1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/Support/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 35 QualType ET, 36 const ObjCMethodDecl *Method, 37 RValue Result); 38 39 /// Given the address of a variable of pointer type, find the correct 40 /// null to store into it. 41 static llvm::Constant *getNullForVariable(llvm::Value *addr) { 42 llvm::Type *type = 43 cast<llvm::PointerType>(addr->getType())->getElementType(); 44 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 45 } 46 47 /// Emits an instance of NSConstantString representing the object. 48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 49 { 50 llvm::Constant *C = 51 CGM.getObjCRuntime().GenerateConstantString(E->getString()); 52 // FIXME: This bitcast should just be made an invariant on the Runtime. 53 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 54 } 55 56 /// EmitObjCBoxedExpr - This routine generates code to call 57 /// the appropriate expression boxing method. This will either be 58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:]. 59 /// 60 llvm::Value * 61 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 62 // Generate the correct selector for this literal's concrete type. 63 const Expr *SubExpr = E->getSubExpr(); 64 // Get the method. 65 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 66 assert(BoxingMethod && "BoxingMethod is null"); 67 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 68 Selector Sel = BoxingMethod->getSelector(); 69 70 // Generate a reference to the class pointer, which will be the receiver. 71 // Assumes that the method was introduced in the class that should be 72 // messaged (avoids pulling it out of the result type). 73 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 74 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 75 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 76 77 const ParmVarDecl *argDecl = *BoxingMethod->param_begin(); 78 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 79 RValue RV = EmitAnyExpr(SubExpr); 80 CallArgList Args; 81 Args.add(RV, ArgQT); 82 83 RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 84 BoxingMethod->getResultType(), Sel, Receiver, Args, 85 ClassDecl, BoxingMethod); 86 return Builder.CreateBitCast(result.getScalarVal(), 87 ConvertType(E->getType())); 88 } 89 90 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 91 const ObjCMethodDecl *MethodWithObjects) { 92 ASTContext &Context = CGM.getContext(); 93 const ObjCDictionaryLiteral *DLE = 0; 94 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 95 if (!ALE) 96 DLE = cast<ObjCDictionaryLiteral>(E); 97 98 // Compute the type of the array we're initializing. 99 uint64_t NumElements = 100 ALE ? ALE->getNumElements() : DLE->getNumElements(); 101 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 102 NumElements); 103 QualType ElementType = Context.getObjCIdType().withConst(); 104 QualType ElementArrayType 105 = Context.getConstantArrayType(ElementType, APNumElements, 106 ArrayType::Normal, /*IndexTypeQuals=*/0); 107 108 // Allocate the temporary array(s). 109 llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects"); 110 llvm::Value *Keys = 0; 111 if (DLE) 112 Keys = CreateMemTemp(ElementArrayType, "keys"); 113 114 // In ARC, we may need to do extra work to keep all the keys and 115 // values alive until after the call. 116 SmallVector<llvm::Value *, 16> NeededObjects; 117 bool TrackNeededObjects = 118 (getLangOpts().ObjCAutoRefCount && 119 CGM.getCodeGenOpts().OptimizationLevel != 0); 120 121 // Perform the actual initialialization of the array(s). 122 for (uint64_t i = 0; i < NumElements; i++) { 123 if (ALE) { 124 // Emit the element and store it to the appropriate array slot. 125 const Expr *Rhs = ALE->getElement(i); 126 LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i), 127 ElementType, 128 Context.getTypeAlignInChars(Rhs->getType()), 129 Context); 130 131 llvm::Value *value = EmitScalarExpr(Rhs); 132 EmitStoreThroughLValue(RValue::get(value), LV, true); 133 if (TrackNeededObjects) { 134 NeededObjects.push_back(value); 135 } 136 } else { 137 // Emit the key and store it to the appropriate array slot. 138 const Expr *Key = DLE->getKeyValueElement(i).Key; 139 LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i), 140 ElementType, 141 Context.getTypeAlignInChars(Key->getType()), 142 Context); 143 llvm::Value *keyValue = EmitScalarExpr(Key); 144 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 145 146 // Emit the value and store it to the appropriate array slot. 147 const Expr *Value = DLE->getKeyValueElement(i).Value; 148 LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i), 149 ElementType, 150 Context.getTypeAlignInChars(Value->getType()), 151 Context); 152 llvm::Value *valueValue = EmitScalarExpr(Value); 153 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 154 if (TrackNeededObjects) { 155 NeededObjects.push_back(keyValue); 156 NeededObjects.push_back(valueValue); 157 } 158 } 159 } 160 161 // Generate the argument list. 162 CallArgList Args; 163 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 164 const ParmVarDecl *argDecl = *PI++; 165 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 166 Args.add(RValue::get(Objects), ArgQT); 167 if (DLE) { 168 argDecl = *PI++; 169 ArgQT = argDecl->getType().getUnqualifiedType(); 170 Args.add(RValue::get(Keys), ArgQT); 171 } 172 argDecl = *PI; 173 ArgQT = argDecl->getType().getUnqualifiedType(); 174 llvm::Value *Count = 175 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 176 Args.add(RValue::get(Count), ArgQT); 177 178 // Generate a reference to the class pointer, which will be the receiver. 179 Selector Sel = MethodWithObjects->getSelector(); 180 QualType ResultType = E->getType(); 181 const ObjCObjectPointerType *InterfacePointerType 182 = ResultType->getAsObjCInterfacePointerType(); 183 ObjCInterfaceDecl *Class 184 = InterfacePointerType->getObjectType()->getInterface(); 185 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 186 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 187 188 // Generate the message send. 189 RValue result 190 = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 191 MethodWithObjects->getResultType(), 192 Sel, 193 Receiver, Args, Class, 194 MethodWithObjects); 195 196 // The above message send needs these objects, but in ARC they are 197 // passed in a buffer that is essentially __unsafe_unretained. 198 // Therefore we must prevent the optimizer from releasing them until 199 // after the call. 200 if (TrackNeededObjects) { 201 EmitARCIntrinsicUse(NeededObjects); 202 } 203 204 return Builder.CreateBitCast(result.getScalarVal(), 205 ConvertType(E->getType())); 206 } 207 208 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 209 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 210 } 211 212 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 213 const ObjCDictionaryLiteral *E) { 214 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 215 } 216 217 /// Emit a selector. 218 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 219 // Untyped selector. 220 // Note that this implementation allows for non-constant strings to be passed 221 // as arguments to @selector(). Currently, the only thing preventing this 222 // behaviour is the type checking in the front end. 223 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 224 } 225 226 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 227 // FIXME: This should pass the Decl not the name. 228 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 229 } 230 231 /// \brief Adjust the type of the result of an Objective-C message send 232 /// expression when the method has a related result type. 233 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 234 QualType ExpT, 235 const ObjCMethodDecl *Method, 236 RValue Result) { 237 if (!Method) 238 return Result; 239 240 if (!Method->hasRelatedResultType() || 241 CGF.getContext().hasSameType(ExpT, Method->getResultType()) || 242 !Result.isScalar()) 243 return Result; 244 245 // We have applied a related result type. Cast the rvalue appropriately. 246 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 247 CGF.ConvertType(ExpT))); 248 } 249 250 /// Decide whether to extend the lifetime of the receiver of a 251 /// returns-inner-pointer message. 252 static bool 253 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 254 switch (message->getReceiverKind()) { 255 256 // For a normal instance message, we should extend unless the 257 // receiver is loaded from a variable with precise lifetime. 258 case ObjCMessageExpr::Instance: { 259 const Expr *receiver = message->getInstanceReceiver(); 260 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 261 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 262 receiver = ice->getSubExpr()->IgnoreParens(); 263 264 // Only __strong variables. 265 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 266 return true; 267 268 // All ivars and fields have precise lifetime. 269 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 270 return false; 271 272 // Otherwise, check for variables. 273 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 274 if (!declRef) return true; 275 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 276 if (!var) return true; 277 278 // All variables have precise lifetime except local variables with 279 // automatic storage duration that aren't specially marked. 280 return (var->hasLocalStorage() && 281 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 282 } 283 284 case ObjCMessageExpr::Class: 285 case ObjCMessageExpr::SuperClass: 286 // It's never necessary for class objects. 287 return false; 288 289 case ObjCMessageExpr::SuperInstance: 290 // We generally assume that 'self' lives throughout a method call. 291 return false; 292 } 293 294 llvm_unreachable("invalid receiver kind"); 295 } 296 297 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 298 ReturnValueSlot Return) { 299 // Only the lookup mechanism and first two arguments of the method 300 // implementation vary between runtimes. We can get the receiver and 301 // arguments in generic code. 302 303 bool isDelegateInit = E->isDelegateInitCall(); 304 305 const ObjCMethodDecl *method = E->getMethodDecl(); 306 307 // We don't retain the receiver in delegate init calls, and this is 308 // safe because the receiver value is always loaded from 'self', 309 // which we zero out. We don't want to Block_copy block receivers, 310 // though. 311 bool retainSelf = 312 (!isDelegateInit && 313 CGM.getLangOpts().ObjCAutoRefCount && 314 method && 315 method->hasAttr<NSConsumesSelfAttr>()); 316 317 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 318 bool isSuperMessage = false; 319 bool isClassMessage = false; 320 ObjCInterfaceDecl *OID = 0; 321 // Find the receiver 322 QualType ReceiverType; 323 llvm::Value *Receiver = 0; 324 switch (E->getReceiverKind()) { 325 case ObjCMessageExpr::Instance: 326 ReceiverType = E->getInstanceReceiver()->getType(); 327 if (retainSelf) { 328 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 329 E->getInstanceReceiver()); 330 Receiver = ter.getPointer(); 331 if (ter.getInt()) retainSelf = false; 332 } else 333 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 334 break; 335 336 case ObjCMessageExpr::Class: { 337 ReceiverType = E->getClassReceiver(); 338 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 339 assert(ObjTy && "Invalid Objective-C class message send"); 340 OID = ObjTy->getInterface(); 341 assert(OID && "Invalid Objective-C class message send"); 342 Receiver = Runtime.GetClass(*this, OID); 343 isClassMessage = true; 344 break; 345 } 346 347 case ObjCMessageExpr::SuperInstance: 348 ReceiverType = E->getSuperType(); 349 Receiver = LoadObjCSelf(); 350 isSuperMessage = true; 351 break; 352 353 case ObjCMessageExpr::SuperClass: 354 ReceiverType = E->getSuperType(); 355 Receiver = LoadObjCSelf(); 356 isSuperMessage = true; 357 isClassMessage = true; 358 break; 359 } 360 361 if (retainSelf) 362 Receiver = EmitARCRetainNonBlock(Receiver); 363 364 // In ARC, we sometimes want to "extend the lifetime" 365 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 366 // messages. 367 if (getLangOpts().ObjCAutoRefCount && method && 368 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 369 shouldExtendReceiverForInnerPointerMessage(E)) 370 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 371 372 QualType ResultType = 373 method ? method->getResultType() : E->getType(); 374 375 CallArgList Args; 376 EmitCallArgs(Args, method, E->arg_begin(), E->arg_end()); 377 378 // For delegate init calls in ARC, do an unsafe store of null into 379 // self. This represents the call taking direct ownership of that 380 // value. We have to do this after emitting the other call 381 // arguments because they might also reference self, but we don't 382 // have to worry about any of them modifying self because that would 383 // be an undefined read and write of an object in unordered 384 // expressions. 385 if (isDelegateInit) { 386 assert(getLangOpts().ObjCAutoRefCount && 387 "delegate init calls should only be marked in ARC"); 388 389 // Do an unsafe store of null into self. 390 llvm::Value *selfAddr = 391 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 392 assert(selfAddr && "no self entry for a delegate init call?"); 393 394 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 395 } 396 397 RValue result; 398 if (isSuperMessage) { 399 // super is only valid in an Objective-C method 400 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 401 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 402 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 403 E->getSelector(), 404 OMD->getClassInterface(), 405 isCategoryImpl, 406 Receiver, 407 isClassMessage, 408 Args, 409 method); 410 } else { 411 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 412 E->getSelector(), 413 Receiver, Args, OID, 414 method); 415 } 416 417 // For delegate init calls in ARC, implicitly store the result of 418 // the call back into self. This takes ownership of the value. 419 if (isDelegateInit) { 420 llvm::Value *selfAddr = 421 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 422 llvm::Value *newSelf = result.getScalarVal(); 423 424 // The delegate return type isn't necessarily a matching type; in 425 // fact, it's quite likely to be 'id'. 426 llvm::Type *selfTy = 427 cast<llvm::PointerType>(selfAddr->getType())->getElementType(); 428 newSelf = Builder.CreateBitCast(newSelf, selfTy); 429 430 Builder.CreateStore(newSelf, selfAddr); 431 } 432 433 return AdjustRelatedResultType(*this, E->getType(), method, result); 434 } 435 436 namespace { 437 struct FinishARCDealloc : EHScopeStack::Cleanup { 438 void Emit(CodeGenFunction &CGF, Flags flags) { 439 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 440 441 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 442 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 443 if (!iface->getSuperClass()) return; 444 445 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 446 447 // Call [super dealloc] if we have a superclass. 448 llvm::Value *self = CGF.LoadObjCSelf(); 449 450 CallArgList args; 451 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 452 CGF.getContext().VoidTy, 453 method->getSelector(), 454 iface, 455 isCategory, 456 self, 457 /*is class msg*/ false, 458 args, 459 method); 460 } 461 }; 462 } 463 464 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 465 /// the LLVM function and sets the other context used by 466 /// CodeGenFunction. 467 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 468 const ObjCContainerDecl *CD, 469 SourceLocation StartLoc) { 470 FunctionArgList args; 471 // Check if we should generate debug info for this method. 472 if (OMD->hasAttr<NoDebugAttr>()) 473 DebugInfo = NULL; // disable debug info indefinitely for this function 474 475 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 476 477 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 478 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 479 480 args.push_back(OMD->getSelfDecl()); 481 args.push_back(OMD->getCmdDecl()); 482 483 for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(), 484 E = OMD->param_end(); PI != E; ++PI) 485 args.push_back(*PI); 486 487 CurGD = OMD; 488 489 StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc); 490 491 // In ARC, certain methods get an extra cleanup. 492 if (CGM.getLangOpts().ObjCAutoRefCount && 493 OMD->isInstanceMethod() && 494 OMD->getSelector().isUnarySelector()) { 495 const IdentifierInfo *ident = 496 OMD->getSelector().getIdentifierInfoForSlot(0); 497 if (ident->isStr("dealloc")) 498 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 499 } 500 } 501 502 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 503 LValue lvalue, QualType type); 504 505 /// Generate an Objective-C method. An Objective-C method is a C function with 506 /// its pointer, name, and types registered in the class struture. 507 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 508 StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart()); 509 EmitStmt(OMD->getBody()); 510 FinishFunction(OMD->getBodyRBrace()); 511 } 512 513 /// emitStructGetterCall - Call the runtime function to load a property 514 /// into the return value slot. 515 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 516 bool isAtomic, bool hasStrong) { 517 ASTContext &Context = CGF.getContext(); 518 519 llvm::Value *src = 520 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), 521 ivar, 0).getAddress(); 522 523 // objc_copyStruct (ReturnValue, &structIvar, 524 // sizeof (Type of Ivar), isAtomic, false); 525 CallArgList args; 526 527 llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 528 args.add(RValue::get(dest), Context.VoidPtrTy); 529 530 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 531 args.add(RValue::get(src), Context.VoidPtrTy); 532 533 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 534 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 535 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 536 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 537 538 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 539 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args, 540 FunctionType::ExtInfo(), 541 RequiredArgs::All), 542 fn, ReturnValueSlot(), args); 543 } 544 545 /// Determine whether the given architecture supports unaligned atomic 546 /// accesses. They don't have to be fast, just faster than a function 547 /// call and a mutex. 548 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 549 // FIXME: Allow unaligned atomic load/store on x86. (It is not 550 // currently supported by the backend.) 551 return 0; 552 } 553 554 /// Return the maximum size that permits atomic accesses for the given 555 /// architecture. 556 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 557 llvm::Triple::ArchType arch) { 558 // ARM has 8-byte atomic accesses, but it's not clear whether we 559 // want to rely on them here. 560 561 // In the default case, just assume that any size up to a pointer is 562 // fine given adequate alignment. 563 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 564 } 565 566 namespace { 567 class PropertyImplStrategy { 568 public: 569 enum StrategyKind { 570 /// The 'native' strategy is to use the architecture's provided 571 /// reads and writes. 572 Native, 573 574 /// Use objc_setProperty and objc_getProperty. 575 GetSetProperty, 576 577 /// Use objc_setProperty for the setter, but use expression 578 /// evaluation for the getter. 579 SetPropertyAndExpressionGet, 580 581 /// Use objc_copyStruct. 582 CopyStruct, 583 584 /// The 'expression' strategy is to emit normal assignment or 585 /// lvalue-to-rvalue expressions. 586 Expression 587 }; 588 589 StrategyKind getKind() const { return StrategyKind(Kind); } 590 591 bool hasStrongMember() const { return HasStrong; } 592 bool isAtomic() const { return IsAtomic; } 593 bool isCopy() const { return IsCopy; } 594 595 CharUnits getIvarSize() const { return IvarSize; } 596 CharUnits getIvarAlignment() const { return IvarAlignment; } 597 598 PropertyImplStrategy(CodeGenModule &CGM, 599 const ObjCPropertyImplDecl *propImpl); 600 601 private: 602 unsigned Kind : 8; 603 unsigned IsAtomic : 1; 604 unsigned IsCopy : 1; 605 unsigned HasStrong : 1; 606 607 CharUnits IvarSize; 608 CharUnits IvarAlignment; 609 }; 610 } 611 612 /// Pick an implementation strategy for the given property synthesis. 613 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 614 const ObjCPropertyImplDecl *propImpl) { 615 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 616 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 617 618 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 619 IsAtomic = prop->isAtomic(); 620 HasStrong = false; // doesn't matter here. 621 622 // Evaluate the ivar's size and alignment. 623 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 624 QualType ivarType = ivar->getType(); 625 llvm::tie(IvarSize, IvarAlignment) 626 = CGM.getContext().getTypeInfoInChars(ivarType); 627 628 // If we have a copy property, we always have to use getProperty/setProperty. 629 // TODO: we could actually use setProperty and an expression for non-atomics. 630 if (IsCopy) { 631 Kind = GetSetProperty; 632 return; 633 } 634 635 // Handle retain. 636 if (setterKind == ObjCPropertyDecl::Retain) { 637 // In GC-only, there's nothing special that needs to be done. 638 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 639 // fallthrough 640 641 // In ARC, if the property is non-atomic, use expression emission, 642 // which translates to objc_storeStrong. This isn't required, but 643 // it's slightly nicer. 644 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 645 // Using standard expression emission for the setter is only 646 // acceptable if the ivar is __strong, which won't be true if 647 // the property is annotated with __attribute__((NSObject)). 648 // TODO: falling all the way back to objc_setProperty here is 649 // just laziness, though; we could still use objc_storeStrong 650 // if we hacked it right. 651 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 652 Kind = Expression; 653 else 654 Kind = SetPropertyAndExpressionGet; 655 return; 656 657 // Otherwise, we need to at least use setProperty. However, if 658 // the property isn't atomic, we can use normal expression 659 // emission for the getter. 660 } else if (!IsAtomic) { 661 Kind = SetPropertyAndExpressionGet; 662 return; 663 664 // Otherwise, we have to use both setProperty and getProperty. 665 } else { 666 Kind = GetSetProperty; 667 return; 668 } 669 } 670 671 // If we're not atomic, just use expression accesses. 672 if (!IsAtomic) { 673 Kind = Expression; 674 return; 675 } 676 677 // Properties on bitfield ivars need to be emitted using expression 678 // accesses even if they're nominally atomic. 679 if (ivar->isBitField()) { 680 Kind = Expression; 681 return; 682 } 683 684 // GC-qualified or ARC-qualified ivars need to be emitted as 685 // expressions. This actually works out to being atomic anyway, 686 // except for ARC __strong, but that should trigger the above code. 687 if (ivarType.hasNonTrivialObjCLifetime() || 688 (CGM.getLangOpts().getGC() && 689 CGM.getContext().getObjCGCAttrKind(ivarType))) { 690 Kind = Expression; 691 return; 692 } 693 694 // Compute whether the ivar has strong members. 695 if (CGM.getLangOpts().getGC()) 696 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 697 HasStrong = recordType->getDecl()->hasObjectMember(); 698 699 // We can never access structs with object members with a native 700 // access, because we need to use write barriers. This is what 701 // objc_copyStruct is for. 702 if (HasStrong) { 703 Kind = CopyStruct; 704 return; 705 } 706 707 // Otherwise, this is target-dependent and based on the size and 708 // alignment of the ivar. 709 710 // If the size of the ivar is not a power of two, give up. We don't 711 // want to get into the business of doing compare-and-swaps. 712 if (!IvarSize.isPowerOfTwo()) { 713 Kind = CopyStruct; 714 return; 715 } 716 717 llvm::Triple::ArchType arch = 718 CGM.getTarget().getTriple().getArch(); 719 720 // Most architectures require memory to fit within a single cache 721 // line, so the alignment has to be at least the size of the access. 722 // Otherwise we have to grab a lock. 723 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 724 Kind = CopyStruct; 725 return; 726 } 727 728 // If the ivar's size exceeds the architecture's maximum atomic 729 // access size, we have to use CopyStruct. 730 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 731 Kind = CopyStruct; 732 return; 733 } 734 735 // Otherwise, we can use native loads and stores. 736 Kind = Native; 737 } 738 739 /// \brief Generate an Objective-C property getter function. 740 /// 741 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 742 /// is illegal within a category. 743 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 744 const ObjCPropertyImplDecl *PID) { 745 llvm::Constant *AtomicHelperFn = 746 GenerateObjCAtomicGetterCopyHelperFunction(PID); 747 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 748 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 749 assert(OMD && "Invalid call to generate getter (empty method)"); 750 StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart()); 751 752 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 753 754 FinishFunction(); 755 } 756 757 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 758 const Expr *getter = propImpl->getGetterCXXConstructor(); 759 if (!getter) return true; 760 761 // Sema only makes only of these when the ivar has a C++ class type, 762 // so the form is pretty constrained. 763 764 // If the property has a reference type, we might just be binding a 765 // reference, in which case the result will be a gl-value. We should 766 // treat this as a non-trivial operation. 767 if (getter->isGLValue()) 768 return false; 769 770 // If we selected a trivial copy-constructor, we're okay. 771 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 772 return (construct->getConstructor()->isTrivial()); 773 774 // The constructor might require cleanups (in which case it's never 775 // trivial). 776 assert(isa<ExprWithCleanups>(getter)); 777 return false; 778 } 779 780 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 781 /// copy the ivar into the resturn slot. 782 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 783 llvm::Value *returnAddr, 784 ObjCIvarDecl *ivar, 785 llvm::Constant *AtomicHelperFn) { 786 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 787 // AtomicHelperFn); 788 CallArgList args; 789 790 // The 1st argument is the return Slot. 791 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 792 793 // The 2nd argument is the address of the ivar. 794 llvm::Value *ivarAddr = 795 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 796 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 797 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 798 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 799 800 // Third argument is the helper function. 801 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 802 803 llvm::Value *copyCppAtomicObjectFn = 804 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 805 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 806 args, 807 FunctionType::ExtInfo(), 808 RequiredArgs::All), 809 copyCppAtomicObjectFn, ReturnValueSlot(), args); 810 } 811 812 void 813 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 814 const ObjCPropertyImplDecl *propImpl, 815 const ObjCMethodDecl *GetterMethodDecl, 816 llvm::Constant *AtomicHelperFn) { 817 // If there's a non-trivial 'get' expression, we just have to emit that. 818 if (!hasTrivialGetExpr(propImpl)) { 819 if (!AtomicHelperFn) { 820 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 821 /*nrvo*/ 0); 822 EmitReturnStmt(ret); 823 } 824 else { 825 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 826 emitCPPObjectAtomicGetterCall(*this, ReturnValue, 827 ivar, AtomicHelperFn); 828 } 829 return; 830 } 831 832 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 833 QualType propType = prop->getType(); 834 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 835 836 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 837 838 // Pick an implementation strategy. 839 PropertyImplStrategy strategy(CGM, propImpl); 840 switch (strategy.getKind()) { 841 case PropertyImplStrategy::Native: { 842 // We don't need to do anything for a zero-size struct. 843 if (strategy.getIvarSize().isZero()) 844 return; 845 846 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 847 848 // Currently, all atomic accesses have to be through integer 849 // types, so there's no point in trying to pick a prettier type. 850 llvm::Type *bitcastType = 851 llvm::Type::getIntNTy(getLLVMContext(), 852 getContext().toBits(strategy.getIvarSize())); 853 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 854 855 // Perform an atomic load. This does not impose ordering constraints. 856 llvm::Value *ivarAddr = LV.getAddress(); 857 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 858 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 859 load->setAlignment(strategy.getIvarAlignment().getQuantity()); 860 load->setAtomic(llvm::Unordered); 861 862 // Store that value into the return address. Doing this with a 863 // bitcast is likely to produce some pretty ugly IR, but it's not 864 // the *most* terrible thing in the world. 865 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType)); 866 867 // Make sure we don't do an autorelease. 868 AutoreleaseResult = false; 869 return; 870 } 871 872 case PropertyImplStrategy::GetSetProperty: { 873 llvm::Value *getPropertyFn = 874 CGM.getObjCRuntime().GetPropertyGetFunction(); 875 if (!getPropertyFn) { 876 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 877 return; 878 } 879 880 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 881 // FIXME: Can't this be simpler? This might even be worse than the 882 // corresponding gcc code. 883 llvm::Value *cmd = 884 Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd"); 885 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 886 llvm::Value *ivarOffset = 887 EmitIvarOffset(classImpl->getClassInterface(), ivar); 888 889 CallArgList args; 890 args.add(RValue::get(self), getContext().getObjCIdType()); 891 args.add(RValue::get(cmd), getContext().getObjCSelType()); 892 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 893 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 894 getContext().BoolTy); 895 896 // FIXME: We shouldn't need to get the function info here, the 897 // runtime already should have computed it to build the function. 898 RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args, 899 FunctionType::ExtInfo(), 900 RequiredArgs::All), 901 getPropertyFn, ReturnValueSlot(), args); 902 903 // We need to fix the type here. Ivars with copy & retain are 904 // always objects so we don't need to worry about complex or 905 // aggregates. 906 RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(), 907 getTypes().ConvertType(getterMethod->getResultType()))); 908 909 EmitReturnOfRValue(RV, propType); 910 911 // objc_getProperty does an autorelease, so we should suppress ours. 912 AutoreleaseResult = false; 913 914 return; 915 } 916 917 case PropertyImplStrategy::CopyStruct: 918 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 919 strategy.hasStrongMember()); 920 return; 921 922 case PropertyImplStrategy::Expression: 923 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 924 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 925 926 QualType ivarType = ivar->getType(); 927 switch (getEvaluationKind(ivarType)) { 928 case TEK_Complex: { 929 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 930 EmitStoreOfComplex(pair, 931 MakeNaturalAlignAddrLValue(ReturnValue, ivarType), 932 /*init*/ true); 933 return; 934 } 935 case TEK_Aggregate: 936 // The return value slot is guaranteed to not be aliased, but 937 // that's not necessarily the same as "on the stack", so 938 // we still potentially need objc_memmove_collectable. 939 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 940 return; 941 case TEK_Scalar: { 942 llvm::Value *value; 943 if (propType->isReferenceType()) { 944 value = LV.getAddress(); 945 } else { 946 // We want to load and autoreleaseReturnValue ARC __weak ivars. 947 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 948 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 949 950 // Otherwise we want to do a simple load, suppressing the 951 // final autorelease. 952 } else { 953 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 954 AutoreleaseResult = false; 955 } 956 957 value = Builder.CreateBitCast(value, ConvertType(propType)); 958 value = Builder.CreateBitCast(value, 959 ConvertType(GetterMethodDecl->getResultType())); 960 } 961 962 EmitReturnOfRValue(RValue::get(value), propType); 963 return; 964 } 965 } 966 llvm_unreachable("bad evaluation kind"); 967 } 968 969 } 970 llvm_unreachable("bad @property implementation strategy!"); 971 } 972 973 /// emitStructSetterCall - Call the runtime function to store the value 974 /// from the first formal parameter into the given ivar. 975 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 976 ObjCIvarDecl *ivar) { 977 // objc_copyStruct (&structIvar, &Arg, 978 // sizeof (struct something), true, false); 979 CallArgList args; 980 981 // The first argument is the address of the ivar. 982 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 983 CGF.LoadObjCSelf(), ivar, 0) 984 .getAddress(); 985 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 986 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 987 988 // The second argument is the address of the parameter variable. 989 ParmVarDecl *argVar = *OMD->param_begin(); 990 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 991 VK_LValue, SourceLocation()); 992 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 993 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 994 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 995 996 // The third argument is the sizeof the type. 997 llvm::Value *size = 998 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 999 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1000 1001 // The fourth argument is the 'isAtomic' flag. 1002 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1003 1004 // The fifth argument is the 'hasStrong' flag. 1005 // FIXME: should this really always be false? 1006 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1007 1008 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1009 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1010 args, 1011 FunctionType::ExtInfo(), 1012 RequiredArgs::All), 1013 copyStructFn, ReturnValueSlot(), args); 1014 } 1015 1016 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1017 /// the value from the first formal parameter into the given ivar, using 1018 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1019 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1020 ObjCMethodDecl *OMD, 1021 ObjCIvarDecl *ivar, 1022 llvm::Constant *AtomicHelperFn) { 1023 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1024 // AtomicHelperFn); 1025 CallArgList args; 1026 1027 // The first argument is the address of the ivar. 1028 llvm::Value *ivarAddr = 1029 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1030 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 1031 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1032 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1033 1034 // The second argument is the address of the parameter variable. 1035 ParmVarDecl *argVar = *OMD->param_begin(); 1036 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1037 VK_LValue, SourceLocation()); 1038 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 1039 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1040 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1041 1042 // Third argument is the helper function. 1043 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1044 1045 llvm::Value *copyCppAtomicObjectFn = 1046 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1047 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1048 args, 1049 FunctionType::ExtInfo(), 1050 RequiredArgs::All), 1051 copyCppAtomicObjectFn, ReturnValueSlot(), args); 1052 } 1053 1054 1055 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1056 Expr *setter = PID->getSetterCXXAssignment(); 1057 if (!setter) return true; 1058 1059 // Sema only makes only of these when the ivar has a C++ class type, 1060 // so the form is pretty constrained. 1061 1062 // An operator call is trivial if the function it calls is trivial. 1063 // This also implies that there's nothing non-trivial going on with 1064 // the arguments, because operator= can only be trivial if it's a 1065 // synthesized assignment operator and therefore both parameters are 1066 // references. 1067 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1068 if (const FunctionDecl *callee 1069 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1070 if (callee->isTrivial()) 1071 return true; 1072 return false; 1073 } 1074 1075 assert(isa<ExprWithCleanups>(setter)); 1076 return false; 1077 } 1078 1079 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1080 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1081 return false; 1082 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1083 } 1084 1085 void 1086 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1087 const ObjCPropertyImplDecl *propImpl, 1088 llvm::Constant *AtomicHelperFn) { 1089 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1090 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1091 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1092 1093 // Just use the setter expression if Sema gave us one and it's 1094 // non-trivial. 1095 if (!hasTrivialSetExpr(propImpl)) { 1096 if (!AtomicHelperFn) 1097 // If non-atomic, assignment is called directly. 1098 EmitStmt(propImpl->getSetterCXXAssignment()); 1099 else 1100 // If atomic, assignment is called via a locking api. 1101 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1102 AtomicHelperFn); 1103 return; 1104 } 1105 1106 PropertyImplStrategy strategy(CGM, propImpl); 1107 switch (strategy.getKind()) { 1108 case PropertyImplStrategy::Native: { 1109 // We don't need to do anything for a zero-size struct. 1110 if (strategy.getIvarSize().isZero()) 1111 return; 1112 1113 llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()]; 1114 1115 LValue ivarLValue = 1116 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1117 llvm::Value *ivarAddr = ivarLValue.getAddress(); 1118 1119 // Currently, all atomic accesses have to be through integer 1120 // types, so there's no point in trying to pick a prettier type. 1121 llvm::Type *bitcastType = 1122 llvm::Type::getIntNTy(getLLVMContext(), 1123 getContext().toBits(strategy.getIvarSize())); 1124 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1125 1126 // Cast both arguments to the chosen operation type. 1127 argAddr = Builder.CreateBitCast(argAddr, bitcastType); 1128 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1129 1130 // This bitcast load is likely to cause some nasty IR. 1131 llvm::Value *load = Builder.CreateLoad(argAddr); 1132 1133 // Perform an atomic store. There are no memory ordering requirements. 1134 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1135 store->setAlignment(strategy.getIvarAlignment().getQuantity()); 1136 store->setAtomic(llvm::Unordered); 1137 return; 1138 } 1139 1140 case PropertyImplStrategy::GetSetProperty: 1141 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1142 1143 llvm::Value *setOptimizedPropertyFn = 0; 1144 llvm::Value *setPropertyFn = 0; 1145 if (UseOptimizedSetter(CGM)) { 1146 // 10.8 and iOS 6.0 code and GC is off 1147 setOptimizedPropertyFn = 1148 CGM.getObjCRuntime() 1149 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1150 strategy.isCopy()); 1151 if (!setOptimizedPropertyFn) { 1152 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1153 return; 1154 } 1155 } 1156 else { 1157 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1158 if (!setPropertyFn) { 1159 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1160 return; 1161 } 1162 } 1163 1164 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1165 // <is-atomic>, <is-copy>). 1166 llvm::Value *cmd = 1167 Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]); 1168 llvm::Value *self = 1169 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1170 llvm::Value *ivarOffset = 1171 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1172 llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()]; 1173 arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy); 1174 1175 CallArgList args; 1176 args.add(RValue::get(self), getContext().getObjCIdType()); 1177 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1178 if (setOptimizedPropertyFn) { 1179 args.add(RValue::get(arg), getContext().getObjCIdType()); 1180 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1181 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1182 FunctionType::ExtInfo(), 1183 RequiredArgs::All), 1184 setOptimizedPropertyFn, ReturnValueSlot(), args); 1185 } else { 1186 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1187 args.add(RValue::get(arg), getContext().getObjCIdType()); 1188 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1189 getContext().BoolTy); 1190 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1191 getContext().BoolTy); 1192 // FIXME: We shouldn't need to get the function info here, the runtime 1193 // already should have computed it to build the function. 1194 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1195 FunctionType::ExtInfo(), 1196 RequiredArgs::All), 1197 setPropertyFn, ReturnValueSlot(), args); 1198 } 1199 1200 return; 1201 } 1202 1203 case PropertyImplStrategy::CopyStruct: 1204 emitStructSetterCall(*this, setterMethod, ivar); 1205 return; 1206 1207 case PropertyImplStrategy::Expression: 1208 break; 1209 } 1210 1211 // Otherwise, fake up some ASTs and emit a normal assignment. 1212 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1213 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1214 VK_LValue, SourceLocation()); 1215 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1216 selfDecl->getType(), CK_LValueToRValue, &self, 1217 VK_RValue); 1218 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1219 SourceLocation(), SourceLocation(), 1220 &selfLoad, true, true); 1221 1222 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1223 QualType argType = argDecl->getType().getNonReferenceType(); 1224 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1225 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1226 argType.getUnqualifiedType(), CK_LValueToRValue, 1227 &arg, VK_RValue); 1228 1229 // The property type can differ from the ivar type in some situations with 1230 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1231 // The following absurdity is just to ensure well-formed IR. 1232 CastKind argCK = CK_NoOp; 1233 if (ivarRef.getType()->isObjCObjectPointerType()) { 1234 if (argLoad.getType()->isObjCObjectPointerType()) 1235 argCK = CK_BitCast; 1236 else if (argLoad.getType()->isBlockPointerType()) 1237 argCK = CK_BlockPointerToObjCPointerCast; 1238 else 1239 argCK = CK_CPointerToObjCPointerCast; 1240 } else if (ivarRef.getType()->isBlockPointerType()) { 1241 if (argLoad.getType()->isBlockPointerType()) 1242 argCK = CK_BitCast; 1243 else 1244 argCK = CK_AnyPointerToBlockPointerCast; 1245 } else if (ivarRef.getType()->isPointerType()) { 1246 argCK = CK_BitCast; 1247 } 1248 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1249 ivarRef.getType(), argCK, &argLoad, 1250 VK_RValue); 1251 Expr *finalArg = &argLoad; 1252 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1253 argLoad.getType())) 1254 finalArg = &argCast; 1255 1256 1257 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1258 ivarRef.getType(), VK_RValue, OK_Ordinary, 1259 SourceLocation(), false); 1260 EmitStmt(&assign); 1261 } 1262 1263 /// \brief Generate an Objective-C property setter function. 1264 /// 1265 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1266 /// is illegal within a category. 1267 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1268 const ObjCPropertyImplDecl *PID) { 1269 llvm::Constant *AtomicHelperFn = 1270 GenerateObjCAtomicSetterCopyHelperFunction(PID); 1271 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1272 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1273 assert(OMD && "Invalid call to generate setter (empty method)"); 1274 StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart()); 1275 1276 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1277 1278 FinishFunction(); 1279 } 1280 1281 namespace { 1282 struct DestroyIvar : EHScopeStack::Cleanup { 1283 private: 1284 llvm::Value *addr; 1285 const ObjCIvarDecl *ivar; 1286 CodeGenFunction::Destroyer *destroyer; 1287 bool useEHCleanupForArray; 1288 public: 1289 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1290 CodeGenFunction::Destroyer *destroyer, 1291 bool useEHCleanupForArray) 1292 : addr(addr), ivar(ivar), destroyer(destroyer), 1293 useEHCleanupForArray(useEHCleanupForArray) {} 1294 1295 void Emit(CodeGenFunction &CGF, Flags flags) { 1296 LValue lvalue 1297 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1298 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1299 flags.isForNormalCleanup() && useEHCleanupForArray); 1300 } 1301 }; 1302 } 1303 1304 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1305 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1306 llvm::Value *addr, 1307 QualType type) { 1308 llvm::Value *null = getNullForVariable(addr); 1309 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1310 } 1311 1312 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1313 ObjCImplementationDecl *impl) { 1314 CodeGenFunction::RunCleanupsScope scope(CGF); 1315 1316 llvm::Value *self = CGF.LoadObjCSelf(); 1317 1318 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1319 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1320 ivar; ivar = ivar->getNextIvar()) { 1321 QualType type = ivar->getType(); 1322 1323 // Check whether the ivar is a destructible type. 1324 QualType::DestructionKind dtorKind = type.isDestructedType(); 1325 if (!dtorKind) continue; 1326 1327 CodeGenFunction::Destroyer *destroyer = 0; 1328 1329 // Use a call to objc_storeStrong to destroy strong ivars, for the 1330 // general benefit of the tools. 1331 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1332 destroyer = destroyARCStrongWithStore; 1333 1334 // Otherwise use the default for the destruction kind. 1335 } else { 1336 destroyer = CGF.getDestroyer(dtorKind); 1337 } 1338 1339 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1340 1341 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1342 cleanupKind & EHCleanup); 1343 } 1344 1345 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1346 } 1347 1348 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1349 ObjCMethodDecl *MD, 1350 bool ctor) { 1351 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1352 StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart()); 1353 1354 // Emit .cxx_construct. 1355 if (ctor) { 1356 // Suppress the final autorelease in ARC. 1357 AutoreleaseResult = false; 1358 1359 for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(), 1360 E = IMP->init_end(); B != E; ++B) { 1361 CXXCtorInitializer *IvarInit = (*B); 1362 FieldDecl *Field = IvarInit->getAnyMember(); 1363 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1364 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1365 LoadObjCSelf(), Ivar, 0); 1366 EmitAggExpr(IvarInit->getInit(), 1367 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1368 AggValueSlot::DoesNotNeedGCBarriers, 1369 AggValueSlot::IsNotAliased)); 1370 } 1371 // constructor returns 'self'. 1372 CodeGenTypes &Types = CGM.getTypes(); 1373 QualType IdTy(CGM.getContext().getObjCIdType()); 1374 llvm::Value *SelfAsId = 1375 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1376 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1377 1378 // Emit .cxx_destruct. 1379 } else { 1380 emitCXXDestructMethod(*this, IMP); 1381 } 1382 FinishFunction(); 1383 } 1384 1385 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) { 1386 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(); 1387 it++; it++; 1388 const ABIArgInfo &AI = it->info; 1389 // FIXME. Is this sufficient check? 1390 return (AI.getKind() == ABIArgInfo::Indirect); 1391 } 1392 1393 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) { 1394 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 1395 return false; 1396 if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>()) 1397 return FDTTy->getDecl()->hasObjectMember(); 1398 return false; 1399 } 1400 1401 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1402 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1403 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1404 Self->getType(), VK_LValue, SourceLocation()); 1405 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1406 } 1407 1408 QualType CodeGenFunction::TypeOfSelfObject() { 1409 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1410 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1411 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1412 getContext().getCanonicalType(selfDecl->getType())); 1413 return PTy->getPointeeType(); 1414 } 1415 1416 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1417 llvm::Constant *EnumerationMutationFn = 1418 CGM.getObjCRuntime().EnumerationMutationFunction(); 1419 1420 if (!EnumerationMutationFn) { 1421 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1422 return; 1423 } 1424 1425 CGDebugInfo *DI = getDebugInfo(); 1426 if (DI) 1427 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1428 1429 // The local variable comes into scope immediately. 1430 AutoVarEmission variable = AutoVarEmission::invalid(); 1431 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1432 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1433 1434 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1435 1436 // Fast enumeration state. 1437 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1438 llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1439 EmitNullInitialization(StatePtr, StateTy); 1440 1441 // Number of elements in the items array. 1442 static const unsigned NumItems = 16; 1443 1444 // Fetch the countByEnumeratingWithState:objects:count: selector. 1445 IdentifierInfo *II[] = { 1446 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1447 &CGM.getContext().Idents.get("objects"), 1448 &CGM.getContext().Idents.get("count") 1449 }; 1450 Selector FastEnumSel = 1451 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1452 1453 QualType ItemsTy = 1454 getContext().getConstantArrayType(getContext().getObjCIdType(), 1455 llvm::APInt(32, NumItems), 1456 ArrayType::Normal, 0); 1457 llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1458 1459 // Emit the collection pointer. In ARC, we do a retain. 1460 llvm::Value *Collection; 1461 if (getLangOpts().ObjCAutoRefCount) { 1462 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1463 1464 // Enter a cleanup to do the release. 1465 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1466 } else { 1467 Collection = EmitScalarExpr(S.getCollection()); 1468 } 1469 1470 // The 'continue' label needs to appear within the cleanup for the 1471 // collection object. 1472 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1473 1474 // Send it our message: 1475 CallArgList Args; 1476 1477 // The first argument is a temporary of the enumeration-state type. 1478 Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy)); 1479 1480 // The second argument is a temporary array with space for NumItems 1481 // pointers. We'll actually be loading elements from the array 1482 // pointer written into the control state; this buffer is so that 1483 // collections that *aren't* backed by arrays can still queue up 1484 // batches of elements. 1485 Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy)); 1486 1487 // The third argument is the capacity of that temporary array. 1488 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1489 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1490 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1491 1492 // Start the enumeration. 1493 RValue CountRV = 1494 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1495 getContext().UnsignedLongTy, 1496 FastEnumSel, 1497 Collection, Args); 1498 1499 // The initial number of objects that were returned in the buffer. 1500 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1501 1502 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1503 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1504 1505 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1506 1507 // If the limit pointer was zero to begin with, the collection is 1508 // empty; skip all this. 1509 Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), 1510 EmptyBB, LoopInitBB); 1511 1512 // Otherwise, initialize the loop. 1513 EmitBlock(LoopInitBB); 1514 1515 // Save the initial mutations value. This is the value at an 1516 // address that was written into the state object by 1517 // countByEnumeratingWithState:objects:count:. 1518 llvm::Value *StateMutationsPtrPtr = 1519 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1520 llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, 1521 "mutationsptr"); 1522 1523 llvm::Value *initialMutations = 1524 Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations"); 1525 1526 // Start looping. This is the point we return to whenever we have a 1527 // fresh, non-empty batch of objects. 1528 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1529 EmitBlock(LoopBodyBB); 1530 1531 // The current index into the buffer. 1532 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1533 index->addIncoming(zero, LoopInitBB); 1534 1535 // The current buffer size. 1536 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1537 count->addIncoming(initialBufferLimit, LoopInitBB); 1538 1539 // Check whether the mutations value has changed from where it was 1540 // at start. StateMutationsPtr should actually be invariant between 1541 // refreshes. 1542 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1543 llvm::Value *currentMutations 1544 = Builder.CreateLoad(StateMutationsPtr, "statemutations"); 1545 1546 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1547 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1548 1549 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1550 WasNotMutatedBB, WasMutatedBB); 1551 1552 // If so, call the enumeration-mutation function. 1553 EmitBlock(WasMutatedBB); 1554 llvm::Value *V = 1555 Builder.CreateBitCast(Collection, 1556 ConvertType(getContext().getObjCIdType())); 1557 CallArgList Args2; 1558 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1559 // FIXME: We shouldn't need to get the function info here, the runtime already 1560 // should have computed it to build the function. 1561 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2, 1562 FunctionType::ExtInfo(), 1563 RequiredArgs::All), 1564 EnumerationMutationFn, ReturnValueSlot(), Args2); 1565 1566 // Otherwise, or if the mutation function returns, just continue. 1567 EmitBlock(WasNotMutatedBB); 1568 1569 // Initialize the element variable. 1570 RunCleanupsScope elementVariableScope(*this); 1571 bool elementIsVariable; 1572 LValue elementLValue; 1573 QualType elementType; 1574 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1575 // Initialize the variable, in case it's a __block variable or something. 1576 EmitAutoVarInit(variable); 1577 1578 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1579 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1580 VK_LValue, SourceLocation()); 1581 elementLValue = EmitLValue(&tempDRE); 1582 elementType = D->getType(); 1583 elementIsVariable = true; 1584 1585 if (D->isARCPseudoStrong()) 1586 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1587 } else { 1588 elementLValue = LValue(); // suppress warning 1589 elementType = cast<Expr>(S.getElement())->getType(); 1590 elementIsVariable = false; 1591 } 1592 llvm::Type *convertedElementType = ConvertType(elementType); 1593 1594 // Fetch the buffer out of the enumeration state. 1595 // TODO: this pointer should actually be invariant between 1596 // refreshes, which would help us do certain loop optimizations. 1597 llvm::Value *StateItemsPtr = 1598 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1599 llvm::Value *EnumStateItems = 1600 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1601 1602 // Fetch the value at the current index from the buffer. 1603 llvm::Value *CurrentItemPtr = 1604 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1605 llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr); 1606 1607 // Cast that value to the right type. 1608 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1609 "currentitem"); 1610 1611 // Make sure we have an l-value. Yes, this gets evaluated every 1612 // time through the loop. 1613 if (!elementIsVariable) { 1614 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1615 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1616 } else { 1617 EmitScalarInit(CurrentItem, elementLValue); 1618 } 1619 1620 // If we do have an element variable, this assignment is the end of 1621 // its initialization. 1622 if (elementIsVariable) 1623 EmitAutoVarCleanups(variable); 1624 1625 // Perform the loop body, setting up break and continue labels. 1626 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1627 { 1628 RunCleanupsScope Scope(*this); 1629 EmitStmt(S.getBody()); 1630 } 1631 BreakContinueStack.pop_back(); 1632 1633 // Destroy the element variable now. 1634 elementVariableScope.ForceCleanup(); 1635 1636 // Check whether there are more elements. 1637 EmitBlock(AfterBody.getBlock()); 1638 1639 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1640 1641 // First we check in the local buffer. 1642 llvm::Value *indexPlusOne 1643 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1644 1645 // If we haven't overrun the buffer yet, we can continue. 1646 Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count), 1647 LoopBodyBB, FetchMoreBB); 1648 1649 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1650 count->addIncoming(count, AfterBody.getBlock()); 1651 1652 // Otherwise, we have to fetch more elements. 1653 EmitBlock(FetchMoreBB); 1654 1655 CountRV = 1656 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1657 getContext().UnsignedLongTy, 1658 FastEnumSel, 1659 Collection, Args); 1660 1661 // If we got a zero count, we're done. 1662 llvm::Value *refetchCount = CountRV.getScalarVal(); 1663 1664 // (note that the message send might split FetchMoreBB) 1665 index->addIncoming(zero, Builder.GetInsertBlock()); 1666 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1667 1668 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1669 EmptyBB, LoopBodyBB); 1670 1671 // No more elements. 1672 EmitBlock(EmptyBB); 1673 1674 if (!elementIsVariable) { 1675 // If the element was not a declaration, set it to be null. 1676 1677 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1678 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1679 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1680 } 1681 1682 if (DI) 1683 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1684 1685 // Leave the cleanup we entered in ARC. 1686 if (getLangOpts().ObjCAutoRefCount) 1687 PopCleanupBlock(); 1688 1689 EmitBlock(LoopEnd.getBlock()); 1690 } 1691 1692 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1693 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1694 } 1695 1696 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1697 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1698 } 1699 1700 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1701 const ObjCAtSynchronizedStmt &S) { 1702 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1703 } 1704 1705 /// Produce the code for a CK_ARCProduceObject. Just does a 1706 /// primitive retain. 1707 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type, 1708 llvm::Value *value) { 1709 return EmitARCRetain(type, value); 1710 } 1711 1712 namespace { 1713 struct CallObjCRelease : EHScopeStack::Cleanup { 1714 CallObjCRelease(llvm::Value *object) : object(object) {} 1715 llvm::Value *object; 1716 1717 void Emit(CodeGenFunction &CGF, Flags flags) { 1718 // Releases at the end of the full-expression are imprecise. 1719 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1720 } 1721 }; 1722 } 1723 1724 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1725 /// release at the end of the full-expression. 1726 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1727 llvm::Value *object) { 1728 // If we're in a conditional branch, we need to make the cleanup 1729 // conditional. 1730 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1731 return object; 1732 } 1733 1734 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1735 llvm::Value *value) { 1736 return EmitARCRetainAutorelease(type, value); 1737 } 1738 1739 /// Given a number of pointers, inform the optimizer that they're 1740 /// being intrinsically used up until this point in the program. 1741 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1742 llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use; 1743 if (!fn) { 1744 llvm::FunctionType *fnType = 1745 llvm::FunctionType::get(CGM.VoidTy, ArrayRef<llvm::Type*>(), true); 1746 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use"); 1747 } 1748 1749 // This isn't really a "runtime" function, but as an intrinsic it 1750 // doesn't really matter as long as we align things up. 1751 EmitNounwindRuntimeCall(fn, values); 1752 } 1753 1754 1755 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1756 llvm::FunctionType *type, 1757 StringRef fnName) { 1758 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1759 1760 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) { 1761 // If the target runtime doesn't naturally support ARC, emit weak 1762 // references to the runtime support library. We don't really 1763 // permit this to fail, but we need a particular relocation style. 1764 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 1765 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1766 } else if (fnName == "objc_retain" || fnName == "objc_release") { 1767 // If we have Native ARC, set nonlazybind attribute for these APIs for 1768 // performance. 1769 f->addFnAttr(llvm::Attribute::NonLazyBind); 1770 } 1771 } 1772 1773 return fn; 1774 } 1775 1776 /// Perform an operation having the signature 1777 /// i8* (i8*) 1778 /// where a null input causes a no-op and returns null. 1779 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1780 llvm::Value *value, 1781 llvm::Constant *&fn, 1782 StringRef fnName, 1783 bool isTailCall = false) { 1784 if (isa<llvm::ConstantPointerNull>(value)) return value; 1785 1786 if (!fn) { 1787 llvm::FunctionType *fnType = 1788 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 1789 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1790 } 1791 1792 // Cast the argument to 'id'. 1793 llvm::Type *origType = value->getType(); 1794 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1795 1796 // Call the function. 1797 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1798 if (isTailCall) 1799 call->setTailCall(); 1800 1801 // Cast the result back to the original type. 1802 return CGF.Builder.CreateBitCast(call, origType); 1803 } 1804 1805 /// Perform an operation having the following signature: 1806 /// i8* (i8**) 1807 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1808 llvm::Value *addr, 1809 llvm::Constant *&fn, 1810 StringRef fnName) { 1811 if (!fn) { 1812 llvm::FunctionType *fnType = 1813 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false); 1814 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1815 } 1816 1817 // Cast the argument to 'id*'. 1818 llvm::Type *origType = addr->getType(); 1819 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1820 1821 // Call the function. 1822 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr); 1823 1824 // Cast the result back to a dereference of the original type. 1825 if (origType != CGF.Int8PtrPtrTy) 1826 result = CGF.Builder.CreateBitCast(result, 1827 cast<llvm::PointerType>(origType)->getElementType()); 1828 1829 return result; 1830 } 1831 1832 /// Perform an operation having the following signature: 1833 /// i8* (i8**, i8*) 1834 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1835 llvm::Value *addr, 1836 llvm::Value *value, 1837 llvm::Constant *&fn, 1838 StringRef fnName, 1839 bool ignored) { 1840 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 1841 == value->getType()); 1842 1843 if (!fn) { 1844 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1845 1846 llvm::FunctionType *fnType 1847 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1848 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1849 } 1850 1851 llvm::Type *origType = value->getType(); 1852 1853 llvm::Value *args[] = { 1854 CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy), 1855 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 1856 }; 1857 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 1858 1859 if (ignored) return 0; 1860 1861 return CGF.Builder.CreateBitCast(result, origType); 1862 } 1863 1864 /// Perform an operation having the following signature: 1865 /// void (i8**, i8**) 1866 static void emitARCCopyOperation(CodeGenFunction &CGF, 1867 llvm::Value *dst, 1868 llvm::Value *src, 1869 llvm::Constant *&fn, 1870 StringRef fnName) { 1871 assert(dst->getType() == src->getType()); 1872 1873 if (!fn) { 1874 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy }; 1875 1876 llvm::FunctionType *fnType 1877 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1878 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1879 } 1880 1881 llvm::Value *args[] = { 1882 CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy), 1883 CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy) 1884 }; 1885 CGF.EmitNounwindRuntimeCall(fn, args); 1886 } 1887 1888 /// Produce the code to do a retain. Based on the type, calls one of: 1889 /// call i8* \@objc_retain(i8* %value) 1890 /// call i8* \@objc_retainBlock(i8* %value) 1891 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1892 if (type->isBlockPointerType()) 1893 return EmitARCRetainBlock(value, /*mandatory*/ false); 1894 else 1895 return EmitARCRetainNonBlock(value); 1896 } 1897 1898 /// Retain the given object, with normal retain semantics. 1899 /// call i8* \@objc_retain(i8* %value) 1900 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1901 return emitARCValueOperation(*this, value, 1902 CGM.getARCEntrypoints().objc_retain, 1903 "objc_retain"); 1904 } 1905 1906 /// Retain the given block, with _Block_copy semantics. 1907 /// call i8* \@objc_retainBlock(i8* %value) 1908 /// 1909 /// \param mandatory - If false, emit the call with metadata 1910 /// indicating that it's okay for the optimizer to eliminate this call 1911 /// if it can prove that the block never escapes except down the stack. 1912 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1913 bool mandatory) { 1914 llvm::Value *result 1915 = emitARCValueOperation(*this, value, 1916 CGM.getARCEntrypoints().objc_retainBlock, 1917 "objc_retainBlock"); 1918 1919 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1920 // tell the optimizer that it doesn't need to do this copy if the 1921 // block doesn't escape, where being passed as an argument doesn't 1922 // count as escaping. 1923 if (!mandatory && isa<llvm::Instruction>(result)) { 1924 llvm::CallInst *call 1925 = cast<llvm::CallInst>(result->stripPointerCasts()); 1926 assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock); 1927 1928 SmallVector<llvm::Value*,1> args; 1929 call->setMetadata("clang.arc.copy_on_escape", 1930 llvm::MDNode::get(Builder.getContext(), args)); 1931 } 1932 1933 return result; 1934 } 1935 1936 /// Retain the given object which is the result of a function call. 1937 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 1938 /// 1939 /// Yes, this function name is one character away from a different 1940 /// call with completely different semantics. 1941 llvm::Value * 1942 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 1943 // Fetch the void(void) inline asm which marks that we're going to 1944 // retain the autoreleased return value. 1945 llvm::InlineAsm *&marker 1946 = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker; 1947 if (!marker) { 1948 StringRef assembly 1949 = CGM.getTargetCodeGenInfo() 1950 .getARCRetainAutoreleasedReturnValueMarker(); 1951 1952 // If we have an empty assembly string, there's nothing to do. 1953 if (assembly.empty()) { 1954 1955 // Otherwise, at -O0, build an inline asm that we're going to call 1956 // in a moment. 1957 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1958 llvm::FunctionType *type = 1959 llvm::FunctionType::get(VoidTy, /*variadic*/false); 1960 1961 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 1962 1963 // If we're at -O1 and above, we don't want to litter the code 1964 // with this marker yet, so leave a breadcrumb for the ARC 1965 // optimizer to pick up. 1966 } else { 1967 llvm::NamedMDNode *metadata = 1968 CGM.getModule().getOrInsertNamedMetadata( 1969 "clang.arc.retainAutoreleasedReturnValueMarker"); 1970 assert(metadata->getNumOperands() <= 1); 1971 if (metadata->getNumOperands() == 0) { 1972 llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly); 1973 metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string)); 1974 } 1975 } 1976 } 1977 1978 // Call the marker asm if we made one, which we do only at -O0. 1979 if (marker) Builder.CreateCall(marker); 1980 1981 return emitARCValueOperation(*this, value, 1982 CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue, 1983 "objc_retainAutoreleasedReturnValue"); 1984 } 1985 1986 /// Release the given object. 1987 /// call void \@objc_release(i8* %value) 1988 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 1989 ARCPreciseLifetime_t precise) { 1990 if (isa<llvm::ConstantPointerNull>(value)) return; 1991 1992 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release; 1993 if (!fn) { 1994 llvm::FunctionType *fnType = 1995 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 1996 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 1997 } 1998 1999 // Cast the argument to 'id'. 2000 value = Builder.CreateBitCast(value, Int8PtrTy); 2001 2002 // Call objc_release. 2003 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2004 2005 if (precise == ARCImpreciseLifetime) { 2006 SmallVector<llvm::Value*,1> args; 2007 call->setMetadata("clang.imprecise_release", 2008 llvm::MDNode::get(Builder.getContext(), args)); 2009 } 2010 } 2011 2012 /// Destroy a __strong variable. 2013 /// 2014 /// At -O0, emit a call to store 'null' into the address; 2015 /// instrumenting tools prefer this because the address is exposed, 2016 /// but it's relatively cumbersome to optimize. 2017 /// 2018 /// At -O1 and above, just load and call objc_release. 2019 /// 2020 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2021 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr, 2022 ARCPreciseLifetime_t precise) { 2023 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2024 llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType()); 2025 llvm::Value *null = llvm::ConstantPointerNull::get( 2026 cast<llvm::PointerType>(addrTy->getElementType())); 2027 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2028 return; 2029 } 2030 2031 llvm::Value *value = Builder.CreateLoad(addr); 2032 EmitARCRelease(value, precise); 2033 } 2034 2035 /// Store into a strong object. Always calls this: 2036 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2037 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr, 2038 llvm::Value *value, 2039 bool ignored) { 2040 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 2041 == value->getType()); 2042 2043 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong; 2044 if (!fn) { 2045 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 2046 llvm::FunctionType *fnType 2047 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 2048 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 2049 } 2050 2051 llvm::Value *args[] = { 2052 Builder.CreateBitCast(addr, Int8PtrPtrTy), 2053 Builder.CreateBitCast(value, Int8PtrTy) 2054 }; 2055 EmitNounwindRuntimeCall(fn, args); 2056 2057 if (ignored) return 0; 2058 return value; 2059 } 2060 2061 /// Store into a strong object. Sometimes calls this: 2062 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2063 /// Other times, breaks it down into components. 2064 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2065 llvm::Value *newValue, 2066 bool ignored) { 2067 QualType type = dst.getType(); 2068 bool isBlock = type->isBlockPointerType(); 2069 2070 // Use a store barrier at -O0 unless this is a block type or the 2071 // lvalue is inadequately aligned. 2072 if (shouldUseFusedARCCalls() && 2073 !isBlock && 2074 (dst.getAlignment().isZero() || 2075 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2076 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2077 } 2078 2079 // Otherwise, split it out. 2080 2081 // Retain the new value. 2082 newValue = EmitARCRetain(type, newValue); 2083 2084 // Read the old value. 2085 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2086 2087 // Store. We do this before the release so that any deallocs won't 2088 // see the old value. 2089 EmitStoreOfScalar(newValue, dst); 2090 2091 // Finally, release the old value. 2092 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2093 2094 return newValue; 2095 } 2096 2097 /// Autorelease the given object. 2098 /// call i8* \@objc_autorelease(i8* %value) 2099 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2100 return emitARCValueOperation(*this, value, 2101 CGM.getARCEntrypoints().objc_autorelease, 2102 "objc_autorelease"); 2103 } 2104 2105 /// Autorelease the given object. 2106 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2107 llvm::Value * 2108 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2109 return emitARCValueOperation(*this, value, 2110 CGM.getARCEntrypoints().objc_autoreleaseReturnValue, 2111 "objc_autoreleaseReturnValue", 2112 /*isTailCall*/ true); 2113 } 2114 2115 /// Do a fused retain/autorelease of the given object. 2116 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2117 llvm::Value * 2118 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2119 return emitARCValueOperation(*this, value, 2120 CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue, 2121 "objc_retainAutoreleaseReturnValue", 2122 /*isTailCall*/ true); 2123 } 2124 2125 /// Do a fused retain/autorelease of the given object. 2126 /// call i8* \@objc_retainAutorelease(i8* %value) 2127 /// or 2128 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2129 /// call i8* \@objc_autorelease(i8* %retain) 2130 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2131 llvm::Value *value) { 2132 if (!type->isBlockPointerType()) 2133 return EmitARCRetainAutoreleaseNonBlock(value); 2134 2135 if (isa<llvm::ConstantPointerNull>(value)) return value; 2136 2137 llvm::Type *origType = value->getType(); 2138 value = Builder.CreateBitCast(value, Int8PtrTy); 2139 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2140 value = EmitARCAutorelease(value); 2141 return Builder.CreateBitCast(value, origType); 2142 } 2143 2144 /// Do a fused retain/autorelease of the given object. 2145 /// call i8* \@objc_retainAutorelease(i8* %value) 2146 llvm::Value * 2147 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2148 return emitARCValueOperation(*this, value, 2149 CGM.getARCEntrypoints().objc_retainAutorelease, 2150 "objc_retainAutorelease"); 2151 } 2152 2153 /// i8* \@objc_loadWeak(i8** %addr) 2154 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2155 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) { 2156 return emitARCLoadOperation(*this, addr, 2157 CGM.getARCEntrypoints().objc_loadWeak, 2158 "objc_loadWeak"); 2159 } 2160 2161 /// i8* \@objc_loadWeakRetained(i8** %addr) 2162 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) { 2163 return emitARCLoadOperation(*this, addr, 2164 CGM.getARCEntrypoints().objc_loadWeakRetained, 2165 "objc_loadWeakRetained"); 2166 } 2167 2168 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2169 /// Returns %value. 2170 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr, 2171 llvm::Value *value, 2172 bool ignored) { 2173 return emitARCStoreOperation(*this, addr, value, 2174 CGM.getARCEntrypoints().objc_storeWeak, 2175 "objc_storeWeak", ignored); 2176 } 2177 2178 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2179 /// Returns %value. %addr is known to not have a current weak entry. 2180 /// Essentially equivalent to: 2181 /// *addr = nil; objc_storeWeak(addr, value); 2182 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) { 2183 // If we're initializing to null, just write null to memory; no need 2184 // to get the runtime involved. But don't do this if optimization 2185 // is enabled, because accounting for this would make the optimizer 2186 // much more complicated. 2187 if (isa<llvm::ConstantPointerNull>(value) && 2188 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2189 Builder.CreateStore(value, addr); 2190 return; 2191 } 2192 2193 emitARCStoreOperation(*this, addr, value, 2194 CGM.getARCEntrypoints().objc_initWeak, 2195 "objc_initWeak", /*ignored*/ true); 2196 } 2197 2198 /// void \@objc_destroyWeak(i8** %addr) 2199 /// Essentially objc_storeWeak(addr, nil). 2200 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) { 2201 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak; 2202 if (!fn) { 2203 llvm::FunctionType *fnType = 2204 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false); 2205 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 2206 } 2207 2208 // Cast the argument to 'id*'. 2209 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2210 2211 EmitNounwindRuntimeCall(fn, addr); 2212 } 2213 2214 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2215 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2216 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2217 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) { 2218 emitARCCopyOperation(*this, dst, src, 2219 CGM.getARCEntrypoints().objc_moveWeak, 2220 "objc_moveWeak"); 2221 } 2222 2223 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2224 /// Disregards the current value in %dest. Essentially 2225 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2226 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) { 2227 emitARCCopyOperation(*this, dst, src, 2228 CGM.getARCEntrypoints().objc_copyWeak, 2229 "objc_copyWeak"); 2230 } 2231 2232 /// Produce the code to do a objc_autoreleasepool_push. 2233 /// call i8* \@objc_autoreleasePoolPush(void) 2234 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2235 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush; 2236 if (!fn) { 2237 llvm::FunctionType *fnType = 2238 llvm::FunctionType::get(Int8PtrTy, false); 2239 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 2240 } 2241 2242 return EmitNounwindRuntimeCall(fn); 2243 } 2244 2245 /// Produce the code to do a primitive release. 2246 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2247 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2248 assert(value->getType() == Int8PtrTy); 2249 2250 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop; 2251 if (!fn) { 2252 llvm::FunctionType *fnType = 2253 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2254 2255 // We don't want to use a weak import here; instead we should not 2256 // fall into this path. 2257 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 2258 } 2259 2260 // objc_autoreleasePoolPop can throw. 2261 EmitRuntimeCallOrInvoke(fn, value); 2262 } 2263 2264 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2265 /// Which is: [[NSAutoreleasePool alloc] init]; 2266 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2267 /// init is declared as: - (id) init; in its NSObject super class. 2268 /// 2269 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2270 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2271 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2272 // [NSAutoreleasePool alloc] 2273 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2274 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2275 CallArgList Args; 2276 RValue AllocRV = 2277 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2278 getContext().getObjCIdType(), 2279 AllocSel, Receiver, Args); 2280 2281 // [Receiver init] 2282 Receiver = AllocRV.getScalarVal(); 2283 II = &CGM.getContext().Idents.get("init"); 2284 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2285 RValue InitRV = 2286 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2287 getContext().getObjCIdType(), 2288 InitSel, Receiver, Args); 2289 return InitRV.getScalarVal(); 2290 } 2291 2292 /// Produce the code to do a primitive release. 2293 /// [tmp drain]; 2294 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2295 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2296 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2297 CallArgList Args; 2298 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2299 getContext().VoidTy, DrainSel, Arg, Args); 2300 } 2301 2302 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2303 llvm::Value *addr, 2304 QualType type) { 2305 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2306 } 2307 2308 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2309 llvm::Value *addr, 2310 QualType type) { 2311 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2312 } 2313 2314 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2315 llvm::Value *addr, 2316 QualType type) { 2317 CGF.EmitARCDestroyWeak(addr); 2318 } 2319 2320 namespace { 2321 struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup { 2322 llvm::Value *Token; 2323 2324 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2325 2326 void Emit(CodeGenFunction &CGF, Flags flags) { 2327 CGF.EmitObjCAutoreleasePoolPop(Token); 2328 } 2329 }; 2330 struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup { 2331 llvm::Value *Token; 2332 2333 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2334 2335 void Emit(CodeGenFunction &CGF, Flags flags) { 2336 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2337 } 2338 }; 2339 } 2340 2341 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2342 if (CGM.getLangOpts().ObjCAutoRefCount) 2343 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2344 else 2345 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2346 } 2347 2348 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2349 LValue lvalue, 2350 QualType type) { 2351 switch (type.getObjCLifetime()) { 2352 case Qualifiers::OCL_None: 2353 case Qualifiers::OCL_ExplicitNone: 2354 case Qualifiers::OCL_Strong: 2355 case Qualifiers::OCL_Autoreleasing: 2356 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue, 2357 SourceLocation()).getScalarVal(), 2358 false); 2359 2360 case Qualifiers::OCL_Weak: 2361 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2362 true); 2363 } 2364 2365 llvm_unreachable("impossible lifetime!"); 2366 } 2367 2368 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2369 const Expr *e) { 2370 e = e->IgnoreParens(); 2371 QualType type = e->getType(); 2372 2373 // If we're loading retained from a __strong xvalue, we can avoid 2374 // an extra retain/release pair by zeroing out the source of this 2375 // "move" operation. 2376 if (e->isXValue() && 2377 !type.isConstQualified() && 2378 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2379 // Emit the lvalue. 2380 LValue lv = CGF.EmitLValue(e); 2381 2382 // Load the object pointer. 2383 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2384 SourceLocation()).getScalarVal(); 2385 2386 // Set the source pointer to NULL. 2387 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2388 2389 return TryEmitResult(result, true); 2390 } 2391 2392 // As a very special optimization, in ARC++, if the l-value is the 2393 // result of a non-volatile assignment, do a simple retain of the 2394 // result of the call to objc_storeWeak instead of reloading. 2395 if (CGF.getLangOpts().CPlusPlus && 2396 !type.isVolatileQualified() && 2397 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2398 isa<BinaryOperator>(e) && 2399 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2400 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2401 2402 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2403 } 2404 2405 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2406 llvm::Value *value); 2407 2408 /// Given that the given expression is some sort of call (which does 2409 /// not return retained), emit a retain following it. 2410 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) { 2411 llvm::Value *value = CGF.EmitScalarExpr(e); 2412 return emitARCRetainAfterCall(CGF, value); 2413 } 2414 2415 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2416 llvm::Value *value) { 2417 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2418 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2419 2420 // Place the retain immediately following the call. 2421 CGF.Builder.SetInsertPoint(call->getParent(), 2422 ++llvm::BasicBlock::iterator(call)); 2423 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2424 2425 CGF.Builder.restoreIP(ip); 2426 return value; 2427 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2428 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2429 2430 // Place the retain at the beginning of the normal destination block. 2431 llvm::BasicBlock *BB = invoke->getNormalDest(); 2432 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2433 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2434 2435 CGF.Builder.restoreIP(ip); 2436 return value; 2437 2438 // Bitcasts can arise because of related-result returns. Rewrite 2439 // the operand. 2440 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2441 llvm::Value *operand = bitcast->getOperand(0); 2442 operand = emitARCRetainAfterCall(CGF, operand); 2443 bitcast->setOperand(0, operand); 2444 return bitcast; 2445 2446 // Generic fall-back case. 2447 } else { 2448 // Retain using the non-block variant: we never need to do a copy 2449 // of a block that's been returned to us. 2450 return CGF.EmitARCRetainNonBlock(value); 2451 } 2452 } 2453 2454 /// Determine whether it might be important to emit a separate 2455 /// objc_retain_block on the result of the given expression, or 2456 /// whether it's okay to just emit it in a +1 context. 2457 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2458 assert(e->getType()->isBlockPointerType()); 2459 e = e->IgnoreParens(); 2460 2461 // For future goodness, emit block expressions directly in +1 2462 // contexts if we can. 2463 if (isa<BlockExpr>(e)) 2464 return false; 2465 2466 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2467 switch (cast->getCastKind()) { 2468 // Emitting these operations in +1 contexts is goodness. 2469 case CK_LValueToRValue: 2470 case CK_ARCReclaimReturnedObject: 2471 case CK_ARCConsumeObject: 2472 case CK_ARCProduceObject: 2473 return false; 2474 2475 // These operations preserve a block type. 2476 case CK_NoOp: 2477 case CK_BitCast: 2478 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2479 2480 // These operations are known to be bad (or haven't been considered). 2481 case CK_AnyPointerToBlockPointerCast: 2482 default: 2483 return true; 2484 } 2485 } 2486 2487 return true; 2488 } 2489 2490 /// Try to emit a PseudoObjectExpr at +1. 2491 /// 2492 /// This massively duplicates emitPseudoObjectRValue. 2493 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF, 2494 const PseudoObjectExpr *E) { 2495 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2496 2497 // Find the result expression. 2498 const Expr *resultExpr = E->getResultExpr(); 2499 assert(resultExpr); 2500 TryEmitResult result; 2501 2502 for (PseudoObjectExpr::const_semantics_iterator 2503 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2504 const Expr *semantic = *i; 2505 2506 // If this semantic expression is an opaque value, bind it 2507 // to the result of its source expression. 2508 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2509 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2510 OVMA opaqueData; 2511 2512 // If this semantic is the result of the pseudo-object 2513 // expression, try to evaluate the source as +1. 2514 if (ov == resultExpr) { 2515 assert(!OVMA::shouldBindAsLValue(ov)); 2516 result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr()); 2517 opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer())); 2518 2519 // Otherwise, just bind it. 2520 } else { 2521 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2522 } 2523 opaques.push_back(opaqueData); 2524 2525 // Otherwise, if the expression is the result, evaluate it 2526 // and remember the result. 2527 } else if (semantic == resultExpr) { 2528 result = tryEmitARCRetainScalarExpr(CGF, semantic); 2529 2530 // Otherwise, evaluate the expression in an ignored context. 2531 } else { 2532 CGF.EmitIgnoredExpr(semantic); 2533 } 2534 } 2535 2536 // Unbind all the opaques now. 2537 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2538 opaques[i].unbind(CGF); 2539 2540 return result; 2541 } 2542 2543 static TryEmitResult 2544 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2545 // We should *never* see a nested full-expression here, because if 2546 // we fail to emit at +1, our caller must not retain after we close 2547 // out the full-expression. 2548 assert(!isa<ExprWithCleanups>(e)); 2549 2550 // The desired result type, if it differs from the type of the 2551 // ultimate opaque expression. 2552 llvm::Type *resultType = 0; 2553 2554 while (true) { 2555 e = e->IgnoreParens(); 2556 2557 // There's a break at the end of this if-chain; anything 2558 // that wants to keep looping has to explicitly continue. 2559 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2560 switch (ce->getCastKind()) { 2561 // No-op casts don't change the type, so we just ignore them. 2562 case CK_NoOp: 2563 e = ce->getSubExpr(); 2564 continue; 2565 2566 case CK_LValueToRValue: { 2567 TryEmitResult loadResult 2568 = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr()); 2569 if (resultType) { 2570 llvm::Value *value = loadResult.getPointer(); 2571 value = CGF.Builder.CreateBitCast(value, resultType); 2572 loadResult.setPointer(value); 2573 } 2574 return loadResult; 2575 } 2576 2577 // These casts can change the type, so remember that and 2578 // soldier on. We only need to remember the outermost such 2579 // cast, though. 2580 case CK_CPointerToObjCPointerCast: 2581 case CK_BlockPointerToObjCPointerCast: 2582 case CK_AnyPointerToBlockPointerCast: 2583 case CK_BitCast: 2584 if (!resultType) 2585 resultType = CGF.ConvertType(ce->getType()); 2586 e = ce->getSubExpr(); 2587 assert(e->getType()->hasPointerRepresentation()); 2588 continue; 2589 2590 // For consumptions, just emit the subexpression and thus elide 2591 // the retain/release pair. 2592 case CK_ARCConsumeObject: { 2593 llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr()); 2594 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2595 return TryEmitResult(result, true); 2596 } 2597 2598 // Block extends are net +0. Naively, we could just recurse on 2599 // the subexpression, but actually we need to ensure that the 2600 // value is copied as a block, so there's a little filter here. 2601 case CK_ARCExtendBlockObject: { 2602 llvm::Value *result; // will be a +0 value 2603 2604 // If we can't safely assume the sub-expression will produce a 2605 // block-copied value, emit the sub-expression at +0. 2606 if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) { 2607 result = CGF.EmitScalarExpr(ce->getSubExpr()); 2608 2609 // Otherwise, try to emit the sub-expression at +1 recursively. 2610 } else { 2611 TryEmitResult subresult 2612 = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr()); 2613 result = subresult.getPointer(); 2614 2615 // If that produced a retained value, just use that, 2616 // possibly casting down. 2617 if (subresult.getInt()) { 2618 if (resultType) 2619 result = CGF.Builder.CreateBitCast(result, resultType); 2620 return TryEmitResult(result, true); 2621 } 2622 2623 // Otherwise it's +0. 2624 } 2625 2626 // Retain the object as a block, then cast down. 2627 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2628 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2629 return TryEmitResult(result, true); 2630 } 2631 2632 // For reclaims, emit the subexpression as a retained call and 2633 // skip the consumption. 2634 case CK_ARCReclaimReturnedObject: { 2635 llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr()); 2636 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2637 return TryEmitResult(result, true); 2638 } 2639 2640 default: 2641 break; 2642 } 2643 2644 // Skip __extension__. 2645 } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 2646 if (op->getOpcode() == UO_Extension) { 2647 e = op->getSubExpr(); 2648 continue; 2649 } 2650 2651 // For calls and message sends, use the retained-call logic. 2652 // Delegate inits are a special case in that they're the only 2653 // returns-retained expression that *isn't* surrounded by 2654 // a consume. 2655 } else if (isa<CallExpr>(e) || 2656 (isa<ObjCMessageExpr>(e) && 2657 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2658 llvm::Value *result = emitARCRetainCall(CGF, e); 2659 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2660 return TryEmitResult(result, true); 2661 2662 // Look through pseudo-object expressions. 2663 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2664 TryEmitResult result 2665 = tryEmitARCRetainPseudoObject(CGF, pseudo); 2666 if (resultType) { 2667 llvm::Value *value = result.getPointer(); 2668 value = CGF.Builder.CreateBitCast(value, resultType); 2669 result.setPointer(value); 2670 } 2671 return result; 2672 } 2673 2674 // Conservatively halt the search at any other expression kind. 2675 break; 2676 } 2677 2678 // We didn't find an obvious production, so emit what we've got and 2679 // tell the caller that we didn't manage to retain. 2680 llvm::Value *result = CGF.EmitScalarExpr(e); 2681 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2682 return TryEmitResult(result, false); 2683 } 2684 2685 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2686 LValue lvalue, 2687 QualType type) { 2688 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2689 llvm::Value *value = result.getPointer(); 2690 if (!result.getInt()) 2691 value = CGF.EmitARCRetain(type, value); 2692 return value; 2693 } 2694 2695 /// EmitARCRetainScalarExpr - Semantically equivalent to 2696 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2697 /// best-effort attempt to peephole expressions that naturally produce 2698 /// retained objects. 2699 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2700 // The retain needs to happen within the full-expression. 2701 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2702 enterFullExpression(cleanups); 2703 RunCleanupsScope scope(*this); 2704 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 2705 } 2706 2707 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2708 llvm::Value *value = result.getPointer(); 2709 if (!result.getInt()) 2710 value = EmitARCRetain(e->getType(), value); 2711 return value; 2712 } 2713 2714 llvm::Value * 2715 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2716 // The retain needs to happen within the full-expression. 2717 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2718 enterFullExpression(cleanups); 2719 RunCleanupsScope scope(*this); 2720 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 2721 } 2722 2723 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2724 llvm::Value *value = result.getPointer(); 2725 if (result.getInt()) 2726 value = EmitARCAutorelease(value); 2727 else 2728 value = EmitARCRetainAutorelease(e->getType(), value); 2729 return value; 2730 } 2731 2732 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2733 llvm::Value *result; 2734 bool doRetain; 2735 2736 if (shouldEmitSeparateBlockRetain(e)) { 2737 result = EmitScalarExpr(e); 2738 doRetain = true; 2739 } else { 2740 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2741 result = subresult.getPointer(); 2742 doRetain = !subresult.getInt(); 2743 } 2744 2745 if (doRetain) 2746 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2747 return EmitObjCConsumeObject(e->getType(), result); 2748 } 2749 2750 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2751 // In ARC, retain and autorelease the expression. 2752 if (getLangOpts().ObjCAutoRefCount) { 2753 // Do so before running any cleanups for the full-expression. 2754 // EmitARCRetainAutoreleaseScalarExpr does this for us. 2755 return EmitARCRetainAutoreleaseScalarExpr(expr); 2756 } 2757 2758 // Otherwise, use the normal scalar-expression emission. The 2759 // exception machinery doesn't do anything special with the 2760 // exception like retaining it, so there's no safety associated with 2761 // only running cleanups after the throw has started, and when it 2762 // matters it tends to be substantially inferior code. 2763 return EmitScalarExpr(expr); 2764 } 2765 2766 std::pair<LValue,llvm::Value*> 2767 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 2768 bool ignored) { 2769 // Evaluate the RHS first. 2770 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 2771 llvm::Value *value = result.getPointer(); 2772 2773 bool hasImmediateRetain = result.getInt(); 2774 2775 // If we didn't emit a retained object, and the l-value is of block 2776 // type, then we need to emit the block-retain immediately in case 2777 // it invalidates the l-value. 2778 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 2779 value = EmitARCRetainBlock(value, /*mandatory*/ false); 2780 hasImmediateRetain = true; 2781 } 2782 2783 LValue lvalue = EmitLValue(e->getLHS()); 2784 2785 // If the RHS was emitted retained, expand this. 2786 if (hasImmediateRetain) { 2787 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 2788 EmitStoreOfScalar(value, lvalue); 2789 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 2790 } else { 2791 value = EmitARCStoreStrong(lvalue, value, ignored); 2792 } 2793 2794 return std::pair<LValue,llvm::Value*>(lvalue, value); 2795 } 2796 2797 std::pair<LValue,llvm::Value*> 2798 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 2799 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 2800 LValue lvalue = EmitLValue(e->getLHS()); 2801 2802 EmitStoreOfScalar(value, lvalue); 2803 2804 return std::pair<LValue,llvm::Value*>(lvalue, value); 2805 } 2806 2807 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 2808 const ObjCAutoreleasePoolStmt &ARPS) { 2809 const Stmt *subStmt = ARPS.getSubStmt(); 2810 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 2811 2812 CGDebugInfo *DI = getDebugInfo(); 2813 if (DI) 2814 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 2815 2816 // Keep track of the current cleanup stack depth. 2817 RunCleanupsScope Scope(*this); 2818 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 2819 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 2820 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 2821 } else { 2822 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 2823 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 2824 } 2825 2826 for (CompoundStmt::const_body_iterator I = S.body_begin(), 2827 E = S.body_end(); I != E; ++I) 2828 EmitStmt(*I); 2829 2830 if (DI) 2831 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 2832 } 2833 2834 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2835 /// make sure it survives garbage collection until this point. 2836 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 2837 // We just use an inline assembly. 2838 llvm::FunctionType *extenderType 2839 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 2840 llvm::Value *extender 2841 = llvm::InlineAsm::get(extenderType, 2842 /* assembly */ "", 2843 /* constraints */ "r", 2844 /* side effects */ true); 2845 2846 object = Builder.CreateBitCast(object, VoidPtrTy); 2847 EmitNounwindRuntimeCall(extender, object); 2848 } 2849 2850 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 2851 /// non-trivial copy assignment function, produce following helper function. 2852 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 2853 /// 2854 llvm::Constant * 2855 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 2856 const ObjCPropertyImplDecl *PID) { 2857 if (!getLangOpts().CPlusPlus || 2858 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2859 return 0; 2860 QualType Ty = PID->getPropertyIvarDecl()->getType(); 2861 if (!Ty->isRecordType()) 2862 return 0; 2863 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2864 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2865 return 0; 2866 llvm::Constant * HelperFn = 0; 2867 if (hasTrivialSetExpr(PID)) 2868 return 0; 2869 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 2870 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 2871 return HelperFn; 2872 2873 ASTContext &C = getContext(); 2874 IdentifierInfo *II 2875 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 2876 FunctionDecl *FD = FunctionDecl::Create(C, 2877 C.getTranslationUnitDecl(), 2878 SourceLocation(), 2879 SourceLocation(), II, C.VoidTy, 0, 2880 SC_Static, 2881 false, 2882 false); 2883 2884 QualType DestTy = C.getPointerType(Ty); 2885 QualType SrcTy = Ty; 2886 SrcTy.addConst(); 2887 SrcTy = C.getPointerType(SrcTy); 2888 2889 FunctionArgList args; 2890 ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy); 2891 args.push_back(&dstDecl); 2892 ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy); 2893 args.push_back(&srcDecl); 2894 2895 const CGFunctionInfo &FI = 2896 CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args, 2897 FunctionType::ExtInfo(), 2898 RequiredArgs::All); 2899 2900 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2901 2902 llvm::Function *Fn = 2903 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2904 "__assign_helper_atomic_property_", 2905 &CGM.getModule()); 2906 2907 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation()); 2908 2909 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 2910 VK_RValue, SourceLocation()); 2911 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 2912 VK_LValue, OK_Ordinary, SourceLocation()); 2913 2914 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2915 VK_RValue, SourceLocation()); 2916 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2917 VK_LValue, OK_Ordinary, SourceLocation()); 2918 2919 Expr *Args[2] = { &DST, &SRC }; 2920 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 2921 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 2922 Args, DestTy->getPointeeType(), 2923 VK_LValue, SourceLocation(), false); 2924 2925 EmitStmt(&TheCall); 2926 2927 FinishFunction(); 2928 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 2929 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 2930 return HelperFn; 2931 } 2932 2933 llvm::Constant * 2934 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 2935 const ObjCPropertyImplDecl *PID) { 2936 if (!getLangOpts().CPlusPlus || 2937 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2938 return 0; 2939 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2940 QualType Ty = PD->getType(); 2941 if (!Ty->isRecordType()) 2942 return 0; 2943 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2944 return 0; 2945 llvm::Constant * HelperFn = 0; 2946 2947 if (hasTrivialGetExpr(PID)) 2948 return 0; 2949 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 2950 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 2951 return HelperFn; 2952 2953 2954 ASTContext &C = getContext(); 2955 IdentifierInfo *II 2956 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 2957 FunctionDecl *FD = FunctionDecl::Create(C, 2958 C.getTranslationUnitDecl(), 2959 SourceLocation(), 2960 SourceLocation(), II, C.VoidTy, 0, 2961 SC_Static, 2962 false, 2963 false); 2964 2965 QualType DestTy = C.getPointerType(Ty); 2966 QualType SrcTy = Ty; 2967 SrcTy.addConst(); 2968 SrcTy = C.getPointerType(SrcTy); 2969 2970 FunctionArgList args; 2971 ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy); 2972 args.push_back(&dstDecl); 2973 ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy); 2974 args.push_back(&srcDecl); 2975 2976 const CGFunctionInfo &FI = 2977 CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args, 2978 FunctionType::ExtInfo(), 2979 RequiredArgs::All); 2980 2981 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2982 2983 llvm::Function *Fn = 2984 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2985 "__copy_helper_atomic_property_", &CGM.getModule()); 2986 2987 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation()); 2988 2989 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2990 VK_RValue, SourceLocation()); 2991 2992 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2993 VK_LValue, OK_Ordinary, SourceLocation()); 2994 2995 CXXConstructExpr *CXXConstExpr = 2996 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 2997 2998 SmallVector<Expr*, 4> ConstructorArgs; 2999 ConstructorArgs.push_back(&SRC); 3000 CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin(); 3001 ++A; 3002 3003 for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end(); 3004 A != AEnd; ++A) 3005 ConstructorArgs.push_back(*A); 3006 3007 CXXConstructExpr *TheCXXConstructExpr = 3008 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3009 CXXConstExpr->getConstructor(), 3010 CXXConstExpr->isElidable(), 3011 ConstructorArgs, 3012 CXXConstExpr->hadMultipleCandidates(), 3013 CXXConstExpr->isListInitialization(), 3014 CXXConstExpr->requiresZeroInitialization(), 3015 CXXConstExpr->getConstructionKind(), 3016 SourceRange()); 3017 3018 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 3019 VK_RValue, SourceLocation()); 3020 3021 RValue DV = EmitAnyExpr(&DstExpr); 3022 CharUnits Alignment 3023 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3024 EmitAggExpr(TheCXXConstructExpr, 3025 AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(), 3026 AggValueSlot::IsDestructed, 3027 AggValueSlot::DoesNotNeedGCBarriers, 3028 AggValueSlot::IsNotAliased)); 3029 3030 FinishFunction(); 3031 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3032 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3033 return HelperFn; 3034 } 3035 3036 llvm::Value * 3037 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3038 // Get selectors for retain/autorelease. 3039 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3040 Selector CopySelector = 3041 getContext().Selectors.getNullarySelector(CopyID); 3042 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3043 Selector AutoreleaseSelector = 3044 getContext().Selectors.getNullarySelector(AutoreleaseID); 3045 3046 // Emit calls to retain/autorelease. 3047 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3048 llvm::Value *Val = Block; 3049 RValue Result; 3050 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3051 Ty, CopySelector, 3052 Val, CallArgList(), 0, 0); 3053 Val = Result.getScalarVal(); 3054 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3055 Ty, AutoreleaseSelector, 3056 Val, CallArgList(), 0, 0); 3057 Val = Result.getScalarVal(); 3058 return Val; 3059 } 3060 3061 3062 CGObjCRuntime::~CGObjCRuntime() {} 3063