1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
35                                    QualType ET,
36                                    RValue Result);
37 
38 /// Given the address of a variable of pointer type, find the correct
39 /// null to store into it.
40 static llvm::Constant *getNullForVariable(Address addr) {
41   llvm::Type *type = addr.getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57 /// or [NSValue valueWithBytes:objCType:].
58 ///
59 llvm::Value *
60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61   // Generate the correct selector for this literal's concrete type.
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   const Expr *SubExpr = E->getSubExpr();
65 
66   if (E->isExpressibleAsConstantInitializer()) {
67     ConstantEmitter ConstEmitter(CGM);
68     return ConstEmitter.tryEmitAbstract(E, E->getType());
69   }
70 
71   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
72   Selector Sel = BoxingMethod->getSelector();
73 
74   // Generate a reference to the class pointer, which will be the receiver.
75   // Assumes that the method was introduced in the class that should be
76   // messaged (avoids pulling it out of the result type).
77   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
78   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
79   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
80 
81   CallArgList Args;
82   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
83   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
84 
85   // ObjCBoxedExpr supports boxing of structs and unions
86   // via [NSValue valueWithBytes:objCType:]
87   const QualType ValueType(SubExpr->getType().getCanonicalType());
88   if (ValueType->isObjCBoxableRecordType()) {
89     // Emit CodeGen for first parameter
90     // and cast value to correct type
91     Address Temporary = CreateMemTemp(SubExpr->getType());
92     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
93     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
94     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
95 
96     // Create char array to store type encoding
97     std::string Str;
98     getContext().getObjCEncodingForType(ValueType, Str);
99     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
100 
101     // Cast type encoding to correct type
102     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
103     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
104     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
105 
106     Args.add(RValue::get(Cast), EncodingQT);
107   } else {
108     Args.add(EmitAnyExpr(SubExpr), ArgQT);
109   }
110 
111   RValue result = Runtime.GenerateMessageSend(
112       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
113       Args, ClassDecl, BoxingMethod);
114   return Builder.CreateBitCast(result.getScalarVal(),
115                                ConvertType(E->getType()));
116 }
117 
118 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
119                                     const ObjCMethodDecl *MethodWithObjects) {
120   ASTContext &Context = CGM.getContext();
121   const ObjCDictionaryLiteral *DLE = nullptr;
122   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
123   if (!ALE)
124     DLE = cast<ObjCDictionaryLiteral>(E);
125 
126   // Optimize empty collections by referencing constants, when available.
127   uint64_t NumElements =
128     ALE ? ALE->getNumElements() : DLE->getNumElements();
129   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
130     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
131     QualType IdTy(CGM.getContext().getObjCIdType());
132     llvm::Constant *Constant =
133         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
134     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
135     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
136     cast<llvm::LoadInst>(Ptr)->setMetadata(
137         CGM.getModule().getMDKindID("invariant.load"),
138         llvm::MDNode::get(getLLVMContext(), None));
139     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
140   }
141 
142   // Compute the type of the array we're initializing.
143   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
144                             NumElements);
145   QualType ElementType = Context.getObjCIdType().withConst();
146   QualType ElementArrayType
147     = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
148                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
149 
150   // Allocate the temporary array(s).
151   Address Objects = CreateMemTemp(ElementArrayType, "objects");
152   Address Keys = Address::invalid();
153   if (DLE)
154     Keys = CreateMemTemp(ElementArrayType, "keys");
155 
156   // In ARC, we may need to do extra work to keep all the keys and
157   // values alive until after the call.
158   SmallVector<llvm::Value *, 16> NeededObjects;
159   bool TrackNeededObjects =
160     (getLangOpts().ObjCAutoRefCount &&
161     CGM.getCodeGenOpts().OptimizationLevel != 0);
162 
163   // Perform the actual initialialization of the array(s).
164   for (uint64_t i = 0; i < NumElements; i++) {
165     if (ALE) {
166       // Emit the element and store it to the appropriate array slot.
167       const Expr *Rhs = ALE->getElement(i);
168       LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
169                                  ElementType, AlignmentSource::Decl);
170 
171       llvm::Value *value = EmitScalarExpr(Rhs);
172       EmitStoreThroughLValue(RValue::get(value), LV, true);
173       if (TrackNeededObjects) {
174         NeededObjects.push_back(value);
175       }
176     } else {
177       // Emit the key and store it to the appropriate array slot.
178       const Expr *Key = DLE->getKeyValueElement(i).Key;
179       LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
180                                     ElementType, AlignmentSource::Decl);
181       llvm::Value *keyValue = EmitScalarExpr(Key);
182       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
183 
184       // Emit the value and store it to the appropriate array slot.
185       const Expr *Value = DLE->getKeyValueElement(i).Value;
186       LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
187                                       ElementType, AlignmentSource::Decl);
188       llvm::Value *valueValue = EmitScalarExpr(Value);
189       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
190       if (TrackNeededObjects) {
191         NeededObjects.push_back(keyValue);
192         NeededObjects.push_back(valueValue);
193       }
194     }
195   }
196 
197   // Generate the argument list.
198   CallArgList Args;
199   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
200   const ParmVarDecl *argDecl = *PI++;
201   QualType ArgQT = argDecl->getType().getUnqualifiedType();
202   Args.add(RValue::get(Objects.getPointer()), ArgQT);
203   if (DLE) {
204     argDecl = *PI++;
205     ArgQT = argDecl->getType().getUnqualifiedType();
206     Args.add(RValue::get(Keys.getPointer()), ArgQT);
207   }
208   argDecl = *PI;
209   ArgQT = argDecl->getType().getUnqualifiedType();
210   llvm::Value *Count =
211     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
212   Args.add(RValue::get(Count), ArgQT);
213 
214   // Generate a reference to the class pointer, which will be the receiver.
215   Selector Sel = MethodWithObjects->getSelector();
216   QualType ResultType = E->getType();
217   const ObjCObjectPointerType *InterfacePointerType
218     = ResultType->getAsObjCInterfacePointerType();
219   ObjCInterfaceDecl *Class
220     = InterfacePointerType->getObjectType()->getInterface();
221   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
222   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
223 
224   // Generate the message send.
225   RValue result = Runtime.GenerateMessageSend(
226       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
227       Receiver, Args, Class, MethodWithObjects);
228 
229   // The above message send needs these objects, but in ARC they are
230   // passed in a buffer that is essentially __unsafe_unretained.
231   // Therefore we must prevent the optimizer from releasing them until
232   // after the call.
233   if (TrackNeededObjects) {
234     EmitARCIntrinsicUse(NeededObjects);
235   }
236 
237   return Builder.CreateBitCast(result.getScalarVal(),
238                                ConvertType(E->getType()));
239 }
240 
241 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
242   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
243 }
244 
245 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
246                                             const ObjCDictionaryLiteral *E) {
247   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
248 }
249 
250 /// Emit a selector.
251 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
252   // Untyped selector.
253   // Note that this implementation allows for non-constant strings to be passed
254   // as arguments to @selector().  Currently, the only thing preventing this
255   // behaviour is the type checking in the front end.
256   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
257 }
258 
259 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
260   // FIXME: This should pass the Decl not the name.
261   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
262 }
263 
264 /// Adjust the type of an Objective-C object that doesn't match up due
265 /// to type erasure at various points, e.g., related result types or the use
266 /// of parameterized classes.
267 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
268                                    RValue Result) {
269   if (!ExpT->isObjCRetainableType())
270     return Result;
271 
272   // If the converted types are the same, we're done.
273   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
274   if (ExpLLVMTy == Result.getScalarVal()->getType())
275     return Result;
276 
277   // We have applied a substitution. Cast the rvalue appropriately.
278   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
279                                                ExpLLVMTy));
280 }
281 
282 /// Decide whether to extend the lifetime of the receiver of a
283 /// returns-inner-pointer message.
284 static bool
285 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
286   switch (message->getReceiverKind()) {
287 
288   // For a normal instance message, we should extend unless the
289   // receiver is loaded from a variable with precise lifetime.
290   case ObjCMessageExpr::Instance: {
291     const Expr *receiver = message->getInstanceReceiver();
292 
293     // Look through OVEs.
294     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
295       if (opaque->getSourceExpr())
296         receiver = opaque->getSourceExpr()->IgnoreParens();
297     }
298 
299     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
300     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
301     receiver = ice->getSubExpr()->IgnoreParens();
302 
303     // Look through OVEs.
304     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
305       if (opaque->getSourceExpr())
306         receiver = opaque->getSourceExpr()->IgnoreParens();
307     }
308 
309     // Only __strong variables.
310     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
311       return true;
312 
313     // All ivars and fields have precise lifetime.
314     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
315       return false;
316 
317     // Otherwise, check for variables.
318     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
319     if (!declRef) return true;
320     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
321     if (!var) return true;
322 
323     // All variables have precise lifetime except local variables with
324     // automatic storage duration that aren't specially marked.
325     return (var->hasLocalStorage() &&
326             !var->hasAttr<ObjCPreciseLifetimeAttr>());
327   }
328 
329   case ObjCMessageExpr::Class:
330   case ObjCMessageExpr::SuperClass:
331     // It's never necessary for class objects.
332     return false;
333 
334   case ObjCMessageExpr::SuperInstance:
335     // We generally assume that 'self' lives throughout a method call.
336     return false;
337   }
338 
339   llvm_unreachable("invalid receiver kind");
340 }
341 
342 /// Given an expression of ObjC pointer type, check whether it was
343 /// immediately loaded from an ARC __weak l-value.
344 static const Expr *findWeakLValue(const Expr *E) {
345   assert(E->getType()->isObjCRetainableType());
346   E = E->IgnoreParens();
347   if (auto CE = dyn_cast<CastExpr>(E)) {
348     if (CE->getCastKind() == CK_LValueToRValue) {
349       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
350         return CE->getSubExpr();
351     }
352   }
353 
354   return nullptr;
355 }
356 
357 /// The ObjC runtime may provide entrypoints that are likely to be faster
358 /// than an ordinary message send of the appropriate selector.
359 ///
360 /// The entrypoints are guaranteed to be equivalent to just sending the
361 /// corresponding message.  If the entrypoint is implemented naively as just a
362 /// message send, using it is a trade-off: it sacrifices a few cycles of
363 /// overhead to save a small amount of code.  However, it's possible for
364 /// runtimes to detect and special-case classes that use "standard"
365 /// behavior; if that's dynamically a large proportion of all objects, using
366 /// the entrypoint will also be faster than using a message send.
367 ///
368 /// If the runtime does support a required entrypoint, then this method will
369 /// generate a call and return the resulting value.  Otherwise it will return
370 /// None and the caller can generate a msgSend instead.
371 static Optional<llvm::Value *>
372 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
373                                   llvm::Value *Receiver,
374                                   const CallArgList& Args, Selector Sel,
375                                   const ObjCMethodDecl *method,
376                                   bool isClassMessage) {
377   auto &CGM = CGF.CGM;
378   if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
379     return None;
380 
381   auto &Runtime = CGM.getLangOpts().ObjCRuntime;
382   switch (Sel.getMethodFamily()) {
383   case OMF_alloc:
384     if (isClassMessage &&
385         Runtime.shouldUseRuntimeFunctionsForAlloc() &&
386         ResultType->isObjCObjectPointerType()) {
387         // [Foo alloc] -> objc_alloc(Foo) or
388         // [self alloc] -> objc_alloc(self)
389         if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
390           return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
391         // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
392         // [self allocWithZone:nil] -> objc_allocWithZone(self)
393         if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
394             Args.size() == 1 && Args.front().getType()->isPointerType() &&
395             Sel.getNameForSlot(0) == "allocWithZone") {
396           const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
397           if (isa<llvm::ConstantPointerNull>(arg))
398             return CGF.EmitObjCAllocWithZone(Receiver,
399                                              CGF.ConvertType(ResultType));
400           return None;
401         }
402     }
403     break;
404 
405   case OMF_autorelease:
406     if (ResultType->isObjCObjectPointerType() &&
407         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
408         Runtime.shouldUseARCFunctionsForRetainRelease())
409       return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
410     break;
411 
412   case OMF_retain:
413     if (ResultType->isObjCObjectPointerType() &&
414         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
415         Runtime.shouldUseARCFunctionsForRetainRelease())
416       return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
417     break;
418 
419   case OMF_release:
420     if (ResultType->isVoidType() &&
421         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
422         Runtime.shouldUseARCFunctionsForRetainRelease()) {
423       CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
424       return nullptr;
425     }
426     break;
427 
428   default:
429     break;
430   }
431   return None;
432 }
433 
434 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
435     CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
436     Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
437     const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
438     bool isClassMessage) {
439   if (Optional<llvm::Value *> SpecializedResult =
440           tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
441                                             Sel, Method, isClassMessage)) {
442     return RValue::get(SpecializedResult.getValue());
443   }
444   return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
445                              Method);
446 }
447 
448 static void AppendFirstImpliedRuntimeProtocols(
449     const ObjCProtocolDecl *PD,
450     llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
451   if (!PD->isNonRuntimeProtocol()) {
452     const auto *Can = PD->getCanonicalDecl();
453     PDs.insert(Can);
454     return;
455   }
456 
457   for (const auto *ParentPD : PD->protocols())
458     AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
459 }
460 
461 std::vector<const ObjCProtocolDecl *>
462 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
463                                       ObjCProtocolDecl::protocol_iterator end) {
464   std::vector<const ObjCProtocolDecl *> RuntimePds;
465   llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
466 
467   for (; begin != end; ++begin) {
468     const auto *It = *begin;
469     const auto *Can = It->getCanonicalDecl();
470     if (Can->isNonRuntimeProtocol())
471       NonRuntimePDs.insert(Can);
472     else
473       RuntimePds.push_back(Can);
474   }
475 
476   // If there are no non-runtime protocols then we can just stop now.
477   if (NonRuntimePDs.empty())
478     return RuntimePds;
479 
480   // Else we have to search through the non-runtime protocol's inheritancy
481   // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
482   // a non-runtime protocol without any parents. These are the "first-implied"
483   // protocols from a non-runtime protocol.
484   llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
485   for (const auto *PD : NonRuntimePDs)
486     AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
487 
488   // Walk the Runtime list to get all protocols implied via the inclusion of
489   // this protocol, e.g. all protocols it inherits from including itself.
490   llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
491   for (const auto *PD : RuntimePds) {
492     const auto *Can = PD->getCanonicalDecl();
493     AllImpliedProtocols.insert(Can);
494     Can->getImpliedProtocols(AllImpliedProtocols);
495   }
496 
497   // Similar to above, walk the list of first-implied protocols to find the set
498   // all the protocols implied excluding the listed protocols themselves since
499   // they are not yet a part of the `RuntimePds` list.
500   for (const auto *PD : FirstImpliedProtos) {
501     PD->getImpliedProtocols(AllImpliedProtocols);
502   }
503 
504   // From the first-implied list we have to finish building the final protocol
505   // list. If a protocol in the first-implied list was already implied via some
506   // inheritance path through some other protocols then it would be redundant to
507   // add it here and so we skip over it.
508   for (const auto *PD : FirstImpliedProtos) {
509     if (!AllImpliedProtocols.contains(PD)) {
510       RuntimePds.push_back(PD);
511     }
512   }
513 
514   return RuntimePds;
515 }
516 
517 /// Instead of '[[MyClass alloc] init]', try to generate
518 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
519 /// caller side, as well as the optimized objc_alloc.
520 static Optional<llvm::Value *>
521 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
522   auto &Runtime = CGF.getLangOpts().ObjCRuntime;
523   if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
524     return None;
525 
526   // Match the exact pattern '[[MyClass alloc] init]'.
527   Selector Sel = OME->getSelector();
528   if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
529       !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
530       Sel.getNameForSlot(0) != "init")
531     return None;
532 
533   // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
534   // with 'cls' a Class.
535   auto *SubOME =
536       dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
537   if (!SubOME)
538     return None;
539   Selector SubSel = SubOME->getSelector();
540 
541   if (!SubOME->getType()->isObjCObjectPointerType() ||
542       !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
543     return None;
544 
545   llvm::Value *Receiver = nullptr;
546   switch (SubOME->getReceiverKind()) {
547   case ObjCMessageExpr::Instance:
548     if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
549       return None;
550     Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
551     break;
552 
553   case ObjCMessageExpr::Class: {
554     QualType ReceiverType = SubOME->getClassReceiver();
555     const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
556     const ObjCInterfaceDecl *ID = ObjTy->getInterface();
557     assert(ID && "null interface should be impossible here");
558     Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
559     break;
560   }
561   case ObjCMessageExpr::SuperInstance:
562   case ObjCMessageExpr::SuperClass:
563     return None;
564   }
565 
566   return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
567 }
568 
569 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
570                                             ReturnValueSlot Return) {
571   // Only the lookup mechanism and first two arguments of the method
572   // implementation vary between runtimes.  We can get the receiver and
573   // arguments in generic code.
574 
575   bool isDelegateInit = E->isDelegateInitCall();
576 
577   const ObjCMethodDecl *method = E->getMethodDecl();
578 
579   // If the method is -retain, and the receiver's being loaded from
580   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
581   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
582       method->getMethodFamily() == OMF_retain) {
583     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
584       LValue lvalue = EmitLValue(lvalueExpr);
585       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
586       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
587     }
588   }
589 
590   if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
591     return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
592 
593   // We don't retain the receiver in delegate init calls, and this is
594   // safe because the receiver value is always loaded from 'self',
595   // which we zero out.  We don't want to Block_copy block receivers,
596   // though.
597   bool retainSelf =
598     (!isDelegateInit &&
599      CGM.getLangOpts().ObjCAutoRefCount &&
600      method &&
601      method->hasAttr<NSConsumesSelfAttr>());
602 
603   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
604   bool isSuperMessage = false;
605   bool isClassMessage = false;
606   ObjCInterfaceDecl *OID = nullptr;
607   // Find the receiver
608   QualType ReceiverType;
609   llvm::Value *Receiver = nullptr;
610   switch (E->getReceiverKind()) {
611   case ObjCMessageExpr::Instance:
612     ReceiverType = E->getInstanceReceiver()->getType();
613     isClassMessage = ReceiverType->isObjCClassType();
614     if (retainSelf) {
615       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
616                                                    E->getInstanceReceiver());
617       Receiver = ter.getPointer();
618       if (ter.getInt()) retainSelf = false;
619     } else
620       Receiver = EmitScalarExpr(E->getInstanceReceiver());
621     break;
622 
623   case ObjCMessageExpr::Class: {
624     ReceiverType = E->getClassReceiver();
625     OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
626     assert(OID && "Invalid Objective-C class message send");
627     Receiver = Runtime.GetClass(*this, OID);
628     isClassMessage = true;
629     break;
630   }
631 
632   case ObjCMessageExpr::SuperInstance:
633     ReceiverType = E->getSuperType();
634     Receiver = LoadObjCSelf();
635     isSuperMessage = true;
636     break;
637 
638   case ObjCMessageExpr::SuperClass:
639     ReceiverType = E->getSuperType();
640     Receiver = LoadObjCSelf();
641     isSuperMessage = true;
642     isClassMessage = true;
643     break;
644   }
645 
646   if (retainSelf)
647     Receiver = EmitARCRetainNonBlock(Receiver);
648 
649   // In ARC, we sometimes want to "extend the lifetime"
650   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
651   // messages.
652   if (getLangOpts().ObjCAutoRefCount && method &&
653       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
654       shouldExtendReceiverForInnerPointerMessage(E))
655     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
656 
657   QualType ResultType = method ? method->getReturnType() : E->getType();
658 
659   CallArgList Args;
660   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
661 
662   // For delegate init calls in ARC, do an unsafe store of null into
663   // self.  This represents the call taking direct ownership of that
664   // value.  We have to do this after emitting the other call
665   // arguments because they might also reference self, but we don't
666   // have to worry about any of them modifying self because that would
667   // be an undefined read and write of an object in unordered
668   // expressions.
669   if (isDelegateInit) {
670     assert(getLangOpts().ObjCAutoRefCount &&
671            "delegate init calls should only be marked in ARC");
672 
673     // Do an unsafe store of null into self.
674     Address selfAddr =
675       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
676     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
677   }
678 
679   RValue result;
680   if (isSuperMessage) {
681     // super is only valid in an Objective-C method
682     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
683     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
684     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
685                                               E->getSelector(),
686                                               OMD->getClassInterface(),
687                                               isCategoryImpl,
688                                               Receiver,
689                                               isClassMessage,
690                                               Args,
691                                               method);
692   } else {
693     // Call runtime methods directly if we can.
694     result = Runtime.GeneratePossiblySpecializedMessageSend(
695         *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
696         method, isClassMessage);
697   }
698 
699   // For delegate init calls in ARC, implicitly store the result of
700   // the call back into self.  This takes ownership of the value.
701   if (isDelegateInit) {
702     Address selfAddr =
703       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
704     llvm::Value *newSelf = result.getScalarVal();
705 
706     // The delegate return type isn't necessarily a matching type; in
707     // fact, it's quite likely to be 'id'.
708     llvm::Type *selfTy = selfAddr.getElementType();
709     newSelf = Builder.CreateBitCast(newSelf, selfTy);
710 
711     Builder.CreateStore(newSelf, selfAddr);
712   }
713 
714   return AdjustObjCObjectType(*this, E->getType(), result);
715 }
716 
717 namespace {
718 struct FinishARCDealloc final : EHScopeStack::Cleanup {
719   void Emit(CodeGenFunction &CGF, Flags flags) override {
720     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
721 
722     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
723     const ObjCInterfaceDecl *iface = impl->getClassInterface();
724     if (!iface->getSuperClass()) return;
725 
726     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
727 
728     // Call [super dealloc] if we have a superclass.
729     llvm::Value *self = CGF.LoadObjCSelf();
730 
731     CallArgList args;
732     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
733                                                       CGF.getContext().VoidTy,
734                                                       method->getSelector(),
735                                                       iface,
736                                                       isCategory,
737                                                       self,
738                                                       /*is class msg*/ false,
739                                                       args,
740                                                       method);
741   }
742 };
743 }
744 
745 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
746 /// the LLVM function and sets the other context used by
747 /// CodeGenFunction.
748 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
749                                       const ObjCContainerDecl *CD) {
750   SourceLocation StartLoc = OMD->getBeginLoc();
751   FunctionArgList args;
752   // Check if we should generate debug info for this method.
753   if (OMD->hasAttr<NoDebugAttr>())
754     DebugInfo = nullptr; // disable debug info indefinitely for this function
755 
756   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
757 
758   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
759   if (OMD->isDirectMethod()) {
760     Fn->setVisibility(llvm::Function::HiddenVisibility);
761     CGM.SetLLVMFunctionAttributes(OMD, FI, Fn);
762     CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
763   } else {
764     CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
765   }
766 
767   args.push_back(OMD->getSelfDecl());
768   args.push_back(OMD->getCmdDecl());
769 
770   args.append(OMD->param_begin(), OMD->param_end());
771 
772   CurGD = OMD;
773   CurEHLocation = OMD->getEndLoc();
774 
775   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
776                 OMD->getLocation(), StartLoc);
777 
778   if (OMD->isDirectMethod()) {
779     // This function is a direct call, it has to implement a nil check
780     // on entry.
781     //
782     // TODO: possibly have several entry points to elide the check
783     CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
784   }
785 
786   // In ARC, certain methods get an extra cleanup.
787   if (CGM.getLangOpts().ObjCAutoRefCount &&
788       OMD->isInstanceMethod() &&
789       OMD->getSelector().isUnarySelector()) {
790     const IdentifierInfo *ident =
791       OMD->getSelector().getIdentifierInfoForSlot(0);
792     if (ident->isStr("dealloc"))
793       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
794   }
795 }
796 
797 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
798                                               LValue lvalue, QualType type);
799 
800 /// Generate an Objective-C method.  An Objective-C method is a C function with
801 /// its pointer, name, and types registered in the class structure.
802 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
803   StartObjCMethod(OMD, OMD->getClassInterface());
804   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
805   assert(isa<CompoundStmt>(OMD->getBody()));
806   incrementProfileCounter(OMD->getBody());
807   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
808   FinishFunction(OMD->getBodyRBrace());
809 }
810 
811 /// emitStructGetterCall - Call the runtime function to load a property
812 /// into the return value slot.
813 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
814                                  bool isAtomic, bool hasStrong) {
815   ASTContext &Context = CGF.getContext();
816 
817   Address src =
818       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
819           .getAddress(CGF);
820 
821   // objc_copyStruct (ReturnValue, &structIvar,
822   //                  sizeof (Type of Ivar), isAtomic, false);
823   CallArgList args;
824 
825   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
826   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
827 
828   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
829   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
830 
831   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
832   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
833   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
834   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
835 
836   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
837   CGCallee callee = CGCallee::forDirect(fn);
838   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
839                callee, ReturnValueSlot(), args);
840 }
841 
842 /// Determine whether the given architecture supports unaligned atomic
843 /// accesses.  They don't have to be fast, just faster than a function
844 /// call and a mutex.
845 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
846   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
847   // currently supported by the backend.)
848   return 0;
849 }
850 
851 /// Return the maximum size that permits atomic accesses for the given
852 /// architecture.
853 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
854                                         llvm::Triple::ArchType arch) {
855   // ARM has 8-byte atomic accesses, but it's not clear whether we
856   // want to rely on them here.
857 
858   // In the default case, just assume that any size up to a pointer is
859   // fine given adequate alignment.
860   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
861 }
862 
863 namespace {
864   class PropertyImplStrategy {
865   public:
866     enum StrategyKind {
867       /// The 'native' strategy is to use the architecture's provided
868       /// reads and writes.
869       Native,
870 
871       /// Use objc_setProperty and objc_getProperty.
872       GetSetProperty,
873 
874       /// Use objc_setProperty for the setter, but use expression
875       /// evaluation for the getter.
876       SetPropertyAndExpressionGet,
877 
878       /// Use objc_copyStruct.
879       CopyStruct,
880 
881       /// The 'expression' strategy is to emit normal assignment or
882       /// lvalue-to-rvalue expressions.
883       Expression
884     };
885 
886     StrategyKind getKind() const { return StrategyKind(Kind); }
887 
888     bool hasStrongMember() const { return HasStrong; }
889     bool isAtomic() const { return IsAtomic; }
890     bool isCopy() const { return IsCopy; }
891 
892     CharUnits getIvarSize() const { return IvarSize; }
893     CharUnits getIvarAlignment() const { return IvarAlignment; }
894 
895     PropertyImplStrategy(CodeGenModule &CGM,
896                          const ObjCPropertyImplDecl *propImpl);
897 
898   private:
899     unsigned Kind : 8;
900     unsigned IsAtomic : 1;
901     unsigned IsCopy : 1;
902     unsigned HasStrong : 1;
903 
904     CharUnits IvarSize;
905     CharUnits IvarAlignment;
906   };
907 }
908 
909 /// Pick an implementation strategy for the given property synthesis.
910 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
911                                      const ObjCPropertyImplDecl *propImpl) {
912   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
913   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
914 
915   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
916   IsAtomic = prop->isAtomic();
917   HasStrong = false; // doesn't matter here.
918 
919   // Evaluate the ivar's size and alignment.
920   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
921   QualType ivarType = ivar->getType();
922   auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
923   IvarSize = TInfo.Width;
924   IvarAlignment = TInfo.Align;
925 
926   // If we have a copy property, we always have to use getProperty/setProperty.
927   // TODO: we could actually use setProperty and an expression for non-atomics.
928   if (IsCopy) {
929     Kind = GetSetProperty;
930     return;
931   }
932 
933   // Handle retain.
934   if (setterKind == ObjCPropertyDecl::Retain) {
935     // In GC-only, there's nothing special that needs to be done.
936     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
937       // fallthrough
938 
939     // In ARC, if the property is non-atomic, use expression emission,
940     // which translates to objc_storeStrong.  This isn't required, but
941     // it's slightly nicer.
942     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
943       // Using standard expression emission for the setter is only
944       // acceptable if the ivar is __strong, which won't be true if
945       // the property is annotated with __attribute__((NSObject)).
946       // TODO: falling all the way back to objc_setProperty here is
947       // just laziness, though;  we could still use objc_storeStrong
948       // if we hacked it right.
949       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
950         Kind = Expression;
951       else
952         Kind = SetPropertyAndExpressionGet;
953       return;
954 
955     // Otherwise, we need to at least use setProperty.  However, if
956     // the property isn't atomic, we can use normal expression
957     // emission for the getter.
958     } else if (!IsAtomic) {
959       Kind = SetPropertyAndExpressionGet;
960       return;
961 
962     // Otherwise, we have to use both setProperty and getProperty.
963     } else {
964       Kind = GetSetProperty;
965       return;
966     }
967   }
968 
969   // If we're not atomic, just use expression accesses.
970   if (!IsAtomic) {
971     Kind = Expression;
972     return;
973   }
974 
975   // Properties on bitfield ivars need to be emitted using expression
976   // accesses even if they're nominally atomic.
977   if (ivar->isBitField()) {
978     Kind = Expression;
979     return;
980   }
981 
982   // GC-qualified or ARC-qualified ivars need to be emitted as
983   // expressions.  This actually works out to being atomic anyway,
984   // except for ARC __strong, but that should trigger the above code.
985   if (ivarType.hasNonTrivialObjCLifetime() ||
986       (CGM.getLangOpts().getGC() &&
987        CGM.getContext().getObjCGCAttrKind(ivarType))) {
988     Kind = Expression;
989     return;
990   }
991 
992   // Compute whether the ivar has strong members.
993   if (CGM.getLangOpts().getGC())
994     if (const RecordType *recordType = ivarType->getAs<RecordType>())
995       HasStrong = recordType->getDecl()->hasObjectMember();
996 
997   // We can never access structs with object members with a native
998   // access, because we need to use write barriers.  This is what
999   // objc_copyStruct is for.
1000   if (HasStrong) {
1001     Kind = CopyStruct;
1002     return;
1003   }
1004 
1005   // Otherwise, this is target-dependent and based on the size and
1006   // alignment of the ivar.
1007 
1008   // If the size of the ivar is not a power of two, give up.  We don't
1009   // want to get into the business of doing compare-and-swaps.
1010   if (!IvarSize.isPowerOfTwo()) {
1011     Kind = CopyStruct;
1012     return;
1013   }
1014 
1015   llvm::Triple::ArchType arch =
1016     CGM.getTarget().getTriple().getArch();
1017 
1018   // Most architectures require memory to fit within a single cache
1019   // line, so the alignment has to be at least the size of the access.
1020   // Otherwise we have to grab a lock.
1021   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1022     Kind = CopyStruct;
1023     return;
1024   }
1025 
1026   // If the ivar's size exceeds the architecture's maximum atomic
1027   // access size, we have to use CopyStruct.
1028   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1029     Kind = CopyStruct;
1030     return;
1031   }
1032 
1033   // Otherwise, we can use native loads and stores.
1034   Kind = Native;
1035 }
1036 
1037 /// Generate an Objective-C property getter function.
1038 ///
1039 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1040 /// is illegal within a category.
1041 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1042                                          const ObjCPropertyImplDecl *PID) {
1043   llvm::Constant *AtomicHelperFn =
1044       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1045   ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1046   assert(OMD && "Invalid call to generate getter (empty method)");
1047   StartObjCMethod(OMD, IMP->getClassInterface());
1048 
1049   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1050 
1051   FinishFunction(OMD->getEndLoc());
1052 }
1053 
1054 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1055   const Expr *getter = propImpl->getGetterCXXConstructor();
1056   if (!getter) return true;
1057 
1058   // Sema only makes only of these when the ivar has a C++ class type,
1059   // so the form is pretty constrained.
1060 
1061   // If the property has a reference type, we might just be binding a
1062   // reference, in which case the result will be a gl-value.  We should
1063   // treat this as a non-trivial operation.
1064   if (getter->isGLValue())
1065     return false;
1066 
1067   // If we selected a trivial copy-constructor, we're okay.
1068   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1069     return (construct->getConstructor()->isTrivial());
1070 
1071   // The constructor might require cleanups (in which case it's never
1072   // trivial).
1073   assert(isa<ExprWithCleanups>(getter));
1074   return false;
1075 }
1076 
1077 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1078 /// copy the ivar into the resturn slot.
1079 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1080                                           llvm::Value *returnAddr,
1081                                           ObjCIvarDecl *ivar,
1082                                           llvm::Constant *AtomicHelperFn) {
1083   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1084   //                           AtomicHelperFn);
1085   CallArgList args;
1086 
1087   // The 1st argument is the return Slot.
1088   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1089 
1090   // The 2nd argument is the address of the ivar.
1091   llvm::Value *ivarAddr =
1092       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1093           .getPointer(CGF);
1094   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1095   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1096 
1097   // Third argument is the helper function.
1098   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1099 
1100   llvm::FunctionCallee copyCppAtomicObjectFn =
1101       CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1102   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1103   CGF.EmitCall(
1104       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1105                callee, ReturnValueSlot(), args);
1106 }
1107 
1108 void
1109 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1110                                         const ObjCPropertyImplDecl *propImpl,
1111                                         const ObjCMethodDecl *GetterMethodDecl,
1112                                         llvm::Constant *AtomicHelperFn) {
1113   // If there's a non-trivial 'get' expression, we just have to emit that.
1114   if (!hasTrivialGetExpr(propImpl)) {
1115     if (!AtomicHelperFn) {
1116       auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1117                                      propImpl->getGetterCXXConstructor(),
1118                                      /* NRVOCandidate=*/nullptr);
1119       EmitReturnStmt(*ret);
1120     }
1121     else {
1122       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1123       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1124                                     ivar, AtomicHelperFn);
1125     }
1126     return;
1127   }
1128 
1129   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1130   QualType propType = prop->getType();
1131   ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1132 
1133   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1134 
1135   // Pick an implementation strategy.
1136   PropertyImplStrategy strategy(CGM, propImpl);
1137   switch (strategy.getKind()) {
1138   case PropertyImplStrategy::Native: {
1139     // We don't need to do anything for a zero-size struct.
1140     if (strategy.getIvarSize().isZero())
1141       return;
1142 
1143     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1144 
1145     // Currently, all atomic accesses have to be through integer
1146     // types, so there's no point in trying to pick a prettier type.
1147     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1148     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1149     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1150 
1151     // Perform an atomic load.  This does not impose ordering constraints.
1152     Address ivarAddr = LV.getAddress(*this);
1153     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1154     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1155     load->setAtomic(llvm::AtomicOrdering::Unordered);
1156 
1157     // Store that value into the return address.  Doing this with a
1158     // bitcast is likely to produce some pretty ugly IR, but it's not
1159     // the *most* terrible thing in the world.
1160     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1161     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1162     llvm::Value *ivarVal = load;
1163     if (ivarSize > retTySize) {
1164       llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1165       ivarVal = Builder.CreateTrunc(load, newTy);
1166       bitcastType = newTy->getPointerTo();
1167     }
1168     Builder.CreateStore(ivarVal,
1169                         Builder.CreateBitCast(ReturnValue, bitcastType));
1170 
1171     // Make sure we don't do an autorelease.
1172     AutoreleaseResult = false;
1173     return;
1174   }
1175 
1176   case PropertyImplStrategy::GetSetProperty: {
1177     llvm::FunctionCallee getPropertyFn =
1178         CGM.getObjCRuntime().GetPropertyGetFunction();
1179     if (!getPropertyFn) {
1180       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1181       return;
1182     }
1183     CGCallee callee = CGCallee::forDirect(getPropertyFn);
1184 
1185     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1186     // FIXME: Can't this be simpler? This might even be worse than the
1187     // corresponding gcc code.
1188     llvm::Value *cmd =
1189       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1190     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1191     llvm::Value *ivarOffset =
1192       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1193 
1194     CallArgList args;
1195     args.add(RValue::get(self), getContext().getObjCIdType());
1196     args.add(RValue::get(cmd), getContext().getObjCSelType());
1197     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1198     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1199              getContext().BoolTy);
1200 
1201     // FIXME: We shouldn't need to get the function info here, the
1202     // runtime already should have computed it to build the function.
1203     llvm::CallBase *CallInstruction;
1204     RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1205                              getContext().getObjCIdType(), args),
1206                          callee, ReturnValueSlot(), args, &CallInstruction);
1207     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1208       call->setTailCall();
1209 
1210     // We need to fix the type here. Ivars with copy & retain are
1211     // always objects so we don't need to worry about complex or
1212     // aggregates.
1213     RV = RValue::get(Builder.CreateBitCast(
1214         RV.getScalarVal(),
1215         getTypes().ConvertType(getterMethod->getReturnType())));
1216 
1217     EmitReturnOfRValue(RV, propType);
1218 
1219     // objc_getProperty does an autorelease, so we should suppress ours.
1220     AutoreleaseResult = false;
1221 
1222     return;
1223   }
1224 
1225   case PropertyImplStrategy::CopyStruct:
1226     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1227                          strategy.hasStrongMember());
1228     return;
1229 
1230   case PropertyImplStrategy::Expression:
1231   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1232     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1233 
1234     QualType ivarType = ivar->getType();
1235     switch (getEvaluationKind(ivarType)) {
1236     case TEK_Complex: {
1237       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1238       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1239                          /*init*/ true);
1240       return;
1241     }
1242     case TEK_Aggregate: {
1243       // The return value slot is guaranteed to not be aliased, but
1244       // that's not necessarily the same as "on the stack", so
1245       // we still potentially need objc_memmove_collectable.
1246       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1247                         /* Src= */ LV, ivarType, getOverlapForReturnValue());
1248       return;
1249     }
1250     case TEK_Scalar: {
1251       llvm::Value *value;
1252       if (propType->isReferenceType()) {
1253         value = LV.getAddress(*this).getPointer();
1254       } else {
1255         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1256         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1257           if (getLangOpts().ObjCAutoRefCount) {
1258             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1259           } else {
1260             value = EmitARCLoadWeak(LV.getAddress(*this));
1261           }
1262 
1263         // Otherwise we want to do a simple load, suppressing the
1264         // final autorelease.
1265         } else {
1266           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1267           AutoreleaseResult = false;
1268         }
1269 
1270         value = Builder.CreateBitCast(
1271             value, ConvertType(GetterMethodDecl->getReturnType()));
1272       }
1273 
1274       EmitReturnOfRValue(RValue::get(value), propType);
1275       return;
1276     }
1277     }
1278     llvm_unreachable("bad evaluation kind");
1279   }
1280 
1281   }
1282   llvm_unreachable("bad @property implementation strategy!");
1283 }
1284 
1285 /// emitStructSetterCall - Call the runtime function to store the value
1286 /// from the first formal parameter into the given ivar.
1287 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1288                                  ObjCIvarDecl *ivar) {
1289   // objc_copyStruct (&structIvar, &Arg,
1290   //                  sizeof (struct something), true, false);
1291   CallArgList args;
1292 
1293   // The first argument is the address of the ivar.
1294   llvm::Value *ivarAddr =
1295       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1296           .getPointer(CGF);
1297   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1298   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1299 
1300   // The second argument is the address of the parameter variable.
1301   ParmVarDecl *argVar = *OMD->param_begin();
1302   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1303                      argVar->getType().getNonReferenceType(), VK_LValue,
1304                      SourceLocation());
1305   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1306   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1307   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1308 
1309   // The third argument is the sizeof the type.
1310   llvm::Value *size =
1311     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1312   args.add(RValue::get(size), CGF.getContext().getSizeType());
1313 
1314   // The fourth argument is the 'isAtomic' flag.
1315   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1316 
1317   // The fifth argument is the 'hasStrong' flag.
1318   // FIXME: should this really always be false?
1319   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1320 
1321   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1322   CGCallee callee = CGCallee::forDirect(fn);
1323   CGF.EmitCall(
1324       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1325                callee, ReturnValueSlot(), args);
1326 }
1327 
1328 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1329 /// the value from the first formal parameter into the given ivar, using
1330 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1331 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1332                                           ObjCMethodDecl *OMD,
1333                                           ObjCIvarDecl *ivar,
1334                                           llvm::Constant *AtomicHelperFn) {
1335   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1336   //                           AtomicHelperFn);
1337   CallArgList args;
1338 
1339   // The first argument is the address of the ivar.
1340   llvm::Value *ivarAddr =
1341       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1342           .getPointer(CGF);
1343   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1344   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1345 
1346   // The second argument is the address of the parameter variable.
1347   ParmVarDecl *argVar = *OMD->param_begin();
1348   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1349                      argVar->getType().getNonReferenceType(), VK_LValue,
1350                      SourceLocation());
1351   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1352   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1353   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1354 
1355   // Third argument is the helper function.
1356   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1357 
1358   llvm::FunctionCallee fn =
1359       CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1360   CGCallee callee = CGCallee::forDirect(fn);
1361   CGF.EmitCall(
1362       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1363                callee, ReturnValueSlot(), args);
1364 }
1365 
1366 
1367 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1368   Expr *setter = PID->getSetterCXXAssignment();
1369   if (!setter) return true;
1370 
1371   // Sema only makes only of these when the ivar has a C++ class type,
1372   // so the form is pretty constrained.
1373 
1374   // An operator call is trivial if the function it calls is trivial.
1375   // This also implies that there's nothing non-trivial going on with
1376   // the arguments, because operator= can only be trivial if it's a
1377   // synthesized assignment operator and therefore both parameters are
1378   // references.
1379   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1380     if (const FunctionDecl *callee
1381           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1382       if (callee->isTrivial())
1383         return true;
1384     return false;
1385   }
1386 
1387   assert(isa<ExprWithCleanups>(setter));
1388   return false;
1389 }
1390 
1391 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1392   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1393     return false;
1394   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1395 }
1396 
1397 void
1398 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1399                                         const ObjCPropertyImplDecl *propImpl,
1400                                         llvm::Constant *AtomicHelperFn) {
1401   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1402   ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1403 
1404   // Just use the setter expression if Sema gave us one and it's
1405   // non-trivial.
1406   if (!hasTrivialSetExpr(propImpl)) {
1407     if (!AtomicHelperFn)
1408       // If non-atomic, assignment is called directly.
1409       EmitStmt(propImpl->getSetterCXXAssignment());
1410     else
1411       // If atomic, assignment is called via a locking api.
1412       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1413                                     AtomicHelperFn);
1414     return;
1415   }
1416 
1417   PropertyImplStrategy strategy(CGM, propImpl);
1418   switch (strategy.getKind()) {
1419   case PropertyImplStrategy::Native: {
1420     // We don't need to do anything for a zero-size struct.
1421     if (strategy.getIvarSize().isZero())
1422       return;
1423 
1424     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1425 
1426     LValue ivarLValue =
1427       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1428     Address ivarAddr = ivarLValue.getAddress(*this);
1429 
1430     // Currently, all atomic accesses have to be through integer
1431     // types, so there's no point in trying to pick a prettier type.
1432     llvm::Type *bitcastType =
1433       llvm::Type::getIntNTy(getLLVMContext(),
1434                             getContext().toBits(strategy.getIvarSize()));
1435 
1436     // Cast both arguments to the chosen operation type.
1437     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1438     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1439 
1440     // This bitcast load is likely to cause some nasty IR.
1441     llvm::Value *load = Builder.CreateLoad(argAddr);
1442 
1443     // Perform an atomic store.  There are no memory ordering requirements.
1444     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1445     store->setAtomic(llvm::AtomicOrdering::Unordered);
1446     return;
1447   }
1448 
1449   case PropertyImplStrategy::GetSetProperty:
1450   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1451 
1452     llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1453     llvm::FunctionCallee setPropertyFn = nullptr;
1454     if (UseOptimizedSetter(CGM)) {
1455       // 10.8 and iOS 6.0 code and GC is off
1456       setOptimizedPropertyFn =
1457           CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1458               strategy.isAtomic(), strategy.isCopy());
1459       if (!setOptimizedPropertyFn) {
1460         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1461         return;
1462       }
1463     }
1464     else {
1465       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1466       if (!setPropertyFn) {
1467         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1468         return;
1469       }
1470     }
1471 
1472     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1473     //                       <is-atomic>, <is-copy>).
1474     llvm::Value *cmd =
1475       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1476     llvm::Value *self =
1477       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1478     llvm::Value *ivarOffset =
1479       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1480     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1481     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1482     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1483 
1484     CallArgList args;
1485     args.add(RValue::get(self), getContext().getObjCIdType());
1486     args.add(RValue::get(cmd), getContext().getObjCSelType());
1487     if (setOptimizedPropertyFn) {
1488       args.add(RValue::get(arg), getContext().getObjCIdType());
1489       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1490       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1491       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1492                callee, ReturnValueSlot(), args);
1493     } else {
1494       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1495       args.add(RValue::get(arg), getContext().getObjCIdType());
1496       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1497                getContext().BoolTy);
1498       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1499                getContext().BoolTy);
1500       // FIXME: We shouldn't need to get the function info here, the runtime
1501       // already should have computed it to build the function.
1502       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1503       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1504                callee, ReturnValueSlot(), args);
1505     }
1506 
1507     return;
1508   }
1509 
1510   case PropertyImplStrategy::CopyStruct:
1511     emitStructSetterCall(*this, setterMethod, ivar);
1512     return;
1513 
1514   case PropertyImplStrategy::Expression:
1515     break;
1516   }
1517 
1518   // Otherwise, fake up some ASTs and emit a normal assignment.
1519   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1520   DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1521                    VK_LValue, SourceLocation());
1522   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1523                             CK_LValueToRValue, &self, VK_RValue,
1524                             FPOptionsOverride());
1525   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1526                           SourceLocation(), SourceLocation(),
1527                           &selfLoad, true, true);
1528 
1529   ParmVarDecl *argDecl = *setterMethod->param_begin();
1530   QualType argType = argDecl->getType().getNonReferenceType();
1531   DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1532                   SourceLocation());
1533   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1534                            argType.getUnqualifiedType(), CK_LValueToRValue,
1535                            &arg, VK_RValue, FPOptionsOverride());
1536 
1537   // The property type can differ from the ivar type in some situations with
1538   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1539   // The following absurdity is just to ensure well-formed IR.
1540   CastKind argCK = CK_NoOp;
1541   if (ivarRef.getType()->isObjCObjectPointerType()) {
1542     if (argLoad.getType()->isObjCObjectPointerType())
1543       argCK = CK_BitCast;
1544     else if (argLoad.getType()->isBlockPointerType())
1545       argCK = CK_BlockPointerToObjCPointerCast;
1546     else
1547       argCK = CK_CPointerToObjCPointerCast;
1548   } else if (ivarRef.getType()->isBlockPointerType()) {
1549      if (argLoad.getType()->isBlockPointerType())
1550       argCK = CK_BitCast;
1551     else
1552       argCK = CK_AnyPointerToBlockPointerCast;
1553   } else if (ivarRef.getType()->isPointerType()) {
1554     argCK = CK_BitCast;
1555   }
1556   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1557                            &argLoad, VK_RValue, FPOptionsOverride());
1558   Expr *finalArg = &argLoad;
1559   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1560                                            argLoad.getType()))
1561     finalArg = &argCast;
1562 
1563   BinaryOperator *assign = BinaryOperator::Create(
1564       getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), VK_RValue,
1565       OK_Ordinary, SourceLocation(), FPOptionsOverride());
1566   EmitStmt(assign);
1567 }
1568 
1569 /// Generate an Objective-C property setter function.
1570 ///
1571 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1572 /// is illegal within a category.
1573 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1574                                          const ObjCPropertyImplDecl *PID) {
1575   llvm::Constant *AtomicHelperFn =
1576       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1577   ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1578   assert(OMD && "Invalid call to generate setter (empty method)");
1579   StartObjCMethod(OMD, IMP->getClassInterface());
1580 
1581   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1582 
1583   FinishFunction(OMD->getEndLoc());
1584 }
1585 
1586 namespace {
1587   struct DestroyIvar final : EHScopeStack::Cleanup {
1588   private:
1589     llvm::Value *addr;
1590     const ObjCIvarDecl *ivar;
1591     CodeGenFunction::Destroyer *destroyer;
1592     bool useEHCleanupForArray;
1593   public:
1594     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1595                 CodeGenFunction::Destroyer *destroyer,
1596                 bool useEHCleanupForArray)
1597       : addr(addr), ivar(ivar), destroyer(destroyer),
1598         useEHCleanupForArray(useEHCleanupForArray) {}
1599 
1600     void Emit(CodeGenFunction &CGF, Flags flags) override {
1601       LValue lvalue
1602         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1603       CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1604                       flags.isForNormalCleanup() && useEHCleanupForArray);
1605     }
1606   };
1607 }
1608 
1609 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1610 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1611                                       Address addr,
1612                                       QualType type) {
1613   llvm::Value *null = getNullForVariable(addr);
1614   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1615 }
1616 
1617 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1618                                   ObjCImplementationDecl *impl) {
1619   CodeGenFunction::RunCleanupsScope scope(CGF);
1620 
1621   llvm::Value *self = CGF.LoadObjCSelf();
1622 
1623   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1624   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1625        ivar; ivar = ivar->getNextIvar()) {
1626     QualType type = ivar->getType();
1627 
1628     // Check whether the ivar is a destructible type.
1629     QualType::DestructionKind dtorKind = type.isDestructedType();
1630     if (!dtorKind) continue;
1631 
1632     CodeGenFunction::Destroyer *destroyer = nullptr;
1633 
1634     // Use a call to objc_storeStrong to destroy strong ivars, for the
1635     // general benefit of the tools.
1636     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1637       destroyer = destroyARCStrongWithStore;
1638 
1639     // Otherwise use the default for the destruction kind.
1640     } else {
1641       destroyer = CGF.getDestroyer(dtorKind);
1642     }
1643 
1644     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1645 
1646     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1647                                          cleanupKind & EHCleanup);
1648   }
1649 
1650   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1651 }
1652 
1653 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1654                                                  ObjCMethodDecl *MD,
1655                                                  bool ctor) {
1656   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1657   StartObjCMethod(MD, IMP->getClassInterface());
1658 
1659   // Emit .cxx_construct.
1660   if (ctor) {
1661     // Suppress the final autorelease in ARC.
1662     AutoreleaseResult = false;
1663 
1664     for (const auto *IvarInit : IMP->inits()) {
1665       FieldDecl *Field = IvarInit->getAnyMember();
1666       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1667       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1668                                     LoadObjCSelf(), Ivar, 0);
1669       EmitAggExpr(IvarInit->getInit(),
1670                   AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1671                                           AggValueSlot::DoesNotNeedGCBarriers,
1672                                           AggValueSlot::IsNotAliased,
1673                                           AggValueSlot::DoesNotOverlap));
1674     }
1675     // constructor returns 'self'.
1676     CodeGenTypes &Types = CGM.getTypes();
1677     QualType IdTy(CGM.getContext().getObjCIdType());
1678     llvm::Value *SelfAsId =
1679       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1680     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1681 
1682   // Emit .cxx_destruct.
1683   } else {
1684     emitCXXDestructMethod(*this, IMP);
1685   }
1686   FinishFunction();
1687 }
1688 
1689 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1690   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1691   DeclRefExpr DRE(getContext(), Self,
1692                   /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1693                   Self->getType(), VK_LValue, SourceLocation());
1694   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1695 }
1696 
1697 QualType CodeGenFunction::TypeOfSelfObject() {
1698   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1699   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1700   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1701     getContext().getCanonicalType(selfDecl->getType()));
1702   return PTy->getPointeeType();
1703 }
1704 
1705 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1706   llvm::FunctionCallee EnumerationMutationFnPtr =
1707       CGM.getObjCRuntime().EnumerationMutationFunction();
1708   if (!EnumerationMutationFnPtr) {
1709     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1710     return;
1711   }
1712   CGCallee EnumerationMutationFn =
1713     CGCallee::forDirect(EnumerationMutationFnPtr);
1714 
1715   CGDebugInfo *DI = getDebugInfo();
1716   if (DI)
1717     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1718 
1719   RunCleanupsScope ForScope(*this);
1720 
1721   // The local variable comes into scope immediately.
1722   AutoVarEmission variable = AutoVarEmission::invalid();
1723   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1724     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1725 
1726   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1727 
1728   // Fast enumeration state.
1729   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1730   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1731   EmitNullInitialization(StatePtr, StateTy);
1732 
1733   // Number of elements in the items array.
1734   static const unsigned NumItems = 16;
1735 
1736   // Fetch the countByEnumeratingWithState:objects:count: selector.
1737   IdentifierInfo *II[] = {
1738     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1739     &CGM.getContext().Idents.get("objects"),
1740     &CGM.getContext().Idents.get("count")
1741   };
1742   Selector FastEnumSel =
1743     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1744 
1745   QualType ItemsTy =
1746     getContext().getConstantArrayType(getContext().getObjCIdType(),
1747                                       llvm::APInt(32, NumItems), nullptr,
1748                                       ArrayType::Normal, 0);
1749   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1750 
1751   // Emit the collection pointer.  In ARC, we do a retain.
1752   llvm::Value *Collection;
1753   if (getLangOpts().ObjCAutoRefCount) {
1754     Collection = EmitARCRetainScalarExpr(S.getCollection());
1755 
1756     // Enter a cleanup to do the release.
1757     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1758   } else {
1759     Collection = EmitScalarExpr(S.getCollection());
1760   }
1761 
1762   // The 'continue' label needs to appear within the cleanup for the
1763   // collection object.
1764   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1765 
1766   // Send it our message:
1767   CallArgList Args;
1768 
1769   // The first argument is a temporary of the enumeration-state type.
1770   Args.add(RValue::get(StatePtr.getPointer()),
1771            getContext().getPointerType(StateTy));
1772 
1773   // The second argument is a temporary array with space for NumItems
1774   // pointers.  We'll actually be loading elements from the array
1775   // pointer written into the control state; this buffer is so that
1776   // collections that *aren't* backed by arrays can still queue up
1777   // batches of elements.
1778   Args.add(RValue::get(ItemsPtr.getPointer()),
1779            getContext().getPointerType(ItemsTy));
1780 
1781   // The third argument is the capacity of that temporary array.
1782   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1783   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1784   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1785 
1786   // Start the enumeration.
1787   RValue CountRV =
1788       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1789                                                getContext().getNSUIntegerType(),
1790                                                FastEnumSel, Collection, Args);
1791 
1792   // The initial number of objects that were returned in the buffer.
1793   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1794 
1795   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1796   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1797 
1798   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1799 
1800   // If the limit pointer was zero to begin with, the collection is
1801   // empty; skip all this. Set the branch weight assuming this has the same
1802   // probability of exiting the loop as any other loop exit.
1803   uint64_t EntryCount = getCurrentProfileCount();
1804   Builder.CreateCondBr(
1805       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1806       LoopInitBB,
1807       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1808 
1809   // Otherwise, initialize the loop.
1810   EmitBlock(LoopInitBB);
1811 
1812   // Save the initial mutations value.  This is the value at an
1813   // address that was written into the state object by
1814   // countByEnumeratingWithState:objects:count:.
1815   Address StateMutationsPtrPtr =
1816       Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1817   llvm::Value *StateMutationsPtr
1818     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1819 
1820   llvm::Value *initialMutations =
1821     Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1822                               "forcoll.initial-mutations");
1823 
1824   // Start looping.  This is the point we return to whenever we have a
1825   // fresh, non-empty batch of objects.
1826   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1827   EmitBlock(LoopBodyBB);
1828 
1829   // The current index into the buffer.
1830   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1831   index->addIncoming(zero, LoopInitBB);
1832 
1833   // The current buffer size.
1834   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1835   count->addIncoming(initialBufferLimit, LoopInitBB);
1836 
1837   incrementProfileCounter(&S);
1838 
1839   // Check whether the mutations value has changed from where it was
1840   // at start.  StateMutationsPtr should actually be invariant between
1841   // refreshes.
1842   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1843   llvm::Value *currentMutations
1844     = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1845                                 "statemutations");
1846 
1847   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1848   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1849 
1850   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1851                        WasNotMutatedBB, WasMutatedBB);
1852 
1853   // If so, call the enumeration-mutation function.
1854   EmitBlock(WasMutatedBB);
1855   llvm::Value *V =
1856     Builder.CreateBitCast(Collection,
1857                           ConvertType(getContext().getObjCIdType()));
1858   CallArgList Args2;
1859   Args2.add(RValue::get(V), getContext().getObjCIdType());
1860   // FIXME: We shouldn't need to get the function info here, the runtime already
1861   // should have computed it to build the function.
1862   EmitCall(
1863           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1864            EnumerationMutationFn, ReturnValueSlot(), Args2);
1865 
1866   // Otherwise, or if the mutation function returns, just continue.
1867   EmitBlock(WasNotMutatedBB);
1868 
1869   // Initialize the element variable.
1870   RunCleanupsScope elementVariableScope(*this);
1871   bool elementIsVariable;
1872   LValue elementLValue;
1873   QualType elementType;
1874   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1875     // Initialize the variable, in case it's a __block variable or something.
1876     EmitAutoVarInit(variable);
1877 
1878     const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1879     DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1880                         D->getType(), VK_LValue, SourceLocation());
1881     elementLValue = EmitLValue(&tempDRE);
1882     elementType = D->getType();
1883     elementIsVariable = true;
1884 
1885     if (D->isARCPseudoStrong())
1886       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1887   } else {
1888     elementLValue = LValue(); // suppress warning
1889     elementType = cast<Expr>(S.getElement())->getType();
1890     elementIsVariable = false;
1891   }
1892   llvm::Type *convertedElementType = ConvertType(elementType);
1893 
1894   // Fetch the buffer out of the enumeration state.
1895   // TODO: this pointer should actually be invariant between
1896   // refreshes, which would help us do certain loop optimizations.
1897   Address StateItemsPtr =
1898       Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1899   llvm::Value *EnumStateItems =
1900     Builder.CreateLoad(StateItemsPtr, "stateitems");
1901 
1902   // Fetch the value at the current index from the buffer.
1903   llvm::Value *CurrentItemPtr =
1904     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1905   llvm::Value *CurrentItem =
1906     Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1907 
1908   if (SanOpts.has(SanitizerKind::ObjCCast)) {
1909     // Before using an item from the collection, check that the implicit cast
1910     // from id to the element type is valid. This is done with instrumentation
1911     // roughly corresponding to:
1912     //
1913     //   if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1914     const ObjCObjectPointerType *ObjPtrTy =
1915         elementType->getAsObjCInterfacePointerType();
1916     const ObjCInterfaceType *InterfaceTy =
1917         ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1918     if (InterfaceTy) {
1919       SanitizerScope SanScope(this);
1920       auto &C = CGM.getContext();
1921       assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1922       Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1923       CallArgList IsKindOfClassArgs;
1924       llvm::Value *Cls =
1925           CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1926       IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1927       llvm::Value *IsClass =
1928           CGM.getObjCRuntime()
1929               .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1930                                    IsKindOfClassSel, CurrentItem,
1931                                    IsKindOfClassArgs)
1932               .getScalarVal();
1933       llvm::Constant *StaticData[] = {
1934           EmitCheckSourceLocation(S.getBeginLoc()),
1935           EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1936       EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1937                 SanitizerHandler::InvalidObjCCast,
1938                 ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1939     }
1940   }
1941 
1942   // Cast that value to the right type.
1943   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1944                                       "currentitem");
1945 
1946   // Make sure we have an l-value.  Yes, this gets evaluated every
1947   // time through the loop.
1948   if (!elementIsVariable) {
1949     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1950     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1951   } else {
1952     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1953                            /*isInit*/ true);
1954   }
1955 
1956   // If we do have an element variable, this assignment is the end of
1957   // its initialization.
1958   if (elementIsVariable)
1959     EmitAutoVarCleanups(variable);
1960 
1961   // Perform the loop body, setting up break and continue labels.
1962   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1963   {
1964     RunCleanupsScope Scope(*this);
1965     EmitStmt(S.getBody());
1966   }
1967   BreakContinueStack.pop_back();
1968 
1969   // Destroy the element variable now.
1970   elementVariableScope.ForceCleanup();
1971 
1972   // Check whether there are more elements.
1973   EmitBlock(AfterBody.getBlock());
1974 
1975   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1976 
1977   // First we check in the local buffer.
1978   llvm::Value *indexPlusOne =
1979       Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1980 
1981   // If we haven't overrun the buffer yet, we can continue.
1982   // Set the branch weights based on the simplifying assumption that this is
1983   // like a while-loop, i.e., ignoring that the false branch fetches more
1984   // elements and then returns to the loop.
1985   Builder.CreateCondBr(
1986       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1987       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1988 
1989   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1990   count->addIncoming(count, AfterBody.getBlock());
1991 
1992   // Otherwise, we have to fetch more elements.
1993   EmitBlock(FetchMoreBB);
1994 
1995   CountRV =
1996       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1997                                                getContext().getNSUIntegerType(),
1998                                                FastEnumSel, Collection, Args);
1999 
2000   // If we got a zero count, we're done.
2001   llvm::Value *refetchCount = CountRV.getScalarVal();
2002 
2003   // (note that the message send might split FetchMoreBB)
2004   index->addIncoming(zero, Builder.GetInsertBlock());
2005   count->addIncoming(refetchCount, Builder.GetInsertBlock());
2006 
2007   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2008                        EmptyBB, LoopBodyBB);
2009 
2010   // No more elements.
2011   EmitBlock(EmptyBB);
2012 
2013   if (!elementIsVariable) {
2014     // If the element was not a declaration, set it to be null.
2015 
2016     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2017     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2018     EmitStoreThroughLValue(RValue::get(null), elementLValue);
2019   }
2020 
2021   if (DI)
2022     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2023 
2024   ForScope.ForceCleanup();
2025   EmitBlock(LoopEnd.getBlock());
2026 }
2027 
2028 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2029   CGM.getObjCRuntime().EmitTryStmt(*this, S);
2030 }
2031 
2032 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2033   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2034 }
2035 
2036 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2037                                               const ObjCAtSynchronizedStmt &S) {
2038   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
2039 }
2040 
2041 namespace {
2042   struct CallObjCRelease final : EHScopeStack::Cleanup {
2043     CallObjCRelease(llvm::Value *object) : object(object) {}
2044     llvm::Value *object;
2045 
2046     void Emit(CodeGenFunction &CGF, Flags flags) override {
2047       // Releases at the end of the full-expression are imprecise.
2048       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2049     }
2050   };
2051 }
2052 
2053 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
2054 /// release at the end of the full-expression.
2055 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2056                                                     llvm::Value *object) {
2057   // If we're in a conditional branch, we need to make the cleanup
2058   // conditional.
2059   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2060   return object;
2061 }
2062 
2063 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2064                                                            llvm::Value *value) {
2065   return EmitARCRetainAutorelease(type, value);
2066 }
2067 
2068 /// Given a number of pointers, inform the optimizer that they're
2069 /// being intrinsically used up until this point in the program.
2070 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2071   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2072   if (!fn)
2073     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2074 
2075   // This isn't really a "runtime" function, but as an intrinsic it
2076   // doesn't really matter as long as we align things up.
2077   EmitNounwindRuntimeCall(fn, values);
2078 }
2079 
2080 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2081   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2082     // If the target runtime doesn't naturally support ARC, emit weak
2083     // references to the runtime support library.  We don't really
2084     // permit this to fail, but we need a particular relocation style.
2085     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2086         !CGM.getTriple().isOSBinFormatCOFF()) {
2087       F->setLinkage(llvm::Function::ExternalWeakLinkage);
2088     }
2089   }
2090 }
2091 
2092 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2093                                          llvm::FunctionCallee RTF) {
2094   setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2095 }
2096 
2097 /// Perform an operation having the signature
2098 ///   i8* (i8*)
2099 /// where a null input causes a no-op and returns null.
2100 static llvm::Value *emitARCValueOperation(
2101     CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2102     llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2103     llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2104   if (isa<llvm::ConstantPointerNull>(value))
2105     return value;
2106 
2107   if (!fn) {
2108     fn = CGF.CGM.getIntrinsic(IntID);
2109     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2110   }
2111 
2112   // Cast the argument to 'id'.
2113   llvm::Type *origType = returnType ? returnType : value->getType();
2114   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2115 
2116   // Call the function.
2117   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2118   call->setTailCallKind(tailKind);
2119 
2120   // Cast the result back to the original type.
2121   return CGF.Builder.CreateBitCast(call, origType);
2122 }
2123 
2124 /// Perform an operation having the following signature:
2125 ///   i8* (i8**)
2126 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2127                                          llvm::Function *&fn,
2128                                          llvm::Intrinsic::ID IntID) {
2129   if (!fn) {
2130     fn = CGF.CGM.getIntrinsic(IntID);
2131     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2132   }
2133 
2134   // Cast the argument to 'id*'.
2135   llvm::Type *origType = addr.getElementType();
2136   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
2137 
2138   // Call the function.
2139   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2140 
2141   // Cast the result back to a dereference of the original type.
2142   if (origType != CGF.Int8PtrTy)
2143     result = CGF.Builder.CreateBitCast(result, origType);
2144 
2145   return result;
2146 }
2147 
2148 /// Perform an operation having the following signature:
2149 ///   i8* (i8**, i8*)
2150 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2151                                           llvm::Value *value,
2152                                           llvm::Function *&fn,
2153                                           llvm::Intrinsic::ID IntID,
2154                                           bool ignored) {
2155   assert(addr.getElementType() == value->getType());
2156 
2157   if (!fn) {
2158     fn = CGF.CGM.getIntrinsic(IntID);
2159     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2160   }
2161 
2162   llvm::Type *origType = value->getType();
2163 
2164   llvm::Value *args[] = {
2165     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2166     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2167   };
2168   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2169 
2170   if (ignored) return nullptr;
2171 
2172   return CGF.Builder.CreateBitCast(result, origType);
2173 }
2174 
2175 /// Perform an operation having the following signature:
2176 ///   void (i8**, i8**)
2177 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2178                                  llvm::Function *&fn,
2179                                  llvm::Intrinsic::ID IntID) {
2180   assert(dst.getType() == src.getType());
2181 
2182   if (!fn) {
2183     fn = CGF.CGM.getIntrinsic(IntID);
2184     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2185   }
2186 
2187   llvm::Value *args[] = {
2188     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2189     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2190   };
2191   CGF.EmitNounwindRuntimeCall(fn, args);
2192 }
2193 
2194 /// Perform an operation having the signature
2195 ///   i8* (i8*)
2196 /// where a null input causes a no-op and returns null.
2197 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2198                                            llvm::Value *value,
2199                                            llvm::Type *returnType,
2200                                            llvm::FunctionCallee &fn,
2201                                            StringRef fnName) {
2202   if (isa<llvm::ConstantPointerNull>(value))
2203     return value;
2204 
2205   if (!fn) {
2206     llvm::FunctionType *fnType =
2207       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2208     fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2209 
2210     // We have Native ARC, so set nonlazybind attribute for performance
2211     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2212       if (fnName == "objc_retain")
2213         f->addFnAttr(llvm::Attribute::NonLazyBind);
2214   }
2215 
2216   // Cast the argument to 'id'.
2217   llvm::Type *origType = returnType ? returnType : value->getType();
2218   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2219 
2220   // Call the function.
2221   llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2222 
2223   // Cast the result back to the original type.
2224   return CGF.Builder.CreateBitCast(Inst, origType);
2225 }
2226 
2227 /// Produce the code to do a retain.  Based on the type, calls one of:
2228 ///   call i8* \@objc_retain(i8* %value)
2229 ///   call i8* \@objc_retainBlock(i8* %value)
2230 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2231   if (type->isBlockPointerType())
2232     return EmitARCRetainBlock(value, /*mandatory*/ false);
2233   else
2234     return EmitARCRetainNonBlock(value);
2235 }
2236 
2237 /// Retain the given object, with normal retain semantics.
2238 ///   call i8* \@objc_retain(i8* %value)
2239 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2240   return emitARCValueOperation(*this, value, nullptr,
2241                                CGM.getObjCEntrypoints().objc_retain,
2242                                llvm::Intrinsic::objc_retain);
2243 }
2244 
2245 /// Retain the given block, with _Block_copy semantics.
2246 ///   call i8* \@objc_retainBlock(i8* %value)
2247 ///
2248 /// \param mandatory - If false, emit the call with metadata
2249 /// indicating that it's okay for the optimizer to eliminate this call
2250 /// if it can prove that the block never escapes except down the stack.
2251 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2252                                                  bool mandatory) {
2253   llvm::Value *result
2254     = emitARCValueOperation(*this, value, nullptr,
2255                             CGM.getObjCEntrypoints().objc_retainBlock,
2256                             llvm::Intrinsic::objc_retainBlock);
2257 
2258   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2259   // tell the optimizer that it doesn't need to do this copy if the
2260   // block doesn't escape, where being passed as an argument doesn't
2261   // count as escaping.
2262   if (!mandatory && isa<llvm::Instruction>(result)) {
2263     llvm::CallInst *call
2264       = cast<llvm::CallInst>(result->stripPointerCasts());
2265     assert(call->getCalledOperand() ==
2266            CGM.getObjCEntrypoints().objc_retainBlock);
2267 
2268     call->setMetadata("clang.arc.copy_on_escape",
2269                       llvm::MDNode::get(Builder.getContext(), None));
2270   }
2271 
2272   return result;
2273 }
2274 
2275 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2276   // Fetch the void(void) inline asm which marks that we're going to
2277   // do something with the autoreleased return value.
2278   llvm::InlineAsm *&marker
2279     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2280   if (!marker) {
2281     StringRef assembly
2282       = CGF.CGM.getTargetCodeGenInfo()
2283            .getARCRetainAutoreleasedReturnValueMarker();
2284 
2285     // If we have an empty assembly string, there's nothing to do.
2286     if (assembly.empty()) {
2287 
2288     // Otherwise, at -O0, build an inline asm that we're going to call
2289     // in a moment.
2290     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2291       llvm::FunctionType *type =
2292         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2293 
2294       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2295 
2296     // If we're at -O1 and above, we don't want to litter the code
2297     // with this marker yet, so leave a breadcrumb for the ARC
2298     // optimizer to pick up.
2299     } else {
2300       const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker";
2301       if (!CGF.CGM.getModule().getModuleFlag(markerKey)) {
2302         auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2303         CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str);
2304       }
2305     }
2306   }
2307 
2308   // Call the marker asm if we made one, which we do only at -O0.
2309   if (marker)
2310     CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2311 }
2312 
2313 /// Retain the given object which is the result of a function call.
2314 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2315 ///
2316 /// Yes, this function name is one character away from a different
2317 /// call with completely different semantics.
2318 llvm::Value *
2319 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2320   emitAutoreleasedReturnValueMarker(*this);
2321   llvm::CallInst::TailCallKind tailKind =
2322       CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail()
2323           ? llvm::CallInst::TCK_NoTail
2324           : llvm::CallInst::TCK_None;
2325   return emitARCValueOperation(
2326       *this, value, nullptr,
2327       CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2328       llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind);
2329 }
2330 
2331 /// Claim a possibly-autoreleased return value at +0.  This is only
2332 /// valid to do in contexts which do not rely on the retain to keep
2333 /// the object valid for all of its uses; for example, when
2334 /// the value is ignored, or when it is being assigned to an
2335 /// __unsafe_unretained variable.
2336 ///
2337 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2338 llvm::Value *
2339 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2340   emitAutoreleasedReturnValueMarker(*this);
2341   llvm::CallInst::TailCallKind tailKind =
2342       CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail()
2343           ? llvm::CallInst::TCK_NoTail
2344           : llvm::CallInst::TCK_None;
2345   return emitARCValueOperation(
2346       *this, value, nullptr,
2347       CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2348       llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue, tailKind);
2349 }
2350 
2351 /// Release the given object.
2352 ///   call void \@objc_release(i8* %value)
2353 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2354                                      ARCPreciseLifetime_t precise) {
2355   if (isa<llvm::ConstantPointerNull>(value)) return;
2356 
2357   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2358   if (!fn) {
2359     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release);
2360     setARCRuntimeFunctionLinkage(CGM, fn);
2361   }
2362 
2363   // Cast the argument to 'id'.
2364   value = Builder.CreateBitCast(value, Int8PtrTy);
2365 
2366   // Call objc_release.
2367   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2368 
2369   if (precise == ARCImpreciseLifetime) {
2370     call->setMetadata("clang.imprecise_release",
2371                       llvm::MDNode::get(Builder.getContext(), None));
2372   }
2373 }
2374 
2375 /// Destroy a __strong variable.
2376 ///
2377 /// At -O0, emit a call to store 'null' into the address;
2378 /// instrumenting tools prefer this because the address is exposed,
2379 /// but it's relatively cumbersome to optimize.
2380 ///
2381 /// At -O1 and above, just load and call objc_release.
2382 ///
2383 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2384 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2385                                            ARCPreciseLifetime_t precise) {
2386   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2387     llvm::Value *null = getNullForVariable(addr);
2388     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2389     return;
2390   }
2391 
2392   llvm::Value *value = Builder.CreateLoad(addr);
2393   EmitARCRelease(value, precise);
2394 }
2395 
2396 /// Store into a strong object.  Always calls this:
2397 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2398 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2399                                                      llvm::Value *value,
2400                                                      bool ignored) {
2401   assert(addr.getElementType() == value->getType());
2402 
2403   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2404   if (!fn) {
2405     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong);
2406     setARCRuntimeFunctionLinkage(CGM, fn);
2407   }
2408 
2409   llvm::Value *args[] = {
2410     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2411     Builder.CreateBitCast(value, Int8PtrTy)
2412   };
2413   EmitNounwindRuntimeCall(fn, args);
2414 
2415   if (ignored) return nullptr;
2416   return value;
2417 }
2418 
2419 /// Store into a strong object.  Sometimes calls this:
2420 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2421 /// Other times, breaks it down into components.
2422 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2423                                                  llvm::Value *newValue,
2424                                                  bool ignored) {
2425   QualType type = dst.getType();
2426   bool isBlock = type->isBlockPointerType();
2427 
2428   // Use a store barrier at -O0 unless this is a block type or the
2429   // lvalue is inadequately aligned.
2430   if (shouldUseFusedARCCalls() &&
2431       !isBlock &&
2432       (dst.getAlignment().isZero() ||
2433        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2434     return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2435   }
2436 
2437   // Otherwise, split it out.
2438 
2439   // Retain the new value.
2440   newValue = EmitARCRetain(type, newValue);
2441 
2442   // Read the old value.
2443   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2444 
2445   // Store.  We do this before the release so that any deallocs won't
2446   // see the old value.
2447   EmitStoreOfScalar(newValue, dst);
2448 
2449   // Finally, release the old value.
2450   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2451 
2452   return newValue;
2453 }
2454 
2455 /// Autorelease the given object.
2456 ///   call i8* \@objc_autorelease(i8* %value)
2457 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2458   return emitARCValueOperation(*this, value, nullptr,
2459                                CGM.getObjCEntrypoints().objc_autorelease,
2460                                llvm::Intrinsic::objc_autorelease);
2461 }
2462 
2463 /// Autorelease the given object.
2464 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2465 llvm::Value *
2466 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2467   return emitARCValueOperation(*this, value, nullptr,
2468                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2469                                llvm::Intrinsic::objc_autoreleaseReturnValue,
2470                                llvm::CallInst::TCK_Tail);
2471 }
2472 
2473 /// Do a fused retain/autorelease of the given object.
2474 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2475 llvm::Value *
2476 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2477   return emitARCValueOperation(*this, value, nullptr,
2478                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2479                              llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2480                                llvm::CallInst::TCK_Tail);
2481 }
2482 
2483 /// Do a fused retain/autorelease of the given object.
2484 ///   call i8* \@objc_retainAutorelease(i8* %value)
2485 /// or
2486 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2487 ///   call i8* \@objc_autorelease(i8* %retain)
2488 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2489                                                        llvm::Value *value) {
2490   if (!type->isBlockPointerType())
2491     return EmitARCRetainAutoreleaseNonBlock(value);
2492 
2493   if (isa<llvm::ConstantPointerNull>(value)) return value;
2494 
2495   llvm::Type *origType = value->getType();
2496   value = Builder.CreateBitCast(value, Int8PtrTy);
2497   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2498   value = EmitARCAutorelease(value);
2499   return Builder.CreateBitCast(value, origType);
2500 }
2501 
2502 /// Do a fused retain/autorelease of the given object.
2503 ///   call i8* \@objc_retainAutorelease(i8* %value)
2504 llvm::Value *
2505 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2506   return emitARCValueOperation(*this, value, nullptr,
2507                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2508                                llvm::Intrinsic::objc_retainAutorelease);
2509 }
2510 
2511 /// i8* \@objc_loadWeak(i8** %addr)
2512 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2513 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2514   return emitARCLoadOperation(*this, addr,
2515                               CGM.getObjCEntrypoints().objc_loadWeak,
2516                               llvm::Intrinsic::objc_loadWeak);
2517 }
2518 
2519 /// i8* \@objc_loadWeakRetained(i8** %addr)
2520 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2521   return emitARCLoadOperation(*this, addr,
2522                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2523                               llvm::Intrinsic::objc_loadWeakRetained);
2524 }
2525 
2526 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2527 /// Returns %value.
2528 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2529                                                llvm::Value *value,
2530                                                bool ignored) {
2531   return emitARCStoreOperation(*this, addr, value,
2532                                CGM.getObjCEntrypoints().objc_storeWeak,
2533                                llvm::Intrinsic::objc_storeWeak, ignored);
2534 }
2535 
2536 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2537 /// Returns %value.  %addr is known to not have a current weak entry.
2538 /// Essentially equivalent to:
2539 ///   *addr = nil; objc_storeWeak(addr, value);
2540 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2541   // If we're initializing to null, just write null to memory; no need
2542   // to get the runtime involved.  But don't do this if optimization
2543   // is enabled, because accounting for this would make the optimizer
2544   // much more complicated.
2545   if (isa<llvm::ConstantPointerNull>(value) &&
2546       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2547     Builder.CreateStore(value, addr);
2548     return;
2549   }
2550 
2551   emitARCStoreOperation(*this, addr, value,
2552                         CGM.getObjCEntrypoints().objc_initWeak,
2553                         llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2554 }
2555 
2556 /// void \@objc_destroyWeak(i8** %addr)
2557 /// Essentially objc_storeWeak(addr, nil).
2558 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2559   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2560   if (!fn) {
2561     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak);
2562     setARCRuntimeFunctionLinkage(CGM, fn);
2563   }
2564 
2565   // Cast the argument to 'id*'.
2566   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2567 
2568   EmitNounwindRuntimeCall(fn, addr.getPointer());
2569 }
2570 
2571 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2572 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2573 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2574 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2575   emitARCCopyOperation(*this, dst, src,
2576                        CGM.getObjCEntrypoints().objc_moveWeak,
2577                        llvm::Intrinsic::objc_moveWeak);
2578 }
2579 
2580 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2581 /// Disregards the current value in %dest.  Essentially
2582 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2583 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2584   emitARCCopyOperation(*this, dst, src,
2585                        CGM.getObjCEntrypoints().objc_copyWeak,
2586                        llvm::Intrinsic::objc_copyWeak);
2587 }
2588 
2589 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2590                                             Address SrcAddr) {
2591   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2592   Object = EmitObjCConsumeObject(Ty, Object);
2593   EmitARCStoreWeak(DstAddr, Object, false);
2594 }
2595 
2596 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2597                                             Address SrcAddr) {
2598   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2599   Object = EmitObjCConsumeObject(Ty, Object);
2600   EmitARCStoreWeak(DstAddr, Object, false);
2601   EmitARCDestroyWeak(SrcAddr);
2602 }
2603 
2604 /// Produce the code to do a objc_autoreleasepool_push.
2605 ///   call i8* \@objc_autoreleasePoolPush(void)
2606 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2607   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2608   if (!fn) {
2609     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush);
2610     setARCRuntimeFunctionLinkage(CGM, fn);
2611   }
2612 
2613   return EmitNounwindRuntimeCall(fn);
2614 }
2615 
2616 /// Produce the code to do a primitive release.
2617 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2618 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2619   assert(value->getType() == Int8PtrTy);
2620 
2621   if (getInvokeDest()) {
2622     // Call the runtime method not the intrinsic if we are handling exceptions
2623     llvm::FunctionCallee &fn =
2624         CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2625     if (!fn) {
2626       llvm::FunctionType *fnType =
2627         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2628       fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2629       setARCRuntimeFunctionLinkage(CGM, fn);
2630     }
2631 
2632     // objc_autoreleasePoolPop can throw.
2633     EmitRuntimeCallOrInvoke(fn, value);
2634   } else {
2635     llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2636     if (!fn) {
2637       fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop);
2638       setARCRuntimeFunctionLinkage(CGM, fn);
2639     }
2640 
2641     EmitRuntimeCall(fn, value);
2642   }
2643 }
2644 
2645 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2646 /// Which is: [[NSAutoreleasePool alloc] init];
2647 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2648 /// init is declared as: - (id) init; in its NSObject super class.
2649 ///
2650 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2651   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2652   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2653   // [NSAutoreleasePool alloc]
2654   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2655   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2656   CallArgList Args;
2657   RValue AllocRV =
2658     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2659                                 getContext().getObjCIdType(),
2660                                 AllocSel, Receiver, Args);
2661 
2662   // [Receiver init]
2663   Receiver = AllocRV.getScalarVal();
2664   II = &CGM.getContext().Idents.get("init");
2665   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2666   RValue InitRV =
2667     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2668                                 getContext().getObjCIdType(),
2669                                 InitSel, Receiver, Args);
2670   return InitRV.getScalarVal();
2671 }
2672 
2673 /// Allocate the given objc object.
2674 ///   call i8* \@objc_alloc(i8* %value)
2675 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2676                                             llvm::Type *resultType) {
2677   return emitObjCValueOperation(*this, value, resultType,
2678                                 CGM.getObjCEntrypoints().objc_alloc,
2679                                 "objc_alloc");
2680 }
2681 
2682 /// Allocate the given objc object.
2683 ///   call i8* \@objc_allocWithZone(i8* %value)
2684 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2685                                                     llvm::Type *resultType) {
2686   return emitObjCValueOperation(*this, value, resultType,
2687                                 CGM.getObjCEntrypoints().objc_allocWithZone,
2688                                 "objc_allocWithZone");
2689 }
2690 
2691 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2692                                                 llvm::Type *resultType) {
2693   return emitObjCValueOperation(*this, value, resultType,
2694                                 CGM.getObjCEntrypoints().objc_alloc_init,
2695                                 "objc_alloc_init");
2696 }
2697 
2698 /// Produce the code to do a primitive release.
2699 /// [tmp drain];
2700 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2701   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2702   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2703   CallArgList Args;
2704   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2705                               getContext().VoidTy, DrainSel, Arg, Args);
2706 }
2707 
2708 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2709                                               Address addr,
2710                                               QualType type) {
2711   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2712 }
2713 
2714 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2715                                                 Address addr,
2716                                                 QualType type) {
2717   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2718 }
2719 
2720 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2721                                      Address addr,
2722                                      QualType type) {
2723   CGF.EmitARCDestroyWeak(addr);
2724 }
2725 
2726 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2727                                           QualType type) {
2728   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2729   CGF.EmitARCIntrinsicUse(value);
2730 }
2731 
2732 /// Autorelease the given object.
2733 ///   call i8* \@objc_autorelease(i8* %value)
2734 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2735                                                   llvm::Type *returnType) {
2736   return emitObjCValueOperation(
2737       *this, value, returnType,
2738       CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2739       "objc_autorelease");
2740 }
2741 
2742 /// Retain the given object, with normal retain semantics.
2743 ///   call i8* \@objc_retain(i8* %value)
2744 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2745                                                      llvm::Type *returnType) {
2746   return emitObjCValueOperation(
2747       *this, value, returnType,
2748       CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2749 }
2750 
2751 /// Release the given object.
2752 ///   call void \@objc_release(i8* %value)
2753 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2754                                       ARCPreciseLifetime_t precise) {
2755   if (isa<llvm::ConstantPointerNull>(value)) return;
2756 
2757   llvm::FunctionCallee &fn =
2758       CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2759   if (!fn) {
2760     llvm::FunctionType *fnType =
2761         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2762     fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2763     setARCRuntimeFunctionLinkage(CGM, fn);
2764     // We have Native ARC, so set nonlazybind attribute for performance
2765     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2766       f->addFnAttr(llvm::Attribute::NonLazyBind);
2767   }
2768 
2769   // Cast the argument to 'id'.
2770   value = Builder.CreateBitCast(value, Int8PtrTy);
2771 
2772   // Call objc_release.
2773   llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2774 
2775   if (precise == ARCImpreciseLifetime) {
2776     call->setMetadata("clang.imprecise_release",
2777                       llvm::MDNode::get(Builder.getContext(), None));
2778   }
2779 }
2780 
2781 namespace {
2782   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2783     llvm::Value *Token;
2784 
2785     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2786 
2787     void Emit(CodeGenFunction &CGF, Flags flags) override {
2788       CGF.EmitObjCAutoreleasePoolPop(Token);
2789     }
2790   };
2791   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2792     llvm::Value *Token;
2793 
2794     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2795 
2796     void Emit(CodeGenFunction &CGF, Flags flags) override {
2797       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2798     }
2799   };
2800 }
2801 
2802 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2803   if (CGM.getLangOpts().ObjCAutoRefCount)
2804     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2805   else
2806     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2807 }
2808 
2809 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2810   switch (lifetime) {
2811   case Qualifiers::OCL_None:
2812   case Qualifiers::OCL_ExplicitNone:
2813   case Qualifiers::OCL_Strong:
2814   case Qualifiers::OCL_Autoreleasing:
2815     return true;
2816 
2817   case Qualifiers::OCL_Weak:
2818     return false;
2819   }
2820 
2821   llvm_unreachable("impossible lifetime!");
2822 }
2823 
2824 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2825                                                   LValue lvalue,
2826                                                   QualType type) {
2827   llvm::Value *result;
2828   bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2829   if (shouldRetain) {
2830     result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2831   } else {
2832     assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2833     result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2834   }
2835   return TryEmitResult(result, !shouldRetain);
2836 }
2837 
2838 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2839                                                   const Expr *e) {
2840   e = e->IgnoreParens();
2841   QualType type = e->getType();
2842 
2843   // If we're loading retained from a __strong xvalue, we can avoid
2844   // an extra retain/release pair by zeroing out the source of this
2845   // "move" operation.
2846   if (e->isXValue() &&
2847       !type.isConstQualified() &&
2848       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2849     // Emit the lvalue.
2850     LValue lv = CGF.EmitLValue(e);
2851 
2852     // Load the object pointer.
2853     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2854                                                SourceLocation()).getScalarVal();
2855 
2856     // Set the source pointer to NULL.
2857     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2858 
2859     return TryEmitResult(result, true);
2860   }
2861 
2862   // As a very special optimization, in ARC++, if the l-value is the
2863   // result of a non-volatile assignment, do a simple retain of the
2864   // result of the call to objc_storeWeak instead of reloading.
2865   if (CGF.getLangOpts().CPlusPlus &&
2866       !type.isVolatileQualified() &&
2867       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2868       isa<BinaryOperator>(e) &&
2869       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2870     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2871 
2872   // Try to emit code for scalar constant instead of emitting LValue and
2873   // loading it because we are not guaranteed to have an l-value. One of such
2874   // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2875   if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2876     auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2877     if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2878       return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2879                            !shouldRetainObjCLifetime(type.getObjCLifetime()));
2880   }
2881 
2882   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2883 }
2884 
2885 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2886                                          llvm::Value *value)>
2887   ValueTransform;
2888 
2889 /// Insert code immediately after a call.
2890 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2891                                               llvm::Value *value,
2892                                               ValueTransform doAfterCall,
2893                                               ValueTransform doFallback) {
2894   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2895     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2896 
2897     // Place the retain immediately following the call.
2898     CGF.Builder.SetInsertPoint(call->getParent(),
2899                                ++llvm::BasicBlock::iterator(call));
2900     value = doAfterCall(CGF, value);
2901 
2902     CGF.Builder.restoreIP(ip);
2903     return value;
2904   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2905     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2906 
2907     // Place the retain at the beginning of the normal destination block.
2908     llvm::BasicBlock *BB = invoke->getNormalDest();
2909     CGF.Builder.SetInsertPoint(BB, BB->begin());
2910     value = doAfterCall(CGF, value);
2911 
2912     CGF.Builder.restoreIP(ip);
2913     return value;
2914 
2915   // Bitcasts can arise because of related-result returns.  Rewrite
2916   // the operand.
2917   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2918     llvm::Value *operand = bitcast->getOperand(0);
2919     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2920     bitcast->setOperand(0, operand);
2921     return bitcast;
2922 
2923   // Generic fall-back case.
2924   } else {
2925     // Retain using the non-block variant: we never need to do a copy
2926     // of a block that's been returned to us.
2927     return doFallback(CGF, value);
2928   }
2929 }
2930 
2931 /// Given that the given expression is some sort of call (which does
2932 /// not return retained), emit a retain following it.
2933 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2934                                             const Expr *e) {
2935   llvm::Value *value = CGF.EmitScalarExpr(e);
2936   return emitARCOperationAfterCall(CGF, value,
2937            [](CodeGenFunction &CGF, llvm::Value *value) {
2938              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2939            },
2940            [](CodeGenFunction &CGF, llvm::Value *value) {
2941              return CGF.EmitARCRetainNonBlock(value);
2942            });
2943 }
2944 
2945 /// Given that the given expression is some sort of call (which does
2946 /// not return retained), perform an unsafeClaim following it.
2947 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2948                                                  const Expr *e) {
2949   llvm::Value *value = CGF.EmitScalarExpr(e);
2950   return emitARCOperationAfterCall(CGF, value,
2951            [](CodeGenFunction &CGF, llvm::Value *value) {
2952              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2953            },
2954            [](CodeGenFunction &CGF, llvm::Value *value) {
2955              return value;
2956            });
2957 }
2958 
2959 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2960                                                       bool allowUnsafeClaim) {
2961   if (allowUnsafeClaim &&
2962       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2963     return emitARCUnsafeClaimCallResult(*this, E);
2964   } else {
2965     llvm::Value *value = emitARCRetainCallResult(*this, E);
2966     return EmitObjCConsumeObject(E->getType(), value);
2967   }
2968 }
2969 
2970 /// Determine whether it might be important to emit a separate
2971 /// objc_retain_block on the result of the given expression, or
2972 /// whether it's okay to just emit it in a +1 context.
2973 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2974   assert(e->getType()->isBlockPointerType());
2975   e = e->IgnoreParens();
2976 
2977   // For future goodness, emit block expressions directly in +1
2978   // contexts if we can.
2979   if (isa<BlockExpr>(e))
2980     return false;
2981 
2982   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2983     switch (cast->getCastKind()) {
2984     // Emitting these operations in +1 contexts is goodness.
2985     case CK_LValueToRValue:
2986     case CK_ARCReclaimReturnedObject:
2987     case CK_ARCConsumeObject:
2988     case CK_ARCProduceObject:
2989       return false;
2990 
2991     // These operations preserve a block type.
2992     case CK_NoOp:
2993     case CK_BitCast:
2994       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2995 
2996     // These operations are known to be bad (or haven't been considered).
2997     case CK_AnyPointerToBlockPointerCast:
2998     default:
2999       return true;
3000     }
3001   }
3002 
3003   return true;
3004 }
3005 
3006 namespace {
3007 /// A CRTP base class for emitting expressions of retainable object
3008 /// pointer type in ARC.
3009 template <typename Impl, typename Result> class ARCExprEmitter {
3010 protected:
3011   CodeGenFunction &CGF;
3012   Impl &asImpl() { return *static_cast<Impl*>(this); }
3013 
3014   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3015 
3016 public:
3017   Result visit(const Expr *e);
3018   Result visitCastExpr(const CastExpr *e);
3019   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3020   Result visitBlockExpr(const BlockExpr *e);
3021   Result visitBinaryOperator(const BinaryOperator *e);
3022   Result visitBinAssign(const BinaryOperator *e);
3023   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3024   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3025   Result visitBinAssignWeak(const BinaryOperator *e);
3026   Result visitBinAssignStrong(const BinaryOperator *e);
3027 
3028   // Minimal implementation:
3029   //   Result visitLValueToRValue(const Expr *e)
3030   //   Result visitConsumeObject(const Expr *e)
3031   //   Result visitExtendBlockObject(const Expr *e)
3032   //   Result visitReclaimReturnedObject(const Expr *e)
3033   //   Result visitCall(const Expr *e)
3034   //   Result visitExpr(const Expr *e)
3035   //
3036   //   Result emitBitCast(Result result, llvm::Type *resultType)
3037   //   llvm::Value *getValueOfResult(Result result)
3038 };
3039 }
3040 
3041 /// Try to emit a PseudoObjectExpr under special ARC rules.
3042 ///
3043 /// This massively duplicates emitPseudoObjectRValue.
3044 template <typename Impl, typename Result>
3045 Result
3046 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3047   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3048 
3049   // Find the result expression.
3050   const Expr *resultExpr = E->getResultExpr();
3051   assert(resultExpr);
3052   Result result;
3053 
3054   for (PseudoObjectExpr::const_semantics_iterator
3055          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3056     const Expr *semantic = *i;
3057 
3058     // If this semantic expression is an opaque value, bind it
3059     // to the result of its source expression.
3060     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3061       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3062       OVMA opaqueData;
3063 
3064       // If this semantic is the result of the pseudo-object
3065       // expression, try to evaluate the source as +1.
3066       if (ov == resultExpr) {
3067         assert(!OVMA::shouldBindAsLValue(ov));
3068         result = asImpl().visit(ov->getSourceExpr());
3069         opaqueData = OVMA::bind(CGF, ov,
3070                             RValue::get(asImpl().getValueOfResult(result)));
3071 
3072       // Otherwise, just bind it.
3073       } else {
3074         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3075       }
3076       opaques.push_back(opaqueData);
3077 
3078     // Otherwise, if the expression is the result, evaluate it
3079     // and remember the result.
3080     } else if (semantic == resultExpr) {
3081       result = asImpl().visit(semantic);
3082 
3083     // Otherwise, evaluate the expression in an ignored context.
3084     } else {
3085       CGF.EmitIgnoredExpr(semantic);
3086     }
3087   }
3088 
3089   // Unbind all the opaques now.
3090   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3091     opaques[i].unbind(CGF);
3092 
3093   return result;
3094 }
3095 
3096 template <typename Impl, typename Result>
3097 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3098   // The default implementation just forwards the expression to visitExpr.
3099   return asImpl().visitExpr(e);
3100 }
3101 
3102 template <typename Impl, typename Result>
3103 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3104   switch (e->getCastKind()) {
3105 
3106   // No-op casts don't change the type, so we just ignore them.
3107   case CK_NoOp:
3108     return asImpl().visit(e->getSubExpr());
3109 
3110   // These casts can change the type.
3111   case CK_CPointerToObjCPointerCast:
3112   case CK_BlockPointerToObjCPointerCast:
3113   case CK_AnyPointerToBlockPointerCast:
3114   case CK_BitCast: {
3115     llvm::Type *resultType = CGF.ConvertType(e->getType());
3116     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3117     Result result = asImpl().visit(e->getSubExpr());
3118     return asImpl().emitBitCast(result, resultType);
3119   }
3120 
3121   // Handle some casts specially.
3122   case CK_LValueToRValue:
3123     return asImpl().visitLValueToRValue(e->getSubExpr());
3124   case CK_ARCConsumeObject:
3125     return asImpl().visitConsumeObject(e->getSubExpr());
3126   case CK_ARCExtendBlockObject:
3127     return asImpl().visitExtendBlockObject(e->getSubExpr());
3128   case CK_ARCReclaimReturnedObject:
3129     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3130 
3131   // Otherwise, use the default logic.
3132   default:
3133     return asImpl().visitExpr(e);
3134   }
3135 }
3136 
3137 template <typename Impl, typename Result>
3138 Result
3139 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3140   switch (e->getOpcode()) {
3141   case BO_Comma:
3142     CGF.EmitIgnoredExpr(e->getLHS());
3143     CGF.EnsureInsertPoint();
3144     return asImpl().visit(e->getRHS());
3145 
3146   case BO_Assign:
3147     return asImpl().visitBinAssign(e);
3148 
3149   default:
3150     return asImpl().visitExpr(e);
3151   }
3152 }
3153 
3154 template <typename Impl, typename Result>
3155 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3156   switch (e->getLHS()->getType().getObjCLifetime()) {
3157   case Qualifiers::OCL_ExplicitNone:
3158     return asImpl().visitBinAssignUnsafeUnretained(e);
3159 
3160   case Qualifiers::OCL_Weak:
3161     return asImpl().visitBinAssignWeak(e);
3162 
3163   case Qualifiers::OCL_Autoreleasing:
3164     return asImpl().visitBinAssignAutoreleasing(e);
3165 
3166   case Qualifiers::OCL_Strong:
3167     return asImpl().visitBinAssignStrong(e);
3168 
3169   case Qualifiers::OCL_None:
3170     return asImpl().visitExpr(e);
3171   }
3172   llvm_unreachable("bad ObjC ownership qualifier");
3173 }
3174 
3175 /// The default rule for __unsafe_unretained emits the RHS recursively,
3176 /// stores into the unsafe variable, and propagates the result outward.
3177 template <typename Impl, typename Result>
3178 Result ARCExprEmitter<Impl,Result>::
3179                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3180   // Recursively emit the RHS.
3181   // For __block safety, do this before emitting the LHS.
3182   Result result = asImpl().visit(e->getRHS());
3183 
3184   // Perform the store.
3185   LValue lvalue =
3186     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3187   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3188                              lvalue);
3189 
3190   return result;
3191 }
3192 
3193 template <typename Impl, typename Result>
3194 Result
3195 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3196   return asImpl().visitExpr(e);
3197 }
3198 
3199 template <typename Impl, typename Result>
3200 Result
3201 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3202   return asImpl().visitExpr(e);
3203 }
3204 
3205 template <typename Impl, typename Result>
3206 Result
3207 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3208   return asImpl().visitExpr(e);
3209 }
3210 
3211 /// The general expression-emission logic.
3212 template <typename Impl, typename Result>
3213 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3214   // We should *never* see a nested full-expression here, because if
3215   // we fail to emit at +1, our caller must not retain after we close
3216   // out the full-expression.  This isn't as important in the unsafe
3217   // emitter.
3218   assert(!isa<ExprWithCleanups>(e));
3219 
3220   // Look through parens, __extension__, generic selection, etc.
3221   e = e->IgnoreParens();
3222 
3223   // Handle certain kinds of casts.
3224   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3225     return asImpl().visitCastExpr(ce);
3226 
3227   // Handle the comma operator.
3228   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3229     return asImpl().visitBinaryOperator(op);
3230 
3231   // TODO: handle conditional operators here
3232 
3233   // For calls and message sends, use the retained-call logic.
3234   // Delegate inits are a special case in that they're the only
3235   // returns-retained expression that *isn't* surrounded by
3236   // a consume.
3237   } else if (isa<CallExpr>(e) ||
3238              (isa<ObjCMessageExpr>(e) &&
3239               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3240     return asImpl().visitCall(e);
3241 
3242   // Look through pseudo-object expressions.
3243   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3244     return asImpl().visitPseudoObjectExpr(pseudo);
3245   } else if (auto *be = dyn_cast<BlockExpr>(e))
3246     return asImpl().visitBlockExpr(be);
3247 
3248   return asImpl().visitExpr(e);
3249 }
3250 
3251 namespace {
3252 
3253 /// An emitter for +1 results.
3254 struct ARCRetainExprEmitter :
3255   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3256 
3257   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3258 
3259   llvm::Value *getValueOfResult(TryEmitResult result) {
3260     return result.getPointer();
3261   }
3262 
3263   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3264     llvm::Value *value = result.getPointer();
3265     value = CGF.Builder.CreateBitCast(value, resultType);
3266     result.setPointer(value);
3267     return result;
3268   }
3269 
3270   TryEmitResult visitLValueToRValue(const Expr *e) {
3271     return tryEmitARCRetainLoadOfScalar(CGF, e);
3272   }
3273 
3274   /// For consumptions, just emit the subexpression and thus elide
3275   /// the retain/release pair.
3276   TryEmitResult visitConsumeObject(const Expr *e) {
3277     llvm::Value *result = CGF.EmitScalarExpr(e);
3278     return TryEmitResult(result, true);
3279   }
3280 
3281   TryEmitResult visitBlockExpr(const BlockExpr *e) {
3282     TryEmitResult result = visitExpr(e);
3283     // Avoid the block-retain if this is a block literal that doesn't need to be
3284     // copied to the heap.
3285     if (e->getBlockDecl()->canAvoidCopyToHeap())
3286       result.setInt(true);
3287     return result;
3288   }
3289 
3290   /// Block extends are net +0.  Naively, we could just recurse on
3291   /// the subexpression, but actually we need to ensure that the
3292   /// value is copied as a block, so there's a little filter here.
3293   TryEmitResult visitExtendBlockObject(const Expr *e) {
3294     llvm::Value *result; // will be a +0 value
3295 
3296     // If we can't safely assume the sub-expression will produce a
3297     // block-copied value, emit the sub-expression at +0.
3298     if (shouldEmitSeparateBlockRetain(e)) {
3299       result = CGF.EmitScalarExpr(e);
3300 
3301     // Otherwise, try to emit the sub-expression at +1 recursively.
3302     } else {
3303       TryEmitResult subresult = asImpl().visit(e);
3304 
3305       // If that produced a retained value, just use that.
3306       if (subresult.getInt()) {
3307         return subresult;
3308       }
3309 
3310       // Otherwise it's +0.
3311       result = subresult.getPointer();
3312     }
3313 
3314     // Retain the object as a block.
3315     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3316     return TryEmitResult(result, true);
3317   }
3318 
3319   /// For reclaims, emit the subexpression as a retained call and
3320   /// skip the consumption.
3321   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3322     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3323     return TryEmitResult(result, true);
3324   }
3325 
3326   /// When we have an undecorated call, retroactively do a claim.
3327   TryEmitResult visitCall(const Expr *e) {
3328     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3329     return TryEmitResult(result, true);
3330   }
3331 
3332   // TODO: maybe special-case visitBinAssignWeak?
3333 
3334   TryEmitResult visitExpr(const Expr *e) {
3335     // We didn't find an obvious production, so emit what we've got and
3336     // tell the caller that we didn't manage to retain.
3337     llvm::Value *result = CGF.EmitScalarExpr(e);
3338     return TryEmitResult(result, false);
3339   }
3340 };
3341 }
3342 
3343 static TryEmitResult
3344 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3345   return ARCRetainExprEmitter(CGF).visit(e);
3346 }
3347 
3348 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3349                                                 LValue lvalue,
3350                                                 QualType type) {
3351   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3352   llvm::Value *value = result.getPointer();
3353   if (!result.getInt())
3354     value = CGF.EmitARCRetain(type, value);
3355   return value;
3356 }
3357 
3358 /// EmitARCRetainScalarExpr - Semantically equivalent to
3359 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3360 /// best-effort attempt to peephole expressions that naturally produce
3361 /// retained objects.
3362 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3363   // The retain needs to happen within the full-expression.
3364   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3365     RunCleanupsScope scope(*this);
3366     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3367   }
3368 
3369   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3370   llvm::Value *value = result.getPointer();
3371   if (!result.getInt())
3372     value = EmitARCRetain(e->getType(), value);
3373   return value;
3374 }
3375 
3376 llvm::Value *
3377 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3378   // The retain needs to happen within the full-expression.
3379   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3380     RunCleanupsScope scope(*this);
3381     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3382   }
3383 
3384   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3385   llvm::Value *value = result.getPointer();
3386   if (result.getInt())
3387     value = EmitARCAutorelease(value);
3388   else
3389     value = EmitARCRetainAutorelease(e->getType(), value);
3390   return value;
3391 }
3392 
3393 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3394   llvm::Value *result;
3395   bool doRetain;
3396 
3397   if (shouldEmitSeparateBlockRetain(e)) {
3398     result = EmitScalarExpr(e);
3399     doRetain = true;
3400   } else {
3401     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3402     result = subresult.getPointer();
3403     doRetain = !subresult.getInt();
3404   }
3405 
3406   if (doRetain)
3407     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3408   return EmitObjCConsumeObject(e->getType(), result);
3409 }
3410 
3411 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3412   // In ARC, retain and autorelease the expression.
3413   if (getLangOpts().ObjCAutoRefCount) {
3414     // Do so before running any cleanups for the full-expression.
3415     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3416     return EmitARCRetainAutoreleaseScalarExpr(expr);
3417   }
3418 
3419   // Otherwise, use the normal scalar-expression emission.  The
3420   // exception machinery doesn't do anything special with the
3421   // exception like retaining it, so there's no safety associated with
3422   // only running cleanups after the throw has started, and when it
3423   // matters it tends to be substantially inferior code.
3424   return EmitScalarExpr(expr);
3425 }
3426 
3427 namespace {
3428 
3429 /// An emitter for assigning into an __unsafe_unretained context.
3430 struct ARCUnsafeUnretainedExprEmitter :
3431   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3432 
3433   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3434 
3435   llvm::Value *getValueOfResult(llvm::Value *value) {
3436     return value;
3437   }
3438 
3439   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3440     return CGF.Builder.CreateBitCast(value, resultType);
3441   }
3442 
3443   llvm::Value *visitLValueToRValue(const Expr *e) {
3444     return CGF.EmitScalarExpr(e);
3445   }
3446 
3447   /// For consumptions, just emit the subexpression and perform the
3448   /// consumption like normal.
3449   llvm::Value *visitConsumeObject(const Expr *e) {
3450     llvm::Value *value = CGF.EmitScalarExpr(e);
3451     return CGF.EmitObjCConsumeObject(e->getType(), value);
3452   }
3453 
3454   /// No special logic for block extensions.  (This probably can't
3455   /// actually happen in this emitter, though.)
3456   llvm::Value *visitExtendBlockObject(const Expr *e) {
3457     return CGF.EmitARCExtendBlockObject(e);
3458   }
3459 
3460   /// For reclaims, perform an unsafeClaim if that's enabled.
3461   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3462     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3463   }
3464 
3465   /// When we have an undecorated call, just emit it without adding
3466   /// the unsafeClaim.
3467   llvm::Value *visitCall(const Expr *e) {
3468     return CGF.EmitScalarExpr(e);
3469   }
3470 
3471   /// Just do normal scalar emission in the default case.
3472   llvm::Value *visitExpr(const Expr *e) {
3473     return CGF.EmitScalarExpr(e);
3474   }
3475 };
3476 }
3477 
3478 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3479                                                       const Expr *e) {
3480   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3481 }
3482 
3483 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3484 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3485 /// avoiding any spurious retains, including by performing reclaims
3486 /// with objc_unsafeClaimAutoreleasedReturnValue.
3487 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3488   // Look through full-expressions.
3489   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3490     RunCleanupsScope scope(*this);
3491     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3492   }
3493 
3494   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3495 }
3496 
3497 std::pair<LValue,llvm::Value*>
3498 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3499                                               bool ignored) {
3500   // Evaluate the RHS first.  If we're ignoring the result, assume
3501   // that we can emit at an unsafe +0.
3502   llvm::Value *value;
3503   if (ignored) {
3504     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3505   } else {
3506     value = EmitScalarExpr(e->getRHS());
3507   }
3508 
3509   // Emit the LHS and perform the store.
3510   LValue lvalue = EmitLValue(e->getLHS());
3511   EmitStoreOfScalar(value, lvalue);
3512 
3513   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3514 }
3515 
3516 std::pair<LValue,llvm::Value*>
3517 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3518                                     bool ignored) {
3519   // Evaluate the RHS first.
3520   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3521   llvm::Value *value = result.getPointer();
3522 
3523   bool hasImmediateRetain = result.getInt();
3524 
3525   // If we didn't emit a retained object, and the l-value is of block
3526   // type, then we need to emit the block-retain immediately in case
3527   // it invalidates the l-value.
3528   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3529     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3530     hasImmediateRetain = true;
3531   }
3532 
3533   LValue lvalue = EmitLValue(e->getLHS());
3534 
3535   // If the RHS was emitted retained, expand this.
3536   if (hasImmediateRetain) {
3537     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3538     EmitStoreOfScalar(value, lvalue);
3539     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3540   } else {
3541     value = EmitARCStoreStrong(lvalue, value, ignored);
3542   }
3543 
3544   return std::pair<LValue,llvm::Value*>(lvalue, value);
3545 }
3546 
3547 std::pair<LValue,llvm::Value*>
3548 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3549   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3550   LValue lvalue = EmitLValue(e->getLHS());
3551 
3552   EmitStoreOfScalar(value, lvalue);
3553 
3554   return std::pair<LValue,llvm::Value*>(lvalue, value);
3555 }
3556 
3557 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3558                                           const ObjCAutoreleasePoolStmt &ARPS) {
3559   const Stmt *subStmt = ARPS.getSubStmt();
3560   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3561 
3562   CGDebugInfo *DI = getDebugInfo();
3563   if (DI)
3564     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3565 
3566   // Keep track of the current cleanup stack depth.
3567   RunCleanupsScope Scope(*this);
3568   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3569     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3570     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3571   } else {
3572     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3573     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3574   }
3575 
3576   for (const auto *I : S.body())
3577     EmitStmt(I);
3578 
3579   if (DI)
3580     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3581 }
3582 
3583 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3584 /// make sure it survives garbage collection until this point.
3585 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3586   // We just use an inline assembly.
3587   llvm::FunctionType *extenderType
3588     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3589   llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3590                                                    /* assembly */ "",
3591                                                    /* constraints */ "r",
3592                                                    /* side effects */ true);
3593 
3594   object = Builder.CreateBitCast(object, VoidPtrTy);
3595   EmitNounwindRuntimeCall(extender, object);
3596 }
3597 
3598 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3599 /// non-trivial copy assignment function, produce following helper function.
3600 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3601 ///
3602 llvm::Constant *
3603 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3604                                         const ObjCPropertyImplDecl *PID) {
3605   if (!getLangOpts().CPlusPlus ||
3606       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3607     return nullptr;
3608   QualType Ty = PID->getPropertyIvarDecl()->getType();
3609   if (!Ty->isRecordType())
3610     return nullptr;
3611   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3612   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3613     return nullptr;
3614   llvm::Constant *HelperFn = nullptr;
3615   if (hasTrivialSetExpr(PID))
3616     return nullptr;
3617   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3618   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3619     return HelperFn;
3620 
3621   ASTContext &C = getContext();
3622   IdentifierInfo *II
3623     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3624 
3625   QualType ReturnTy = C.VoidTy;
3626   QualType DestTy = C.getPointerType(Ty);
3627   QualType SrcTy = Ty;
3628   SrcTy.addConst();
3629   SrcTy = C.getPointerType(SrcTy);
3630 
3631   SmallVector<QualType, 2> ArgTys;
3632   ArgTys.push_back(DestTy);
3633   ArgTys.push_back(SrcTy);
3634   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3635 
3636   FunctionDecl *FD = FunctionDecl::Create(
3637       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3638       FunctionTy, nullptr, SC_Static, false, false);
3639 
3640   FunctionArgList args;
3641   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3642                             ImplicitParamDecl::Other);
3643   args.push_back(&DstDecl);
3644   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3645                             ImplicitParamDecl::Other);
3646   args.push_back(&SrcDecl);
3647 
3648   const CGFunctionInfo &FI =
3649       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3650 
3651   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3652 
3653   llvm::Function *Fn =
3654     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3655                            "__assign_helper_atomic_property_",
3656                            &CGM.getModule());
3657 
3658   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3659 
3660   StartFunction(FD, ReturnTy, Fn, FI, args);
3661 
3662   DeclRefExpr DstExpr(C, &DstDecl, false, DestTy, VK_RValue, SourceLocation());
3663   UnaryOperator *DST = UnaryOperator::Create(
3664       C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3665       SourceLocation(), false, FPOptionsOverride());
3666 
3667   DeclRefExpr SrcExpr(C, &SrcDecl, false, SrcTy, VK_RValue, SourceLocation());
3668   UnaryOperator *SRC = UnaryOperator::Create(
3669       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3670       SourceLocation(), false, FPOptionsOverride());
3671 
3672   Expr *Args[2] = {DST, SRC};
3673   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3674   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3675       C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3676       VK_LValue, SourceLocation(), FPOptionsOverride());
3677 
3678   EmitStmt(TheCall);
3679 
3680   FinishFunction();
3681   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3682   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3683   return HelperFn;
3684 }
3685 
3686 llvm::Constant *
3687 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3688                                             const ObjCPropertyImplDecl *PID) {
3689   if (!getLangOpts().CPlusPlus ||
3690       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3691     return nullptr;
3692   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3693   QualType Ty = PD->getType();
3694   if (!Ty->isRecordType())
3695     return nullptr;
3696   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3697     return nullptr;
3698   llvm::Constant *HelperFn = nullptr;
3699   if (hasTrivialGetExpr(PID))
3700     return nullptr;
3701   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3702   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3703     return HelperFn;
3704 
3705   ASTContext &C = getContext();
3706   IdentifierInfo *II =
3707       &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3708 
3709   QualType ReturnTy = C.VoidTy;
3710   QualType DestTy = C.getPointerType(Ty);
3711   QualType SrcTy = Ty;
3712   SrcTy.addConst();
3713   SrcTy = C.getPointerType(SrcTy);
3714 
3715   SmallVector<QualType, 2> ArgTys;
3716   ArgTys.push_back(DestTy);
3717   ArgTys.push_back(SrcTy);
3718   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3719 
3720   FunctionDecl *FD = FunctionDecl::Create(
3721       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3722       FunctionTy, nullptr, SC_Static, false, false);
3723 
3724   FunctionArgList args;
3725   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3726                             ImplicitParamDecl::Other);
3727   args.push_back(&DstDecl);
3728   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3729                             ImplicitParamDecl::Other);
3730   args.push_back(&SrcDecl);
3731 
3732   const CGFunctionInfo &FI =
3733       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3734 
3735   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3736 
3737   llvm::Function *Fn = llvm::Function::Create(
3738       LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3739       &CGM.getModule());
3740 
3741   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3742 
3743   StartFunction(FD, ReturnTy, Fn, FI, args);
3744 
3745   DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3746                       SourceLocation());
3747 
3748   UnaryOperator *SRC = UnaryOperator::Create(
3749       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3750       SourceLocation(), false, FPOptionsOverride());
3751 
3752   CXXConstructExpr *CXXConstExpr =
3753     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3754 
3755   SmallVector<Expr*, 4> ConstructorArgs;
3756   ConstructorArgs.push_back(SRC);
3757   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3758                          CXXConstExpr->arg_end());
3759 
3760   CXXConstructExpr *TheCXXConstructExpr =
3761     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3762                              CXXConstExpr->getConstructor(),
3763                              CXXConstExpr->isElidable(),
3764                              ConstructorArgs,
3765                              CXXConstExpr->hadMultipleCandidates(),
3766                              CXXConstExpr->isListInitialization(),
3767                              CXXConstExpr->isStdInitListInitialization(),
3768                              CXXConstExpr->requiresZeroInitialization(),
3769                              CXXConstExpr->getConstructionKind(),
3770                              SourceRange());
3771 
3772   DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3773                       SourceLocation());
3774 
3775   RValue DV = EmitAnyExpr(&DstExpr);
3776   CharUnits Alignment
3777     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3778   EmitAggExpr(TheCXXConstructExpr,
3779               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3780                                     Qualifiers(),
3781                                     AggValueSlot::IsDestructed,
3782                                     AggValueSlot::DoesNotNeedGCBarriers,
3783                                     AggValueSlot::IsNotAliased,
3784                                     AggValueSlot::DoesNotOverlap));
3785 
3786   FinishFunction();
3787   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3788   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3789   return HelperFn;
3790 }
3791 
3792 llvm::Value *
3793 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3794   // Get selectors for retain/autorelease.
3795   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3796   Selector CopySelector =
3797       getContext().Selectors.getNullarySelector(CopyID);
3798   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3799   Selector AutoreleaseSelector =
3800       getContext().Selectors.getNullarySelector(AutoreleaseID);
3801 
3802   // Emit calls to retain/autorelease.
3803   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3804   llvm::Value *Val = Block;
3805   RValue Result;
3806   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3807                                        Ty, CopySelector,
3808                                        Val, CallArgList(), nullptr, nullptr);
3809   Val = Result.getScalarVal();
3810   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3811                                        Ty, AutoreleaseSelector,
3812                                        Val, CallArgList(), nullptr, nullptr);
3813   Val = Result.getScalarVal();
3814   return Val;
3815 }
3816 
3817 llvm::Value *
3818 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) {
3819   assert(Args.size() == 3 && "Expected 3 argument here!");
3820 
3821   if (!CGM.IsOSVersionAtLeastFn) {
3822     llvm::FunctionType *FTy =
3823         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3824     CGM.IsOSVersionAtLeastFn =
3825         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3826   }
3827 
3828   llvm::Value *CallRes =
3829       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3830 
3831   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3832 }
3833 
3834 void CodeGenModule::emitAtAvailableLinkGuard() {
3835   if (!IsOSVersionAtLeastFn)
3836     return;
3837   // @available requires CoreFoundation only on Darwin.
3838   if (!Target.getTriple().isOSDarwin())
3839     return;
3840   // Add -framework CoreFoundation to the linker commands. We still want to
3841   // emit the core foundation reference down below because otherwise if
3842   // CoreFoundation is not used in the code, the linker won't link the
3843   // framework.
3844   auto &Context = getLLVMContext();
3845   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3846                              llvm::MDString::get(Context, "CoreFoundation")};
3847   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3848   // Emit a reference to a symbol from CoreFoundation to ensure that
3849   // CoreFoundation is linked into the final binary.
3850   llvm::FunctionType *FTy =
3851       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3852   llvm::FunctionCallee CFFunc =
3853       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3854 
3855   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3856   llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
3857       CheckFTy, "__clang_at_available_requires_core_foundation_framework",
3858       llvm::AttributeList(), /*Local=*/true);
3859   llvm::Function *CFLinkCheckFunc =
3860       cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
3861   if (CFLinkCheckFunc->empty()) {
3862     CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3863     CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3864     CodeGenFunction CGF(*this);
3865     CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3866     CGF.EmitNounwindRuntimeCall(CFFunc,
3867                                 llvm::Constant::getNullValue(VoidPtrTy));
3868     CGF.Builder.CreateUnreachable();
3869     addCompilerUsedGlobal(CFLinkCheckFunc);
3870   }
3871 }
3872 
3873 CGObjCRuntime::~CGObjCRuntime() {}
3874