1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
35                                    QualType ET,
36                                    RValue Result);
37 
38 /// Given the address of a variable of pointer type, find the correct
39 /// null to store into it.
40 static llvm::Constant *getNullForVariable(Address addr) {
41   llvm::Type *type = addr.getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57 /// or [NSValue valueWithBytes:objCType:].
58 ///
59 llvm::Value *
60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61   // Generate the correct selector for this literal's concrete type.
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   const Expr *SubExpr = E->getSubExpr();
65 
66   if (E->isExpressibleAsConstantInitializer()) {
67     ConstantEmitter ConstEmitter(CGM);
68     return ConstEmitter.tryEmitAbstract(E, E->getType());
69   }
70 
71   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
72   Selector Sel = BoxingMethod->getSelector();
73 
74   // Generate a reference to the class pointer, which will be the receiver.
75   // Assumes that the method was introduced in the class that should be
76   // messaged (avoids pulling it out of the result type).
77   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
78   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
79   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
80 
81   CallArgList Args;
82   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
83   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
84 
85   // ObjCBoxedExpr supports boxing of structs and unions
86   // via [NSValue valueWithBytes:objCType:]
87   const QualType ValueType(SubExpr->getType().getCanonicalType());
88   if (ValueType->isObjCBoxableRecordType()) {
89     // Emit CodeGen for first parameter
90     // and cast value to correct type
91     Address Temporary = CreateMemTemp(SubExpr->getType());
92     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
93     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
94     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
95 
96     // Create char array to store type encoding
97     std::string Str;
98     getContext().getObjCEncodingForType(ValueType, Str);
99     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
100 
101     // Cast type encoding to correct type
102     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
103     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
104     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
105 
106     Args.add(RValue::get(Cast), EncodingQT);
107   } else {
108     Args.add(EmitAnyExpr(SubExpr), ArgQT);
109   }
110 
111   RValue result = Runtime.GenerateMessageSend(
112       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
113       Args, ClassDecl, BoxingMethod);
114   return Builder.CreateBitCast(result.getScalarVal(),
115                                ConvertType(E->getType()));
116 }
117 
118 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
119                                     const ObjCMethodDecl *MethodWithObjects) {
120   ASTContext &Context = CGM.getContext();
121   const ObjCDictionaryLiteral *DLE = nullptr;
122   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
123   if (!ALE)
124     DLE = cast<ObjCDictionaryLiteral>(E);
125 
126   // Optimize empty collections by referencing constants, when available.
127   uint64_t NumElements =
128     ALE ? ALE->getNumElements() : DLE->getNumElements();
129   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
130     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
131     QualType IdTy(CGM.getContext().getObjCIdType());
132     llvm::Constant *Constant =
133         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
134     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
135     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
136     cast<llvm::LoadInst>(Ptr)->setMetadata(
137         CGM.getModule().getMDKindID("invariant.load"),
138         llvm::MDNode::get(getLLVMContext(), None));
139     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
140   }
141 
142   // Compute the type of the array we're initializing.
143   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
144                             NumElements);
145   QualType ElementType = Context.getObjCIdType().withConst();
146   QualType ElementArrayType
147     = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
148                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
149 
150   // Allocate the temporary array(s).
151   Address Objects = CreateMemTemp(ElementArrayType, "objects");
152   Address Keys = Address::invalid();
153   if (DLE)
154     Keys = CreateMemTemp(ElementArrayType, "keys");
155 
156   // In ARC, we may need to do extra work to keep all the keys and
157   // values alive until after the call.
158   SmallVector<llvm::Value *, 16> NeededObjects;
159   bool TrackNeededObjects =
160     (getLangOpts().ObjCAutoRefCount &&
161     CGM.getCodeGenOpts().OptimizationLevel != 0);
162 
163   // Perform the actual initialialization of the array(s).
164   for (uint64_t i = 0; i < NumElements; i++) {
165     if (ALE) {
166       // Emit the element and store it to the appropriate array slot.
167       const Expr *Rhs = ALE->getElement(i);
168       LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
169                                  ElementType, AlignmentSource::Decl);
170 
171       llvm::Value *value = EmitScalarExpr(Rhs);
172       EmitStoreThroughLValue(RValue::get(value), LV, true);
173       if (TrackNeededObjects) {
174         NeededObjects.push_back(value);
175       }
176     } else {
177       // Emit the key and store it to the appropriate array slot.
178       const Expr *Key = DLE->getKeyValueElement(i).Key;
179       LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
180                                     ElementType, AlignmentSource::Decl);
181       llvm::Value *keyValue = EmitScalarExpr(Key);
182       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
183 
184       // Emit the value and store it to the appropriate array slot.
185       const Expr *Value = DLE->getKeyValueElement(i).Value;
186       LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
187                                       ElementType, AlignmentSource::Decl);
188       llvm::Value *valueValue = EmitScalarExpr(Value);
189       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
190       if (TrackNeededObjects) {
191         NeededObjects.push_back(keyValue);
192         NeededObjects.push_back(valueValue);
193       }
194     }
195   }
196 
197   // Generate the argument list.
198   CallArgList Args;
199   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
200   const ParmVarDecl *argDecl = *PI++;
201   QualType ArgQT = argDecl->getType().getUnqualifiedType();
202   Args.add(RValue::get(Objects.getPointer()), ArgQT);
203   if (DLE) {
204     argDecl = *PI++;
205     ArgQT = argDecl->getType().getUnqualifiedType();
206     Args.add(RValue::get(Keys.getPointer()), ArgQT);
207   }
208   argDecl = *PI;
209   ArgQT = argDecl->getType().getUnqualifiedType();
210   llvm::Value *Count =
211     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
212   Args.add(RValue::get(Count), ArgQT);
213 
214   // Generate a reference to the class pointer, which will be the receiver.
215   Selector Sel = MethodWithObjects->getSelector();
216   QualType ResultType = E->getType();
217   const ObjCObjectPointerType *InterfacePointerType
218     = ResultType->getAsObjCInterfacePointerType();
219   ObjCInterfaceDecl *Class
220     = InterfacePointerType->getObjectType()->getInterface();
221   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
222   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
223 
224   // Generate the message send.
225   RValue result = Runtime.GenerateMessageSend(
226       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
227       Receiver, Args, Class, MethodWithObjects);
228 
229   // The above message send needs these objects, but in ARC they are
230   // passed in a buffer that is essentially __unsafe_unretained.
231   // Therefore we must prevent the optimizer from releasing them until
232   // after the call.
233   if (TrackNeededObjects) {
234     EmitARCIntrinsicUse(NeededObjects);
235   }
236 
237   return Builder.CreateBitCast(result.getScalarVal(),
238                                ConvertType(E->getType()));
239 }
240 
241 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
242   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
243 }
244 
245 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
246                                             const ObjCDictionaryLiteral *E) {
247   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
248 }
249 
250 /// Emit a selector.
251 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
252   // Untyped selector.
253   // Note that this implementation allows for non-constant strings to be passed
254   // as arguments to @selector().  Currently, the only thing preventing this
255   // behaviour is the type checking in the front end.
256   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
257 }
258 
259 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
260   // FIXME: This should pass the Decl not the name.
261   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
262 }
263 
264 /// Adjust the type of an Objective-C object that doesn't match up due
265 /// to type erasure at various points, e.g., related result types or the use
266 /// of parameterized classes.
267 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
268                                    RValue Result) {
269   if (!ExpT->isObjCRetainableType())
270     return Result;
271 
272   // If the converted types are the same, we're done.
273   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
274   if (ExpLLVMTy == Result.getScalarVal()->getType())
275     return Result;
276 
277   // We have applied a substitution. Cast the rvalue appropriately.
278   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
279                                                ExpLLVMTy));
280 }
281 
282 /// Decide whether to extend the lifetime of the receiver of a
283 /// returns-inner-pointer message.
284 static bool
285 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
286   switch (message->getReceiverKind()) {
287 
288   // For a normal instance message, we should extend unless the
289   // receiver is loaded from a variable with precise lifetime.
290   case ObjCMessageExpr::Instance: {
291     const Expr *receiver = message->getInstanceReceiver();
292 
293     // Look through OVEs.
294     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
295       if (opaque->getSourceExpr())
296         receiver = opaque->getSourceExpr()->IgnoreParens();
297     }
298 
299     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
300     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
301     receiver = ice->getSubExpr()->IgnoreParens();
302 
303     // Look through OVEs.
304     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
305       if (opaque->getSourceExpr())
306         receiver = opaque->getSourceExpr()->IgnoreParens();
307     }
308 
309     // Only __strong variables.
310     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
311       return true;
312 
313     // All ivars and fields have precise lifetime.
314     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
315       return false;
316 
317     // Otherwise, check for variables.
318     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
319     if (!declRef) return true;
320     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
321     if (!var) return true;
322 
323     // All variables have precise lifetime except local variables with
324     // automatic storage duration that aren't specially marked.
325     return (var->hasLocalStorage() &&
326             !var->hasAttr<ObjCPreciseLifetimeAttr>());
327   }
328 
329   case ObjCMessageExpr::Class:
330   case ObjCMessageExpr::SuperClass:
331     // It's never necessary for class objects.
332     return false;
333 
334   case ObjCMessageExpr::SuperInstance:
335     // We generally assume that 'self' lives throughout a method call.
336     return false;
337   }
338 
339   llvm_unreachable("invalid receiver kind");
340 }
341 
342 /// Given an expression of ObjC pointer type, check whether it was
343 /// immediately loaded from an ARC __weak l-value.
344 static const Expr *findWeakLValue(const Expr *E) {
345   assert(E->getType()->isObjCRetainableType());
346   E = E->IgnoreParens();
347   if (auto CE = dyn_cast<CastExpr>(E)) {
348     if (CE->getCastKind() == CK_LValueToRValue) {
349       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
350         return CE->getSubExpr();
351     }
352   }
353 
354   return nullptr;
355 }
356 
357 /// The ObjC runtime may provide entrypoints that are likely to be faster
358 /// than an ordinary message send of the appropriate selector.
359 ///
360 /// The entrypoints are guaranteed to be equivalent to just sending the
361 /// corresponding message.  If the entrypoint is implemented naively as just a
362 /// message send, using it is a trade-off: it sacrifices a few cycles of
363 /// overhead to save a small amount of code.  However, it's possible for
364 /// runtimes to detect and special-case classes that use "standard"
365 /// behavior; if that's dynamically a large proportion of all objects, using
366 /// the entrypoint will also be faster than using a message send.
367 ///
368 /// If the runtime does support a required entrypoint, then this method will
369 /// generate a call and return the resulting value.  Otherwise it will return
370 /// None and the caller can generate a msgSend instead.
371 static Optional<llvm::Value *>
372 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
373                                   llvm::Value *Receiver,
374                                   const CallArgList& Args, Selector Sel,
375                                   const ObjCMethodDecl *method,
376                                   bool isClassMessage) {
377   auto &CGM = CGF.CGM;
378   if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
379     return None;
380 
381   auto &Runtime = CGM.getLangOpts().ObjCRuntime;
382   switch (Sel.getMethodFamily()) {
383   case OMF_alloc:
384     if (isClassMessage &&
385         Runtime.shouldUseRuntimeFunctionsForAlloc() &&
386         ResultType->isObjCObjectPointerType()) {
387         // [Foo alloc] -> objc_alloc(Foo) or
388         // [self alloc] -> objc_alloc(self)
389         if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
390           return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
391         // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
392         // [self allocWithZone:nil] -> objc_allocWithZone(self)
393         if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
394             Args.size() == 1 && Args.front().getType()->isPointerType() &&
395             Sel.getNameForSlot(0) == "allocWithZone") {
396           const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
397           if (isa<llvm::ConstantPointerNull>(arg))
398             return CGF.EmitObjCAllocWithZone(Receiver,
399                                              CGF.ConvertType(ResultType));
400           return None;
401         }
402     }
403     break;
404 
405   case OMF_autorelease:
406     if (ResultType->isObjCObjectPointerType() &&
407         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
408         Runtime.shouldUseARCFunctionsForRetainRelease())
409       return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
410     break;
411 
412   case OMF_retain:
413     if (ResultType->isObjCObjectPointerType() &&
414         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
415         Runtime.shouldUseARCFunctionsForRetainRelease())
416       return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
417     break;
418 
419   case OMF_release:
420     if (ResultType->isVoidType() &&
421         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
422         Runtime.shouldUseARCFunctionsForRetainRelease()) {
423       CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
424       return nullptr;
425     }
426     break;
427 
428   default:
429     break;
430   }
431   return None;
432 }
433 
434 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
435     CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
436     Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
437     const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
438     bool isClassMessage) {
439   if (Optional<llvm::Value *> SpecializedResult =
440           tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
441                                             Sel, Method, isClassMessage)) {
442     return RValue::get(SpecializedResult.getValue());
443   }
444   return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
445                              Method);
446 }
447 
448 /// Instead of '[[MyClass alloc] init]', try to generate
449 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
450 /// caller side, as well as the optimized objc_alloc.
451 static Optional<llvm::Value *>
452 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
453   auto &Runtime = CGF.getLangOpts().ObjCRuntime;
454   if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
455     return None;
456 
457   // Match the exact pattern '[[MyClass alloc] init]'.
458   Selector Sel = OME->getSelector();
459   if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
460       !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
461       Sel.getNameForSlot(0) != "init")
462     return None;
463 
464   // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
465   // with 'cls' a Class.
466   auto *SubOME =
467       dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
468   if (!SubOME)
469     return None;
470   Selector SubSel = SubOME->getSelector();
471 
472   if (!SubOME->getType()->isObjCObjectPointerType() ||
473       !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
474     return None;
475 
476   llvm::Value *Receiver = nullptr;
477   switch (SubOME->getReceiverKind()) {
478   case ObjCMessageExpr::Instance:
479     if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
480       return None;
481     Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
482     break;
483 
484   case ObjCMessageExpr::Class: {
485     QualType ReceiverType = SubOME->getClassReceiver();
486     const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
487     const ObjCInterfaceDecl *ID = ObjTy->getInterface();
488     assert(ID && "null interface should be impossible here");
489     Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
490     break;
491   }
492   case ObjCMessageExpr::SuperInstance:
493   case ObjCMessageExpr::SuperClass:
494     return None;
495   }
496 
497   return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
498 }
499 
500 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
501                                             ReturnValueSlot Return) {
502   // Only the lookup mechanism and first two arguments of the method
503   // implementation vary between runtimes.  We can get the receiver and
504   // arguments in generic code.
505 
506   bool isDelegateInit = E->isDelegateInitCall();
507 
508   const ObjCMethodDecl *method = E->getMethodDecl();
509 
510   // If the method is -retain, and the receiver's being loaded from
511   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
512   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
513       method->getMethodFamily() == OMF_retain) {
514     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
515       LValue lvalue = EmitLValue(lvalueExpr);
516       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
517       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
518     }
519   }
520 
521   if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
522     return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
523 
524   // We don't retain the receiver in delegate init calls, and this is
525   // safe because the receiver value is always loaded from 'self',
526   // which we zero out.  We don't want to Block_copy block receivers,
527   // though.
528   bool retainSelf =
529     (!isDelegateInit &&
530      CGM.getLangOpts().ObjCAutoRefCount &&
531      method &&
532      method->hasAttr<NSConsumesSelfAttr>());
533 
534   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
535   bool isSuperMessage = false;
536   bool isClassMessage = false;
537   ObjCInterfaceDecl *OID = nullptr;
538   // Find the receiver
539   QualType ReceiverType;
540   llvm::Value *Receiver = nullptr;
541   switch (E->getReceiverKind()) {
542   case ObjCMessageExpr::Instance:
543     ReceiverType = E->getInstanceReceiver()->getType();
544     isClassMessage = ReceiverType->isObjCClassType();
545     if (retainSelf) {
546       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
547                                                    E->getInstanceReceiver());
548       Receiver = ter.getPointer();
549       if (ter.getInt()) retainSelf = false;
550     } else
551       Receiver = EmitScalarExpr(E->getInstanceReceiver());
552     break;
553 
554   case ObjCMessageExpr::Class: {
555     ReceiverType = E->getClassReceiver();
556     OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
557     assert(OID && "Invalid Objective-C class message send");
558     Receiver = Runtime.GetClass(*this, OID);
559     isClassMessage = true;
560     break;
561   }
562 
563   case ObjCMessageExpr::SuperInstance:
564     ReceiverType = E->getSuperType();
565     Receiver = LoadObjCSelf();
566     isSuperMessage = true;
567     break;
568 
569   case ObjCMessageExpr::SuperClass:
570     ReceiverType = E->getSuperType();
571     Receiver = LoadObjCSelf();
572     isSuperMessage = true;
573     isClassMessage = true;
574     break;
575   }
576 
577   if (retainSelf)
578     Receiver = EmitARCRetainNonBlock(Receiver);
579 
580   // In ARC, we sometimes want to "extend the lifetime"
581   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
582   // messages.
583   if (getLangOpts().ObjCAutoRefCount && method &&
584       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
585       shouldExtendReceiverForInnerPointerMessage(E))
586     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
587 
588   QualType ResultType = method ? method->getReturnType() : E->getType();
589 
590   CallArgList Args;
591   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
592 
593   // For delegate init calls in ARC, do an unsafe store of null into
594   // self.  This represents the call taking direct ownership of that
595   // value.  We have to do this after emitting the other call
596   // arguments because they might also reference self, but we don't
597   // have to worry about any of them modifying self because that would
598   // be an undefined read and write of an object in unordered
599   // expressions.
600   if (isDelegateInit) {
601     assert(getLangOpts().ObjCAutoRefCount &&
602            "delegate init calls should only be marked in ARC");
603 
604     // Do an unsafe store of null into self.
605     Address selfAddr =
606       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
607     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
608   }
609 
610   RValue result;
611   if (isSuperMessage) {
612     // super is only valid in an Objective-C method
613     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
614     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
615     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
616                                               E->getSelector(),
617                                               OMD->getClassInterface(),
618                                               isCategoryImpl,
619                                               Receiver,
620                                               isClassMessage,
621                                               Args,
622                                               method);
623   } else {
624     // Call runtime methods directly if we can.
625     result = Runtime.GeneratePossiblySpecializedMessageSend(
626         *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
627         method, isClassMessage);
628   }
629 
630   // For delegate init calls in ARC, implicitly store the result of
631   // the call back into self.  This takes ownership of the value.
632   if (isDelegateInit) {
633     Address selfAddr =
634       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
635     llvm::Value *newSelf = result.getScalarVal();
636 
637     // The delegate return type isn't necessarily a matching type; in
638     // fact, it's quite likely to be 'id'.
639     llvm::Type *selfTy = selfAddr.getElementType();
640     newSelf = Builder.CreateBitCast(newSelf, selfTy);
641 
642     Builder.CreateStore(newSelf, selfAddr);
643   }
644 
645   return AdjustObjCObjectType(*this, E->getType(), result);
646 }
647 
648 namespace {
649 struct FinishARCDealloc final : EHScopeStack::Cleanup {
650   void Emit(CodeGenFunction &CGF, Flags flags) override {
651     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
652 
653     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
654     const ObjCInterfaceDecl *iface = impl->getClassInterface();
655     if (!iface->getSuperClass()) return;
656 
657     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
658 
659     // Call [super dealloc] if we have a superclass.
660     llvm::Value *self = CGF.LoadObjCSelf();
661 
662     CallArgList args;
663     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
664                                                       CGF.getContext().VoidTy,
665                                                       method->getSelector(),
666                                                       iface,
667                                                       isCategory,
668                                                       self,
669                                                       /*is class msg*/ false,
670                                                       args,
671                                                       method);
672   }
673 };
674 }
675 
676 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
677 /// the LLVM function and sets the other context used by
678 /// CodeGenFunction.
679 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
680                                       const ObjCContainerDecl *CD) {
681   SourceLocation StartLoc = OMD->getBeginLoc();
682   FunctionArgList args;
683   // Check if we should generate debug info for this method.
684   if (OMD->hasAttr<NoDebugAttr>())
685     DebugInfo = nullptr; // disable debug info indefinitely for this function
686 
687   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
688 
689   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
690   if (OMD->isDirectMethod()) {
691     Fn->setVisibility(llvm::Function::HiddenVisibility);
692     CGM.SetLLVMFunctionAttributes(OMD, FI, Fn);
693     CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
694   } else {
695     CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
696   }
697 
698   args.push_back(OMD->getSelfDecl());
699   args.push_back(OMD->getCmdDecl());
700 
701   args.append(OMD->param_begin(), OMD->param_end());
702 
703   CurGD = OMD;
704   CurEHLocation = OMD->getEndLoc();
705 
706   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
707                 OMD->getLocation(), StartLoc);
708 
709   if (OMD->isDirectMethod()) {
710     // This function is a direct call, it has to implement a nil check
711     // on entry.
712     //
713     // TODO: possibly have several entry points to elide the check
714     CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
715   }
716 
717   // In ARC, certain methods get an extra cleanup.
718   if (CGM.getLangOpts().ObjCAutoRefCount &&
719       OMD->isInstanceMethod() &&
720       OMD->getSelector().isUnarySelector()) {
721     const IdentifierInfo *ident =
722       OMD->getSelector().getIdentifierInfoForSlot(0);
723     if (ident->isStr("dealloc"))
724       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
725   }
726 }
727 
728 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
729                                               LValue lvalue, QualType type);
730 
731 /// Generate an Objective-C method.  An Objective-C method is a C function with
732 /// its pointer, name, and types registered in the class structure.
733 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
734   StartObjCMethod(OMD, OMD->getClassInterface());
735   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
736   assert(isa<CompoundStmt>(OMD->getBody()));
737   incrementProfileCounter(OMD->getBody());
738   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
739   FinishFunction(OMD->getBodyRBrace());
740 }
741 
742 /// emitStructGetterCall - Call the runtime function to load a property
743 /// into the return value slot.
744 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
745                                  bool isAtomic, bool hasStrong) {
746   ASTContext &Context = CGF.getContext();
747 
748   Address src =
749       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
750           .getAddress(CGF);
751 
752   // objc_copyStruct (ReturnValue, &structIvar,
753   //                  sizeof (Type of Ivar), isAtomic, false);
754   CallArgList args;
755 
756   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
757   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
758 
759   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
760   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
761 
762   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
763   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
764   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
765   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
766 
767   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
768   CGCallee callee = CGCallee::forDirect(fn);
769   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
770                callee, ReturnValueSlot(), args);
771 }
772 
773 /// Determine whether the given architecture supports unaligned atomic
774 /// accesses.  They don't have to be fast, just faster than a function
775 /// call and a mutex.
776 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
777   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
778   // currently supported by the backend.)
779   return 0;
780 }
781 
782 /// Return the maximum size that permits atomic accesses for the given
783 /// architecture.
784 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
785                                         llvm::Triple::ArchType arch) {
786   // ARM has 8-byte atomic accesses, but it's not clear whether we
787   // want to rely on them here.
788 
789   // In the default case, just assume that any size up to a pointer is
790   // fine given adequate alignment.
791   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
792 }
793 
794 namespace {
795   class PropertyImplStrategy {
796   public:
797     enum StrategyKind {
798       /// The 'native' strategy is to use the architecture's provided
799       /// reads and writes.
800       Native,
801 
802       /// Use objc_setProperty and objc_getProperty.
803       GetSetProperty,
804 
805       /// Use objc_setProperty for the setter, but use expression
806       /// evaluation for the getter.
807       SetPropertyAndExpressionGet,
808 
809       /// Use objc_copyStruct.
810       CopyStruct,
811 
812       /// The 'expression' strategy is to emit normal assignment or
813       /// lvalue-to-rvalue expressions.
814       Expression
815     };
816 
817     StrategyKind getKind() const { return StrategyKind(Kind); }
818 
819     bool hasStrongMember() const { return HasStrong; }
820     bool isAtomic() const { return IsAtomic; }
821     bool isCopy() const { return IsCopy; }
822 
823     CharUnits getIvarSize() const { return IvarSize; }
824     CharUnits getIvarAlignment() const { return IvarAlignment; }
825 
826     PropertyImplStrategy(CodeGenModule &CGM,
827                          const ObjCPropertyImplDecl *propImpl);
828 
829   private:
830     unsigned Kind : 8;
831     unsigned IsAtomic : 1;
832     unsigned IsCopy : 1;
833     unsigned HasStrong : 1;
834 
835     CharUnits IvarSize;
836     CharUnits IvarAlignment;
837   };
838 }
839 
840 /// Pick an implementation strategy for the given property synthesis.
841 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
842                                      const ObjCPropertyImplDecl *propImpl) {
843   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
844   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
845 
846   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
847   IsAtomic = prop->isAtomic();
848   HasStrong = false; // doesn't matter here.
849 
850   // Evaluate the ivar's size and alignment.
851   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
852   QualType ivarType = ivar->getType();
853   std::tie(IvarSize, IvarAlignment) =
854       CGM.getContext().getTypeInfoInChars(ivarType);
855 
856   // If we have a copy property, we always have to use getProperty/setProperty.
857   // TODO: we could actually use setProperty and an expression for non-atomics.
858   if (IsCopy) {
859     Kind = GetSetProperty;
860     return;
861   }
862 
863   // Handle retain.
864   if (setterKind == ObjCPropertyDecl::Retain) {
865     // In GC-only, there's nothing special that needs to be done.
866     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
867       // fallthrough
868 
869     // In ARC, if the property is non-atomic, use expression emission,
870     // which translates to objc_storeStrong.  This isn't required, but
871     // it's slightly nicer.
872     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
873       // Using standard expression emission for the setter is only
874       // acceptable if the ivar is __strong, which won't be true if
875       // the property is annotated with __attribute__((NSObject)).
876       // TODO: falling all the way back to objc_setProperty here is
877       // just laziness, though;  we could still use objc_storeStrong
878       // if we hacked it right.
879       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
880         Kind = Expression;
881       else
882         Kind = SetPropertyAndExpressionGet;
883       return;
884 
885     // Otherwise, we need to at least use setProperty.  However, if
886     // the property isn't atomic, we can use normal expression
887     // emission for the getter.
888     } else if (!IsAtomic) {
889       Kind = SetPropertyAndExpressionGet;
890       return;
891 
892     // Otherwise, we have to use both setProperty and getProperty.
893     } else {
894       Kind = GetSetProperty;
895       return;
896     }
897   }
898 
899   // If we're not atomic, just use expression accesses.
900   if (!IsAtomic) {
901     Kind = Expression;
902     return;
903   }
904 
905   // Properties on bitfield ivars need to be emitted using expression
906   // accesses even if they're nominally atomic.
907   if (ivar->isBitField()) {
908     Kind = Expression;
909     return;
910   }
911 
912   // GC-qualified or ARC-qualified ivars need to be emitted as
913   // expressions.  This actually works out to being atomic anyway,
914   // except for ARC __strong, but that should trigger the above code.
915   if (ivarType.hasNonTrivialObjCLifetime() ||
916       (CGM.getLangOpts().getGC() &&
917        CGM.getContext().getObjCGCAttrKind(ivarType))) {
918     Kind = Expression;
919     return;
920   }
921 
922   // Compute whether the ivar has strong members.
923   if (CGM.getLangOpts().getGC())
924     if (const RecordType *recordType = ivarType->getAs<RecordType>())
925       HasStrong = recordType->getDecl()->hasObjectMember();
926 
927   // We can never access structs with object members with a native
928   // access, because we need to use write barriers.  This is what
929   // objc_copyStruct is for.
930   if (HasStrong) {
931     Kind = CopyStruct;
932     return;
933   }
934 
935   // Otherwise, this is target-dependent and based on the size and
936   // alignment of the ivar.
937 
938   // If the size of the ivar is not a power of two, give up.  We don't
939   // want to get into the business of doing compare-and-swaps.
940   if (!IvarSize.isPowerOfTwo()) {
941     Kind = CopyStruct;
942     return;
943   }
944 
945   llvm::Triple::ArchType arch =
946     CGM.getTarget().getTriple().getArch();
947 
948   // Most architectures require memory to fit within a single cache
949   // line, so the alignment has to be at least the size of the access.
950   // Otherwise we have to grab a lock.
951   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
952     Kind = CopyStruct;
953     return;
954   }
955 
956   // If the ivar's size exceeds the architecture's maximum atomic
957   // access size, we have to use CopyStruct.
958   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
959     Kind = CopyStruct;
960     return;
961   }
962 
963   // Otherwise, we can use native loads and stores.
964   Kind = Native;
965 }
966 
967 /// Generate an Objective-C property getter function.
968 ///
969 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
970 /// is illegal within a category.
971 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
972                                          const ObjCPropertyImplDecl *PID) {
973   llvm::Constant *AtomicHelperFn =
974       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
975   ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
976   assert(OMD && "Invalid call to generate getter (empty method)");
977   StartObjCMethod(OMD, IMP->getClassInterface());
978 
979   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
980 
981   FinishFunction(OMD->getEndLoc());
982 }
983 
984 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
985   const Expr *getter = propImpl->getGetterCXXConstructor();
986   if (!getter) return true;
987 
988   // Sema only makes only of these when the ivar has a C++ class type,
989   // so the form is pretty constrained.
990 
991   // If the property has a reference type, we might just be binding a
992   // reference, in which case the result will be a gl-value.  We should
993   // treat this as a non-trivial operation.
994   if (getter->isGLValue())
995     return false;
996 
997   // If we selected a trivial copy-constructor, we're okay.
998   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
999     return (construct->getConstructor()->isTrivial());
1000 
1001   // The constructor might require cleanups (in which case it's never
1002   // trivial).
1003   assert(isa<ExprWithCleanups>(getter));
1004   return false;
1005 }
1006 
1007 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1008 /// copy the ivar into the resturn slot.
1009 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1010                                           llvm::Value *returnAddr,
1011                                           ObjCIvarDecl *ivar,
1012                                           llvm::Constant *AtomicHelperFn) {
1013   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1014   //                           AtomicHelperFn);
1015   CallArgList args;
1016 
1017   // The 1st argument is the return Slot.
1018   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1019 
1020   // The 2nd argument is the address of the ivar.
1021   llvm::Value *ivarAddr =
1022       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1023           .getPointer(CGF);
1024   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1025   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1026 
1027   // Third argument is the helper function.
1028   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1029 
1030   llvm::FunctionCallee copyCppAtomicObjectFn =
1031       CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1032   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1033   CGF.EmitCall(
1034       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1035                callee, ReturnValueSlot(), args);
1036 }
1037 
1038 void
1039 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1040                                         const ObjCPropertyImplDecl *propImpl,
1041                                         const ObjCMethodDecl *GetterMethodDecl,
1042                                         llvm::Constant *AtomicHelperFn) {
1043   // If there's a non-trivial 'get' expression, we just have to emit that.
1044   if (!hasTrivialGetExpr(propImpl)) {
1045     if (!AtomicHelperFn) {
1046       auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1047                                      propImpl->getGetterCXXConstructor(),
1048                                      /* NRVOCandidate=*/nullptr);
1049       EmitReturnStmt(*ret);
1050     }
1051     else {
1052       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1053       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1054                                     ivar, AtomicHelperFn);
1055     }
1056     return;
1057   }
1058 
1059   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1060   QualType propType = prop->getType();
1061   ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1062 
1063   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1064 
1065   // Pick an implementation strategy.
1066   PropertyImplStrategy strategy(CGM, propImpl);
1067   switch (strategy.getKind()) {
1068   case PropertyImplStrategy::Native: {
1069     // We don't need to do anything for a zero-size struct.
1070     if (strategy.getIvarSize().isZero())
1071       return;
1072 
1073     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1074 
1075     // Currently, all atomic accesses have to be through integer
1076     // types, so there's no point in trying to pick a prettier type.
1077     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1078     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1079     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1080 
1081     // Perform an atomic load.  This does not impose ordering constraints.
1082     Address ivarAddr = LV.getAddress(*this);
1083     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1084     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1085     load->setAtomic(llvm::AtomicOrdering::Unordered);
1086 
1087     // Store that value into the return address.  Doing this with a
1088     // bitcast is likely to produce some pretty ugly IR, but it's not
1089     // the *most* terrible thing in the world.
1090     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1091     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1092     llvm::Value *ivarVal = load;
1093     if (ivarSize > retTySize) {
1094       llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1095       ivarVal = Builder.CreateTrunc(load, newTy);
1096       bitcastType = newTy->getPointerTo();
1097     }
1098     Builder.CreateStore(ivarVal,
1099                         Builder.CreateBitCast(ReturnValue, bitcastType));
1100 
1101     // Make sure we don't do an autorelease.
1102     AutoreleaseResult = false;
1103     return;
1104   }
1105 
1106   case PropertyImplStrategy::GetSetProperty: {
1107     llvm::FunctionCallee getPropertyFn =
1108         CGM.getObjCRuntime().GetPropertyGetFunction();
1109     if (!getPropertyFn) {
1110       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1111       return;
1112     }
1113     CGCallee callee = CGCallee::forDirect(getPropertyFn);
1114 
1115     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1116     // FIXME: Can't this be simpler? This might even be worse than the
1117     // corresponding gcc code.
1118     llvm::Value *cmd =
1119       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1120     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1121     llvm::Value *ivarOffset =
1122       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1123 
1124     CallArgList args;
1125     args.add(RValue::get(self), getContext().getObjCIdType());
1126     args.add(RValue::get(cmd), getContext().getObjCSelType());
1127     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1128     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1129              getContext().BoolTy);
1130 
1131     // FIXME: We shouldn't need to get the function info here, the
1132     // runtime already should have computed it to build the function.
1133     llvm::CallBase *CallInstruction;
1134     RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1135                              getContext().getObjCIdType(), args),
1136                          callee, ReturnValueSlot(), args, &CallInstruction);
1137     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1138       call->setTailCall();
1139 
1140     // We need to fix the type here. Ivars with copy & retain are
1141     // always objects so we don't need to worry about complex or
1142     // aggregates.
1143     RV = RValue::get(Builder.CreateBitCast(
1144         RV.getScalarVal(),
1145         getTypes().ConvertType(getterMethod->getReturnType())));
1146 
1147     EmitReturnOfRValue(RV, propType);
1148 
1149     // objc_getProperty does an autorelease, so we should suppress ours.
1150     AutoreleaseResult = false;
1151 
1152     return;
1153   }
1154 
1155   case PropertyImplStrategy::CopyStruct:
1156     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1157                          strategy.hasStrongMember());
1158     return;
1159 
1160   case PropertyImplStrategy::Expression:
1161   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1162     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1163 
1164     QualType ivarType = ivar->getType();
1165     switch (getEvaluationKind(ivarType)) {
1166     case TEK_Complex: {
1167       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1168       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1169                          /*init*/ true);
1170       return;
1171     }
1172     case TEK_Aggregate: {
1173       // The return value slot is guaranteed to not be aliased, but
1174       // that's not necessarily the same as "on the stack", so
1175       // we still potentially need objc_memmove_collectable.
1176       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1177                         /* Src= */ LV, ivarType, getOverlapForReturnValue());
1178       return;
1179     }
1180     case TEK_Scalar: {
1181       llvm::Value *value;
1182       if (propType->isReferenceType()) {
1183         value = LV.getAddress(*this).getPointer();
1184       } else {
1185         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1186         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1187           if (getLangOpts().ObjCAutoRefCount) {
1188             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1189           } else {
1190             value = EmitARCLoadWeak(LV.getAddress(*this));
1191           }
1192 
1193         // Otherwise we want to do a simple load, suppressing the
1194         // final autorelease.
1195         } else {
1196           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1197           AutoreleaseResult = false;
1198         }
1199 
1200         value = Builder.CreateBitCast(
1201             value, ConvertType(GetterMethodDecl->getReturnType()));
1202       }
1203 
1204       EmitReturnOfRValue(RValue::get(value), propType);
1205       return;
1206     }
1207     }
1208     llvm_unreachable("bad evaluation kind");
1209   }
1210 
1211   }
1212   llvm_unreachable("bad @property implementation strategy!");
1213 }
1214 
1215 /// emitStructSetterCall - Call the runtime function to store the value
1216 /// from the first formal parameter into the given ivar.
1217 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1218                                  ObjCIvarDecl *ivar) {
1219   // objc_copyStruct (&structIvar, &Arg,
1220   //                  sizeof (struct something), true, false);
1221   CallArgList args;
1222 
1223   // The first argument is the address of the ivar.
1224   llvm::Value *ivarAddr =
1225       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1226           .getPointer(CGF);
1227   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1228   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1229 
1230   // The second argument is the address of the parameter variable.
1231   ParmVarDecl *argVar = *OMD->param_begin();
1232   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1233                      argVar->getType().getNonReferenceType(), VK_LValue,
1234                      SourceLocation());
1235   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1236   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1237   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1238 
1239   // The third argument is the sizeof the type.
1240   llvm::Value *size =
1241     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1242   args.add(RValue::get(size), CGF.getContext().getSizeType());
1243 
1244   // The fourth argument is the 'isAtomic' flag.
1245   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1246 
1247   // The fifth argument is the 'hasStrong' flag.
1248   // FIXME: should this really always be false?
1249   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1250 
1251   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1252   CGCallee callee = CGCallee::forDirect(fn);
1253   CGF.EmitCall(
1254       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1255                callee, ReturnValueSlot(), args);
1256 }
1257 
1258 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1259 /// the value from the first formal parameter into the given ivar, using
1260 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1261 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1262                                           ObjCMethodDecl *OMD,
1263                                           ObjCIvarDecl *ivar,
1264                                           llvm::Constant *AtomicHelperFn) {
1265   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1266   //                           AtomicHelperFn);
1267   CallArgList args;
1268 
1269   // The first argument is the address of the ivar.
1270   llvm::Value *ivarAddr =
1271       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1272           .getPointer(CGF);
1273   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1274   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1275 
1276   // The second argument is the address of the parameter variable.
1277   ParmVarDecl *argVar = *OMD->param_begin();
1278   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1279                      argVar->getType().getNonReferenceType(), VK_LValue,
1280                      SourceLocation());
1281   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1282   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1283   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1284 
1285   // Third argument is the helper function.
1286   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1287 
1288   llvm::FunctionCallee fn =
1289       CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1290   CGCallee callee = CGCallee::forDirect(fn);
1291   CGF.EmitCall(
1292       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1293                callee, ReturnValueSlot(), args);
1294 }
1295 
1296 
1297 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1298   Expr *setter = PID->getSetterCXXAssignment();
1299   if (!setter) return true;
1300 
1301   // Sema only makes only of these when the ivar has a C++ class type,
1302   // so the form is pretty constrained.
1303 
1304   // An operator call is trivial if the function it calls is trivial.
1305   // This also implies that there's nothing non-trivial going on with
1306   // the arguments, because operator= can only be trivial if it's a
1307   // synthesized assignment operator and therefore both parameters are
1308   // references.
1309   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1310     if (const FunctionDecl *callee
1311           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1312       if (callee->isTrivial())
1313         return true;
1314     return false;
1315   }
1316 
1317   assert(isa<ExprWithCleanups>(setter));
1318   return false;
1319 }
1320 
1321 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1322   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1323     return false;
1324   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1325 }
1326 
1327 void
1328 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1329                                         const ObjCPropertyImplDecl *propImpl,
1330                                         llvm::Constant *AtomicHelperFn) {
1331   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1332   ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1333 
1334   // Just use the setter expression if Sema gave us one and it's
1335   // non-trivial.
1336   if (!hasTrivialSetExpr(propImpl)) {
1337     if (!AtomicHelperFn)
1338       // If non-atomic, assignment is called directly.
1339       EmitStmt(propImpl->getSetterCXXAssignment());
1340     else
1341       // If atomic, assignment is called via a locking api.
1342       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1343                                     AtomicHelperFn);
1344     return;
1345   }
1346 
1347   PropertyImplStrategy strategy(CGM, propImpl);
1348   switch (strategy.getKind()) {
1349   case PropertyImplStrategy::Native: {
1350     // We don't need to do anything for a zero-size struct.
1351     if (strategy.getIvarSize().isZero())
1352       return;
1353 
1354     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1355 
1356     LValue ivarLValue =
1357       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1358     Address ivarAddr = ivarLValue.getAddress(*this);
1359 
1360     // Currently, all atomic accesses have to be through integer
1361     // types, so there's no point in trying to pick a prettier type.
1362     llvm::Type *bitcastType =
1363       llvm::Type::getIntNTy(getLLVMContext(),
1364                             getContext().toBits(strategy.getIvarSize()));
1365 
1366     // Cast both arguments to the chosen operation type.
1367     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1368     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1369 
1370     // This bitcast load is likely to cause some nasty IR.
1371     llvm::Value *load = Builder.CreateLoad(argAddr);
1372 
1373     // Perform an atomic store.  There are no memory ordering requirements.
1374     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1375     store->setAtomic(llvm::AtomicOrdering::Unordered);
1376     return;
1377   }
1378 
1379   case PropertyImplStrategy::GetSetProperty:
1380   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1381 
1382     llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1383     llvm::FunctionCallee setPropertyFn = nullptr;
1384     if (UseOptimizedSetter(CGM)) {
1385       // 10.8 and iOS 6.0 code and GC is off
1386       setOptimizedPropertyFn =
1387           CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1388               strategy.isAtomic(), strategy.isCopy());
1389       if (!setOptimizedPropertyFn) {
1390         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1391         return;
1392       }
1393     }
1394     else {
1395       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1396       if (!setPropertyFn) {
1397         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1398         return;
1399       }
1400     }
1401 
1402     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1403     //                       <is-atomic>, <is-copy>).
1404     llvm::Value *cmd =
1405       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1406     llvm::Value *self =
1407       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1408     llvm::Value *ivarOffset =
1409       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1410     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1411     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1412     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1413 
1414     CallArgList args;
1415     args.add(RValue::get(self), getContext().getObjCIdType());
1416     args.add(RValue::get(cmd), getContext().getObjCSelType());
1417     if (setOptimizedPropertyFn) {
1418       args.add(RValue::get(arg), getContext().getObjCIdType());
1419       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1420       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1421       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1422                callee, ReturnValueSlot(), args);
1423     } else {
1424       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1425       args.add(RValue::get(arg), getContext().getObjCIdType());
1426       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1427                getContext().BoolTy);
1428       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1429                getContext().BoolTy);
1430       // FIXME: We shouldn't need to get the function info here, the runtime
1431       // already should have computed it to build the function.
1432       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1433       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1434                callee, ReturnValueSlot(), args);
1435     }
1436 
1437     return;
1438   }
1439 
1440   case PropertyImplStrategy::CopyStruct:
1441     emitStructSetterCall(*this, setterMethod, ivar);
1442     return;
1443 
1444   case PropertyImplStrategy::Expression:
1445     break;
1446   }
1447 
1448   // Otherwise, fake up some ASTs and emit a normal assignment.
1449   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1450   DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1451                    VK_LValue, SourceLocation());
1452   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1453                             selfDecl->getType(), CK_LValueToRValue, &self,
1454                             VK_RValue);
1455   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1456                           SourceLocation(), SourceLocation(),
1457                           &selfLoad, true, true);
1458 
1459   ParmVarDecl *argDecl = *setterMethod->param_begin();
1460   QualType argType = argDecl->getType().getNonReferenceType();
1461   DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1462                   SourceLocation());
1463   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1464                            argType.getUnqualifiedType(), CK_LValueToRValue,
1465                            &arg, VK_RValue);
1466 
1467   // The property type can differ from the ivar type in some situations with
1468   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1469   // The following absurdity is just to ensure well-formed IR.
1470   CastKind argCK = CK_NoOp;
1471   if (ivarRef.getType()->isObjCObjectPointerType()) {
1472     if (argLoad.getType()->isObjCObjectPointerType())
1473       argCK = CK_BitCast;
1474     else if (argLoad.getType()->isBlockPointerType())
1475       argCK = CK_BlockPointerToObjCPointerCast;
1476     else
1477       argCK = CK_CPointerToObjCPointerCast;
1478   } else if (ivarRef.getType()->isBlockPointerType()) {
1479      if (argLoad.getType()->isBlockPointerType())
1480       argCK = CK_BitCast;
1481     else
1482       argCK = CK_AnyPointerToBlockPointerCast;
1483   } else if (ivarRef.getType()->isPointerType()) {
1484     argCK = CK_BitCast;
1485   }
1486   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1487                            ivarRef.getType(), argCK, &argLoad,
1488                            VK_RValue);
1489   Expr *finalArg = &argLoad;
1490   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1491                                            argLoad.getType()))
1492     finalArg = &argCast;
1493 
1494   BinaryOperator *assign = BinaryOperator::Create(
1495       getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), VK_RValue,
1496       OK_Ordinary, SourceLocation(),
1497       FPOptions(getContext().getLangOpts()));
1498   EmitStmt(assign);
1499 }
1500 
1501 /// Generate an Objective-C property setter function.
1502 ///
1503 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1504 /// is illegal within a category.
1505 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1506                                          const ObjCPropertyImplDecl *PID) {
1507   llvm::Constant *AtomicHelperFn =
1508       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1509   ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1510   assert(OMD && "Invalid call to generate setter (empty method)");
1511   StartObjCMethod(OMD, IMP->getClassInterface());
1512 
1513   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1514 
1515   FinishFunction(OMD->getEndLoc());
1516 }
1517 
1518 namespace {
1519   struct DestroyIvar final : EHScopeStack::Cleanup {
1520   private:
1521     llvm::Value *addr;
1522     const ObjCIvarDecl *ivar;
1523     CodeGenFunction::Destroyer *destroyer;
1524     bool useEHCleanupForArray;
1525   public:
1526     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1527                 CodeGenFunction::Destroyer *destroyer,
1528                 bool useEHCleanupForArray)
1529       : addr(addr), ivar(ivar), destroyer(destroyer),
1530         useEHCleanupForArray(useEHCleanupForArray) {}
1531 
1532     void Emit(CodeGenFunction &CGF, Flags flags) override {
1533       LValue lvalue
1534         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1535       CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1536                       flags.isForNormalCleanup() && useEHCleanupForArray);
1537     }
1538   };
1539 }
1540 
1541 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1542 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1543                                       Address addr,
1544                                       QualType type) {
1545   llvm::Value *null = getNullForVariable(addr);
1546   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1547 }
1548 
1549 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1550                                   ObjCImplementationDecl *impl) {
1551   CodeGenFunction::RunCleanupsScope scope(CGF);
1552 
1553   llvm::Value *self = CGF.LoadObjCSelf();
1554 
1555   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1556   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1557        ivar; ivar = ivar->getNextIvar()) {
1558     QualType type = ivar->getType();
1559 
1560     // Check whether the ivar is a destructible type.
1561     QualType::DestructionKind dtorKind = type.isDestructedType();
1562     if (!dtorKind) continue;
1563 
1564     CodeGenFunction::Destroyer *destroyer = nullptr;
1565 
1566     // Use a call to objc_storeStrong to destroy strong ivars, for the
1567     // general benefit of the tools.
1568     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1569       destroyer = destroyARCStrongWithStore;
1570 
1571     // Otherwise use the default for the destruction kind.
1572     } else {
1573       destroyer = CGF.getDestroyer(dtorKind);
1574     }
1575 
1576     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1577 
1578     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1579                                          cleanupKind & EHCleanup);
1580   }
1581 
1582   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1583 }
1584 
1585 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1586                                                  ObjCMethodDecl *MD,
1587                                                  bool ctor) {
1588   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1589   StartObjCMethod(MD, IMP->getClassInterface());
1590 
1591   // Emit .cxx_construct.
1592   if (ctor) {
1593     // Suppress the final autorelease in ARC.
1594     AutoreleaseResult = false;
1595 
1596     for (const auto *IvarInit : IMP->inits()) {
1597       FieldDecl *Field = IvarInit->getAnyMember();
1598       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1599       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1600                                     LoadObjCSelf(), Ivar, 0);
1601       EmitAggExpr(IvarInit->getInit(),
1602                   AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1603                                           AggValueSlot::DoesNotNeedGCBarriers,
1604                                           AggValueSlot::IsNotAliased,
1605                                           AggValueSlot::DoesNotOverlap));
1606     }
1607     // constructor returns 'self'.
1608     CodeGenTypes &Types = CGM.getTypes();
1609     QualType IdTy(CGM.getContext().getObjCIdType());
1610     llvm::Value *SelfAsId =
1611       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1612     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1613 
1614   // Emit .cxx_destruct.
1615   } else {
1616     emitCXXDestructMethod(*this, IMP);
1617   }
1618   FinishFunction();
1619 }
1620 
1621 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1622   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1623   DeclRefExpr DRE(getContext(), Self,
1624                   /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1625                   Self->getType(), VK_LValue, SourceLocation());
1626   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1627 }
1628 
1629 QualType CodeGenFunction::TypeOfSelfObject() {
1630   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1631   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1632   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1633     getContext().getCanonicalType(selfDecl->getType()));
1634   return PTy->getPointeeType();
1635 }
1636 
1637 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1638   llvm::FunctionCallee EnumerationMutationFnPtr =
1639       CGM.getObjCRuntime().EnumerationMutationFunction();
1640   if (!EnumerationMutationFnPtr) {
1641     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1642     return;
1643   }
1644   CGCallee EnumerationMutationFn =
1645     CGCallee::forDirect(EnumerationMutationFnPtr);
1646 
1647   CGDebugInfo *DI = getDebugInfo();
1648   if (DI)
1649     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1650 
1651   RunCleanupsScope ForScope(*this);
1652 
1653   // The local variable comes into scope immediately.
1654   AutoVarEmission variable = AutoVarEmission::invalid();
1655   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1656     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1657 
1658   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1659 
1660   // Fast enumeration state.
1661   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1662   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1663   EmitNullInitialization(StatePtr, StateTy);
1664 
1665   // Number of elements in the items array.
1666   static const unsigned NumItems = 16;
1667 
1668   // Fetch the countByEnumeratingWithState:objects:count: selector.
1669   IdentifierInfo *II[] = {
1670     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1671     &CGM.getContext().Idents.get("objects"),
1672     &CGM.getContext().Idents.get("count")
1673   };
1674   Selector FastEnumSel =
1675     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1676 
1677   QualType ItemsTy =
1678     getContext().getConstantArrayType(getContext().getObjCIdType(),
1679                                       llvm::APInt(32, NumItems), nullptr,
1680                                       ArrayType::Normal, 0);
1681   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1682 
1683   // Emit the collection pointer.  In ARC, we do a retain.
1684   llvm::Value *Collection;
1685   if (getLangOpts().ObjCAutoRefCount) {
1686     Collection = EmitARCRetainScalarExpr(S.getCollection());
1687 
1688     // Enter a cleanup to do the release.
1689     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1690   } else {
1691     Collection = EmitScalarExpr(S.getCollection());
1692   }
1693 
1694   // The 'continue' label needs to appear within the cleanup for the
1695   // collection object.
1696   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1697 
1698   // Send it our message:
1699   CallArgList Args;
1700 
1701   // The first argument is a temporary of the enumeration-state type.
1702   Args.add(RValue::get(StatePtr.getPointer()),
1703            getContext().getPointerType(StateTy));
1704 
1705   // The second argument is a temporary array with space for NumItems
1706   // pointers.  We'll actually be loading elements from the array
1707   // pointer written into the control state; this buffer is so that
1708   // collections that *aren't* backed by arrays can still queue up
1709   // batches of elements.
1710   Args.add(RValue::get(ItemsPtr.getPointer()),
1711            getContext().getPointerType(ItemsTy));
1712 
1713   // The third argument is the capacity of that temporary array.
1714   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1715   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1716   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1717 
1718   // Start the enumeration.
1719   RValue CountRV =
1720       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1721                                                getContext().getNSUIntegerType(),
1722                                                FastEnumSel, Collection, Args);
1723 
1724   // The initial number of objects that were returned in the buffer.
1725   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1726 
1727   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1728   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1729 
1730   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1731 
1732   // If the limit pointer was zero to begin with, the collection is
1733   // empty; skip all this. Set the branch weight assuming this has the same
1734   // probability of exiting the loop as any other loop exit.
1735   uint64_t EntryCount = getCurrentProfileCount();
1736   Builder.CreateCondBr(
1737       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1738       LoopInitBB,
1739       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1740 
1741   // Otherwise, initialize the loop.
1742   EmitBlock(LoopInitBB);
1743 
1744   // Save the initial mutations value.  This is the value at an
1745   // address that was written into the state object by
1746   // countByEnumeratingWithState:objects:count:.
1747   Address StateMutationsPtrPtr =
1748       Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1749   llvm::Value *StateMutationsPtr
1750     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1751 
1752   llvm::Value *initialMutations =
1753     Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1754                               "forcoll.initial-mutations");
1755 
1756   // Start looping.  This is the point we return to whenever we have a
1757   // fresh, non-empty batch of objects.
1758   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1759   EmitBlock(LoopBodyBB);
1760 
1761   // The current index into the buffer.
1762   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1763   index->addIncoming(zero, LoopInitBB);
1764 
1765   // The current buffer size.
1766   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1767   count->addIncoming(initialBufferLimit, LoopInitBB);
1768 
1769   incrementProfileCounter(&S);
1770 
1771   // Check whether the mutations value has changed from where it was
1772   // at start.  StateMutationsPtr should actually be invariant between
1773   // refreshes.
1774   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1775   llvm::Value *currentMutations
1776     = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1777                                 "statemutations");
1778 
1779   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1780   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1781 
1782   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1783                        WasNotMutatedBB, WasMutatedBB);
1784 
1785   // If so, call the enumeration-mutation function.
1786   EmitBlock(WasMutatedBB);
1787   llvm::Value *V =
1788     Builder.CreateBitCast(Collection,
1789                           ConvertType(getContext().getObjCIdType()));
1790   CallArgList Args2;
1791   Args2.add(RValue::get(V), getContext().getObjCIdType());
1792   // FIXME: We shouldn't need to get the function info here, the runtime already
1793   // should have computed it to build the function.
1794   EmitCall(
1795           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1796            EnumerationMutationFn, ReturnValueSlot(), Args2);
1797 
1798   // Otherwise, or if the mutation function returns, just continue.
1799   EmitBlock(WasNotMutatedBB);
1800 
1801   // Initialize the element variable.
1802   RunCleanupsScope elementVariableScope(*this);
1803   bool elementIsVariable;
1804   LValue elementLValue;
1805   QualType elementType;
1806   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1807     // Initialize the variable, in case it's a __block variable or something.
1808     EmitAutoVarInit(variable);
1809 
1810     const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1811     DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1812                         D->getType(), VK_LValue, SourceLocation());
1813     elementLValue = EmitLValue(&tempDRE);
1814     elementType = D->getType();
1815     elementIsVariable = true;
1816 
1817     if (D->isARCPseudoStrong())
1818       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1819   } else {
1820     elementLValue = LValue(); // suppress warning
1821     elementType = cast<Expr>(S.getElement())->getType();
1822     elementIsVariable = false;
1823   }
1824   llvm::Type *convertedElementType = ConvertType(elementType);
1825 
1826   // Fetch the buffer out of the enumeration state.
1827   // TODO: this pointer should actually be invariant between
1828   // refreshes, which would help us do certain loop optimizations.
1829   Address StateItemsPtr =
1830       Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1831   llvm::Value *EnumStateItems =
1832     Builder.CreateLoad(StateItemsPtr, "stateitems");
1833 
1834   // Fetch the value at the current index from the buffer.
1835   llvm::Value *CurrentItemPtr =
1836     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1837   llvm::Value *CurrentItem =
1838     Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1839 
1840   // Cast that value to the right type.
1841   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1842                                       "currentitem");
1843 
1844   // Make sure we have an l-value.  Yes, this gets evaluated every
1845   // time through the loop.
1846   if (!elementIsVariable) {
1847     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1848     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1849   } else {
1850     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1851                            /*isInit*/ true);
1852   }
1853 
1854   // If we do have an element variable, this assignment is the end of
1855   // its initialization.
1856   if (elementIsVariable)
1857     EmitAutoVarCleanups(variable);
1858 
1859   // Perform the loop body, setting up break and continue labels.
1860   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1861   {
1862     RunCleanupsScope Scope(*this);
1863     EmitStmt(S.getBody());
1864   }
1865   BreakContinueStack.pop_back();
1866 
1867   // Destroy the element variable now.
1868   elementVariableScope.ForceCleanup();
1869 
1870   // Check whether there are more elements.
1871   EmitBlock(AfterBody.getBlock());
1872 
1873   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1874 
1875   // First we check in the local buffer.
1876   llvm::Value *indexPlusOne =
1877       Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1878 
1879   // If we haven't overrun the buffer yet, we can continue.
1880   // Set the branch weights based on the simplifying assumption that this is
1881   // like a while-loop, i.e., ignoring that the false branch fetches more
1882   // elements and then returns to the loop.
1883   Builder.CreateCondBr(
1884       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1885       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1886 
1887   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1888   count->addIncoming(count, AfterBody.getBlock());
1889 
1890   // Otherwise, we have to fetch more elements.
1891   EmitBlock(FetchMoreBB);
1892 
1893   CountRV =
1894       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1895                                                getContext().getNSUIntegerType(),
1896                                                FastEnumSel, Collection, Args);
1897 
1898   // If we got a zero count, we're done.
1899   llvm::Value *refetchCount = CountRV.getScalarVal();
1900 
1901   // (note that the message send might split FetchMoreBB)
1902   index->addIncoming(zero, Builder.GetInsertBlock());
1903   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1904 
1905   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1906                        EmptyBB, LoopBodyBB);
1907 
1908   // No more elements.
1909   EmitBlock(EmptyBB);
1910 
1911   if (!elementIsVariable) {
1912     // If the element was not a declaration, set it to be null.
1913 
1914     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1915     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1916     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1917   }
1918 
1919   if (DI)
1920     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1921 
1922   ForScope.ForceCleanup();
1923   EmitBlock(LoopEnd.getBlock());
1924 }
1925 
1926 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1927   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1928 }
1929 
1930 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1931   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1932 }
1933 
1934 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1935                                               const ObjCAtSynchronizedStmt &S) {
1936   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1937 }
1938 
1939 namespace {
1940   struct CallObjCRelease final : EHScopeStack::Cleanup {
1941     CallObjCRelease(llvm::Value *object) : object(object) {}
1942     llvm::Value *object;
1943 
1944     void Emit(CodeGenFunction &CGF, Flags flags) override {
1945       // Releases at the end of the full-expression are imprecise.
1946       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1947     }
1948   };
1949 }
1950 
1951 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1952 /// release at the end of the full-expression.
1953 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1954                                                     llvm::Value *object) {
1955   // If we're in a conditional branch, we need to make the cleanup
1956   // conditional.
1957   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1958   return object;
1959 }
1960 
1961 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1962                                                            llvm::Value *value) {
1963   return EmitARCRetainAutorelease(type, value);
1964 }
1965 
1966 /// Given a number of pointers, inform the optimizer that they're
1967 /// being intrinsically used up until this point in the program.
1968 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1969   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1970   if (!fn)
1971     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
1972 
1973   // This isn't really a "runtime" function, but as an intrinsic it
1974   // doesn't really matter as long as we align things up.
1975   EmitNounwindRuntimeCall(fn, values);
1976 }
1977 
1978 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
1979   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
1980     // If the target runtime doesn't naturally support ARC, emit weak
1981     // references to the runtime support library.  We don't really
1982     // permit this to fail, but we need a particular relocation style.
1983     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
1984         !CGM.getTriple().isOSBinFormatCOFF()) {
1985       F->setLinkage(llvm::Function::ExternalWeakLinkage);
1986     }
1987   }
1988 }
1989 
1990 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
1991                                          llvm::FunctionCallee RTF) {
1992   setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
1993 }
1994 
1995 /// Perform an operation having the signature
1996 ///   i8* (i8*)
1997 /// where a null input causes a no-op and returns null.
1998 static llvm::Value *emitARCValueOperation(
1999     CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2000     llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2001     llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2002   if (isa<llvm::ConstantPointerNull>(value))
2003     return value;
2004 
2005   if (!fn) {
2006     fn = CGF.CGM.getIntrinsic(IntID);
2007     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2008   }
2009 
2010   // Cast the argument to 'id'.
2011   llvm::Type *origType = returnType ? returnType : value->getType();
2012   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2013 
2014   // Call the function.
2015   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2016   call->setTailCallKind(tailKind);
2017 
2018   // Cast the result back to the original type.
2019   return CGF.Builder.CreateBitCast(call, origType);
2020 }
2021 
2022 /// Perform an operation having the following signature:
2023 ///   i8* (i8**)
2024 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2025                                          llvm::Function *&fn,
2026                                          llvm::Intrinsic::ID IntID) {
2027   if (!fn) {
2028     fn = CGF.CGM.getIntrinsic(IntID);
2029     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2030   }
2031 
2032   // Cast the argument to 'id*'.
2033   llvm::Type *origType = addr.getElementType();
2034   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
2035 
2036   // Call the function.
2037   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2038 
2039   // Cast the result back to a dereference of the original type.
2040   if (origType != CGF.Int8PtrTy)
2041     result = CGF.Builder.CreateBitCast(result, origType);
2042 
2043   return result;
2044 }
2045 
2046 /// Perform an operation having the following signature:
2047 ///   i8* (i8**, i8*)
2048 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2049                                           llvm::Value *value,
2050                                           llvm::Function *&fn,
2051                                           llvm::Intrinsic::ID IntID,
2052                                           bool ignored) {
2053   assert(addr.getElementType() == value->getType());
2054 
2055   if (!fn) {
2056     fn = CGF.CGM.getIntrinsic(IntID);
2057     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2058   }
2059 
2060   llvm::Type *origType = value->getType();
2061 
2062   llvm::Value *args[] = {
2063     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2064     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2065   };
2066   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2067 
2068   if (ignored) return nullptr;
2069 
2070   return CGF.Builder.CreateBitCast(result, origType);
2071 }
2072 
2073 /// Perform an operation having the following signature:
2074 ///   void (i8**, i8**)
2075 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2076                                  llvm::Function *&fn,
2077                                  llvm::Intrinsic::ID IntID) {
2078   assert(dst.getType() == src.getType());
2079 
2080   if (!fn) {
2081     fn = CGF.CGM.getIntrinsic(IntID);
2082     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2083   }
2084 
2085   llvm::Value *args[] = {
2086     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2087     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2088   };
2089   CGF.EmitNounwindRuntimeCall(fn, args);
2090 }
2091 
2092 /// Perform an operation having the signature
2093 ///   i8* (i8*)
2094 /// where a null input causes a no-op and returns null.
2095 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2096                                            llvm::Value *value,
2097                                            llvm::Type *returnType,
2098                                            llvm::FunctionCallee &fn,
2099                                            StringRef fnName) {
2100   if (isa<llvm::ConstantPointerNull>(value))
2101     return value;
2102 
2103   if (!fn) {
2104     llvm::FunctionType *fnType =
2105       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2106     fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2107 
2108     // We have Native ARC, so set nonlazybind attribute for performance
2109     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2110       if (fnName == "objc_retain")
2111         f->addFnAttr(llvm::Attribute::NonLazyBind);
2112   }
2113 
2114   // Cast the argument to 'id'.
2115   llvm::Type *origType = returnType ? returnType : value->getType();
2116   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2117 
2118   // Call the function.
2119   llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2120 
2121   // Cast the result back to the original type.
2122   return CGF.Builder.CreateBitCast(Inst, origType);
2123 }
2124 
2125 /// Produce the code to do a retain.  Based on the type, calls one of:
2126 ///   call i8* \@objc_retain(i8* %value)
2127 ///   call i8* \@objc_retainBlock(i8* %value)
2128 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2129   if (type->isBlockPointerType())
2130     return EmitARCRetainBlock(value, /*mandatory*/ false);
2131   else
2132     return EmitARCRetainNonBlock(value);
2133 }
2134 
2135 /// Retain the given object, with normal retain semantics.
2136 ///   call i8* \@objc_retain(i8* %value)
2137 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2138   return emitARCValueOperation(*this, value, nullptr,
2139                                CGM.getObjCEntrypoints().objc_retain,
2140                                llvm::Intrinsic::objc_retain);
2141 }
2142 
2143 /// Retain the given block, with _Block_copy semantics.
2144 ///   call i8* \@objc_retainBlock(i8* %value)
2145 ///
2146 /// \param mandatory - If false, emit the call with metadata
2147 /// indicating that it's okay for the optimizer to eliminate this call
2148 /// if it can prove that the block never escapes except down the stack.
2149 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2150                                                  bool mandatory) {
2151   llvm::Value *result
2152     = emitARCValueOperation(*this, value, nullptr,
2153                             CGM.getObjCEntrypoints().objc_retainBlock,
2154                             llvm::Intrinsic::objc_retainBlock);
2155 
2156   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2157   // tell the optimizer that it doesn't need to do this copy if the
2158   // block doesn't escape, where being passed as an argument doesn't
2159   // count as escaping.
2160   if (!mandatory && isa<llvm::Instruction>(result)) {
2161     llvm::CallInst *call
2162       = cast<llvm::CallInst>(result->stripPointerCasts());
2163     assert(call->getCalledOperand() ==
2164            CGM.getObjCEntrypoints().objc_retainBlock);
2165 
2166     call->setMetadata("clang.arc.copy_on_escape",
2167                       llvm::MDNode::get(Builder.getContext(), None));
2168   }
2169 
2170   return result;
2171 }
2172 
2173 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2174   // Fetch the void(void) inline asm which marks that we're going to
2175   // do something with the autoreleased return value.
2176   llvm::InlineAsm *&marker
2177     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2178   if (!marker) {
2179     StringRef assembly
2180       = CGF.CGM.getTargetCodeGenInfo()
2181            .getARCRetainAutoreleasedReturnValueMarker();
2182 
2183     // If we have an empty assembly string, there's nothing to do.
2184     if (assembly.empty()) {
2185 
2186     // Otherwise, at -O0, build an inline asm that we're going to call
2187     // in a moment.
2188     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2189       llvm::FunctionType *type =
2190         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2191 
2192       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2193 
2194     // If we're at -O1 and above, we don't want to litter the code
2195     // with this marker yet, so leave a breadcrumb for the ARC
2196     // optimizer to pick up.
2197     } else {
2198       const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker";
2199       if (!CGF.CGM.getModule().getModuleFlag(markerKey)) {
2200         auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2201         CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str);
2202       }
2203     }
2204   }
2205 
2206   // Call the marker asm if we made one, which we do only at -O0.
2207   if (marker)
2208     CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2209 }
2210 
2211 /// Retain the given object which is the result of a function call.
2212 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2213 ///
2214 /// Yes, this function name is one character away from a different
2215 /// call with completely different semantics.
2216 llvm::Value *
2217 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2218   emitAutoreleasedReturnValueMarker(*this);
2219   llvm::CallInst::TailCallKind tailKind =
2220       CGM.getTargetCodeGenInfo()
2221               .shouldSuppressTailCallsOfRetainAutoreleasedReturnValue()
2222           ? llvm::CallInst::TCK_NoTail
2223           : llvm::CallInst::TCK_None;
2224   return emitARCValueOperation(
2225       *this, value, nullptr,
2226       CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2227       llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind);
2228 }
2229 
2230 /// Claim a possibly-autoreleased return value at +0.  This is only
2231 /// valid to do in contexts which do not rely on the retain to keep
2232 /// the object valid for all of its uses; for example, when
2233 /// the value is ignored, or when it is being assigned to an
2234 /// __unsafe_unretained variable.
2235 ///
2236 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2237 llvm::Value *
2238 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2239   emitAutoreleasedReturnValueMarker(*this);
2240   return emitARCValueOperation(*this, value, nullptr,
2241               CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2242                      llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue);
2243 }
2244 
2245 /// Release the given object.
2246 ///   call void \@objc_release(i8* %value)
2247 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2248                                      ARCPreciseLifetime_t precise) {
2249   if (isa<llvm::ConstantPointerNull>(value)) return;
2250 
2251   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2252   if (!fn) {
2253     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release);
2254     setARCRuntimeFunctionLinkage(CGM, fn);
2255   }
2256 
2257   // Cast the argument to 'id'.
2258   value = Builder.CreateBitCast(value, Int8PtrTy);
2259 
2260   // Call objc_release.
2261   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2262 
2263   if (precise == ARCImpreciseLifetime) {
2264     call->setMetadata("clang.imprecise_release",
2265                       llvm::MDNode::get(Builder.getContext(), None));
2266   }
2267 }
2268 
2269 /// Destroy a __strong variable.
2270 ///
2271 /// At -O0, emit a call to store 'null' into the address;
2272 /// instrumenting tools prefer this because the address is exposed,
2273 /// but it's relatively cumbersome to optimize.
2274 ///
2275 /// At -O1 and above, just load and call objc_release.
2276 ///
2277 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2278 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2279                                            ARCPreciseLifetime_t precise) {
2280   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2281     llvm::Value *null = getNullForVariable(addr);
2282     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2283     return;
2284   }
2285 
2286   llvm::Value *value = Builder.CreateLoad(addr);
2287   EmitARCRelease(value, precise);
2288 }
2289 
2290 /// Store into a strong object.  Always calls this:
2291 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2292 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2293                                                      llvm::Value *value,
2294                                                      bool ignored) {
2295   assert(addr.getElementType() == value->getType());
2296 
2297   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2298   if (!fn) {
2299     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong);
2300     setARCRuntimeFunctionLinkage(CGM, fn);
2301   }
2302 
2303   llvm::Value *args[] = {
2304     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2305     Builder.CreateBitCast(value, Int8PtrTy)
2306   };
2307   EmitNounwindRuntimeCall(fn, args);
2308 
2309   if (ignored) return nullptr;
2310   return value;
2311 }
2312 
2313 /// Store into a strong object.  Sometimes calls this:
2314 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2315 /// Other times, breaks it down into components.
2316 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2317                                                  llvm::Value *newValue,
2318                                                  bool ignored) {
2319   QualType type = dst.getType();
2320   bool isBlock = type->isBlockPointerType();
2321 
2322   // Use a store barrier at -O0 unless this is a block type or the
2323   // lvalue is inadequately aligned.
2324   if (shouldUseFusedARCCalls() &&
2325       !isBlock &&
2326       (dst.getAlignment().isZero() ||
2327        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2328     return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2329   }
2330 
2331   // Otherwise, split it out.
2332 
2333   // Retain the new value.
2334   newValue = EmitARCRetain(type, newValue);
2335 
2336   // Read the old value.
2337   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2338 
2339   // Store.  We do this before the release so that any deallocs won't
2340   // see the old value.
2341   EmitStoreOfScalar(newValue, dst);
2342 
2343   // Finally, release the old value.
2344   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2345 
2346   return newValue;
2347 }
2348 
2349 /// Autorelease the given object.
2350 ///   call i8* \@objc_autorelease(i8* %value)
2351 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2352   return emitARCValueOperation(*this, value, nullptr,
2353                                CGM.getObjCEntrypoints().objc_autorelease,
2354                                llvm::Intrinsic::objc_autorelease);
2355 }
2356 
2357 /// Autorelease the given object.
2358 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2359 llvm::Value *
2360 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2361   return emitARCValueOperation(*this, value, nullptr,
2362                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2363                                llvm::Intrinsic::objc_autoreleaseReturnValue,
2364                                llvm::CallInst::TCK_Tail);
2365 }
2366 
2367 /// Do a fused retain/autorelease of the given object.
2368 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2369 llvm::Value *
2370 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2371   return emitARCValueOperation(*this, value, nullptr,
2372                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2373                              llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2374                                llvm::CallInst::TCK_Tail);
2375 }
2376 
2377 /// Do a fused retain/autorelease of the given object.
2378 ///   call i8* \@objc_retainAutorelease(i8* %value)
2379 /// or
2380 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2381 ///   call i8* \@objc_autorelease(i8* %retain)
2382 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2383                                                        llvm::Value *value) {
2384   if (!type->isBlockPointerType())
2385     return EmitARCRetainAutoreleaseNonBlock(value);
2386 
2387   if (isa<llvm::ConstantPointerNull>(value)) return value;
2388 
2389   llvm::Type *origType = value->getType();
2390   value = Builder.CreateBitCast(value, Int8PtrTy);
2391   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2392   value = EmitARCAutorelease(value);
2393   return Builder.CreateBitCast(value, origType);
2394 }
2395 
2396 /// Do a fused retain/autorelease of the given object.
2397 ///   call i8* \@objc_retainAutorelease(i8* %value)
2398 llvm::Value *
2399 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2400   return emitARCValueOperation(*this, value, nullptr,
2401                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2402                                llvm::Intrinsic::objc_retainAutorelease);
2403 }
2404 
2405 /// i8* \@objc_loadWeak(i8** %addr)
2406 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2407 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2408   return emitARCLoadOperation(*this, addr,
2409                               CGM.getObjCEntrypoints().objc_loadWeak,
2410                               llvm::Intrinsic::objc_loadWeak);
2411 }
2412 
2413 /// i8* \@objc_loadWeakRetained(i8** %addr)
2414 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2415   return emitARCLoadOperation(*this, addr,
2416                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2417                               llvm::Intrinsic::objc_loadWeakRetained);
2418 }
2419 
2420 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2421 /// Returns %value.
2422 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2423                                                llvm::Value *value,
2424                                                bool ignored) {
2425   return emitARCStoreOperation(*this, addr, value,
2426                                CGM.getObjCEntrypoints().objc_storeWeak,
2427                                llvm::Intrinsic::objc_storeWeak, ignored);
2428 }
2429 
2430 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2431 /// Returns %value.  %addr is known to not have a current weak entry.
2432 /// Essentially equivalent to:
2433 ///   *addr = nil; objc_storeWeak(addr, value);
2434 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2435   // If we're initializing to null, just write null to memory; no need
2436   // to get the runtime involved.  But don't do this if optimization
2437   // is enabled, because accounting for this would make the optimizer
2438   // much more complicated.
2439   if (isa<llvm::ConstantPointerNull>(value) &&
2440       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2441     Builder.CreateStore(value, addr);
2442     return;
2443   }
2444 
2445   emitARCStoreOperation(*this, addr, value,
2446                         CGM.getObjCEntrypoints().objc_initWeak,
2447                         llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2448 }
2449 
2450 /// void \@objc_destroyWeak(i8** %addr)
2451 /// Essentially objc_storeWeak(addr, nil).
2452 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2453   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2454   if (!fn) {
2455     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak);
2456     setARCRuntimeFunctionLinkage(CGM, fn);
2457   }
2458 
2459   // Cast the argument to 'id*'.
2460   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2461 
2462   EmitNounwindRuntimeCall(fn, addr.getPointer());
2463 }
2464 
2465 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2466 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2467 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2468 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2469   emitARCCopyOperation(*this, dst, src,
2470                        CGM.getObjCEntrypoints().objc_moveWeak,
2471                        llvm::Intrinsic::objc_moveWeak);
2472 }
2473 
2474 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2475 /// Disregards the current value in %dest.  Essentially
2476 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2477 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2478   emitARCCopyOperation(*this, dst, src,
2479                        CGM.getObjCEntrypoints().objc_copyWeak,
2480                        llvm::Intrinsic::objc_copyWeak);
2481 }
2482 
2483 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2484                                             Address SrcAddr) {
2485   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2486   Object = EmitObjCConsumeObject(Ty, Object);
2487   EmitARCStoreWeak(DstAddr, Object, false);
2488 }
2489 
2490 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2491                                             Address SrcAddr) {
2492   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2493   Object = EmitObjCConsumeObject(Ty, Object);
2494   EmitARCStoreWeak(DstAddr, Object, false);
2495   EmitARCDestroyWeak(SrcAddr);
2496 }
2497 
2498 /// Produce the code to do a objc_autoreleasepool_push.
2499 ///   call i8* \@objc_autoreleasePoolPush(void)
2500 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2501   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2502   if (!fn) {
2503     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush);
2504     setARCRuntimeFunctionLinkage(CGM, fn);
2505   }
2506 
2507   return EmitNounwindRuntimeCall(fn);
2508 }
2509 
2510 /// Produce the code to do a primitive release.
2511 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2512 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2513   assert(value->getType() == Int8PtrTy);
2514 
2515   if (getInvokeDest()) {
2516     // Call the runtime method not the intrinsic if we are handling exceptions
2517     llvm::FunctionCallee &fn =
2518         CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2519     if (!fn) {
2520       llvm::FunctionType *fnType =
2521         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2522       fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2523       setARCRuntimeFunctionLinkage(CGM, fn);
2524     }
2525 
2526     // objc_autoreleasePoolPop can throw.
2527     EmitRuntimeCallOrInvoke(fn, value);
2528   } else {
2529     llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2530     if (!fn) {
2531       fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop);
2532       setARCRuntimeFunctionLinkage(CGM, fn);
2533     }
2534 
2535     EmitRuntimeCall(fn, value);
2536   }
2537 }
2538 
2539 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2540 /// Which is: [[NSAutoreleasePool alloc] init];
2541 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2542 /// init is declared as: - (id) init; in its NSObject super class.
2543 ///
2544 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2545   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2546   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2547   // [NSAutoreleasePool alloc]
2548   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2549   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2550   CallArgList Args;
2551   RValue AllocRV =
2552     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2553                                 getContext().getObjCIdType(),
2554                                 AllocSel, Receiver, Args);
2555 
2556   // [Receiver init]
2557   Receiver = AllocRV.getScalarVal();
2558   II = &CGM.getContext().Idents.get("init");
2559   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2560   RValue InitRV =
2561     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2562                                 getContext().getObjCIdType(),
2563                                 InitSel, Receiver, Args);
2564   return InitRV.getScalarVal();
2565 }
2566 
2567 /// Allocate the given objc object.
2568 ///   call i8* \@objc_alloc(i8* %value)
2569 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2570                                             llvm::Type *resultType) {
2571   return emitObjCValueOperation(*this, value, resultType,
2572                                 CGM.getObjCEntrypoints().objc_alloc,
2573                                 "objc_alloc");
2574 }
2575 
2576 /// Allocate the given objc object.
2577 ///   call i8* \@objc_allocWithZone(i8* %value)
2578 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2579                                                     llvm::Type *resultType) {
2580   return emitObjCValueOperation(*this, value, resultType,
2581                                 CGM.getObjCEntrypoints().objc_allocWithZone,
2582                                 "objc_allocWithZone");
2583 }
2584 
2585 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2586                                                 llvm::Type *resultType) {
2587   return emitObjCValueOperation(*this, value, resultType,
2588                                 CGM.getObjCEntrypoints().objc_alloc_init,
2589                                 "objc_alloc_init");
2590 }
2591 
2592 /// Produce the code to do a primitive release.
2593 /// [tmp drain];
2594 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2595   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2596   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2597   CallArgList Args;
2598   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2599                               getContext().VoidTy, DrainSel, Arg, Args);
2600 }
2601 
2602 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2603                                               Address addr,
2604                                               QualType type) {
2605   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2606 }
2607 
2608 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2609                                                 Address addr,
2610                                                 QualType type) {
2611   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2612 }
2613 
2614 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2615                                      Address addr,
2616                                      QualType type) {
2617   CGF.EmitARCDestroyWeak(addr);
2618 }
2619 
2620 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2621                                           QualType type) {
2622   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2623   CGF.EmitARCIntrinsicUse(value);
2624 }
2625 
2626 /// Autorelease the given object.
2627 ///   call i8* \@objc_autorelease(i8* %value)
2628 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2629                                                   llvm::Type *returnType) {
2630   return emitObjCValueOperation(
2631       *this, value, returnType,
2632       CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2633       "objc_autorelease");
2634 }
2635 
2636 /// Retain the given object, with normal retain semantics.
2637 ///   call i8* \@objc_retain(i8* %value)
2638 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2639                                                      llvm::Type *returnType) {
2640   return emitObjCValueOperation(
2641       *this, value, returnType,
2642       CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2643 }
2644 
2645 /// Release the given object.
2646 ///   call void \@objc_release(i8* %value)
2647 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2648                                       ARCPreciseLifetime_t precise) {
2649   if (isa<llvm::ConstantPointerNull>(value)) return;
2650 
2651   llvm::FunctionCallee &fn =
2652       CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2653   if (!fn) {
2654     llvm::FunctionType *fnType =
2655         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2656     fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2657     setARCRuntimeFunctionLinkage(CGM, fn);
2658     // We have Native ARC, so set nonlazybind attribute for performance
2659     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2660       f->addFnAttr(llvm::Attribute::NonLazyBind);
2661   }
2662 
2663   // Cast the argument to 'id'.
2664   value = Builder.CreateBitCast(value, Int8PtrTy);
2665 
2666   // Call objc_release.
2667   llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2668 
2669   if (precise == ARCImpreciseLifetime) {
2670     call->setMetadata("clang.imprecise_release",
2671                       llvm::MDNode::get(Builder.getContext(), None));
2672   }
2673 }
2674 
2675 namespace {
2676   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2677     llvm::Value *Token;
2678 
2679     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2680 
2681     void Emit(CodeGenFunction &CGF, Flags flags) override {
2682       CGF.EmitObjCAutoreleasePoolPop(Token);
2683     }
2684   };
2685   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2686     llvm::Value *Token;
2687 
2688     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2689 
2690     void Emit(CodeGenFunction &CGF, Flags flags) override {
2691       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2692     }
2693   };
2694 }
2695 
2696 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2697   if (CGM.getLangOpts().ObjCAutoRefCount)
2698     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2699   else
2700     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2701 }
2702 
2703 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2704   switch (lifetime) {
2705   case Qualifiers::OCL_None:
2706   case Qualifiers::OCL_ExplicitNone:
2707   case Qualifiers::OCL_Strong:
2708   case Qualifiers::OCL_Autoreleasing:
2709     return true;
2710 
2711   case Qualifiers::OCL_Weak:
2712     return false;
2713   }
2714 
2715   llvm_unreachable("impossible lifetime!");
2716 }
2717 
2718 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2719                                                   LValue lvalue,
2720                                                   QualType type) {
2721   llvm::Value *result;
2722   bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2723   if (shouldRetain) {
2724     result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2725   } else {
2726     assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2727     result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2728   }
2729   return TryEmitResult(result, !shouldRetain);
2730 }
2731 
2732 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2733                                                   const Expr *e) {
2734   e = e->IgnoreParens();
2735   QualType type = e->getType();
2736 
2737   // If we're loading retained from a __strong xvalue, we can avoid
2738   // an extra retain/release pair by zeroing out the source of this
2739   // "move" operation.
2740   if (e->isXValue() &&
2741       !type.isConstQualified() &&
2742       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2743     // Emit the lvalue.
2744     LValue lv = CGF.EmitLValue(e);
2745 
2746     // Load the object pointer.
2747     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2748                                                SourceLocation()).getScalarVal();
2749 
2750     // Set the source pointer to NULL.
2751     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2752 
2753     return TryEmitResult(result, true);
2754   }
2755 
2756   // As a very special optimization, in ARC++, if the l-value is the
2757   // result of a non-volatile assignment, do a simple retain of the
2758   // result of the call to objc_storeWeak instead of reloading.
2759   if (CGF.getLangOpts().CPlusPlus &&
2760       !type.isVolatileQualified() &&
2761       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2762       isa<BinaryOperator>(e) &&
2763       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2764     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2765 
2766   // Try to emit code for scalar constant instead of emitting LValue and
2767   // loading it because we are not guaranteed to have an l-value. One of such
2768   // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2769   if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2770     auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2771     if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2772       return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2773                            !shouldRetainObjCLifetime(type.getObjCLifetime()));
2774   }
2775 
2776   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2777 }
2778 
2779 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2780                                          llvm::Value *value)>
2781   ValueTransform;
2782 
2783 /// Insert code immediately after a call.
2784 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2785                                               llvm::Value *value,
2786                                               ValueTransform doAfterCall,
2787                                               ValueTransform doFallback) {
2788   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2789     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2790 
2791     // Place the retain immediately following the call.
2792     CGF.Builder.SetInsertPoint(call->getParent(),
2793                                ++llvm::BasicBlock::iterator(call));
2794     value = doAfterCall(CGF, value);
2795 
2796     CGF.Builder.restoreIP(ip);
2797     return value;
2798   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2799     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2800 
2801     // Place the retain at the beginning of the normal destination block.
2802     llvm::BasicBlock *BB = invoke->getNormalDest();
2803     CGF.Builder.SetInsertPoint(BB, BB->begin());
2804     value = doAfterCall(CGF, value);
2805 
2806     CGF.Builder.restoreIP(ip);
2807     return value;
2808 
2809   // Bitcasts can arise because of related-result returns.  Rewrite
2810   // the operand.
2811   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2812     llvm::Value *operand = bitcast->getOperand(0);
2813     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2814     bitcast->setOperand(0, operand);
2815     return bitcast;
2816 
2817   // Generic fall-back case.
2818   } else {
2819     // Retain using the non-block variant: we never need to do a copy
2820     // of a block that's been returned to us.
2821     return doFallback(CGF, value);
2822   }
2823 }
2824 
2825 /// Given that the given expression is some sort of call (which does
2826 /// not return retained), emit a retain following it.
2827 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2828                                             const Expr *e) {
2829   llvm::Value *value = CGF.EmitScalarExpr(e);
2830   return emitARCOperationAfterCall(CGF, value,
2831            [](CodeGenFunction &CGF, llvm::Value *value) {
2832              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2833            },
2834            [](CodeGenFunction &CGF, llvm::Value *value) {
2835              return CGF.EmitARCRetainNonBlock(value);
2836            });
2837 }
2838 
2839 /// Given that the given expression is some sort of call (which does
2840 /// not return retained), perform an unsafeClaim following it.
2841 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2842                                                  const Expr *e) {
2843   llvm::Value *value = CGF.EmitScalarExpr(e);
2844   return emitARCOperationAfterCall(CGF, value,
2845            [](CodeGenFunction &CGF, llvm::Value *value) {
2846              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2847            },
2848            [](CodeGenFunction &CGF, llvm::Value *value) {
2849              return value;
2850            });
2851 }
2852 
2853 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2854                                                       bool allowUnsafeClaim) {
2855   if (allowUnsafeClaim &&
2856       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2857     return emitARCUnsafeClaimCallResult(*this, E);
2858   } else {
2859     llvm::Value *value = emitARCRetainCallResult(*this, E);
2860     return EmitObjCConsumeObject(E->getType(), value);
2861   }
2862 }
2863 
2864 /// Determine whether it might be important to emit a separate
2865 /// objc_retain_block on the result of the given expression, or
2866 /// whether it's okay to just emit it in a +1 context.
2867 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2868   assert(e->getType()->isBlockPointerType());
2869   e = e->IgnoreParens();
2870 
2871   // For future goodness, emit block expressions directly in +1
2872   // contexts if we can.
2873   if (isa<BlockExpr>(e))
2874     return false;
2875 
2876   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2877     switch (cast->getCastKind()) {
2878     // Emitting these operations in +1 contexts is goodness.
2879     case CK_LValueToRValue:
2880     case CK_ARCReclaimReturnedObject:
2881     case CK_ARCConsumeObject:
2882     case CK_ARCProduceObject:
2883       return false;
2884 
2885     // These operations preserve a block type.
2886     case CK_NoOp:
2887     case CK_BitCast:
2888       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2889 
2890     // These operations are known to be bad (or haven't been considered).
2891     case CK_AnyPointerToBlockPointerCast:
2892     default:
2893       return true;
2894     }
2895   }
2896 
2897   return true;
2898 }
2899 
2900 namespace {
2901 /// A CRTP base class for emitting expressions of retainable object
2902 /// pointer type in ARC.
2903 template <typename Impl, typename Result> class ARCExprEmitter {
2904 protected:
2905   CodeGenFunction &CGF;
2906   Impl &asImpl() { return *static_cast<Impl*>(this); }
2907 
2908   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2909 
2910 public:
2911   Result visit(const Expr *e);
2912   Result visitCastExpr(const CastExpr *e);
2913   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2914   Result visitBlockExpr(const BlockExpr *e);
2915   Result visitBinaryOperator(const BinaryOperator *e);
2916   Result visitBinAssign(const BinaryOperator *e);
2917   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2918   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2919   Result visitBinAssignWeak(const BinaryOperator *e);
2920   Result visitBinAssignStrong(const BinaryOperator *e);
2921 
2922   // Minimal implementation:
2923   //   Result visitLValueToRValue(const Expr *e)
2924   //   Result visitConsumeObject(const Expr *e)
2925   //   Result visitExtendBlockObject(const Expr *e)
2926   //   Result visitReclaimReturnedObject(const Expr *e)
2927   //   Result visitCall(const Expr *e)
2928   //   Result visitExpr(const Expr *e)
2929   //
2930   //   Result emitBitCast(Result result, llvm::Type *resultType)
2931   //   llvm::Value *getValueOfResult(Result result)
2932 };
2933 }
2934 
2935 /// Try to emit a PseudoObjectExpr under special ARC rules.
2936 ///
2937 /// This massively duplicates emitPseudoObjectRValue.
2938 template <typename Impl, typename Result>
2939 Result
2940 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2941   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2942 
2943   // Find the result expression.
2944   const Expr *resultExpr = E->getResultExpr();
2945   assert(resultExpr);
2946   Result result;
2947 
2948   for (PseudoObjectExpr::const_semantics_iterator
2949          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2950     const Expr *semantic = *i;
2951 
2952     // If this semantic expression is an opaque value, bind it
2953     // to the result of its source expression.
2954     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2955       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2956       OVMA opaqueData;
2957 
2958       // If this semantic is the result of the pseudo-object
2959       // expression, try to evaluate the source as +1.
2960       if (ov == resultExpr) {
2961         assert(!OVMA::shouldBindAsLValue(ov));
2962         result = asImpl().visit(ov->getSourceExpr());
2963         opaqueData = OVMA::bind(CGF, ov,
2964                             RValue::get(asImpl().getValueOfResult(result)));
2965 
2966       // Otherwise, just bind it.
2967       } else {
2968         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2969       }
2970       opaques.push_back(opaqueData);
2971 
2972     // Otherwise, if the expression is the result, evaluate it
2973     // and remember the result.
2974     } else if (semantic == resultExpr) {
2975       result = asImpl().visit(semantic);
2976 
2977     // Otherwise, evaluate the expression in an ignored context.
2978     } else {
2979       CGF.EmitIgnoredExpr(semantic);
2980     }
2981   }
2982 
2983   // Unbind all the opaques now.
2984   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2985     opaques[i].unbind(CGF);
2986 
2987   return result;
2988 }
2989 
2990 template <typename Impl, typename Result>
2991 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
2992   // The default implementation just forwards the expression to visitExpr.
2993   return asImpl().visitExpr(e);
2994 }
2995 
2996 template <typename Impl, typename Result>
2997 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
2998   switch (e->getCastKind()) {
2999 
3000   // No-op casts don't change the type, so we just ignore them.
3001   case CK_NoOp:
3002     return asImpl().visit(e->getSubExpr());
3003 
3004   // These casts can change the type.
3005   case CK_CPointerToObjCPointerCast:
3006   case CK_BlockPointerToObjCPointerCast:
3007   case CK_AnyPointerToBlockPointerCast:
3008   case CK_BitCast: {
3009     llvm::Type *resultType = CGF.ConvertType(e->getType());
3010     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3011     Result result = asImpl().visit(e->getSubExpr());
3012     return asImpl().emitBitCast(result, resultType);
3013   }
3014 
3015   // Handle some casts specially.
3016   case CK_LValueToRValue:
3017     return asImpl().visitLValueToRValue(e->getSubExpr());
3018   case CK_ARCConsumeObject:
3019     return asImpl().visitConsumeObject(e->getSubExpr());
3020   case CK_ARCExtendBlockObject:
3021     return asImpl().visitExtendBlockObject(e->getSubExpr());
3022   case CK_ARCReclaimReturnedObject:
3023     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3024 
3025   // Otherwise, use the default logic.
3026   default:
3027     return asImpl().visitExpr(e);
3028   }
3029 }
3030 
3031 template <typename Impl, typename Result>
3032 Result
3033 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3034   switch (e->getOpcode()) {
3035   case BO_Comma:
3036     CGF.EmitIgnoredExpr(e->getLHS());
3037     CGF.EnsureInsertPoint();
3038     return asImpl().visit(e->getRHS());
3039 
3040   case BO_Assign:
3041     return asImpl().visitBinAssign(e);
3042 
3043   default:
3044     return asImpl().visitExpr(e);
3045   }
3046 }
3047 
3048 template <typename Impl, typename Result>
3049 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3050   switch (e->getLHS()->getType().getObjCLifetime()) {
3051   case Qualifiers::OCL_ExplicitNone:
3052     return asImpl().visitBinAssignUnsafeUnretained(e);
3053 
3054   case Qualifiers::OCL_Weak:
3055     return asImpl().visitBinAssignWeak(e);
3056 
3057   case Qualifiers::OCL_Autoreleasing:
3058     return asImpl().visitBinAssignAutoreleasing(e);
3059 
3060   case Qualifiers::OCL_Strong:
3061     return asImpl().visitBinAssignStrong(e);
3062 
3063   case Qualifiers::OCL_None:
3064     return asImpl().visitExpr(e);
3065   }
3066   llvm_unreachable("bad ObjC ownership qualifier");
3067 }
3068 
3069 /// The default rule for __unsafe_unretained emits the RHS recursively,
3070 /// stores into the unsafe variable, and propagates the result outward.
3071 template <typename Impl, typename Result>
3072 Result ARCExprEmitter<Impl,Result>::
3073                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3074   // Recursively emit the RHS.
3075   // For __block safety, do this before emitting the LHS.
3076   Result result = asImpl().visit(e->getRHS());
3077 
3078   // Perform the store.
3079   LValue lvalue =
3080     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3081   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3082                              lvalue);
3083 
3084   return result;
3085 }
3086 
3087 template <typename Impl, typename Result>
3088 Result
3089 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3090   return asImpl().visitExpr(e);
3091 }
3092 
3093 template <typename Impl, typename Result>
3094 Result
3095 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3096   return asImpl().visitExpr(e);
3097 }
3098 
3099 template <typename Impl, typename Result>
3100 Result
3101 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3102   return asImpl().visitExpr(e);
3103 }
3104 
3105 /// The general expression-emission logic.
3106 template <typename Impl, typename Result>
3107 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3108   // We should *never* see a nested full-expression here, because if
3109   // we fail to emit at +1, our caller must not retain after we close
3110   // out the full-expression.  This isn't as important in the unsafe
3111   // emitter.
3112   assert(!isa<ExprWithCleanups>(e));
3113 
3114   // Look through parens, __extension__, generic selection, etc.
3115   e = e->IgnoreParens();
3116 
3117   // Handle certain kinds of casts.
3118   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3119     return asImpl().visitCastExpr(ce);
3120 
3121   // Handle the comma operator.
3122   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3123     return asImpl().visitBinaryOperator(op);
3124 
3125   // TODO: handle conditional operators here
3126 
3127   // For calls and message sends, use the retained-call logic.
3128   // Delegate inits are a special case in that they're the only
3129   // returns-retained expression that *isn't* surrounded by
3130   // a consume.
3131   } else if (isa<CallExpr>(e) ||
3132              (isa<ObjCMessageExpr>(e) &&
3133               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3134     return asImpl().visitCall(e);
3135 
3136   // Look through pseudo-object expressions.
3137   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3138     return asImpl().visitPseudoObjectExpr(pseudo);
3139   } else if (auto *be = dyn_cast<BlockExpr>(e))
3140     return asImpl().visitBlockExpr(be);
3141 
3142   return asImpl().visitExpr(e);
3143 }
3144 
3145 namespace {
3146 
3147 /// An emitter for +1 results.
3148 struct ARCRetainExprEmitter :
3149   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3150 
3151   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3152 
3153   llvm::Value *getValueOfResult(TryEmitResult result) {
3154     return result.getPointer();
3155   }
3156 
3157   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3158     llvm::Value *value = result.getPointer();
3159     value = CGF.Builder.CreateBitCast(value, resultType);
3160     result.setPointer(value);
3161     return result;
3162   }
3163 
3164   TryEmitResult visitLValueToRValue(const Expr *e) {
3165     return tryEmitARCRetainLoadOfScalar(CGF, e);
3166   }
3167 
3168   /// For consumptions, just emit the subexpression and thus elide
3169   /// the retain/release pair.
3170   TryEmitResult visitConsumeObject(const Expr *e) {
3171     llvm::Value *result = CGF.EmitScalarExpr(e);
3172     return TryEmitResult(result, true);
3173   }
3174 
3175   TryEmitResult visitBlockExpr(const BlockExpr *e) {
3176     TryEmitResult result = visitExpr(e);
3177     // Avoid the block-retain if this is a block literal that doesn't need to be
3178     // copied to the heap.
3179     if (e->getBlockDecl()->canAvoidCopyToHeap())
3180       result.setInt(true);
3181     return result;
3182   }
3183 
3184   /// Block extends are net +0.  Naively, we could just recurse on
3185   /// the subexpression, but actually we need to ensure that the
3186   /// value is copied as a block, so there's a little filter here.
3187   TryEmitResult visitExtendBlockObject(const Expr *e) {
3188     llvm::Value *result; // will be a +0 value
3189 
3190     // If we can't safely assume the sub-expression will produce a
3191     // block-copied value, emit the sub-expression at +0.
3192     if (shouldEmitSeparateBlockRetain(e)) {
3193       result = CGF.EmitScalarExpr(e);
3194 
3195     // Otherwise, try to emit the sub-expression at +1 recursively.
3196     } else {
3197       TryEmitResult subresult = asImpl().visit(e);
3198 
3199       // If that produced a retained value, just use that.
3200       if (subresult.getInt()) {
3201         return subresult;
3202       }
3203 
3204       // Otherwise it's +0.
3205       result = subresult.getPointer();
3206     }
3207 
3208     // Retain the object as a block.
3209     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3210     return TryEmitResult(result, true);
3211   }
3212 
3213   /// For reclaims, emit the subexpression as a retained call and
3214   /// skip the consumption.
3215   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3216     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3217     return TryEmitResult(result, true);
3218   }
3219 
3220   /// When we have an undecorated call, retroactively do a claim.
3221   TryEmitResult visitCall(const Expr *e) {
3222     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3223     return TryEmitResult(result, true);
3224   }
3225 
3226   // TODO: maybe special-case visitBinAssignWeak?
3227 
3228   TryEmitResult visitExpr(const Expr *e) {
3229     // We didn't find an obvious production, so emit what we've got and
3230     // tell the caller that we didn't manage to retain.
3231     llvm::Value *result = CGF.EmitScalarExpr(e);
3232     return TryEmitResult(result, false);
3233   }
3234 };
3235 }
3236 
3237 static TryEmitResult
3238 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3239   return ARCRetainExprEmitter(CGF).visit(e);
3240 }
3241 
3242 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3243                                                 LValue lvalue,
3244                                                 QualType type) {
3245   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3246   llvm::Value *value = result.getPointer();
3247   if (!result.getInt())
3248     value = CGF.EmitARCRetain(type, value);
3249   return value;
3250 }
3251 
3252 /// EmitARCRetainScalarExpr - Semantically equivalent to
3253 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3254 /// best-effort attempt to peephole expressions that naturally produce
3255 /// retained objects.
3256 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3257   // The retain needs to happen within the full-expression.
3258   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3259     enterFullExpression(cleanups);
3260     RunCleanupsScope scope(*this);
3261     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3262   }
3263 
3264   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3265   llvm::Value *value = result.getPointer();
3266   if (!result.getInt())
3267     value = EmitARCRetain(e->getType(), value);
3268   return value;
3269 }
3270 
3271 llvm::Value *
3272 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3273   // The retain needs to happen within the full-expression.
3274   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3275     enterFullExpression(cleanups);
3276     RunCleanupsScope scope(*this);
3277     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3278   }
3279 
3280   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3281   llvm::Value *value = result.getPointer();
3282   if (result.getInt())
3283     value = EmitARCAutorelease(value);
3284   else
3285     value = EmitARCRetainAutorelease(e->getType(), value);
3286   return value;
3287 }
3288 
3289 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3290   llvm::Value *result;
3291   bool doRetain;
3292 
3293   if (shouldEmitSeparateBlockRetain(e)) {
3294     result = EmitScalarExpr(e);
3295     doRetain = true;
3296   } else {
3297     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3298     result = subresult.getPointer();
3299     doRetain = !subresult.getInt();
3300   }
3301 
3302   if (doRetain)
3303     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3304   return EmitObjCConsumeObject(e->getType(), result);
3305 }
3306 
3307 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3308   // In ARC, retain and autorelease the expression.
3309   if (getLangOpts().ObjCAutoRefCount) {
3310     // Do so before running any cleanups for the full-expression.
3311     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3312     return EmitARCRetainAutoreleaseScalarExpr(expr);
3313   }
3314 
3315   // Otherwise, use the normal scalar-expression emission.  The
3316   // exception machinery doesn't do anything special with the
3317   // exception like retaining it, so there's no safety associated with
3318   // only running cleanups after the throw has started, and when it
3319   // matters it tends to be substantially inferior code.
3320   return EmitScalarExpr(expr);
3321 }
3322 
3323 namespace {
3324 
3325 /// An emitter for assigning into an __unsafe_unretained context.
3326 struct ARCUnsafeUnretainedExprEmitter :
3327   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3328 
3329   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3330 
3331   llvm::Value *getValueOfResult(llvm::Value *value) {
3332     return value;
3333   }
3334 
3335   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3336     return CGF.Builder.CreateBitCast(value, resultType);
3337   }
3338 
3339   llvm::Value *visitLValueToRValue(const Expr *e) {
3340     return CGF.EmitScalarExpr(e);
3341   }
3342 
3343   /// For consumptions, just emit the subexpression and perform the
3344   /// consumption like normal.
3345   llvm::Value *visitConsumeObject(const Expr *e) {
3346     llvm::Value *value = CGF.EmitScalarExpr(e);
3347     return CGF.EmitObjCConsumeObject(e->getType(), value);
3348   }
3349 
3350   /// No special logic for block extensions.  (This probably can't
3351   /// actually happen in this emitter, though.)
3352   llvm::Value *visitExtendBlockObject(const Expr *e) {
3353     return CGF.EmitARCExtendBlockObject(e);
3354   }
3355 
3356   /// For reclaims, perform an unsafeClaim if that's enabled.
3357   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3358     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3359   }
3360 
3361   /// When we have an undecorated call, just emit it without adding
3362   /// the unsafeClaim.
3363   llvm::Value *visitCall(const Expr *e) {
3364     return CGF.EmitScalarExpr(e);
3365   }
3366 
3367   /// Just do normal scalar emission in the default case.
3368   llvm::Value *visitExpr(const Expr *e) {
3369     return CGF.EmitScalarExpr(e);
3370   }
3371 };
3372 }
3373 
3374 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3375                                                       const Expr *e) {
3376   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3377 }
3378 
3379 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3380 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3381 /// avoiding any spurious retains, including by performing reclaims
3382 /// with objc_unsafeClaimAutoreleasedReturnValue.
3383 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3384   // Look through full-expressions.
3385   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3386     enterFullExpression(cleanups);
3387     RunCleanupsScope scope(*this);
3388     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3389   }
3390 
3391   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3392 }
3393 
3394 std::pair<LValue,llvm::Value*>
3395 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3396                                               bool ignored) {
3397   // Evaluate the RHS first.  If we're ignoring the result, assume
3398   // that we can emit at an unsafe +0.
3399   llvm::Value *value;
3400   if (ignored) {
3401     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3402   } else {
3403     value = EmitScalarExpr(e->getRHS());
3404   }
3405 
3406   // Emit the LHS and perform the store.
3407   LValue lvalue = EmitLValue(e->getLHS());
3408   EmitStoreOfScalar(value, lvalue);
3409 
3410   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3411 }
3412 
3413 std::pair<LValue,llvm::Value*>
3414 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3415                                     bool ignored) {
3416   // Evaluate the RHS first.
3417   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3418   llvm::Value *value = result.getPointer();
3419 
3420   bool hasImmediateRetain = result.getInt();
3421 
3422   // If we didn't emit a retained object, and the l-value is of block
3423   // type, then we need to emit the block-retain immediately in case
3424   // it invalidates the l-value.
3425   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3426     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3427     hasImmediateRetain = true;
3428   }
3429 
3430   LValue lvalue = EmitLValue(e->getLHS());
3431 
3432   // If the RHS was emitted retained, expand this.
3433   if (hasImmediateRetain) {
3434     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3435     EmitStoreOfScalar(value, lvalue);
3436     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3437   } else {
3438     value = EmitARCStoreStrong(lvalue, value, ignored);
3439   }
3440 
3441   return std::pair<LValue,llvm::Value*>(lvalue, value);
3442 }
3443 
3444 std::pair<LValue,llvm::Value*>
3445 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3446   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3447   LValue lvalue = EmitLValue(e->getLHS());
3448 
3449   EmitStoreOfScalar(value, lvalue);
3450 
3451   return std::pair<LValue,llvm::Value*>(lvalue, value);
3452 }
3453 
3454 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3455                                           const ObjCAutoreleasePoolStmt &ARPS) {
3456   const Stmt *subStmt = ARPS.getSubStmt();
3457   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3458 
3459   CGDebugInfo *DI = getDebugInfo();
3460   if (DI)
3461     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3462 
3463   // Keep track of the current cleanup stack depth.
3464   RunCleanupsScope Scope(*this);
3465   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3466     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3467     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3468   } else {
3469     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3470     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3471   }
3472 
3473   for (const auto *I : S.body())
3474     EmitStmt(I);
3475 
3476   if (DI)
3477     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3478 }
3479 
3480 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3481 /// make sure it survives garbage collection until this point.
3482 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3483   // We just use an inline assembly.
3484   llvm::FunctionType *extenderType
3485     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3486   llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3487                                                    /* assembly */ "",
3488                                                    /* constraints */ "r",
3489                                                    /* side effects */ true);
3490 
3491   object = Builder.CreateBitCast(object, VoidPtrTy);
3492   EmitNounwindRuntimeCall(extender, object);
3493 }
3494 
3495 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3496 /// non-trivial copy assignment function, produce following helper function.
3497 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3498 ///
3499 llvm::Constant *
3500 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3501                                         const ObjCPropertyImplDecl *PID) {
3502   if (!getLangOpts().CPlusPlus ||
3503       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3504     return nullptr;
3505   QualType Ty = PID->getPropertyIvarDecl()->getType();
3506   if (!Ty->isRecordType())
3507     return nullptr;
3508   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3509   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3510     return nullptr;
3511   llvm::Constant *HelperFn = nullptr;
3512   if (hasTrivialSetExpr(PID))
3513     return nullptr;
3514   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3515   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3516     return HelperFn;
3517 
3518   ASTContext &C = getContext();
3519   IdentifierInfo *II
3520     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3521 
3522   QualType ReturnTy = C.VoidTy;
3523   QualType DestTy = C.getPointerType(Ty);
3524   QualType SrcTy = Ty;
3525   SrcTy.addConst();
3526   SrcTy = C.getPointerType(SrcTy);
3527 
3528   SmallVector<QualType, 2> ArgTys;
3529   ArgTys.push_back(DestTy);
3530   ArgTys.push_back(SrcTy);
3531   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3532 
3533   FunctionDecl *FD = FunctionDecl::Create(
3534       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3535       FunctionTy, nullptr, SC_Static, false, false);
3536 
3537   FunctionArgList args;
3538   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3539                             ImplicitParamDecl::Other);
3540   args.push_back(&DstDecl);
3541   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3542                             ImplicitParamDecl::Other);
3543   args.push_back(&SrcDecl);
3544 
3545   const CGFunctionInfo &FI =
3546       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3547 
3548   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3549 
3550   llvm::Function *Fn =
3551     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3552                            "__assign_helper_atomic_property_",
3553                            &CGM.getModule());
3554 
3555   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3556 
3557   StartFunction(FD, ReturnTy, Fn, FI, args);
3558 
3559   DeclRefExpr DstExpr(C, &DstDecl, false, DestTy, VK_RValue, SourceLocation());
3560   UnaryOperator *DST = UnaryOperator::Create(
3561       C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3562       SourceLocation(), false, FPOptions(C.getLangOpts()));
3563 
3564   DeclRefExpr SrcExpr(C, &SrcDecl, false, SrcTy, VK_RValue, SourceLocation());
3565   UnaryOperator *SRC = UnaryOperator::Create(
3566       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3567       SourceLocation(), false, FPOptions(C.getLangOpts()));
3568 
3569   Expr *Args[2] = {DST, SRC};
3570   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3571   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3572       C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3573       VK_LValue, SourceLocation(), FPOptions(C.getLangOpts()));
3574 
3575   EmitStmt(TheCall);
3576 
3577   FinishFunction();
3578   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3579   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3580   return HelperFn;
3581 }
3582 
3583 llvm::Constant *
3584 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3585                                             const ObjCPropertyImplDecl *PID) {
3586   if (!getLangOpts().CPlusPlus ||
3587       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3588     return nullptr;
3589   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3590   QualType Ty = PD->getType();
3591   if (!Ty->isRecordType())
3592     return nullptr;
3593   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3594     return nullptr;
3595   llvm::Constant *HelperFn = nullptr;
3596   if (hasTrivialGetExpr(PID))
3597     return nullptr;
3598   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3599   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3600     return HelperFn;
3601 
3602   ASTContext &C = getContext();
3603   IdentifierInfo *II =
3604       &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3605 
3606   QualType ReturnTy = C.VoidTy;
3607   QualType DestTy = C.getPointerType(Ty);
3608   QualType SrcTy = Ty;
3609   SrcTy.addConst();
3610   SrcTy = C.getPointerType(SrcTy);
3611 
3612   SmallVector<QualType, 2> ArgTys;
3613   ArgTys.push_back(DestTy);
3614   ArgTys.push_back(SrcTy);
3615   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3616 
3617   FunctionDecl *FD = FunctionDecl::Create(
3618       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3619       FunctionTy, nullptr, SC_Static, false, false);
3620 
3621   FunctionArgList args;
3622   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3623                             ImplicitParamDecl::Other);
3624   args.push_back(&DstDecl);
3625   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3626                             ImplicitParamDecl::Other);
3627   args.push_back(&SrcDecl);
3628 
3629   const CGFunctionInfo &FI =
3630       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3631 
3632   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3633 
3634   llvm::Function *Fn = llvm::Function::Create(
3635       LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3636       &CGM.getModule());
3637 
3638   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3639 
3640   StartFunction(FD, ReturnTy, Fn, FI, args);
3641 
3642   DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3643                       SourceLocation());
3644 
3645   UnaryOperator *SRC = UnaryOperator::Create(
3646       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3647       SourceLocation(), false, FPOptions(C.getLangOpts()));
3648 
3649   CXXConstructExpr *CXXConstExpr =
3650     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3651 
3652   SmallVector<Expr*, 4> ConstructorArgs;
3653   ConstructorArgs.push_back(SRC);
3654   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3655                          CXXConstExpr->arg_end());
3656 
3657   CXXConstructExpr *TheCXXConstructExpr =
3658     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3659                              CXXConstExpr->getConstructor(),
3660                              CXXConstExpr->isElidable(),
3661                              ConstructorArgs,
3662                              CXXConstExpr->hadMultipleCandidates(),
3663                              CXXConstExpr->isListInitialization(),
3664                              CXXConstExpr->isStdInitListInitialization(),
3665                              CXXConstExpr->requiresZeroInitialization(),
3666                              CXXConstExpr->getConstructionKind(),
3667                              SourceRange());
3668 
3669   DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3670                       SourceLocation());
3671 
3672   RValue DV = EmitAnyExpr(&DstExpr);
3673   CharUnits Alignment
3674     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3675   EmitAggExpr(TheCXXConstructExpr,
3676               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3677                                     Qualifiers(),
3678                                     AggValueSlot::IsDestructed,
3679                                     AggValueSlot::DoesNotNeedGCBarriers,
3680                                     AggValueSlot::IsNotAliased,
3681                                     AggValueSlot::DoesNotOverlap));
3682 
3683   FinishFunction();
3684   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3685   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3686   return HelperFn;
3687 }
3688 
3689 llvm::Value *
3690 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3691   // Get selectors for retain/autorelease.
3692   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3693   Selector CopySelector =
3694       getContext().Selectors.getNullarySelector(CopyID);
3695   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3696   Selector AutoreleaseSelector =
3697       getContext().Selectors.getNullarySelector(AutoreleaseID);
3698 
3699   // Emit calls to retain/autorelease.
3700   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3701   llvm::Value *Val = Block;
3702   RValue Result;
3703   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3704                                        Ty, CopySelector,
3705                                        Val, CallArgList(), nullptr, nullptr);
3706   Val = Result.getScalarVal();
3707   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3708                                        Ty, AutoreleaseSelector,
3709                                        Val, CallArgList(), nullptr, nullptr);
3710   Val = Result.getScalarVal();
3711   return Val;
3712 }
3713 
3714 llvm::Value *
3715 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) {
3716   assert(Args.size() == 3 && "Expected 3 argument here!");
3717 
3718   if (!CGM.IsOSVersionAtLeastFn) {
3719     llvm::FunctionType *FTy =
3720         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3721     CGM.IsOSVersionAtLeastFn =
3722         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3723   }
3724 
3725   llvm::Value *CallRes =
3726       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3727 
3728   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3729 }
3730 
3731 void CodeGenModule::emitAtAvailableLinkGuard() {
3732   if (!IsOSVersionAtLeastFn)
3733     return;
3734   // @available requires CoreFoundation only on Darwin.
3735   if (!Target.getTriple().isOSDarwin())
3736     return;
3737   // Add -framework CoreFoundation to the linker commands. We still want to
3738   // emit the core foundation reference down below because otherwise if
3739   // CoreFoundation is not used in the code, the linker won't link the
3740   // framework.
3741   auto &Context = getLLVMContext();
3742   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3743                              llvm::MDString::get(Context, "CoreFoundation")};
3744   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3745   // Emit a reference to a symbol from CoreFoundation to ensure that
3746   // CoreFoundation is linked into the final binary.
3747   llvm::FunctionType *FTy =
3748       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3749   llvm::FunctionCallee CFFunc =
3750       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3751 
3752   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3753   llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
3754       CheckFTy, "__clang_at_available_requires_core_foundation_framework",
3755       llvm::AttributeList(), /*Local=*/true);
3756   llvm::Function *CFLinkCheckFunc =
3757       cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
3758   if (CFLinkCheckFunc->empty()) {
3759     CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3760     CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3761     CodeGenFunction CGF(*this);
3762     CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3763     CGF.EmitNounwindRuntimeCall(CFFunc,
3764                                 llvm::Constant::getNullValue(VoidPtrTy));
3765     CGF.Builder.CreateUnreachable();
3766     addCompilerUsedGlobal(CFLinkCheckFunc);
3767   }
3768 }
3769 
3770 CGObjCRuntime::~CGObjCRuntime() {}
3771