1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Objective-C code as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/StmtObjC.h" 23 #include "clang/Basic/Diagnostic.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 35 QualType ET, 36 RValue Result); 37 38 /// Given the address of a variable of pointer type, find the correct 39 /// null to store into it. 40 static llvm::Constant *getNullForVariable(Address addr) { 41 llvm::Type *type = addr.getElementType(); 42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 43 } 44 45 /// Emits an instance of NSConstantString representing the object. 46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 47 { 48 llvm::Constant *C = 49 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 50 // FIXME: This bitcast should just be made an invariant on the Runtime. 51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 52 } 53 54 /// EmitObjCBoxedExpr - This routine generates code to call 55 /// the appropriate expression boxing method. This will either be 56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 57 /// or [NSValue valueWithBytes:objCType:]. 58 /// 59 llvm::Value * 60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 61 // Generate the correct selector for this literal's concrete type. 62 // Get the method. 63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 64 const Expr *SubExpr = E->getSubExpr(); 65 66 if (E->isExpressibleAsConstantInitializer()) { 67 ConstantEmitter ConstEmitter(CGM); 68 return ConstEmitter.tryEmitAbstract(E, E->getType()); 69 } 70 71 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 72 Selector Sel = BoxingMethod->getSelector(); 73 74 // Generate a reference to the class pointer, which will be the receiver. 75 // Assumes that the method was introduced in the class that should be 76 // messaged (avoids pulling it out of the result type). 77 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 78 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 79 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 80 81 CallArgList Args; 82 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 83 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 84 85 // ObjCBoxedExpr supports boxing of structs and unions 86 // via [NSValue valueWithBytes:objCType:] 87 const QualType ValueType(SubExpr->getType().getCanonicalType()); 88 if (ValueType->isObjCBoxableRecordType()) { 89 // Emit CodeGen for first parameter 90 // and cast value to correct type 91 Address Temporary = CreateMemTemp(SubExpr->getType()); 92 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 93 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 94 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 95 96 // Create char array to store type encoding 97 std::string Str; 98 getContext().getObjCEncodingForType(ValueType, Str); 99 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 100 101 // Cast type encoding to correct type 102 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 103 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 104 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 105 106 Args.add(RValue::get(Cast), EncodingQT); 107 } else { 108 Args.add(EmitAnyExpr(SubExpr), ArgQT); 109 } 110 111 RValue result = Runtime.GenerateMessageSend( 112 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 113 Args, ClassDecl, BoxingMethod); 114 return Builder.CreateBitCast(result.getScalarVal(), 115 ConvertType(E->getType())); 116 } 117 118 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 119 const ObjCMethodDecl *MethodWithObjects) { 120 ASTContext &Context = CGM.getContext(); 121 const ObjCDictionaryLiteral *DLE = nullptr; 122 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 123 if (!ALE) 124 DLE = cast<ObjCDictionaryLiteral>(E); 125 126 // Optimize empty collections by referencing constants, when available. 127 uint64_t NumElements = 128 ALE ? ALE->getNumElements() : DLE->getNumElements(); 129 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 130 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 131 QualType IdTy(CGM.getContext().getObjCIdType()); 132 llvm::Constant *Constant = 133 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 134 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 135 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); 136 cast<llvm::LoadInst>(Ptr)->setMetadata( 137 CGM.getModule().getMDKindID("invariant.load"), 138 llvm::MDNode::get(getLLVMContext(), None)); 139 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 140 } 141 142 // Compute the type of the array we're initializing. 143 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 144 NumElements); 145 QualType ElementType = Context.getObjCIdType().withConst(); 146 QualType ElementArrayType 147 = Context.getConstantArrayType(ElementType, APNumElements, nullptr, 148 ArrayType::Normal, /*IndexTypeQuals=*/0); 149 150 // Allocate the temporary array(s). 151 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 152 Address Keys = Address::invalid(); 153 if (DLE) 154 Keys = CreateMemTemp(ElementArrayType, "keys"); 155 156 // In ARC, we may need to do extra work to keep all the keys and 157 // values alive until after the call. 158 SmallVector<llvm::Value *, 16> NeededObjects; 159 bool TrackNeededObjects = 160 (getLangOpts().ObjCAutoRefCount && 161 CGM.getCodeGenOpts().OptimizationLevel != 0); 162 163 // Perform the actual initialialization of the array(s). 164 for (uint64_t i = 0; i < NumElements; i++) { 165 if (ALE) { 166 // Emit the element and store it to the appropriate array slot. 167 const Expr *Rhs = ALE->getElement(i); 168 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 169 ElementType, AlignmentSource::Decl); 170 171 llvm::Value *value = EmitScalarExpr(Rhs); 172 EmitStoreThroughLValue(RValue::get(value), LV, true); 173 if (TrackNeededObjects) { 174 NeededObjects.push_back(value); 175 } 176 } else { 177 // Emit the key and store it to the appropriate array slot. 178 const Expr *Key = DLE->getKeyValueElement(i).Key; 179 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i), 180 ElementType, AlignmentSource::Decl); 181 llvm::Value *keyValue = EmitScalarExpr(Key); 182 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 183 184 // Emit the value and store it to the appropriate array slot. 185 const Expr *Value = DLE->getKeyValueElement(i).Value; 186 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 187 ElementType, AlignmentSource::Decl); 188 llvm::Value *valueValue = EmitScalarExpr(Value); 189 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 190 if (TrackNeededObjects) { 191 NeededObjects.push_back(keyValue); 192 NeededObjects.push_back(valueValue); 193 } 194 } 195 } 196 197 // Generate the argument list. 198 CallArgList Args; 199 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 200 const ParmVarDecl *argDecl = *PI++; 201 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 202 Args.add(RValue::get(Objects.getPointer()), ArgQT); 203 if (DLE) { 204 argDecl = *PI++; 205 ArgQT = argDecl->getType().getUnqualifiedType(); 206 Args.add(RValue::get(Keys.getPointer()), ArgQT); 207 } 208 argDecl = *PI; 209 ArgQT = argDecl->getType().getUnqualifiedType(); 210 llvm::Value *Count = 211 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 212 Args.add(RValue::get(Count), ArgQT); 213 214 // Generate a reference to the class pointer, which will be the receiver. 215 Selector Sel = MethodWithObjects->getSelector(); 216 QualType ResultType = E->getType(); 217 const ObjCObjectPointerType *InterfacePointerType 218 = ResultType->getAsObjCInterfacePointerType(); 219 ObjCInterfaceDecl *Class 220 = InterfacePointerType->getObjectType()->getInterface(); 221 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 222 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 223 224 // Generate the message send. 225 RValue result = Runtime.GenerateMessageSend( 226 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 227 Receiver, Args, Class, MethodWithObjects); 228 229 // The above message send needs these objects, but in ARC they are 230 // passed in a buffer that is essentially __unsafe_unretained. 231 // Therefore we must prevent the optimizer from releasing them until 232 // after the call. 233 if (TrackNeededObjects) { 234 EmitARCIntrinsicUse(NeededObjects); 235 } 236 237 return Builder.CreateBitCast(result.getScalarVal(), 238 ConvertType(E->getType())); 239 } 240 241 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 242 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 243 } 244 245 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 246 const ObjCDictionaryLiteral *E) { 247 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 248 } 249 250 /// Emit a selector. 251 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 252 // Untyped selector. 253 // Note that this implementation allows for non-constant strings to be passed 254 // as arguments to @selector(). Currently, the only thing preventing this 255 // behaviour is the type checking in the front end. 256 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 257 } 258 259 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 260 // FIXME: This should pass the Decl not the name. 261 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 262 } 263 264 /// Adjust the type of an Objective-C object that doesn't match up due 265 /// to type erasure at various points, e.g., related result types or the use 266 /// of parameterized classes. 267 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 268 RValue Result) { 269 if (!ExpT->isObjCRetainableType()) 270 return Result; 271 272 // If the converted types are the same, we're done. 273 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 274 if (ExpLLVMTy == Result.getScalarVal()->getType()) 275 return Result; 276 277 // We have applied a substitution. Cast the rvalue appropriately. 278 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 279 ExpLLVMTy)); 280 } 281 282 /// Decide whether to extend the lifetime of the receiver of a 283 /// returns-inner-pointer message. 284 static bool 285 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 286 switch (message->getReceiverKind()) { 287 288 // For a normal instance message, we should extend unless the 289 // receiver is loaded from a variable with precise lifetime. 290 case ObjCMessageExpr::Instance: { 291 const Expr *receiver = message->getInstanceReceiver(); 292 293 // Look through OVEs. 294 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 295 if (opaque->getSourceExpr()) 296 receiver = opaque->getSourceExpr()->IgnoreParens(); 297 } 298 299 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 300 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 301 receiver = ice->getSubExpr()->IgnoreParens(); 302 303 // Look through OVEs. 304 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 305 if (opaque->getSourceExpr()) 306 receiver = opaque->getSourceExpr()->IgnoreParens(); 307 } 308 309 // Only __strong variables. 310 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 311 return true; 312 313 // All ivars and fields have precise lifetime. 314 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 315 return false; 316 317 // Otherwise, check for variables. 318 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 319 if (!declRef) return true; 320 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 321 if (!var) return true; 322 323 // All variables have precise lifetime except local variables with 324 // automatic storage duration that aren't specially marked. 325 return (var->hasLocalStorage() && 326 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 327 } 328 329 case ObjCMessageExpr::Class: 330 case ObjCMessageExpr::SuperClass: 331 // It's never necessary for class objects. 332 return false; 333 334 case ObjCMessageExpr::SuperInstance: 335 // We generally assume that 'self' lives throughout a method call. 336 return false; 337 } 338 339 llvm_unreachable("invalid receiver kind"); 340 } 341 342 /// Given an expression of ObjC pointer type, check whether it was 343 /// immediately loaded from an ARC __weak l-value. 344 static const Expr *findWeakLValue(const Expr *E) { 345 assert(E->getType()->isObjCRetainableType()); 346 E = E->IgnoreParens(); 347 if (auto CE = dyn_cast<CastExpr>(E)) { 348 if (CE->getCastKind() == CK_LValueToRValue) { 349 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 350 return CE->getSubExpr(); 351 } 352 } 353 354 return nullptr; 355 } 356 357 /// The ObjC runtime may provide entrypoints that are likely to be faster 358 /// than an ordinary message send of the appropriate selector. 359 /// 360 /// The entrypoints are guaranteed to be equivalent to just sending the 361 /// corresponding message. If the entrypoint is implemented naively as just a 362 /// message send, using it is a trade-off: it sacrifices a few cycles of 363 /// overhead to save a small amount of code. However, it's possible for 364 /// runtimes to detect and special-case classes that use "standard" 365 /// behavior; if that's dynamically a large proportion of all objects, using 366 /// the entrypoint will also be faster than using a message send. 367 /// 368 /// If the runtime does support a required entrypoint, then this method will 369 /// generate a call and return the resulting value. Otherwise it will return 370 /// None and the caller can generate a msgSend instead. 371 static Optional<llvm::Value *> 372 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType, 373 llvm::Value *Receiver, 374 const CallArgList& Args, Selector Sel, 375 const ObjCMethodDecl *method, 376 bool isClassMessage) { 377 auto &CGM = CGF.CGM; 378 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) 379 return None; 380 381 auto &Runtime = CGM.getLangOpts().ObjCRuntime; 382 switch (Sel.getMethodFamily()) { 383 case OMF_alloc: 384 if (isClassMessage && 385 Runtime.shouldUseRuntimeFunctionsForAlloc() && 386 ResultType->isObjCObjectPointerType()) { 387 // [Foo alloc] -> objc_alloc(Foo) or 388 // [self alloc] -> objc_alloc(self) 389 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc") 390 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType)); 391 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or 392 // [self allocWithZone:nil] -> objc_allocWithZone(self) 393 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && 394 Args.size() == 1 && Args.front().getType()->isPointerType() && 395 Sel.getNameForSlot(0) == "allocWithZone") { 396 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); 397 if (isa<llvm::ConstantPointerNull>(arg)) 398 return CGF.EmitObjCAllocWithZone(Receiver, 399 CGF.ConvertType(ResultType)); 400 return None; 401 } 402 } 403 break; 404 405 case OMF_autorelease: 406 if (ResultType->isObjCObjectPointerType() && 407 CGM.getLangOpts().getGC() == LangOptions::NonGC && 408 Runtime.shouldUseARCFunctionsForRetainRelease()) 409 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType)); 410 break; 411 412 case OMF_retain: 413 if (ResultType->isObjCObjectPointerType() && 414 CGM.getLangOpts().getGC() == LangOptions::NonGC && 415 Runtime.shouldUseARCFunctionsForRetainRelease()) 416 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType)); 417 break; 418 419 case OMF_release: 420 if (ResultType->isVoidType() && 421 CGM.getLangOpts().getGC() == LangOptions::NonGC && 422 Runtime.shouldUseARCFunctionsForRetainRelease()) { 423 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime); 424 return nullptr; 425 } 426 break; 427 428 default: 429 break; 430 } 431 return None; 432 } 433 434 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend( 435 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, 436 Selector Sel, llvm::Value *Receiver, const CallArgList &Args, 437 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method, 438 bool isClassMessage) { 439 if (Optional<llvm::Value *> SpecializedResult = 440 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args, 441 Sel, Method, isClassMessage)) { 442 return RValue::get(SpecializedResult.getValue()); 443 } 444 return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID, 445 Method); 446 } 447 448 /// Instead of '[[MyClass alloc] init]', try to generate 449 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the 450 /// caller side, as well as the optimized objc_alloc. 451 static Optional<llvm::Value *> 452 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) { 453 auto &Runtime = CGF.getLangOpts().ObjCRuntime; 454 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit()) 455 return None; 456 457 // Match the exact pattern '[[MyClass alloc] init]'. 458 Selector Sel = OME->getSelector(); 459 if (OME->getReceiverKind() != ObjCMessageExpr::Instance || 460 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() || 461 Sel.getNameForSlot(0) != "init") 462 return None; 463 464 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' 465 // with 'cls' a Class. 466 auto *SubOME = 467 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts()); 468 if (!SubOME) 469 return None; 470 Selector SubSel = SubOME->getSelector(); 471 472 if (!SubOME->getType()->isObjCObjectPointerType() || 473 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc") 474 return None; 475 476 llvm::Value *Receiver = nullptr; 477 switch (SubOME->getReceiverKind()) { 478 case ObjCMessageExpr::Instance: 479 if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType()) 480 return None; 481 Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver()); 482 break; 483 484 case ObjCMessageExpr::Class: { 485 QualType ReceiverType = SubOME->getClassReceiver(); 486 const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>(); 487 const ObjCInterfaceDecl *ID = ObjTy->getInterface(); 488 assert(ID && "null interface should be impossible here"); 489 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID); 490 break; 491 } 492 case ObjCMessageExpr::SuperInstance: 493 case ObjCMessageExpr::SuperClass: 494 return None; 495 } 496 497 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType())); 498 } 499 500 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 501 ReturnValueSlot Return) { 502 // Only the lookup mechanism and first two arguments of the method 503 // implementation vary between runtimes. We can get the receiver and 504 // arguments in generic code. 505 506 bool isDelegateInit = E->isDelegateInitCall(); 507 508 const ObjCMethodDecl *method = E->getMethodDecl(); 509 510 // If the method is -retain, and the receiver's being loaded from 511 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 512 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 513 method->getMethodFamily() == OMF_retain) { 514 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 515 LValue lvalue = EmitLValue(lvalueExpr); 516 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this)); 517 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 518 } 519 } 520 521 if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E)) 522 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val)); 523 524 // We don't retain the receiver in delegate init calls, and this is 525 // safe because the receiver value is always loaded from 'self', 526 // which we zero out. We don't want to Block_copy block receivers, 527 // though. 528 bool retainSelf = 529 (!isDelegateInit && 530 CGM.getLangOpts().ObjCAutoRefCount && 531 method && 532 method->hasAttr<NSConsumesSelfAttr>()); 533 534 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 535 bool isSuperMessage = false; 536 bool isClassMessage = false; 537 ObjCInterfaceDecl *OID = nullptr; 538 // Find the receiver 539 QualType ReceiverType; 540 llvm::Value *Receiver = nullptr; 541 switch (E->getReceiverKind()) { 542 case ObjCMessageExpr::Instance: 543 ReceiverType = E->getInstanceReceiver()->getType(); 544 isClassMessage = ReceiverType->isObjCClassType(); 545 if (retainSelf) { 546 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 547 E->getInstanceReceiver()); 548 Receiver = ter.getPointer(); 549 if (ter.getInt()) retainSelf = false; 550 } else 551 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 552 break; 553 554 case ObjCMessageExpr::Class: { 555 ReceiverType = E->getClassReceiver(); 556 OID = ReceiverType->castAs<ObjCObjectType>()->getInterface(); 557 assert(OID && "Invalid Objective-C class message send"); 558 Receiver = Runtime.GetClass(*this, OID); 559 isClassMessage = true; 560 break; 561 } 562 563 case ObjCMessageExpr::SuperInstance: 564 ReceiverType = E->getSuperType(); 565 Receiver = LoadObjCSelf(); 566 isSuperMessage = true; 567 break; 568 569 case ObjCMessageExpr::SuperClass: 570 ReceiverType = E->getSuperType(); 571 Receiver = LoadObjCSelf(); 572 isSuperMessage = true; 573 isClassMessage = true; 574 break; 575 } 576 577 if (retainSelf) 578 Receiver = EmitARCRetainNonBlock(Receiver); 579 580 // In ARC, we sometimes want to "extend the lifetime" 581 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 582 // messages. 583 if (getLangOpts().ObjCAutoRefCount && method && 584 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 585 shouldExtendReceiverForInnerPointerMessage(E)) 586 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 587 588 QualType ResultType = method ? method->getReturnType() : E->getType(); 589 590 CallArgList Args; 591 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 592 593 // For delegate init calls in ARC, do an unsafe store of null into 594 // self. This represents the call taking direct ownership of that 595 // value. We have to do this after emitting the other call 596 // arguments because they might also reference self, but we don't 597 // have to worry about any of them modifying self because that would 598 // be an undefined read and write of an object in unordered 599 // expressions. 600 if (isDelegateInit) { 601 assert(getLangOpts().ObjCAutoRefCount && 602 "delegate init calls should only be marked in ARC"); 603 604 // Do an unsafe store of null into self. 605 Address selfAddr = 606 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 607 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 608 } 609 610 RValue result; 611 if (isSuperMessage) { 612 // super is only valid in an Objective-C method 613 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 614 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 615 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 616 E->getSelector(), 617 OMD->getClassInterface(), 618 isCategoryImpl, 619 Receiver, 620 isClassMessage, 621 Args, 622 method); 623 } else { 624 // Call runtime methods directly if we can. 625 result = Runtime.GeneratePossiblySpecializedMessageSend( 626 *this, Return, ResultType, E->getSelector(), Receiver, Args, OID, 627 method, isClassMessage); 628 } 629 630 // For delegate init calls in ARC, implicitly store the result of 631 // the call back into self. This takes ownership of the value. 632 if (isDelegateInit) { 633 Address selfAddr = 634 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 635 llvm::Value *newSelf = result.getScalarVal(); 636 637 // The delegate return type isn't necessarily a matching type; in 638 // fact, it's quite likely to be 'id'. 639 llvm::Type *selfTy = selfAddr.getElementType(); 640 newSelf = Builder.CreateBitCast(newSelf, selfTy); 641 642 Builder.CreateStore(newSelf, selfAddr); 643 } 644 645 return AdjustObjCObjectType(*this, E->getType(), result); 646 } 647 648 namespace { 649 struct FinishARCDealloc final : EHScopeStack::Cleanup { 650 void Emit(CodeGenFunction &CGF, Flags flags) override { 651 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 652 653 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 654 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 655 if (!iface->getSuperClass()) return; 656 657 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 658 659 // Call [super dealloc] if we have a superclass. 660 llvm::Value *self = CGF.LoadObjCSelf(); 661 662 CallArgList args; 663 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 664 CGF.getContext().VoidTy, 665 method->getSelector(), 666 iface, 667 isCategory, 668 self, 669 /*is class msg*/ false, 670 args, 671 method); 672 } 673 }; 674 } 675 676 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 677 /// the LLVM function and sets the other context used by 678 /// CodeGenFunction. 679 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 680 const ObjCContainerDecl *CD) { 681 SourceLocation StartLoc = OMD->getBeginLoc(); 682 FunctionArgList args; 683 // Check if we should generate debug info for this method. 684 if (OMD->hasAttr<NoDebugAttr>()) 685 DebugInfo = nullptr; // disable debug info indefinitely for this function 686 687 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 688 689 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 690 if (OMD->isDirectMethod()) { 691 Fn->setVisibility(llvm::Function::HiddenVisibility); 692 CGM.SetLLVMFunctionAttributes(OMD, FI, Fn); 693 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn); 694 } else { 695 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 696 } 697 698 args.push_back(OMD->getSelfDecl()); 699 args.push_back(OMD->getCmdDecl()); 700 701 args.append(OMD->param_begin(), OMD->param_end()); 702 703 CurGD = OMD; 704 CurEHLocation = OMD->getEndLoc(); 705 706 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 707 OMD->getLocation(), StartLoc); 708 709 if (OMD->isDirectMethod()) { 710 // This function is a direct call, it has to implement a nil check 711 // on entry. 712 // 713 // TODO: possibly have several entry points to elide the check 714 CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD); 715 } 716 717 // In ARC, certain methods get an extra cleanup. 718 if (CGM.getLangOpts().ObjCAutoRefCount && 719 OMD->isInstanceMethod() && 720 OMD->getSelector().isUnarySelector()) { 721 const IdentifierInfo *ident = 722 OMD->getSelector().getIdentifierInfoForSlot(0); 723 if (ident->isStr("dealloc")) 724 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 725 } 726 } 727 728 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 729 LValue lvalue, QualType type); 730 731 /// Generate an Objective-C method. An Objective-C method is a C function with 732 /// its pointer, name, and types registered in the class structure. 733 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 734 StartObjCMethod(OMD, OMD->getClassInterface()); 735 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 736 assert(isa<CompoundStmt>(OMD->getBody())); 737 incrementProfileCounter(OMD->getBody()); 738 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 739 FinishFunction(OMD->getBodyRBrace()); 740 } 741 742 /// emitStructGetterCall - Call the runtime function to load a property 743 /// into the return value slot. 744 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 745 bool isAtomic, bool hasStrong) { 746 ASTContext &Context = CGF.getContext(); 747 748 Address src = 749 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 750 .getAddress(CGF); 751 752 // objc_copyStruct (ReturnValue, &structIvar, 753 // sizeof (Type of Ivar), isAtomic, false); 754 CallArgList args; 755 756 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 757 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 758 759 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 760 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 761 762 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 763 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 764 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 765 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 766 767 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 768 CGCallee callee = CGCallee::forDirect(fn); 769 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 770 callee, ReturnValueSlot(), args); 771 } 772 773 /// Determine whether the given architecture supports unaligned atomic 774 /// accesses. They don't have to be fast, just faster than a function 775 /// call and a mutex. 776 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 777 // FIXME: Allow unaligned atomic load/store on x86. (It is not 778 // currently supported by the backend.) 779 return 0; 780 } 781 782 /// Return the maximum size that permits atomic accesses for the given 783 /// architecture. 784 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 785 llvm::Triple::ArchType arch) { 786 // ARM has 8-byte atomic accesses, but it's not clear whether we 787 // want to rely on them here. 788 789 // In the default case, just assume that any size up to a pointer is 790 // fine given adequate alignment. 791 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 792 } 793 794 namespace { 795 class PropertyImplStrategy { 796 public: 797 enum StrategyKind { 798 /// The 'native' strategy is to use the architecture's provided 799 /// reads and writes. 800 Native, 801 802 /// Use objc_setProperty and objc_getProperty. 803 GetSetProperty, 804 805 /// Use objc_setProperty for the setter, but use expression 806 /// evaluation for the getter. 807 SetPropertyAndExpressionGet, 808 809 /// Use objc_copyStruct. 810 CopyStruct, 811 812 /// The 'expression' strategy is to emit normal assignment or 813 /// lvalue-to-rvalue expressions. 814 Expression 815 }; 816 817 StrategyKind getKind() const { return StrategyKind(Kind); } 818 819 bool hasStrongMember() const { return HasStrong; } 820 bool isAtomic() const { return IsAtomic; } 821 bool isCopy() const { return IsCopy; } 822 823 CharUnits getIvarSize() const { return IvarSize; } 824 CharUnits getIvarAlignment() const { return IvarAlignment; } 825 826 PropertyImplStrategy(CodeGenModule &CGM, 827 const ObjCPropertyImplDecl *propImpl); 828 829 private: 830 unsigned Kind : 8; 831 unsigned IsAtomic : 1; 832 unsigned IsCopy : 1; 833 unsigned HasStrong : 1; 834 835 CharUnits IvarSize; 836 CharUnits IvarAlignment; 837 }; 838 } 839 840 /// Pick an implementation strategy for the given property synthesis. 841 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 842 const ObjCPropertyImplDecl *propImpl) { 843 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 844 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 845 846 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 847 IsAtomic = prop->isAtomic(); 848 HasStrong = false; // doesn't matter here. 849 850 // Evaluate the ivar's size and alignment. 851 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 852 QualType ivarType = ivar->getType(); 853 std::tie(IvarSize, IvarAlignment) = 854 CGM.getContext().getTypeInfoInChars(ivarType); 855 856 // If we have a copy property, we always have to use getProperty/setProperty. 857 // TODO: we could actually use setProperty and an expression for non-atomics. 858 if (IsCopy) { 859 Kind = GetSetProperty; 860 return; 861 } 862 863 // Handle retain. 864 if (setterKind == ObjCPropertyDecl::Retain) { 865 // In GC-only, there's nothing special that needs to be done. 866 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 867 // fallthrough 868 869 // In ARC, if the property is non-atomic, use expression emission, 870 // which translates to objc_storeStrong. This isn't required, but 871 // it's slightly nicer. 872 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 873 // Using standard expression emission for the setter is only 874 // acceptable if the ivar is __strong, which won't be true if 875 // the property is annotated with __attribute__((NSObject)). 876 // TODO: falling all the way back to objc_setProperty here is 877 // just laziness, though; we could still use objc_storeStrong 878 // if we hacked it right. 879 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 880 Kind = Expression; 881 else 882 Kind = SetPropertyAndExpressionGet; 883 return; 884 885 // Otherwise, we need to at least use setProperty. However, if 886 // the property isn't atomic, we can use normal expression 887 // emission for the getter. 888 } else if (!IsAtomic) { 889 Kind = SetPropertyAndExpressionGet; 890 return; 891 892 // Otherwise, we have to use both setProperty and getProperty. 893 } else { 894 Kind = GetSetProperty; 895 return; 896 } 897 } 898 899 // If we're not atomic, just use expression accesses. 900 if (!IsAtomic) { 901 Kind = Expression; 902 return; 903 } 904 905 // Properties on bitfield ivars need to be emitted using expression 906 // accesses even if they're nominally atomic. 907 if (ivar->isBitField()) { 908 Kind = Expression; 909 return; 910 } 911 912 // GC-qualified or ARC-qualified ivars need to be emitted as 913 // expressions. This actually works out to being atomic anyway, 914 // except for ARC __strong, but that should trigger the above code. 915 if (ivarType.hasNonTrivialObjCLifetime() || 916 (CGM.getLangOpts().getGC() && 917 CGM.getContext().getObjCGCAttrKind(ivarType))) { 918 Kind = Expression; 919 return; 920 } 921 922 // Compute whether the ivar has strong members. 923 if (CGM.getLangOpts().getGC()) 924 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 925 HasStrong = recordType->getDecl()->hasObjectMember(); 926 927 // We can never access structs with object members with a native 928 // access, because we need to use write barriers. This is what 929 // objc_copyStruct is for. 930 if (HasStrong) { 931 Kind = CopyStruct; 932 return; 933 } 934 935 // Otherwise, this is target-dependent and based on the size and 936 // alignment of the ivar. 937 938 // If the size of the ivar is not a power of two, give up. We don't 939 // want to get into the business of doing compare-and-swaps. 940 if (!IvarSize.isPowerOfTwo()) { 941 Kind = CopyStruct; 942 return; 943 } 944 945 llvm::Triple::ArchType arch = 946 CGM.getTarget().getTriple().getArch(); 947 948 // Most architectures require memory to fit within a single cache 949 // line, so the alignment has to be at least the size of the access. 950 // Otherwise we have to grab a lock. 951 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 952 Kind = CopyStruct; 953 return; 954 } 955 956 // If the ivar's size exceeds the architecture's maximum atomic 957 // access size, we have to use CopyStruct. 958 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 959 Kind = CopyStruct; 960 return; 961 } 962 963 // Otherwise, we can use native loads and stores. 964 Kind = Native; 965 } 966 967 /// Generate an Objective-C property getter function. 968 /// 969 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 970 /// is illegal within a category. 971 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 972 const ObjCPropertyImplDecl *PID) { 973 llvm::Constant *AtomicHelperFn = 974 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 975 ObjCMethodDecl *OMD = PID->getGetterMethodDecl(); 976 assert(OMD && "Invalid call to generate getter (empty method)"); 977 StartObjCMethod(OMD, IMP->getClassInterface()); 978 979 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 980 981 FinishFunction(OMD->getEndLoc()); 982 } 983 984 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 985 const Expr *getter = propImpl->getGetterCXXConstructor(); 986 if (!getter) return true; 987 988 // Sema only makes only of these when the ivar has a C++ class type, 989 // so the form is pretty constrained. 990 991 // If the property has a reference type, we might just be binding a 992 // reference, in which case the result will be a gl-value. We should 993 // treat this as a non-trivial operation. 994 if (getter->isGLValue()) 995 return false; 996 997 // If we selected a trivial copy-constructor, we're okay. 998 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 999 return (construct->getConstructor()->isTrivial()); 1000 1001 // The constructor might require cleanups (in which case it's never 1002 // trivial). 1003 assert(isa<ExprWithCleanups>(getter)); 1004 return false; 1005 } 1006 1007 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 1008 /// copy the ivar into the resturn slot. 1009 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 1010 llvm::Value *returnAddr, 1011 ObjCIvarDecl *ivar, 1012 llvm::Constant *AtomicHelperFn) { 1013 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 1014 // AtomicHelperFn); 1015 CallArgList args; 1016 1017 // The 1st argument is the return Slot. 1018 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 1019 1020 // The 2nd argument is the address of the ivar. 1021 llvm::Value *ivarAddr = 1022 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1023 .getPointer(CGF); 1024 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1025 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1026 1027 // Third argument is the helper function. 1028 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1029 1030 llvm::FunctionCallee copyCppAtomicObjectFn = 1031 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 1032 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 1033 CGF.EmitCall( 1034 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1035 callee, ReturnValueSlot(), args); 1036 } 1037 1038 void 1039 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1040 const ObjCPropertyImplDecl *propImpl, 1041 const ObjCMethodDecl *GetterMethodDecl, 1042 llvm::Constant *AtomicHelperFn) { 1043 // If there's a non-trivial 'get' expression, we just have to emit that. 1044 if (!hasTrivialGetExpr(propImpl)) { 1045 if (!AtomicHelperFn) { 1046 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(), 1047 propImpl->getGetterCXXConstructor(), 1048 /* NRVOCandidate=*/nullptr); 1049 EmitReturnStmt(*ret); 1050 } 1051 else { 1052 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1053 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 1054 ivar, AtomicHelperFn); 1055 } 1056 return; 1057 } 1058 1059 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1060 QualType propType = prop->getType(); 1061 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl(); 1062 1063 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1064 1065 // Pick an implementation strategy. 1066 PropertyImplStrategy strategy(CGM, propImpl); 1067 switch (strategy.getKind()) { 1068 case PropertyImplStrategy::Native: { 1069 // We don't need to do anything for a zero-size struct. 1070 if (strategy.getIvarSize().isZero()) 1071 return; 1072 1073 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1074 1075 // Currently, all atomic accesses have to be through integer 1076 // types, so there's no point in trying to pick a prettier type. 1077 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 1078 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 1079 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1080 1081 // Perform an atomic load. This does not impose ordering constraints. 1082 Address ivarAddr = LV.getAddress(*this); 1083 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1084 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 1085 load->setAtomic(llvm::AtomicOrdering::Unordered); 1086 1087 // Store that value into the return address. Doing this with a 1088 // bitcast is likely to produce some pretty ugly IR, but it's not 1089 // the *most* terrible thing in the world. 1090 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 1091 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 1092 llvm::Value *ivarVal = load; 1093 if (ivarSize > retTySize) { 1094 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 1095 ivarVal = Builder.CreateTrunc(load, newTy); 1096 bitcastType = newTy->getPointerTo(); 1097 } 1098 Builder.CreateStore(ivarVal, 1099 Builder.CreateBitCast(ReturnValue, bitcastType)); 1100 1101 // Make sure we don't do an autorelease. 1102 AutoreleaseResult = false; 1103 return; 1104 } 1105 1106 case PropertyImplStrategy::GetSetProperty: { 1107 llvm::FunctionCallee getPropertyFn = 1108 CGM.getObjCRuntime().GetPropertyGetFunction(); 1109 if (!getPropertyFn) { 1110 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 1111 return; 1112 } 1113 CGCallee callee = CGCallee::forDirect(getPropertyFn); 1114 1115 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 1116 // FIXME: Can't this be simpler? This might even be worse than the 1117 // corresponding gcc code. 1118 llvm::Value *cmd = 1119 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 1120 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1121 llvm::Value *ivarOffset = 1122 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1123 1124 CallArgList args; 1125 args.add(RValue::get(self), getContext().getObjCIdType()); 1126 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1127 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1128 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1129 getContext().BoolTy); 1130 1131 // FIXME: We shouldn't need to get the function info here, the 1132 // runtime already should have computed it to build the function. 1133 llvm::CallBase *CallInstruction; 1134 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall( 1135 getContext().getObjCIdType(), args), 1136 callee, ReturnValueSlot(), args, &CallInstruction); 1137 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 1138 call->setTailCall(); 1139 1140 // We need to fix the type here. Ivars with copy & retain are 1141 // always objects so we don't need to worry about complex or 1142 // aggregates. 1143 RV = RValue::get(Builder.CreateBitCast( 1144 RV.getScalarVal(), 1145 getTypes().ConvertType(getterMethod->getReturnType()))); 1146 1147 EmitReturnOfRValue(RV, propType); 1148 1149 // objc_getProperty does an autorelease, so we should suppress ours. 1150 AutoreleaseResult = false; 1151 1152 return; 1153 } 1154 1155 case PropertyImplStrategy::CopyStruct: 1156 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 1157 strategy.hasStrongMember()); 1158 return; 1159 1160 case PropertyImplStrategy::Expression: 1161 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1162 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1163 1164 QualType ivarType = ivar->getType(); 1165 switch (getEvaluationKind(ivarType)) { 1166 case TEK_Complex: { 1167 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1168 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1169 /*init*/ true); 1170 return; 1171 } 1172 case TEK_Aggregate: { 1173 // The return value slot is guaranteed to not be aliased, but 1174 // that's not necessarily the same as "on the stack", so 1175 // we still potentially need objc_memmove_collectable. 1176 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1177 /* Src= */ LV, ivarType, getOverlapForReturnValue()); 1178 return; 1179 } 1180 case TEK_Scalar: { 1181 llvm::Value *value; 1182 if (propType->isReferenceType()) { 1183 value = LV.getAddress(*this).getPointer(); 1184 } else { 1185 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1186 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1187 if (getLangOpts().ObjCAutoRefCount) { 1188 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1189 } else { 1190 value = EmitARCLoadWeak(LV.getAddress(*this)); 1191 } 1192 1193 // Otherwise we want to do a simple load, suppressing the 1194 // final autorelease. 1195 } else { 1196 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1197 AutoreleaseResult = false; 1198 } 1199 1200 value = Builder.CreateBitCast( 1201 value, ConvertType(GetterMethodDecl->getReturnType())); 1202 } 1203 1204 EmitReturnOfRValue(RValue::get(value), propType); 1205 return; 1206 } 1207 } 1208 llvm_unreachable("bad evaluation kind"); 1209 } 1210 1211 } 1212 llvm_unreachable("bad @property implementation strategy!"); 1213 } 1214 1215 /// emitStructSetterCall - Call the runtime function to store the value 1216 /// from the first formal parameter into the given ivar. 1217 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1218 ObjCIvarDecl *ivar) { 1219 // objc_copyStruct (&structIvar, &Arg, 1220 // sizeof (struct something), true, false); 1221 CallArgList args; 1222 1223 // The first argument is the address of the ivar. 1224 llvm::Value *ivarAddr = 1225 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1226 .getPointer(CGF); 1227 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1228 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1229 1230 // The second argument is the address of the parameter variable. 1231 ParmVarDecl *argVar = *OMD->param_begin(); 1232 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1233 argVar->getType().getNonReferenceType(), VK_LValue, 1234 SourceLocation()); 1235 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1236 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1237 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1238 1239 // The third argument is the sizeof the type. 1240 llvm::Value *size = 1241 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1242 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1243 1244 // The fourth argument is the 'isAtomic' flag. 1245 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1246 1247 // The fifth argument is the 'hasStrong' flag. 1248 // FIXME: should this really always be false? 1249 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1250 1251 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1252 CGCallee callee = CGCallee::forDirect(fn); 1253 CGF.EmitCall( 1254 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1255 callee, ReturnValueSlot(), args); 1256 } 1257 1258 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1259 /// the value from the first formal parameter into the given ivar, using 1260 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1261 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1262 ObjCMethodDecl *OMD, 1263 ObjCIvarDecl *ivar, 1264 llvm::Constant *AtomicHelperFn) { 1265 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1266 // AtomicHelperFn); 1267 CallArgList args; 1268 1269 // The first argument is the address of the ivar. 1270 llvm::Value *ivarAddr = 1271 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1272 .getPointer(CGF); 1273 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1274 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1275 1276 // The second argument is the address of the parameter variable. 1277 ParmVarDecl *argVar = *OMD->param_begin(); 1278 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1279 argVar->getType().getNonReferenceType(), VK_LValue, 1280 SourceLocation()); 1281 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1282 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1283 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1284 1285 // Third argument is the helper function. 1286 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1287 1288 llvm::FunctionCallee fn = 1289 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1290 CGCallee callee = CGCallee::forDirect(fn); 1291 CGF.EmitCall( 1292 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1293 callee, ReturnValueSlot(), args); 1294 } 1295 1296 1297 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1298 Expr *setter = PID->getSetterCXXAssignment(); 1299 if (!setter) return true; 1300 1301 // Sema only makes only of these when the ivar has a C++ class type, 1302 // so the form is pretty constrained. 1303 1304 // An operator call is trivial if the function it calls is trivial. 1305 // This also implies that there's nothing non-trivial going on with 1306 // the arguments, because operator= can only be trivial if it's a 1307 // synthesized assignment operator and therefore both parameters are 1308 // references. 1309 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1310 if (const FunctionDecl *callee 1311 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1312 if (callee->isTrivial()) 1313 return true; 1314 return false; 1315 } 1316 1317 assert(isa<ExprWithCleanups>(setter)); 1318 return false; 1319 } 1320 1321 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1322 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1323 return false; 1324 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1325 } 1326 1327 void 1328 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1329 const ObjCPropertyImplDecl *propImpl, 1330 llvm::Constant *AtomicHelperFn) { 1331 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1332 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl(); 1333 1334 // Just use the setter expression if Sema gave us one and it's 1335 // non-trivial. 1336 if (!hasTrivialSetExpr(propImpl)) { 1337 if (!AtomicHelperFn) 1338 // If non-atomic, assignment is called directly. 1339 EmitStmt(propImpl->getSetterCXXAssignment()); 1340 else 1341 // If atomic, assignment is called via a locking api. 1342 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1343 AtomicHelperFn); 1344 return; 1345 } 1346 1347 PropertyImplStrategy strategy(CGM, propImpl); 1348 switch (strategy.getKind()) { 1349 case PropertyImplStrategy::Native: { 1350 // We don't need to do anything for a zero-size struct. 1351 if (strategy.getIvarSize().isZero()) 1352 return; 1353 1354 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1355 1356 LValue ivarLValue = 1357 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1358 Address ivarAddr = ivarLValue.getAddress(*this); 1359 1360 // Currently, all atomic accesses have to be through integer 1361 // types, so there's no point in trying to pick a prettier type. 1362 llvm::Type *bitcastType = 1363 llvm::Type::getIntNTy(getLLVMContext(), 1364 getContext().toBits(strategy.getIvarSize())); 1365 1366 // Cast both arguments to the chosen operation type. 1367 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1368 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1369 1370 // This bitcast load is likely to cause some nasty IR. 1371 llvm::Value *load = Builder.CreateLoad(argAddr); 1372 1373 // Perform an atomic store. There are no memory ordering requirements. 1374 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1375 store->setAtomic(llvm::AtomicOrdering::Unordered); 1376 return; 1377 } 1378 1379 case PropertyImplStrategy::GetSetProperty: 1380 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1381 1382 llvm::FunctionCallee setOptimizedPropertyFn = nullptr; 1383 llvm::FunctionCallee setPropertyFn = nullptr; 1384 if (UseOptimizedSetter(CGM)) { 1385 // 10.8 and iOS 6.0 code and GC is off 1386 setOptimizedPropertyFn = 1387 CGM.getObjCRuntime().GetOptimizedPropertySetFunction( 1388 strategy.isAtomic(), strategy.isCopy()); 1389 if (!setOptimizedPropertyFn) { 1390 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1391 return; 1392 } 1393 } 1394 else { 1395 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1396 if (!setPropertyFn) { 1397 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1398 return; 1399 } 1400 } 1401 1402 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1403 // <is-atomic>, <is-copy>). 1404 llvm::Value *cmd = 1405 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1406 llvm::Value *self = 1407 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1408 llvm::Value *ivarOffset = 1409 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1410 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1411 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1412 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1413 1414 CallArgList args; 1415 args.add(RValue::get(self), getContext().getObjCIdType()); 1416 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1417 if (setOptimizedPropertyFn) { 1418 args.add(RValue::get(arg), getContext().getObjCIdType()); 1419 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1420 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1421 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1422 callee, ReturnValueSlot(), args); 1423 } else { 1424 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1425 args.add(RValue::get(arg), getContext().getObjCIdType()); 1426 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1427 getContext().BoolTy); 1428 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1429 getContext().BoolTy); 1430 // FIXME: We shouldn't need to get the function info here, the runtime 1431 // already should have computed it to build the function. 1432 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1433 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1434 callee, ReturnValueSlot(), args); 1435 } 1436 1437 return; 1438 } 1439 1440 case PropertyImplStrategy::CopyStruct: 1441 emitStructSetterCall(*this, setterMethod, ivar); 1442 return; 1443 1444 case PropertyImplStrategy::Expression: 1445 break; 1446 } 1447 1448 // Otherwise, fake up some ASTs and emit a normal assignment. 1449 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1450 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(), 1451 VK_LValue, SourceLocation()); 1452 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1453 selfDecl->getType(), CK_LValueToRValue, &self, 1454 VK_RValue); 1455 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1456 SourceLocation(), SourceLocation(), 1457 &selfLoad, true, true); 1458 1459 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1460 QualType argType = argDecl->getType().getNonReferenceType(); 1461 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue, 1462 SourceLocation()); 1463 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1464 argType.getUnqualifiedType(), CK_LValueToRValue, 1465 &arg, VK_RValue); 1466 1467 // The property type can differ from the ivar type in some situations with 1468 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1469 // The following absurdity is just to ensure well-formed IR. 1470 CastKind argCK = CK_NoOp; 1471 if (ivarRef.getType()->isObjCObjectPointerType()) { 1472 if (argLoad.getType()->isObjCObjectPointerType()) 1473 argCK = CK_BitCast; 1474 else if (argLoad.getType()->isBlockPointerType()) 1475 argCK = CK_BlockPointerToObjCPointerCast; 1476 else 1477 argCK = CK_CPointerToObjCPointerCast; 1478 } else if (ivarRef.getType()->isBlockPointerType()) { 1479 if (argLoad.getType()->isBlockPointerType()) 1480 argCK = CK_BitCast; 1481 else 1482 argCK = CK_AnyPointerToBlockPointerCast; 1483 } else if (ivarRef.getType()->isPointerType()) { 1484 argCK = CK_BitCast; 1485 } 1486 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1487 ivarRef.getType(), argCK, &argLoad, 1488 VK_RValue); 1489 Expr *finalArg = &argLoad; 1490 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1491 argLoad.getType())) 1492 finalArg = &argCast; 1493 1494 BinaryOperator *assign = BinaryOperator::Create( 1495 getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), VK_RValue, 1496 OK_Ordinary, SourceLocation(), 1497 FPOptions(getContext().getLangOpts())); 1498 EmitStmt(assign); 1499 } 1500 1501 /// Generate an Objective-C property setter function. 1502 /// 1503 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1504 /// is illegal within a category. 1505 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1506 const ObjCPropertyImplDecl *PID) { 1507 llvm::Constant *AtomicHelperFn = 1508 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1509 ObjCMethodDecl *OMD = PID->getSetterMethodDecl(); 1510 assert(OMD && "Invalid call to generate setter (empty method)"); 1511 StartObjCMethod(OMD, IMP->getClassInterface()); 1512 1513 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1514 1515 FinishFunction(OMD->getEndLoc()); 1516 } 1517 1518 namespace { 1519 struct DestroyIvar final : EHScopeStack::Cleanup { 1520 private: 1521 llvm::Value *addr; 1522 const ObjCIvarDecl *ivar; 1523 CodeGenFunction::Destroyer *destroyer; 1524 bool useEHCleanupForArray; 1525 public: 1526 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1527 CodeGenFunction::Destroyer *destroyer, 1528 bool useEHCleanupForArray) 1529 : addr(addr), ivar(ivar), destroyer(destroyer), 1530 useEHCleanupForArray(useEHCleanupForArray) {} 1531 1532 void Emit(CodeGenFunction &CGF, Flags flags) override { 1533 LValue lvalue 1534 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1535 CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer, 1536 flags.isForNormalCleanup() && useEHCleanupForArray); 1537 } 1538 }; 1539 } 1540 1541 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1542 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1543 Address addr, 1544 QualType type) { 1545 llvm::Value *null = getNullForVariable(addr); 1546 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1547 } 1548 1549 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1550 ObjCImplementationDecl *impl) { 1551 CodeGenFunction::RunCleanupsScope scope(CGF); 1552 1553 llvm::Value *self = CGF.LoadObjCSelf(); 1554 1555 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1556 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1557 ivar; ivar = ivar->getNextIvar()) { 1558 QualType type = ivar->getType(); 1559 1560 // Check whether the ivar is a destructible type. 1561 QualType::DestructionKind dtorKind = type.isDestructedType(); 1562 if (!dtorKind) continue; 1563 1564 CodeGenFunction::Destroyer *destroyer = nullptr; 1565 1566 // Use a call to objc_storeStrong to destroy strong ivars, for the 1567 // general benefit of the tools. 1568 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1569 destroyer = destroyARCStrongWithStore; 1570 1571 // Otherwise use the default for the destruction kind. 1572 } else { 1573 destroyer = CGF.getDestroyer(dtorKind); 1574 } 1575 1576 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1577 1578 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1579 cleanupKind & EHCleanup); 1580 } 1581 1582 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1583 } 1584 1585 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1586 ObjCMethodDecl *MD, 1587 bool ctor) { 1588 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1589 StartObjCMethod(MD, IMP->getClassInterface()); 1590 1591 // Emit .cxx_construct. 1592 if (ctor) { 1593 // Suppress the final autorelease in ARC. 1594 AutoreleaseResult = false; 1595 1596 for (const auto *IvarInit : IMP->inits()) { 1597 FieldDecl *Field = IvarInit->getAnyMember(); 1598 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1599 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1600 LoadObjCSelf(), Ivar, 0); 1601 EmitAggExpr(IvarInit->getInit(), 1602 AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed, 1603 AggValueSlot::DoesNotNeedGCBarriers, 1604 AggValueSlot::IsNotAliased, 1605 AggValueSlot::DoesNotOverlap)); 1606 } 1607 // constructor returns 'self'. 1608 CodeGenTypes &Types = CGM.getTypes(); 1609 QualType IdTy(CGM.getContext().getObjCIdType()); 1610 llvm::Value *SelfAsId = 1611 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1612 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1613 1614 // Emit .cxx_destruct. 1615 } else { 1616 emitCXXDestructMethod(*this, IMP); 1617 } 1618 FinishFunction(); 1619 } 1620 1621 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1622 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1623 DeclRefExpr DRE(getContext(), Self, 1624 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1625 Self->getType(), VK_LValue, SourceLocation()); 1626 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1627 } 1628 1629 QualType CodeGenFunction::TypeOfSelfObject() { 1630 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1631 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1632 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1633 getContext().getCanonicalType(selfDecl->getType())); 1634 return PTy->getPointeeType(); 1635 } 1636 1637 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1638 llvm::FunctionCallee EnumerationMutationFnPtr = 1639 CGM.getObjCRuntime().EnumerationMutationFunction(); 1640 if (!EnumerationMutationFnPtr) { 1641 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1642 return; 1643 } 1644 CGCallee EnumerationMutationFn = 1645 CGCallee::forDirect(EnumerationMutationFnPtr); 1646 1647 CGDebugInfo *DI = getDebugInfo(); 1648 if (DI) 1649 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1650 1651 RunCleanupsScope ForScope(*this); 1652 1653 // The local variable comes into scope immediately. 1654 AutoVarEmission variable = AutoVarEmission::invalid(); 1655 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1656 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1657 1658 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1659 1660 // Fast enumeration state. 1661 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1662 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1663 EmitNullInitialization(StatePtr, StateTy); 1664 1665 // Number of elements in the items array. 1666 static const unsigned NumItems = 16; 1667 1668 // Fetch the countByEnumeratingWithState:objects:count: selector. 1669 IdentifierInfo *II[] = { 1670 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1671 &CGM.getContext().Idents.get("objects"), 1672 &CGM.getContext().Idents.get("count") 1673 }; 1674 Selector FastEnumSel = 1675 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1676 1677 QualType ItemsTy = 1678 getContext().getConstantArrayType(getContext().getObjCIdType(), 1679 llvm::APInt(32, NumItems), nullptr, 1680 ArrayType::Normal, 0); 1681 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1682 1683 // Emit the collection pointer. In ARC, we do a retain. 1684 llvm::Value *Collection; 1685 if (getLangOpts().ObjCAutoRefCount) { 1686 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1687 1688 // Enter a cleanup to do the release. 1689 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1690 } else { 1691 Collection = EmitScalarExpr(S.getCollection()); 1692 } 1693 1694 // The 'continue' label needs to appear within the cleanup for the 1695 // collection object. 1696 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1697 1698 // Send it our message: 1699 CallArgList Args; 1700 1701 // The first argument is a temporary of the enumeration-state type. 1702 Args.add(RValue::get(StatePtr.getPointer()), 1703 getContext().getPointerType(StateTy)); 1704 1705 // The second argument is a temporary array with space for NumItems 1706 // pointers. We'll actually be loading elements from the array 1707 // pointer written into the control state; this buffer is so that 1708 // collections that *aren't* backed by arrays can still queue up 1709 // batches of elements. 1710 Args.add(RValue::get(ItemsPtr.getPointer()), 1711 getContext().getPointerType(ItemsTy)); 1712 1713 // The third argument is the capacity of that temporary array. 1714 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1715 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1716 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1717 1718 // Start the enumeration. 1719 RValue CountRV = 1720 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1721 getContext().getNSUIntegerType(), 1722 FastEnumSel, Collection, Args); 1723 1724 // The initial number of objects that were returned in the buffer. 1725 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1726 1727 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1728 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1729 1730 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1731 1732 // If the limit pointer was zero to begin with, the collection is 1733 // empty; skip all this. Set the branch weight assuming this has the same 1734 // probability of exiting the loop as any other loop exit. 1735 uint64_t EntryCount = getCurrentProfileCount(); 1736 Builder.CreateCondBr( 1737 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1738 LoopInitBB, 1739 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1740 1741 // Otherwise, initialize the loop. 1742 EmitBlock(LoopInitBB); 1743 1744 // Save the initial mutations value. This is the value at an 1745 // address that was written into the state object by 1746 // countByEnumeratingWithState:objects:count:. 1747 Address StateMutationsPtrPtr = 1748 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1749 llvm::Value *StateMutationsPtr 1750 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1751 1752 llvm::Value *initialMutations = 1753 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1754 "forcoll.initial-mutations"); 1755 1756 // Start looping. This is the point we return to whenever we have a 1757 // fresh, non-empty batch of objects. 1758 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1759 EmitBlock(LoopBodyBB); 1760 1761 // The current index into the buffer. 1762 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1763 index->addIncoming(zero, LoopInitBB); 1764 1765 // The current buffer size. 1766 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1767 count->addIncoming(initialBufferLimit, LoopInitBB); 1768 1769 incrementProfileCounter(&S); 1770 1771 // Check whether the mutations value has changed from where it was 1772 // at start. StateMutationsPtr should actually be invariant between 1773 // refreshes. 1774 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1775 llvm::Value *currentMutations 1776 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1777 "statemutations"); 1778 1779 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1780 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1781 1782 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1783 WasNotMutatedBB, WasMutatedBB); 1784 1785 // If so, call the enumeration-mutation function. 1786 EmitBlock(WasMutatedBB); 1787 llvm::Value *V = 1788 Builder.CreateBitCast(Collection, 1789 ConvertType(getContext().getObjCIdType())); 1790 CallArgList Args2; 1791 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1792 // FIXME: We shouldn't need to get the function info here, the runtime already 1793 // should have computed it to build the function. 1794 EmitCall( 1795 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1796 EnumerationMutationFn, ReturnValueSlot(), Args2); 1797 1798 // Otherwise, or if the mutation function returns, just continue. 1799 EmitBlock(WasNotMutatedBB); 1800 1801 // Initialize the element variable. 1802 RunCleanupsScope elementVariableScope(*this); 1803 bool elementIsVariable; 1804 LValue elementLValue; 1805 QualType elementType; 1806 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1807 // Initialize the variable, in case it's a __block variable or something. 1808 EmitAutoVarInit(variable); 1809 1810 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl()); 1811 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false, 1812 D->getType(), VK_LValue, SourceLocation()); 1813 elementLValue = EmitLValue(&tempDRE); 1814 elementType = D->getType(); 1815 elementIsVariable = true; 1816 1817 if (D->isARCPseudoStrong()) 1818 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1819 } else { 1820 elementLValue = LValue(); // suppress warning 1821 elementType = cast<Expr>(S.getElement())->getType(); 1822 elementIsVariable = false; 1823 } 1824 llvm::Type *convertedElementType = ConvertType(elementType); 1825 1826 // Fetch the buffer out of the enumeration state. 1827 // TODO: this pointer should actually be invariant between 1828 // refreshes, which would help us do certain loop optimizations. 1829 Address StateItemsPtr = 1830 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1831 llvm::Value *EnumStateItems = 1832 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1833 1834 // Fetch the value at the current index from the buffer. 1835 llvm::Value *CurrentItemPtr = 1836 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1837 llvm::Value *CurrentItem = 1838 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1839 1840 // Cast that value to the right type. 1841 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1842 "currentitem"); 1843 1844 // Make sure we have an l-value. Yes, this gets evaluated every 1845 // time through the loop. 1846 if (!elementIsVariable) { 1847 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1848 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1849 } else { 1850 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1851 /*isInit*/ true); 1852 } 1853 1854 // If we do have an element variable, this assignment is the end of 1855 // its initialization. 1856 if (elementIsVariable) 1857 EmitAutoVarCleanups(variable); 1858 1859 // Perform the loop body, setting up break and continue labels. 1860 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1861 { 1862 RunCleanupsScope Scope(*this); 1863 EmitStmt(S.getBody()); 1864 } 1865 BreakContinueStack.pop_back(); 1866 1867 // Destroy the element variable now. 1868 elementVariableScope.ForceCleanup(); 1869 1870 // Check whether there are more elements. 1871 EmitBlock(AfterBody.getBlock()); 1872 1873 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1874 1875 // First we check in the local buffer. 1876 llvm::Value *indexPlusOne = 1877 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 1878 1879 // If we haven't overrun the buffer yet, we can continue. 1880 // Set the branch weights based on the simplifying assumption that this is 1881 // like a while-loop, i.e., ignoring that the false branch fetches more 1882 // elements and then returns to the loop. 1883 Builder.CreateCondBr( 1884 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1885 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1886 1887 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1888 count->addIncoming(count, AfterBody.getBlock()); 1889 1890 // Otherwise, we have to fetch more elements. 1891 EmitBlock(FetchMoreBB); 1892 1893 CountRV = 1894 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1895 getContext().getNSUIntegerType(), 1896 FastEnumSel, Collection, Args); 1897 1898 // If we got a zero count, we're done. 1899 llvm::Value *refetchCount = CountRV.getScalarVal(); 1900 1901 // (note that the message send might split FetchMoreBB) 1902 index->addIncoming(zero, Builder.GetInsertBlock()); 1903 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1904 1905 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1906 EmptyBB, LoopBodyBB); 1907 1908 // No more elements. 1909 EmitBlock(EmptyBB); 1910 1911 if (!elementIsVariable) { 1912 // If the element was not a declaration, set it to be null. 1913 1914 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1915 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1916 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1917 } 1918 1919 if (DI) 1920 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1921 1922 ForScope.ForceCleanup(); 1923 EmitBlock(LoopEnd.getBlock()); 1924 } 1925 1926 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1927 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1928 } 1929 1930 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1931 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1932 } 1933 1934 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1935 const ObjCAtSynchronizedStmt &S) { 1936 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1937 } 1938 1939 namespace { 1940 struct CallObjCRelease final : EHScopeStack::Cleanup { 1941 CallObjCRelease(llvm::Value *object) : object(object) {} 1942 llvm::Value *object; 1943 1944 void Emit(CodeGenFunction &CGF, Flags flags) override { 1945 // Releases at the end of the full-expression are imprecise. 1946 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1947 } 1948 }; 1949 } 1950 1951 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1952 /// release at the end of the full-expression. 1953 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1954 llvm::Value *object) { 1955 // If we're in a conditional branch, we need to make the cleanup 1956 // conditional. 1957 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1958 return object; 1959 } 1960 1961 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1962 llvm::Value *value) { 1963 return EmitARCRetainAutorelease(type, value); 1964 } 1965 1966 /// Given a number of pointers, inform the optimizer that they're 1967 /// being intrinsically used up until this point in the program. 1968 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1969 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use; 1970 if (!fn) 1971 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use); 1972 1973 // This isn't really a "runtime" function, but as an intrinsic it 1974 // doesn't really matter as long as we align things up. 1975 EmitNounwindRuntimeCall(fn, values); 1976 } 1977 1978 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) { 1979 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 1980 // If the target runtime doesn't naturally support ARC, emit weak 1981 // references to the runtime support library. We don't really 1982 // permit this to fail, but we need a particular relocation style. 1983 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 1984 !CGM.getTriple().isOSBinFormatCOFF()) { 1985 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1986 } 1987 } 1988 } 1989 1990 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, 1991 llvm::FunctionCallee RTF) { 1992 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee()); 1993 } 1994 1995 /// Perform an operation having the signature 1996 /// i8* (i8*) 1997 /// where a null input causes a no-op and returns null. 1998 static llvm::Value *emitARCValueOperation( 1999 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, 2000 llvm::Function *&fn, llvm::Intrinsic::ID IntID, 2001 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) { 2002 if (isa<llvm::ConstantPointerNull>(value)) 2003 return value; 2004 2005 if (!fn) { 2006 fn = CGF.CGM.getIntrinsic(IntID); 2007 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2008 } 2009 2010 // Cast the argument to 'id'. 2011 llvm::Type *origType = returnType ? returnType : value->getType(); 2012 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2013 2014 // Call the function. 2015 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 2016 call->setTailCallKind(tailKind); 2017 2018 // Cast the result back to the original type. 2019 return CGF.Builder.CreateBitCast(call, origType); 2020 } 2021 2022 /// Perform an operation having the following signature: 2023 /// i8* (i8**) 2024 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr, 2025 llvm::Function *&fn, 2026 llvm::Intrinsic::ID IntID) { 2027 if (!fn) { 2028 fn = CGF.CGM.getIntrinsic(IntID); 2029 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2030 } 2031 2032 // Cast the argument to 'id*'. 2033 llvm::Type *origType = addr.getElementType(); 2034 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 2035 2036 // Call the function. 2037 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 2038 2039 // Cast the result back to a dereference of the original type. 2040 if (origType != CGF.Int8PtrTy) 2041 result = CGF.Builder.CreateBitCast(result, origType); 2042 2043 return result; 2044 } 2045 2046 /// Perform an operation having the following signature: 2047 /// i8* (i8**, i8*) 2048 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr, 2049 llvm::Value *value, 2050 llvm::Function *&fn, 2051 llvm::Intrinsic::ID IntID, 2052 bool ignored) { 2053 assert(addr.getElementType() == value->getType()); 2054 2055 if (!fn) { 2056 fn = CGF.CGM.getIntrinsic(IntID); 2057 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2058 } 2059 2060 llvm::Type *origType = value->getType(); 2061 2062 llvm::Value *args[] = { 2063 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 2064 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 2065 }; 2066 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 2067 2068 if (ignored) return nullptr; 2069 2070 return CGF.Builder.CreateBitCast(result, origType); 2071 } 2072 2073 /// Perform an operation having the following signature: 2074 /// void (i8**, i8**) 2075 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, 2076 llvm::Function *&fn, 2077 llvm::Intrinsic::ID IntID) { 2078 assert(dst.getType() == src.getType()); 2079 2080 if (!fn) { 2081 fn = CGF.CGM.getIntrinsic(IntID); 2082 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2083 } 2084 2085 llvm::Value *args[] = { 2086 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 2087 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 2088 }; 2089 CGF.EmitNounwindRuntimeCall(fn, args); 2090 } 2091 2092 /// Perform an operation having the signature 2093 /// i8* (i8*) 2094 /// where a null input causes a no-op and returns null. 2095 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, 2096 llvm::Value *value, 2097 llvm::Type *returnType, 2098 llvm::FunctionCallee &fn, 2099 StringRef fnName) { 2100 if (isa<llvm::ConstantPointerNull>(value)) 2101 return value; 2102 2103 if (!fn) { 2104 llvm::FunctionType *fnType = 2105 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 2106 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName); 2107 2108 // We have Native ARC, so set nonlazybind attribute for performance 2109 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2110 if (fnName == "objc_retain") 2111 f->addFnAttr(llvm::Attribute::NonLazyBind); 2112 } 2113 2114 // Cast the argument to 'id'. 2115 llvm::Type *origType = returnType ? returnType : value->getType(); 2116 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2117 2118 // Call the function. 2119 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value); 2120 2121 // Cast the result back to the original type. 2122 return CGF.Builder.CreateBitCast(Inst, origType); 2123 } 2124 2125 /// Produce the code to do a retain. Based on the type, calls one of: 2126 /// call i8* \@objc_retain(i8* %value) 2127 /// call i8* \@objc_retainBlock(i8* %value) 2128 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 2129 if (type->isBlockPointerType()) 2130 return EmitARCRetainBlock(value, /*mandatory*/ false); 2131 else 2132 return EmitARCRetainNonBlock(value); 2133 } 2134 2135 /// Retain the given object, with normal retain semantics. 2136 /// call i8* \@objc_retain(i8* %value) 2137 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 2138 return emitARCValueOperation(*this, value, nullptr, 2139 CGM.getObjCEntrypoints().objc_retain, 2140 llvm::Intrinsic::objc_retain); 2141 } 2142 2143 /// Retain the given block, with _Block_copy semantics. 2144 /// call i8* \@objc_retainBlock(i8* %value) 2145 /// 2146 /// \param mandatory - If false, emit the call with metadata 2147 /// indicating that it's okay for the optimizer to eliminate this call 2148 /// if it can prove that the block never escapes except down the stack. 2149 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 2150 bool mandatory) { 2151 llvm::Value *result 2152 = emitARCValueOperation(*this, value, nullptr, 2153 CGM.getObjCEntrypoints().objc_retainBlock, 2154 llvm::Intrinsic::objc_retainBlock); 2155 2156 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 2157 // tell the optimizer that it doesn't need to do this copy if the 2158 // block doesn't escape, where being passed as an argument doesn't 2159 // count as escaping. 2160 if (!mandatory && isa<llvm::Instruction>(result)) { 2161 llvm::CallInst *call 2162 = cast<llvm::CallInst>(result->stripPointerCasts()); 2163 assert(call->getCalledOperand() == 2164 CGM.getObjCEntrypoints().objc_retainBlock); 2165 2166 call->setMetadata("clang.arc.copy_on_escape", 2167 llvm::MDNode::get(Builder.getContext(), None)); 2168 } 2169 2170 return result; 2171 } 2172 2173 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 2174 // Fetch the void(void) inline asm which marks that we're going to 2175 // do something with the autoreleased return value. 2176 llvm::InlineAsm *&marker 2177 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2178 if (!marker) { 2179 StringRef assembly 2180 = CGF.CGM.getTargetCodeGenInfo() 2181 .getARCRetainAutoreleasedReturnValueMarker(); 2182 2183 // If we have an empty assembly string, there's nothing to do. 2184 if (assembly.empty()) { 2185 2186 // Otherwise, at -O0, build an inline asm that we're going to call 2187 // in a moment. 2188 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2189 llvm::FunctionType *type = 2190 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2191 2192 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2193 2194 // If we're at -O1 and above, we don't want to litter the code 2195 // with this marker yet, so leave a breadcrumb for the ARC 2196 // optimizer to pick up. 2197 } else { 2198 const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker"; 2199 if (!CGF.CGM.getModule().getModuleFlag(markerKey)) { 2200 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly); 2201 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str); 2202 } 2203 } 2204 } 2205 2206 // Call the marker asm if we made one, which we do only at -O0. 2207 if (marker) 2208 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker)); 2209 } 2210 2211 /// Retain the given object which is the result of a function call. 2212 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2213 /// 2214 /// Yes, this function name is one character away from a different 2215 /// call with completely different semantics. 2216 llvm::Value * 2217 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2218 emitAutoreleasedReturnValueMarker(*this); 2219 llvm::CallInst::TailCallKind tailKind = 2220 CGM.getTargetCodeGenInfo() 2221 .shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() 2222 ? llvm::CallInst::TCK_NoTail 2223 : llvm::CallInst::TCK_None; 2224 return emitARCValueOperation( 2225 *this, value, nullptr, 2226 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, 2227 llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind); 2228 } 2229 2230 /// Claim a possibly-autoreleased return value at +0. This is only 2231 /// valid to do in contexts which do not rely on the retain to keep 2232 /// the object valid for all of its uses; for example, when 2233 /// the value is ignored, or when it is being assigned to an 2234 /// __unsafe_unretained variable. 2235 /// 2236 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2237 llvm::Value * 2238 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2239 emitAutoreleasedReturnValueMarker(*this); 2240 return emitARCValueOperation(*this, value, nullptr, 2241 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, 2242 llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue); 2243 } 2244 2245 /// Release the given object. 2246 /// call void \@objc_release(i8* %value) 2247 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2248 ARCPreciseLifetime_t precise) { 2249 if (isa<llvm::ConstantPointerNull>(value)) return; 2250 2251 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release; 2252 if (!fn) { 2253 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release); 2254 setARCRuntimeFunctionLinkage(CGM, fn); 2255 } 2256 2257 // Cast the argument to 'id'. 2258 value = Builder.CreateBitCast(value, Int8PtrTy); 2259 2260 // Call objc_release. 2261 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2262 2263 if (precise == ARCImpreciseLifetime) { 2264 call->setMetadata("clang.imprecise_release", 2265 llvm::MDNode::get(Builder.getContext(), None)); 2266 } 2267 } 2268 2269 /// Destroy a __strong variable. 2270 /// 2271 /// At -O0, emit a call to store 'null' into the address; 2272 /// instrumenting tools prefer this because the address is exposed, 2273 /// but it's relatively cumbersome to optimize. 2274 /// 2275 /// At -O1 and above, just load and call objc_release. 2276 /// 2277 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2278 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2279 ARCPreciseLifetime_t precise) { 2280 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2281 llvm::Value *null = getNullForVariable(addr); 2282 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2283 return; 2284 } 2285 2286 llvm::Value *value = Builder.CreateLoad(addr); 2287 EmitARCRelease(value, precise); 2288 } 2289 2290 /// Store into a strong object. Always calls this: 2291 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2292 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2293 llvm::Value *value, 2294 bool ignored) { 2295 assert(addr.getElementType() == value->getType()); 2296 2297 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2298 if (!fn) { 2299 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong); 2300 setARCRuntimeFunctionLinkage(CGM, fn); 2301 } 2302 2303 llvm::Value *args[] = { 2304 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2305 Builder.CreateBitCast(value, Int8PtrTy) 2306 }; 2307 EmitNounwindRuntimeCall(fn, args); 2308 2309 if (ignored) return nullptr; 2310 return value; 2311 } 2312 2313 /// Store into a strong object. Sometimes calls this: 2314 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2315 /// Other times, breaks it down into components. 2316 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2317 llvm::Value *newValue, 2318 bool ignored) { 2319 QualType type = dst.getType(); 2320 bool isBlock = type->isBlockPointerType(); 2321 2322 // Use a store barrier at -O0 unless this is a block type or the 2323 // lvalue is inadequately aligned. 2324 if (shouldUseFusedARCCalls() && 2325 !isBlock && 2326 (dst.getAlignment().isZero() || 2327 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2328 return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored); 2329 } 2330 2331 // Otherwise, split it out. 2332 2333 // Retain the new value. 2334 newValue = EmitARCRetain(type, newValue); 2335 2336 // Read the old value. 2337 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2338 2339 // Store. We do this before the release so that any deallocs won't 2340 // see the old value. 2341 EmitStoreOfScalar(newValue, dst); 2342 2343 // Finally, release the old value. 2344 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2345 2346 return newValue; 2347 } 2348 2349 /// Autorelease the given object. 2350 /// call i8* \@objc_autorelease(i8* %value) 2351 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2352 return emitARCValueOperation(*this, value, nullptr, 2353 CGM.getObjCEntrypoints().objc_autorelease, 2354 llvm::Intrinsic::objc_autorelease); 2355 } 2356 2357 /// Autorelease the given object. 2358 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2359 llvm::Value * 2360 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2361 return emitARCValueOperation(*this, value, nullptr, 2362 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2363 llvm::Intrinsic::objc_autoreleaseReturnValue, 2364 llvm::CallInst::TCK_Tail); 2365 } 2366 2367 /// Do a fused retain/autorelease of the given object. 2368 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2369 llvm::Value * 2370 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2371 return emitARCValueOperation(*this, value, nullptr, 2372 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2373 llvm::Intrinsic::objc_retainAutoreleaseReturnValue, 2374 llvm::CallInst::TCK_Tail); 2375 } 2376 2377 /// Do a fused retain/autorelease of the given object. 2378 /// call i8* \@objc_retainAutorelease(i8* %value) 2379 /// or 2380 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2381 /// call i8* \@objc_autorelease(i8* %retain) 2382 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2383 llvm::Value *value) { 2384 if (!type->isBlockPointerType()) 2385 return EmitARCRetainAutoreleaseNonBlock(value); 2386 2387 if (isa<llvm::ConstantPointerNull>(value)) return value; 2388 2389 llvm::Type *origType = value->getType(); 2390 value = Builder.CreateBitCast(value, Int8PtrTy); 2391 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2392 value = EmitARCAutorelease(value); 2393 return Builder.CreateBitCast(value, origType); 2394 } 2395 2396 /// Do a fused retain/autorelease of the given object. 2397 /// call i8* \@objc_retainAutorelease(i8* %value) 2398 llvm::Value * 2399 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2400 return emitARCValueOperation(*this, value, nullptr, 2401 CGM.getObjCEntrypoints().objc_retainAutorelease, 2402 llvm::Intrinsic::objc_retainAutorelease); 2403 } 2404 2405 /// i8* \@objc_loadWeak(i8** %addr) 2406 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2407 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2408 return emitARCLoadOperation(*this, addr, 2409 CGM.getObjCEntrypoints().objc_loadWeak, 2410 llvm::Intrinsic::objc_loadWeak); 2411 } 2412 2413 /// i8* \@objc_loadWeakRetained(i8** %addr) 2414 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2415 return emitARCLoadOperation(*this, addr, 2416 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2417 llvm::Intrinsic::objc_loadWeakRetained); 2418 } 2419 2420 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2421 /// Returns %value. 2422 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2423 llvm::Value *value, 2424 bool ignored) { 2425 return emitARCStoreOperation(*this, addr, value, 2426 CGM.getObjCEntrypoints().objc_storeWeak, 2427 llvm::Intrinsic::objc_storeWeak, ignored); 2428 } 2429 2430 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2431 /// Returns %value. %addr is known to not have a current weak entry. 2432 /// Essentially equivalent to: 2433 /// *addr = nil; objc_storeWeak(addr, value); 2434 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2435 // If we're initializing to null, just write null to memory; no need 2436 // to get the runtime involved. But don't do this if optimization 2437 // is enabled, because accounting for this would make the optimizer 2438 // much more complicated. 2439 if (isa<llvm::ConstantPointerNull>(value) && 2440 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2441 Builder.CreateStore(value, addr); 2442 return; 2443 } 2444 2445 emitARCStoreOperation(*this, addr, value, 2446 CGM.getObjCEntrypoints().objc_initWeak, 2447 llvm::Intrinsic::objc_initWeak, /*ignored*/ true); 2448 } 2449 2450 /// void \@objc_destroyWeak(i8** %addr) 2451 /// Essentially objc_storeWeak(addr, nil). 2452 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2453 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2454 if (!fn) { 2455 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak); 2456 setARCRuntimeFunctionLinkage(CGM, fn); 2457 } 2458 2459 // Cast the argument to 'id*'. 2460 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2461 2462 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2463 } 2464 2465 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2466 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2467 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2468 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2469 emitARCCopyOperation(*this, dst, src, 2470 CGM.getObjCEntrypoints().objc_moveWeak, 2471 llvm::Intrinsic::objc_moveWeak); 2472 } 2473 2474 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2475 /// Disregards the current value in %dest. Essentially 2476 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2477 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2478 emitARCCopyOperation(*this, dst, src, 2479 CGM.getObjCEntrypoints().objc_copyWeak, 2480 llvm::Intrinsic::objc_copyWeak); 2481 } 2482 2483 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, 2484 Address SrcAddr) { 2485 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2486 Object = EmitObjCConsumeObject(Ty, Object); 2487 EmitARCStoreWeak(DstAddr, Object, false); 2488 } 2489 2490 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, 2491 Address SrcAddr) { 2492 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2493 Object = EmitObjCConsumeObject(Ty, Object); 2494 EmitARCStoreWeak(DstAddr, Object, false); 2495 EmitARCDestroyWeak(SrcAddr); 2496 } 2497 2498 /// Produce the code to do a objc_autoreleasepool_push. 2499 /// call i8* \@objc_autoreleasePoolPush(void) 2500 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2501 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2502 if (!fn) { 2503 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush); 2504 setARCRuntimeFunctionLinkage(CGM, fn); 2505 } 2506 2507 return EmitNounwindRuntimeCall(fn); 2508 } 2509 2510 /// Produce the code to do a primitive release. 2511 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2512 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2513 assert(value->getType() == Int8PtrTy); 2514 2515 if (getInvokeDest()) { 2516 // Call the runtime method not the intrinsic if we are handling exceptions 2517 llvm::FunctionCallee &fn = 2518 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; 2519 if (!fn) { 2520 llvm::FunctionType *fnType = 2521 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2522 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop"); 2523 setARCRuntimeFunctionLinkage(CGM, fn); 2524 } 2525 2526 // objc_autoreleasePoolPop can throw. 2527 EmitRuntimeCallOrInvoke(fn, value); 2528 } else { 2529 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2530 if (!fn) { 2531 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop); 2532 setARCRuntimeFunctionLinkage(CGM, fn); 2533 } 2534 2535 EmitRuntimeCall(fn, value); 2536 } 2537 } 2538 2539 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2540 /// Which is: [[NSAutoreleasePool alloc] init]; 2541 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2542 /// init is declared as: - (id) init; in its NSObject super class. 2543 /// 2544 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2545 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2546 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2547 // [NSAutoreleasePool alloc] 2548 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2549 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2550 CallArgList Args; 2551 RValue AllocRV = 2552 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2553 getContext().getObjCIdType(), 2554 AllocSel, Receiver, Args); 2555 2556 // [Receiver init] 2557 Receiver = AllocRV.getScalarVal(); 2558 II = &CGM.getContext().Idents.get("init"); 2559 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2560 RValue InitRV = 2561 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2562 getContext().getObjCIdType(), 2563 InitSel, Receiver, Args); 2564 return InitRV.getScalarVal(); 2565 } 2566 2567 /// Allocate the given objc object. 2568 /// call i8* \@objc_alloc(i8* %value) 2569 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, 2570 llvm::Type *resultType) { 2571 return emitObjCValueOperation(*this, value, resultType, 2572 CGM.getObjCEntrypoints().objc_alloc, 2573 "objc_alloc"); 2574 } 2575 2576 /// Allocate the given objc object. 2577 /// call i8* \@objc_allocWithZone(i8* %value) 2578 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, 2579 llvm::Type *resultType) { 2580 return emitObjCValueOperation(*this, value, resultType, 2581 CGM.getObjCEntrypoints().objc_allocWithZone, 2582 "objc_allocWithZone"); 2583 } 2584 2585 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value, 2586 llvm::Type *resultType) { 2587 return emitObjCValueOperation(*this, value, resultType, 2588 CGM.getObjCEntrypoints().objc_alloc_init, 2589 "objc_alloc_init"); 2590 } 2591 2592 /// Produce the code to do a primitive release. 2593 /// [tmp drain]; 2594 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2595 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2596 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2597 CallArgList Args; 2598 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2599 getContext().VoidTy, DrainSel, Arg, Args); 2600 } 2601 2602 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2603 Address addr, 2604 QualType type) { 2605 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2606 } 2607 2608 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2609 Address addr, 2610 QualType type) { 2611 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2612 } 2613 2614 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2615 Address addr, 2616 QualType type) { 2617 CGF.EmitARCDestroyWeak(addr); 2618 } 2619 2620 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2621 QualType type) { 2622 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2623 CGF.EmitARCIntrinsicUse(value); 2624 } 2625 2626 /// Autorelease the given object. 2627 /// call i8* \@objc_autorelease(i8* %value) 2628 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value, 2629 llvm::Type *returnType) { 2630 return emitObjCValueOperation( 2631 *this, value, returnType, 2632 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction, 2633 "objc_autorelease"); 2634 } 2635 2636 /// Retain the given object, with normal retain semantics. 2637 /// call i8* \@objc_retain(i8* %value) 2638 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value, 2639 llvm::Type *returnType) { 2640 return emitObjCValueOperation( 2641 *this, value, returnType, 2642 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain"); 2643 } 2644 2645 /// Release the given object. 2646 /// call void \@objc_release(i8* %value) 2647 void CodeGenFunction::EmitObjCRelease(llvm::Value *value, 2648 ARCPreciseLifetime_t precise) { 2649 if (isa<llvm::ConstantPointerNull>(value)) return; 2650 2651 llvm::FunctionCallee &fn = 2652 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction; 2653 if (!fn) { 2654 llvm::FunctionType *fnType = 2655 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2656 fn = CGM.CreateRuntimeFunction(fnType, "objc_release"); 2657 setARCRuntimeFunctionLinkage(CGM, fn); 2658 // We have Native ARC, so set nonlazybind attribute for performance 2659 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2660 f->addFnAttr(llvm::Attribute::NonLazyBind); 2661 } 2662 2663 // Cast the argument to 'id'. 2664 value = Builder.CreateBitCast(value, Int8PtrTy); 2665 2666 // Call objc_release. 2667 llvm::CallBase *call = EmitCallOrInvoke(fn, value); 2668 2669 if (precise == ARCImpreciseLifetime) { 2670 call->setMetadata("clang.imprecise_release", 2671 llvm::MDNode::get(Builder.getContext(), None)); 2672 } 2673 } 2674 2675 namespace { 2676 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2677 llvm::Value *Token; 2678 2679 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2680 2681 void Emit(CodeGenFunction &CGF, Flags flags) override { 2682 CGF.EmitObjCAutoreleasePoolPop(Token); 2683 } 2684 }; 2685 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2686 llvm::Value *Token; 2687 2688 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2689 2690 void Emit(CodeGenFunction &CGF, Flags flags) override { 2691 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2692 } 2693 }; 2694 } 2695 2696 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2697 if (CGM.getLangOpts().ObjCAutoRefCount) 2698 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2699 else 2700 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2701 } 2702 2703 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { 2704 switch (lifetime) { 2705 case Qualifiers::OCL_None: 2706 case Qualifiers::OCL_ExplicitNone: 2707 case Qualifiers::OCL_Strong: 2708 case Qualifiers::OCL_Autoreleasing: 2709 return true; 2710 2711 case Qualifiers::OCL_Weak: 2712 return false; 2713 } 2714 2715 llvm_unreachable("impossible lifetime!"); 2716 } 2717 2718 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2719 LValue lvalue, 2720 QualType type) { 2721 llvm::Value *result; 2722 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime()); 2723 if (shouldRetain) { 2724 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal(); 2725 } else { 2726 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); 2727 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF)); 2728 } 2729 return TryEmitResult(result, !shouldRetain); 2730 } 2731 2732 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2733 const Expr *e) { 2734 e = e->IgnoreParens(); 2735 QualType type = e->getType(); 2736 2737 // If we're loading retained from a __strong xvalue, we can avoid 2738 // an extra retain/release pair by zeroing out the source of this 2739 // "move" operation. 2740 if (e->isXValue() && 2741 !type.isConstQualified() && 2742 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2743 // Emit the lvalue. 2744 LValue lv = CGF.EmitLValue(e); 2745 2746 // Load the object pointer. 2747 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2748 SourceLocation()).getScalarVal(); 2749 2750 // Set the source pointer to NULL. 2751 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv); 2752 2753 return TryEmitResult(result, true); 2754 } 2755 2756 // As a very special optimization, in ARC++, if the l-value is the 2757 // result of a non-volatile assignment, do a simple retain of the 2758 // result of the call to objc_storeWeak instead of reloading. 2759 if (CGF.getLangOpts().CPlusPlus && 2760 !type.isVolatileQualified() && 2761 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2762 isa<BinaryOperator>(e) && 2763 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2764 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2765 2766 // Try to emit code for scalar constant instead of emitting LValue and 2767 // loading it because we are not guaranteed to have an l-value. One of such 2768 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. 2769 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) { 2770 auto *DRE = const_cast<DeclRefExpr *>(decl_expr); 2771 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE)) 2772 return TryEmitResult(CGF.emitScalarConstant(constant, DRE), 2773 !shouldRetainObjCLifetime(type.getObjCLifetime())); 2774 } 2775 2776 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2777 } 2778 2779 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2780 llvm::Value *value)> 2781 ValueTransform; 2782 2783 /// Insert code immediately after a call. 2784 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2785 llvm::Value *value, 2786 ValueTransform doAfterCall, 2787 ValueTransform doFallback) { 2788 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2789 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2790 2791 // Place the retain immediately following the call. 2792 CGF.Builder.SetInsertPoint(call->getParent(), 2793 ++llvm::BasicBlock::iterator(call)); 2794 value = doAfterCall(CGF, value); 2795 2796 CGF.Builder.restoreIP(ip); 2797 return value; 2798 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2799 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2800 2801 // Place the retain at the beginning of the normal destination block. 2802 llvm::BasicBlock *BB = invoke->getNormalDest(); 2803 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2804 value = doAfterCall(CGF, value); 2805 2806 CGF.Builder.restoreIP(ip); 2807 return value; 2808 2809 // Bitcasts can arise because of related-result returns. Rewrite 2810 // the operand. 2811 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2812 llvm::Value *operand = bitcast->getOperand(0); 2813 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2814 bitcast->setOperand(0, operand); 2815 return bitcast; 2816 2817 // Generic fall-back case. 2818 } else { 2819 // Retain using the non-block variant: we never need to do a copy 2820 // of a block that's been returned to us. 2821 return doFallback(CGF, value); 2822 } 2823 } 2824 2825 /// Given that the given expression is some sort of call (which does 2826 /// not return retained), emit a retain following it. 2827 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2828 const Expr *e) { 2829 llvm::Value *value = CGF.EmitScalarExpr(e); 2830 return emitARCOperationAfterCall(CGF, value, 2831 [](CodeGenFunction &CGF, llvm::Value *value) { 2832 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2833 }, 2834 [](CodeGenFunction &CGF, llvm::Value *value) { 2835 return CGF.EmitARCRetainNonBlock(value); 2836 }); 2837 } 2838 2839 /// Given that the given expression is some sort of call (which does 2840 /// not return retained), perform an unsafeClaim following it. 2841 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 2842 const Expr *e) { 2843 llvm::Value *value = CGF.EmitScalarExpr(e); 2844 return emitARCOperationAfterCall(CGF, value, 2845 [](CodeGenFunction &CGF, llvm::Value *value) { 2846 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 2847 }, 2848 [](CodeGenFunction &CGF, llvm::Value *value) { 2849 return value; 2850 }); 2851 } 2852 2853 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 2854 bool allowUnsafeClaim) { 2855 if (allowUnsafeClaim && 2856 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 2857 return emitARCUnsafeClaimCallResult(*this, E); 2858 } else { 2859 llvm::Value *value = emitARCRetainCallResult(*this, E); 2860 return EmitObjCConsumeObject(E->getType(), value); 2861 } 2862 } 2863 2864 /// Determine whether it might be important to emit a separate 2865 /// objc_retain_block on the result of the given expression, or 2866 /// whether it's okay to just emit it in a +1 context. 2867 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2868 assert(e->getType()->isBlockPointerType()); 2869 e = e->IgnoreParens(); 2870 2871 // For future goodness, emit block expressions directly in +1 2872 // contexts if we can. 2873 if (isa<BlockExpr>(e)) 2874 return false; 2875 2876 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2877 switch (cast->getCastKind()) { 2878 // Emitting these operations in +1 contexts is goodness. 2879 case CK_LValueToRValue: 2880 case CK_ARCReclaimReturnedObject: 2881 case CK_ARCConsumeObject: 2882 case CK_ARCProduceObject: 2883 return false; 2884 2885 // These operations preserve a block type. 2886 case CK_NoOp: 2887 case CK_BitCast: 2888 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2889 2890 // These operations are known to be bad (or haven't been considered). 2891 case CK_AnyPointerToBlockPointerCast: 2892 default: 2893 return true; 2894 } 2895 } 2896 2897 return true; 2898 } 2899 2900 namespace { 2901 /// A CRTP base class for emitting expressions of retainable object 2902 /// pointer type in ARC. 2903 template <typename Impl, typename Result> class ARCExprEmitter { 2904 protected: 2905 CodeGenFunction &CGF; 2906 Impl &asImpl() { return *static_cast<Impl*>(this); } 2907 2908 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 2909 2910 public: 2911 Result visit(const Expr *e); 2912 Result visitCastExpr(const CastExpr *e); 2913 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 2914 Result visitBlockExpr(const BlockExpr *e); 2915 Result visitBinaryOperator(const BinaryOperator *e); 2916 Result visitBinAssign(const BinaryOperator *e); 2917 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 2918 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 2919 Result visitBinAssignWeak(const BinaryOperator *e); 2920 Result visitBinAssignStrong(const BinaryOperator *e); 2921 2922 // Minimal implementation: 2923 // Result visitLValueToRValue(const Expr *e) 2924 // Result visitConsumeObject(const Expr *e) 2925 // Result visitExtendBlockObject(const Expr *e) 2926 // Result visitReclaimReturnedObject(const Expr *e) 2927 // Result visitCall(const Expr *e) 2928 // Result visitExpr(const Expr *e) 2929 // 2930 // Result emitBitCast(Result result, llvm::Type *resultType) 2931 // llvm::Value *getValueOfResult(Result result) 2932 }; 2933 } 2934 2935 /// Try to emit a PseudoObjectExpr under special ARC rules. 2936 /// 2937 /// This massively duplicates emitPseudoObjectRValue. 2938 template <typename Impl, typename Result> 2939 Result 2940 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 2941 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2942 2943 // Find the result expression. 2944 const Expr *resultExpr = E->getResultExpr(); 2945 assert(resultExpr); 2946 Result result; 2947 2948 for (PseudoObjectExpr::const_semantics_iterator 2949 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2950 const Expr *semantic = *i; 2951 2952 // If this semantic expression is an opaque value, bind it 2953 // to the result of its source expression. 2954 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2955 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2956 OVMA opaqueData; 2957 2958 // If this semantic is the result of the pseudo-object 2959 // expression, try to evaluate the source as +1. 2960 if (ov == resultExpr) { 2961 assert(!OVMA::shouldBindAsLValue(ov)); 2962 result = asImpl().visit(ov->getSourceExpr()); 2963 opaqueData = OVMA::bind(CGF, ov, 2964 RValue::get(asImpl().getValueOfResult(result))); 2965 2966 // Otherwise, just bind it. 2967 } else { 2968 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2969 } 2970 opaques.push_back(opaqueData); 2971 2972 // Otherwise, if the expression is the result, evaluate it 2973 // and remember the result. 2974 } else if (semantic == resultExpr) { 2975 result = asImpl().visit(semantic); 2976 2977 // Otherwise, evaluate the expression in an ignored context. 2978 } else { 2979 CGF.EmitIgnoredExpr(semantic); 2980 } 2981 } 2982 2983 // Unbind all the opaques now. 2984 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2985 opaques[i].unbind(CGF); 2986 2987 return result; 2988 } 2989 2990 template <typename Impl, typename Result> 2991 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) { 2992 // The default implementation just forwards the expression to visitExpr. 2993 return asImpl().visitExpr(e); 2994 } 2995 2996 template <typename Impl, typename Result> 2997 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 2998 switch (e->getCastKind()) { 2999 3000 // No-op casts don't change the type, so we just ignore them. 3001 case CK_NoOp: 3002 return asImpl().visit(e->getSubExpr()); 3003 3004 // These casts can change the type. 3005 case CK_CPointerToObjCPointerCast: 3006 case CK_BlockPointerToObjCPointerCast: 3007 case CK_AnyPointerToBlockPointerCast: 3008 case CK_BitCast: { 3009 llvm::Type *resultType = CGF.ConvertType(e->getType()); 3010 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 3011 Result result = asImpl().visit(e->getSubExpr()); 3012 return asImpl().emitBitCast(result, resultType); 3013 } 3014 3015 // Handle some casts specially. 3016 case CK_LValueToRValue: 3017 return asImpl().visitLValueToRValue(e->getSubExpr()); 3018 case CK_ARCConsumeObject: 3019 return asImpl().visitConsumeObject(e->getSubExpr()); 3020 case CK_ARCExtendBlockObject: 3021 return asImpl().visitExtendBlockObject(e->getSubExpr()); 3022 case CK_ARCReclaimReturnedObject: 3023 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 3024 3025 // Otherwise, use the default logic. 3026 default: 3027 return asImpl().visitExpr(e); 3028 } 3029 } 3030 3031 template <typename Impl, typename Result> 3032 Result 3033 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 3034 switch (e->getOpcode()) { 3035 case BO_Comma: 3036 CGF.EmitIgnoredExpr(e->getLHS()); 3037 CGF.EnsureInsertPoint(); 3038 return asImpl().visit(e->getRHS()); 3039 3040 case BO_Assign: 3041 return asImpl().visitBinAssign(e); 3042 3043 default: 3044 return asImpl().visitExpr(e); 3045 } 3046 } 3047 3048 template <typename Impl, typename Result> 3049 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 3050 switch (e->getLHS()->getType().getObjCLifetime()) { 3051 case Qualifiers::OCL_ExplicitNone: 3052 return asImpl().visitBinAssignUnsafeUnretained(e); 3053 3054 case Qualifiers::OCL_Weak: 3055 return asImpl().visitBinAssignWeak(e); 3056 3057 case Qualifiers::OCL_Autoreleasing: 3058 return asImpl().visitBinAssignAutoreleasing(e); 3059 3060 case Qualifiers::OCL_Strong: 3061 return asImpl().visitBinAssignStrong(e); 3062 3063 case Qualifiers::OCL_None: 3064 return asImpl().visitExpr(e); 3065 } 3066 llvm_unreachable("bad ObjC ownership qualifier"); 3067 } 3068 3069 /// The default rule for __unsafe_unretained emits the RHS recursively, 3070 /// stores into the unsafe variable, and propagates the result outward. 3071 template <typename Impl, typename Result> 3072 Result ARCExprEmitter<Impl,Result>:: 3073 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 3074 // Recursively emit the RHS. 3075 // For __block safety, do this before emitting the LHS. 3076 Result result = asImpl().visit(e->getRHS()); 3077 3078 // Perform the store. 3079 LValue lvalue = 3080 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 3081 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 3082 lvalue); 3083 3084 return result; 3085 } 3086 3087 template <typename Impl, typename Result> 3088 Result 3089 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 3090 return asImpl().visitExpr(e); 3091 } 3092 3093 template <typename Impl, typename Result> 3094 Result 3095 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 3096 return asImpl().visitExpr(e); 3097 } 3098 3099 template <typename Impl, typename Result> 3100 Result 3101 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 3102 return asImpl().visitExpr(e); 3103 } 3104 3105 /// The general expression-emission logic. 3106 template <typename Impl, typename Result> 3107 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 3108 // We should *never* see a nested full-expression here, because if 3109 // we fail to emit at +1, our caller must not retain after we close 3110 // out the full-expression. This isn't as important in the unsafe 3111 // emitter. 3112 assert(!isa<ExprWithCleanups>(e)); 3113 3114 // Look through parens, __extension__, generic selection, etc. 3115 e = e->IgnoreParens(); 3116 3117 // Handle certain kinds of casts. 3118 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 3119 return asImpl().visitCastExpr(ce); 3120 3121 // Handle the comma operator. 3122 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 3123 return asImpl().visitBinaryOperator(op); 3124 3125 // TODO: handle conditional operators here 3126 3127 // For calls and message sends, use the retained-call logic. 3128 // Delegate inits are a special case in that they're the only 3129 // returns-retained expression that *isn't* surrounded by 3130 // a consume. 3131 } else if (isa<CallExpr>(e) || 3132 (isa<ObjCMessageExpr>(e) && 3133 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 3134 return asImpl().visitCall(e); 3135 3136 // Look through pseudo-object expressions. 3137 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 3138 return asImpl().visitPseudoObjectExpr(pseudo); 3139 } else if (auto *be = dyn_cast<BlockExpr>(e)) 3140 return asImpl().visitBlockExpr(be); 3141 3142 return asImpl().visitExpr(e); 3143 } 3144 3145 namespace { 3146 3147 /// An emitter for +1 results. 3148 struct ARCRetainExprEmitter : 3149 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 3150 3151 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3152 3153 llvm::Value *getValueOfResult(TryEmitResult result) { 3154 return result.getPointer(); 3155 } 3156 3157 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 3158 llvm::Value *value = result.getPointer(); 3159 value = CGF.Builder.CreateBitCast(value, resultType); 3160 result.setPointer(value); 3161 return result; 3162 } 3163 3164 TryEmitResult visitLValueToRValue(const Expr *e) { 3165 return tryEmitARCRetainLoadOfScalar(CGF, e); 3166 } 3167 3168 /// For consumptions, just emit the subexpression and thus elide 3169 /// the retain/release pair. 3170 TryEmitResult visitConsumeObject(const Expr *e) { 3171 llvm::Value *result = CGF.EmitScalarExpr(e); 3172 return TryEmitResult(result, true); 3173 } 3174 3175 TryEmitResult visitBlockExpr(const BlockExpr *e) { 3176 TryEmitResult result = visitExpr(e); 3177 // Avoid the block-retain if this is a block literal that doesn't need to be 3178 // copied to the heap. 3179 if (e->getBlockDecl()->canAvoidCopyToHeap()) 3180 result.setInt(true); 3181 return result; 3182 } 3183 3184 /// Block extends are net +0. Naively, we could just recurse on 3185 /// the subexpression, but actually we need to ensure that the 3186 /// value is copied as a block, so there's a little filter here. 3187 TryEmitResult visitExtendBlockObject(const Expr *e) { 3188 llvm::Value *result; // will be a +0 value 3189 3190 // If we can't safely assume the sub-expression will produce a 3191 // block-copied value, emit the sub-expression at +0. 3192 if (shouldEmitSeparateBlockRetain(e)) { 3193 result = CGF.EmitScalarExpr(e); 3194 3195 // Otherwise, try to emit the sub-expression at +1 recursively. 3196 } else { 3197 TryEmitResult subresult = asImpl().visit(e); 3198 3199 // If that produced a retained value, just use that. 3200 if (subresult.getInt()) { 3201 return subresult; 3202 } 3203 3204 // Otherwise it's +0. 3205 result = subresult.getPointer(); 3206 } 3207 3208 // Retain the object as a block. 3209 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 3210 return TryEmitResult(result, true); 3211 } 3212 3213 /// For reclaims, emit the subexpression as a retained call and 3214 /// skip the consumption. 3215 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 3216 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3217 return TryEmitResult(result, true); 3218 } 3219 3220 /// When we have an undecorated call, retroactively do a claim. 3221 TryEmitResult visitCall(const Expr *e) { 3222 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3223 return TryEmitResult(result, true); 3224 } 3225 3226 // TODO: maybe special-case visitBinAssignWeak? 3227 3228 TryEmitResult visitExpr(const Expr *e) { 3229 // We didn't find an obvious production, so emit what we've got and 3230 // tell the caller that we didn't manage to retain. 3231 llvm::Value *result = CGF.EmitScalarExpr(e); 3232 return TryEmitResult(result, false); 3233 } 3234 }; 3235 } 3236 3237 static TryEmitResult 3238 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 3239 return ARCRetainExprEmitter(CGF).visit(e); 3240 } 3241 3242 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 3243 LValue lvalue, 3244 QualType type) { 3245 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 3246 llvm::Value *value = result.getPointer(); 3247 if (!result.getInt()) 3248 value = CGF.EmitARCRetain(type, value); 3249 return value; 3250 } 3251 3252 /// EmitARCRetainScalarExpr - Semantically equivalent to 3253 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 3254 /// best-effort attempt to peephole expressions that naturally produce 3255 /// retained objects. 3256 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 3257 // The retain needs to happen within the full-expression. 3258 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3259 enterFullExpression(cleanups); 3260 RunCleanupsScope scope(*this); 3261 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 3262 } 3263 3264 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3265 llvm::Value *value = result.getPointer(); 3266 if (!result.getInt()) 3267 value = EmitARCRetain(e->getType(), value); 3268 return value; 3269 } 3270 3271 llvm::Value * 3272 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 3273 // The retain needs to happen within the full-expression. 3274 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3275 enterFullExpression(cleanups); 3276 RunCleanupsScope scope(*this); 3277 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 3278 } 3279 3280 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3281 llvm::Value *value = result.getPointer(); 3282 if (result.getInt()) 3283 value = EmitARCAutorelease(value); 3284 else 3285 value = EmitARCRetainAutorelease(e->getType(), value); 3286 return value; 3287 } 3288 3289 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 3290 llvm::Value *result; 3291 bool doRetain; 3292 3293 if (shouldEmitSeparateBlockRetain(e)) { 3294 result = EmitScalarExpr(e); 3295 doRetain = true; 3296 } else { 3297 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 3298 result = subresult.getPointer(); 3299 doRetain = !subresult.getInt(); 3300 } 3301 3302 if (doRetain) 3303 result = EmitARCRetainBlock(result, /*mandatory*/ true); 3304 return EmitObjCConsumeObject(e->getType(), result); 3305 } 3306 3307 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3308 // In ARC, retain and autorelease the expression. 3309 if (getLangOpts().ObjCAutoRefCount) { 3310 // Do so before running any cleanups for the full-expression. 3311 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3312 return EmitARCRetainAutoreleaseScalarExpr(expr); 3313 } 3314 3315 // Otherwise, use the normal scalar-expression emission. The 3316 // exception machinery doesn't do anything special with the 3317 // exception like retaining it, so there's no safety associated with 3318 // only running cleanups after the throw has started, and when it 3319 // matters it tends to be substantially inferior code. 3320 return EmitScalarExpr(expr); 3321 } 3322 3323 namespace { 3324 3325 /// An emitter for assigning into an __unsafe_unretained context. 3326 struct ARCUnsafeUnretainedExprEmitter : 3327 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3328 3329 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3330 3331 llvm::Value *getValueOfResult(llvm::Value *value) { 3332 return value; 3333 } 3334 3335 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3336 return CGF.Builder.CreateBitCast(value, resultType); 3337 } 3338 3339 llvm::Value *visitLValueToRValue(const Expr *e) { 3340 return CGF.EmitScalarExpr(e); 3341 } 3342 3343 /// For consumptions, just emit the subexpression and perform the 3344 /// consumption like normal. 3345 llvm::Value *visitConsumeObject(const Expr *e) { 3346 llvm::Value *value = CGF.EmitScalarExpr(e); 3347 return CGF.EmitObjCConsumeObject(e->getType(), value); 3348 } 3349 3350 /// No special logic for block extensions. (This probably can't 3351 /// actually happen in this emitter, though.) 3352 llvm::Value *visitExtendBlockObject(const Expr *e) { 3353 return CGF.EmitARCExtendBlockObject(e); 3354 } 3355 3356 /// For reclaims, perform an unsafeClaim if that's enabled. 3357 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3358 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3359 } 3360 3361 /// When we have an undecorated call, just emit it without adding 3362 /// the unsafeClaim. 3363 llvm::Value *visitCall(const Expr *e) { 3364 return CGF.EmitScalarExpr(e); 3365 } 3366 3367 /// Just do normal scalar emission in the default case. 3368 llvm::Value *visitExpr(const Expr *e) { 3369 return CGF.EmitScalarExpr(e); 3370 } 3371 }; 3372 } 3373 3374 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3375 const Expr *e) { 3376 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3377 } 3378 3379 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3380 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3381 /// avoiding any spurious retains, including by performing reclaims 3382 /// with objc_unsafeClaimAutoreleasedReturnValue. 3383 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3384 // Look through full-expressions. 3385 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3386 enterFullExpression(cleanups); 3387 RunCleanupsScope scope(*this); 3388 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3389 } 3390 3391 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3392 } 3393 3394 std::pair<LValue,llvm::Value*> 3395 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3396 bool ignored) { 3397 // Evaluate the RHS first. If we're ignoring the result, assume 3398 // that we can emit at an unsafe +0. 3399 llvm::Value *value; 3400 if (ignored) { 3401 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3402 } else { 3403 value = EmitScalarExpr(e->getRHS()); 3404 } 3405 3406 // Emit the LHS and perform the store. 3407 LValue lvalue = EmitLValue(e->getLHS()); 3408 EmitStoreOfScalar(value, lvalue); 3409 3410 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3411 } 3412 3413 std::pair<LValue,llvm::Value*> 3414 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3415 bool ignored) { 3416 // Evaluate the RHS first. 3417 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3418 llvm::Value *value = result.getPointer(); 3419 3420 bool hasImmediateRetain = result.getInt(); 3421 3422 // If we didn't emit a retained object, and the l-value is of block 3423 // type, then we need to emit the block-retain immediately in case 3424 // it invalidates the l-value. 3425 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3426 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3427 hasImmediateRetain = true; 3428 } 3429 3430 LValue lvalue = EmitLValue(e->getLHS()); 3431 3432 // If the RHS was emitted retained, expand this. 3433 if (hasImmediateRetain) { 3434 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3435 EmitStoreOfScalar(value, lvalue); 3436 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3437 } else { 3438 value = EmitARCStoreStrong(lvalue, value, ignored); 3439 } 3440 3441 return std::pair<LValue,llvm::Value*>(lvalue, value); 3442 } 3443 3444 std::pair<LValue,llvm::Value*> 3445 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3446 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3447 LValue lvalue = EmitLValue(e->getLHS()); 3448 3449 EmitStoreOfScalar(value, lvalue); 3450 3451 return std::pair<LValue,llvm::Value*>(lvalue, value); 3452 } 3453 3454 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3455 const ObjCAutoreleasePoolStmt &ARPS) { 3456 const Stmt *subStmt = ARPS.getSubStmt(); 3457 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3458 3459 CGDebugInfo *DI = getDebugInfo(); 3460 if (DI) 3461 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3462 3463 // Keep track of the current cleanup stack depth. 3464 RunCleanupsScope Scope(*this); 3465 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3466 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3467 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3468 } else { 3469 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3470 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3471 } 3472 3473 for (const auto *I : S.body()) 3474 EmitStmt(I); 3475 3476 if (DI) 3477 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3478 } 3479 3480 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3481 /// make sure it survives garbage collection until this point. 3482 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3483 // We just use an inline assembly. 3484 llvm::FunctionType *extenderType 3485 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3486 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType, 3487 /* assembly */ "", 3488 /* constraints */ "r", 3489 /* side effects */ true); 3490 3491 object = Builder.CreateBitCast(object, VoidPtrTy); 3492 EmitNounwindRuntimeCall(extender, object); 3493 } 3494 3495 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3496 /// non-trivial copy assignment function, produce following helper function. 3497 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3498 /// 3499 llvm::Constant * 3500 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3501 const ObjCPropertyImplDecl *PID) { 3502 if (!getLangOpts().CPlusPlus || 3503 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3504 return nullptr; 3505 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3506 if (!Ty->isRecordType()) 3507 return nullptr; 3508 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3509 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3510 return nullptr; 3511 llvm::Constant *HelperFn = nullptr; 3512 if (hasTrivialSetExpr(PID)) 3513 return nullptr; 3514 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3515 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3516 return HelperFn; 3517 3518 ASTContext &C = getContext(); 3519 IdentifierInfo *II 3520 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3521 3522 QualType ReturnTy = C.VoidTy; 3523 QualType DestTy = C.getPointerType(Ty); 3524 QualType SrcTy = Ty; 3525 SrcTy.addConst(); 3526 SrcTy = C.getPointerType(SrcTy); 3527 3528 SmallVector<QualType, 2> ArgTys; 3529 ArgTys.push_back(DestTy); 3530 ArgTys.push_back(SrcTy); 3531 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3532 3533 FunctionDecl *FD = FunctionDecl::Create( 3534 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3535 FunctionTy, nullptr, SC_Static, false, false); 3536 3537 FunctionArgList args; 3538 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3539 ImplicitParamDecl::Other); 3540 args.push_back(&DstDecl); 3541 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3542 ImplicitParamDecl::Other); 3543 args.push_back(&SrcDecl); 3544 3545 const CGFunctionInfo &FI = 3546 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3547 3548 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3549 3550 llvm::Function *Fn = 3551 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3552 "__assign_helper_atomic_property_", 3553 &CGM.getModule()); 3554 3555 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3556 3557 StartFunction(FD, ReturnTy, Fn, FI, args); 3558 3559 DeclRefExpr DstExpr(C, &DstDecl, false, DestTy, VK_RValue, SourceLocation()); 3560 UnaryOperator *DST = UnaryOperator::Create( 3561 C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary, 3562 SourceLocation(), false, FPOptions(C.getLangOpts())); 3563 3564 DeclRefExpr SrcExpr(C, &SrcDecl, false, SrcTy, VK_RValue, SourceLocation()); 3565 UnaryOperator *SRC = UnaryOperator::Create( 3566 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3567 SourceLocation(), false, FPOptions(C.getLangOpts())); 3568 3569 Expr *Args[2] = {DST, SRC}; 3570 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3571 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 3572 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(), 3573 VK_LValue, SourceLocation(), FPOptions(C.getLangOpts())); 3574 3575 EmitStmt(TheCall); 3576 3577 FinishFunction(); 3578 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3579 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3580 return HelperFn; 3581 } 3582 3583 llvm::Constant * 3584 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3585 const ObjCPropertyImplDecl *PID) { 3586 if (!getLangOpts().CPlusPlus || 3587 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3588 return nullptr; 3589 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3590 QualType Ty = PD->getType(); 3591 if (!Ty->isRecordType()) 3592 return nullptr; 3593 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3594 return nullptr; 3595 llvm::Constant *HelperFn = nullptr; 3596 if (hasTrivialGetExpr(PID)) 3597 return nullptr; 3598 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3599 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3600 return HelperFn; 3601 3602 ASTContext &C = getContext(); 3603 IdentifierInfo *II = 3604 &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3605 3606 QualType ReturnTy = C.VoidTy; 3607 QualType DestTy = C.getPointerType(Ty); 3608 QualType SrcTy = Ty; 3609 SrcTy.addConst(); 3610 SrcTy = C.getPointerType(SrcTy); 3611 3612 SmallVector<QualType, 2> ArgTys; 3613 ArgTys.push_back(DestTy); 3614 ArgTys.push_back(SrcTy); 3615 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3616 3617 FunctionDecl *FD = FunctionDecl::Create( 3618 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3619 FunctionTy, nullptr, SC_Static, false, false); 3620 3621 FunctionArgList args; 3622 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3623 ImplicitParamDecl::Other); 3624 args.push_back(&DstDecl); 3625 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3626 ImplicitParamDecl::Other); 3627 args.push_back(&SrcDecl); 3628 3629 const CGFunctionInfo &FI = 3630 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3631 3632 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3633 3634 llvm::Function *Fn = llvm::Function::Create( 3635 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_", 3636 &CGM.getModule()); 3637 3638 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3639 3640 StartFunction(FD, ReturnTy, Fn, FI, args); 3641 3642 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue, 3643 SourceLocation()); 3644 3645 UnaryOperator *SRC = UnaryOperator::Create( 3646 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3647 SourceLocation(), false, FPOptions(C.getLangOpts())); 3648 3649 CXXConstructExpr *CXXConstExpr = 3650 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3651 3652 SmallVector<Expr*, 4> ConstructorArgs; 3653 ConstructorArgs.push_back(SRC); 3654 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3655 CXXConstExpr->arg_end()); 3656 3657 CXXConstructExpr *TheCXXConstructExpr = 3658 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3659 CXXConstExpr->getConstructor(), 3660 CXXConstExpr->isElidable(), 3661 ConstructorArgs, 3662 CXXConstExpr->hadMultipleCandidates(), 3663 CXXConstExpr->isListInitialization(), 3664 CXXConstExpr->isStdInitListInitialization(), 3665 CXXConstExpr->requiresZeroInitialization(), 3666 CXXConstExpr->getConstructionKind(), 3667 SourceRange()); 3668 3669 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue, 3670 SourceLocation()); 3671 3672 RValue DV = EmitAnyExpr(&DstExpr); 3673 CharUnits Alignment 3674 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3675 EmitAggExpr(TheCXXConstructExpr, 3676 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3677 Qualifiers(), 3678 AggValueSlot::IsDestructed, 3679 AggValueSlot::DoesNotNeedGCBarriers, 3680 AggValueSlot::IsNotAliased, 3681 AggValueSlot::DoesNotOverlap)); 3682 3683 FinishFunction(); 3684 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3685 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3686 return HelperFn; 3687 } 3688 3689 llvm::Value * 3690 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3691 // Get selectors for retain/autorelease. 3692 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3693 Selector CopySelector = 3694 getContext().Selectors.getNullarySelector(CopyID); 3695 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3696 Selector AutoreleaseSelector = 3697 getContext().Selectors.getNullarySelector(AutoreleaseID); 3698 3699 // Emit calls to retain/autorelease. 3700 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3701 llvm::Value *Val = Block; 3702 RValue Result; 3703 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3704 Ty, CopySelector, 3705 Val, CallArgList(), nullptr, nullptr); 3706 Val = Result.getScalarVal(); 3707 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3708 Ty, AutoreleaseSelector, 3709 Val, CallArgList(), nullptr, nullptr); 3710 Val = Result.getScalarVal(); 3711 return Val; 3712 } 3713 3714 llvm::Value * 3715 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) { 3716 assert(Args.size() == 3 && "Expected 3 argument here!"); 3717 3718 if (!CGM.IsOSVersionAtLeastFn) { 3719 llvm::FunctionType *FTy = 3720 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 3721 CGM.IsOSVersionAtLeastFn = 3722 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 3723 } 3724 3725 llvm::Value *CallRes = 3726 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 3727 3728 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 3729 } 3730 3731 void CodeGenModule::emitAtAvailableLinkGuard() { 3732 if (!IsOSVersionAtLeastFn) 3733 return; 3734 // @available requires CoreFoundation only on Darwin. 3735 if (!Target.getTriple().isOSDarwin()) 3736 return; 3737 // Add -framework CoreFoundation to the linker commands. We still want to 3738 // emit the core foundation reference down below because otherwise if 3739 // CoreFoundation is not used in the code, the linker won't link the 3740 // framework. 3741 auto &Context = getLLVMContext(); 3742 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3743 llvm::MDString::get(Context, "CoreFoundation")}; 3744 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 3745 // Emit a reference to a symbol from CoreFoundation to ensure that 3746 // CoreFoundation is linked into the final binary. 3747 llvm::FunctionType *FTy = 3748 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 3749 llvm::FunctionCallee CFFunc = 3750 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 3751 3752 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 3753 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction( 3754 CheckFTy, "__clang_at_available_requires_core_foundation_framework", 3755 llvm::AttributeList(), /*Local=*/true); 3756 llvm::Function *CFLinkCheckFunc = 3757 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts()); 3758 if (CFLinkCheckFunc->empty()) { 3759 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 3760 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 3761 CodeGenFunction CGF(*this); 3762 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 3763 CGF.EmitNounwindRuntimeCall(CFFunc, 3764 llvm::Constant::getNullValue(VoidPtrTy)); 3765 CGF.Builder.CreateUnreachable(); 3766 addCompilerUsedGlobal(CFLinkCheckFunc); 3767 } 3768 } 3769 3770 CGObjCRuntime::~CGObjCRuntime() {} 3771