1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/InlineAsm.h" 27 #include "llvm/Support/CallSite.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 35 QualType ET, 36 const ObjCMethodDecl *Method, 37 RValue Result); 38 39 /// Given the address of a variable of pointer type, find the correct 40 /// null to store into it. 41 static llvm::Constant *getNullForVariable(llvm::Value *addr) { 42 llvm::Type *type = 43 cast<llvm::PointerType>(addr->getType())->getElementType(); 44 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 45 } 46 47 /// Emits an instance of NSConstantString representing the object. 48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 49 { 50 llvm::Constant *C = 51 CGM.getObjCRuntime().GenerateConstantString(E->getString()); 52 // FIXME: This bitcast should just be made an invariant on the Runtime. 53 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 54 } 55 56 /// EmitObjCBoxedExpr - This routine generates code to call 57 /// the appropriate expression boxing method. This will either be 58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:]. 59 /// 60 llvm::Value * 61 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 62 // Generate the correct selector for this literal's concrete type. 63 const Expr *SubExpr = E->getSubExpr(); 64 // Get the method. 65 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 66 assert(BoxingMethod && "BoxingMethod is null"); 67 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 68 Selector Sel = BoxingMethod->getSelector(); 69 70 // Generate a reference to the class pointer, which will be the receiver. 71 // Assumes that the method was introduced in the class that should be 72 // messaged (avoids pulling it out of the result type). 73 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 74 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 75 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 76 77 const ParmVarDecl *argDecl = *BoxingMethod->param_begin(); 78 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 79 RValue RV = EmitAnyExpr(SubExpr); 80 CallArgList Args; 81 Args.add(RV, ArgQT); 82 83 RValue result = Runtime.GenerateMessageSend( 84 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 85 Args, ClassDecl, BoxingMethod); 86 return Builder.CreateBitCast(result.getScalarVal(), 87 ConvertType(E->getType())); 88 } 89 90 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 91 const ObjCMethodDecl *MethodWithObjects) { 92 ASTContext &Context = CGM.getContext(); 93 const ObjCDictionaryLiteral *DLE = 0; 94 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 95 if (!ALE) 96 DLE = cast<ObjCDictionaryLiteral>(E); 97 98 // Compute the type of the array we're initializing. 99 uint64_t NumElements = 100 ALE ? ALE->getNumElements() : DLE->getNumElements(); 101 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 102 NumElements); 103 QualType ElementType = Context.getObjCIdType().withConst(); 104 QualType ElementArrayType 105 = Context.getConstantArrayType(ElementType, APNumElements, 106 ArrayType::Normal, /*IndexTypeQuals=*/0); 107 108 // Allocate the temporary array(s). 109 llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects"); 110 llvm::Value *Keys = 0; 111 if (DLE) 112 Keys = CreateMemTemp(ElementArrayType, "keys"); 113 114 // In ARC, we may need to do extra work to keep all the keys and 115 // values alive until after the call. 116 SmallVector<llvm::Value *, 16> NeededObjects; 117 bool TrackNeededObjects = 118 (getLangOpts().ObjCAutoRefCount && 119 CGM.getCodeGenOpts().OptimizationLevel != 0); 120 121 // Perform the actual initialialization of the array(s). 122 for (uint64_t i = 0; i < NumElements; i++) { 123 if (ALE) { 124 // Emit the element and store it to the appropriate array slot. 125 const Expr *Rhs = ALE->getElement(i); 126 LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i), 127 ElementType, 128 Context.getTypeAlignInChars(Rhs->getType()), 129 Context); 130 131 llvm::Value *value = EmitScalarExpr(Rhs); 132 EmitStoreThroughLValue(RValue::get(value), LV, true); 133 if (TrackNeededObjects) { 134 NeededObjects.push_back(value); 135 } 136 } else { 137 // Emit the key and store it to the appropriate array slot. 138 const Expr *Key = DLE->getKeyValueElement(i).Key; 139 LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i), 140 ElementType, 141 Context.getTypeAlignInChars(Key->getType()), 142 Context); 143 llvm::Value *keyValue = EmitScalarExpr(Key); 144 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 145 146 // Emit the value and store it to the appropriate array slot. 147 const Expr *Value = DLE->getKeyValueElement(i).Value; 148 LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i), 149 ElementType, 150 Context.getTypeAlignInChars(Value->getType()), 151 Context); 152 llvm::Value *valueValue = EmitScalarExpr(Value); 153 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 154 if (TrackNeededObjects) { 155 NeededObjects.push_back(keyValue); 156 NeededObjects.push_back(valueValue); 157 } 158 } 159 } 160 161 // Generate the argument list. 162 CallArgList Args; 163 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 164 const ParmVarDecl *argDecl = *PI++; 165 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 166 Args.add(RValue::get(Objects), ArgQT); 167 if (DLE) { 168 argDecl = *PI++; 169 ArgQT = argDecl->getType().getUnqualifiedType(); 170 Args.add(RValue::get(Keys), ArgQT); 171 } 172 argDecl = *PI; 173 ArgQT = argDecl->getType().getUnqualifiedType(); 174 llvm::Value *Count = 175 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 176 Args.add(RValue::get(Count), ArgQT); 177 178 // Generate a reference to the class pointer, which will be the receiver. 179 Selector Sel = MethodWithObjects->getSelector(); 180 QualType ResultType = E->getType(); 181 const ObjCObjectPointerType *InterfacePointerType 182 = ResultType->getAsObjCInterfacePointerType(); 183 ObjCInterfaceDecl *Class 184 = InterfacePointerType->getObjectType()->getInterface(); 185 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 186 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 187 188 // Generate the message send. 189 RValue result = Runtime.GenerateMessageSend( 190 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 191 Receiver, Args, Class, MethodWithObjects); 192 193 // The above message send needs these objects, but in ARC they are 194 // passed in a buffer that is essentially __unsafe_unretained. 195 // Therefore we must prevent the optimizer from releasing them until 196 // after the call. 197 if (TrackNeededObjects) { 198 EmitARCIntrinsicUse(NeededObjects); 199 } 200 201 return Builder.CreateBitCast(result.getScalarVal(), 202 ConvertType(E->getType())); 203 } 204 205 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 206 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 207 } 208 209 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 210 const ObjCDictionaryLiteral *E) { 211 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 212 } 213 214 /// Emit a selector. 215 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 216 // Untyped selector. 217 // Note that this implementation allows for non-constant strings to be passed 218 // as arguments to @selector(). Currently, the only thing preventing this 219 // behaviour is the type checking in the front end. 220 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 221 } 222 223 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 224 // FIXME: This should pass the Decl not the name. 225 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 226 } 227 228 /// \brief Adjust the type of the result of an Objective-C message send 229 /// expression when the method has a related result type. 230 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 231 QualType ExpT, 232 const ObjCMethodDecl *Method, 233 RValue Result) { 234 if (!Method) 235 return Result; 236 237 if (!Method->hasRelatedResultType() || 238 CGF.getContext().hasSameType(ExpT, Method->getReturnType()) || 239 !Result.isScalar()) 240 return Result; 241 242 // We have applied a related result type. Cast the rvalue appropriately. 243 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 244 CGF.ConvertType(ExpT))); 245 } 246 247 /// Decide whether to extend the lifetime of the receiver of a 248 /// returns-inner-pointer message. 249 static bool 250 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 251 switch (message->getReceiverKind()) { 252 253 // For a normal instance message, we should extend unless the 254 // receiver is loaded from a variable with precise lifetime. 255 case ObjCMessageExpr::Instance: { 256 const Expr *receiver = message->getInstanceReceiver(); 257 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 258 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 259 receiver = ice->getSubExpr()->IgnoreParens(); 260 261 // Only __strong variables. 262 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 263 return true; 264 265 // All ivars and fields have precise lifetime. 266 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 267 return false; 268 269 // Otherwise, check for variables. 270 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 271 if (!declRef) return true; 272 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 273 if (!var) return true; 274 275 // All variables have precise lifetime except local variables with 276 // automatic storage duration that aren't specially marked. 277 return (var->hasLocalStorage() && 278 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 279 } 280 281 case ObjCMessageExpr::Class: 282 case ObjCMessageExpr::SuperClass: 283 // It's never necessary for class objects. 284 return false; 285 286 case ObjCMessageExpr::SuperInstance: 287 // We generally assume that 'self' lives throughout a method call. 288 return false; 289 } 290 291 llvm_unreachable("invalid receiver kind"); 292 } 293 294 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 295 ReturnValueSlot Return) { 296 // Only the lookup mechanism and first two arguments of the method 297 // implementation vary between runtimes. We can get the receiver and 298 // arguments in generic code. 299 300 bool isDelegateInit = E->isDelegateInitCall(); 301 302 const ObjCMethodDecl *method = E->getMethodDecl(); 303 304 // We don't retain the receiver in delegate init calls, and this is 305 // safe because the receiver value is always loaded from 'self', 306 // which we zero out. We don't want to Block_copy block receivers, 307 // though. 308 bool retainSelf = 309 (!isDelegateInit && 310 CGM.getLangOpts().ObjCAutoRefCount && 311 method && 312 method->hasAttr<NSConsumesSelfAttr>()); 313 314 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 315 bool isSuperMessage = false; 316 bool isClassMessage = false; 317 ObjCInterfaceDecl *OID = 0; 318 // Find the receiver 319 QualType ReceiverType; 320 llvm::Value *Receiver = 0; 321 switch (E->getReceiverKind()) { 322 case ObjCMessageExpr::Instance: 323 ReceiverType = E->getInstanceReceiver()->getType(); 324 if (retainSelf) { 325 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 326 E->getInstanceReceiver()); 327 Receiver = ter.getPointer(); 328 if (ter.getInt()) retainSelf = false; 329 } else 330 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 331 break; 332 333 case ObjCMessageExpr::Class: { 334 ReceiverType = E->getClassReceiver(); 335 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 336 assert(ObjTy && "Invalid Objective-C class message send"); 337 OID = ObjTy->getInterface(); 338 assert(OID && "Invalid Objective-C class message send"); 339 Receiver = Runtime.GetClass(*this, OID); 340 isClassMessage = true; 341 break; 342 } 343 344 case ObjCMessageExpr::SuperInstance: 345 ReceiverType = E->getSuperType(); 346 Receiver = LoadObjCSelf(); 347 isSuperMessage = true; 348 break; 349 350 case ObjCMessageExpr::SuperClass: 351 ReceiverType = E->getSuperType(); 352 Receiver = LoadObjCSelf(); 353 isSuperMessage = true; 354 isClassMessage = true; 355 break; 356 } 357 358 if (retainSelf) 359 Receiver = EmitARCRetainNonBlock(Receiver); 360 361 // In ARC, we sometimes want to "extend the lifetime" 362 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 363 // messages. 364 if (getLangOpts().ObjCAutoRefCount && method && 365 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 366 shouldExtendReceiverForInnerPointerMessage(E)) 367 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 368 369 QualType ResultType = method ? method->getReturnType() : E->getType(); 370 371 CallArgList Args; 372 EmitCallArgs(Args, method, E->arg_begin(), E->arg_end()); 373 374 // For delegate init calls in ARC, do an unsafe store of null into 375 // self. This represents the call taking direct ownership of that 376 // value. We have to do this after emitting the other call 377 // arguments because they might also reference self, but we don't 378 // have to worry about any of them modifying self because that would 379 // be an undefined read and write of an object in unordered 380 // expressions. 381 if (isDelegateInit) { 382 assert(getLangOpts().ObjCAutoRefCount && 383 "delegate init calls should only be marked in ARC"); 384 385 // Do an unsafe store of null into self. 386 llvm::Value *selfAddr = 387 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 388 assert(selfAddr && "no self entry for a delegate init call?"); 389 390 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 391 } 392 393 RValue result; 394 if (isSuperMessage) { 395 // super is only valid in an Objective-C method 396 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 397 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 398 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 399 E->getSelector(), 400 OMD->getClassInterface(), 401 isCategoryImpl, 402 Receiver, 403 isClassMessage, 404 Args, 405 method); 406 } else { 407 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 408 E->getSelector(), 409 Receiver, Args, OID, 410 method); 411 } 412 413 // For delegate init calls in ARC, implicitly store the result of 414 // the call back into self. This takes ownership of the value. 415 if (isDelegateInit) { 416 llvm::Value *selfAddr = 417 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 418 llvm::Value *newSelf = result.getScalarVal(); 419 420 // The delegate return type isn't necessarily a matching type; in 421 // fact, it's quite likely to be 'id'. 422 llvm::Type *selfTy = 423 cast<llvm::PointerType>(selfAddr->getType())->getElementType(); 424 newSelf = Builder.CreateBitCast(newSelf, selfTy); 425 426 Builder.CreateStore(newSelf, selfAddr); 427 } 428 429 return AdjustRelatedResultType(*this, E->getType(), method, result); 430 } 431 432 namespace { 433 struct FinishARCDealloc : EHScopeStack::Cleanup { 434 void Emit(CodeGenFunction &CGF, Flags flags) { 435 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 436 437 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 438 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 439 if (!iface->getSuperClass()) return; 440 441 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 442 443 // Call [super dealloc] if we have a superclass. 444 llvm::Value *self = CGF.LoadObjCSelf(); 445 446 CallArgList args; 447 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 448 CGF.getContext().VoidTy, 449 method->getSelector(), 450 iface, 451 isCategory, 452 self, 453 /*is class msg*/ false, 454 args, 455 method); 456 } 457 }; 458 } 459 460 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 461 /// the LLVM function and sets the other context used by 462 /// CodeGenFunction. 463 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 464 const ObjCContainerDecl *CD, 465 SourceLocation StartLoc) { 466 FunctionArgList args; 467 // Check if we should generate debug info for this method. 468 if (OMD->hasAttr<NoDebugAttr>()) 469 DebugInfo = NULL; // disable debug info indefinitely for this function 470 471 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 472 473 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 474 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 475 476 args.push_back(OMD->getSelfDecl()); 477 args.push_back(OMD->getCmdDecl()); 478 479 for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(), 480 E = OMD->param_end(); PI != E; ++PI) 481 args.push_back(*PI); 482 483 CurGD = OMD; 484 485 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, StartLoc); 486 487 // In ARC, certain methods get an extra cleanup. 488 if (CGM.getLangOpts().ObjCAutoRefCount && 489 OMD->isInstanceMethod() && 490 OMD->getSelector().isUnarySelector()) { 491 const IdentifierInfo *ident = 492 OMD->getSelector().getIdentifierInfoForSlot(0); 493 if (ident->isStr("dealloc")) 494 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 495 } 496 } 497 498 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 499 LValue lvalue, QualType type); 500 501 /// Generate an Objective-C method. An Objective-C method is a C function with 502 /// its pointer, name, and types registered in the class struture. 503 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 504 StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart()); 505 assert(isa<CompoundStmt>(OMD->getBody())); 506 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 507 FinishFunction(OMD->getBodyRBrace()); 508 } 509 510 /// emitStructGetterCall - Call the runtime function to load a property 511 /// into the return value slot. 512 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 513 bool isAtomic, bool hasStrong) { 514 ASTContext &Context = CGF.getContext(); 515 516 llvm::Value *src = 517 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), 518 ivar, 0).getAddress(); 519 520 // objc_copyStruct (ReturnValue, &structIvar, 521 // sizeof (Type of Ivar), isAtomic, false); 522 CallArgList args; 523 524 llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 525 args.add(RValue::get(dest), Context.VoidPtrTy); 526 527 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 528 args.add(RValue::get(src), Context.VoidPtrTy); 529 530 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 531 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 532 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 533 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 534 535 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 536 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args, 537 FunctionType::ExtInfo(), 538 RequiredArgs::All), 539 fn, ReturnValueSlot(), args); 540 } 541 542 /// Determine whether the given architecture supports unaligned atomic 543 /// accesses. They don't have to be fast, just faster than a function 544 /// call and a mutex. 545 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 546 // FIXME: Allow unaligned atomic load/store on x86. (It is not 547 // currently supported by the backend.) 548 return 0; 549 } 550 551 /// Return the maximum size that permits atomic accesses for the given 552 /// architecture. 553 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 554 llvm::Triple::ArchType arch) { 555 // ARM has 8-byte atomic accesses, but it's not clear whether we 556 // want to rely on them here. 557 558 // In the default case, just assume that any size up to a pointer is 559 // fine given adequate alignment. 560 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 561 } 562 563 namespace { 564 class PropertyImplStrategy { 565 public: 566 enum StrategyKind { 567 /// The 'native' strategy is to use the architecture's provided 568 /// reads and writes. 569 Native, 570 571 /// Use objc_setProperty and objc_getProperty. 572 GetSetProperty, 573 574 /// Use objc_setProperty for the setter, but use expression 575 /// evaluation for the getter. 576 SetPropertyAndExpressionGet, 577 578 /// Use objc_copyStruct. 579 CopyStruct, 580 581 /// The 'expression' strategy is to emit normal assignment or 582 /// lvalue-to-rvalue expressions. 583 Expression 584 }; 585 586 StrategyKind getKind() const { return StrategyKind(Kind); } 587 588 bool hasStrongMember() const { return HasStrong; } 589 bool isAtomic() const { return IsAtomic; } 590 bool isCopy() const { return IsCopy; } 591 592 CharUnits getIvarSize() const { return IvarSize; } 593 CharUnits getIvarAlignment() const { return IvarAlignment; } 594 595 PropertyImplStrategy(CodeGenModule &CGM, 596 const ObjCPropertyImplDecl *propImpl); 597 598 private: 599 unsigned Kind : 8; 600 unsigned IsAtomic : 1; 601 unsigned IsCopy : 1; 602 unsigned HasStrong : 1; 603 604 CharUnits IvarSize; 605 CharUnits IvarAlignment; 606 }; 607 } 608 609 /// Pick an implementation strategy for the given property synthesis. 610 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 611 const ObjCPropertyImplDecl *propImpl) { 612 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 613 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 614 615 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 616 IsAtomic = prop->isAtomic(); 617 HasStrong = false; // doesn't matter here. 618 619 // Evaluate the ivar's size and alignment. 620 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 621 QualType ivarType = ivar->getType(); 622 llvm::tie(IvarSize, IvarAlignment) 623 = CGM.getContext().getTypeInfoInChars(ivarType); 624 625 // If we have a copy property, we always have to use getProperty/setProperty. 626 // TODO: we could actually use setProperty and an expression for non-atomics. 627 if (IsCopy) { 628 Kind = GetSetProperty; 629 return; 630 } 631 632 // Handle retain. 633 if (setterKind == ObjCPropertyDecl::Retain) { 634 // In GC-only, there's nothing special that needs to be done. 635 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 636 // fallthrough 637 638 // In ARC, if the property is non-atomic, use expression emission, 639 // which translates to objc_storeStrong. This isn't required, but 640 // it's slightly nicer. 641 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 642 // Using standard expression emission for the setter is only 643 // acceptable if the ivar is __strong, which won't be true if 644 // the property is annotated with __attribute__((NSObject)). 645 // TODO: falling all the way back to objc_setProperty here is 646 // just laziness, though; we could still use objc_storeStrong 647 // if we hacked it right. 648 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 649 Kind = Expression; 650 else 651 Kind = SetPropertyAndExpressionGet; 652 return; 653 654 // Otherwise, we need to at least use setProperty. However, if 655 // the property isn't atomic, we can use normal expression 656 // emission for the getter. 657 } else if (!IsAtomic) { 658 Kind = SetPropertyAndExpressionGet; 659 return; 660 661 // Otherwise, we have to use both setProperty and getProperty. 662 } else { 663 Kind = GetSetProperty; 664 return; 665 } 666 } 667 668 // If we're not atomic, just use expression accesses. 669 if (!IsAtomic) { 670 Kind = Expression; 671 return; 672 } 673 674 // Properties on bitfield ivars need to be emitted using expression 675 // accesses even if they're nominally atomic. 676 if (ivar->isBitField()) { 677 Kind = Expression; 678 return; 679 } 680 681 // GC-qualified or ARC-qualified ivars need to be emitted as 682 // expressions. This actually works out to being atomic anyway, 683 // except for ARC __strong, but that should trigger the above code. 684 if (ivarType.hasNonTrivialObjCLifetime() || 685 (CGM.getLangOpts().getGC() && 686 CGM.getContext().getObjCGCAttrKind(ivarType))) { 687 Kind = Expression; 688 return; 689 } 690 691 // Compute whether the ivar has strong members. 692 if (CGM.getLangOpts().getGC()) 693 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 694 HasStrong = recordType->getDecl()->hasObjectMember(); 695 696 // We can never access structs with object members with a native 697 // access, because we need to use write barriers. This is what 698 // objc_copyStruct is for. 699 if (HasStrong) { 700 Kind = CopyStruct; 701 return; 702 } 703 704 // Otherwise, this is target-dependent and based on the size and 705 // alignment of the ivar. 706 707 // If the size of the ivar is not a power of two, give up. We don't 708 // want to get into the business of doing compare-and-swaps. 709 if (!IvarSize.isPowerOfTwo()) { 710 Kind = CopyStruct; 711 return; 712 } 713 714 llvm::Triple::ArchType arch = 715 CGM.getTarget().getTriple().getArch(); 716 717 // Most architectures require memory to fit within a single cache 718 // line, so the alignment has to be at least the size of the access. 719 // Otherwise we have to grab a lock. 720 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 721 Kind = CopyStruct; 722 return; 723 } 724 725 // If the ivar's size exceeds the architecture's maximum atomic 726 // access size, we have to use CopyStruct. 727 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 728 Kind = CopyStruct; 729 return; 730 } 731 732 // Otherwise, we can use native loads and stores. 733 Kind = Native; 734 } 735 736 /// \brief Generate an Objective-C property getter function. 737 /// 738 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 739 /// is illegal within a category. 740 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 741 const ObjCPropertyImplDecl *PID) { 742 llvm::Constant *AtomicHelperFn = 743 GenerateObjCAtomicGetterCopyHelperFunction(PID); 744 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 745 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 746 assert(OMD && "Invalid call to generate getter (empty method)"); 747 StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart()); 748 749 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 750 751 FinishFunction(); 752 } 753 754 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 755 const Expr *getter = propImpl->getGetterCXXConstructor(); 756 if (!getter) return true; 757 758 // Sema only makes only of these when the ivar has a C++ class type, 759 // so the form is pretty constrained. 760 761 // If the property has a reference type, we might just be binding a 762 // reference, in which case the result will be a gl-value. We should 763 // treat this as a non-trivial operation. 764 if (getter->isGLValue()) 765 return false; 766 767 // If we selected a trivial copy-constructor, we're okay. 768 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 769 return (construct->getConstructor()->isTrivial()); 770 771 // The constructor might require cleanups (in which case it's never 772 // trivial). 773 assert(isa<ExprWithCleanups>(getter)); 774 return false; 775 } 776 777 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 778 /// copy the ivar into the resturn slot. 779 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 780 llvm::Value *returnAddr, 781 ObjCIvarDecl *ivar, 782 llvm::Constant *AtomicHelperFn) { 783 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 784 // AtomicHelperFn); 785 CallArgList args; 786 787 // The 1st argument is the return Slot. 788 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 789 790 // The 2nd argument is the address of the ivar. 791 llvm::Value *ivarAddr = 792 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 793 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 794 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 795 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 796 797 // Third argument is the helper function. 798 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 799 800 llvm::Value *copyCppAtomicObjectFn = 801 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 802 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 803 args, 804 FunctionType::ExtInfo(), 805 RequiredArgs::All), 806 copyCppAtomicObjectFn, ReturnValueSlot(), args); 807 } 808 809 void 810 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 811 const ObjCPropertyImplDecl *propImpl, 812 const ObjCMethodDecl *GetterMethodDecl, 813 llvm::Constant *AtomicHelperFn) { 814 // If there's a non-trivial 'get' expression, we just have to emit that. 815 if (!hasTrivialGetExpr(propImpl)) { 816 if (!AtomicHelperFn) { 817 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 818 /*nrvo*/ 0); 819 EmitReturnStmt(ret); 820 } 821 else { 822 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 823 emitCPPObjectAtomicGetterCall(*this, ReturnValue, 824 ivar, AtomicHelperFn); 825 } 826 return; 827 } 828 829 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 830 QualType propType = prop->getType(); 831 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 832 833 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 834 835 // Pick an implementation strategy. 836 PropertyImplStrategy strategy(CGM, propImpl); 837 switch (strategy.getKind()) { 838 case PropertyImplStrategy::Native: { 839 // We don't need to do anything for a zero-size struct. 840 if (strategy.getIvarSize().isZero()) 841 return; 842 843 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 844 845 // Currently, all atomic accesses have to be through integer 846 // types, so there's no point in trying to pick a prettier type. 847 llvm::Type *bitcastType = 848 llvm::Type::getIntNTy(getLLVMContext(), 849 getContext().toBits(strategy.getIvarSize())); 850 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 851 852 // Perform an atomic load. This does not impose ordering constraints. 853 llvm::Value *ivarAddr = LV.getAddress(); 854 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 855 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 856 load->setAlignment(strategy.getIvarAlignment().getQuantity()); 857 load->setAtomic(llvm::Unordered); 858 859 // Store that value into the return address. Doing this with a 860 // bitcast is likely to produce some pretty ugly IR, but it's not 861 // the *most* terrible thing in the world. 862 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType)); 863 864 // Make sure we don't do an autorelease. 865 AutoreleaseResult = false; 866 return; 867 } 868 869 case PropertyImplStrategy::GetSetProperty: { 870 llvm::Value *getPropertyFn = 871 CGM.getObjCRuntime().GetPropertyGetFunction(); 872 if (!getPropertyFn) { 873 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 874 return; 875 } 876 877 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 878 // FIXME: Can't this be simpler? This might even be worse than the 879 // corresponding gcc code. 880 llvm::Value *cmd = 881 Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd"); 882 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 883 llvm::Value *ivarOffset = 884 EmitIvarOffset(classImpl->getClassInterface(), ivar); 885 886 CallArgList args; 887 args.add(RValue::get(self), getContext().getObjCIdType()); 888 args.add(RValue::get(cmd), getContext().getObjCSelType()); 889 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 890 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 891 getContext().BoolTy); 892 893 // FIXME: We shouldn't need to get the function info here, the 894 // runtime already should have computed it to build the function. 895 llvm::Instruction *CallInstruction; 896 RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args, 897 FunctionType::ExtInfo(), 898 RequiredArgs::All), 899 getPropertyFn, ReturnValueSlot(), args, 0, 900 &CallInstruction); 901 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 902 call->setTailCall(); 903 904 // We need to fix the type here. Ivars with copy & retain are 905 // always objects so we don't need to worry about complex or 906 // aggregates. 907 RV = RValue::get(Builder.CreateBitCast( 908 RV.getScalarVal(), 909 getTypes().ConvertType(getterMethod->getReturnType()))); 910 911 EmitReturnOfRValue(RV, propType); 912 913 // objc_getProperty does an autorelease, so we should suppress ours. 914 AutoreleaseResult = false; 915 916 return; 917 } 918 919 case PropertyImplStrategy::CopyStruct: 920 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 921 strategy.hasStrongMember()); 922 return; 923 924 case PropertyImplStrategy::Expression: 925 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 926 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 927 928 QualType ivarType = ivar->getType(); 929 switch (getEvaluationKind(ivarType)) { 930 case TEK_Complex: { 931 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 932 EmitStoreOfComplex(pair, 933 MakeNaturalAlignAddrLValue(ReturnValue, ivarType), 934 /*init*/ true); 935 return; 936 } 937 case TEK_Aggregate: 938 // The return value slot is guaranteed to not be aliased, but 939 // that's not necessarily the same as "on the stack", so 940 // we still potentially need objc_memmove_collectable. 941 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 942 return; 943 case TEK_Scalar: { 944 llvm::Value *value; 945 if (propType->isReferenceType()) { 946 value = LV.getAddress(); 947 } else { 948 // We want to load and autoreleaseReturnValue ARC __weak ivars. 949 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 950 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 951 952 // Otherwise we want to do a simple load, suppressing the 953 // final autorelease. 954 } else { 955 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 956 AutoreleaseResult = false; 957 } 958 959 value = Builder.CreateBitCast(value, ConvertType(propType)); 960 value = Builder.CreateBitCast( 961 value, ConvertType(GetterMethodDecl->getReturnType())); 962 } 963 964 EmitReturnOfRValue(RValue::get(value), propType); 965 return; 966 } 967 } 968 llvm_unreachable("bad evaluation kind"); 969 } 970 971 } 972 llvm_unreachable("bad @property implementation strategy!"); 973 } 974 975 /// emitStructSetterCall - Call the runtime function to store the value 976 /// from the first formal parameter into the given ivar. 977 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 978 ObjCIvarDecl *ivar) { 979 // objc_copyStruct (&structIvar, &Arg, 980 // sizeof (struct something), true, false); 981 CallArgList args; 982 983 // The first argument is the address of the ivar. 984 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 985 CGF.LoadObjCSelf(), ivar, 0) 986 .getAddress(); 987 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 988 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 989 990 // The second argument is the address of the parameter variable. 991 ParmVarDecl *argVar = *OMD->param_begin(); 992 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 993 VK_LValue, SourceLocation()); 994 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 995 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 996 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 997 998 // The third argument is the sizeof the type. 999 llvm::Value *size = 1000 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1001 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1002 1003 // The fourth argument is the 'isAtomic' flag. 1004 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1005 1006 // The fifth argument is the 'hasStrong' flag. 1007 // FIXME: should this really always be false? 1008 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1009 1010 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1011 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1012 args, 1013 FunctionType::ExtInfo(), 1014 RequiredArgs::All), 1015 copyStructFn, ReturnValueSlot(), args); 1016 } 1017 1018 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1019 /// the value from the first formal parameter into the given ivar, using 1020 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1021 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1022 ObjCMethodDecl *OMD, 1023 ObjCIvarDecl *ivar, 1024 llvm::Constant *AtomicHelperFn) { 1025 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1026 // AtomicHelperFn); 1027 CallArgList args; 1028 1029 // The first argument is the address of the ivar. 1030 llvm::Value *ivarAddr = 1031 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1032 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 1033 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1034 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1035 1036 // The second argument is the address of the parameter variable. 1037 ParmVarDecl *argVar = *OMD->param_begin(); 1038 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1039 VK_LValue, SourceLocation()); 1040 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 1041 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1042 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1043 1044 // Third argument is the helper function. 1045 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1046 1047 llvm::Value *copyCppAtomicObjectFn = 1048 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1049 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1050 args, 1051 FunctionType::ExtInfo(), 1052 RequiredArgs::All), 1053 copyCppAtomicObjectFn, ReturnValueSlot(), args); 1054 } 1055 1056 1057 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1058 Expr *setter = PID->getSetterCXXAssignment(); 1059 if (!setter) return true; 1060 1061 // Sema only makes only of these when the ivar has a C++ class type, 1062 // so the form is pretty constrained. 1063 1064 // An operator call is trivial if the function it calls is trivial. 1065 // This also implies that there's nothing non-trivial going on with 1066 // the arguments, because operator= can only be trivial if it's a 1067 // synthesized assignment operator and therefore both parameters are 1068 // references. 1069 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1070 if (const FunctionDecl *callee 1071 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1072 if (callee->isTrivial()) 1073 return true; 1074 return false; 1075 } 1076 1077 assert(isa<ExprWithCleanups>(setter)); 1078 return false; 1079 } 1080 1081 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1082 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1083 return false; 1084 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1085 } 1086 1087 void 1088 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1089 const ObjCPropertyImplDecl *propImpl, 1090 llvm::Constant *AtomicHelperFn) { 1091 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1092 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1093 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1094 1095 // Just use the setter expression if Sema gave us one and it's 1096 // non-trivial. 1097 if (!hasTrivialSetExpr(propImpl)) { 1098 if (!AtomicHelperFn) 1099 // If non-atomic, assignment is called directly. 1100 EmitStmt(propImpl->getSetterCXXAssignment()); 1101 else 1102 // If atomic, assignment is called via a locking api. 1103 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1104 AtomicHelperFn); 1105 return; 1106 } 1107 1108 PropertyImplStrategy strategy(CGM, propImpl); 1109 switch (strategy.getKind()) { 1110 case PropertyImplStrategy::Native: { 1111 // We don't need to do anything for a zero-size struct. 1112 if (strategy.getIvarSize().isZero()) 1113 return; 1114 1115 llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()]; 1116 1117 LValue ivarLValue = 1118 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1119 llvm::Value *ivarAddr = ivarLValue.getAddress(); 1120 1121 // Currently, all atomic accesses have to be through integer 1122 // types, so there's no point in trying to pick a prettier type. 1123 llvm::Type *bitcastType = 1124 llvm::Type::getIntNTy(getLLVMContext(), 1125 getContext().toBits(strategy.getIvarSize())); 1126 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1127 1128 // Cast both arguments to the chosen operation type. 1129 argAddr = Builder.CreateBitCast(argAddr, bitcastType); 1130 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1131 1132 // This bitcast load is likely to cause some nasty IR. 1133 llvm::Value *load = Builder.CreateLoad(argAddr); 1134 1135 // Perform an atomic store. There are no memory ordering requirements. 1136 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1137 store->setAlignment(strategy.getIvarAlignment().getQuantity()); 1138 store->setAtomic(llvm::Unordered); 1139 return; 1140 } 1141 1142 case PropertyImplStrategy::GetSetProperty: 1143 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1144 1145 llvm::Value *setOptimizedPropertyFn = 0; 1146 llvm::Value *setPropertyFn = 0; 1147 if (UseOptimizedSetter(CGM)) { 1148 // 10.8 and iOS 6.0 code and GC is off 1149 setOptimizedPropertyFn = 1150 CGM.getObjCRuntime() 1151 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1152 strategy.isCopy()); 1153 if (!setOptimizedPropertyFn) { 1154 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1155 return; 1156 } 1157 } 1158 else { 1159 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1160 if (!setPropertyFn) { 1161 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1162 return; 1163 } 1164 } 1165 1166 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1167 // <is-atomic>, <is-copy>). 1168 llvm::Value *cmd = 1169 Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]); 1170 llvm::Value *self = 1171 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1172 llvm::Value *ivarOffset = 1173 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1174 llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()]; 1175 arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy); 1176 1177 CallArgList args; 1178 args.add(RValue::get(self), getContext().getObjCIdType()); 1179 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1180 if (setOptimizedPropertyFn) { 1181 args.add(RValue::get(arg), getContext().getObjCIdType()); 1182 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1183 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1184 FunctionType::ExtInfo(), 1185 RequiredArgs::All), 1186 setOptimizedPropertyFn, ReturnValueSlot(), args); 1187 } else { 1188 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1189 args.add(RValue::get(arg), getContext().getObjCIdType()); 1190 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1191 getContext().BoolTy); 1192 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1193 getContext().BoolTy); 1194 // FIXME: We shouldn't need to get the function info here, the runtime 1195 // already should have computed it to build the function. 1196 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1197 FunctionType::ExtInfo(), 1198 RequiredArgs::All), 1199 setPropertyFn, ReturnValueSlot(), args); 1200 } 1201 1202 return; 1203 } 1204 1205 case PropertyImplStrategy::CopyStruct: 1206 emitStructSetterCall(*this, setterMethod, ivar); 1207 return; 1208 1209 case PropertyImplStrategy::Expression: 1210 break; 1211 } 1212 1213 // Otherwise, fake up some ASTs and emit a normal assignment. 1214 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1215 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1216 VK_LValue, SourceLocation()); 1217 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1218 selfDecl->getType(), CK_LValueToRValue, &self, 1219 VK_RValue); 1220 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1221 SourceLocation(), SourceLocation(), 1222 &selfLoad, true, true); 1223 1224 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1225 QualType argType = argDecl->getType().getNonReferenceType(); 1226 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1227 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1228 argType.getUnqualifiedType(), CK_LValueToRValue, 1229 &arg, VK_RValue); 1230 1231 // The property type can differ from the ivar type in some situations with 1232 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1233 // The following absurdity is just to ensure well-formed IR. 1234 CastKind argCK = CK_NoOp; 1235 if (ivarRef.getType()->isObjCObjectPointerType()) { 1236 if (argLoad.getType()->isObjCObjectPointerType()) 1237 argCK = CK_BitCast; 1238 else if (argLoad.getType()->isBlockPointerType()) 1239 argCK = CK_BlockPointerToObjCPointerCast; 1240 else 1241 argCK = CK_CPointerToObjCPointerCast; 1242 } else if (ivarRef.getType()->isBlockPointerType()) { 1243 if (argLoad.getType()->isBlockPointerType()) 1244 argCK = CK_BitCast; 1245 else 1246 argCK = CK_AnyPointerToBlockPointerCast; 1247 } else if (ivarRef.getType()->isPointerType()) { 1248 argCK = CK_BitCast; 1249 } 1250 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1251 ivarRef.getType(), argCK, &argLoad, 1252 VK_RValue); 1253 Expr *finalArg = &argLoad; 1254 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1255 argLoad.getType())) 1256 finalArg = &argCast; 1257 1258 1259 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1260 ivarRef.getType(), VK_RValue, OK_Ordinary, 1261 SourceLocation(), false); 1262 EmitStmt(&assign); 1263 } 1264 1265 /// \brief Generate an Objective-C property setter function. 1266 /// 1267 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1268 /// is illegal within a category. 1269 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1270 const ObjCPropertyImplDecl *PID) { 1271 llvm::Constant *AtomicHelperFn = 1272 GenerateObjCAtomicSetterCopyHelperFunction(PID); 1273 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1274 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1275 assert(OMD && "Invalid call to generate setter (empty method)"); 1276 StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart()); 1277 1278 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1279 1280 FinishFunction(); 1281 } 1282 1283 namespace { 1284 struct DestroyIvar : EHScopeStack::Cleanup { 1285 private: 1286 llvm::Value *addr; 1287 const ObjCIvarDecl *ivar; 1288 CodeGenFunction::Destroyer *destroyer; 1289 bool useEHCleanupForArray; 1290 public: 1291 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1292 CodeGenFunction::Destroyer *destroyer, 1293 bool useEHCleanupForArray) 1294 : addr(addr), ivar(ivar), destroyer(destroyer), 1295 useEHCleanupForArray(useEHCleanupForArray) {} 1296 1297 void Emit(CodeGenFunction &CGF, Flags flags) { 1298 LValue lvalue 1299 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1300 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1301 flags.isForNormalCleanup() && useEHCleanupForArray); 1302 } 1303 }; 1304 } 1305 1306 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1307 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1308 llvm::Value *addr, 1309 QualType type) { 1310 llvm::Value *null = getNullForVariable(addr); 1311 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1312 } 1313 1314 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1315 ObjCImplementationDecl *impl) { 1316 CodeGenFunction::RunCleanupsScope scope(CGF); 1317 1318 llvm::Value *self = CGF.LoadObjCSelf(); 1319 1320 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1321 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1322 ivar; ivar = ivar->getNextIvar()) { 1323 QualType type = ivar->getType(); 1324 1325 // Check whether the ivar is a destructible type. 1326 QualType::DestructionKind dtorKind = type.isDestructedType(); 1327 if (!dtorKind) continue; 1328 1329 CodeGenFunction::Destroyer *destroyer = 0; 1330 1331 // Use a call to objc_storeStrong to destroy strong ivars, for the 1332 // general benefit of the tools. 1333 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1334 destroyer = destroyARCStrongWithStore; 1335 1336 // Otherwise use the default for the destruction kind. 1337 } else { 1338 destroyer = CGF.getDestroyer(dtorKind); 1339 } 1340 1341 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1342 1343 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1344 cleanupKind & EHCleanup); 1345 } 1346 1347 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1348 } 1349 1350 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1351 ObjCMethodDecl *MD, 1352 bool ctor) { 1353 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1354 StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart()); 1355 1356 // Emit .cxx_construct. 1357 if (ctor) { 1358 // Suppress the final autorelease in ARC. 1359 AutoreleaseResult = false; 1360 1361 for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(), 1362 E = IMP->init_end(); B != E; ++B) { 1363 CXXCtorInitializer *IvarInit = (*B); 1364 FieldDecl *Field = IvarInit->getAnyMember(); 1365 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1366 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1367 LoadObjCSelf(), Ivar, 0); 1368 EmitAggExpr(IvarInit->getInit(), 1369 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1370 AggValueSlot::DoesNotNeedGCBarriers, 1371 AggValueSlot::IsNotAliased)); 1372 } 1373 // constructor returns 'self'. 1374 CodeGenTypes &Types = CGM.getTypes(); 1375 QualType IdTy(CGM.getContext().getObjCIdType()); 1376 llvm::Value *SelfAsId = 1377 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1378 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1379 1380 // Emit .cxx_destruct. 1381 } else { 1382 emitCXXDestructMethod(*this, IMP); 1383 } 1384 FinishFunction(); 1385 } 1386 1387 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) { 1388 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(); 1389 it++; it++; 1390 const ABIArgInfo &AI = it->info; 1391 // FIXME. Is this sufficient check? 1392 return (AI.getKind() == ABIArgInfo::Indirect); 1393 } 1394 1395 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) { 1396 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 1397 return false; 1398 if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>()) 1399 return FDTTy->getDecl()->hasObjectMember(); 1400 return false; 1401 } 1402 1403 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1404 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1405 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1406 Self->getType(), VK_LValue, SourceLocation()); 1407 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1408 } 1409 1410 QualType CodeGenFunction::TypeOfSelfObject() { 1411 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1412 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1413 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1414 getContext().getCanonicalType(selfDecl->getType())); 1415 return PTy->getPointeeType(); 1416 } 1417 1418 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1419 llvm::Constant *EnumerationMutationFn = 1420 CGM.getObjCRuntime().EnumerationMutationFunction(); 1421 1422 if (!EnumerationMutationFn) { 1423 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1424 return; 1425 } 1426 1427 CGDebugInfo *DI = getDebugInfo(); 1428 if (DI) 1429 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1430 1431 // The local variable comes into scope immediately. 1432 AutoVarEmission variable = AutoVarEmission::invalid(); 1433 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1434 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1435 1436 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1437 1438 // Fast enumeration state. 1439 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1440 llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1441 EmitNullInitialization(StatePtr, StateTy); 1442 1443 // Number of elements in the items array. 1444 static const unsigned NumItems = 16; 1445 1446 // Fetch the countByEnumeratingWithState:objects:count: selector. 1447 IdentifierInfo *II[] = { 1448 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1449 &CGM.getContext().Idents.get("objects"), 1450 &CGM.getContext().Idents.get("count") 1451 }; 1452 Selector FastEnumSel = 1453 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1454 1455 QualType ItemsTy = 1456 getContext().getConstantArrayType(getContext().getObjCIdType(), 1457 llvm::APInt(32, NumItems), 1458 ArrayType::Normal, 0); 1459 llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1460 1461 // Emit the collection pointer. In ARC, we do a retain. 1462 llvm::Value *Collection; 1463 if (getLangOpts().ObjCAutoRefCount) { 1464 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1465 1466 // Enter a cleanup to do the release. 1467 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1468 } else { 1469 Collection = EmitScalarExpr(S.getCollection()); 1470 } 1471 1472 // The 'continue' label needs to appear within the cleanup for the 1473 // collection object. 1474 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1475 1476 // Send it our message: 1477 CallArgList Args; 1478 1479 // The first argument is a temporary of the enumeration-state type. 1480 Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy)); 1481 1482 // The second argument is a temporary array with space for NumItems 1483 // pointers. We'll actually be loading elements from the array 1484 // pointer written into the control state; this buffer is so that 1485 // collections that *aren't* backed by arrays can still queue up 1486 // batches of elements. 1487 Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy)); 1488 1489 // The third argument is the capacity of that temporary array. 1490 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1491 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1492 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1493 1494 // Start the enumeration. 1495 RValue CountRV = 1496 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1497 getContext().UnsignedLongTy, 1498 FastEnumSel, 1499 Collection, Args); 1500 1501 // The initial number of objects that were returned in the buffer. 1502 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1503 1504 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1505 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1506 1507 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1508 1509 // If the limit pointer was zero to begin with, the collection is 1510 // empty; skip all this. 1511 Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), 1512 EmptyBB, LoopInitBB); 1513 1514 // Otherwise, initialize the loop. 1515 EmitBlock(LoopInitBB); 1516 1517 // Save the initial mutations value. This is the value at an 1518 // address that was written into the state object by 1519 // countByEnumeratingWithState:objects:count:. 1520 llvm::Value *StateMutationsPtrPtr = 1521 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1522 llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, 1523 "mutationsptr"); 1524 1525 llvm::Value *initialMutations = 1526 Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations"); 1527 1528 RegionCounter Cnt = getPGORegionCounter(&S); 1529 1530 // Start looping. This is the point we return to whenever we have a 1531 // fresh, non-empty batch of objects. 1532 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1533 EmitBlock(LoopBodyBB); 1534 Cnt.beginRegion(Builder); 1535 1536 // The current index into the buffer. 1537 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1538 index->addIncoming(zero, LoopInitBB); 1539 1540 // The current buffer size. 1541 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1542 count->addIncoming(initialBufferLimit, LoopInitBB); 1543 1544 // Check whether the mutations value has changed from where it was 1545 // at start. StateMutationsPtr should actually be invariant between 1546 // refreshes. 1547 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1548 llvm::Value *currentMutations 1549 = Builder.CreateLoad(StateMutationsPtr, "statemutations"); 1550 1551 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1552 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1553 1554 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1555 WasNotMutatedBB, WasMutatedBB); 1556 1557 // If so, call the enumeration-mutation function. 1558 EmitBlock(WasMutatedBB); 1559 llvm::Value *V = 1560 Builder.CreateBitCast(Collection, 1561 ConvertType(getContext().getObjCIdType())); 1562 CallArgList Args2; 1563 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1564 // FIXME: We shouldn't need to get the function info here, the runtime already 1565 // should have computed it to build the function. 1566 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2, 1567 FunctionType::ExtInfo(), 1568 RequiredArgs::All), 1569 EnumerationMutationFn, ReturnValueSlot(), Args2); 1570 1571 // Otherwise, or if the mutation function returns, just continue. 1572 EmitBlock(WasNotMutatedBB); 1573 1574 // Initialize the element variable. 1575 RunCleanupsScope elementVariableScope(*this); 1576 bool elementIsVariable; 1577 LValue elementLValue; 1578 QualType elementType; 1579 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1580 // Initialize the variable, in case it's a __block variable or something. 1581 EmitAutoVarInit(variable); 1582 1583 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1584 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1585 VK_LValue, SourceLocation()); 1586 elementLValue = EmitLValue(&tempDRE); 1587 elementType = D->getType(); 1588 elementIsVariable = true; 1589 1590 if (D->isARCPseudoStrong()) 1591 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1592 } else { 1593 elementLValue = LValue(); // suppress warning 1594 elementType = cast<Expr>(S.getElement())->getType(); 1595 elementIsVariable = false; 1596 } 1597 llvm::Type *convertedElementType = ConvertType(elementType); 1598 1599 // Fetch the buffer out of the enumeration state. 1600 // TODO: this pointer should actually be invariant between 1601 // refreshes, which would help us do certain loop optimizations. 1602 llvm::Value *StateItemsPtr = 1603 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1604 llvm::Value *EnumStateItems = 1605 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1606 1607 // Fetch the value at the current index from the buffer. 1608 llvm::Value *CurrentItemPtr = 1609 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1610 llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr); 1611 1612 // Cast that value to the right type. 1613 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1614 "currentitem"); 1615 1616 // Make sure we have an l-value. Yes, this gets evaluated every 1617 // time through the loop. 1618 if (!elementIsVariable) { 1619 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1620 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1621 } else { 1622 EmitScalarInit(CurrentItem, elementLValue); 1623 } 1624 1625 // If we do have an element variable, this assignment is the end of 1626 // its initialization. 1627 if (elementIsVariable) 1628 EmitAutoVarCleanups(variable); 1629 1630 // Perform the loop body, setting up break and continue labels. 1631 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody, &Cnt)); 1632 { 1633 RunCleanupsScope Scope(*this); 1634 EmitStmt(S.getBody()); 1635 } 1636 BreakContinueStack.pop_back(); 1637 1638 // Destroy the element variable now. 1639 elementVariableScope.ForceCleanup(); 1640 1641 // Check whether there are more elements. 1642 EmitBlock(AfterBody.getBlock()); 1643 1644 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1645 1646 // First we check in the local buffer. 1647 llvm::Value *indexPlusOne 1648 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1649 1650 // TODO: We should probably model this as a "continue" for PGO 1651 // If we haven't overrun the buffer yet, we can continue. 1652 Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count), 1653 LoopBodyBB, FetchMoreBB); 1654 1655 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1656 count->addIncoming(count, AfterBody.getBlock()); 1657 1658 // Otherwise, we have to fetch more elements. 1659 EmitBlock(FetchMoreBB); 1660 1661 CountRV = 1662 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1663 getContext().UnsignedLongTy, 1664 FastEnumSel, 1665 Collection, Args); 1666 1667 // If we got a zero count, we're done. 1668 llvm::Value *refetchCount = CountRV.getScalarVal(); 1669 1670 // (note that the message send might split FetchMoreBB) 1671 index->addIncoming(zero, Builder.GetInsertBlock()); 1672 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1673 1674 // TODO: We should be applying PGO weights here, but this needs to handle the 1675 // branch before FetchMoreBB or we risk getting the numbers wrong. 1676 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1677 EmptyBB, LoopBodyBB); 1678 1679 // No more elements. 1680 EmitBlock(EmptyBB); 1681 1682 if (!elementIsVariable) { 1683 // If the element was not a declaration, set it to be null. 1684 1685 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1686 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1687 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1688 } 1689 1690 if (DI) 1691 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1692 1693 // Leave the cleanup we entered in ARC. 1694 if (getLangOpts().ObjCAutoRefCount) 1695 PopCleanupBlock(); 1696 1697 EmitBlock(LoopEnd.getBlock()); 1698 // TODO: Once we calculate PGO weights above, set the region count here 1699 } 1700 1701 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1702 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1703 } 1704 1705 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1706 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1707 } 1708 1709 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1710 const ObjCAtSynchronizedStmt &S) { 1711 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1712 } 1713 1714 /// Produce the code for a CK_ARCProduceObject. Just does a 1715 /// primitive retain. 1716 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type, 1717 llvm::Value *value) { 1718 return EmitARCRetain(type, value); 1719 } 1720 1721 namespace { 1722 struct CallObjCRelease : EHScopeStack::Cleanup { 1723 CallObjCRelease(llvm::Value *object) : object(object) {} 1724 llvm::Value *object; 1725 1726 void Emit(CodeGenFunction &CGF, Flags flags) { 1727 // Releases at the end of the full-expression are imprecise. 1728 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1729 } 1730 }; 1731 } 1732 1733 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1734 /// release at the end of the full-expression. 1735 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1736 llvm::Value *object) { 1737 // If we're in a conditional branch, we need to make the cleanup 1738 // conditional. 1739 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1740 return object; 1741 } 1742 1743 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1744 llvm::Value *value) { 1745 return EmitARCRetainAutorelease(type, value); 1746 } 1747 1748 /// Given a number of pointers, inform the optimizer that they're 1749 /// being intrinsically used up until this point in the program. 1750 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1751 llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use; 1752 if (!fn) { 1753 llvm::FunctionType *fnType = 1754 llvm::FunctionType::get(CGM.VoidTy, ArrayRef<llvm::Type*>(), true); 1755 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use"); 1756 } 1757 1758 // This isn't really a "runtime" function, but as an intrinsic it 1759 // doesn't really matter as long as we align things up. 1760 EmitNounwindRuntimeCall(fn, values); 1761 } 1762 1763 1764 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1765 llvm::FunctionType *type, 1766 StringRef fnName) { 1767 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1768 1769 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) { 1770 // If the target runtime doesn't naturally support ARC, emit weak 1771 // references to the runtime support library. We don't really 1772 // permit this to fail, but we need a particular relocation style. 1773 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 1774 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1775 } else if (fnName == "objc_retain" || fnName == "objc_release") { 1776 // If we have Native ARC, set nonlazybind attribute for these APIs for 1777 // performance. 1778 f->addFnAttr(llvm::Attribute::NonLazyBind); 1779 } 1780 } 1781 1782 return fn; 1783 } 1784 1785 /// Perform an operation having the signature 1786 /// i8* (i8*) 1787 /// where a null input causes a no-op and returns null. 1788 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1789 llvm::Value *value, 1790 llvm::Constant *&fn, 1791 StringRef fnName, 1792 bool isTailCall = false) { 1793 if (isa<llvm::ConstantPointerNull>(value)) return value; 1794 1795 if (!fn) { 1796 llvm::FunctionType *fnType = 1797 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 1798 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1799 } 1800 1801 // Cast the argument to 'id'. 1802 llvm::Type *origType = value->getType(); 1803 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1804 1805 // Call the function. 1806 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1807 if (isTailCall) 1808 call->setTailCall(); 1809 1810 // Cast the result back to the original type. 1811 return CGF.Builder.CreateBitCast(call, origType); 1812 } 1813 1814 /// Perform an operation having the following signature: 1815 /// i8* (i8**) 1816 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1817 llvm::Value *addr, 1818 llvm::Constant *&fn, 1819 StringRef fnName) { 1820 if (!fn) { 1821 llvm::FunctionType *fnType = 1822 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false); 1823 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1824 } 1825 1826 // Cast the argument to 'id*'. 1827 llvm::Type *origType = addr->getType(); 1828 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1829 1830 // Call the function. 1831 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr); 1832 1833 // Cast the result back to a dereference of the original type. 1834 if (origType != CGF.Int8PtrPtrTy) 1835 result = CGF.Builder.CreateBitCast(result, 1836 cast<llvm::PointerType>(origType)->getElementType()); 1837 1838 return result; 1839 } 1840 1841 /// Perform an operation having the following signature: 1842 /// i8* (i8**, i8*) 1843 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1844 llvm::Value *addr, 1845 llvm::Value *value, 1846 llvm::Constant *&fn, 1847 StringRef fnName, 1848 bool ignored) { 1849 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 1850 == value->getType()); 1851 1852 if (!fn) { 1853 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1854 1855 llvm::FunctionType *fnType 1856 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1857 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1858 } 1859 1860 llvm::Type *origType = value->getType(); 1861 1862 llvm::Value *args[] = { 1863 CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy), 1864 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 1865 }; 1866 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 1867 1868 if (ignored) return 0; 1869 1870 return CGF.Builder.CreateBitCast(result, origType); 1871 } 1872 1873 /// Perform an operation having the following signature: 1874 /// void (i8**, i8**) 1875 static void emitARCCopyOperation(CodeGenFunction &CGF, 1876 llvm::Value *dst, 1877 llvm::Value *src, 1878 llvm::Constant *&fn, 1879 StringRef fnName) { 1880 assert(dst->getType() == src->getType()); 1881 1882 if (!fn) { 1883 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy }; 1884 1885 llvm::FunctionType *fnType 1886 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1887 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1888 } 1889 1890 llvm::Value *args[] = { 1891 CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy), 1892 CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy) 1893 }; 1894 CGF.EmitNounwindRuntimeCall(fn, args); 1895 } 1896 1897 /// Produce the code to do a retain. Based on the type, calls one of: 1898 /// call i8* \@objc_retain(i8* %value) 1899 /// call i8* \@objc_retainBlock(i8* %value) 1900 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1901 if (type->isBlockPointerType()) 1902 return EmitARCRetainBlock(value, /*mandatory*/ false); 1903 else 1904 return EmitARCRetainNonBlock(value); 1905 } 1906 1907 /// Retain the given object, with normal retain semantics. 1908 /// call i8* \@objc_retain(i8* %value) 1909 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1910 return emitARCValueOperation(*this, value, 1911 CGM.getARCEntrypoints().objc_retain, 1912 "objc_retain"); 1913 } 1914 1915 /// Retain the given block, with _Block_copy semantics. 1916 /// call i8* \@objc_retainBlock(i8* %value) 1917 /// 1918 /// \param mandatory - If false, emit the call with metadata 1919 /// indicating that it's okay for the optimizer to eliminate this call 1920 /// if it can prove that the block never escapes except down the stack. 1921 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1922 bool mandatory) { 1923 llvm::Value *result 1924 = emitARCValueOperation(*this, value, 1925 CGM.getARCEntrypoints().objc_retainBlock, 1926 "objc_retainBlock"); 1927 1928 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1929 // tell the optimizer that it doesn't need to do this copy if the 1930 // block doesn't escape, where being passed as an argument doesn't 1931 // count as escaping. 1932 if (!mandatory && isa<llvm::Instruction>(result)) { 1933 llvm::CallInst *call 1934 = cast<llvm::CallInst>(result->stripPointerCasts()); 1935 assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock); 1936 1937 SmallVector<llvm::Value*,1> args; 1938 call->setMetadata("clang.arc.copy_on_escape", 1939 llvm::MDNode::get(Builder.getContext(), args)); 1940 } 1941 1942 return result; 1943 } 1944 1945 /// Retain the given object which is the result of a function call. 1946 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 1947 /// 1948 /// Yes, this function name is one character away from a different 1949 /// call with completely different semantics. 1950 llvm::Value * 1951 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 1952 // Fetch the void(void) inline asm which marks that we're going to 1953 // retain the autoreleased return value. 1954 llvm::InlineAsm *&marker 1955 = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker; 1956 if (!marker) { 1957 StringRef assembly 1958 = CGM.getTargetCodeGenInfo() 1959 .getARCRetainAutoreleasedReturnValueMarker(); 1960 1961 // If we have an empty assembly string, there's nothing to do. 1962 if (assembly.empty()) { 1963 1964 // Otherwise, at -O0, build an inline asm that we're going to call 1965 // in a moment. 1966 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1967 llvm::FunctionType *type = 1968 llvm::FunctionType::get(VoidTy, /*variadic*/false); 1969 1970 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 1971 1972 // If we're at -O1 and above, we don't want to litter the code 1973 // with this marker yet, so leave a breadcrumb for the ARC 1974 // optimizer to pick up. 1975 } else { 1976 llvm::NamedMDNode *metadata = 1977 CGM.getModule().getOrInsertNamedMetadata( 1978 "clang.arc.retainAutoreleasedReturnValueMarker"); 1979 assert(metadata->getNumOperands() <= 1); 1980 if (metadata->getNumOperands() == 0) { 1981 llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly); 1982 metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string)); 1983 } 1984 } 1985 } 1986 1987 // Call the marker asm if we made one, which we do only at -O0. 1988 if (marker) Builder.CreateCall(marker); 1989 1990 return emitARCValueOperation(*this, value, 1991 CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue, 1992 "objc_retainAutoreleasedReturnValue"); 1993 } 1994 1995 /// Release the given object. 1996 /// call void \@objc_release(i8* %value) 1997 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 1998 ARCPreciseLifetime_t precise) { 1999 if (isa<llvm::ConstantPointerNull>(value)) return; 2000 2001 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release; 2002 if (!fn) { 2003 llvm::FunctionType *fnType = 2004 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2005 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 2006 } 2007 2008 // Cast the argument to 'id'. 2009 value = Builder.CreateBitCast(value, Int8PtrTy); 2010 2011 // Call objc_release. 2012 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2013 2014 if (precise == ARCImpreciseLifetime) { 2015 SmallVector<llvm::Value*,1> args; 2016 call->setMetadata("clang.imprecise_release", 2017 llvm::MDNode::get(Builder.getContext(), args)); 2018 } 2019 } 2020 2021 /// Destroy a __strong variable. 2022 /// 2023 /// At -O0, emit a call to store 'null' into the address; 2024 /// instrumenting tools prefer this because the address is exposed, 2025 /// but it's relatively cumbersome to optimize. 2026 /// 2027 /// At -O1 and above, just load and call objc_release. 2028 /// 2029 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2030 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr, 2031 ARCPreciseLifetime_t precise) { 2032 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2033 llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType()); 2034 llvm::Value *null = llvm::ConstantPointerNull::get( 2035 cast<llvm::PointerType>(addrTy->getElementType())); 2036 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2037 return; 2038 } 2039 2040 llvm::Value *value = Builder.CreateLoad(addr); 2041 EmitARCRelease(value, precise); 2042 } 2043 2044 /// Store into a strong object. Always calls this: 2045 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2046 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr, 2047 llvm::Value *value, 2048 bool ignored) { 2049 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 2050 == value->getType()); 2051 2052 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong; 2053 if (!fn) { 2054 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 2055 llvm::FunctionType *fnType 2056 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 2057 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 2058 } 2059 2060 llvm::Value *args[] = { 2061 Builder.CreateBitCast(addr, Int8PtrPtrTy), 2062 Builder.CreateBitCast(value, Int8PtrTy) 2063 }; 2064 EmitNounwindRuntimeCall(fn, args); 2065 2066 if (ignored) return 0; 2067 return value; 2068 } 2069 2070 /// Store into a strong object. Sometimes calls this: 2071 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2072 /// Other times, breaks it down into components. 2073 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2074 llvm::Value *newValue, 2075 bool ignored) { 2076 QualType type = dst.getType(); 2077 bool isBlock = type->isBlockPointerType(); 2078 2079 // Use a store barrier at -O0 unless this is a block type or the 2080 // lvalue is inadequately aligned. 2081 if (shouldUseFusedARCCalls() && 2082 !isBlock && 2083 (dst.getAlignment().isZero() || 2084 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2085 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2086 } 2087 2088 // Otherwise, split it out. 2089 2090 // Retain the new value. 2091 newValue = EmitARCRetain(type, newValue); 2092 2093 // Read the old value. 2094 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2095 2096 // Store. We do this before the release so that any deallocs won't 2097 // see the old value. 2098 EmitStoreOfScalar(newValue, dst); 2099 2100 // Finally, release the old value. 2101 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2102 2103 return newValue; 2104 } 2105 2106 /// Autorelease the given object. 2107 /// call i8* \@objc_autorelease(i8* %value) 2108 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2109 return emitARCValueOperation(*this, value, 2110 CGM.getARCEntrypoints().objc_autorelease, 2111 "objc_autorelease"); 2112 } 2113 2114 /// Autorelease the given object. 2115 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2116 llvm::Value * 2117 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2118 return emitARCValueOperation(*this, value, 2119 CGM.getARCEntrypoints().objc_autoreleaseReturnValue, 2120 "objc_autoreleaseReturnValue", 2121 /*isTailCall*/ true); 2122 } 2123 2124 /// Do a fused retain/autorelease of the given object. 2125 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2126 llvm::Value * 2127 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2128 return emitARCValueOperation(*this, value, 2129 CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue, 2130 "objc_retainAutoreleaseReturnValue", 2131 /*isTailCall*/ true); 2132 } 2133 2134 /// Do a fused retain/autorelease of the given object. 2135 /// call i8* \@objc_retainAutorelease(i8* %value) 2136 /// or 2137 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2138 /// call i8* \@objc_autorelease(i8* %retain) 2139 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2140 llvm::Value *value) { 2141 if (!type->isBlockPointerType()) 2142 return EmitARCRetainAutoreleaseNonBlock(value); 2143 2144 if (isa<llvm::ConstantPointerNull>(value)) return value; 2145 2146 llvm::Type *origType = value->getType(); 2147 value = Builder.CreateBitCast(value, Int8PtrTy); 2148 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2149 value = EmitARCAutorelease(value); 2150 return Builder.CreateBitCast(value, origType); 2151 } 2152 2153 /// Do a fused retain/autorelease of the given object. 2154 /// call i8* \@objc_retainAutorelease(i8* %value) 2155 llvm::Value * 2156 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2157 return emitARCValueOperation(*this, value, 2158 CGM.getARCEntrypoints().objc_retainAutorelease, 2159 "objc_retainAutorelease"); 2160 } 2161 2162 /// i8* \@objc_loadWeak(i8** %addr) 2163 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2164 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) { 2165 return emitARCLoadOperation(*this, addr, 2166 CGM.getARCEntrypoints().objc_loadWeak, 2167 "objc_loadWeak"); 2168 } 2169 2170 /// i8* \@objc_loadWeakRetained(i8** %addr) 2171 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) { 2172 return emitARCLoadOperation(*this, addr, 2173 CGM.getARCEntrypoints().objc_loadWeakRetained, 2174 "objc_loadWeakRetained"); 2175 } 2176 2177 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2178 /// Returns %value. 2179 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr, 2180 llvm::Value *value, 2181 bool ignored) { 2182 return emitARCStoreOperation(*this, addr, value, 2183 CGM.getARCEntrypoints().objc_storeWeak, 2184 "objc_storeWeak", ignored); 2185 } 2186 2187 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2188 /// Returns %value. %addr is known to not have a current weak entry. 2189 /// Essentially equivalent to: 2190 /// *addr = nil; objc_storeWeak(addr, value); 2191 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) { 2192 // If we're initializing to null, just write null to memory; no need 2193 // to get the runtime involved. But don't do this if optimization 2194 // is enabled, because accounting for this would make the optimizer 2195 // much more complicated. 2196 if (isa<llvm::ConstantPointerNull>(value) && 2197 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2198 Builder.CreateStore(value, addr); 2199 return; 2200 } 2201 2202 emitARCStoreOperation(*this, addr, value, 2203 CGM.getARCEntrypoints().objc_initWeak, 2204 "objc_initWeak", /*ignored*/ true); 2205 } 2206 2207 /// void \@objc_destroyWeak(i8** %addr) 2208 /// Essentially objc_storeWeak(addr, nil). 2209 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) { 2210 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak; 2211 if (!fn) { 2212 llvm::FunctionType *fnType = 2213 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false); 2214 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 2215 } 2216 2217 // Cast the argument to 'id*'. 2218 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2219 2220 EmitNounwindRuntimeCall(fn, addr); 2221 } 2222 2223 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2224 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2225 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2226 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) { 2227 emitARCCopyOperation(*this, dst, src, 2228 CGM.getARCEntrypoints().objc_moveWeak, 2229 "objc_moveWeak"); 2230 } 2231 2232 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2233 /// Disregards the current value in %dest. Essentially 2234 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2235 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) { 2236 emitARCCopyOperation(*this, dst, src, 2237 CGM.getARCEntrypoints().objc_copyWeak, 2238 "objc_copyWeak"); 2239 } 2240 2241 /// Produce the code to do a objc_autoreleasepool_push. 2242 /// call i8* \@objc_autoreleasePoolPush(void) 2243 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2244 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush; 2245 if (!fn) { 2246 llvm::FunctionType *fnType = 2247 llvm::FunctionType::get(Int8PtrTy, false); 2248 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 2249 } 2250 2251 return EmitNounwindRuntimeCall(fn); 2252 } 2253 2254 /// Produce the code to do a primitive release. 2255 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2256 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2257 assert(value->getType() == Int8PtrTy); 2258 2259 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop; 2260 if (!fn) { 2261 llvm::FunctionType *fnType = 2262 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2263 2264 // We don't want to use a weak import here; instead we should not 2265 // fall into this path. 2266 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 2267 } 2268 2269 // objc_autoreleasePoolPop can throw. 2270 EmitRuntimeCallOrInvoke(fn, value); 2271 } 2272 2273 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2274 /// Which is: [[NSAutoreleasePool alloc] init]; 2275 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2276 /// init is declared as: - (id) init; in its NSObject super class. 2277 /// 2278 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2279 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2280 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2281 // [NSAutoreleasePool alloc] 2282 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2283 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2284 CallArgList Args; 2285 RValue AllocRV = 2286 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2287 getContext().getObjCIdType(), 2288 AllocSel, Receiver, Args); 2289 2290 // [Receiver init] 2291 Receiver = AllocRV.getScalarVal(); 2292 II = &CGM.getContext().Idents.get("init"); 2293 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2294 RValue InitRV = 2295 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2296 getContext().getObjCIdType(), 2297 InitSel, Receiver, Args); 2298 return InitRV.getScalarVal(); 2299 } 2300 2301 /// Produce the code to do a primitive release. 2302 /// [tmp drain]; 2303 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2304 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2305 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2306 CallArgList Args; 2307 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2308 getContext().VoidTy, DrainSel, Arg, Args); 2309 } 2310 2311 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2312 llvm::Value *addr, 2313 QualType type) { 2314 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2315 } 2316 2317 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2318 llvm::Value *addr, 2319 QualType type) { 2320 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2321 } 2322 2323 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2324 llvm::Value *addr, 2325 QualType type) { 2326 CGF.EmitARCDestroyWeak(addr); 2327 } 2328 2329 namespace { 2330 struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup { 2331 llvm::Value *Token; 2332 2333 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2334 2335 void Emit(CodeGenFunction &CGF, Flags flags) { 2336 CGF.EmitObjCAutoreleasePoolPop(Token); 2337 } 2338 }; 2339 struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup { 2340 llvm::Value *Token; 2341 2342 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2343 2344 void Emit(CodeGenFunction &CGF, Flags flags) { 2345 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2346 } 2347 }; 2348 } 2349 2350 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2351 if (CGM.getLangOpts().ObjCAutoRefCount) 2352 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2353 else 2354 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2355 } 2356 2357 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2358 LValue lvalue, 2359 QualType type) { 2360 switch (type.getObjCLifetime()) { 2361 case Qualifiers::OCL_None: 2362 case Qualifiers::OCL_ExplicitNone: 2363 case Qualifiers::OCL_Strong: 2364 case Qualifiers::OCL_Autoreleasing: 2365 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue, 2366 SourceLocation()).getScalarVal(), 2367 false); 2368 2369 case Qualifiers::OCL_Weak: 2370 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2371 true); 2372 } 2373 2374 llvm_unreachable("impossible lifetime!"); 2375 } 2376 2377 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2378 const Expr *e) { 2379 e = e->IgnoreParens(); 2380 QualType type = e->getType(); 2381 2382 // If we're loading retained from a __strong xvalue, we can avoid 2383 // an extra retain/release pair by zeroing out the source of this 2384 // "move" operation. 2385 if (e->isXValue() && 2386 !type.isConstQualified() && 2387 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2388 // Emit the lvalue. 2389 LValue lv = CGF.EmitLValue(e); 2390 2391 // Load the object pointer. 2392 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2393 SourceLocation()).getScalarVal(); 2394 2395 // Set the source pointer to NULL. 2396 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2397 2398 return TryEmitResult(result, true); 2399 } 2400 2401 // As a very special optimization, in ARC++, if the l-value is the 2402 // result of a non-volatile assignment, do a simple retain of the 2403 // result of the call to objc_storeWeak instead of reloading. 2404 if (CGF.getLangOpts().CPlusPlus && 2405 !type.isVolatileQualified() && 2406 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2407 isa<BinaryOperator>(e) && 2408 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2409 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2410 2411 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2412 } 2413 2414 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2415 llvm::Value *value); 2416 2417 /// Given that the given expression is some sort of call (which does 2418 /// not return retained), emit a retain following it. 2419 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) { 2420 llvm::Value *value = CGF.EmitScalarExpr(e); 2421 return emitARCRetainAfterCall(CGF, value); 2422 } 2423 2424 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2425 llvm::Value *value) { 2426 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2427 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2428 2429 // Place the retain immediately following the call. 2430 CGF.Builder.SetInsertPoint(call->getParent(), 2431 ++llvm::BasicBlock::iterator(call)); 2432 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2433 2434 CGF.Builder.restoreIP(ip); 2435 return value; 2436 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2437 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2438 2439 // Place the retain at the beginning of the normal destination block. 2440 llvm::BasicBlock *BB = invoke->getNormalDest(); 2441 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2442 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2443 2444 CGF.Builder.restoreIP(ip); 2445 return value; 2446 2447 // Bitcasts can arise because of related-result returns. Rewrite 2448 // the operand. 2449 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2450 llvm::Value *operand = bitcast->getOperand(0); 2451 operand = emitARCRetainAfterCall(CGF, operand); 2452 bitcast->setOperand(0, operand); 2453 return bitcast; 2454 2455 // Generic fall-back case. 2456 } else { 2457 // Retain using the non-block variant: we never need to do a copy 2458 // of a block that's been returned to us. 2459 return CGF.EmitARCRetainNonBlock(value); 2460 } 2461 } 2462 2463 /// Determine whether it might be important to emit a separate 2464 /// objc_retain_block on the result of the given expression, or 2465 /// whether it's okay to just emit it in a +1 context. 2466 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2467 assert(e->getType()->isBlockPointerType()); 2468 e = e->IgnoreParens(); 2469 2470 // For future goodness, emit block expressions directly in +1 2471 // contexts if we can. 2472 if (isa<BlockExpr>(e)) 2473 return false; 2474 2475 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2476 switch (cast->getCastKind()) { 2477 // Emitting these operations in +1 contexts is goodness. 2478 case CK_LValueToRValue: 2479 case CK_ARCReclaimReturnedObject: 2480 case CK_ARCConsumeObject: 2481 case CK_ARCProduceObject: 2482 return false; 2483 2484 // These operations preserve a block type. 2485 case CK_NoOp: 2486 case CK_BitCast: 2487 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2488 2489 // These operations are known to be bad (or haven't been considered). 2490 case CK_AnyPointerToBlockPointerCast: 2491 default: 2492 return true; 2493 } 2494 } 2495 2496 return true; 2497 } 2498 2499 /// Try to emit a PseudoObjectExpr at +1. 2500 /// 2501 /// This massively duplicates emitPseudoObjectRValue. 2502 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF, 2503 const PseudoObjectExpr *E) { 2504 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2505 2506 // Find the result expression. 2507 const Expr *resultExpr = E->getResultExpr(); 2508 assert(resultExpr); 2509 TryEmitResult result; 2510 2511 for (PseudoObjectExpr::const_semantics_iterator 2512 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2513 const Expr *semantic = *i; 2514 2515 // If this semantic expression is an opaque value, bind it 2516 // to the result of its source expression. 2517 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2518 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2519 OVMA opaqueData; 2520 2521 // If this semantic is the result of the pseudo-object 2522 // expression, try to evaluate the source as +1. 2523 if (ov == resultExpr) { 2524 assert(!OVMA::shouldBindAsLValue(ov)); 2525 result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr()); 2526 opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer())); 2527 2528 // Otherwise, just bind it. 2529 } else { 2530 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2531 } 2532 opaques.push_back(opaqueData); 2533 2534 // Otherwise, if the expression is the result, evaluate it 2535 // and remember the result. 2536 } else if (semantic == resultExpr) { 2537 result = tryEmitARCRetainScalarExpr(CGF, semantic); 2538 2539 // Otherwise, evaluate the expression in an ignored context. 2540 } else { 2541 CGF.EmitIgnoredExpr(semantic); 2542 } 2543 } 2544 2545 // Unbind all the opaques now. 2546 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2547 opaques[i].unbind(CGF); 2548 2549 return result; 2550 } 2551 2552 static TryEmitResult 2553 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2554 // We should *never* see a nested full-expression here, because if 2555 // we fail to emit at +1, our caller must not retain after we close 2556 // out the full-expression. 2557 assert(!isa<ExprWithCleanups>(e)); 2558 2559 // The desired result type, if it differs from the type of the 2560 // ultimate opaque expression. 2561 llvm::Type *resultType = 0; 2562 2563 while (true) { 2564 e = e->IgnoreParens(); 2565 2566 // There's a break at the end of this if-chain; anything 2567 // that wants to keep looping has to explicitly continue. 2568 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2569 switch (ce->getCastKind()) { 2570 // No-op casts don't change the type, so we just ignore them. 2571 case CK_NoOp: 2572 e = ce->getSubExpr(); 2573 continue; 2574 2575 case CK_LValueToRValue: { 2576 TryEmitResult loadResult 2577 = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr()); 2578 if (resultType) { 2579 llvm::Value *value = loadResult.getPointer(); 2580 value = CGF.Builder.CreateBitCast(value, resultType); 2581 loadResult.setPointer(value); 2582 } 2583 return loadResult; 2584 } 2585 2586 // These casts can change the type, so remember that and 2587 // soldier on. We only need to remember the outermost such 2588 // cast, though. 2589 case CK_CPointerToObjCPointerCast: 2590 case CK_BlockPointerToObjCPointerCast: 2591 case CK_AnyPointerToBlockPointerCast: 2592 case CK_BitCast: 2593 if (!resultType) 2594 resultType = CGF.ConvertType(ce->getType()); 2595 e = ce->getSubExpr(); 2596 assert(e->getType()->hasPointerRepresentation()); 2597 continue; 2598 2599 // For consumptions, just emit the subexpression and thus elide 2600 // the retain/release pair. 2601 case CK_ARCConsumeObject: { 2602 llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr()); 2603 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2604 return TryEmitResult(result, true); 2605 } 2606 2607 // Block extends are net +0. Naively, we could just recurse on 2608 // the subexpression, but actually we need to ensure that the 2609 // value is copied as a block, so there's a little filter here. 2610 case CK_ARCExtendBlockObject: { 2611 llvm::Value *result; // will be a +0 value 2612 2613 // If we can't safely assume the sub-expression will produce a 2614 // block-copied value, emit the sub-expression at +0. 2615 if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) { 2616 result = CGF.EmitScalarExpr(ce->getSubExpr()); 2617 2618 // Otherwise, try to emit the sub-expression at +1 recursively. 2619 } else { 2620 TryEmitResult subresult 2621 = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr()); 2622 result = subresult.getPointer(); 2623 2624 // If that produced a retained value, just use that, 2625 // possibly casting down. 2626 if (subresult.getInt()) { 2627 if (resultType) 2628 result = CGF.Builder.CreateBitCast(result, resultType); 2629 return TryEmitResult(result, true); 2630 } 2631 2632 // Otherwise it's +0. 2633 } 2634 2635 // Retain the object as a block, then cast down. 2636 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2637 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2638 return TryEmitResult(result, true); 2639 } 2640 2641 // For reclaims, emit the subexpression as a retained call and 2642 // skip the consumption. 2643 case CK_ARCReclaimReturnedObject: { 2644 llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr()); 2645 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2646 return TryEmitResult(result, true); 2647 } 2648 2649 default: 2650 break; 2651 } 2652 2653 // Skip __extension__. 2654 } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 2655 if (op->getOpcode() == UO_Extension) { 2656 e = op->getSubExpr(); 2657 continue; 2658 } 2659 2660 // For calls and message sends, use the retained-call logic. 2661 // Delegate inits are a special case in that they're the only 2662 // returns-retained expression that *isn't* surrounded by 2663 // a consume. 2664 } else if (isa<CallExpr>(e) || 2665 (isa<ObjCMessageExpr>(e) && 2666 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2667 llvm::Value *result = emitARCRetainCall(CGF, e); 2668 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2669 return TryEmitResult(result, true); 2670 2671 // Look through pseudo-object expressions. 2672 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2673 TryEmitResult result 2674 = tryEmitARCRetainPseudoObject(CGF, pseudo); 2675 if (resultType) { 2676 llvm::Value *value = result.getPointer(); 2677 value = CGF.Builder.CreateBitCast(value, resultType); 2678 result.setPointer(value); 2679 } 2680 return result; 2681 } 2682 2683 // Conservatively halt the search at any other expression kind. 2684 break; 2685 } 2686 2687 // We didn't find an obvious production, so emit what we've got and 2688 // tell the caller that we didn't manage to retain. 2689 llvm::Value *result = CGF.EmitScalarExpr(e); 2690 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2691 return TryEmitResult(result, false); 2692 } 2693 2694 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2695 LValue lvalue, 2696 QualType type) { 2697 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2698 llvm::Value *value = result.getPointer(); 2699 if (!result.getInt()) 2700 value = CGF.EmitARCRetain(type, value); 2701 return value; 2702 } 2703 2704 /// EmitARCRetainScalarExpr - Semantically equivalent to 2705 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2706 /// best-effort attempt to peephole expressions that naturally produce 2707 /// retained objects. 2708 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2709 // The retain needs to happen within the full-expression. 2710 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2711 enterFullExpression(cleanups); 2712 RunCleanupsScope scope(*this); 2713 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 2714 } 2715 2716 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2717 llvm::Value *value = result.getPointer(); 2718 if (!result.getInt()) 2719 value = EmitARCRetain(e->getType(), value); 2720 return value; 2721 } 2722 2723 llvm::Value * 2724 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2725 // The retain needs to happen within the full-expression. 2726 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2727 enterFullExpression(cleanups); 2728 RunCleanupsScope scope(*this); 2729 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 2730 } 2731 2732 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2733 llvm::Value *value = result.getPointer(); 2734 if (result.getInt()) 2735 value = EmitARCAutorelease(value); 2736 else 2737 value = EmitARCRetainAutorelease(e->getType(), value); 2738 return value; 2739 } 2740 2741 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2742 llvm::Value *result; 2743 bool doRetain; 2744 2745 if (shouldEmitSeparateBlockRetain(e)) { 2746 result = EmitScalarExpr(e); 2747 doRetain = true; 2748 } else { 2749 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2750 result = subresult.getPointer(); 2751 doRetain = !subresult.getInt(); 2752 } 2753 2754 if (doRetain) 2755 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2756 return EmitObjCConsumeObject(e->getType(), result); 2757 } 2758 2759 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2760 // In ARC, retain and autorelease the expression. 2761 if (getLangOpts().ObjCAutoRefCount) { 2762 // Do so before running any cleanups for the full-expression. 2763 // EmitARCRetainAutoreleaseScalarExpr does this for us. 2764 return EmitARCRetainAutoreleaseScalarExpr(expr); 2765 } 2766 2767 // Otherwise, use the normal scalar-expression emission. The 2768 // exception machinery doesn't do anything special with the 2769 // exception like retaining it, so there's no safety associated with 2770 // only running cleanups after the throw has started, and when it 2771 // matters it tends to be substantially inferior code. 2772 return EmitScalarExpr(expr); 2773 } 2774 2775 std::pair<LValue,llvm::Value*> 2776 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 2777 bool ignored) { 2778 // Evaluate the RHS first. 2779 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 2780 llvm::Value *value = result.getPointer(); 2781 2782 bool hasImmediateRetain = result.getInt(); 2783 2784 // If we didn't emit a retained object, and the l-value is of block 2785 // type, then we need to emit the block-retain immediately in case 2786 // it invalidates the l-value. 2787 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 2788 value = EmitARCRetainBlock(value, /*mandatory*/ false); 2789 hasImmediateRetain = true; 2790 } 2791 2792 LValue lvalue = EmitLValue(e->getLHS()); 2793 2794 // If the RHS was emitted retained, expand this. 2795 if (hasImmediateRetain) { 2796 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 2797 EmitStoreOfScalar(value, lvalue); 2798 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 2799 } else { 2800 value = EmitARCStoreStrong(lvalue, value, ignored); 2801 } 2802 2803 return std::pair<LValue,llvm::Value*>(lvalue, value); 2804 } 2805 2806 std::pair<LValue,llvm::Value*> 2807 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 2808 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 2809 LValue lvalue = EmitLValue(e->getLHS()); 2810 2811 EmitStoreOfScalar(value, lvalue); 2812 2813 return std::pair<LValue,llvm::Value*>(lvalue, value); 2814 } 2815 2816 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 2817 const ObjCAutoreleasePoolStmt &ARPS) { 2818 const Stmt *subStmt = ARPS.getSubStmt(); 2819 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 2820 2821 CGDebugInfo *DI = getDebugInfo(); 2822 if (DI) 2823 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 2824 2825 // Keep track of the current cleanup stack depth. 2826 RunCleanupsScope Scope(*this); 2827 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 2828 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 2829 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 2830 } else { 2831 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 2832 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 2833 } 2834 2835 for (CompoundStmt::const_body_iterator I = S.body_begin(), 2836 E = S.body_end(); I != E; ++I) 2837 EmitStmt(*I); 2838 2839 if (DI) 2840 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 2841 } 2842 2843 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2844 /// make sure it survives garbage collection until this point. 2845 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 2846 // We just use an inline assembly. 2847 llvm::FunctionType *extenderType 2848 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 2849 llvm::Value *extender 2850 = llvm::InlineAsm::get(extenderType, 2851 /* assembly */ "", 2852 /* constraints */ "r", 2853 /* side effects */ true); 2854 2855 object = Builder.CreateBitCast(object, VoidPtrTy); 2856 EmitNounwindRuntimeCall(extender, object); 2857 } 2858 2859 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 2860 /// non-trivial copy assignment function, produce following helper function. 2861 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 2862 /// 2863 llvm::Constant * 2864 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 2865 const ObjCPropertyImplDecl *PID) { 2866 if (!getLangOpts().CPlusPlus || 2867 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2868 return 0; 2869 QualType Ty = PID->getPropertyIvarDecl()->getType(); 2870 if (!Ty->isRecordType()) 2871 return 0; 2872 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2873 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2874 return 0; 2875 llvm::Constant * HelperFn = 0; 2876 if (hasTrivialSetExpr(PID)) 2877 return 0; 2878 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 2879 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 2880 return HelperFn; 2881 2882 ASTContext &C = getContext(); 2883 IdentifierInfo *II 2884 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 2885 FunctionDecl *FD = FunctionDecl::Create(C, 2886 C.getTranslationUnitDecl(), 2887 SourceLocation(), 2888 SourceLocation(), II, C.VoidTy, 0, 2889 SC_Static, 2890 false, 2891 false); 2892 2893 QualType DestTy = C.getPointerType(Ty); 2894 QualType SrcTy = Ty; 2895 SrcTy.addConst(); 2896 SrcTy = C.getPointerType(SrcTy); 2897 2898 FunctionArgList args; 2899 ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy); 2900 args.push_back(&dstDecl); 2901 ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy); 2902 args.push_back(&srcDecl); 2903 2904 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 2905 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All); 2906 2907 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2908 2909 llvm::Function *Fn = 2910 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2911 "__assign_helper_atomic_property_", 2912 &CGM.getModule()); 2913 2914 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation()); 2915 2916 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 2917 VK_RValue, SourceLocation()); 2918 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 2919 VK_LValue, OK_Ordinary, SourceLocation()); 2920 2921 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2922 VK_RValue, SourceLocation()); 2923 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2924 VK_LValue, OK_Ordinary, SourceLocation()); 2925 2926 Expr *Args[2] = { &DST, &SRC }; 2927 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 2928 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 2929 Args, DestTy->getPointeeType(), 2930 VK_LValue, SourceLocation(), false); 2931 2932 EmitStmt(&TheCall); 2933 2934 FinishFunction(); 2935 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 2936 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 2937 return HelperFn; 2938 } 2939 2940 llvm::Constant * 2941 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 2942 const ObjCPropertyImplDecl *PID) { 2943 if (!getLangOpts().CPlusPlus || 2944 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2945 return 0; 2946 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2947 QualType Ty = PD->getType(); 2948 if (!Ty->isRecordType()) 2949 return 0; 2950 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2951 return 0; 2952 llvm::Constant * HelperFn = 0; 2953 2954 if (hasTrivialGetExpr(PID)) 2955 return 0; 2956 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 2957 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 2958 return HelperFn; 2959 2960 2961 ASTContext &C = getContext(); 2962 IdentifierInfo *II 2963 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 2964 FunctionDecl *FD = FunctionDecl::Create(C, 2965 C.getTranslationUnitDecl(), 2966 SourceLocation(), 2967 SourceLocation(), II, C.VoidTy, 0, 2968 SC_Static, 2969 false, 2970 false); 2971 2972 QualType DestTy = C.getPointerType(Ty); 2973 QualType SrcTy = Ty; 2974 SrcTy.addConst(); 2975 SrcTy = C.getPointerType(SrcTy); 2976 2977 FunctionArgList args; 2978 ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy); 2979 args.push_back(&dstDecl); 2980 ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy); 2981 args.push_back(&srcDecl); 2982 2983 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 2984 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All); 2985 2986 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2987 2988 llvm::Function *Fn = 2989 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2990 "__copy_helper_atomic_property_", &CGM.getModule()); 2991 2992 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation()); 2993 2994 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2995 VK_RValue, SourceLocation()); 2996 2997 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2998 VK_LValue, OK_Ordinary, SourceLocation()); 2999 3000 CXXConstructExpr *CXXConstExpr = 3001 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3002 3003 SmallVector<Expr*, 4> ConstructorArgs; 3004 ConstructorArgs.push_back(&SRC); 3005 CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin(); 3006 ++A; 3007 3008 for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end(); 3009 A != AEnd; ++A) 3010 ConstructorArgs.push_back(*A); 3011 3012 CXXConstructExpr *TheCXXConstructExpr = 3013 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3014 CXXConstExpr->getConstructor(), 3015 CXXConstExpr->isElidable(), 3016 ConstructorArgs, 3017 CXXConstExpr->hadMultipleCandidates(), 3018 CXXConstExpr->isListInitialization(), 3019 CXXConstExpr->requiresZeroInitialization(), 3020 CXXConstExpr->getConstructionKind(), 3021 SourceRange()); 3022 3023 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 3024 VK_RValue, SourceLocation()); 3025 3026 RValue DV = EmitAnyExpr(&DstExpr); 3027 CharUnits Alignment 3028 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3029 EmitAggExpr(TheCXXConstructExpr, 3030 AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(), 3031 AggValueSlot::IsDestructed, 3032 AggValueSlot::DoesNotNeedGCBarriers, 3033 AggValueSlot::IsNotAliased)); 3034 3035 FinishFunction(); 3036 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3037 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3038 return HelperFn; 3039 } 3040 3041 llvm::Value * 3042 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3043 // Get selectors for retain/autorelease. 3044 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3045 Selector CopySelector = 3046 getContext().Selectors.getNullarySelector(CopyID); 3047 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3048 Selector AutoreleaseSelector = 3049 getContext().Selectors.getNullarySelector(AutoreleaseID); 3050 3051 // Emit calls to retain/autorelease. 3052 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3053 llvm::Value *Val = Block; 3054 RValue Result; 3055 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3056 Ty, CopySelector, 3057 Val, CallArgList(), 0, 0); 3058 Val = Result.getScalarVal(); 3059 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3060 Ty, AutoreleaseSelector, 3061 Val, CallArgList(), 0, 0); 3062 Val = Result.getScalarVal(); 3063 return Val; 3064 } 3065 3066 3067 CGObjCRuntime::~CGObjCRuntime() {} 3068