvm::Value *addr,
1307                                       QualType type) {
1308   llvm::Value *null = getNullForVariable(addr);
1309   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1310 }
1311 
1312 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1313                                   ObjCImplementationDecl *impl) {
1314   CodeGenFunction::RunCleanupsScope scope(CGF);
1315 
1316   llvm::Value *self = CGF.LoadObjCSelf();
1317 
1318   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1319   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1320        ivar; ivar = ivar->getNextIvar()) {
1321     QualType type = ivar->getType();
1322 
1323     // Check whether the ivar is a destructible type.
1324     QualType::DestructionKind dtorKind = type.isDestructedType();
1325     if (!dtorKind) continue;
1326 
1327     CodeGenFunction::Destroyer *destroyer = 0;
1328 
1329     // Use a call to objc_storeStrong to destroy strong ivars, for the
1330     // general benefit of the tools.
1331     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1332       destroyer = destroyARCStrongWithStore;
1333 
1334     // Otherwise use the default for the destruction kind.
1335     } else {
1336       destroyer = CGF.getDestroyer(dtorKind);
1337     }
1338 
1339     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1340 
1341     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1342                                          cleanupKind & EHCleanup);
1343   }
1344 
1345   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1346 }
1347 
1348 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1349                                                  ObjCMethodDecl *MD,
1350                                                  bool ctor) {
1351   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1352   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1353 
1354   // Emit .cxx_construct.
1355   if (ctor) {
1356     // Suppress the final autorelease in ARC.
1357     AutoreleaseResult = false;
1358 
1359     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1360            E = IMP->init_end(); B != E; ++B) {
1361       CXXCtorInitializer *IvarInit = (*B);
1362       FieldDecl *Field = IvarInit->getAnyMember();
1363       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
1364       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1365                                     LoadObjCSelf(), Ivar, 0);
1366       EmitAggExpr(IvarInit->getInit(),
1367                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1368                                           AggValueSlot::DoesNotNeedGCBarriers,
1369                                           AggValueSlot::IsNotAliased));
1370     }
1371     // constructor returns 'self'.
1372     CodeGenTypes &Types = CGM.getTypes();
1373     QualType IdTy(CGM.getContext().getObjCIdType());
1374     llvm::Value *SelfAsId =
1375       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1376     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1377 
1378   // Emit .cxx_destruct.
1379   } else {
1380     emitCXXDestructMethod(*this, IMP);
1381   }
1382   FinishFunction();
1383 }
1384 
1385 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1386   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1387   it++; it++;
1388   const ABIArgInfo &AI = it->info;
1389   // FIXME. Is this sufficient check?
1390   return (AI.getKind() == ABIArgInfo::Indirect);
1391 }
1392 
1393 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1394   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1395     return false;
1396   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1397     return FDTTy->getDecl()->hasObjectMember();
1398   return false;
1399 }
1400 
1401 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1402   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1403   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1404                   Self->getType(), VK_LValue, SourceLocation());
1405   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1406 }
1407 
1408 QualType CodeGenFunction::TypeOfSelfObject() {
1409   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1410   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1411   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1412     getContext().getCanonicalType(selfDecl->getType()));
1413   return PTy->getPointeeType();
1414 }
1415 
1416 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1417   llvm::Constant *EnumerationMutationFn =
1418     CGM.getObjCRuntime().EnumerationMutationFunction();
1419 
1420   if (!EnumerationMutationFn) {
1421     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1422     return;
1423   }
1424 
1425   CGDebugInfo *DI = getDebugInfo();
1426   if (DI)
1427     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1428 
1429   // The local variable comes into scope immediately.
1430   AutoVarEmission variable = AutoVarEmission::invalid();
1431   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1432     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1433 
1434   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1435 
1436   // Fast enumeration state.
1437   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1438   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1439   EmitNullInitialization(StatePtr, StateTy);
1440 
1441   // Number of elements in the items array.
1442   static const unsigned NumItems = 16;
1443 
1444   // Fetch the countByEnumeratingWithState:objects:count: selector.
1445   IdentifierInfo *II[] = {
1446     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1447     &CGM.getContext().Idents.get("objects"),
1448     &CGM.getContext().Idents.get("count")
1449   };
1450   Selector FastEnumSel =
1451     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1452 
1453   QualType ItemsTy =
1454     getContext().getConstantArrayType(getContext().getObjCIdType(),
1455                                       llvm::APInt(32, NumItems),
1456                                       ArrayType::Normal, 0);
1457   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1458 
1459   // Emit the collection pointer.  In ARC, we do a retain.
1460   llvm::Value *Collection;
1461   if (getLangOpts().ObjCAutoRefCount) {
1462     Collection = EmitARCRetainScalarExpr(S.getCollection());
1463 
1464     // Enter a cleanup to do the release.
1465     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1466   } else {
1467     Collection = EmitScalarExpr(S.getCollection());
1468   }
1469 
1470   // The 'continue' label needs to appear within the cleanup for the
1471   // collection object.
1472   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1473 
1474   // Send it our message:
1475   CallArgList Args;
1476 
1477   // The first argument is a temporary of the enumeration-state type.
1478   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1479 
1480   // The second argument is a temporary array with space for NumItems
1481   // pointers.  We'll actually be loading elements from the array
1482   // pointer written into the control state; this buffer is so that
1483   // collections that *aren't* backed by arrays can still queue up
1484   // batches of elements.
1485   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1486 
1487   // The third argument is the capacity of that temporary array.
1488   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1489   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1490   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1491 
1492   // Start the enumeration.
1493   RValue CountRV =
1494     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1495                                              getContext().UnsignedLongTy,
1496                                              FastEnumSel,
1497                                              Collection, Args);
1498 
1499   // The initial number of objects that were returned in the buffer.
1500   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1501 
1502   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1503   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1504 
1505   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1506 
1507   // If the limit pointer was zero to begin with, the collection is
1508   // empty; skip all this.
1509   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1510                        EmptyBB, LoopInitBB);
1511 
1512   // Otherwise, initialize the loop.
1513   EmitBlock(LoopInitBB);
1514 
1515   // Save the initial mutations value.  This is the value at an
1516   // address that was written into the state object by
1517   // countByEnumeratingWithState:objects:count:.
1518   llvm::Value *StateMutationsPtrPtr =
1519     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1520   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1521                                                       "mutationsptr");
1522 
1523   llvm::Value *initialMutations =
1524     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1525 
1526   // Start looping.  This is the point we return to whenever we have a
1527   // fresh, non-empty batch of objects.
1528   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1529   EmitBlock(LoopBodyBB);
1530 
1531   // The current index into the buffer.
1532   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1533   index->addIncoming(zero, LoopInitBB);
1534 
1535   // The current buffer size.
1536   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1537   count->addIncoming(initialBufferLimit, LoopInitBB);
1538 
1539   // Check whether the mutations value has changed from where it was
1540   // at start.  StateMutationsPtr should actually be invariant between
1541   // refreshes.
1542   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1543   llvm::Value *currentMutations
1544     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1545 
1546   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1547   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1548 
1549   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1550                        WasNotMutatedBB, WasMutatedBB);
1551 
1552   // If so, call the enumeration-mutation function.
1553   EmitBlock(WasMutatedBB);
1554   llvm::Value *V =
1555     Builder.CreateBitCast(Collection,
1556                           ConvertType(getContext().getObjCIdType()));
1557   CallArgList Args2;
1558   Args2.add(RValue::get(V), getContext().getObjCIdType());
1559   // FIXME: We shouldn't need to get the function info here, the runtime already
1560   // should have computed it to build the function.
1561   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1562                                                   FunctionType::ExtInfo(),
1563                                                   RequiredArgs::All),
1564            EnumerationMutationFn, ReturnValueSlot(), Args2);
1565 
1566   // Otherwise, or if the mutation function returns, just continue.
1567   EmitBlock(WasNotMutatedBB);
1568 
1569   // Initialize the element variable.
1570   RunCleanupsScope elementVariableScope(*this);
1571   bool elementIsVariable;
1572   LValue elementLValue;
1573   QualType elementType;
1574   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1575     // Initialize the variable, in case it's a __block variable or something.
1576     EmitAutoVarInit(variable);
1577 
1578     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1579     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1580                         VK_LValue, SourceLocation());
1581     elementLValue = EmitLValue(&tempDRE);
1582     elementType = D->getType();
1583     elementIsVariable = true;
1584 
1585     if (D->isARCPseudoStrong())
1586       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1587   } else {
1588     elementLValue = LValue(); // suppress warning
1589     elementType = cast<Expr>(S.getElement())->getType();
1590     elementIsVariable = false;
1591   }
1592   llvm::Type *convertedElementType = ConvertType(elementType);
1593 
1594   // Fetch the buffer out of the enumeration state.
1595   // TODO: this pointer should actually be invariant between
1596   // refreshes, which would help us do certain loop optimizations.
1597   llvm::Value *StateItemsPtr =
1598     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1599   llvm::Value *EnumStateItems =
1600     Builder.CreateLoad(StateItemsPtr, "stateitems");
1601 
1602   // Fetch the value at the current index from the buffer.
1603   llvm::Value *CurrentItemPtr =
1604     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1605   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1606 
1607   // Cast that value to the right type.
1608   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1609                                       "currentitem");
1610 
1611   // Make sure we have an l-value.  Yes, this gets evaluated every
1612   // time through the loop.
1613   if (!elementIsVariable) {
1614     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1615     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1616   } else {
1617     EmitScalarInit(CurrentItem, elementLValue);
1618   }
1619 
1620   // If we do have an element variable, this assignment is the end of
1621   // its initialization.
1622   if (elementIsVariable)
1623     EmitAutoVarCleanups(variable);
1624 
1625   // Perform the loop body, setting up break and continue labels.
1626   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1627   {
1628     RunCleanupsScope Scope(*this);
1629     EmitStmt(S.getBody());
1630   }
1631   BreakContinueStack.pop_back();
1632 
1633   // Destroy the element variable now.
1634   elementVariableScope.ForceCleanup();
1635 
1636   // Check whether there are more elements.
1637   EmitBlock(AfterBody.getBlock());
1638 
1639   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1640 
1641   // First we check in the local buffer.
1642   llvm::Value *indexPlusOne
1643     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1644 
1645   // If we haven't overrun the buffer yet, we can continue.
1646   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1647                        LoopBodyBB, FetchMoreBB);
1648 
1649   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1650   count->addIncoming(count, AfterBody.getBlock());
1651 
1652   // Otherwise, we have to fetch more elements.
1653   EmitBlock(FetchMoreBB);
1654 
1655   CountRV =
1656     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1657                                              getContext().UnsignedLongTy,
1658                                              FastEnumSel,
1659                                              Collection, Args);
1660 
1661   // If we got a zero count, we're done.
1662   llvm::Value *refetchCount = CountRV.getScalarVal();
1663 
1664   // (note that the message send might split FetchMoreBB)
1665   index->addIncoming(zero, Builder.GetInsertBlock());
1666   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1667 
1668   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1669                        EmptyBB, LoopBodyBB);
1670 
1671   // No more elements.
1672   EmitBlock(EmptyBB);
1673 
1674   if (!elementIsVariable) {
1675     // If the element was not a declaration, set it to be null.
1676 
1677     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1678     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1679     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1680   }
1681 
1682   if (DI)
1683     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1684 
1685   // Leave the cleanup we entered in ARC.
1686   if (getLangOpts().ObjCAutoRefCount)
1687     PopCleanupBlock();
1688 
1689   EmitBlock(LoopEnd.getBlock());
1690 }
1691 
1692 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1693   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1694 }
1695 
1696 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1697   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1698 }
1699 
1700 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1701                                               const ObjCAtSynchronizedStmt &S) {
1702   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1703 }
1704 
1705 /// Produce the code for a CK_ARCProduceObject.  Just does a
1706 /// primitive retain.
1707 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1708                                                     llvm::Value *value) {
1709   return EmitARCRetain(type, value);
1710 }
1711 
1712 namespace {
1713   struct CallObjCRelease : EHScopeStack::Cleanup {
1714     CallObjCRelease(llvm::Value *object) : object(object) {}
1715     llvm::Value *object;
1716 
1717     void Emit(CodeGenFunction &CGF, Flags flags) {
1718       // Releases at the end of the full-expression are imprecise.
1719       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1720     }
1721   };
1722 }
1723 
1724 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1725 /// release at the end of the full-expression.
1726 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1727                                                     llvm::Value *object) {
1728   // If we're in a conditional branch, we need to make the cleanup
1729   // conditional.
1730   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1731   return object;
1732 }
1733 
1734 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1735                                                            llvm::Value *value) {
1736   return EmitARCRetainAutorelease(type, value);
1737 }
1738 
1739 /// Given a number of pointers, inform the optimizer that they're
1740 /// being intrinsically used up until this point in the program.
1741 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1742   llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use;
1743   if (!fn) {
1744     llvm::FunctionType *fnType =
1745       llvm::FunctionType::get(CGM.VoidTy, ArrayRef<llvm::Type*>(), true);
1746     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1747   }
1748 
1749   // This isn't really a "runtime" function, but as an intrinsic it
1750   // doesn't really matter as long as we align things up.
1751   EmitNounwindRuntimeCall(fn, values);
1752 }
1753 
1754 
1755 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1756                                                 llvm::FunctionType *type,
1757                                                 StringRef fnName) {
1758   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1759 
1760   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1761     // If the target runtime doesn't naturally support ARC, emit weak
1762     // references to the runtime support library.  We don't really
1763     // permit this to fail, but we need a particular relocation style.
1764     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1765       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1766     } else if (fnName == "objc_retain" || fnName  == "objc_release") {
1767       // If we have Native ARC, set nonlazybind attribute for these APIs for
1768       // performance.
1769       f->addFnAttr(llvm::Attribute::NonLazyBind);
1770     }
1771   }
1772 
1773   return fn;
1774 }
1775 
1776 /// Perform an operation having the signature
1777 ///   i8* (i8*)
1778 /// where a null input causes a no-op and returns null.
1779 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1780                                           llvm::Value *value,
1781                                           llvm::Constant *&fn,
1782                                           StringRef fnName,
1783                                           bool isTailCall = false) {
1784   if (isa<llvm::ConstantPointerNull>(value)) return value;
1785 
1786   if (!fn) {
1787     llvm::FunctionType *fnType =
1788       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1789     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1790   }
1791 
1792   // Cast the argument to 'id'.
1793   llvm::Type *origType = value->getType();
1794   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1795 
1796   // Call the function.
1797   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1798   if (isTailCall)
1799     call->setTailCall();
1800 
1801   // Cast the result back to the original type.
1802   return CGF.Builder.CreateBitCast(call, origType);
1803 }
1804 
1805 /// Perform an operation having the following signature:
1806 ///   i8* (i8**)
1807 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1808                                          llvm::Value *addr,
1809                                          llvm::Constant *&fn,
1810                                          StringRef fnName) {
1811   if (!fn) {
1812     llvm::FunctionType *fnType =
1813       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1814     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1815   }
1816 
1817   // Cast the argument to 'id*'.
1818   llvm::Type *origType = addr->getType();
1819   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1820 
1821   // Call the function.
1822   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr);
1823 
1824   // Cast the result back to a dereference of the original type.
1825   if (origType != CGF.Int8PtrPtrTy)
1826     result = CGF.Builder.CreateBitCast(result,
1827                         cast<llvm::PointerType>(origType)->getElementType());
1828 
1829   return result;
1830 }
1831 
1832 /// Perform an operation having the following signature:
1833 ///   i8* (i8**, i8*)
1834 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1835                                           llvm::Value *addr,
1836                                           llvm::Value *value,
1837                                           llvm::Constant *&fn,
1838                                           StringRef fnName,
1839                                           bool ignored) {
1840   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1841            == value->getType());
1842 
1843   if (!fn) {
1844     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1845 
1846     llvm::FunctionType *fnType
1847       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1848     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1849   }
1850 
1851   llvm::Type *origType = value->getType();
1852 
1853   llvm::Value *args[] = {
1854     CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy),
1855     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1856   };
1857   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1858 
1859   if (ignored) return 0;
1860 
1861   return CGF.Builder.CreateBitCast(result, origType);
1862 }
1863 
1864 /// Perform an operation having the following signature:
1865 ///   void (i8**, i8**)
1866 static void emitARCCopyOperation(CodeGenFunction &CGF,
1867                                  llvm::Value *dst,
1868                                  llvm::Value *src,
1869                                  llvm::Constant *&fn,
1870                                  StringRef fnName) {
1871   assert(dst->getType() == src->getType());
1872 
1873   if (!fn) {
1874     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1875 
1876     llvm::FunctionType *fnType
1877       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1878     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1879   }
1880 
1881   llvm::Value *args[] = {
1882     CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy),
1883     CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy)
1884   };
1885   CGF.EmitNounwindRuntimeCall(fn, args);
1886 }
1887 
1888 /// Produce the code to do a retain.  Based on the type, calls one of:
1889 ///   call i8* \@objc_retain(i8* %value)
1890 ///   call i8* \@objc_retainBlock(i8* %value)
1891 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1892   if (type->isBlockPointerType())
1893     return EmitARCRetainBlock(value, /*mandatory*/ false);
1894   else
1895     return EmitARCRetainNonBlock(value);
1896 }
1897 
1898 /// Retain the given object, with normal retain semantics.
1899 ///   call i8* \@objc_retain(i8* %value)
1900 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1901   return emitARCValueOperation(*this, value,
1902                                CGM.getARCEntrypoints().objc_retain,
1903                                "objc_retain");
1904 }
1905 
1906 /// Retain the given block, with _Block_copy semantics.
1907 ///   call i8* \@objc_retainBlock(i8* %value)
1908 ///
1909 /// \param mandatory - If false, emit the call with metadata
1910 /// indicating that it's okay for the optimizer to eliminate this call
1911 /// if it can prove that the block never escapes except down the stack.
1912 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1913                                                  bool mandatory) {
1914   llvm::Value *result
1915     = emitARCValueOperation(*this, value,
1916                             CGM.getARCEntrypoints().objc_retainBlock,
1917                             "objc_retainBlock");
1918 
1919   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1920   // tell the optimizer that it doesn't need to do this copy if the
1921   // block doesn't escape, where being passed as an argument doesn't
1922   // count as escaping.
1923   if (!mandatory && isa<llvm::Instruction>(result)) {
1924     llvm::CallInst *call
1925       = cast<llvm::CallInst>(result->stripPointerCasts());
1926     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1927 
1928     SmallVector<llvm::Value*,1> args;
1929     call->setMetadata("clang.arc.copy_on_escape",
1930                       llvm::MDNode::get(Builder.getContext(), args));
1931   }
1932 
1933   return result;
1934 }
1935 
1936 /// Retain the given object which is the result of a function call.
1937 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1938 ///
1939 /// Yes, this function name is one character away from a different
1940 /// call with completely different semantics.
1941 llvm::Value *
1942 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1943   // Fetch the void(void) inline asm which marks that we're going to
1944   // retain the autoreleased return value.
1945   llvm::InlineAsm *&marker
1946     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1947   if (!marker) {
1948     StringRef assembly
1949       = CGM.getTargetCodeGenInfo()
1950            .getARCRetainAutoreleasedReturnValueMarker();
1951 
1952     // If we have an empty assembly string, there's nothing to do.
1953     if (assembly.empty()) {
1954 
1955     // Otherwise, at -O0, build an inline asm that we're going to call
1956     // in a moment.
1957     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1958       llvm::FunctionType *type =
1959         llvm::FunctionType::get(VoidTy, /*variadic*/false);
1960 
1961       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1962 
1963     // If we're at -O1 and above, we don't want to litter the code
1964     // with this marker yet, so leave a breadcrumb for the ARC
1965     // optimizer to pick up.
1966     } else {
1967       llvm::NamedMDNode *metadata =
1968         CGM.getModule().getOrInsertNamedMetadata(
1969                             "clang.arc.retainAutoreleasedReturnValueMarker");
1970       assert(metadata->getNumOperands() <= 1);
1971       if (metadata->getNumOperands() == 0) {
1972         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1973         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1974       }
1975     }
1976   }
1977 
1978   // Call the marker asm if we made one, which we do only at -O0.
1979   if (marker) Builder.CreateCall(marker);
1980 
1981   return emitARCValueOperation(*this, value,
1982                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1983                                "objc_retainAutoreleasedReturnValue");
1984 }
1985 
1986 /// Release the given object.
1987 ///   call void \@objc_release(i8* %value)
1988 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
1989                                      ARCPreciseLifetime_t precise) {
1990   if (isa<llvm::ConstantPointerNull>(value)) return;
1991 
1992   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
1993   if (!fn) {
1994     llvm::FunctionType *fnType =
1995       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
1996     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
1997   }
1998 
1999   // Cast the argument to 'id'.
2000   value = Builder.CreateBitCast(value, Int8PtrTy);
2001 
2002   // Call objc_release.
2003   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2004 
2005   if (precise == ARCImpreciseLifetime) {
2006     SmallVector<llvm::Value*,1> args;
2007     call->setMetadata("clang.imprecise_release",
2008                       llvm::MDNode::get(Builder.getContext(), args));
2009   }
2010 }
2011 
2012 /// Destroy a __strong variable.
2013 ///
2014 /// At -O0, emit a call to store 'null' into the address;
2015 /// instrumenting tools prefer this because the address is exposed,
2016 /// but it's relatively cumbersome to optimize.
2017 ///
2018 /// At -O1 and above, just load and call objc_release.
2019 ///
2020 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2021 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr,
2022                                            ARCPreciseLifetime_t precise) {
2023   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2024     llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
2025     llvm::Value *null = llvm::ConstantPointerNull::get(
2026                           cast<llvm::PointerType>(addrTy->getElementType()));
2027     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2028     return;
2029   }
2030 
2031   llvm::Value *value = Builder.CreateLoad(addr);
2032   EmitARCRelease(value, precise);
2033 }
2034 
2035 /// Store into a strong object.  Always calls this:
2036 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2037 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
2038                                                      llvm::Value *value,
2039                                                      bool ignored) {
2040   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
2041            == value->getType());
2042 
2043   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
2044   if (!fn) {
2045     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2046     llvm::FunctionType *fnType
2047       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2048     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2049   }
2050 
2051   llvm::Value *args[] = {
2052     Builder.CreateBitCast(addr, Int8PtrPtrTy),
2053     Builder.CreateBitCast(value, Int8PtrTy)
2054   };
2055   EmitNounwindRuntimeCall(fn, args);
2056 
2057   if (ignored) return 0;
2058   return value;
2059 }
2060 
2061 /// Store into a strong object.  Sometimes calls this:
2062 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2063 /// Other times, breaks it down into components.
2064 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2065                                                  llvm::Value *newValue,
2066                                                  bool ignored) {
2067   QualType type = dst.getType();
2068   bool isBlock = type->isBlockPointerType();
2069 
2070   // Use a store barrier at -O0 unless this is a block type or the
2071   // lvalue is inadequately aligned.
2072   if (shouldUseFusedARCCalls() &&
2073       !isBlock &&
2074       (dst.getAlignment().isZero() ||
2075        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2076     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2077   }
2078 
2079   // Otherwise, split it out.
2080 
2081   // Retain the new value.
2082   newValue = EmitARCRetain(type, newValue);
2083 
2084   // Read the old value.
2085   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2086 
2087   // Store.  We do this before the release so that any deallocs won't
2088   // see the old value.
2089   EmitStoreOfScalar(newValue, dst);
2090 
2091   // Finally, release the old value.
2092   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2093 
2094   return newValue;
2095 }
2096 
2097 /// Autorelease the given object.
2098 ///   call i8* \@objc_autorelease(i8* %value)
2099 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2100   return emitARCValueOperation(*this, value,
2101                                CGM.getARCEntrypoints().objc_autorelease,
2102                                "objc_autorelease");
2103 }
2104 
2105 /// Autorelease the given object.
2106 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2107 llvm::Value *
2108 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2109   return emitARCValueOperation(*this, value,
2110                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2111                                "objc_autoreleaseReturnValue",
2112                                /*isTailCall*/ true);
2113 }
2114 
2115 /// Do a fused retain/autorelease of the given object.
2116 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2117 llvm::Value *
2118 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2119   return emitARCValueOperation(*this, value,
2120                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2121                                "objc_retainAutoreleaseReturnValue",
2122                                /*isTailCall*/ true);
2123 }
2124 
2125 /// Do a fused retain/autorelease of the given object.
2126 ///   call i8* \@objc_retainAutorelease(i8* %value)
2127 /// or
2128 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2129 ///   call i8* \@objc_autorelease(i8* %retain)
2130 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2131                                                        llvm::Value *value) {
2132   if (!type->isBlockPointerType())
2133     return EmitARCRetainAutoreleaseNonBlock(value);
2134 
2135   if (isa<llvm::ConstantPointerNull>(value)) return value;
2136 
2137   llvm::Type *origType = value->getType();
2138   value = Builder.CreateBitCast(value, Int8PtrTy);
2139   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2140   value = EmitARCAutorelease(value);
2141   return Builder.CreateBitCast(value, origType);
2142 }
2143 
2144 /// Do a fused retain/autorelease of the given object.
2145 ///   call i8* \@objc_retainAutorelease(i8* %value)
2146 llvm::Value *
2147 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2148   return emitARCValueOperation(*this, value,
2149                                CGM.getARCEntrypoints().objc_retainAutorelease,
2150                                "objc_retainAutorelease");
2151 }
2152 
2153 /// i8* \@objc_loadWeak(i8** %addr)
2154 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2155 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2156   return emitARCLoadOperation(*this, addr,
2157                               CGM.getARCEntrypoints().objc_loadWeak,
2158                               "objc_loadWeak");
2159 }
2160 
2161 /// i8* \@objc_loadWeakRetained(i8** %addr)
2162 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2163   return emitARCLoadOperation(*this, addr,
2164                               CGM.getARCEntrypoints().objc_loadWeakRetained,
2165                               "objc_loadWeakRetained");
2166 }
2167 
2168 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2169 /// Returns %value.
2170 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2171                                                llvm::Value *value,
2172                                                bool ignored) {
2173   return emitARCStoreOperation(*this, addr, value,
2174                                CGM.getARCEntrypoints().objc_storeWeak,
2175                                "objc_storeWeak", ignored);
2176 }
2177 
2178 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2179 /// Returns %value.  %addr is known to not have a current weak entry.
2180 /// Essentially equivalent to:
2181 ///   *addr = nil; objc_storeWeak(addr, value);
2182 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2183   // If we're initializing to null, just write null to memory; no need
2184   // to get the runtime involved.  But don't do this if optimization
2185   // is enabled, because accounting for this would make the optimizer
2186   // much more complicated.
2187   if (isa<llvm::ConstantPointerNull>(value) &&
2188       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2189     Builder.CreateStore(value, addr);
2190     return;
2191   }
2192 
2193   emitARCStoreOperation(*this, addr, value,
2194                         CGM.getARCEntrypoints().objc_initWeak,
2195                         "objc_initWeak", /*ignored*/ true);
2196 }
2197 
2198 /// void \@objc_destroyWeak(i8** %addr)
2199 /// Essentially objc_storeWeak(addr, nil).
2200 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2201   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2202   if (!fn) {
2203     llvm::FunctionType *fnType =
2204       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2205     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2206   }
2207 
2208   // Cast the argument to 'id*'.
2209   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2210 
2211   EmitNounwindRuntimeCall(fn, addr);
2212 }
2213 
2214 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2215 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2216 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2217 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2218   emitARCCopyOperation(*this, dst, src,
2219                        CGM.getARCEntrypoints().objc_moveWeak,
2220                        "objc_moveWeak");
2221 }
2222 
2223 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2224 /// Disregards the current value in %dest.  Essentially
2225 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2226 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2227   emitARCCopyOperation(*this, dst, src,
2228                        CGM.getARCEntrypoints().objc_copyWeak,
2229                        "objc_copyWeak");
2230 }
2231 
2232 /// Produce the code to do a objc_autoreleasepool_push.
2233 ///   call i8* \@objc_autoreleasePoolPush(void)
2234 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2235   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2236   if (!fn) {
2237     llvm::FunctionType *fnType =
2238       llvm::FunctionType::get(Int8PtrTy, false);
2239     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2240   }
2241 
2242   return EmitNounwindRuntimeCall(fn);
2243 }
2244 
2245 /// Produce the code to do a primitive release.
2246 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2247 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2248   assert(value->getType() == Int8PtrTy);
2249 
2250   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2251   if (!fn) {
2252     llvm::FunctionType *fnType =
2253       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2254 
2255     // We don't want to use a weak import here; instead we should not
2256     // fall into this path.
2257     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2258   }
2259 
2260   // objc_autoreleasePoolPop can throw.
2261   EmitRuntimeCallOrInvoke(fn, value);
2262 }
2263 
2264 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2265 /// Which is: [[NSAutoreleasePool alloc] init];
2266 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2267 /// init is declared as: - (id) init; in its NSObject super class.
2268 ///
2269 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2270   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2271   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2272   // [NSAutoreleasePool alloc]
2273   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2274   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2275   CallArgList Args;
2276   RValue AllocRV =
2277     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2278                                 getContext().getObjCIdType(),
2279                                 AllocSel, Receiver, Args);
2280 
2281   // [Receiver init]
2282   Receiver = AllocRV.getScalarVal();
2283   II = &CGM.getContext().Idents.get("init");
2284   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2285   RValue InitRV =
2286     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2287                                 getContext().getObjCIdType(),
2288                                 InitSel, Receiver, Args);
2289   return InitRV.getScalarVal();
2290 }
2291 
2292 /// Produce the code to do a primitive release.
2293 /// [tmp drain];
2294 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2295   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2296   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2297   CallArgList Args;
2298   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2299                               getContext().VoidTy, DrainSel, Arg, Args);
2300 }
2301 
2302 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2303                                               llvm::Value *addr,
2304                                               QualType type) {
2305   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2306 }
2307 
2308 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2309                                                 llvm::Value *addr,
2310                                                 QualType type) {
2311   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2312 }
2313 
2314 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2315                                      llvm::Value *addr,
2316                                      QualType type) {
2317   CGF.EmitARCDestroyWeak(addr);
2318 }
2319 
2320 namespace {
2321   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2322     llvm::Value *Token;
2323 
2324     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2325 
2326     void Emit(CodeGenFunction &CGF, Flags flags) {
2327       CGF.EmitObjCAutoreleasePoolPop(Token);
2328     }
2329   };
2330   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2331     llvm::Value *Token;
2332 
2333     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2334 
2335     void Emit(CodeGenFunction &CGF, Flags flags) {
2336       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2337     }
2338   };
2339 }
2340 
2341 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2342   if (CGM.getLangOpts().ObjCAutoRefCount)
2343     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2344   else
2345     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2346 }
2347 
2348 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2349                                                   LValue lvalue,
2350                                                   QualType type) {
2351   switch (type.getObjCLifetime()) {
2352   case Qualifiers::OCL_None:
2353   case Qualifiers::OCL_ExplicitNone:
2354   case Qualifiers::OCL_Strong:
2355   case Qualifiers::OCL_Autoreleasing:
2356     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2357                                               SourceLocation()).getScalarVal(),
2358                          false);
2359 
2360   case Qualifiers::OCL_Weak:
2361     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2362                          true);
2363   }
2364 
2365   llvm_unreachable("impossible lifetime!");
2366 }
2367 
2368 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2369                                                   const Expr *e) {
2370   e = e->IgnoreParens();
2371   QualType type = e->getType();
2372 
2373   // If we're loading retained from a __strong xvalue, we can avoid
2374   // an extra retain/release pair by zeroing out the source of this
2375   // "move" operation.
2376   if (e->isXValue() &&
2377       !type.isConstQualified() &&
2378       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2379     // Emit the lvalue.
2380     LValue lv = CGF.EmitLValue(e);
2381 
2382     // Load the object pointer.
2383     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2384                                                SourceLocation()).getScalarVal();
2385 
2386     // Set the source pointer to NULL.
2387     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2388 
2389     return TryEmitResult(result, true);
2390   }
2391 
2392   // As a very special optimization, in ARC++, if the l-value is the
2393   // result of a non-volatile assignment, do a simple retain of the
2394   // result of the call to objc_storeWeak instead of reloading.
2395   if (CGF.getLangOpts().CPlusPlus &&
2396       !type.isVolatileQualified() &&
2397       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2398       isa<BinaryOperator>(e) &&
2399       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2400     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2401 
2402   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2403 }
2404 
2405 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2406                                            llvm::Value *value);
2407 
2408 /// Given that the given expression is some sort of call (which does
2409 /// not return retained), emit a retain following it.
2410 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2411   llvm::Value *value = CGF.EmitScalarExpr(e);
2412   return emitARCRetainAfterCall(CGF, value);
2413 }
2414 
2415 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2416                                            llvm::Value *value) {
2417   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2418     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2419 
2420     // Place the retain immediately following the call.
2421     CGF.Builder.SetInsertPoint(call->getParent(),
2422                                ++llvm::BasicBlock::iterator(call));
2423     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2424 
2425     CGF.Builder.restoreIP(ip);
2426     return value;
2427   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2428     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2429 
2430     // Place the retain at the beginning of the normal destination block.
2431     llvm::BasicBlock *BB = invoke->getNormalDest();
2432     CGF.Builder.SetInsertPoint(BB, BB->begin());
2433     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2434 
2435     CGF.Builder.restoreIP(ip);
2436     return value;
2437 
2438   // Bitcasts can arise because of related-result returns.  Rewrite
2439   // the operand.
2440   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2441     llvm::Value *operand = bitcast->getOperand(0);
2442     operand = emitARCRetainAfterCall(CGF, operand);
2443     bitcast->setOperand(0, operand);
2444     return bitcast;
2445 
2446   // Generic fall-back case.
2447   } else {
2448     // Retain using the non-block variant: we never need to do a copy
2449     // of a block that's been returned to us.
2450     return CGF.EmitARCRetainNonBlock(value);
2451   }
2452 }
2453 
2454 /// Determine whether it might be important to emit a separate
2455 /// objc_retain_block on the result of the given expression, or
2456 /// whether it's okay to just emit it in a +1 context.
2457 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2458   assert(e->getType()->isBlockPointerType());
2459   e = e->IgnoreParens();
2460 
2461   // For future goodness, emit block expressions directly in +1
2462   // contexts if we can.
2463   if (isa<BlockExpr>(e))
2464     return false;
2465 
2466   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2467     switch (cast->getCastKind()) {
2468     // Emitting these operations in +1 contexts is goodness.
2469     case CK_LValueToRValue:
2470     case CK_ARCReclaimReturnedObject:
2471     case CK_ARCConsumeObject:
2472     case CK_ARCProduceObject:
2473       return false;
2474 
2475     // These operations preserve a block type.
2476     case CK_NoOp:
2477     case CK_BitCast:
2478       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2479 
2480     // These operations are known to be bad (or haven't been considered).
2481     case CK_AnyPointerToBlockPointerCast:
2482     default:
2483       return true;
2484     }
2485   }
2486 
2487   return true;
2488 }
2489 
2490 /// Try to emit a PseudoObjectExpr at +1.
2491 ///
2492 /// This massively duplicates emitPseudoObjectRValue.
2493 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2494                                                   const PseudoObjectExpr *E) {
2495   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2496 
2497   // Find the result expression.
2498   const Expr *resultExpr = E->getResultExpr();
2499   assert(resultExpr);
2500   TryEmitResult result;
2501 
2502   for (PseudoObjectExpr::const_semantics_iterator
2503          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2504     const Expr *semantic = *i;
2505 
2506     // If this semantic expression is an opaque value, bind it
2507     // to the result of its source expression.
2508     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2509       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2510       OVMA opaqueData;
2511 
2512       // If this semantic is the result of the pseudo-object
2513       // expression, try to evaluate the source as +1.
2514       if (ov == resultExpr) {
2515         assert(!OVMA::shouldBindAsLValue(ov));
2516         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2517         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2518 
2519       // Otherwise, just bind it.
2520       } else {
2521         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2522       }
2523       opaques.push_back(opaqueData);
2524 
2525     // Otherwise, if the expression is the result, evaluate it
2526     // and remember the result.
2527     } else if (semantic == resultExpr) {
2528       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2529 
2530     // Otherwise, evaluate the expression in an ignored context.
2531     } else {
2532       CGF.EmitIgnoredExpr(semantic);
2533     }
2534   }
2535 
2536   // Unbind all the opaques now.
2537   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2538     opaques[i].unbind(CGF);
2539 
2540   return result;
2541 }
2542 
2543 static TryEmitResult
2544 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2545   // We should *never* see a nested full-expression here, because if
2546   // we fail to emit at +1, our caller must not retain after we close
2547   // out the full-expression.
2548   assert(!isa<ExprWithCleanups>(e));
2549 
2550   // The desired result type, if it differs from the type of the
2551   // ultimate opaque expression.
2552   llvm::Type *resultType = 0;
2553 
2554   while (true) {
2555     e = e->IgnoreParens();
2556 
2557     // There's a break at the end of this if-chain;  anything
2558     // that wants to keep looping has to explicitly continue.
2559     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2560       switch (ce->getCastKind()) {
2561       // No-op casts don't change the type, so we just ignore them.
2562       case CK_NoOp:
2563         e = ce->getSubExpr();
2564         continue;
2565 
2566       case CK_LValueToRValue: {
2567         TryEmitResult loadResult
2568           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2569         if (resultType) {
2570           llvm::Value *value = loadResult.getPointer();
2571           value = CGF.Builder.CreateBitCast(value, resultType);
2572           loadResult.setPointer(value);
2573         }
2574         return loadResult;
2575       }
2576 
2577       // These casts can change the type, so remember that and
2578       // soldier on.  We only need to remember the outermost such
2579       // cast, though.
2580       case CK_CPointerToObjCPointerCast:
2581       case CK_BlockPointerToObjCPointerCast:
2582       case CK_AnyPointerToBlockPointerCast:
2583       case CK_BitCast:
2584         if (!resultType)
2585           resultType = CGF.ConvertType(ce->getType());
2586         e = ce->getSubExpr();
2587         assert(e->getType()->hasPointerRepresentation());
2588         continue;
2589 
2590       // For consumptions, just emit the subexpression and thus elide
2591       // the retain/release pair.
2592       case CK_ARCConsumeObject: {
2593         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2594         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2595         return TryEmitResult(result, true);
2596       }
2597 
2598       // Block extends are net +0.  Naively, we could just recurse on
2599       // the subexpression, but actually we need to ensure that the
2600       // value is copied as a block, so there's a little filter here.
2601       case CK_ARCExtendBlockObject: {
2602         llvm::Value *result; // will be a +0 value
2603 
2604         // If we can't safely assume the sub-expression will produce a
2605         // block-copied value, emit the sub-expression at +0.
2606         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2607           result = CGF.EmitScalarExpr(ce->getSubExpr());
2608 
2609         // Otherwise, try to emit the sub-expression at +1 recursively.
2610         } else {
2611           TryEmitResult subresult
2612             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2613           result = subresult.getPointer();
2614 
2615           // If that produced a retained value, just use that,
2616           // possibly casting down.
2617           if (subresult.getInt()) {
2618             if (resultType)
2619               result = CGF.Builder.CreateBitCast(result, resultType);
2620             return TryEmitResult(result, true);
2621           }
2622 
2623           // Otherwise it's +0.
2624         }
2625 
2626         // Retain the object as a block, then cast down.
2627         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2628         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2629         return TryEmitResult(result, true);
2630       }
2631 
2632       // For reclaims, emit the subexpression as a retained call and
2633       // skip the consumption.
2634       case CK_ARCReclaimReturnedObject: {
2635         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2636         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2637         return TryEmitResult(result, true);
2638       }
2639 
2640       default:
2641         break;
2642       }
2643 
2644     // Skip __extension__.
2645     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2646       if (op->getOpcode() == UO_Extension) {
2647         e = op->getSubExpr();
2648         continue;
2649       }
2650 
2651     // For calls and message sends, use the retained-call logic.
2652     // Delegate inits are a special case in that they're the only
2653     // returns-retained expression that *isn't* surrounded by
2654     // a consume.
2655     } else if (isa<CallExpr>(e) ||
2656                (isa<ObjCMessageExpr>(e) &&
2657                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2658       llvm::Value *result = emitARCRetainCall(CGF, e);
2659       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2660       return TryEmitResult(result, true);
2661 
2662     // Look through pseudo-object expressions.
2663     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2664       TryEmitResult result
2665         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2666       if (resultType) {
2667         llvm::Value *value = result.getPointer();
2668         value = CGF.Builder.CreateBitCast(value, resultType);
2669         result.setPointer(value);
2670       }
2671       return result;
2672     }
2673 
2674     // Conservatively halt the search at any other expression kind.
2675     break;
2676   }
2677 
2678   // We didn't find an obvious production, so emit what we've got and
2679   // tell the caller that we didn't manage to retain.
2680   llvm::Value *result = CGF.EmitScalarExpr(e);
2681   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2682   return TryEmitResult(result, false);
2683 }
2684 
2685 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2686                                                 LValue lvalue,
2687                                                 QualType type) {
2688   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2689   llvm::Value *value = result.getPointer();
2690   if (!result.getInt())
2691     value = CGF.EmitARCRetain(type, value);
2692   return value;
2693 }
2694 
2695 /// EmitARCRetainScalarExpr - Semantically equivalent to
2696 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2697 /// best-effort attempt to peephole expressions that naturally produce
2698 /// retained objects.
2699 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2700   // The retain needs to happen within the full-expression.
2701   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2702     enterFullExpression(cleanups);
2703     RunCleanupsScope scope(*this);
2704     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2705   }
2706 
2707   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2708   llvm::Value *value = result.getPointer();
2709   if (!result.getInt())
2710     value = EmitARCRetain(e->getType(), value);
2711   return value;
2712 }
2713 
2714 llvm::Value *
2715 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2716   // The retain needs to happen within the full-expression.
2717   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2718     enterFullExpression(cleanups);
2719     RunCleanupsScope scope(*this);
2720     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2721   }
2722 
2723   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2724   llvm::Value *value = result.getPointer();
2725   if (result.getInt())
2726     value = EmitARCAutorelease(value);
2727   else
2728     value = EmitARCRetainAutorelease(e->getType(), value);
2729   return value;
2730 }
2731 
2732 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2733   llvm::Value *result;
2734   bool doRetain;
2735 
2736   if (shouldEmitSeparateBlockRetain(e)) {
2737     result = EmitScalarExpr(e);
2738     doRetain = true;
2739   } else {
2740     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2741     result = subresult.getPointer();
2742     doRetain = !subresult.getInt();
2743   }
2744 
2745   if (doRetain)
2746     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2747   return EmitObjCConsumeObject(e->getType(), result);
2748 }
2749 
2750 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2751   // In ARC, retain and autorelease the expression.
2752   if (getLangOpts().ObjCAutoRefCount) {
2753     // Do so before running any cleanups for the full-expression.
2754     // EmitARCRetainAutoreleaseScalarExpr does this for us.
2755     return EmitARCRetainAutoreleaseScalarExpr(expr);
2756   }
2757 
2758   // Otherwise, use the normal scalar-expression emission.  The
2759   // exception machinery doesn't do anything special with the
2760   // exception like retaining it, so there's no safety associated with
2761   // only running cleanups after the throw has started, and when it
2762   // matters it tends to be substantially inferior code.
2763   return EmitScalarExpr(expr);
2764 }
2765 
2766 std::pair<LValue,llvm::Value*>
2767 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2768                                     bool ignored) {
2769   // Evaluate the RHS first.
2770   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2771   llvm::Value *value = result.getPointer();
2772 
2773   bool hasImmediateRetain = result.getInt();
2774 
2775   // If we didn't emit a retained object, and the l-value is of block
2776   // type, then we need to emit the block-retain immediately in case
2777   // it invalidates the l-value.
2778   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2779     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2780     hasImmediateRetain = true;
2781   }
2782 
2783   LValue lvalue = EmitLValue(e->getLHS());
2784 
2785   // If the RHS was emitted retained, expand this.
2786   if (hasImmediateRetain) {
2787     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
2788     EmitStoreOfScalar(value, lvalue);
2789     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
2790   } else {
2791     value = EmitARCStoreStrong(lvalue, value, ignored);
2792   }
2793 
2794   return std::pair<LValue,llvm::Value*>(lvalue, value);
2795 }
2796 
2797 std::pair<LValue,llvm::Value*>
2798 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2799   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2800   LValue lvalue = EmitLValue(e->getLHS());
2801 
2802   EmitStoreOfScalar(value, lvalue);
2803 
2804   return std::pair<LValue,llvm::Value*>(lvalue, value);
2805 }
2806 
2807 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2808                                           const ObjCAutoreleasePoolStmt &ARPS) {
2809   const Stmt *subStmt = ARPS.getSubStmt();
2810   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2811 
2812   CGDebugInfo *DI = getDebugInfo();
2813   if (DI)
2814     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2815 
2816   // Keep track of the current cleanup stack depth.
2817   RunCleanupsScope Scope(*this);
2818   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2819     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2820     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2821   } else {
2822     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2823     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2824   }
2825 
2826   for (CompoundStmt::const_body_iterator I = S.body_begin(),
2827        E = S.body_end(); I != E; ++I)
2828     EmitStmt(*I);
2829 
2830   if (DI)
2831     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2832 }
2833 
2834 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2835 /// make sure it survives garbage collection until this point.
2836 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2837   // We just use an inline assembly.
2838   llvm::FunctionType *extenderType
2839     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2840   llvm::Value *extender
2841     = llvm::InlineAsm::get(extenderType,
2842                            /* assembly */ "",
2843                            /* constraints */ "r",
2844                            /* side effects */ true);
2845 
2846   object = Builder.CreateBitCast(object, VoidPtrTy);
2847   EmitNounwindRuntimeCall(extender, object);
2848 }
2849 
2850 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2851 /// non-trivial copy assignment function, produce following helper function.
2852 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2853 ///
2854 llvm::Constant *
2855 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2856                                         const ObjCPropertyImplDecl *PID) {
2857   if (!getLangOpts().CPlusPlus ||
2858       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2859     return 0;
2860   QualType Ty = PID->getPropertyIvarDecl()->getType();
2861   if (!Ty->isRecordType())
2862     return 0;
2863   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2864   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2865     return 0;
2866   llvm::Constant * HelperFn = 0;
2867   if (hasTrivialSetExpr(PID))
2868     return 0;
2869   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2870   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2871     return HelperFn;
2872 
2873   ASTContext &C = getContext();
2874   IdentifierInfo *II
2875     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2876   FunctionDecl *FD = FunctionDecl::Create(C,
2877                                           C.getTranslationUnitDecl(),
2878                                           SourceLocation(),
2879                                           SourceLocation(), II, C.VoidTy, 0,
2880                                           SC_Static,
2881                                           false,
2882                                           false);
2883 
2884   QualType DestTy = C.getPointerType(Ty);
2885   QualType SrcTy = Ty;
2886   SrcTy.addConst();
2887   SrcTy = C.getPointerType(SrcTy);
2888 
2889   FunctionArgList args;
2890   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2891   args.push_back(&dstDecl);
2892   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2893   args.push_back(&srcDecl);
2894 
2895   const CGFunctionInfo &FI =
2896     CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2897                                               FunctionType::ExtInfo(),
2898                                               RequiredArgs::All);
2899 
2900   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2901 
2902   llvm::Function *Fn =
2903     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2904                            "__assign_helper_atomic_property_",
2905                            &CGM.getModule());
2906 
2907   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2908 
2909   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2910                       VK_RValue, SourceLocation());
2911   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2912                     VK_LValue, OK_Ordinary, SourceLocation());
2913 
2914   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2915                       VK_RValue, SourceLocation());
2916   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2917                     VK_LValue, OK_Ordinary, SourceLocation());
2918 
2919   Expr *Args[2] = { &DST, &SRC };
2920   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2921   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2922                               Args, DestTy->getPointeeType(),
2923                               VK_LValue, SourceLocation(), false);
2924 
2925   EmitStmt(&TheCall);
2926 
2927   FinishFunction();
2928   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2929   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2930   return HelperFn;
2931 }
2932 
2933 llvm::Constant *
2934 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2935                                             const ObjCPropertyImplDecl *PID) {
2936   if (!getLangOpts().CPlusPlus ||
2937       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2938     return 0;
2939   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2940   QualType Ty = PD->getType();
2941   if (!Ty->isRecordType())
2942     return 0;
2943   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2944     return 0;
2945   llvm::Constant * HelperFn = 0;
2946 
2947   if (hasTrivialGetExpr(PID))
2948     return 0;
2949   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2950   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2951     return HelperFn;
2952 
2953 
2954   ASTContext &C = getContext();
2955   IdentifierInfo *II
2956   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2957   FunctionDecl *FD = FunctionDecl::Create(C,
2958                                           C.getTranslationUnitDecl(),
2959                                           SourceLocation(),
2960                                           SourceLocation(), II, C.VoidTy, 0,
2961                                           SC_Static,
2962                                           false,
2963                                           false);
2964 
2965   QualType DestTy = C.getPointerType(Ty);
2966   QualType SrcTy = Ty;
2967   SrcTy.addConst();
2968   SrcTy = C.getPointerType(SrcTy);
2969 
2970   FunctionArgList args;
2971   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2972   args.push_back(&dstDecl);
2973   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2974   args.push_back(&srcDecl);
2975 
2976   const CGFunctionInfo &FI =
2977   CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2978                                             FunctionType::ExtInfo(),
2979                                             RequiredArgs::All);
2980 
2981   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2982 
2983   llvm::Function *Fn =
2984   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2985                          "__copy_helper_atomic_property_", &CGM.getModule());
2986 
2987   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2988 
2989   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2990                       VK_RValue, SourceLocation());
2991 
2992   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2993                     VK_LValue, OK_Ordinary, SourceLocation());
2994 
2995   CXXConstructExpr *CXXConstExpr =
2996     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
2997 
2998   SmallVector<Expr*, 4> ConstructorArgs;
2999   ConstructorArgs.push_back(&SRC);
3000   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
3001   ++A;
3002 
3003   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
3004        A != AEnd; ++A)
3005     ConstructorArgs.push_back(*A);
3006 
3007   CXXConstructExpr *TheCXXConstructExpr =
3008     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3009                              CXXConstExpr->getConstructor(),
3010                              CXXConstExpr->isElidable(),
3011                              ConstructorArgs,
3012                              CXXConstExpr->hadMultipleCandidates(),
3013                              CXXConstExpr->isListInitialization(),
3014                              CXXConstExpr->requiresZeroInitialization(),
3015                              CXXConstExpr->getConstructionKind(),
3016                              SourceRange());
3017 
3018   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3019                       VK_RValue, SourceLocation());
3020 
3021   RValue DV = EmitAnyExpr(&DstExpr);
3022   CharUnits Alignment
3023     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3024   EmitAggExpr(TheCXXConstructExpr,
3025               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
3026                                     AggValueSlot::IsDestructed,
3027                                     AggValueSlot::DoesNotNeedGCBarriers,
3028                                     AggValueSlot::IsNotAliased));
3029 
3030   FinishFunction();
3031   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3032   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3033   return HelperFn;
3034 }
3035 
3036 llvm::Value *
3037 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3038   // Get selectors for retain/autorelease.
3039   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3040   Selector CopySelector =
3041       getContext().Selectors.getNullarySelector(CopyID);
3042   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3043   Selector AutoreleaseSelector =
3044       getContext().Selectors.getNullarySelector(AutoreleaseID);
3045 
3046   // Emit calls to retain/autorelease.
3047   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3048   llvm::Value *Val = Block;
3049   RValue Result;
3050   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3051                                        Ty, CopySelector,
3052                                        Val, CallArgList(), 0, 0);
3053   Val = Result.getScalarVal();
3054   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3055                                        Ty, AutoreleaseSelector,
3056                                        Val, CallArgList(), 0, 0);
3057   Val = Result.getScalarVal();
3058   return Val;
3059 }
3060 
3061 
3062 CGObjCRuntime::~CGObjCRuntime() {}
3063