1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/InlineAsm.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
31 static TryEmitResult
32 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
33 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
34                                    QualType ET,
35                                    RValue Result);
36 
37 /// Given the address of a variable of pointer type, find the correct
38 /// null to store into it.
39 static llvm::Constant *getNullForVariable(Address addr) {
40   llvm::Type *type = addr.getElementType();
41   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
42 }
43 
44 /// Emits an instance of NSConstantString representing the object.
45 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
46 {
47   llvm::Constant *C =
48       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
49   // FIXME: This bitcast should just be made an invariant on the Runtime.
50   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
51 }
52 
53 /// EmitObjCBoxedExpr - This routine generates code to call
54 /// the appropriate expression boxing method. This will either be
55 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
56 /// or [NSValue valueWithBytes:objCType:].
57 ///
58 llvm::Value *
59 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
60   // Generate the correct selector for this literal's concrete type.
61   // Get the method.
62   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
63   const Expr *SubExpr = E->getSubExpr();
64 
65   if (E->isExpressibleAsConstantInitializer()) {
66     ConstantEmitter ConstEmitter(CGM);
67     return ConstEmitter.tryEmitAbstract(E, E->getType());
68   }
69 
70   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
71   Selector Sel = BoxingMethod->getSelector();
72 
73   // Generate a reference to the class pointer, which will be the receiver.
74   // Assumes that the method was introduced in the class that should be
75   // messaged (avoids pulling it out of the result type).
76   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
77   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
78   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
79 
80   CallArgList Args;
81   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
82   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
83 
84   // ObjCBoxedExpr supports boxing of structs and unions
85   // via [NSValue valueWithBytes:objCType:]
86   const QualType ValueType(SubExpr->getType().getCanonicalType());
87   if (ValueType->isObjCBoxableRecordType()) {
88     // Emit CodeGen for first parameter
89     // and cast value to correct type
90     Address Temporary = CreateMemTemp(SubExpr->getType());
91     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
92     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
93     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
94 
95     // Create char array to store type encoding
96     std::string Str;
97     getContext().getObjCEncodingForType(ValueType, Str);
98     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
99 
100     // Cast type encoding to correct type
101     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
102     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
103     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
104 
105     Args.add(RValue::get(Cast), EncodingQT);
106   } else {
107     Args.add(EmitAnyExpr(SubExpr), ArgQT);
108   }
109 
110   RValue result = Runtime.GenerateMessageSend(
111       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
112       Args, ClassDecl, BoxingMethod);
113   return Builder.CreateBitCast(result.getScalarVal(),
114                                ConvertType(E->getType()));
115 }
116 
117 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
118                                     const ObjCMethodDecl *MethodWithObjects) {
119   ASTContext &Context = CGM.getContext();
120   const ObjCDictionaryLiteral *DLE = nullptr;
121   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
122   if (!ALE)
123     DLE = cast<ObjCDictionaryLiteral>(E);
124 
125   // Optimize empty collections by referencing constants, when available.
126   uint64_t NumElements =
127     ALE ? ALE->getNumElements() : DLE->getNumElements();
128   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
129     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
130     QualType IdTy(CGM.getContext().getObjCIdType());
131     llvm::Constant *Constant =
132         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
133     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
134     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
135     cast<llvm::LoadInst>(Ptr)->setMetadata(
136         CGM.getModule().getMDKindID("invariant.load"),
137         llvm::MDNode::get(getLLVMContext(), None));
138     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
139   }
140 
141   // Compute the type of the array we're initializing.
142   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
143                             NumElements);
144   QualType ElementType = Context.getObjCIdType().withConst();
145   QualType ElementArrayType
146     = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
147                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
148 
149   // Allocate the temporary array(s).
150   Address Objects = CreateMemTemp(ElementArrayType, "objects");
151   Address Keys = Address::invalid();
152   if (DLE)
153     Keys = CreateMemTemp(ElementArrayType, "keys");
154 
155   // In ARC, we may need to do extra work to keep all the keys and
156   // values alive until after the call.
157   SmallVector<llvm::Value *, 16> NeededObjects;
158   bool TrackNeededObjects =
159     (getLangOpts().ObjCAutoRefCount &&
160     CGM.getCodeGenOpts().OptimizationLevel != 0);
161 
162   // Perform the actual initialialization of the array(s).
163   for (uint64_t i = 0; i < NumElements; i++) {
164     if (ALE) {
165       // Emit the element and store it to the appropriate array slot.
166       const Expr *Rhs = ALE->getElement(i);
167       LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
168                                  ElementType, AlignmentSource::Decl);
169 
170       llvm::Value *value = EmitScalarExpr(Rhs);
171       EmitStoreThroughLValue(RValue::get(value), LV, true);
172       if (TrackNeededObjects) {
173         NeededObjects.push_back(value);
174       }
175     } else {
176       // Emit the key and store it to the appropriate array slot.
177       const Expr *Key = DLE->getKeyValueElement(i).Key;
178       LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
179                                     ElementType, AlignmentSource::Decl);
180       llvm::Value *keyValue = EmitScalarExpr(Key);
181       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
182 
183       // Emit the value and store it to the appropriate array slot.
184       const Expr *Value = DLE->getKeyValueElement(i).Value;
185       LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
186                                       ElementType, AlignmentSource::Decl);
187       llvm::Value *valueValue = EmitScalarExpr(Value);
188       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
189       if (TrackNeededObjects) {
190         NeededObjects.push_back(keyValue);
191         NeededObjects.push_back(valueValue);
192       }
193     }
194   }
195 
196   // Generate the argument list.
197   CallArgList Args;
198   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
199   const ParmVarDecl *argDecl = *PI++;
200   QualType ArgQT = argDecl->getType().getUnqualifiedType();
201   Args.add(RValue::get(Objects.getPointer()), ArgQT);
202   if (DLE) {
203     argDecl = *PI++;
204     ArgQT = argDecl->getType().getUnqualifiedType();
205     Args.add(RValue::get(Keys.getPointer()), ArgQT);
206   }
207   argDecl = *PI;
208   ArgQT = argDecl->getType().getUnqualifiedType();
209   llvm::Value *Count =
210     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
211   Args.add(RValue::get(Count), ArgQT);
212 
213   // Generate a reference to the class pointer, which will be the receiver.
214   Selector Sel = MethodWithObjects->getSelector();
215   QualType ResultType = E->getType();
216   const ObjCObjectPointerType *InterfacePointerType
217     = ResultType->getAsObjCInterfacePointerType();
218   ObjCInterfaceDecl *Class
219     = InterfacePointerType->getObjectType()->getInterface();
220   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
221   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
222 
223   // Generate the message send.
224   RValue result = Runtime.GenerateMessageSend(
225       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
226       Receiver, Args, Class, MethodWithObjects);
227 
228   // The above message send needs these objects, but in ARC they are
229   // passed in a buffer that is essentially __unsafe_unretained.
230   // Therefore we must prevent the optimizer from releasing them until
231   // after the call.
232   if (TrackNeededObjects) {
233     EmitARCIntrinsicUse(NeededObjects);
234   }
235 
236   return Builder.CreateBitCast(result.getScalarVal(),
237                                ConvertType(E->getType()));
238 }
239 
240 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
241   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
242 }
243 
244 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
245                                             const ObjCDictionaryLiteral *E) {
246   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
247 }
248 
249 /// Emit a selector.
250 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
251   // Untyped selector.
252   // Note that this implementation allows for non-constant strings to be passed
253   // as arguments to @selector().  Currently, the only thing preventing this
254   // behaviour is the type checking in the front end.
255   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
256 }
257 
258 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
259   // FIXME: This should pass the Decl not the name.
260   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
261 }
262 
263 /// Adjust the type of an Objective-C object that doesn't match up due
264 /// to type erasure at various points, e.g., related result types or the use
265 /// of parameterized classes.
266 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
267                                    RValue Result) {
268   if (!ExpT->isObjCRetainableType())
269     return Result;
270 
271   // If the converted types are the same, we're done.
272   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
273   if (ExpLLVMTy == Result.getScalarVal()->getType())
274     return Result;
275 
276   // We have applied a substitution. Cast the rvalue appropriately.
277   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
278                                                ExpLLVMTy));
279 }
280 
281 /// Decide whether to extend the lifetime of the receiver of a
282 /// returns-inner-pointer message.
283 static bool
284 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
285   switch (message->getReceiverKind()) {
286 
287   // For a normal instance message, we should extend unless the
288   // receiver is loaded from a variable with precise lifetime.
289   case ObjCMessageExpr::Instance: {
290     const Expr *receiver = message->getInstanceReceiver();
291 
292     // Look through OVEs.
293     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
294       if (opaque->getSourceExpr())
295         receiver = opaque->getSourceExpr()->IgnoreParens();
296     }
297 
298     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
299     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
300     receiver = ice->getSubExpr()->IgnoreParens();
301 
302     // Look through OVEs.
303     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
304       if (opaque->getSourceExpr())
305         receiver = opaque->getSourceExpr()->IgnoreParens();
306     }
307 
308     // Only __strong variables.
309     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
310       return true;
311 
312     // All ivars and fields have precise lifetime.
313     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
314       return false;
315 
316     // Otherwise, check for variables.
317     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
318     if (!declRef) return true;
319     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
320     if (!var) return true;
321 
322     // All variables have precise lifetime except local variables with
323     // automatic storage duration that aren't specially marked.
324     return (var->hasLocalStorage() &&
325             !var->hasAttr<ObjCPreciseLifetimeAttr>());
326   }
327 
328   case ObjCMessageExpr::Class:
329   case ObjCMessageExpr::SuperClass:
330     // It's never necessary for class objects.
331     return false;
332 
333   case ObjCMessageExpr::SuperInstance:
334     // We generally assume that 'self' lives throughout a method call.
335     return false;
336   }
337 
338   llvm_unreachable("invalid receiver kind");
339 }
340 
341 /// Given an expression of ObjC pointer type, check whether it was
342 /// immediately loaded from an ARC __weak l-value.
343 static const Expr *findWeakLValue(const Expr *E) {
344   assert(E->getType()->isObjCRetainableType());
345   E = E->IgnoreParens();
346   if (auto CE = dyn_cast<CastExpr>(E)) {
347     if (CE->getCastKind() == CK_LValueToRValue) {
348       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
349         return CE->getSubExpr();
350     }
351   }
352 
353   return nullptr;
354 }
355 
356 /// The ObjC runtime may provide entrypoints that are likely to be faster
357 /// than an ordinary message send of the appropriate selector.
358 ///
359 /// The entrypoints are guaranteed to be equivalent to just sending the
360 /// corresponding message.  If the entrypoint is implemented naively as just a
361 /// message send, using it is a trade-off: it sacrifices a few cycles of
362 /// overhead to save a small amount of code.  However, it's possible for
363 /// runtimes to detect and special-case classes that use "standard"
364 /// behavior; if that's dynamically a large proportion of all objects, using
365 /// the entrypoint will also be faster than using a message send.
366 ///
367 /// If the runtime does support a required entrypoint, then this method will
368 /// generate a call and return the resulting value.  Otherwise it will return
369 /// None and the caller can generate a msgSend instead.
370 static Optional<llvm::Value *>
371 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
372                                   llvm::Value *Receiver,
373                                   const CallArgList& Args, Selector Sel,
374                                   const ObjCMethodDecl *method,
375                                   bool isClassMessage) {
376   auto &CGM = CGF.CGM;
377   if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
378     return None;
379 
380   auto &Runtime = CGM.getLangOpts().ObjCRuntime;
381   switch (Sel.getMethodFamily()) {
382   case OMF_alloc:
383     if (isClassMessage &&
384         Runtime.shouldUseRuntimeFunctionsForAlloc() &&
385         ResultType->isObjCObjectPointerType()) {
386         // [Foo alloc] -> objc_alloc(Foo) or
387         // [self alloc] -> objc_alloc(self)
388         if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
389           return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
390         // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
391         // [self allocWithZone:nil] -> objc_allocWithZone(self)
392         if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
393             Args.size() == 1 && Args.front().getType()->isPointerType() &&
394             Sel.getNameForSlot(0) == "allocWithZone") {
395           const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
396           if (isa<llvm::ConstantPointerNull>(arg))
397             return CGF.EmitObjCAllocWithZone(Receiver,
398                                              CGF.ConvertType(ResultType));
399           return None;
400         }
401     }
402     break;
403 
404   case OMF_autorelease:
405     if (ResultType->isObjCObjectPointerType() &&
406         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
407         Runtime.shouldUseARCFunctionsForRetainRelease())
408       return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
409     break;
410 
411   case OMF_retain:
412     if (ResultType->isObjCObjectPointerType() &&
413         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
414         Runtime.shouldUseARCFunctionsForRetainRelease())
415       return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
416     break;
417 
418   case OMF_release:
419     if (ResultType->isVoidType() &&
420         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
421         Runtime.shouldUseARCFunctionsForRetainRelease()) {
422       CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
423       return nullptr;
424     }
425     break;
426 
427   default:
428     break;
429   }
430   return None;
431 }
432 
433 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
434     CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
435     Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
436     const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
437     bool isClassMessage) {
438   if (Optional<llvm::Value *> SpecializedResult =
439           tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
440                                             Sel, Method, isClassMessage)) {
441     return RValue::get(SpecializedResult.getValue());
442   }
443   return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
444                              Method);
445 }
446 
447 /// Instead of '[[MyClass alloc] init]', try to generate
448 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
449 /// caller side, as well as the optimized objc_alloc.
450 static Optional<llvm::Value *>
451 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
452   auto &Runtime = CGF.getLangOpts().ObjCRuntime;
453   if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
454     return None;
455 
456   // Match the exact pattern '[[MyClass alloc] init]'.
457   Selector Sel = OME->getSelector();
458   if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
459       !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
460       Sel.getNameForSlot(0) != "init")
461     return None;
462 
463   // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' or
464   // we are in an ObjC class method and 'receiver' is '[self alloc]'.
465   auto *SubOME =
466       dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
467   if (!SubOME)
468     return None;
469   Selector SubSel = SubOME->getSelector();
470 
471   // Check if we are in an ObjC class method and the receiver expression is
472   // 'self'.
473   const Expr *SelfInClassMethod = nullptr;
474   if (const auto *CurMD = dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl))
475     if (CurMD->isClassMethod())
476       if ((SelfInClassMethod = SubOME->getInstanceReceiver()))
477         if (!SelfInClassMethod->isObjCSelfExpr())
478           SelfInClassMethod = nullptr;
479 
480   if ((SubOME->getReceiverKind() != ObjCMessageExpr::Class &&
481        !SelfInClassMethod) || !SubOME->getType()->isObjCObjectPointerType() ||
482       !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
483     return None;
484 
485   llvm::Value *Receiver;
486   if (SelfInClassMethod) {
487     Receiver = CGF.EmitScalarExpr(SelfInClassMethod);
488   } else {
489     QualType ReceiverType = SubOME->getClassReceiver();
490     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
491     const ObjCInterfaceDecl *ID = ObjTy->getInterface();
492     assert(ID && "null interface should be impossible here");
493     Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
494   }
495   return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
496 }
497 
498 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
499                                             ReturnValueSlot Return) {
500   // Only the lookup mechanism and first two arguments of the method
501   // implementation vary between runtimes.  We can get the receiver and
502   // arguments in generic code.
503 
504   bool isDelegateInit = E->isDelegateInitCall();
505 
506   const ObjCMethodDecl *method = E->getMethodDecl();
507 
508   // If the method is -retain, and the receiver's being loaded from
509   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
510   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
511       method->getMethodFamily() == OMF_retain) {
512     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
513       LValue lvalue = EmitLValue(lvalueExpr);
514       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
515       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
516     }
517   }
518 
519   if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
520     return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
521 
522   // We don't retain the receiver in delegate init calls, and this is
523   // safe because the receiver value is always loaded from 'self',
524   // which we zero out.  We don't want to Block_copy block receivers,
525   // though.
526   bool retainSelf =
527     (!isDelegateInit &&
528      CGM.getLangOpts().ObjCAutoRefCount &&
529      method &&
530      method->hasAttr<NSConsumesSelfAttr>());
531 
532   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
533   bool isSuperMessage = false;
534   bool isClassMessage = false;
535   ObjCInterfaceDecl *OID = nullptr;
536   // Find the receiver
537   QualType ReceiverType;
538   llvm::Value *Receiver = nullptr;
539   switch (E->getReceiverKind()) {
540   case ObjCMessageExpr::Instance:
541     ReceiverType = E->getInstanceReceiver()->getType();
542     if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(CurFuncDecl))
543       if (OMD->isClassMethod())
544         if (E->getInstanceReceiver()->isObjCSelfExpr())
545           isClassMessage = true;
546     if (retainSelf) {
547       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
548                                                    E->getInstanceReceiver());
549       Receiver = ter.getPointer();
550       if (ter.getInt()) retainSelf = false;
551     } else
552       Receiver = EmitScalarExpr(E->getInstanceReceiver());
553     break;
554 
555   case ObjCMessageExpr::Class: {
556     ReceiverType = E->getClassReceiver();
557     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
558     assert(ObjTy && "Invalid Objective-C class message send");
559     OID = ObjTy->getInterface();
560     assert(OID && "Invalid Objective-C class message send");
561     Receiver = Runtime.GetClass(*this, OID);
562     isClassMessage = true;
563     break;
564   }
565 
566   case ObjCMessageExpr::SuperInstance:
567     ReceiverType = E->getSuperType();
568     Receiver = LoadObjCSelf();
569     isSuperMessage = true;
570     break;
571 
572   case ObjCMessageExpr::SuperClass:
573     ReceiverType = E->getSuperType();
574     Receiver = LoadObjCSelf();
575     isSuperMessage = true;
576     isClassMessage = true;
577     break;
578   }
579 
580   if (retainSelf)
581     Receiver = EmitARCRetainNonBlock(Receiver);
582 
583   // In ARC, we sometimes want to "extend the lifetime"
584   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
585   // messages.
586   if (getLangOpts().ObjCAutoRefCount && method &&
587       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
588       shouldExtendReceiverForInnerPointerMessage(E))
589     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
590 
591   QualType ResultType = method ? method->getReturnType() : E->getType();
592 
593   CallArgList Args;
594   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
595 
596   // For delegate init calls in ARC, do an unsafe store of null into
597   // self.  This represents the call taking direct ownership of that
598   // value.  We have to do this after emitting the other call
599   // arguments because they might also reference self, but we don't
600   // have to worry about any of them modifying self because that would
601   // be an undefined read and write of an object in unordered
602   // expressions.
603   if (isDelegateInit) {
604     assert(getLangOpts().ObjCAutoRefCount &&
605            "delegate init calls should only be marked in ARC");
606 
607     // Do an unsafe store of null into self.
608     Address selfAddr =
609       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
610     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
611   }
612 
613   RValue result;
614   if (isSuperMessage) {
615     // super is only valid in an Objective-C method
616     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
617     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
618     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
619                                               E->getSelector(),
620                                               OMD->getClassInterface(),
621                                               isCategoryImpl,
622                                               Receiver,
623                                               isClassMessage,
624                                               Args,
625                                               method);
626   } else {
627     // Call runtime methods directly if we can.
628     result = Runtime.GeneratePossiblySpecializedMessageSend(
629         *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
630         method, isClassMessage);
631   }
632 
633   // For delegate init calls in ARC, implicitly store the result of
634   // the call back into self.  This takes ownership of the value.
635   if (isDelegateInit) {
636     Address selfAddr =
637       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
638     llvm::Value *newSelf = result.getScalarVal();
639 
640     // The delegate return type isn't necessarily a matching type; in
641     // fact, it's quite likely to be 'id'.
642     llvm::Type *selfTy = selfAddr.getElementType();
643     newSelf = Builder.CreateBitCast(newSelf, selfTy);
644 
645     Builder.CreateStore(newSelf, selfAddr);
646   }
647 
648   return AdjustObjCObjectType(*this, E->getType(), result);
649 }
650 
651 namespace {
652 struct FinishARCDealloc final : EHScopeStack::Cleanup {
653   void Emit(CodeGenFunction &CGF, Flags flags) override {
654     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
655 
656     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
657     const ObjCInterfaceDecl *iface = impl->getClassInterface();
658     if (!iface->getSuperClass()) return;
659 
660     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
661 
662     // Call [super dealloc] if we have a superclass.
663     llvm::Value *self = CGF.LoadObjCSelf();
664 
665     CallArgList args;
666     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
667                                                       CGF.getContext().VoidTy,
668                                                       method->getSelector(),
669                                                       iface,
670                                                       isCategory,
671                                                       self,
672                                                       /*is class msg*/ false,
673                                                       args,
674                                                       method);
675   }
676 };
677 }
678 
679 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
680 /// the LLVM function and sets the other context used by
681 /// CodeGenFunction.
682 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
683                                       const ObjCContainerDecl *CD) {
684   SourceLocation StartLoc = OMD->getBeginLoc();
685   FunctionArgList args;
686   // Check if we should generate debug info for this method.
687   if (OMD->hasAttr<NoDebugAttr>())
688     DebugInfo = nullptr; // disable debug info indefinitely for this function
689 
690   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
691 
692   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
693   if (OMD->isDirectMethod()) {
694     Fn->setVisibility(llvm::Function::HiddenVisibility);
695     CGM.SetLLVMFunctionAttributes(OMD, FI, Fn);
696     CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
697   } else {
698     CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
699   }
700 
701   args.push_back(OMD->getSelfDecl());
702   args.push_back(OMD->getCmdDecl());
703 
704   args.append(OMD->param_begin(), OMD->param_end());
705 
706   CurGD = OMD;
707   CurEHLocation = OMD->getEndLoc();
708 
709   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
710                 OMD->getLocation(), StartLoc);
711 
712   if (OMD->isDirectMethod()) {
713     // This function is a direct call, it has to implement a nil check
714     // on entry.
715     //
716     // TODO: possibly have several entry points to elide the check
717     CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
718   }
719 
720   // In ARC, certain methods get an extra cleanup.
721   if (CGM.getLangOpts().ObjCAutoRefCount &&
722       OMD->isInstanceMethod() &&
723       OMD->getSelector().isUnarySelector()) {
724     const IdentifierInfo *ident =
725       OMD->getSelector().getIdentifierInfoForSlot(0);
726     if (ident->isStr("dealloc"))
727       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
728   }
729 }
730 
731 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
732                                               LValue lvalue, QualType type);
733 
734 /// Generate an Objective-C method.  An Objective-C method is a C function with
735 /// its pointer, name, and types registered in the class structure.
736 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
737   StartObjCMethod(OMD, OMD->getClassInterface());
738   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
739   assert(isa<CompoundStmt>(OMD->getBody()));
740   incrementProfileCounter(OMD->getBody());
741   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
742   FinishFunction(OMD->getBodyRBrace());
743 }
744 
745 /// emitStructGetterCall - Call the runtime function to load a property
746 /// into the return value slot.
747 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
748                                  bool isAtomic, bool hasStrong) {
749   ASTContext &Context = CGF.getContext();
750 
751   Address src =
752     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
753        .getAddress();
754 
755   // objc_copyStruct (ReturnValue, &structIvar,
756   //                  sizeof (Type of Ivar), isAtomic, false);
757   CallArgList args;
758 
759   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
760   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
761 
762   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
763   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
764 
765   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
766   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
767   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
768   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
769 
770   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
771   CGCallee callee = CGCallee::forDirect(fn);
772   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
773                callee, ReturnValueSlot(), args);
774 }
775 
776 /// Determine whether the given architecture supports unaligned atomic
777 /// accesses.  They don't have to be fast, just faster than a function
778 /// call and a mutex.
779 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
780   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
781   // currently supported by the backend.)
782   return 0;
783 }
784 
785 /// Return the maximum size that permits atomic accesses for the given
786 /// architecture.
787 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
788                                         llvm::Triple::ArchType arch) {
789   // ARM has 8-byte atomic accesses, but it's not clear whether we
790   // want to rely on them here.
791 
792   // In the default case, just assume that any size up to a pointer is
793   // fine given adequate alignment.
794   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
795 }
796 
797 namespace {
798   class PropertyImplStrategy {
799   public:
800     enum StrategyKind {
801       /// The 'native' strategy is to use the architecture's provided
802       /// reads and writes.
803       Native,
804 
805       /// Use objc_setProperty and objc_getProperty.
806       GetSetProperty,
807 
808       /// Use objc_setProperty for the setter, but use expression
809       /// evaluation for the getter.
810       SetPropertyAndExpressionGet,
811 
812       /// Use objc_copyStruct.
813       CopyStruct,
814 
815       /// The 'expression' strategy is to emit normal assignment or
816       /// lvalue-to-rvalue expressions.
817       Expression
818     };
819 
820     StrategyKind getKind() const { return StrategyKind(Kind); }
821 
822     bool hasStrongMember() const { return HasStrong; }
823     bool isAtomic() const { return IsAtomic; }
824     bool isCopy() const { return IsCopy; }
825 
826     CharUnits getIvarSize() const { return IvarSize; }
827     CharUnits getIvarAlignment() const { return IvarAlignment; }
828 
829     PropertyImplStrategy(CodeGenModule &CGM,
830                          const ObjCPropertyImplDecl *propImpl);
831 
832   private:
833     unsigned Kind : 8;
834     unsigned IsAtomic : 1;
835     unsigned IsCopy : 1;
836     unsigned HasStrong : 1;
837 
838     CharUnits IvarSize;
839     CharUnits IvarAlignment;
840   };
841 }
842 
843 /// Pick an implementation strategy for the given property synthesis.
844 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
845                                      const ObjCPropertyImplDecl *propImpl) {
846   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
847   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
848 
849   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
850   IsAtomic = prop->isAtomic();
851   HasStrong = false; // doesn't matter here.
852 
853   // Evaluate the ivar's size and alignment.
854   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
855   QualType ivarType = ivar->getType();
856   std::tie(IvarSize, IvarAlignment) =
857       CGM.getContext().getTypeInfoInChars(ivarType);
858 
859   // If we have a copy property, we always have to use getProperty/setProperty.
860   // TODO: we could actually use setProperty and an expression for non-atomics.
861   if (IsCopy) {
862     Kind = GetSetProperty;
863     return;
864   }
865 
866   // Handle retain.
867   if (setterKind == ObjCPropertyDecl::Retain) {
868     // In GC-only, there's nothing special that needs to be done.
869     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
870       // fallthrough
871 
872     // In ARC, if the property is non-atomic, use expression emission,
873     // which translates to objc_storeStrong.  This isn't required, but
874     // it's slightly nicer.
875     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
876       // Using standard expression emission for the setter is only
877       // acceptable if the ivar is __strong, which won't be true if
878       // the property is annotated with __attribute__((NSObject)).
879       // TODO: falling all the way back to objc_setProperty here is
880       // just laziness, though;  we could still use objc_storeStrong
881       // if we hacked it right.
882       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
883         Kind = Expression;
884       else
885         Kind = SetPropertyAndExpressionGet;
886       return;
887 
888     // Otherwise, we need to at least use setProperty.  However, if
889     // the property isn't atomic, we can use normal expression
890     // emission for the getter.
891     } else if (!IsAtomic) {
892       Kind = SetPropertyAndExpressionGet;
893       return;
894 
895     // Otherwise, we have to use both setProperty and getProperty.
896     } else {
897       Kind = GetSetProperty;
898       return;
899     }
900   }
901 
902   // If we're not atomic, just use expression accesses.
903   if (!IsAtomic) {
904     Kind = Expression;
905     return;
906   }
907 
908   // Properties on bitfield ivars need to be emitted using expression
909   // accesses even if they're nominally atomic.
910   if (ivar->isBitField()) {
911     Kind = Expression;
912     return;
913   }
914 
915   // GC-qualified or ARC-qualified ivars need to be emitted as
916   // expressions.  This actually works out to being atomic anyway,
917   // except for ARC __strong, but that should trigger the above code.
918   if (ivarType.hasNonTrivialObjCLifetime() ||
919       (CGM.getLangOpts().getGC() &&
920        CGM.getContext().getObjCGCAttrKind(ivarType))) {
921     Kind = Expression;
922     return;
923   }
924 
925   // Compute whether the ivar has strong members.
926   if (CGM.getLangOpts().getGC())
927     if (const RecordType *recordType = ivarType->getAs<RecordType>())
928       HasStrong = recordType->getDecl()->hasObjectMember();
929 
930   // We can never access structs with object members with a native
931   // access, because we need to use write barriers.  This is what
932   // objc_copyStruct is for.
933   if (HasStrong) {
934     Kind = CopyStruct;
935     return;
936   }
937 
938   // Otherwise, this is target-dependent and based on the size and
939   // alignment of the ivar.
940 
941   // If the size of the ivar is not a power of two, give up.  We don't
942   // want to get into the business of doing compare-and-swaps.
943   if (!IvarSize.isPowerOfTwo()) {
944     Kind = CopyStruct;
945     return;
946   }
947 
948   llvm::Triple::ArchType arch =
949     CGM.getTarget().getTriple().getArch();
950 
951   // Most architectures require memory to fit within a single cache
952   // line, so the alignment has to be at least the size of the access.
953   // Otherwise we have to grab a lock.
954   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
955     Kind = CopyStruct;
956     return;
957   }
958 
959   // If the ivar's size exceeds the architecture's maximum atomic
960   // access size, we have to use CopyStruct.
961   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
962     Kind = CopyStruct;
963     return;
964   }
965 
966   // Otherwise, we can use native loads and stores.
967   Kind = Native;
968 }
969 
970 /// Generate an Objective-C property getter function.
971 ///
972 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
973 /// is illegal within a category.
974 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
975                                          const ObjCPropertyImplDecl *PID) {
976   llvm::Constant *AtomicHelperFn =
977       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
978   ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
979   assert(OMD && "Invalid call to generate getter (empty method)");
980   StartObjCMethod(OMD, IMP->getClassInterface());
981 
982   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
983 
984   FinishFunction();
985 }
986 
987 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
988   const Expr *getter = propImpl->getGetterCXXConstructor();
989   if (!getter) return true;
990 
991   // Sema only makes only of these when the ivar has a C++ class type,
992   // so the form is pretty constrained.
993 
994   // If the property has a reference type, we might just be binding a
995   // reference, in which case the result will be a gl-value.  We should
996   // treat this as a non-trivial operation.
997   if (getter->isGLValue())
998     return false;
999 
1000   // If we selected a trivial copy-constructor, we're okay.
1001   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1002     return (construct->getConstructor()->isTrivial());
1003 
1004   // The constructor might require cleanups (in which case it's never
1005   // trivial).
1006   assert(isa<ExprWithCleanups>(getter));
1007   return false;
1008 }
1009 
1010 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1011 /// copy the ivar into the resturn slot.
1012 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1013                                           llvm::Value *returnAddr,
1014                                           ObjCIvarDecl *ivar,
1015                                           llvm::Constant *AtomicHelperFn) {
1016   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1017   //                           AtomicHelperFn);
1018   CallArgList args;
1019 
1020   // The 1st argument is the return Slot.
1021   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1022 
1023   // The 2nd argument is the address of the ivar.
1024   llvm::Value *ivarAddr =
1025     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1026                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
1027   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1028   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1029 
1030   // Third argument is the helper function.
1031   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1032 
1033   llvm::FunctionCallee copyCppAtomicObjectFn =
1034       CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1035   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1036   CGF.EmitCall(
1037       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1038                callee, ReturnValueSlot(), args);
1039 }
1040 
1041 void
1042 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1043                                         const ObjCPropertyImplDecl *propImpl,
1044                                         const ObjCMethodDecl *GetterMethodDecl,
1045                                         llvm::Constant *AtomicHelperFn) {
1046   // If there's a non-trivial 'get' expression, we just have to emit that.
1047   if (!hasTrivialGetExpr(propImpl)) {
1048     if (!AtomicHelperFn) {
1049       auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1050                                      propImpl->getGetterCXXConstructor(),
1051                                      /* NRVOCandidate=*/nullptr);
1052       EmitReturnStmt(*ret);
1053     }
1054     else {
1055       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1056       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1057                                     ivar, AtomicHelperFn);
1058     }
1059     return;
1060   }
1061 
1062   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1063   QualType propType = prop->getType();
1064   ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1065 
1066   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1067 
1068   // Pick an implementation strategy.
1069   PropertyImplStrategy strategy(CGM, propImpl);
1070   switch (strategy.getKind()) {
1071   case PropertyImplStrategy::Native: {
1072     // We don't need to do anything for a zero-size struct.
1073     if (strategy.getIvarSize().isZero())
1074       return;
1075 
1076     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1077 
1078     // Currently, all atomic accesses have to be through integer
1079     // types, so there's no point in trying to pick a prettier type.
1080     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1081     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1082     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1083 
1084     // Perform an atomic load.  This does not impose ordering constraints.
1085     Address ivarAddr = LV.getAddress();
1086     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1087     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1088     load->setAtomic(llvm::AtomicOrdering::Unordered);
1089 
1090     // Store that value into the return address.  Doing this with a
1091     // bitcast is likely to produce some pretty ugly IR, but it's not
1092     // the *most* terrible thing in the world.
1093     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1094     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1095     llvm::Value *ivarVal = load;
1096     if (ivarSize > retTySize) {
1097       llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1098       ivarVal = Builder.CreateTrunc(load, newTy);
1099       bitcastType = newTy->getPointerTo();
1100     }
1101     Builder.CreateStore(ivarVal,
1102                         Builder.CreateBitCast(ReturnValue, bitcastType));
1103 
1104     // Make sure we don't do an autorelease.
1105     AutoreleaseResult = false;
1106     return;
1107   }
1108 
1109   case PropertyImplStrategy::GetSetProperty: {
1110     llvm::FunctionCallee getPropertyFn =
1111         CGM.getObjCRuntime().GetPropertyGetFunction();
1112     if (!getPropertyFn) {
1113       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1114       return;
1115     }
1116     CGCallee callee = CGCallee::forDirect(getPropertyFn);
1117 
1118     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1119     // FIXME: Can't this be simpler? This might even be worse than the
1120     // corresponding gcc code.
1121     llvm::Value *cmd =
1122       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1123     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1124     llvm::Value *ivarOffset =
1125       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1126 
1127     CallArgList args;
1128     args.add(RValue::get(self), getContext().getObjCIdType());
1129     args.add(RValue::get(cmd), getContext().getObjCSelType());
1130     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1131     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1132              getContext().BoolTy);
1133 
1134     // FIXME: We shouldn't need to get the function info here, the
1135     // runtime already should have computed it to build the function.
1136     llvm::CallBase *CallInstruction;
1137     RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1138                              getContext().getObjCIdType(), args),
1139                          callee, ReturnValueSlot(), args, &CallInstruction);
1140     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1141       call->setTailCall();
1142 
1143     // We need to fix the type here. Ivars with copy & retain are
1144     // always objects so we don't need to worry about complex or
1145     // aggregates.
1146     RV = RValue::get(Builder.CreateBitCast(
1147         RV.getScalarVal(),
1148         getTypes().ConvertType(getterMethod->getReturnType())));
1149 
1150     EmitReturnOfRValue(RV, propType);
1151 
1152     // objc_getProperty does an autorelease, so we should suppress ours.
1153     AutoreleaseResult = false;
1154 
1155     return;
1156   }
1157 
1158   case PropertyImplStrategy::CopyStruct:
1159     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1160                          strategy.hasStrongMember());
1161     return;
1162 
1163   case PropertyImplStrategy::Expression:
1164   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1165     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1166 
1167     QualType ivarType = ivar->getType();
1168     switch (getEvaluationKind(ivarType)) {
1169     case TEK_Complex: {
1170       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1171       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1172                          /*init*/ true);
1173       return;
1174     }
1175     case TEK_Aggregate: {
1176       // The return value slot is guaranteed to not be aliased, but
1177       // that's not necessarily the same as "on the stack", so
1178       // we still potentially need objc_memmove_collectable.
1179       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1180                         /* Src= */ LV, ivarType, getOverlapForReturnValue());
1181       return;
1182     }
1183     case TEK_Scalar: {
1184       llvm::Value *value;
1185       if (propType->isReferenceType()) {
1186         value = LV.getAddress().getPointer();
1187       } else {
1188         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1189         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1190           if (getLangOpts().ObjCAutoRefCount) {
1191             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1192           } else {
1193             value = EmitARCLoadWeak(LV.getAddress());
1194           }
1195 
1196         // Otherwise we want to do a simple load, suppressing the
1197         // final autorelease.
1198         } else {
1199           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1200           AutoreleaseResult = false;
1201         }
1202 
1203         value = Builder.CreateBitCast(
1204             value, ConvertType(GetterMethodDecl->getReturnType()));
1205       }
1206 
1207       EmitReturnOfRValue(RValue::get(value), propType);
1208       return;
1209     }
1210     }
1211     llvm_unreachable("bad evaluation kind");
1212   }
1213 
1214   }
1215   llvm_unreachable("bad @property implementation strategy!");
1216 }
1217 
1218 /// emitStructSetterCall - Call the runtime function to store the value
1219 /// from the first formal parameter into the given ivar.
1220 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1221                                  ObjCIvarDecl *ivar) {
1222   // objc_copyStruct (&structIvar, &Arg,
1223   //                  sizeof (struct something), true, false);
1224   CallArgList args;
1225 
1226   // The first argument is the address of the ivar.
1227   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1228                                                 CGF.LoadObjCSelf(), ivar, 0)
1229     .getPointer();
1230   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1231   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1232 
1233   // The second argument is the address of the parameter variable.
1234   ParmVarDecl *argVar = *OMD->param_begin();
1235   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1236                      argVar->getType().getNonReferenceType(), VK_LValue,
1237                      SourceLocation());
1238   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1239   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1240   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1241 
1242   // The third argument is the sizeof the type.
1243   llvm::Value *size =
1244     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1245   args.add(RValue::get(size), CGF.getContext().getSizeType());
1246 
1247   // The fourth argument is the 'isAtomic' flag.
1248   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1249 
1250   // The fifth argument is the 'hasStrong' flag.
1251   // FIXME: should this really always be false?
1252   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1253 
1254   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1255   CGCallee callee = CGCallee::forDirect(fn);
1256   CGF.EmitCall(
1257       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1258                callee, ReturnValueSlot(), args);
1259 }
1260 
1261 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1262 /// the value from the first formal parameter into the given ivar, using
1263 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1264 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1265                                           ObjCMethodDecl *OMD,
1266                                           ObjCIvarDecl *ivar,
1267                                           llvm::Constant *AtomicHelperFn) {
1268   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1269   //                           AtomicHelperFn);
1270   CallArgList args;
1271 
1272   // The first argument is the address of the ivar.
1273   llvm::Value *ivarAddr =
1274     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1275                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
1276   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1277   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1278 
1279   // The second argument is the address of the parameter variable.
1280   ParmVarDecl *argVar = *OMD->param_begin();
1281   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1282                      argVar->getType().getNonReferenceType(), VK_LValue,
1283                      SourceLocation());
1284   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1285   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1286   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1287 
1288   // Third argument is the helper function.
1289   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1290 
1291   llvm::FunctionCallee fn =
1292       CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1293   CGCallee callee = CGCallee::forDirect(fn);
1294   CGF.EmitCall(
1295       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1296                callee, ReturnValueSlot(), args);
1297 }
1298 
1299 
1300 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1301   Expr *setter = PID->getSetterCXXAssignment();
1302   if (!setter) return true;
1303 
1304   // Sema only makes only of these when the ivar has a C++ class type,
1305   // so the form is pretty constrained.
1306 
1307   // An operator call is trivial if the function it calls is trivial.
1308   // This also implies that there's nothing non-trivial going on with
1309   // the arguments, because operator= can only be trivial if it's a
1310   // synthesized assignment operator and therefore both parameters are
1311   // references.
1312   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1313     if (const FunctionDecl *callee
1314           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1315       if (callee->isTrivial())
1316         return true;
1317     return false;
1318   }
1319 
1320   assert(isa<ExprWithCleanups>(setter));
1321   return false;
1322 }
1323 
1324 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1325   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1326     return false;
1327   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1328 }
1329 
1330 void
1331 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1332                                         const ObjCPropertyImplDecl *propImpl,
1333                                         llvm::Constant *AtomicHelperFn) {
1334   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1335   ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1336 
1337   // Just use the setter expression if Sema gave us one and it's
1338   // non-trivial.
1339   if (!hasTrivialSetExpr(propImpl)) {
1340     if (!AtomicHelperFn)
1341       // If non-atomic, assignment is called directly.
1342       EmitStmt(propImpl->getSetterCXXAssignment());
1343     else
1344       // If atomic, assignment is called via a locking api.
1345       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1346                                     AtomicHelperFn);
1347     return;
1348   }
1349 
1350   PropertyImplStrategy strategy(CGM, propImpl);
1351   switch (strategy.getKind()) {
1352   case PropertyImplStrategy::Native: {
1353     // We don't need to do anything for a zero-size struct.
1354     if (strategy.getIvarSize().isZero())
1355       return;
1356 
1357     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1358 
1359     LValue ivarLValue =
1360       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1361     Address ivarAddr = ivarLValue.getAddress();
1362 
1363     // Currently, all atomic accesses have to be through integer
1364     // types, so there's no point in trying to pick a prettier type.
1365     llvm::Type *bitcastType =
1366       llvm::Type::getIntNTy(getLLVMContext(),
1367                             getContext().toBits(strategy.getIvarSize()));
1368 
1369     // Cast both arguments to the chosen operation type.
1370     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1371     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1372 
1373     // This bitcast load is likely to cause some nasty IR.
1374     llvm::Value *load = Builder.CreateLoad(argAddr);
1375 
1376     // Perform an atomic store.  There are no memory ordering requirements.
1377     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1378     store->setAtomic(llvm::AtomicOrdering::Unordered);
1379     return;
1380   }
1381 
1382   case PropertyImplStrategy::GetSetProperty:
1383   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1384 
1385     llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1386     llvm::FunctionCallee setPropertyFn = nullptr;
1387     if (UseOptimizedSetter(CGM)) {
1388       // 10.8 and iOS 6.0 code and GC is off
1389       setOptimizedPropertyFn =
1390           CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1391               strategy.isAtomic(), strategy.isCopy());
1392       if (!setOptimizedPropertyFn) {
1393         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1394         return;
1395       }
1396     }
1397     else {
1398       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1399       if (!setPropertyFn) {
1400         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1401         return;
1402       }
1403     }
1404 
1405     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1406     //                       <is-atomic>, <is-copy>).
1407     llvm::Value *cmd =
1408       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1409     llvm::Value *self =
1410       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1411     llvm::Value *ivarOffset =
1412       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1413     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1414     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1415     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1416 
1417     CallArgList args;
1418     args.add(RValue::get(self), getContext().getObjCIdType());
1419     args.add(RValue::get(cmd), getContext().getObjCSelType());
1420     if (setOptimizedPropertyFn) {
1421       args.add(RValue::get(arg), getContext().getObjCIdType());
1422       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1423       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1424       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1425                callee, ReturnValueSlot(), args);
1426     } else {
1427       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1428       args.add(RValue::get(arg), getContext().getObjCIdType());
1429       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1430                getContext().BoolTy);
1431       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1432                getContext().BoolTy);
1433       // FIXME: We shouldn't need to get the function info here, the runtime
1434       // already should have computed it to build the function.
1435       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1436       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1437                callee, ReturnValueSlot(), args);
1438     }
1439 
1440     return;
1441   }
1442 
1443   case PropertyImplStrategy::CopyStruct:
1444     emitStructSetterCall(*this, setterMethod, ivar);
1445     return;
1446 
1447   case PropertyImplStrategy::Expression:
1448     break;
1449   }
1450 
1451   // Otherwise, fake up some ASTs and emit a normal assignment.
1452   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1453   DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1454                    VK_LValue, SourceLocation());
1455   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1456                             selfDecl->getType(), CK_LValueToRValue, &self,
1457                             VK_RValue);
1458   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1459                           SourceLocation(), SourceLocation(),
1460                           &selfLoad, true, true);
1461 
1462   ParmVarDecl *argDecl = *setterMethod->param_begin();
1463   QualType argType = argDecl->getType().getNonReferenceType();
1464   DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1465                   SourceLocation());
1466   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1467                            argType.getUnqualifiedType(), CK_LValueToRValue,
1468                            &arg, VK_RValue);
1469 
1470   // The property type can differ from the ivar type in some situations with
1471   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1472   // The following absurdity is just to ensure well-formed IR.
1473   CastKind argCK = CK_NoOp;
1474   if (ivarRef.getType()->isObjCObjectPointerType()) {
1475     if (argLoad.getType()->isObjCObjectPointerType())
1476       argCK = CK_BitCast;
1477     else if (argLoad.getType()->isBlockPointerType())
1478       argCK = CK_BlockPointerToObjCPointerCast;
1479     else
1480       argCK = CK_CPointerToObjCPointerCast;
1481   } else if (ivarRef.getType()->isBlockPointerType()) {
1482      if (argLoad.getType()->isBlockPointerType())
1483       argCK = CK_BitCast;
1484     else
1485       argCK = CK_AnyPointerToBlockPointerCast;
1486   } else if (ivarRef.getType()->isPointerType()) {
1487     argCK = CK_BitCast;
1488   }
1489   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1490                            ivarRef.getType(), argCK, &argLoad,
1491                            VK_RValue);
1492   Expr *finalArg = &argLoad;
1493   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1494                                            argLoad.getType()))
1495     finalArg = &argCast;
1496 
1497 
1498   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1499                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1500                         SourceLocation(), FPOptions());
1501   EmitStmt(&assign);
1502 }
1503 
1504 /// Generate an Objective-C property setter function.
1505 ///
1506 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1507 /// is illegal within a category.
1508 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1509                                          const ObjCPropertyImplDecl *PID) {
1510   llvm::Constant *AtomicHelperFn =
1511       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1512   ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1513   assert(OMD && "Invalid call to generate setter (empty method)");
1514   StartObjCMethod(OMD, IMP->getClassInterface());
1515 
1516   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1517 
1518   FinishFunction();
1519 }
1520 
1521 namespace {
1522   struct DestroyIvar final : EHScopeStack::Cleanup {
1523   private:
1524     llvm::Value *addr;
1525     const ObjCIvarDecl *ivar;
1526     CodeGenFunction::Destroyer *destroyer;
1527     bool useEHCleanupForArray;
1528   public:
1529     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1530                 CodeGenFunction::Destroyer *destroyer,
1531                 bool useEHCleanupForArray)
1532       : addr(addr), ivar(ivar), destroyer(destroyer),
1533         useEHCleanupForArray(useEHCleanupForArray) {}
1534 
1535     void Emit(CodeGenFunction &CGF, Flags flags) override {
1536       LValue lvalue
1537         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1538       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1539                       flags.isForNormalCleanup() && useEHCleanupForArray);
1540     }
1541   };
1542 }
1543 
1544 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1545 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1546                                       Address addr,
1547                                       QualType type) {
1548   llvm::Value *null = getNullForVariable(addr);
1549   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1550 }
1551 
1552 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1553                                   ObjCImplementationDecl *impl) {
1554   CodeGenFunction::RunCleanupsScope scope(CGF);
1555 
1556   llvm::Value *self = CGF.LoadObjCSelf();
1557 
1558   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1559   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1560        ivar; ivar = ivar->getNextIvar()) {
1561     QualType type = ivar->getType();
1562 
1563     // Check whether the ivar is a destructible type.
1564     QualType::DestructionKind dtorKind = type.isDestructedType();
1565     if (!dtorKind) continue;
1566 
1567     CodeGenFunction::Destroyer *destroyer = nullptr;
1568 
1569     // Use a call to objc_storeStrong to destroy strong ivars, for the
1570     // general benefit of the tools.
1571     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1572       destroyer = destroyARCStrongWithStore;
1573 
1574     // Otherwise use the default for the destruction kind.
1575     } else {
1576       destroyer = CGF.getDestroyer(dtorKind);
1577     }
1578 
1579     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1580 
1581     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1582                                          cleanupKind & EHCleanup);
1583   }
1584 
1585   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1586 }
1587 
1588 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1589                                                  ObjCMethodDecl *MD,
1590                                                  bool ctor) {
1591   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1592   StartObjCMethod(MD, IMP->getClassInterface());
1593 
1594   // Emit .cxx_construct.
1595   if (ctor) {
1596     // Suppress the final autorelease in ARC.
1597     AutoreleaseResult = false;
1598 
1599     for (const auto *IvarInit : IMP->inits()) {
1600       FieldDecl *Field = IvarInit->getAnyMember();
1601       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1602       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1603                                     LoadObjCSelf(), Ivar, 0);
1604       EmitAggExpr(IvarInit->getInit(),
1605                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1606                                           AggValueSlot::DoesNotNeedGCBarriers,
1607                                           AggValueSlot::IsNotAliased,
1608                                           AggValueSlot::DoesNotOverlap));
1609     }
1610     // constructor returns 'self'.
1611     CodeGenTypes &Types = CGM.getTypes();
1612     QualType IdTy(CGM.getContext().getObjCIdType());
1613     llvm::Value *SelfAsId =
1614       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1615     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1616 
1617   // Emit .cxx_destruct.
1618   } else {
1619     emitCXXDestructMethod(*this, IMP);
1620   }
1621   FinishFunction();
1622 }
1623 
1624 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1625   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1626   DeclRefExpr DRE(getContext(), Self,
1627                   /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1628                   Self->getType(), VK_LValue, SourceLocation());
1629   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1630 }
1631 
1632 QualType CodeGenFunction::TypeOfSelfObject() {
1633   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1634   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1635   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1636     getContext().getCanonicalType(selfDecl->getType()));
1637   return PTy->getPointeeType();
1638 }
1639 
1640 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1641   llvm::FunctionCallee EnumerationMutationFnPtr =
1642       CGM.getObjCRuntime().EnumerationMutationFunction();
1643   if (!EnumerationMutationFnPtr) {
1644     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1645     return;
1646   }
1647   CGCallee EnumerationMutationFn =
1648     CGCallee::forDirect(EnumerationMutationFnPtr);
1649 
1650   CGDebugInfo *DI = getDebugInfo();
1651   if (DI)
1652     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1653 
1654   RunCleanupsScope ForScope(*this);
1655 
1656   // The local variable comes into scope immediately.
1657   AutoVarEmission variable = AutoVarEmission::invalid();
1658   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1659     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1660 
1661   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1662 
1663   // Fast enumeration state.
1664   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1665   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1666   EmitNullInitialization(StatePtr, StateTy);
1667 
1668   // Number of elements in the items array.
1669   static const unsigned NumItems = 16;
1670 
1671   // Fetch the countByEnumeratingWithState:objects:count: selector.
1672   IdentifierInfo *II[] = {
1673     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1674     &CGM.getContext().Idents.get("objects"),
1675     &CGM.getContext().Idents.get("count")
1676   };
1677   Selector FastEnumSel =
1678     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1679 
1680   QualType ItemsTy =
1681     getContext().getConstantArrayType(getContext().getObjCIdType(),
1682                                       llvm::APInt(32, NumItems), nullptr,
1683                                       ArrayType::Normal, 0);
1684   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1685 
1686   // Emit the collection pointer.  In ARC, we do a retain.
1687   llvm::Value *Collection;
1688   if (getLangOpts().ObjCAutoRefCount) {
1689     Collection = EmitARCRetainScalarExpr(S.getCollection());
1690 
1691     // Enter a cleanup to do the release.
1692     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1693   } else {
1694     Collection = EmitScalarExpr(S.getCollection());
1695   }
1696 
1697   // The 'continue' label needs to appear within the cleanup for the
1698   // collection object.
1699   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1700 
1701   // Send it our message:
1702   CallArgList Args;
1703 
1704   // The first argument is a temporary of the enumeration-state type.
1705   Args.add(RValue::get(StatePtr.getPointer()),
1706            getContext().getPointerType(StateTy));
1707 
1708   // The second argument is a temporary array with space for NumItems
1709   // pointers.  We'll actually be loading elements from the array
1710   // pointer written into the control state; this buffer is so that
1711   // collections that *aren't* backed by arrays can still queue up
1712   // batches of elements.
1713   Args.add(RValue::get(ItemsPtr.getPointer()),
1714            getContext().getPointerType(ItemsTy));
1715 
1716   // The third argument is the capacity of that temporary array.
1717   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1718   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1719   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1720 
1721   // Start the enumeration.
1722   RValue CountRV =
1723       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1724                                                getContext().getNSUIntegerType(),
1725                                                FastEnumSel, Collection, Args);
1726 
1727   // The initial number of objects that were returned in the buffer.
1728   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1729 
1730   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1731   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1732 
1733   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1734 
1735   // If the limit pointer was zero to begin with, the collection is
1736   // empty; skip all this. Set the branch weight assuming this has the same
1737   // probability of exiting the loop as any other loop exit.
1738   uint64_t EntryCount = getCurrentProfileCount();
1739   Builder.CreateCondBr(
1740       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1741       LoopInitBB,
1742       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1743 
1744   // Otherwise, initialize the loop.
1745   EmitBlock(LoopInitBB);
1746 
1747   // Save the initial mutations value.  This is the value at an
1748   // address that was written into the state object by
1749   // countByEnumeratingWithState:objects:count:.
1750   Address StateMutationsPtrPtr =
1751       Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1752   llvm::Value *StateMutationsPtr
1753     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1754 
1755   llvm::Value *initialMutations =
1756     Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1757                               "forcoll.initial-mutations");
1758 
1759   // Start looping.  This is the point we return to whenever we have a
1760   // fresh, non-empty batch of objects.
1761   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1762   EmitBlock(LoopBodyBB);
1763 
1764   // The current index into the buffer.
1765   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1766   index->addIncoming(zero, LoopInitBB);
1767 
1768   // The current buffer size.
1769   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1770   count->addIncoming(initialBufferLimit, LoopInitBB);
1771 
1772   incrementProfileCounter(&S);
1773 
1774   // Check whether the mutations value has changed from where it was
1775   // at start.  StateMutationsPtr should actually be invariant between
1776   // refreshes.
1777   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1778   llvm::Value *currentMutations
1779     = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1780                                 "statemutations");
1781 
1782   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1783   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1784 
1785   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1786                        WasNotMutatedBB, WasMutatedBB);
1787 
1788   // If so, call the enumeration-mutation function.
1789   EmitBlock(WasMutatedBB);
1790   llvm::Value *V =
1791     Builder.CreateBitCast(Collection,
1792                           ConvertType(getContext().getObjCIdType()));
1793   CallArgList Args2;
1794   Args2.add(RValue::get(V), getContext().getObjCIdType());
1795   // FIXME: We shouldn't need to get the function info here, the runtime already
1796   // should have computed it to build the function.
1797   EmitCall(
1798           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1799            EnumerationMutationFn, ReturnValueSlot(), Args2);
1800 
1801   // Otherwise, or if the mutation function returns, just continue.
1802   EmitBlock(WasNotMutatedBB);
1803 
1804   // Initialize the element variable.
1805   RunCleanupsScope elementVariableScope(*this);
1806   bool elementIsVariable;
1807   LValue elementLValue;
1808   QualType elementType;
1809   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1810     // Initialize the variable, in case it's a __block variable or something.
1811     EmitAutoVarInit(variable);
1812 
1813     const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1814     DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1815                         D->getType(), VK_LValue, SourceLocation());
1816     elementLValue = EmitLValue(&tempDRE);
1817     elementType = D->getType();
1818     elementIsVariable = true;
1819 
1820     if (D->isARCPseudoStrong())
1821       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1822   } else {
1823     elementLValue = LValue(); // suppress warning
1824     elementType = cast<Expr>(S.getElement())->getType();
1825     elementIsVariable = false;
1826   }
1827   llvm::Type *convertedElementType = ConvertType(elementType);
1828 
1829   // Fetch the buffer out of the enumeration state.
1830   // TODO: this pointer should actually be invariant between
1831   // refreshes, which would help us do certain loop optimizations.
1832   Address StateItemsPtr =
1833       Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1834   llvm::Value *EnumStateItems =
1835     Builder.CreateLoad(StateItemsPtr, "stateitems");
1836 
1837   // Fetch the value at the current index from the buffer.
1838   llvm::Value *CurrentItemPtr =
1839     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1840   llvm::Value *CurrentItem =
1841     Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1842 
1843   // Cast that value to the right type.
1844   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1845                                       "currentitem");
1846 
1847   // Make sure we have an l-value.  Yes, this gets evaluated every
1848   // time through the loop.
1849   if (!elementIsVariable) {
1850     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1851     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1852   } else {
1853     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1854                            /*isInit*/ true);
1855   }
1856 
1857   // If we do have an element variable, this assignment is the end of
1858   // its initialization.
1859   if (elementIsVariable)
1860     EmitAutoVarCleanups(variable);
1861 
1862   // Perform the loop body, setting up break and continue labels.
1863   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1864   {
1865     RunCleanupsScope Scope(*this);
1866     EmitStmt(S.getBody());
1867   }
1868   BreakContinueStack.pop_back();
1869 
1870   // Destroy the element variable now.
1871   elementVariableScope.ForceCleanup();
1872 
1873   // Check whether there are more elements.
1874   EmitBlock(AfterBody.getBlock());
1875 
1876   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1877 
1878   // First we check in the local buffer.
1879   llvm::Value *indexPlusOne =
1880       Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1881 
1882   // If we haven't overrun the buffer yet, we can continue.
1883   // Set the branch weights based on the simplifying assumption that this is
1884   // like a while-loop, i.e., ignoring that the false branch fetches more
1885   // elements and then returns to the loop.
1886   Builder.CreateCondBr(
1887       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1888       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1889 
1890   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1891   count->addIncoming(count, AfterBody.getBlock());
1892 
1893   // Otherwise, we have to fetch more elements.
1894   EmitBlock(FetchMoreBB);
1895 
1896   CountRV =
1897       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1898                                                getContext().getNSUIntegerType(),
1899                                                FastEnumSel, Collection, Args);
1900 
1901   // If we got a zero count, we're done.
1902   llvm::Value *refetchCount = CountRV.getScalarVal();
1903 
1904   // (note that the message send might split FetchMoreBB)
1905   index->addIncoming(zero, Builder.GetInsertBlock());
1906   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1907 
1908   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1909                        EmptyBB, LoopBodyBB);
1910 
1911   // No more elements.
1912   EmitBlock(EmptyBB);
1913 
1914   if (!elementIsVariable) {
1915     // If the element was not a declaration, set it to be null.
1916 
1917     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1918     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1919     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1920   }
1921 
1922   if (DI)
1923     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1924 
1925   ForScope.ForceCleanup();
1926   EmitBlock(LoopEnd.getBlock());
1927 }
1928 
1929 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1930   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1931 }
1932 
1933 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1934   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1935 }
1936 
1937 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1938                                               const ObjCAtSynchronizedStmt &S) {
1939   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1940 }
1941 
1942 namespace {
1943   struct CallObjCRelease final : EHScopeStack::Cleanup {
1944     CallObjCRelease(llvm::Value *object) : object(object) {}
1945     llvm::Value *object;
1946 
1947     void Emit(CodeGenFunction &CGF, Flags flags) override {
1948       // Releases at the end of the full-expression are imprecise.
1949       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1950     }
1951   };
1952 }
1953 
1954 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1955 /// release at the end of the full-expression.
1956 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1957                                                     llvm::Value *object) {
1958   // If we're in a conditional branch, we need to make the cleanup
1959   // conditional.
1960   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1961   return object;
1962 }
1963 
1964 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1965                                                            llvm::Value *value) {
1966   return EmitARCRetainAutorelease(type, value);
1967 }
1968 
1969 /// Given a number of pointers, inform the optimizer that they're
1970 /// being intrinsically used up until this point in the program.
1971 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1972   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1973   if (!fn)
1974     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
1975 
1976   // This isn't really a "runtime" function, but as an intrinsic it
1977   // doesn't really matter as long as we align things up.
1978   EmitNounwindRuntimeCall(fn, values);
1979 }
1980 
1981 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
1982   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
1983     // If the target runtime doesn't naturally support ARC, emit weak
1984     // references to the runtime support library.  We don't really
1985     // permit this to fail, but we need a particular relocation style.
1986     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
1987         !CGM.getTriple().isOSBinFormatCOFF()) {
1988       F->setLinkage(llvm::Function::ExternalWeakLinkage);
1989     }
1990   }
1991 }
1992 
1993 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
1994                                          llvm::FunctionCallee RTF) {
1995   setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
1996 }
1997 
1998 /// Perform an operation having the signature
1999 ///   i8* (i8*)
2000 /// where a null input causes a no-op and returns null.
2001 static llvm::Value *emitARCValueOperation(
2002     CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2003     llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2004     llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2005   if (isa<llvm::ConstantPointerNull>(value))
2006     return value;
2007 
2008   if (!fn) {
2009     fn = CGF.CGM.getIntrinsic(IntID);
2010     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2011   }
2012 
2013   // Cast the argument to 'id'.
2014   llvm::Type *origType = returnType ? returnType : value->getType();
2015   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2016 
2017   // Call the function.
2018   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2019   call->setTailCallKind(tailKind);
2020 
2021   // Cast the result back to the original type.
2022   return CGF.Builder.CreateBitCast(call, origType);
2023 }
2024 
2025 /// Perform an operation having the following signature:
2026 ///   i8* (i8**)
2027 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2028                                          llvm::Function *&fn,
2029                                          llvm::Intrinsic::ID IntID) {
2030   if (!fn) {
2031     fn = CGF.CGM.getIntrinsic(IntID);
2032     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2033   }
2034 
2035   // Cast the argument to 'id*'.
2036   llvm::Type *origType = addr.getElementType();
2037   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
2038 
2039   // Call the function.
2040   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2041 
2042   // Cast the result back to a dereference of the original type.
2043   if (origType != CGF.Int8PtrTy)
2044     result = CGF.Builder.CreateBitCast(result, origType);
2045 
2046   return result;
2047 }
2048 
2049 /// Perform an operation having the following signature:
2050 ///   i8* (i8**, i8*)
2051 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2052                                           llvm::Value *value,
2053                                           llvm::Function *&fn,
2054                                           llvm::Intrinsic::ID IntID,
2055                                           bool ignored) {
2056   assert(addr.getElementType() == value->getType());
2057 
2058   if (!fn) {
2059     fn = CGF.CGM.getIntrinsic(IntID);
2060     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2061   }
2062 
2063   llvm::Type *origType = value->getType();
2064 
2065   llvm::Value *args[] = {
2066     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2067     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2068   };
2069   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2070 
2071   if (ignored) return nullptr;
2072 
2073   return CGF.Builder.CreateBitCast(result, origType);
2074 }
2075 
2076 /// Perform an operation having the following signature:
2077 ///   void (i8**, i8**)
2078 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2079                                  llvm::Function *&fn,
2080                                  llvm::Intrinsic::ID IntID) {
2081   assert(dst.getType() == src.getType());
2082 
2083   if (!fn) {
2084     fn = CGF.CGM.getIntrinsic(IntID);
2085     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2086   }
2087 
2088   llvm::Value *args[] = {
2089     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2090     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2091   };
2092   CGF.EmitNounwindRuntimeCall(fn, args);
2093 }
2094 
2095 /// Perform an operation having the signature
2096 ///   i8* (i8*)
2097 /// where a null input causes a no-op and returns null.
2098 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2099                                            llvm::Value *value,
2100                                            llvm::Type *returnType,
2101                                            llvm::FunctionCallee &fn,
2102                                            StringRef fnName) {
2103   if (isa<llvm::ConstantPointerNull>(value))
2104     return value;
2105 
2106   if (!fn) {
2107     llvm::FunctionType *fnType =
2108       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2109     fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2110 
2111     // We have Native ARC, so set nonlazybind attribute for performance
2112     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2113       if (fnName == "objc_retain")
2114         f->addFnAttr(llvm::Attribute::NonLazyBind);
2115   }
2116 
2117   // Cast the argument to 'id'.
2118   llvm::Type *origType = returnType ? returnType : value->getType();
2119   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2120 
2121   // Call the function.
2122   llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2123 
2124   // Cast the result back to the original type.
2125   return CGF.Builder.CreateBitCast(Inst, origType);
2126 }
2127 
2128 /// Produce the code to do a retain.  Based on the type, calls one of:
2129 ///   call i8* \@objc_retain(i8* %value)
2130 ///   call i8* \@objc_retainBlock(i8* %value)
2131 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2132   if (type->isBlockPointerType())
2133     return EmitARCRetainBlock(value, /*mandatory*/ false);
2134   else
2135     return EmitARCRetainNonBlock(value);
2136 }
2137 
2138 /// Retain the given object, with normal retain semantics.
2139 ///   call i8* \@objc_retain(i8* %value)
2140 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2141   return emitARCValueOperation(*this, value, nullptr,
2142                                CGM.getObjCEntrypoints().objc_retain,
2143                                llvm::Intrinsic::objc_retain);
2144 }
2145 
2146 /// Retain the given block, with _Block_copy semantics.
2147 ///   call i8* \@objc_retainBlock(i8* %value)
2148 ///
2149 /// \param mandatory - If false, emit the call with metadata
2150 /// indicating that it's okay for the optimizer to eliminate this call
2151 /// if it can prove that the block never escapes except down the stack.
2152 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2153                                                  bool mandatory) {
2154   llvm::Value *result
2155     = emitARCValueOperation(*this, value, nullptr,
2156                             CGM.getObjCEntrypoints().objc_retainBlock,
2157                             llvm::Intrinsic::objc_retainBlock);
2158 
2159   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2160   // tell the optimizer that it doesn't need to do this copy if the
2161   // block doesn't escape, where being passed as an argument doesn't
2162   // count as escaping.
2163   if (!mandatory && isa<llvm::Instruction>(result)) {
2164     llvm::CallInst *call
2165       = cast<llvm::CallInst>(result->stripPointerCasts());
2166     assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock);
2167 
2168     call->setMetadata("clang.arc.copy_on_escape",
2169                       llvm::MDNode::get(Builder.getContext(), None));
2170   }
2171 
2172   return result;
2173 }
2174 
2175 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2176   // Fetch the void(void) inline asm which marks that we're going to
2177   // do something with the autoreleased return value.
2178   llvm::InlineAsm *&marker
2179     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2180   if (!marker) {
2181     StringRef assembly
2182       = CGF.CGM.getTargetCodeGenInfo()
2183            .getARCRetainAutoreleasedReturnValueMarker();
2184 
2185     // If we have an empty assembly string, there's nothing to do.
2186     if (assembly.empty()) {
2187 
2188     // Otherwise, at -O0, build an inline asm that we're going to call
2189     // in a moment.
2190     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2191       llvm::FunctionType *type =
2192         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2193 
2194       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2195 
2196     // If we're at -O1 and above, we don't want to litter the code
2197     // with this marker yet, so leave a breadcrumb for the ARC
2198     // optimizer to pick up.
2199     } else {
2200       const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker";
2201       if (!CGF.CGM.getModule().getModuleFlag(markerKey)) {
2202         auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2203         CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str);
2204       }
2205     }
2206   }
2207 
2208   // Call the marker asm if we made one, which we do only at -O0.
2209   if (marker)
2210     CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2211 }
2212 
2213 /// Retain the given object which is the result of a function call.
2214 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2215 ///
2216 /// Yes, this function name is one character away from a different
2217 /// call with completely different semantics.
2218 llvm::Value *
2219 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2220   emitAutoreleasedReturnValueMarker(*this);
2221   llvm::CallInst::TailCallKind tailKind =
2222       CGM.getTargetCodeGenInfo()
2223               .shouldSuppressTailCallsOfRetainAutoreleasedReturnValue()
2224           ? llvm::CallInst::TCK_NoTail
2225           : llvm::CallInst::TCK_None;
2226   return emitARCValueOperation(
2227       *this, value, nullptr,
2228       CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2229       llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind);
2230 }
2231 
2232 /// Claim a possibly-autoreleased return value at +0.  This is only
2233 /// valid to do in contexts which do not rely on the retain to keep
2234 /// the object valid for all of its uses; for example, when
2235 /// the value is ignored, or when it is being assigned to an
2236 /// __unsafe_unretained variable.
2237 ///
2238 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2239 llvm::Value *
2240 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2241   emitAutoreleasedReturnValueMarker(*this);
2242   return emitARCValueOperation(*this, value, nullptr,
2243               CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2244                      llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue);
2245 }
2246 
2247 /// Release the given object.
2248 ///   call void \@objc_release(i8* %value)
2249 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2250                                      ARCPreciseLifetime_t precise) {
2251   if (isa<llvm::ConstantPointerNull>(value)) return;
2252 
2253   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2254   if (!fn) {
2255     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release);
2256     setARCRuntimeFunctionLinkage(CGM, fn);
2257   }
2258 
2259   // Cast the argument to 'id'.
2260   value = Builder.CreateBitCast(value, Int8PtrTy);
2261 
2262   // Call objc_release.
2263   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2264 
2265   if (precise == ARCImpreciseLifetime) {
2266     call->setMetadata("clang.imprecise_release",
2267                       llvm::MDNode::get(Builder.getContext(), None));
2268   }
2269 }
2270 
2271 /// Destroy a __strong variable.
2272 ///
2273 /// At -O0, emit a call to store 'null' into the address;
2274 /// instrumenting tools prefer this because the address is exposed,
2275 /// but it's relatively cumbersome to optimize.
2276 ///
2277 /// At -O1 and above, just load and call objc_release.
2278 ///
2279 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2280 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2281                                            ARCPreciseLifetime_t precise) {
2282   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2283     llvm::Value *null = getNullForVariable(addr);
2284     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2285     return;
2286   }
2287 
2288   llvm::Value *value = Builder.CreateLoad(addr);
2289   EmitARCRelease(value, precise);
2290 }
2291 
2292 /// Store into a strong object.  Always calls this:
2293 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2294 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2295                                                      llvm::Value *value,
2296                                                      bool ignored) {
2297   assert(addr.getElementType() == value->getType());
2298 
2299   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2300   if (!fn) {
2301     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong);
2302     setARCRuntimeFunctionLinkage(CGM, fn);
2303   }
2304 
2305   llvm::Value *args[] = {
2306     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2307     Builder.CreateBitCast(value, Int8PtrTy)
2308   };
2309   EmitNounwindRuntimeCall(fn, args);
2310 
2311   if (ignored) return nullptr;
2312   return value;
2313 }
2314 
2315 /// Store into a strong object.  Sometimes calls this:
2316 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2317 /// Other times, breaks it down into components.
2318 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2319                                                  llvm::Value *newValue,
2320                                                  bool ignored) {
2321   QualType type = dst.getType();
2322   bool isBlock = type->isBlockPointerType();
2323 
2324   // Use a store barrier at -O0 unless this is a block type or the
2325   // lvalue is inadequately aligned.
2326   if (shouldUseFusedARCCalls() &&
2327       !isBlock &&
2328       (dst.getAlignment().isZero() ||
2329        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2330     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2331   }
2332 
2333   // Otherwise, split it out.
2334 
2335   // Retain the new value.
2336   newValue = EmitARCRetain(type, newValue);
2337 
2338   // Read the old value.
2339   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2340 
2341   // Store.  We do this before the release so that any deallocs won't
2342   // see the old value.
2343   EmitStoreOfScalar(newValue, dst);
2344 
2345   // Finally, release the old value.
2346   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2347 
2348   return newValue;
2349 }
2350 
2351 /// Autorelease the given object.
2352 ///   call i8* \@objc_autorelease(i8* %value)
2353 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2354   return emitARCValueOperation(*this, value, nullptr,
2355                                CGM.getObjCEntrypoints().objc_autorelease,
2356                                llvm::Intrinsic::objc_autorelease);
2357 }
2358 
2359 /// Autorelease the given object.
2360 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2361 llvm::Value *
2362 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2363   return emitARCValueOperation(*this, value, nullptr,
2364                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2365                                llvm::Intrinsic::objc_autoreleaseReturnValue,
2366                                llvm::CallInst::TCK_Tail);
2367 }
2368 
2369 /// Do a fused retain/autorelease of the given object.
2370 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2371 llvm::Value *
2372 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2373   return emitARCValueOperation(*this, value, nullptr,
2374                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2375                              llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2376                                llvm::CallInst::TCK_Tail);
2377 }
2378 
2379 /// Do a fused retain/autorelease of the given object.
2380 ///   call i8* \@objc_retainAutorelease(i8* %value)
2381 /// or
2382 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2383 ///   call i8* \@objc_autorelease(i8* %retain)
2384 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2385                                                        llvm::Value *value) {
2386   if (!type->isBlockPointerType())
2387     return EmitARCRetainAutoreleaseNonBlock(value);
2388 
2389   if (isa<llvm::ConstantPointerNull>(value)) return value;
2390 
2391   llvm::Type *origType = value->getType();
2392   value = Builder.CreateBitCast(value, Int8PtrTy);
2393   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2394   value = EmitARCAutorelease(value);
2395   return Builder.CreateBitCast(value, origType);
2396 }
2397 
2398 /// Do a fused retain/autorelease of the given object.
2399 ///   call i8* \@objc_retainAutorelease(i8* %value)
2400 llvm::Value *
2401 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2402   return emitARCValueOperation(*this, value, nullptr,
2403                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2404                                llvm::Intrinsic::objc_retainAutorelease);
2405 }
2406 
2407 /// i8* \@objc_loadWeak(i8** %addr)
2408 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2409 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2410   return emitARCLoadOperation(*this, addr,
2411                               CGM.getObjCEntrypoints().objc_loadWeak,
2412                               llvm::Intrinsic::objc_loadWeak);
2413 }
2414 
2415 /// i8* \@objc_loadWeakRetained(i8** %addr)
2416 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2417   return emitARCLoadOperation(*this, addr,
2418                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2419                               llvm::Intrinsic::objc_loadWeakRetained);
2420 }
2421 
2422 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2423 /// Returns %value.
2424 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2425                                                llvm::Value *value,
2426                                                bool ignored) {
2427   return emitARCStoreOperation(*this, addr, value,
2428                                CGM.getObjCEntrypoints().objc_storeWeak,
2429                                llvm::Intrinsic::objc_storeWeak, ignored);
2430 }
2431 
2432 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2433 /// Returns %value.  %addr is known to not have a current weak entry.
2434 /// Essentially equivalent to:
2435 ///   *addr = nil; objc_storeWeak(addr, value);
2436 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2437   // If we're initializing to null, just write null to memory; no need
2438   // to get the runtime involved.  But don't do this if optimization
2439   // is enabled, because accounting for this would make the optimizer
2440   // much more complicated.
2441   if (isa<llvm::ConstantPointerNull>(value) &&
2442       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2443     Builder.CreateStore(value, addr);
2444     return;
2445   }
2446 
2447   emitARCStoreOperation(*this, addr, value,
2448                         CGM.getObjCEntrypoints().objc_initWeak,
2449                         llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2450 }
2451 
2452 /// void \@objc_destroyWeak(i8** %addr)
2453 /// Essentially objc_storeWeak(addr, nil).
2454 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2455   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2456   if (!fn) {
2457     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak);
2458     setARCRuntimeFunctionLinkage(CGM, fn);
2459   }
2460 
2461   // Cast the argument to 'id*'.
2462   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2463 
2464   EmitNounwindRuntimeCall(fn, addr.getPointer());
2465 }
2466 
2467 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2468 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2469 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2470 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2471   emitARCCopyOperation(*this, dst, src,
2472                        CGM.getObjCEntrypoints().objc_moveWeak,
2473                        llvm::Intrinsic::objc_moveWeak);
2474 }
2475 
2476 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2477 /// Disregards the current value in %dest.  Essentially
2478 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2479 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2480   emitARCCopyOperation(*this, dst, src,
2481                        CGM.getObjCEntrypoints().objc_copyWeak,
2482                        llvm::Intrinsic::objc_copyWeak);
2483 }
2484 
2485 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2486                                             Address SrcAddr) {
2487   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2488   Object = EmitObjCConsumeObject(Ty, Object);
2489   EmitARCStoreWeak(DstAddr, Object, false);
2490 }
2491 
2492 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2493                                             Address SrcAddr) {
2494   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2495   Object = EmitObjCConsumeObject(Ty, Object);
2496   EmitARCStoreWeak(DstAddr, Object, false);
2497   EmitARCDestroyWeak(SrcAddr);
2498 }
2499 
2500 /// Produce the code to do a objc_autoreleasepool_push.
2501 ///   call i8* \@objc_autoreleasePoolPush(void)
2502 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2503   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2504   if (!fn) {
2505     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush);
2506     setARCRuntimeFunctionLinkage(CGM, fn);
2507   }
2508 
2509   return EmitNounwindRuntimeCall(fn);
2510 }
2511 
2512 /// Produce the code to do a primitive release.
2513 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2514 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2515   assert(value->getType() == Int8PtrTy);
2516 
2517   if (getInvokeDest()) {
2518     // Call the runtime method not the intrinsic if we are handling exceptions
2519     llvm::FunctionCallee &fn =
2520         CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2521     if (!fn) {
2522       llvm::FunctionType *fnType =
2523         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2524       fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2525       setARCRuntimeFunctionLinkage(CGM, fn);
2526     }
2527 
2528     // objc_autoreleasePoolPop can throw.
2529     EmitRuntimeCallOrInvoke(fn, value);
2530   } else {
2531     llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2532     if (!fn) {
2533       fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop);
2534       setARCRuntimeFunctionLinkage(CGM, fn);
2535     }
2536 
2537     EmitRuntimeCall(fn, value);
2538   }
2539 }
2540 
2541 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2542 /// Which is: [[NSAutoreleasePool alloc] init];
2543 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2544 /// init is declared as: - (id) init; in its NSObject super class.
2545 ///
2546 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2547   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2548   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2549   // [NSAutoreleasePool alloc]
2550   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2551   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2552   CallArgList Args;
2553   RValue AllocRV =
2554     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2555                                 getContext().getObjCIdType(),
2556                                 AllocSel, Receiver, Args);
2557 
2558   // [Receiver init]
2559   Receiver = AllocRV.getScalarVal();
2560   II = &CGM.getContext().Idents.get("init");
2561   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2562   RValue InitRV =
2563     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2564                                 getContext().getObjCIdType(),
2565                                 InitSel, Receiver, Args);
2566   return InitRV.getScalarVal();
2567 }
2568 
2569 /// Allocate the given objc object.
2570 ///   call i8* \@objc_alloc(i8* %value)
2571 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2572                                             llvm::Type *resultType) {
2573   return emitObjCValueOperation(*this, value, resultType,
2574                                 CGM.getObjCEntrypoints().objc_alloc,
2575                                 "objc_alloc");
2576 }
2577 
2578 /// Allocate the given objc object.
2579 ///   call i8* \@objc_allocWithZone(i8* %value)
2580 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2581                                                     llvm::Type *resultType) {
2582   return emitObjCValueOperation(*this, value, resultType,
2583                                 CGM.getObjCEntrypoints().objc_allocWithZone,
2584                                 "objc_allocWithZone");
2585 }
2586 
2587 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2588                                                 llvm::Type *resultType) {
2589   return emitObjCValueOperation(*this, value, resultType,
2590                                 CGM.getObjCEntrypoints().objc_alloc_init,
2591                                 "objc_alloc_init");
2592 }
2593 
2594 /// Produce the code to do a primitive release.
2595 /// [tmp drain];
2596 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2597   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2598   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2599   CallArgList Args;
2600   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2601                               getContext().VoidTy, DrainSel, Arg, Args);
2602 }
2603 
2604 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2605                                               Address addr,
2606                                               QualType type) {
2607   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2608 }
2609 
2610 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2611                                                 Address addr,
2612                                                 QualType type) {
2613   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2614 }
2615 
2616 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2617                                      Address addr,
2618                                      QualType type) {
2619   CGF.EmitARCDestroyWeak(addr);
2620 }
2621 
2622 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2623                                           QualType type) {
2624   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2625   CGF.EmitARCIntrinsicUse(value);
2626 }
2627 
2628 /// Autorelease the given object.
2629 ///   call i8* \@objc_autorelease(i8* %value)
2630 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2631                                                   llvm::Type *returnType) {
2632   return emitObjCValueOperation(
2633       *this, value, returnType,
2634       CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2635       "objc_autorelease");
2636 }
2637 
2638 /// Retain the given object, with normal retain semantics.
2639 ///   call i8* \@objc_retain(i8* %value)
2640 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2641                                                      llvm::Type *returnType) {
2642   return emitObjCValueOperation(
2643       *this, value, returnType,
2644       CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2645 }
2646 
2647 /// Release the given object.
2648 ///   call void \@objc_release(i8* %value)
2649 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2650                                       ARCPreciseLifetime_t precise) {
2651   if (isa<llvm::ConstantPointerNull>(value)) return;
2652 
2653   llvm::FunctionCallee &fn =
2654       CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2655   if (!fn) {
2656     llvm::FunctionType *fnType =
2657         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2658     fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2659     setARCRuntimeFunctionLinkage(CGM, fn);
2660     // We have Native ARC, so set nonlazybind attribute for performance
2661     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2662       f->addFnAttr(llvm::Attribute::NonLazyBind);
2663   }
2664 
2665   // Cast the argument to 'id'.
2666   value = Builder.CreateBitCast(value, Int8PtrTy);
2667 
2668   // Call objc_release.
2669   llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2670 
2671   if (precise == ARCImpreciseLifetime) {
2672     call->setMetadata("clang.imprecise_release",
2673                       llvm::MDNode::get(Builder.getContext(), None));
2674   }
2675 }
2676 
2677 namespace {
2678   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2679     llvm::Value *Token;
2680 
2681     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2682 
2683     void Emit(CodeGenFunction &CGF, Flags flags) override {
2684       CGF.EmitObjCAutoreleasePoolPop(Token);
2685     }
2686   };
2687   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2688     llvm::Value *Token;
2689 
2690     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2691 
2692     void Emit(CodeGenFunction &CGF, Flags flags) override {
2693       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2694     }
2695   };
2696 }
2697 
2698 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2699   if (CGM.getLangOpts().ObjCAutoRefCount)
2700     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2701   else
2702     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2703 }
2704 
2705 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2706   switch (lifetime) {
2707   case Qualifiers::OCL_None:
2708   case Qualifiers::OCL_ExplicitNone:
2709   case Qualifiers::OCL_Strong:
2710   case Qualifiers::OCL_Autoreleasing:
2711     return true;
2712 
2713   case Qualifiers::OCL_Weak:
2714     return false;
2715   }
2716 
2717   llvm_unreachable("impossible lifetime!");
2718 }
2719 
2720 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2721                                                   LValue lvalue,
2722                                                   QualType type) {
2723   llvm::Value *result;
2724   bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2725   if (shouldRetain) {
2726     result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2727   } else {
2728     assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2729     result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress());
2730   }
2731   return TryEmitResult(result, !shouldRetain);
2732 }
2733 
2734 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2735                                                   const Expr *e) {
2736   e = e->IgnoreParens();
2737   QualType type = e->getType();
2738 
2739   // If we're loading retained from a __strong xvalue, we can avoid
2740   // an extra retain/release pair by zeroing out the source of this
2741   // "move" operation.
2742   if (e->isXValue() &&
2743       !type.isConstQualified() &&
2744       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2745     // Emit the lvalue.
2746     LValue lv = CGF.EmitLValue(e);
2747 
2748     // Load the object pointer.
2749     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2750                                                SourceLocation()).getScalarVal();
2751 
2752     // Set the source pointer to NULL.
2753     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2754 
2755     return TryEmitResult(result, true);
2756   }
2757 
2758   // As a very special optimization, in ARC++, if the l-value is the
2759   // result of a non-volatile assignment, do a simple retain of the
2760   // result of the call to objc_storeWeak instead of reloading.
2761   if (CGF.getLangOpts().CPlusPlus &&
2762       !type.isVolatileQualified() &&
2763       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2764       isa<BinaryOperator>(e) &&
2765       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2766     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2767 
2768   // Try to emit code for scalar constant instead of emitting LValue and
2769   // loading it because we are not guaranteed to have an l-value. One of such
2770   // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2771   if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2772     auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2773     if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2774       return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2775                            !shouldRetainObjCLifetime(type.getObjCLifetime()));
2776   }
2777 
2778   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2779 }
2780 
2781 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2782                                          llvm::Value *value)>
2783   ValueTransform;
2784 
2785 /// Insert code immediately after a call.
2786 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2787                                               llvm::Value *value,
2788                                               ValueTransform doAfterCall,
2789                                               ValueTransform doFallback) {
2790   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2791     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2792 
2793     // Place the retain immediately following the call.
2794     CGF.Builder.SetInsertPoint(call->getParent(),
2795                                ++llvm::BasicBlock::iterator(call));
2796     value = doAfterCall(CGF, value);
2797 
2798     CGF.Builder.restoreIP(ip);
2799     return value;
2800   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2801     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2802 
2803     // Place the retain at the beginning of the normal destination block.
2804     llvm::BasicBlock *BB = invoke->getNormalDest();
2805     CGF.Builder.SetInsertPoint(BB, BB->begin());
2806     value = doAfterCall(CGF, value);
2807 
2808     CGF.Builder.restoreIP(ip);
2809     return value;
2810 
2811   // Bitcasts can arise because of related-result returns.  Rewrite
2812   // the operand.
2813   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2814     llvm::Value *operand = bitcast->getOperand(0);
2815     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2816     bitcast->setOperand(0, operand);
2817     return bitcast;
2818 
2819   // Generic fall-back case.
2820   } else {
2821     // Retain using the non-block variant: we never need to do a copy
2822     // of a block that's been returned to us.
2823     return doFallback(CGF, value);
2824   }
2825 }
2826 
2827 /// Given that the given expression is some sort of call (which does
2828 /// not return retained), emit a retain following it.
2829 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2830                                             const Expr *e) {
2831   llvm::Value *value = CGF.EmitScalarExpr(e);
2832   return emitARCOperationAfterCall(CGF, value,
2833            [](CodeGenFunction &CGF, llvm::Value *value) {
2834              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2835            },
2836            [](CodeGenFunction &CGF, llvm::Value *value) {
2837              return CGF.EmitARCRetainNonBlock(value);
2838            });
2839 }
2840 
2841 /// Given that the given expression is some sort of call (which does
2842 /// not return retained), perform an unsafeClaim following it.
2843 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2844                                                  const Expr *e) {
2845   llvm::Value *value = CGF.EmitScalarExpr(e);
2846   return emitARCOperationAfterCall(CGF, value,
2847            [](CodeGenFunction &CGF, llvm::Value *value) {
2848              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2849            },
2850            [](CodeGenFunction &CGF, llvm::Value *value) {
2851              return value;
2852            });
2853 }
2854 
2855 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2856                                                       bool allowUnsafeClaim) {
2857   if (allowUnsafeClaim &&
2858       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2859     return emitARCUnsafeClaimCallResult(*this, E);
2860   } else {
2861     llvm::Value *value = emitARCRetainCallResult(*this, E);
2862     return EmitObjCConsumeObject(E->getType(), value);
2863   }
2864 }
2865 
2866 /// Determine whether it might be important to emit a separate
2867 /// objc_retain_block on the result of the given expression, or
2868 /// whether it's okay to just emit it in a +1 context.
2869 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2870   assert(e->getType()->isBlockPointerType());
2871   e = e->IgnoreParens();
2872 
2873   // For future goodness, emit block expressions directly in +1
2874   // contexts if we can.
2875   if (isa<BlockExpr>(e))
2876     return false;
2877 
2878   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2879     switch (cast->getCastKind()) {
2880     // Emitting these operations in +1 contexts is goodness.
2881     case CK_LValueToRValue:
2882     case CK_ARCReclaimReturnedObject:
2883     case CK_ARCConsumeObject:
2884     case CK_ARCProduceObject:
2885       return false;
2886 
2887     // These operations preserve a block type.
2888     case CK_NoOp:
2889     case CK_BitCast:
2890       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2891 
2892     // These operations are known to be bad (or haven't been considered).
2893     case CK_AnyPointerToBlockPointerCast:
2894     default:
2895       return true;
2896     }
2897   }
2898 
2899   return true;
2900 }
2901 
2902 namespace {
2903 /// A CRTP base class for emitting expressions of retainable object
2904 /// pointer type in ARC.
2905 template <typename Impl, typename Result> class ARCExprEmitter {
2906 protected:
2907   CodeGenFunction &CGF;
2908   Impl &asImpl() { return *static_cast<Impl*>(this); }
2909 
2910   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2911 
2912 public:
2913   Result visit(const Expr *e);
2914   Result visitCastExpr(const CastExpr *e);
2915   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2916   Result visitBlockExpr(const BlockExpr *e);
2917   Result visitBinaryOperator(const BinaryOperator *e);
2918   Result visitBinAssign(const BinaryOperator *e);
2919   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2920   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2921   Result visitBinAssignWeak(const BinaryOperator *e);
2922   Result visitBinAssignStrong(const BinaryOperator *e);
2923 
2924   // Minimal implementation:
2925   //   Result visitLValueToRValue(const Expr *e)
2926   //   Result visitConsumeObject(const Expr *e)
2927   //   Result visitExtendBlockObject(const Expr *e)
2928   //   Result visitReclaimReturnedObject(const Expr *e)
2929   //   Result visitCall(const Expr *e)
2930   //   Result visitExpr(const Expr *e)
2931   //
2932   //   Result emitBitCast(Result result, llvm::Type *resultType)
2933   //   llvm::Value *getValueOfResult(Result result)
2934 };
2935 }
2936 
2937 /// Try to emit a PseudoObjectExpr under special ARC rules.
2938 ///
2939 /// This massively duplicates emitPseudoObjectRValue.
2940 template <typename Impl, typename Result>
2941 Result
2942 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2943   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2944 
2945   // Find the result expression.
2946   const Expr *resultExpr = E->getResultExpr();
2947   assert(resultExpr);
2948   Result result;
2949 
2950   for (PseudoObjectExpr::const_semantics_iterator
2951          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2952     const Expr *semantic = *i;
2953 
2954     // If this semantic expression is an opaque value, bind it
2955     // to the result of its source expression.
2956     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2957       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2958       OVMA opaqueData;
2959 
2960       // If this semantic is the result of the pseudo-object
2961       // expression, try to evaluate the source as +1.
2962       if (ov == resultExpr) {
2963         assert(!OVMA::shouldBindAsLValue(ov));
2964         result = asImpl().visit(ov->getSourceExpr());
2965         opaqueData = OVMA::bind(CGF, ov,
2966                             RValue::get(asImpl().getValueOfResult(result)));
2967 
2968       // Otherwise, just bind it.
2969       } else {
2970         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2971       }
2972       opaques.push_back(opaqueData);
2973 
2974     // Otherwise, if the expression is the result, evaluate it
2975     // and remember the result.
2976     } else if (semantic == resultExpr) {
2977       result = asImpl().visit(semantic);
2978 
2979     // Otherwise, evaluate the expression in an ignored context.
2980     } else {
2981       CGF.EmitIgnoredExpr(semantic);
2982     }
2983   }
2984 
2985   // Unbind all the opaques now.
2986   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2987     opaques[i].unbind(CGF);
2988 
2989   return result;
2990 }
2991 
2992 template <typename Impl, typename Result>
2993 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
2994   // The default implementation just forwards the expression to visitExpr.
2995   return asImpl().visitExpr(e);
2996 }
2997 
2998 template <typename Impl, typename Result>
2999 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3000   switch (e->getCastKind()) {
3001 
3002   // No-op casts don't change the type, so we just ignore them.
3003   case CK_NoOp:
3004     return asImpl().visit(e->getSubExpr());
3005 
3006   // These casts can change the type.
3007   case CK_CPointerToObjCPointerCast:
3008   case CK_BlockPointerToObjCPointerCast:
3009   case CK_AnyPointerToBlockPointerCast:
3010   case CK_BitCast: {
3011     llvm::Type *resultType = CGF.ConvertType(e->getType());
3012     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3013     Result result = asImpl().visit(e->getSubExpr());
3014     return asImpl().emitBitCast(result, resultType);
3015   }
3016 
3017   // Handle some casts specially.
3018   case CK_LValueToRValue:
3019     return asImpl().visitLValueToRValue(e->getSubExpr());
3020   case CK_ARCConsumeObject:
3021     return asImpl().visitConsumeObject(e->getSubExpr());
3022   case CK_ARCExtendBlockObject:
3023     return asImpl().visitExtendBlockObject(e->getSubExpr());
3024   case CK_ARCReclaimReturnedObject:
3025     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3026 
3027   // Otherwise, use the default logic.
3028   default:
3029     return asImpl().visitExpr(e);
3030   }
3031 }
3032 
3033 template <typename Impl, typename Result>
3034 Result
3035 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3036   switch (e->getOpcode()) {
3037   case BO_Comma:
3038     CGF.EmitIgnoredExpr(e->getLHS());
3039     CGF.EnsureInsertPoint();
3040     return asImpl().visit(e->getRHS());
3041 
3042   case BO_Assign:
3043     return asImpl().visitBinAssign(e);
3044 
3045   default:
3046     return asImpl().visitExpr(e);
3047   }
3048 }
3049 
3050 template <typename Impl, typename Result>
3051 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3052   switch (e->getLHS()->getType().getObjCLifetime()) {
3053   case Qualifiers::OCL_ExplicitNone:
3054     return asImpl().visitBinAssignUnsafeUnretained(e);
3055 
3056   case Qualifiers::OCL_Weak:
3057     return asImpl().visitBinAssignWeak(e);
3058 
3059   case Qualifiers::OCL_Autoreleasing:
3060     return asImpl().visitBinAssignAutoreleasing(e);
3061 
3062   case Qualifiers::OCL_Strong:
3063     return asImpl().visitBinAssignStrong(e);
3064 
3065   case Qualifiers::OCL_None:
3066     return asImpl().visitExpr(e);
3067   }
3068   llvm_unreachable("bad ObjC ownership qualifier");
3069 }
3070 
3071 /// The default rule for __unsafe_unretained emits the RHS recursively,
3072 /// stores into the unsafe variable, and propagates the result outward.
3073 template <typename Impl, typename Result>
3074 Result ARCExprEmitter<Impl,Result>::
3075                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3076   // Recursively emit the RHS.
3077   // For __block safety, do this before emitting the LHS.
3078   Result result = asImpl().visit(e->getRHS());
3079 
3080   // Perform the store.
3081   LValue lvalue =
3082     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3083   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3084                              lvalue);
3085 
3086   return result;
3087 }
3088 
3089 template <typename Impl, typename Result>
3090 Result
3091 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3092   return asImpl().visitExpr(e);
3093 }
3094 
3095 template <typename Impl, typename Result>
3096 Result
3097 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3098   return asImpl().visitExpr(e);
3099 }
3100 
3101 template <typename Impl, typename Result>
3102 Result
3103 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3104   return asImpl().visitExpr(e);
3105 }
3106 
3107 /// The general expression-emission logic.
3108 template <typename Impl, typename Result>
3109 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3110   // We should *never* see a nested full-expression here, because if
3111   // we fail to emit at +1, our caller must not retain after we close
3112   // out the full-expression.  This isn't as important in the unsafe
3113   // emitter.
3114   assert(!isa<ExprWithCleanups>(e));
3115 
3116   // Look through parens, __extension__, generic selection, etc.
3117   e = e->IgnoreParens();
3118 
3119   // Handle certain kinds of casts.
3120   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3121     return asImpl().visitCastExpr(ce);
3122 
3123   // Handle the comma operator.
3124   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3125     return asImpl().visitBinaryOperator(op);
3126 
3127   // TODO: handle conditional operators here
3128 
3129   // For calls and message sends, use the retained-call logic.
3130   // Delegate inits are a special case in that they're the only
3131   // returns-retained expression that *isn't* surrounded by
3132   // a consume.
3133   } else if (isa<CallExpr>(e) ||
3134              (isa<ObjCMessageExpr>(e) &&
3135               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3136     return asImpl().visitCall(e);
3137 
3138   // Look through pseudo-object expressions.
3139   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3140     return asImpl().visitPseudoObjectExpr(pseudo);
3141   } else if (auto *be = dyn_cast<BlockExpr>(e))
3142     return asImpl().visitBlockExpr(be);
3143 
3144   return asImpl().visitExpr(e);
3145 }
3146 
3147 namespace {
3148 
3149 /// An emitter for +1 results.
3150 struct ARCRetainExprEmitter :
3151   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3152 
3153   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3154 
3155   llvm::Value *getValueOfResult(TryEmitResult result) {
3156     return result.getPointer();
3157   }
3158 
3159   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3160     llvm::Value *value = result.getPointer();
3161     value = CGF.Builder.CreateBitCast(value, resultType);
3162     result.setPointer(value);
3163     return result;
3164   }
3165 
3166   TryEmitResult visitLValueToRValue(const Expr *e) {
3167     return tryEmitARCRetainLoadOfScalar(CGF, e);
3168   }
3169 
3170   /// For consumptions, just emit the subexpression and thus elide
3171   /// the retain/release pair.
3172   TryEmitResult visitConsumeObject(const Expr *e) {
3173     llvm::Value *result = CGF.EmitScalarExpr(e);
3174     return TryEmitResult(result, true);
3175   }
3176 
3177   TryEmitResult visitBlockExpr(const BlockExpr *e) {
3178     TryEmitResult result = visitExpr(e);
3179     // Avoid the block-retain if this is a block literal that doesn't need to be
3180     // copied to the heap.
3181     if (e->getBlockDecl()->canAvoidCopyToHeap())
3182       result.setInt(true);
3183     return result;
3184   }
3185 
3186   /// Block extends are net +0.  Naively, we could just recurse on
3187   /// the subexpression, but actually we need to ensure that the
3188   /// value is copied as a block, so there's a little filter here.
3189   TryEmitResult visitExtendBlockObject(const Expr *e) {
3190     llvm::Value *result; // will be a +0 value
3191 
3192     // If we can't safely assume the sub-expression will produce a
3193     // block-copied value, emit the sub-expression at +0.
3194     if (shouldEmitSeparateBlockRetain(e)) {
3195       result = CGF.EmitScalarExpr(e);
3196 
3197     // Otherwise, try to emit the sub-expression at +1 recursively.
3198     } else {
3199       TryEmitResult subresult = asImpl().visit(e);
3200 
3201       // If that produced a retained value, just use that.
3202       if (subresult.getInt()) {
3203         return subresult;
3204       }
3205 
3206       // Otherwise it's +0.
3207       result = subresult.getPointer();
3208     }
3209 
3210     // Retain the object as a block.
3211     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3212     return TryEmitResult(result, true);
3213   }
3214 
3215   /// For reclaims, emit the subexpression as a retained call and
3216   /// skip the consumption.
3217   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3218     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3219     return TryEmitResult(result, true);
3220   }
3221 
3222   /// When we have an undecorated call, retroactively do a claim.
3223   TryEmitResult visitCall(const Expr *e) {
3224     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3225     return TryEmitResult(result, true);
3226   }
3227 
3228   // TODO: maybe special-case visitBinAssignWeak?
3229 
3230   TryEmitResult visitExpr(const Expr *e) {
3231     // We didn't find an obvious production, so emit what we've got and
3232     // tell the caller that we didn't manage to retain.
3233     llvm::Value *result = CGF.EmitScalarExpr(e);
3234     return TryEmitResult(result, false);
3235   }
3236 };
3237 }
3238 
3239 static TryEmitResult
3240 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3241   return ARCRetainExprEmitter(CGF).visit(e);
3242 }
3243 
3244 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3245                                                 LValue lvalue,
3246                                                 QualType type) {
3247   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3248   llvm::Value *value = result.getPointer();
3249   if (!result.getInt())
3250     value = CGF.EmitARCRetain(type, value);
3251   return value;
3252 }
3253 
3254 /// EmitARCRetainScalarExpr - Semantically equivalent to
3255 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3256 /// best-effort attempt to peephole expressions that naturally produce
3257 /// retained objects.
3258 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3259   // The retain needs to happen within the full-expression.
3260   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3261     enterFullExpression(cleanups);
3262     RunCleanupsScope scope(*this);
3263     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3264   }
3265 
3266   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3267   llvm::Value *value = result.getPointer();
3268   if (!result.getInt())
3269     value = EmitARCRetain(e->getType(), value);
3270   return value;
3271 }
3272 
3273 llvm::Value *
3274 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3275   // The retain needs to happen within the full-expression.
3276   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3277     enterFullExpression(cleanups);
3278     RunCleanupsScope scope(*this);
3279     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3280   }
3281 
3282   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3283   llvm::Value *value = result.getPointer();
3284   if (result.getInt())
3285     value = EmitARCAutorelease(value);
3286   else
3287     value = EmitARCRetainAutorelease(e->getType(), value);
3288   return value;
3289 }
3290 
3291 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3292   llvm::Value *result;
3293   bool doRetain;
3294 
3295   if (shouldEmitSeparateBlockRetain(e)) {
3296     result = EmitScalarExpr(e);
3297     doRetain = true;
3298   } else {
3299     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3300     result = subresult.getPointer();
3301     doRetain = !subresult.getInt();
3302   }
3303 
3304   if (doRetain)
3305     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3306   return EmitObjCConsumeObject(e->getType(), result);
3307 }
3308 
3309 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3310   // In ARC, retain and autorelease the expression.
3311   if (getLangOpts().ObjCAutoRefCount) {
3312     // Do so before running any cleanups for the full-expression.
3313     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3314     return EmitARCRetainAutoreleaseScalarExpr(expr);
3315   }
3316 
3317   // Otherwise, use the normal scalar-expression emission.  The
3318   // exception machinery doesn't do anything special with the
3319   // exception like retaining it, so there's no safety associated with
3320   // only running cleanups after the throw has started, and when it
3321   // matters it tends to be substantially inferior code.
3322   return EmitScalarExpr(expr);
3323 }
3324 
3325 namespace {
3326 
3327 /// An emitter for assigning into an __unsafe_unretained context.
3328 struct ARCUnsafeUnretainedExprEmitter :
3329   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3330 
3331   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3332 
3333   llvm::Value *getValueOfResult(llvm::Value *value) {
3334     return value;
3335   }
3336 
3337   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3338     return CGF.Builder.CreateBitCast(value, resultType);
3339   }
3340 
3341   llvm::Value *visitLValueToRValue(const Expr *e) {
3342     return CGF.EmitScalarExpr(e);
3343   }
3344 
3345   /// For consumptions, just emit the subexpression and perform the
3346   /// consumption like normal.
3347   llvm::Value *visitConsumeObject(const Expr *e) {
3348     llvm::Value *value = CGF.EmitScalarExpr(e);
3349     return CGF.EmitObjCConsumeObject(e->getType(), value);
3350   }
3351 
3352   /// No special logic for block extensions.  (This probably can't
3353   /// actually happen in this emitter, though.)
3354   llvm::Value *visitExtendBlockObject(const Expr *e) {
3355     return CGF.EmitARCExtendBlockObject(e);
3356   }
3357 
3358   /// For reclaims, perform an unsafeClaim if that's enabled.
3359   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3360     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3361   }
3362 
3363   /// When we have an undecorated call, just emit it without adding
3364   /// the unsafeClaim.
3365   llvm::Value *visitCall(const Expr *e) {
3366     return CGF.EmitScalarExpr(e);
3367   }
3368 
3369   /// Just do normal scalar emission in the default case.
3370   llvm::Value *visitExpr(const Expr *e) {
3371     return CGF.EmitScalarExpr(e);
3372   }
3373 };
3374 }
3375 
3376 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3377                                                       const Expr *e) {
3378   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3379 }
3380 
3381 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3382 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3383 /// avoiding any spurious retains, including by performing reclaims
3384 /// with objc_unsafeClaimAutoreleasedReturnValue.
3385 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3386   // Look through full-expressions.
3387   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3388     enterFullExpression(cleanups);
3389     RunCleanupsScope scope(*this);
3390     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3391   }
3392 
3393   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3394 }
3395 
3396 std::pair<LValue,llvm::Value*>
3397 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3398                                               bool ignored) {
3399   // Evaluate the RHS first.  If we're ignoring the result, assume
3400   // that we can emit at an unsafe +0.
3401   llvm::Value *value;
3402   if (ignored) {
3403     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3404   } else {
3405     value = EmitScalarExpr(e->getRHS());
3406   }
3407 
3408   // Emit the LHS and perform the store.
3409   LValue lvalue = EmitLValue(e->getLHS());
3410   EmitStoreOfScalar(value, lvalue);
3411 
3412   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3413 }
3414 
3415 std::pair<LValue,llvm::Value*>
3416 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3417                                     bool ignored) {
3418   // Evaluate the RHS first.
3419   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3420   llvm::Value *value = result.getPointer();
3421 
3422   bool hasImmediateRetain = result.getInt();
3423 
3424   // If we didn't emit a retained object, and the l-value is of block
3425   // type, then we need to emit the block-retain immediately in case
3426   // it invalidates the l-value.
3427   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3428     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3429     hasImmediateRetain = true;
3430   }
3431 
3432   LValue lvalue = EmitLValue(e->getLHS());
3433 
3434   // If the RHS was emitted retained, expand this.
3435   if (hasImmediateRetain) {
3436     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3437     EmitStoreOfScalar(value, lvalue);
3438     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3439   } else {
3440     value = EmitARCStoreStrong(lvalue, value, ignored);
3441   }
3442 
3443   return std::pair<LValue,llvm::Value*>(lvalue, value);
3444 }
3445 
3446 std::pair<LValue,llvm::Value*>
3447 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3448   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3449   LValue lvalue = EmitLValue(e->getLHS());
3450 
3451   EmitStoreOfScalar(value, lvalue);
3452 
3453   return std::pair<LValue,llvm::Value*>(lvalue, value);
3454 }
3455 
3456 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3457                                           const ObjCAutoreleasePoolStmt &ARPS) {
3458   const Stmt *subStmt = ARPS.getSubStmt();
3459   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3460 
3461   CGDebugInfo *DI = getDebugInfo();
3462   if (DI)
3463     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3464 
3465   // Keep track of the current cleanup stack depth.
3466   RunCleanupsScope Scope(*this);
3467   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3468     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3469     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3470   } else {
3471     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3472     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3473   }
3474 
3475   for (const auto *I : S.body())
3476     EmitStmt(I);
3477 
3478   if (DI)
3479     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3480 }
3481 
3482 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3483 /// make sure it survives garbage collection until this point.
3484 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3485   // We just use an inline assembly.
3486   llvm::FunctionType *extenderType
3487     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3488   llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3489                                                    /* assembly */ "",
3490                                                    /* constraints */ "r",
3491                                                    /* side effects */ true);
3492 
3493   object = Builder.CreateBitCast(object, VoidPtrTy);
3494   EmitNounwindRuntimeCall(extender, object);
3495 }
3496 
3497 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3498 /// non-trivial copy assignment function, produce following helper function.
3499 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3500 ///
3501 llvm::Constant *
3502 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3503                                         const ObjCPropertyImplDecl *PID) {
3504   if (!getLangOpts().CPlusPlus ||
3505       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3506     return nullptr;
3507   QualType Ty = PID->getPropertyIvarDecl()->getType();
3508   if (!Ty->isRecordType())
3509     return nullptr;
3510   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3511   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3512     return nullptr;
3513   llvm::Constant *HelperFn = nullptr;
3514   if (hasTrivialSetExpr(PID))
3515     return nullptr;
3516   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3517   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3518     return HelperFn;
3519 
3520   ASTContext &C = getContext();
3521   IdentifierInfo *II
3522     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3523 
3524   QualType ReturnTy = C.VoidTy;
3525   QualType DestTy = C.getPointerType(Ty);
3526   QualType SrcTy = Ty;
3527   SrcTy.addConst();
3528   SrcTy = C.getPointerType(SrcTy);
3529 
3530   SmallVector<QualType, 2> ArgTys;
3531   ArgTys.push_back(DestTy);
3532   ArgTys.push_back(SrcTy);
3533   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3534 
3535   FunctionDecl *FD = FunctionDecl::Create(
3536       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3537       FunctionTy, nullptr, SC_Static, false, false);
3538 
3539   FunctionArgList args;
3540   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3541                             ImplicitParamDecl::Other);
3542   args.push_back(&DstDecl);
3543   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3544                             ImplicitParamDecl::Other);
3545   args.push_back(&SrcDecl);
3546 
3547   const CGFunctionInfo &FI =
3548       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3549 
3550   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3551 
3552   llvm::Function *Fn =
3553     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3554                            "__assign_helper_atomic_property_",
3555                            &CGM.getModule());
3556 
3557   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3558 
3559   StartFunction(FD, ReturnTy, Fn, FI, args);
3560 
3561   DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3562                       SourceLocation());
3563   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
3564                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3565 
3566   DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3567                       SourceLocation());
3568   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3569                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3570 
3571   Expr *Args[2] = { &DST, &SRC };
3572   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3573   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3574       C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3575       VK_LValue, SourceLocation(), FPOptions());
3576 
3577   EmitStmt(TheCall);
3578 
3579   FinishFunction();
3580   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3581   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3582   return HelperFn;
3583 }
3584 
3585 llvm::Constant *
3586 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3587                                             const ObjCPropertyImplDecl *PID) {
3588   if (!getLangOpts().CPlusPlus ||
3589       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3590     return nullptr;
3591   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3592   QualType Ty = PD->getType();
3593   if (!Ty->isRecordType())
3594     return nullptr;
3595   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3596     return nullptr;
3597   llvm::Constant *HelperFn = nullptr;
3598   if (hasTrivialGetExpr(PID))
3599     return nullptr;
3600   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3601   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3602     return HelperFn;
3603 
3604   ASTContext &C = getContext();
3605   IdentifierInfo *II =
3606       &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3607 
3608   QualType ReturnTy = C.VoidTy;
3609   QualType DestTy = C.getPointerType(Ty);
3610   QualType SrcTy = Ty;
3611   SrcTy.addConst();
3612   SrcTy = C.getPointerType(SrcTy);
3613 
3614   SmallVector<QualType, 2> ArgTys;
3615   ArgTys.push_back(DestTy);
3616   ArgTys.push_back(SrcTy);
3617   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3618 
3619   FunctionDecl *FD = FunctionDecl::Create(
3620       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3621       FunctionTy, nullptr, SC_Static, false, false);
3622 
3623   FunctionArgList args;
3624   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3625                             ImplicitParamDecl::Other);
3626   args.push_back(&DstDecl);
3627   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3628                             ImplicitParamDecl::Other);
3629   args.push_back(&SrcDecl);
3630 
3631   const CGFunctionInfo &FI =
3632       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3633 
3634   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3635 
3636   llvm::Function *Fn = llvm::Function::Create(
3637       LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3638       &CGM.getModule());
3639 
3640   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3641 
3642   StartFunction(FD, ReturnTy, Fn, FI, args);
3643 
3644   DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3645                       SourceLocation());
3646 
3647   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3648                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3649 
3650   CXXConstructExpr *CXXConstExpr =
3651     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3652 
3653   SmallVector<Expr*, 4> ConstructorArgs;
3654   ConstructorArgs.push_back(&SRC);
3655   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3656                          CXXConstExpr->arg_end());
3657 
3658   CXXConstructExpr *TheCXXConstructExpr =
3659     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3660                              CXXConstExpr->getConstructor(),
3661                              CXXConstExpr->isElidable(),
3662                              ConstructorArgs,
3663                              CXXConstExpr->hadMultipleCandidates(),
3664                              CXXConstExpr->isListInitialization(),
3665                              CXXConstExpr->isStdInitListInitialization(),
3666                              CXXConstExpr->requiresZeroInitialization(),
3667                              CXXConstExpr->getConstructionKind(),
3668                              SourceRange());
3669 
3670   DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3671                       SourceLocation());
3672 
3673   RValue DV = EmitAnyExpr(&DstExpr);
3674   CharUnits Alignment
3675     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3676   EmitAggExpr(TheCXXConstructExpr,
3677               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3678                                     Qualifiers(),
3679                                     AggValueSlot::IsDestructed,
3680                                     AggValueSlot::DoesNotNeedGCBarriers,
3681                                     AggValueSlot::IsNotAliased,
3682                                     AggValueSlot::DoesNotOverlap));
3683 
3684   FinishFunction();
3685   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3686   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3687   return HelperFn;
3688 }
3689 
3690 llvm::Value *
3691 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3692   // Get selectors for retain/autorelease.
3693   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3694   Selector CopySelector =
3695       getContext().Selectors.getNullarySelector(CopyID);
3696   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3697   Selector AutoreleaseSelector =
3698       getContext().Selectors.getNullarySelector(AutoreleaseID);
3699 
3700   // Emit calls to retain/autorelease.
3701   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3702   llvm::Value *Val = Block;
3703   RValue Result;
3704   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3705                                        Ty, CopySelector,
3706                                        Val, CallArgList(), nullptr, nullptr);
3707   Val = Result.getScalarVal();
3708   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3709                                        Ty, AutoreleaseSelector,
3710                                        Val, CallArgList(), nullptr, nullptr);
3711   Val = Result.getScalarVal();
3712   return Val;
3713 }
3714 
3715 llvm::Value *
3716 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) {
3717   assert(Args.size() == 3 && "Expected 3 argument here!");
3718 
3719   if (!CGM.IsOSVersionAtLeastFn) {
3720     llvm::FunctionType *FTy =
3721         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3722     CGM.IsOSVersionAtLeastFn =
3723         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3724   }
3725 
3726   llvm::Value *CallRes =
3727       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3728 
3729   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3730 }
3731 
3732 void CodeGenModule::emitAtAvailableLinkGuard() {
3733   if (!IsOSVersionAtLeastFn)
3734     return;
3735   // @available requires CoreFoundation only on Darwin.
3736   if (!Target.getTriple().isOSDarwin())
3737     return;
3738   // Add -framework CoreFoundation to the linker commands. We still want to
3739   // emit the core foundation reference down below because otherwise if
3740   // CoreFoundation is not used in the code, the linker won't link the
3741   // framework.
3742   auto &Context = getLLVMContext();
3743   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3744                              llvm::MDString::get(Context, "CoreFoundation")};
3745   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3746   // Emit a reference to a symbol from CoreFoundation to ensure that
3747   // CoreFoundation is linked into the final binary.
3748   llvm::FunctionType *FTy =
3749       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3750   llvm::FunctionCallee CFFunc =
3751       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3752 
3753   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3754   llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
3755       CheckFTy, "__clang_at_available_requires_core_foundation_framework",
3756       llvm::AttributeList(), /*Local=*/true);
3757   llvm::Function *CFLinkCheckFunc =
3758       cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
3759   if (CFLinkCheckFunc->empty()) {
3760     CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3761     CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3762     CodeGenFunction CGF(*this);
3763     CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3764     CGF.EmitNounwindRuntimeCall(CFFunc,
3765                                 llvm::Constant::getNullValue(VoidPtrTy));
3766     CGF.Builder.CreateUnreachable();
3767     addCompilerUsedGlobal(CFLinkCheckFunc);
3768   }
3769 }
3770 
3771 CGObjCRuntime::~CGObjCRuntime() {}
3772