1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/InlineAsm.h"
27 #include "llvm/Support/CallSite.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
35                                       QualType ET,
36                                       const ObjCMethodDecl *Method,
37                                       RValue Result);
38 
39 /// Given the address of a variable of pointer type, find the correct
40 /// null to store into it.
41 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
42   llvm::Type *type =
43     cast<llvm::PointerType>(addr->getType())->getElementType();
44   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
45 }
46 
47 /// Emits an instance of NSConstantString representing the object.
48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
49 {
50   llvm::Constant *C =
51       CGM.getObjCRuntime().GenerateConstantString(E->getString());
52   // FIXME: This bitcast should just be made an invariant on the Runtime.
53   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
54 }
55 
56 /// EmitObjCBoxedExpr - This routine generates code to call
57 /// the appropriate expression boxing method. This will either be
58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
59 ///
60 llvm::Value *
61 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
62   // Generate the correct selector for this literal's concrete type.
63   const Expr *SubExpr = E->getSubExpr();
64   // Get the method.
65   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
66   assert(BoxingMethod && "BoxingMethod is null");
67   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
68   Selector Sel = BoxingMethod->getSelector();
69 
70   // Generate a reference to the class pointer, which will be the receiver.
71   // Assumes that the method was introduced in the class that should be
72   // messaged (avoids pulling it out of the result type).
73   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
74   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
75   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
76 
77   const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
78   QualType ArgQT = argDecl->getType().getUnqualifiedType();
79   RValue RV = EmitAnyExpr(SubExpr);
80   CallArgList Args;
81   Args.add(RV, ArgQT);
82 
83   RValue result = Runtime.GenerateMessageSend(
84       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
85       Args, ClassDecl, BoxingMethod);
86   return Builder.CreateBitCast(result.getScalarVal(),
87                                ConvertType(E->getType()));
88 }
89 
90 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
91                                     const ObjCMethodDecl *MethodWithObjects) {
92   ASTContext &Context = CGM.getContext();
93   const ObjCDictionaryLiteral *DLE = 0;
94   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
95   if (!ALE)
96     DLE = cast<ObjCDictionaryLiteral>(E);
97 
98   // Compute the type of the array we're initializing.
99   uint64_t NumElements =
100     ALE ? ALE->getNumElements() : DLE->getNumElements();
101   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
102                             NumElements);
103   QualType ElementType = Context.getObjCIdType().withConst();
104   QualType ElementArrayType
105     = Context.getConstantArrayType(ElementType, APNumElements,
106                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
107 
108   // Allocate the temporary array(s).
109   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
110   llvm::Value *Keys = 0;
111   if (DLE)
112     Keys = CreateMemTemp(ElementArrayType, "keys");
113 
114   // In ARC, we may need to do extra work to keep all the keys and
115   // values alive until after the call.
116   SmallVector<llvm::Value *, 16> NeededObjects;
117   bool TrackNeededObjects =
118     (getLangOpts().ObjCAutoRefCount &&
119     CGM.getCodeGenOpts().OptimizationLevel != 0);
120 
121   // Perform the actual initialialization of the array(s).
122   for (uint64_t i = 0; i < NumElements; i++) {
123     if (ALE) {
124       // Emit the element and store it to the appropriate array slot.
125       const Expr *Rhs = ALE->getElement(i);
126       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
127                                    ElementType,
128                                    Context.getTypeAlignInChars(Rhs->getType()),
129                                    Context);
130 
131       llvm::Value *value = EmitScalarExpr(Rhs);
132       EmitStoreThroughLValue(RValue::get(value), LV, true);
133       if (TrackNeededObjects) {
134         NeededObjects.push_back(value);
135       }
136     } else {
137       // Emit the key and store it to the appropriate array slot.
138       const Expr *Key = DLE->getKeyValueElement(i).Key;
139       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
140                                       ElementType,
141                                     Context.getTypeAlignInChars(Key->getType()),
142                                       Context);
143       llvm::Value *keyValue = EmitScalarExpr(Key);
144       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
145 
146       // Emit the value and store it to the appropriate array slot.
147       const Expr *Value = DLE->getKeyValueElement(i).Value;
148       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
149                                         ElementType,
150                                   Context.getTypeAlignInChars(Value->getType()),
151                                         Context);
152       llvm::Value *valueValue = EmitScalarExpr(Value);
153       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
154       if (TrackNeededObjects) {
155         NeededObjects.push_back(keyValue);
156         NeededObjects.push_back(valueValue);
157       }
158     }
159   }
160 
161   // Generate the argument list.
162   CallArgList Args;
163   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
164   const ParmVarDecl *argDecl = *PI++;
165   QualType ArgQT = argDecl->getType().getUnqualifiedType();
166   Args.add(RValue::get(Objects), ArgQT);
167   if (DLE) {
168     argDecl = *PI++;
169     ArgQT = argDecl->getType().getUnqualifiedType();
170     Args.add(RValue::get(Keys), ArgQT);
171   }
172   argDecl = *PI;
173   ArgQT = argDecl->getType().getUnqualifiedType();
174   llvm::Value *Count =
175     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
176   Args.add(RValue::get(Count), ArgQT);
177 
178   // Generate a reference to the class pointer, which will be the receiver.
179   Selector Sel = MethodWithObjects->getSelector();
180   QualType ResultType = E->getType();
181   const ObjCObjectPointerType *InterfacePointerType
182     = ResultType->getAsObjCInterfacePointerType();
183   ObjCInterfaceDecl *Class
184     = InterfacePointerType->getObjectType()->getInterface();
185   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
186   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
187 
188   // Generate the message send.
189   RValue result = Runtime.GenerateMessageSend(
190       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
191       Receiver, Args, Class, MethodWithObjects);
192 
193   // The above message send needs these objects, but in ARC they are
194   // passed in a buffer that is essentially __unsafe_unretained.
195   // Therefore we must prevent the optimizer from releasing them until
196   // after the call.
197   if (TrackNeededObjects) {
198     EmitARCIntrinsicUse(NeededObjects);
199   }
200 
201   return Builder.CreateBitCast(result.getScalarVal(),
202                                ConvertType(E->getType()));
203 }
204 
205 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
206   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
207 }
208 
209 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
210                                             const ObjCDictionaryLiteral *E) {
211   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
212 }
213 
214 /// Emit a selector.
215 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
216   // Untyped selector.
217   // Note that this implementation allows for non-constant strings to be passed
218   // as arguments to @selector().  Currently, the only thing preventing this
219   // behaviour is the type checking in the front end.
220   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
221 }
222 
223 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
224   // FIXME: This should pass the Decl not the name.
225   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
226 }
227 
228 /// \brief Adjust the type of the result of an Objective-C message send
229 /// expression when the method has a related result type.
230 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
231                                       QualType ExpT,
232                                       const ObjCMethodDecl *Method,
233                                       RValue Result) {
234   if (!Method)
235     return Result;
236 
237   if (!Method->hasRelatedResultType() ||
238       CGF.getContext().hasSameType(ExpT, Method->getReturnType()) ||
239       !Result.isScalar())
240     return Result;
241 
242   // We have applied a related result type. Cast the rvalue appropriately.
243   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
244                                                CGF.ConvertType(ExpT)));
245 }
246 
247 /// Decide whether to extend the lifetime of the receiver of a
248 /// returns-inner-pointer message.
249 static bool
250 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
251   switch (message->getReceiverKind()) {
252 
253   // For a normal instance message, we should extend unless the
254   // receiver is loaded from a variable with precise lifetime.
255   case ObjCMessageExpr::Instance: {
256     const Expr *receiver = message->getInstanceReceiver();
257     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
258     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
259     receiver = ice->getSubExpr()->IgnoreParens();
260 
261     // Only __strong variables.
262     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
263       return true;
264 
265     // All ivars and fields have precise lifetime.
266     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
267       return false;
268 
269     // Otherwise, check for variables.
270     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
271     if (!declRef) return true;
272     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
273     if (!var) return true;
274 
275     // All variables have precise lifetime except local variables with
276     // automatic storage duration that aren't specially marked.
277     return (var->hasLocalStorage() &&
278             !var->hasAttr<ObjCPreciseLifetimeAttr>());
279   }
280 
281   case ObjCMessageExpr::Class:
282   case ObjCMessageExpr::SuperClass:
283     // It's never necessary for class objects.
284     return false;
285 
286   case ObjCMessageExpr::SuperInstance:
287     // We generally assume that 'self' lives throughout a method call.
288     return false;
289   }
290 
291   llvm_unreachable("invalid receiver kind");
292 }
293 
294 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
295                                             ReturnValueSlot Return) {
296   // Only the lookup mechanism and first two arguments of the method
297   // implementation vary between runtimes.  We can get the receiver and
298   // arguments in generic code.
299 
300   bool isDelegateInit = E->isDelegateInitCall();
301 
302   const ObjCMethodDecl *method = E->getMethodDecl();
303 
304   // We don't retain the receiver in delegate init calls, and this is
305   // safe because the receiver value is always loaded from 'self',
306   // which we zero out.  We don't want to Block_copy block receivers,
307   // though.
308   bool retainSelf =
309     (!isDelegateInit &&
310      CGM.getLangOpts().ObjCAutoRefCount &&
311      method &&
312      method->hasAttr<NSConsumesSelfAttr>());
313 
314   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
315   bool isSuperMessage = false;
316   bool isClassMessage = false;
317   ObjCInterfaceDecl *OID = 0;
318   // Find the receiver
319   QualType ReceiverType;
320   llvm::Value *Receiver = 0;
321   switch (E->getReceiverKind()) {
322   case ObjCMessageExpr::Instance:
323     ReceiverType = E->getInstanceReceiver()->getType();
324     if (retainSelf) {
325       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
326                                                    E->getInstanceReceiver());
327       Receiver = ter.getPointer();
328       if (ter.getInt()) retainSelf = false;
329     } else
330       Receiver = EmitScalarExpr(E->getInstanceReceiver());
331     break;
332 
333   case ObjCMessageExpr::Class: {
334     ReceiverType = E->getClassReceiver();
335     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
336     assert(ObjTy && "Invalid Objective-C class message send");
337     OID = ObjTy->getInterface();
338     assert(OID && "Invalid Objective-C class message send");
339     Receiver = Runtime.GetClass(*this, OID);
340     isClassMessage = true;
341     break;
342   }
343 
344   case ObjCMessageExpr::SuperInstance:
345     ReceiverType = E->getSuperType();
346     Receiver = LoadObjCSelf();
347     isSuperMessage = true;
348     break;
349 
350   case ObjCMessageExpr::SuperClass:
351     ReceiverType = E->getSuperType();
352     Receiver = LoadObjCSelf();
353     isSuperMessage = true;
354     isClassMessage = true;
355     break;
356   }
357 
358   if (retainSelf)
359     Receiver = EmitARCRetainNonBlock(Receiver);
360 
361   // In ARC, we sometimes want to "extend the lifetime"
362   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
363   // messages.
364   if (getLangOpts().ObjCAutoRefCount && method &&
365       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
366       shouldExtendReceiverForInnerPointerMessage(E))
367     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
368 
369   QualType ResultType = method ? method->getReturnType() : E->getType();
370 
371   CallArgList Args;
372   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
373 
374   // For delegate init calls in ARC, do an unsafe store of null into
375   // self.  This represents the call taking direct ownership of that
376   // value.  We have to do this after emitting the other call
377   // arguments because they might also reference self, but we don't
378   // have to worry about any of them modifying self because that would
379   // be an undefined read and write of an object in unordered
380   // expressions.
381   if (isDelegateInit) {
382     assert(getLangOpts().ObjCAutoRefCount &&
383            "delegate init calls should only be marked in ARC");
384 
385     // Do an unsafe store of null into self.
386     llvm::Value *selfAddr =
387       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
388     assert(selfAddr && "no self entry for a delegate init call?");
389 
390     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
391   }
392 
393   RValue result;
394   if (isSuperMessage) {
395     // super is only valid in an Objective-C method
396     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
397     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
398     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
399                                               E->getSelector(),
400                                               OMD->getClassInterface(),
401                                               isCategoryImpl,
402                                               Receiver,
403                                               isClassMessage,
404                                               Args,
405                                               method);
406   } else {
407     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
408                                          E->getSelector(),
409                                          Receiver, Args, OID,
410                                          method);
411   }
412 
413   // For delegate init calls in ARC, implicitly store the result of
414   // the call back into self.  This takes ownership of the value.
415   if (isDelegateInit) {
416     llvm::Value *selfAddr =
417       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
418     llvm::Value *newSelf = result.getScalarVal();
419 
420     // The delegate return type isn't necessarily a matching type; in
421     // fact, it's quite likely to be 'id'.
422     llvm::Type *selfTy =
423       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
424     newSelf = Builder.CreateBitCast(newSelf, selfTy);
425 
426     Builder.CreateStore(newSelf, selfAddr);
427   }
428 
429   return AdjustRelatedResultType(*this, E->getType(), method, result);
430 }
431 
432 namespace {
433 struct FinishARCDealloc : EHScopeStack::Cleanup {
434   void Emit(CodeGenFunction &CGF, Flags flags) {
435     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
436 
437     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
438     const ObjCInterfaceDecl *iface = impl->getClassInterface();
439     if (!iface->getSuperClass()) return;
440 
441     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
442 
443     // Call [super dealloc] if we have a superclass.
444     llvm::Value *self = CGF.LoadObjCSelf();
445 
446     CallArgList args;
447     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
448                                                       CGF.getContext().VoidTy,
449                                                       method->getSelector(),
450                                                       iface,
451                                                       isCategory,
452                                                       self,
453                                                       /*is class msg*/ false,
454                                                       args,
455                                                       method);
456   }
457 };
458 }
459 
460 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
461 /// the LLVM function and sets the other context used by
462 /// CodeGenFunction.
463 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
464                                       const ObjCContainerDecl *CD,
465                                       SourceLocation StartLoc) {
466   FunctionArgList args;
467   // Check if we should generate debug info for this method.
468   if (OMD->hasAttr<NoDebugAttr>())
469     DebugInfo = NULL; // disable debug info indefinitely for this function
470 
471   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
472 
473   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
474   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
475 
476   args.push_back(OMD->getSelfDecl());
477   args.push_back(OMD->getCmdDecl());
478 
479   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
480          E = OMD->param_end(); PI != E; ++PI)
481     args.push_back(*PI);
482 
483   CurGD = OMD;
484 
485   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, StartLoc);
486 
487   // In ARC, certain methods get an extra cleanup.
488   if (CGM.getLangOpts().ObjCAutoRefCount &&
489       OMD->isInstanceMethod() &&
490       OMD->getSelector().isUnarySelector()) {
491     const IdentifierInfo *ident =
492       OMD->getSelector().getIdentifierInfoForSlot(0);
493     if (ident->isStr("dealloc"))
494       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
495   }
496 }
497 
498 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
499                                               LValue lvalue, QualType type);
500 
501 /// Generate an Objective-C method.  An Objective-C method is a C function with
502 /// its pointer, name, and types registered in the class struture.
503 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
504   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
505   assert(isa<CompoundStmt>(OMD->getBody()));
506   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
507   FinishFunction(OMD->getBodyRBrace());
508 }
509 
510 /// emitStructGetterCall - Call the runtime function to load a property
511 /// into the return value slot.
512 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
513                                  bool isAtomic, bool hasStrong) {
514   ASTContext &Context = CGF.getContext();
515 
516   llvm::Value *src =
517     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
518                           ivar, 0).getAddress();
519 
520   // objc_copyStruct (ReturnValue, &structIvar,
521   //                  sizeof (Type of Ivar), isAtomic, false);
522   CallArgList args;
523 
524   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
525   args.add(RValue::get(dest), Context.VoidPtrTy);
526 
527   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
528   args.add(RValue::get(src), Context.VoidPtrTy);
529 
530   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
531   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
532   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
533   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
534 
535   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
536   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
537                                                       FunctionType::ExtInfo(),
538                                                       RequiredArgs::All),
539                fn, ReturnValueSlot(), args);
540 }
541 
542 /// Determine whether the given architecture supports unaligned atomic
543 /// accesses.  They don't have to be fast, just faster than a function
544 /// call and a mutex.
545 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
546   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
547   // currently supported by the backend.)
548   return 0;
549 }
550 
551 /// Return the maximum size that permits atomic accesses for the given
552 /// architecture.
553 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
554                                         llvm::Triple::ArchType arch) {
555   // ARM has 8-byte atomic accesses, but it's not clear whether we
556   // want to rely on them here.
557 
558   // In the default case, just assume that any size up to a pointer is
559   // fine given adequate alignment.
560   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
561 }
562 
563 namespace {
564   class PropertyImplStrategy {
565   public:
566     enum StrategyKind {
567       /// The 'native' strategy is to use the architecture's provided
568       /// reads and writes.
569       Native,
570 
571       /// Use objc_setProperty and objc_getProperty.
572       GetSetProperty,
573 
574       /// Use objc_setProperty for the setter, but use expression
575       /// evaluation for the getter.
576       SetPropertyAndExpressionGet,
577 
578       /// Use objc_copyStruct.
579       CopyStruct,
580 
581       /// The 'expression' strategy is to emit normal assignment or
582       /// lvalue-to-rvalue expressions.
583       Expression
584     };
585 
586     StrategyKind getKind() const { return StrategyKind(Kind); }
587 
588     bool hasStrongMember() const { return HasStrong; }
589     bool isAtomic() const { return IsAtomic; }
590     bool isCopy() const { return IsCopy; }
591 
592     CharUnits getIvarSize() const { return IvarSize; }
593     CharUnits getIvarAlignment() const { return IvarAlignment; }
594 
595     PropertyImplStrategy(CodeGenModule &CGM,
596                          const ObjCPropertyImplDecl *propImpl);
597 
598   private:
599     unsigned Kind : 8;
600     unsigned IsAtomic : 1;
601     unsigned IsCopy : 1;
602     unsigned HasStrong : 1;
603 
604     CharUnits IvarSize;
605     CharUnits IvarAlignment;
606   };
607 }
608 
609 /// Pick an implementation strategy for the given property synthesis.
610 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
611                                      const ObjCPropertyImplDecl *propImpl) {
612   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
613   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
614 
615   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
616   IsAtomic = prop->isAtomic();
617   HasStrong = false; // doesn't matter here.
618 
619   // Evaluate the ivar's size and alignment.
620   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
621   QualType ivarType = ivar->getType();
622   llvm::tie(IvarSize, IvarAlignment)
623     = CGM.getContext().getTypeInfoInChars(ivarType);
624 
625   // If we have a copy property, we always have to use getProperty/setProperty.
626   // TODO: we could actually use setProperty and an expression for non-atomics.
627   if (IsCopy) {
628     Kind = GetSetProperty;
629     return;
630   }
631 
632   // Handle retain.
633   if (setterKind == ObjCPropertyDecl::Retain) {
634     // In GC-only, there's nothing special that needs to be done.
635     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
636       // fallthrough
637 
638     // In ARC, if the property is non-atomic, use expression emission,
639     // which translates to objc_storeStrong.  This isn't required, but
640     // it's slightly nicer.
641     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
642       // Using standard expression emission for the setter is only
643       // acceptable if the ivar is __strong, which won't be true if
644       // the property is annotated with __attribute__((NSObject)).
645       // TODO: falling all the way back to objc_setProperty here is
646       // just laziness, though;  we could still use objc_storeStrong
647       // if we hacked it right.
648       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
649         Kind = Expression;
650       else
651         Kind = SetPropertyAndExpressionGet;
652       return;
653 
654     // Otherwise, we need to at least use setProperty.  However, if
655     // the property isn't atomic, we can use normal expression
656     // emission for the getter.
657     } else if (!IsAtomic) {
658       Kind = SetPropertyAndExpressionGet;
659       return;
660 
661     // Otherwise, we have to use both setProperty and getProperty.
662     } else {
663       Kind = GetSetProperty;
664       return;
665     }
666   }
667 
668   // If we're not atomic, just use expression accesses.
669   if (!IsAtomic) {
670     Kind = Expression;
671     return;
672   }
673 
674   // Properties on bitfield ivars need to be emitted using expression
675   // accesses even if they're nominally atomic.
676   if (ivar->isBitField()) {
677     Kind = Expression;
678     return;
679   }
680 
681   // GC-qualified or ARC-qualified ivars need to be emitted as
682   // expressions.  This actually works out to being atomic anyway,
683   // except for ARC __strong, but that should trigger the above code.
684   if (ivarType.hasNonTrivialObjCLifetime() ||
685       (CGM.getLangOpts().getGC() &&
686        CGM.getContext().getObjCGCAttrKind(ivarType))) {
687     Kind = Expression;
688     return;
689   }
690 
691   // Compute whether the ivar has strong members.
692   if (CGM.getLangOpts().getGC())
693     if (const RecordType *recordType = ivarType->getAs<RecordType>())
694       HasStrong = recordType->getDecl()->hasObjectMember();
695 
696   // We can never access structs with object members with a native
697   // access, because we need to use write barriers.  This is what
698   // objc_copyStruct is for.
699   if (HasStrong) {
700     Kind = CopyStruct;
701     return;
702   }
703 
704   // Otherwise, this is target-dependent and based on the size and
705   // alignment of the ivar.
706 
707   // If the size of the ivar is not a power of two, give up.  We don't
708   // want to get into the business of doing compare-and-swaps.
709   if (!IvarSize.isPowerOfTwo()) {
710     Kind = CopyStruct;
711     return;
712   }
713 
714   llvm::Triple::ArchType arch =
715     CGM.getTarget().getTriple().getArch();
716 
717   // Most architectures require memory to fit within a single cache
718   // line, so the alignment has to be at least the size of the access.
719   // Otherwise we have to grab a lock.
720   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
721     Kind = CopyStruct;
722     return;
723   }
724 
725   // If the ivar's size exceeds the architecture's maximum atomic
726   // access size, we have to use CopyStruct.
727   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
728     Kind = CopyStruct;
729     return;
730   }
731 
732   // Otherwise, we can use native loads and stores.
733   Kind = Native;
734 }
735 
736 /// \brief Generate an Objective-C property getter function.
737 ///
738 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
739 /// is illegal within a category.
740 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
741                                          const ObjCPropertyImplDecl *PID) {
742   llvm::Constant *AtomicHelperFn =
743     GenerateObjCAtomicGetterCopyHelperFunction(PID);
744   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
745   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
746   assert(OMD && "Invalid call to generate getter (empty method)");
747   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
748 
749   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
750 
751   FinishFunction();
752 }
753 
754 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
755   const Expr *getter = propImpl->getGetterCXXConstructor();
756   if (!getter) return true;
757 
758   // Sema only makes only of these when the ivar has a C++ class type,
759   // so the form is pretty constrained.
760 
761   // If the property has a reference type, we might just be binding a
762   // reference, in which case the result will be a gl-value.  We should
763   // treat this as a non-trivial operation.
764   if (getter->isGLValue())
765     return false;
766 
767   // If we selected a trivial copy-constructor, we're okay.
768   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
769     return (construct->getConstructor()->isTrivial());
770 
771   // The constructor might require cleanups (in which case it's never
772   // trivial).
773   assert(isa<ExprWithCleanups>(getter));
774   return false;
775 }
776 
777 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
778 /// copy the ivar into the resturn slot.
779 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
780                                           llvm::Value *returnAddr,
781                                           ObjCIvarDecl *ivar,
782                                           llvm::Constant *AtomicHelperFn) {
783   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
784   //                           AtomicHelperFn);
785   CallArgList args;
786 
787   // The 1st argument is the return Slot.
788   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
789 
790   // The 2nd argument is the address of the ivar.
791   llvm::Value *ivarAddr =
792   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
793                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
794   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
795   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
796 
797   // Third argument is the helper function.
798   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
799 
800   llvm::Value *copyCppAtomicObjectFn =
801     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
802   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
803                                                       args,
804                                                       FunctionType::ExtInfo(),
805                                                       RequiredArgs::All),
806                copyCppAtomicObjectFn, ReturnValueSlot(), args);
807 }
808 
809 void
810 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
811                                         const ObjCPropertyImplDecl *propImpl,
812                                         const ObjCMethodDecl *GetterMethodDecl,
813                                         llvm::Constant *AtomicHelperFn) {
814   // If there's a non-trivial 'get' expression, we just have to emit that.
815   if (!hasTrivialGetExpr(propImpl)) {
816     if (!AtomicHelperFn) {
817       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
818                      /*nrvo*/ 0);
819       EmitReturnStmt(ret);
820     }
821     else {
822       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
823       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
824                                     ivar, AtomicHelperFn);
825     }
826     return;
827   }
828 
829   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
830   QualType propType = prop->getType();
831   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
832 
833   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
834 
835   // Pick an implementation strategy.
836   PropertyImplStrategy strategy(CGM, propImpl);
837   switch (strategy.getKind()) {
838   case PropertyImplStrategy::Native: {
839     // We don't need to do anything for a zero-size struct.
840     if (strategy.getIvarSize().isZero())
841       return;
842 
843     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
844 
845     // Currently, all atomic accesses have to be through integer
846     // types, so there's no point in trying to pick a prettier type.
847     llvm::Type *bitcastType =
848       llvm::Type::getIntNTy(getLLVMContext(),
849                             getContext().toBits(strategy.getIvarSize()));
850     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
851 
852     // Perform an atomic load.  This does not impose ordering constraints.
853     llvm::Value *ivarAddr = LV.getAddress();
854     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
855     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
856     load->setAlignment(strategy.getIvarAlignment().getQuantity());
857     load->setAtomic(llvm::Unordered);
858 
859     // Store that value into the return address.  Doing this with a
860     // bitcast is likely to produce some pretty ugly IR, but it's not
861     // the *most* terrible thing in the world.
862     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
863 
864     // Make sure we don't do an autorelease.
865     AutoreleaseResult = false;
866     return;
867   }
868 
869   case PropertyImplStrategy::GetSetProperty: {
870     llvm::Value *getPropertyFn =
871       CGM.getObjCRuntime().GetPropertyGetFunction();
872     if (!getPropertyFn) {
873       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
874       return;
875     }
876 
877     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
878     // FIXME: Can't this be simpler? This might even be worse than the
879     // corresponding gcc code.
880     llvm::Value *cmd =
881       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
882     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
883     llvm::Value *ivarOffset =
884       EmitIvarOffset(classImpl->getClassInterface(), ivar);
885 
886     CallArgList args;
887     args.add(RValue::get(self), getContext().getObjCIdType());
888     args.add(RValue::get(cmd), getContext().getObjCSelType());
889     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
890     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
891              getContext().BoolTy);
892 
893     // FIXME: We shouldn't need to get the function info here, the
894     // runtime already should have computed it to build the function.
895     llvm::Instruction *CallInstruction;
896     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
897                                                        FunctionType::ExtInfo(),
898                                                             RequiredArgs::All),
899                          getPropertyFn, ReturnValueSlot(), args, 0,
900                          &CallInstruction);
901     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
902       call->setTailCall();
903 
904     // We need to fix the type here. Ivars with copy & retain are
905     // always objects so we don't need to worry about complex or
906     // aggregates.
907     RV = RValue::get(Builder.CreateBitCast(
908         RV.getScalarVal(),
909         getTypes().ConvertType(getterMethod->getReturnType())));
910 
911     EmitReturnOfRValue(RV, propType);
912 
913     // objc_getProperty does an autorelease, so we should suppress ours.
914     AutoreleaseResult = false;
915 
916     return;
917   }
918 
919   case PropertyImplStrategy::CopyStruct:
920     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
921                          strategy.hasStrongMember());
922     return;
923 
924   case PropertyImplStrategy::Expression:
925   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
926     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
927 
928     QualType ivarType = ivar->getType();
929     switch (getEvaluationKind(ivarType)) {
930     case TEK_Complex: {
931       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
932       EmitStoreOfComplex(pair,
933                          MakeNaturalAlignAddrLValue(ReturnValue, ivarType),
934                          /*init*/ true);
935       return;
936     }
937     case TEK_Aggregate:
938       // The return value slot is guaranteed to not be aliased, but
939       // that's not necessarily the same as "on the stack", so
940       // we still potentially need objc_memmove_collectable.
941       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
942       return;
943     case TEK_Scalar: {
944       llvm::Value *value;
945       if (propType->isReferenceType()) {
946         value = LV.getAddress();
947       } else {
948         // We want to load and autoreleaseReturnValue ARC __weak ivars.
949         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
950           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
951 
952         // Otherwise we want to do a simple load, suppressing the
953         // final autorelease.
954         } else {
955           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
956           AutoreleaseResult = false;
957         }
958 
959         value = Builder.CreateBitCast(value, ConvertType(propType));
960         value = Builder.CreateBitCast(
961             value, ConvertType(GetterMethodDecl->getReturnType()));
962       }
963 
964       EmitReturnOfRValue(RValue::get(value), propType);
965       return;
966     }
967     }
968     llvm_unreachable("bad evaluation kind");
969   }
970 
971   }
972   llvm_unreachable("bad @property implementation strategy!");
973 }
974 
975 /// emitStructSetterCall - Call the runtime function to store the value
976 /// from the first formal parameter into the given ivar.
977 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
978                                  ObjCIvarDecl *ivar) {
979   // objc_copyStruct (&structIvar, &Arg,
980   //                  sizeof (struct something), true, false);
981   CallArgList args;
982 
983   // The first argument is the address of the ivar.
984   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
985                                                 CGF.LoadObjCSelf(), ivar, 0)
986     .getAddress();
987   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
988   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
989 
990   // The second argument is the address of the parameter variable.
991   ParmVarDecl *argVar = *OMD->param_begin();
992   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
993                      VK_LValue, SourceLocation());
994   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
995   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
996   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
997 
998   // The third argument is the sizeof the type.
999   llvm::Value *size =
1000     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1001   args.add(RValue::get(size), CGF.getContext().getSizeType());
1002 
1003   // The fourth argument is the 'isAtomic' flag.
1004   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1005 
1006   // The fifth argument is the 'hasStrong' flag.
1007   // FIXME: should this really always be false?
1008   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1009 
1010   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1011   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1012                                                       args,
1013                                                       FunctionType::ExtInfo(),
1014                                                       RequiredArgs::All),
1015                copyStructFn, ReturnValueSlot(), args);
1016 }
1017 
1018 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1019 /// the value from the first formal parameter into the given ivar, using
1020 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1021 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1022                                           ObjCMethodDecl *OMD,
1023                                           ObjCIvarDecl *ivar,
1024                                           llvm::Constant *AtomicHelperFn) {
1025   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1026   //                           AtomicHelperFn);
1027   CallArgList args;
1028 
1029   // The first argument is the address of the ivar.
1030   llvm::Value *ivarAddr =
1031     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1032                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
1033   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1034   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1035 
1036   // The second argument is the address of the parameter variable.
1037   ParmVarDecl *argVar = *OMD->param_begin();
1038   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1039                      VK_LValue, SourceLocation());
1040   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1041   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1042   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1043 
1044   // Third argument is the helper function.
1045   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1046 
1047   llvm::Value *copyCppAtomicObjectFn =
1048     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1049   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1050                                                       args,
1051                                                       FunctionType::ExtInfo(),
1052                                                       RequiredArgs::All),
1053                copyCppAtomicObjectFn, ReturnValueSlot(), args);
1054 }
1055 
1056 
1057 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1058   Expr *setter = PID->getSetterCXXAssignment();
1059   if (!setter) return true;
1060 
1061   // Sema only makes only of these when the ivar has a C++ class type,
1062   // so the form is pretty constrained.
1063 
1064   // An operator call is trivial if the function it calls is trivial.
1065   // This also implies that there's nothing non-trivial going on with
1066   // the arguments, because operator= can only be trivial if it's a
1067   // synthesized assignment operator and therefore both parameters are
1068   // references.
1069   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1070     if (const FunctionDecl *callee
1071           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1072       if (callee->isTrivial())
1073         return true;
1074     return false;
1075   }
1076 
1077   assert(isa<ExprWithCleanups>(setter));
1078   return false;
1079 }
1080 
1081 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1082   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1083     return false;
1084   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1085 }
1086 
1087 void
1088 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1089                                         const ObjCPropertyImplDecl *propImpl,
1090                                         llvm::Constant *AtomicHelperFn) {
1091   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1092   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1093   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1094 
1095   // Just use the setter expression if Sema gave us one and it's
1096   // non-trivial.
1097   if (!hasTrivialSetExpr(propImpl)) {
1098     if (!AtomicHelperFn)
1099       // If non-atomic, assignment is called directly.
1100       EmitStmt(propImpl->getSetterCXXAssignment());
1101     else
1102       // If atomic, assignment is called via a locking api.
1103       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1104                                     AtomicHelperFn);
1105     return;
1106   }
1107 
1108   PropertyImplStrategy strategy(CGM, propImpl);
1109   switch (strategy.getKind()) {
1110   case PropertyImplStrategy::Native: {
1111     // We don't need to do anything for a zero-size struct.
1112     if (strategy.getIvarSize().isZero())
1113       return;
1114 
1115     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1116 
1117     LValue ivarLValue =
1118       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1119     llvm::Value *ivarAddr = ivarLValue.getAddress();
1120 
1121     // Currently, all atomic accesses have to be through integer
1122     // types, so there's no point in trying to pick a prettier type.
1123     llvm::Type *bitcastType =
1124       llvm::Type::getIntNTy(getLLVMContext(),
1125                             getContext().toBits(strategy.getIvarSize()));
1126     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1127 
1128     // Cast both arguments to the chosen operation type.
1129     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1130     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1131 
1132     // This bitcast load is likely to cause some nasty IR.
1133     llvm::Value *load = Builder.CreateLoad(argAddr);
1134 
1135     // Perform an atomic store.  There are no memory ordering requirements.
1136     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1137     store->setAlignment(strategy.getIvarAlignment().getQuantity());
1138     store->setAtomic(llvm::Unordered);
1139     return;
1140   }
1141 
1142   case PropertyImplStrategy::GetSetProperty:
1143   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1144 
1145     llvm::Value *setOptimizedPropertyFn = 0;
1146     llvm::Value *setPropertyFn = 0;
1147     if (UseOptimizedSetter(CGM)) {
1148       // 10.8 and iOS 6.0 code and GC is off
1149       setOptimizedPropertyFn =
1150         CGM.getObjCRuntime()
1151            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1152                                             strategy.isCopy());
1153       if (!setOptimizedPropertyFn) {
1154         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1155         return;
1156       }
1157     }
1158     else {
1159       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1160       if (!setPropertyFn) {
1161         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1162         return;
1163       }
1164     }
1165 
1166     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1167     //                       <is-atomic>, <is-copy>).
1168     llvm::Value *cmd =
1169       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1170     llvm::Value *self =
1171       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1172     llvm::Value *ivarOffset =
1173       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1174     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1175     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1176 
1177     CallArgList args;
1178     args.add(RValue::get(self), getContext().getObjCIdType());
1179     args.add(RValue::get(cmd), getContext().getObjCSelType());
1180     if (setOptimizedPropertyFn) {
1181       args.add(RValue::get(arg), getContext().getObjCIdType());
1182       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1183       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1184                                                   FunctionType::ExtInfo(),
1185                                                   RequiredArgs::All),
1186                setOptimizedPropertyFn, ReturnValueSlot(), args);
1187     } else {
1188       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1189       args.add(RValue::get(arg), getContext().getObjCIdType());
1190       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1191                getContext().BoolTy);
1192       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1193                getContext().BoolTy);
1194       // FIXME: We shouldn't need to get the function info here, the runtime
1195       // already should have computed it to build the function.
1196       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1197                                                   FunctionType::ExtInfo(),
1198                                                   RequiredArgs::All),
1199                setPropertyFn, ReturnValueSlot(), args);
1200     }
1201 
1202     return;
1203   }
1204 
1205   case PropertyImplStrategy::CopyStruct:
1206     emitStructSetterCall(*this, setterMethod, ivar);
1207     return;
1208 
1209   case PropertyImplStrategy::Expression:
1210     break;
1211   }
1212 
1213   // Otherwise, fake up some ASTs and emit a normal assignment.
1214   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1215   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1216                    VK_LValue, SourceLocation());
1217   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1218                             selfDecl->getType(), CK_LValueToRValue, &self,
1219                             VK_RValue);
1220   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1221                           SourceLocation(), SourceLocation(),
1222                           &selfLoad, true, true);
1223 
1224   ParmVarDecl *argDecl = *setterMethod->param_begin();
1225   QualType argType = argDecl->getType().getNonReferenceType();
1226   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1227   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1228                            argType.getUnqualifiedType(), CK_LValueToRValue,
1229                            &arg, VK_RValue);
1230 
1231   // The property type can differ from the ivar type in some situations with
1232   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1233   // The following absurdity is just to ensure well-formed IR.
1234   CastKind argCK = CK_NoOp;
1235   if (ivarRef.getType()->isObjCObjectPointerType()) {
1236     if (argLoad.getType()->isObjCObjectPointerType())
1237       argCK = CK_BitCast;
1238     else if (argLoad.getType()->isBlockPointerType())
1239       argCK = CK_BlockPointerToObjCPointerCast;
1240     else
1241       argCK = CK_CPointerToObjCPointerCast;
1242   } else if (ivarRef.getType()->isBlockPointerType()) {
1243      if (argLoad.getType()->isBlockPointerType())
1244       argCK = CK_BitCast;
1245     else
1246       argCK = CK_AnyPointerToBlockPointerCast;
1247   } else if (ivarRef.getType()->isPointerType()) {
1248     argCK = CK_BitCast;
1249   }
1250   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1251                            ivarRef.getType(), argCK, &argLoad,
1252                            VK_RValue);
1253   Expr *finalArg = &argLoad;
1254   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1255                                            argLoad.getType()))
1256     finalArg = &argCast;
1257 
1258 
1259   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1260                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1261                         SourceLocation(), false);
1262   EmitStmt(&assign);
1263 }
1264 
1265 /// \brief Generate an Objective-C property setter function.
1266 ///
1267 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1268 /// is illegal within a category.
1269 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1270                                          const ObjCPropertyImplDecl *PID) {
1271   llvm::Constant *AtomicHelperFn =
1272     GenerateObjCAtomicSetterCopyHelperFunction(PID);
1273   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1274   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1275   assert(OMD && "Invalid call to generate setter (empty method)");
1276   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
1277 
1278   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1279 
1280   FinishFunction();
1281 }
1282 
1283 namespace {
1284   struct DestroyIvar : EHScopeStack::Cleanup {
1285   private:
1286     llvm::Value *addr;
1287     const ObjCIvarDecl *ivar;
1288     CodeGenFunction::Destroyer *destroyer;
1289     bool useEHCleanupForArray;
1290   public:
1291     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1292                 CodeGenFunction::Destroyer *destroyer,
1293                 bool useEHCleanupForArray)
1294       : addr(addr), ivar(ivar), destroyer(destroyer),
1295         useEHCleanupForArray(useEHCleanupForArray) {}
1296 
1297     void Emit(CodeGenFunction &CGF, Flags flags) {
1298       LValue lvalue
1299         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1300       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1301                       flags.isForNormalCleanup() && useEHCleanupForArray);
1302     }
1303   };
1304 }
1305 
1306 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1307 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1308                                       llvm::Value *addr,
1309                                       QualType type) {
1310   llvm::Value *null = getNullForVariable(addr);
1311   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1312 }
1313 
1314 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1315                                   ObjCImplementationDecl *impl) {
1316   CodeGenFunction::RunCleanupsScope scope(CGF);
1317 
1318   llvm::Value *self = CGF.LoadObjCSelf();
1319 
1320   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1321   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1322        ivar; ivar = ivar->getNextIvar()) {
1323     QualType type = ivar->getType();
1324 
1325     // Check whether the ivar is a destructible type.
1326     QualType::DestructionKind dtorKind = type.isDestructedType();
1327     if (!dtorKind) continue;
1328 
1329     CodeGenFunction::Destroyer *destroyer = 0;
1330 
1331     // Use a call to objc_storeStrong to destroy strong ivars, for the
1332     // general benefit of the tools.
1333     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1334       destroyer = destroyARCStrongWithStore;
1335 
1336     // Otherwise use the default for the destruction kind.
1337     } else {
1338       destroyer = CGF.getDestroyer(dtorKind);
1339     }
1340 
1341     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1342 
1343     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1344                                          cleanupKind & EHCleanup);
1345   }
1346 
1347   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1348 }
1349 
1350 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1351                                                  ObjCMethodDecl *MD,
1352                                                  bool ctor) {
1353   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1354   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1355 
1356   // Emit .cxx_construct.
1357   if (ctor) {
1358     // Suppress the final autorelease in ARC.
1359     AutoreleaseResult = false;
1360 
1361     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1362            E = IMP->init_end(); B != E; ++B) {
1363       CXXCtorInitializer *IvarInit = (*B);
1364       FieldDecl *Field = IvarInit->getAnyMember();
1365       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
1366       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1367                                     LoadObjCSelf(), Ivar, 0);
1368       EmitAggExpr(IvarInit->getInit(),
1369                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1370                                           AggValueSlot::DoesNotNeedGCBarriers,
1371                                           AggValueSlot::IsNotAliased));
1372     }
1373     // constructor returns 'self'.
1374     CodeGenTypes &Types = CGM.getTypes();
1375     QualType IdTy(CGM.getContext().getObjCIdType());
1376     llvm::Value *SelfAsId =
1377       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1378     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1379 
1380   // Emit .cxx_destruct.
1381   } else {
1382     emitCXXDestructMethod(*this, IMP);
1383   }
1384   FinishFunction();
1385 }
1386 
1387 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1388   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1389   it++; it++;
1390   const ABIArgInfo &AI = it->info;
1391   // FIXME. Is this sufficient check?
1392   return (AI.getKind() == ABIArgInfo::Indirect);
1393 }
1394 
1395 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1396   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1397     return false;
1398   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1399     return FDTTy->getDecl()->hasObjectMember();
1400   return false;
1401 }
1402 
1403 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1404   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1405   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1406                   Self->getType(), VK_LValue, SourceLocation());
1407   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1408 }
1409 
1410 QualType CodeGenFunction::TypeOfSelfObject() {
1411   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1412   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1413   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1414     getContext().getCanonicalType(selfDecl->getType()));
1415   return PTy->getPointeeType();
1416 }
1417 
1418 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1419   llvm::Constant *EnumerationMutationFn =
1420     CGM.getObjCRuntime().EnumerationMutationFunction();
1421 
1422   if (!EnumerationMutationFn) {
1423     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1424     return;
1425   }
1426 
1427   CGDebugInfo *DI = getDebugInfo();
1428   if (DI)
1429     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1430 
1431   // The local variable comes into scope immediately.
1432   AutoVarEmission variable = AutoVarEmission::invalid();
1433   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1434     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1435 
1436   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1437 
1438   // Fast enumeration state.
1439   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1440   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1441   EmitNullInitialization(StatePtr, StateTy);
1442 
1443   // Number of elements in the items array.
1444   static const unsigned NumItems = 16;
1445 
1446   // Fetch the countByEnumeratingWithState:objects:count: selector.
1447   IdentifierInfo *II[] = {
1448     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1449     &CGM.getContext().Idents.get("objects"),
1450     &CGM.getContext().Idents.get("count")
1451   };
1452   Selector FastEnumSel =
1453     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1454 
1455   QualType ItemsTy =
1456     getContext().getConstantArrayType(getContext().getObjCIdType(),
1457                                       llvm::APInt(32, NumItems),
1458                                       ArrayType::Normal, 0);
1459   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1460 
1461   // Emit the collection pointer.  In ARC, we do a retain.
1462   llvm::Value *Collection;
1463   if (getLangOpts().ObjCAutoRefCount) {
1464     Collection = EmitARCRetainScalarExpr(S.getCollection());
1465 
1466     // Enter a cleanup to do the release.
1467     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1468   } else {
1469     Collection = EmitScalarExpr(S.getCollection());
1470   }
1471 
1472   // The 'continue' label needs to appear within the cleanup for the
1473   // collection object.
1474   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1475 
1476   // Send it our message:
1477   CallArgList Args;
1478 
1479   // The first argument is a temporary of the enumeration-state type.
1480   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1481 
1482   // The second argument is a temporary array with space for NumItems
1483   // pointers.  We'll actually be loading elements from the array
1484   // pointer written into the control state; this buffer is so that
1485   // collections that *aren't* backed by arrays can still queue up
1486   // batches of elements.
1487   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1488 
1489   // The third argument is the capacity of that temporary array.
1490   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1491   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1492   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1493 
1494   // Start the enumeration.
1495   RValue CountRV =
1496     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1497                                              getContext().UnsignedLongTy,
1498                                              FastEnumSel,
1499                                              Collection, Args);
1500 
1501   // The initial number of objects that were returned in the buffer.
1502   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1503 
1504   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1505   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1506 
1507   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1508 
1509   // If the limit pointer was zero to begin with, the collection is
1510   // empty; skip all this.
1511   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1512                        EmptyBB, LoopInitBB);
1513 
1514   // Otherwise, initialize the loop.
1515   EmitBlock(LoopInitBB);
1516 
1517   // Save the initial mutations value.  This is the value at an
1518   // address that was written into the state object by
1519   // countByEnumeratingWithState:objects:count:.
1520   llvm::Value *StateMutationsPtrPtr =
1521     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1522   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1523                                                       "mutationsptr");
1524 
1525   llvm::Value *initialMutations =
1526     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1527 
1528   RegionCounter Cnt = getPGORegionCounter(&S);
1529 
1530   // Start looping.  This is the point we return to whenever we have a
1531   // fresh, non-empty batch of objects.
1532   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1533   EmitBlock(LoopBodyBB);
1534   Cnt.beginRegion(Builder);
1535 
1536   // The current index into the buffer.
1537   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1538   index->addIncoming(zero, LoopInitBB);
1539 
1540   // The current buffer size.
1541   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1542   count->addIncoming(initialBufferLimit, LoopInitBB);
1543 
1544   // Check whether the mutations value has changed from where it was
1545   // at start.  StateMutationsPtr should actually be invariant between
1546   // refreshes.
1547   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1548   llvm::Value *currentMutations
1549     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1550 
1551   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1552   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1553 
1554   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1555                        WasNotMutatedBB, WasMutatedBB);
1556 
1557   // If so, call the enumeration-mutation function.
1558   EmitBlock(WasMutatedBB);
1559   llvm::Value *V =
1560     Builder.CreateBitCast(Collection,
1561                           ConvertType(getContext().getObjCIdType()));
1562   CallArgList Args2;
1563   Args2.add(RValue::get(V), getContext().getObjCIdType());
1564   // FIXME: We shouldn't need to get the function info here, the runtime already
1565   // should have computed it to build the function.
1566   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1567                                                   FunctionType::ExtInfo(),
1568                                                   RequiredArgs::All),
1569            EnumerationMutationFn, ReturnValueSlot(), Args2);
1570 
1571   // Otherwise, or if the mutation function returns, just continue.
1572   EmitBlock(WasNotMutatedBB);
1573 
1574   // Initialize the element variable.
1575   RunCleanupsScope elementVariableScope(*this);
1576   bool elementIsVariable;
1577   LValue elementLValue;
1578   QualType elementType;
1579   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1580     // Initialize the variable, in case it's a __block variable or something.
1581     EmitAutoVarInit(variable);
1582 
1583     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1584     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1585                         VK_LValue, SourceLocation());
1586     elementLValue = EmitLValue(&tempDRE);
1587     elementType = D->getType();
1588     elementIsVariable = true;
1589 
1590     if (D->isARCPseudoStrong())
1591       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1592   } else {
1593     elementLValue = LValue(); // suppress warning
1594     elementType = cast<Expr>(S.getElement())->getType();
1595     elementIsVariable = false;
1596   }
1597   llvm::Type *convertedElementType = ConvertType(elementType);
1598 
1599   // Fetch the buffer out of the enumeration state.
1600   // TODO: this pointer should actually be invariant between
1601   // refreshes, which would help us do certain loop optimizations.
1602   llvm::Value *StateItemsPtr =
1603     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1604   llvm::Value *EnumStateItems =
1605     Builder.CreateLoad(StateItemsPtr, "stateitems");
1606 
1607   // Fetch the value at the current index from the buffer.
1608   llvm::Value *CurrentItemPtr =
1609     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1610   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1611 
1612   // Cast that value to the right type.
1613   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1614                                       "currentitem");
1615 
1616   // Make sure we have an l-value.  Yes, this gets evaluated every
1617   // time through the loop.
1618   if (!elementIsVariable) {
1619     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1620     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1621   } else {
1622     EmitScalarInit(CurrentItem, elementLValue);
1623   }
1624 
1625   // If we do have an element variable, this assignment is the end of
1626   // its initialization.
1627   if (elementIsVariable)
1628     EmitAutoVarCleanups(variable);
1629 
1630   // Perform the loop body, setting up break and continue labels.
1631   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody, &Cnt));
1632   {
1633     RunCleanupsScope Scope(*this);
1634     EmitStmt(S.getBody());
1635   }
1636   BreakContinueStack.pop_back();
1637 
1638   // Destroy the element variable now.
1639   elementVariableScope.ForceCleanup();
1640 
1641   // Check whether there are more elements.
1642   EmitBlock(AfterBody.getBlock());
1643 
1644   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1645 
1646   // First we check in the local buffer.
1647   llvm::Value *indexPlusOne
1648     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1649 
1650   // TODO: We should probably model this as a "continue" for PGO
1651   // If we haven't overrun the buffer yet, we can continue.
1652   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1653                        LoopBodyBB, FetchMoreBB);
1654 
1655   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1656   count->addIncoming(count, AfterBody.getBlock());
1657 
1658   // Otherwise, we have to fetch more elements.
1659   EmitBlock(FetchMoreBB);
1660 
1661   CountRV =
1662     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1663                                              getContext().UnsignedLongTy,
1664                                              FastEnumSel,
1665                                              Collection, Args);
1666 
1667   // If we got a zero count, we're done.
1668   llvm::Value *refetchCount = CountRV.getScalarVal();
1669 
1670   // (note that the message send might split FetchMoreBB)
1671   index->addIncoming(zero, Builder.GetInsertBlock());
1672   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1673 
1674   // TODO: We should be applying PGO weights here, but this needs to handle the
1675   // branch before FetchMoreBB or we risk getting the numbers wrong.
1676   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1677                        EmptyBB, LoopBodyBB);
1678 
1679   // No more elements.
1680   EmitBlock(EmptyBB);
1681 
1682   if (!elementIsVariable) {
1683     // If the element was not a declaration, set it to be null.
1684 
1685     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1686     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1687     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1688   }
1689 
1690   if (DI)
1691     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1692 
1693   // Leave the cleanup we entered in ARC.
1694   if (getLangOpts().ObjCAutoRefCount)
1695     PopCleanupBlock();
1696 
1697   EmitBlock(LoopEnd.getBlock());
1698   // TODO: Once we calculate PGO weights above, set the region count here
1699 }
1700 
1701 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1702   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1703 }
1704 
1705 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1706   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1707 }
1708 
1709 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1710                                               const ObjCAtSynchronizedStmt &S) {
1711   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1712 }
1713 
1714 /// Produce the code for a CK_ARCProduceObject.  Just does a
1715 /// primitive retain.
1716 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1717                                                     llvm::Value *value) {
1718   return EmitARCRetain(type, value);
1719 }
1720 
1721 namespace {
1722   struct CallObjCRelease : EHScopeStack::Cleanup {
1723     CallObjCRelease(llvm::Value *object) : object(object) {}
1724     llvm::Value *object;
1725 
1726     void Emit(CodeGenFunction &CGF, Flags flags) {
1727       // Releases at the end of the full-expression are imprecise.
1728       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1729     }
1730   };
1731 }
1732 
1733 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1734 /// release at the end of the full-expression.
1735 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1736                                                     llvm::Value *object) {
1737   // If we're in a conditional branch, we need to make the cleanup
1738   // conditional.
1739   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1740   return object;
1741 }
1742 
1743 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1744                                                            llvm::Value *value) {
1745   return EmitARCRetainAutorelease(type, value);
1746 }
1747 
1748 /// Given a number of pointers, inform the optimizer that they're
1749 /// being intrinsically used up until this point in the program.
1750 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1751   llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use;
1752   if (!fn) {
1753     llvm::FunctionType *fnType =
1754       llvm::FunctionType::get(CGM.VoidTy, ArrayRef<llvm::Type*>(), true);
1755     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1756   }
1757 
1758   // This isn't really a "runtime" function, but as an intrinsic it
1759   // doesn't really matter as long as we align things up.
1760   EmitNounwindRuntimeCall(fn, values);
1761 }
1762 
1763 
1764 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1765                                                 llvm::FunctionType *type,
1766                                                 StringRef fnName) {
1767   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1768 
1769   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1770     // If the target runtime doesn't naturally support ARC, emit weak
1771     // references to the runtime support library.  We don't really
1772     // permit this to fail, but we need a particular relocation style.
1773     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1774       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1775     } else if (fnName == "objc_retain" || fnName  == "objc_release") {
1776       // If we have Native ARC, set nonlazybind attribute for these APIs for
1777       // performance.
1778       f->addFnAttr(llvm::Attribute::NonLazyBind);
1779     }
1780   }
1781 
1782   return fn;
1783 }
1784 
1785 /// Perform an operation having the signature
1786 ///   i8* (i8*)
1787 /// where a null input causes a no-op and returns null.
1788 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1789                                           llvm::Value *value,
1790                                           llvm::Constant *&fn,
1791                                           StringRef fnName,
1792                                           bool isTailCall = false) {
1793   if (isa<llvm::ConstantPointerNull>(value)) return value;
1794 
1795   if (!fn) {
1796     llvm::FunctionType *fnType =
1797       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1798     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1799   }
1800 
1801   // Cast the argument to 'id'.
1802   llvm::Type *origType = value->getType();
1803   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1804 
1805   // Call the function.
1806   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1807   if (isTailCall)
1808     call->setTailCall();
1809 
1810   // Cast the result back to the original type.
1811   return CGF.Builder.CreateBitCast(call, origType);
1812 }
1813 
1814 /// Perform an operation having the following signature:
1815 ///   i8* (i8**)
1816 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1817                                          llvm::Value *addr,
1818                                          llvm::Constant *&fn,
1819                                          StringRef fnName) {
1820   if (!fn) {
1821     llvm::FunctionType *fnType =
1822       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1823     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1824   }
1825 
1826   // Cast the argument to 'id*'.
1827   llvm::Type *origType = addr->getType();
1828   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1829 
1830   // Call the function.
1831   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr);
1832 
1833   // Cast the result back to a dereference of the original type.
1834   if (origType != CGF.Int8PtrPtrTy)
1835     result = CGF.Builder.CreateBitCast(result,
1836                         cast<llvm::PointerType>(origType)->getElementType());
1837 
1838   return result;
1839 }
1840 
1841 /// Perform an operation having the following signature:
1842 ///   i8* (i8**, i8*)
1843 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1844                                           llvm::Value *addr,
1845                                           llvm::Value *value,
1846                                           llvm::Constant *&fn,
1847                                           StringRef fnName,
1848                                           bool ignored) {
1849   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1850            == value->getType());
1851 
1852   if (!fn) {
1853     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1854 
1855     llvm::FunctionType *fnType
1856       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1857     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1858   }
1859 
1860   llvm::Type *origType = value->getType();
1861 
1862   llvm::Value *args[] = {
1863     CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy),
1864     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1865   };
1866   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1867 
1868   if (ignored) return 0;
1869 
1870   return CGF.Builder.CreateBitCast(result, origType);
1871 }
1872 
1873 /// Perform an operation having the following signature:
1874 ///   void (i8**, i8**)
1875 static void emitARCCopyOperation(CodeGenFunction &CGF,
1876                                  llvm::Value *dst,
1877                                  llvm::Value *src,
1878                                  llvm::Constant *&fn,
1879                                  StringRef fnName) {
1880   assert(dst->getType() == src->getType());
1881 
1882   if (!fn) {
1883     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1884 
1885     llvm::FunctionType *fnType
1886       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1887     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1888   }
1889 
1890   llvm::Value *args[] = {
1891     CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy),
1892     CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy)
1893   };
1894   CGF.EmitNounwindRuntimeCall(fn, args);
1895 }
1896 
1897 /// Produce the code to do a retain.  Based on the type, calls one of:
1898 ///   call i8* \@objc_retain(i8* %value)
1899 ///   call i8* \@objc_retainBlock(i8* %value)
1900 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1901   if (type->isBlockPointerType())
1902     return EmitARCRetainBlock(value, /*mandatory*/ false);
1903   else
1904     return EmitARCRetainNonBlock(value);
1905 }
1906 
1907 /// Retain the given object, with normal retain semantics.
1908 ///   call i8* \@objc_retain(i8* %value)
1909 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1910   return emitARCValueOperation(*this, value,
1911                                CGM.getARCEntrypoints().objc_retain,
1912                                "objc_retain");
1913 }
1914 
1915 /// Retain the given block, with _Block_copy semantics.
1916 ///   call i8* \@objc_retainBlock(i8* %value)
1917 ///
1918 /// \param mandatory - If false, emit the call with metadata
1919 /// indicating that it's okay for the optimizer to eliminate this call
1920 /// if it can prove that the block never escapes except down the stack.
1921 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1922                                                  bool mandatory) {
1923   llvm::Value *result
1924     = emitARCValueOperation(*this, value,
1925                             CGM.getARCEntrypoints().objc_retainBlock,
1926                             "objc_retainBlock");
1927 
1928   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1929   // tell the optimizer that it doesn't need to do this copy if the
1930   // block doesn't escape, where being passed as an argument doesn't
1931   // count as escaping.
1932   if (!mandatory && isa<llvm::Instruction>(result)) {
1933     llvm::CallInst *call
1934       = cast<llvm::CallInst>(result->stripPointerCasts());
1935     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1936 
1937     SmallVector<llvm::Value*,1> args;
1938     call->setMetadata("clang.arc.copy_on_escape",
1939                       llvm::MDNode::get(Builder.getContext(), args));
1940   }
1941 
1942   return result;
1943 }
1944 
1945 /// Retain the given object which is the result of a function call.
1946 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1947 ///
1948 /// Yes, this function name is one character away from a different
1949 /// call with completely different semantics.
1950 llvm::Value *
1951 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1952   // Fetch the void(void) inline asm which marks that we're going to
1953   // retain the autoreleased return value.
1954   llvm::InlineAsm *&marker
1955     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1956   if (!marker) {
1957     StringRef assembly
1958       = CGM.getTargetCodeGenInfo()
1959            .getARCRetainAutoreleasedReturnValueMarker();
1960 
1961     // If we have an empty assembly string, there's nothing to do.
1962     if (assembly.empty()) {
1963 
1964     // Otherwise, at -O0, build an inline asm that we're going to call
1965     // in a moment.
1966     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1967       llvm::FunctionType *type =
1968         llvm::FunctionType::get(VoidTy, /*variadic*/false);
1969 
1970       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1971 
1972     // If we're at -O1 and above, we don't want to litter the code
1973     // with this marker yet, so leave a breadcrumb for the ARC
1974     // optimizer to pick up.
1975     } else {
1976       llvm::NamedMDNode *metadata =
1977         CGM.getModule().getOrInsertNamedMetadata(
1978                             "clang.arc.retainAutoreleasedReturnValueMarker");
1979       assert(metadata->getNumOperands() <= 1);
1980       if (metadata->getNumOperands() == 0) {
1981         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1982         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1983       }
1984     }
1985   }
1986 
1987   // Call the marker asm if we made one, which we do only at -O0.
1988   if (marker) Builder.CreateCall(marker);
1989 
1990   return emitARCValueOperation(*this, value,
1991                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1992                                "objc_retainAutoreleasedReturnValue");
1993 }
1994 
1995 /// Release the given object.
1996 ///   call void \@objc_release(i8* %value)
1997 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
1998                                      ARCPreciseLifetime_t precise) {
1999   if (isa<llvm::ConstantPointerNull>(value)) return;
2000 
2001   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
2002   if (!fn) {
2003     llvm::FunctionType *fnType =
2004       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2005     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
2006   }
2007 
2008   // Cast the argument to 'id'.
2009   value = Builder.CreateBitCast(value, Int8PtrTy);
2010 
2011   // Call objc_release.
2012   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2013 
2014   if (precise == ARCImpreciseLifetime) {
2015     SmallVector<llvm::Value*,1> args;
2016     call->setMetadata("clang.imprecise_release",
2017                       llvm::MDNode::get(Builder.getContext(), args));
2018   }
2019 }
2020 
2021 /// Destroy a __strong variable.
2022 ///
2023 /// At -O0, emit a call to store 'null' into the address;
2024 /// instrumenting tools prefer this because the address is exposed,
2025 /// but it's relatively cumbersome to optimize.
2026 ///
2027 /// At -O1 and above, just load and call objc_release.
2028 ///
2029 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2030 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr,
2031                                            ARCPreciseLifetime_t precise) {
2032   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2033     llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
2034     llvm::Value *null = llvm::ConstantPointerNull::get(
2035                           cast<llvm::PointerType>(addrTy->getElementType()));
2036     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2037     return;
2038   }
2039 
2040   llvm::Value *value = Builder.CreateLoad(addr);
2041   EmitARCRelease(value, precise);
2042 }
2043 
2044 /// Store into a strong object.  Always calls this:
2045 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2046 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
2047                                                      llvm::Value *value,
2048                                                      bool ignored) {
2049   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
2050            == value->getType());
2051 
2052   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
2053   if (!fn) {
2054     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2055     llvm::FunctionType *fnType
2056       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2057     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2058   }
2059 
2060   llvm::Value *args[] = {
2061     Builder.CreateBitCast(addr, Int8PtrPtrTy),
2062     Builder.CreateBitCast(value, Int8PtrTy)
2063   };
2064   EmitNounwindRuntimeCall(fn, args);
2065 
2066   if (ignored) return 0;
2067   return value;
2068 }
2069 
2070 /// Store into a strong object.  Sometimes calls this:
2071 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2072 /// Other times, breaks it down into components.
2073 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2074                                                  llvm::Value *newValue,
2075                                                  bool ignored) {
2076   QualType type = dst.getType();
2077   bool isBlock = type->isBlockPointerType();
2078 
2079   // Use a store barrier at -O0 unless this is a block type or the
2080   // lvalue is inadequately aligned.
2081   if (shouldUseFusedARCCalls() &&
2082       !isBlock &&
2083       (dst.getAlignment().isZero() ||
2084        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2085     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2086   }
2087 
2088   // Otherwise, split it out.
2089 
2090   // Retain the new value.
2091   newValue = EmitARCRetain(type, newValue);
2092 
2093   // Read the old value.
2094   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2095 
2096   // Store.  We do this before the release so that any deallocs won't
2097   // see the old value.
2098   EmitStoreOfScalar(newValue, dst);
2099 
2100   // Finally, release the old value.
2101   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2102 
2103   return newValue;
2104 }
2105 
2106 /// Autorelease the given object.
2107 ///   call i8* \@objc_autorelease(i8* %value)
2108 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2109   return emitARCValueOperation(*this, value,
2110                                CGM.getARCEntrypoints().objc_autorelease,
2111                                "objc_autorelease");
2112 }
2113 
2114 /// Autorelease the given object.
2115 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2116 llvm::Value *
2117 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2118   return emitARCValueOperation(*this, value,
2119                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2120                                "objc_autoreleaseReturnValue",
2121                                /*isTailCall*/ true);
2122 }
2123 
2124 /// Do a fused retain/autorelease of the given object.
2125 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2126 llvm::Value *
2127 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2128   return emitARCValueOperation(*this, value,
2129                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2130                                "objc_retainAutoreleaseReturnValue",
2131                                /*isTailCall*/ true);
2132 }
2133 
2134 /// Do a fused retain/autorelease of the given object.
2135 ///   call i8* \@objc_retainAutorelease(i8* %value)
2136 /// or
2137 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2138 ///   call i8* \@objc_autorelease(i8* %retain)
2139 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2140                                                        llvm::Value *value) {
2141   if (!type->isBlockPointerType())
2142     return EmitARCRetainAutoreleaseNonBlock(value);
2143 
2144   if (isa<llvm::ConstantPointerNull>(value)) return value;
2145 
2146   llvm::Type *origType = value->getType();
2147   value = Builder.CreateBitCast(value, Int8PtrTy);
2148   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2149   value = EmitARCAutorelease(value);
2150   return Builder.CreateBitCast(value, origType);
2151 }
2152 
2153 /// Do a fused retain/autorelease of the given object.
2154 ///   call i8* \@objc_retainAutorelease(i8* %value)
2155 llvm::Value *
2156 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2157   return emitARCValueOperation(*this, value,
2158                                CGM.getARCEntrypoints().objc_retainAutorelease,
2159                                "objc_retainAutorelease");
2160 }
2161 
2162 /// i8* \@objc_loadWeak(i8** %addr)
2163 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2164 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2165   return emitARCLoadOperation(*this, addr,
2166                               CGM.getARCEntrypoints().objc_loadWeak,
2167                               "objc_loadWeak");
2168 }
2169 
2170 /// i8* \@objc_loadWeakRetained(i8** %addr)
2171 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2172   return emitARCLoadOperation(*this, addr,
2173                               CGM.getARCEntrypoints().objc_loadWeakRetained,
2174                               "objc_loadWeakRetained");
2175 }
2176 
2177 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2178 /// Returns %value.
2179 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2180                                                llvm::Value *value,
2181                                                bool ignored) {
2182   return emitARCStoreOperation(*this, addr, value,
2183                                CGM.getARCEntrypoints().objc_storeWeak,
2184                                "objc_storeWeak", ignored);
2185 }
2186 
2187 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2188 /// Returns %value.  %addr is known to not have a current weak entry.
2189 /// Essentially equivalent to:
2190 ///   *addr = nil; objc_storeWeak(addr, value);
2191 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2192   // If we're initializing to null, just write null to memory; no need
2193   // to get the runtime involved.  But don't do this if optimization
2194   // is enabled, because accounting for this would make the optimizer
2195   // much more complicated.
2196   if (isa<llvm::ConstantPointerNull>(value) &&
2197       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2198     Builder.CreateStore(value, addr);
2199     return;
2200   }
2201 
2202   emitARCStoreOperation(*this, addr, value,
2203                         CGM.getARCEntrypoints().objc_initWeak,
2204                         "objc_initWeak", /*ignored*/ true);
2205 }
2206 
2207 /// void \@objc_destroyWeak(i8** %addr)
2208 /// Essentially objc_storeWeak(addr, nil).
2209 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2210   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2211   if (!fn) {
2212     llvm::FunctionType *fnType =
2213       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2214     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2215   }
2216 
2217   // Cast the argument to 'id*'.
2218   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2219 
2220   EmitNounwindRuntimeCall(fn, addr);
2221 }
2222 
2223 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2224 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2225 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2226 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2227   emitARCCopyOperation(*this, dst, src,
2228                        CGM.getARCEntrypoints().objc_moveWeak,
2229                        "objc_moveWeak");
2230 }
2231 
2232 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2233 /// Disregards the current value in %dest.  Essentially
2234 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2235 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2236   emitARCCopyOperation(*this, dst, src,
2237                        CGM.getARCEntrypoints().objc_copyWeak,
2238                        "objc_copyWeak");
2239 }
2240 
2241 /// Produce the code to do a objc_autoreleasepool_push.
2242 ///   call i8* \@objc_autoreleasePoolPush(void)
2243 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2244   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2245   if (!fn) {
2246     llvm::FunctionType *fnType =
2247       llvm::FunctionType::get(Int8PtrTy, false);
2248     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2249   }
2250 
2251   return EmitNounwindRuntimeCall(fn);
2252 }
2253 
2254 /// Produce the code to do a primitive release.
2255 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2256 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2257   assert(value->getType() == Int8PtrTy);
2258 
2259   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2260   if (!fn) {
2261     llvm::FunctionType *fnType =
2262       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2263 
2264     // We don't want to use a weak import here; instead we should not
2265     // fall into this path.
2266     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2267   }
2268 
2269   // objc_autoreleasePoolPop can throw.
2270   EmitRuntimeCallOrInvoke(fn, value);
2271 }
2272 
2273 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2274 /// Which is: [[NSAutoreleasePool alloc] init];
2275 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2276 /// init is declared as: - (id) init; in its NSObject super class.
2277 ///
2278 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2279   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2280   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2281   // [NSAutoreleasePool alloc]
2282   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2283   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2284   CallArgList Args;
2285   RValue AllocRV =
2286     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2287                                 getContext().getObjCIdType(),
2288                                 AllocSel, Receiver, Args);
2289 
2290   // [Receiver init]
2291   Receiver = AllocRV.getScalarVal();
2292   II = &CGM.getContext().Idents.get("init");
2293   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2294   RValue InitRV =
2295     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2296                                 getContext().getObjCIdType(),
2297                                 InitSel, Receiver, Args);
2298   return InitRV.getScalarVal();
2299 }
2300 
2301 /// Produce the code to do a primitive release.
2302 /// [tmp drain];
2303 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2304   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2305   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2306   CallArgList Args;
2307   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2308                               getContext().VoidTy, DrainSel, Arg, Args);
2309 }
2310 
2311 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2312                                               llvm::Value *addr,
2313                                               QualType type) {
2314   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2315 }
2316 
2317 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2318                                                 llvm::Value *addr,
2319                                                 QualType type) {
2320   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2321 }
2322 
2323 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2324                                      llvm::Value *addr,
2325                                      QualType type) {
2326   CGF.EmitARCDestroyWeak(addr);
2327 }
2328 
2329 namespace {
2330   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2331     llvm::Value *Token;
2332 
2333     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2334 
2335     void Emit(CodeGenFunction &CGF, Flags flags) {
2336       CGF.EmitObjCAutoreleasePoolPop(Token);
2337     }
2338   };
2339   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2340     llvm::Value *Token;
2341 
2342     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2343 
2344     void Emit(CodeGenFunction &CGF, Flags flags) {
2345       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2346     }
2347   };
2348 }
2349 
2350 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2351   if (CGM.getLangOpts().ObjCAutoRefCount)
2352     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2353   else
2354     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2355 }
2356 
2357 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2358                                                   LValue lvalue,
2359                                                   QualType type) {
2360   switch (type.getObjCLifetime()) {
2361   case Qualifiers::OCL_None:
2362   case Qualifiers::OCL_ExplicitNone:
2363   case Qualifiers::OCL_Strong:
2364   case Qualifiers::OCL_Autoreleasing:
2365     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2366                                               SourceLocation()).getScalarVal(),
2367                          false);
2368 
2369   case Qualifiers::OCL_Weak:
2370     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2371                          true);
2372   }
2373 
2374   llvm_unreachable("impossible lifetime!");
2375 }
2376 
2377 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2378                                                   const Expr *e) {
2379   e = e->IgnoreParens();
2380   QualType type = e->getType();
2381 
2382   // If we're loading retained from a __strong xvalue, we can avoid
2383   // an extra retain/release pair by zeroing out the source of this
2384   // "move" operation.
2385   if (e->isXValue() &&
2386       !type.isConstQualified() &&
2387       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2388     // Emit the lvalue.
2389     LValue lv = CGF.EmitLValue(e);
2390 
2391     // Load the object pointer.
2392     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2393                                                SourceLocation()).getScalarVal();
2394 
2395     // Set the source pointer to NULL.
2396     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2397 
2398     return TryEmitResult(result, true);
2399   }
2400 
2401   // As a very special optimization, in ARC++, if the l-value is the
2402   // result of a non-volatile assignment, do a simple retain of the
2403   // result of the call to objc_storeWeak instead of reloading.
2404   if (CGF.getLangOpts().CPlusPlus &&
2405       !type.isVolatileQualified() &&
2406       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2407       isa<BinaryOperator>(e) &&
2408       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2409     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2410 
2411   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2412 }
2413 
2414 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2415                                            llvm::Value *value);
2416 
2417 /// Given that the given expression is some sort of call (which does
2418 /// not return retained), emit a retain following it.
2419 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2420   llvm::Value *value = CGF.EmitScalarExpr(e);
2421   return emitARCRetainAfterCall(CGF, value);
2422 }
2423 
2424 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2425                                            llvm::Value *value) {
2426   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2427     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2428 
2429     // Place the retain immediately following the call.
2430     CGF.Builder.SetInsertPoint(call->getParent(),
2431                                ++llvm::BasicBlock::iterator(call));
2432     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2433 
2434     CGF.Builder.restoreIP(ip);
2435     return value;
2436   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2437     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2438 
2439     // Place the retain at the beginning of the normal destination block.
2440     llvm::BasicBlock *BB = invoke->getNormalDest();
2441     CGF.Builder.SetInsertPoint(BB, BB->begin());
2442     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2443 
2444     CGF.Builder.restoreIP(ip);
2445     return value;
2446 
2447   // Bitcasts can arise because of related-result returns.  Rewrite
2448   // the operand.
2449   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2450     llvm::Value *operand = bitcast->getOperand(0);
2451     operand = emitARCRetainAfterCall(CGF, operand);
2452     bitcast->setOperand(0, operand);
2453     return bitcast;
2454 
2455   // Generic fall-back case.
2456   } else {
2457     // Retain using the non-block variant: we never need to do a copy
2458     // of a block that's been returned to us.
2459     return CGF.EmitARCRetainNonBlock(value);
2460   }
2461 }
2462 
2463 /// Determine whether it might be important to emit a separate
2464 /// objc_retain_block on the result of the given expression, or
2465 /// whether it's okay to just emit it in a +1 context.
2466 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2467   assert(e->getType()->isBlockPointerType());
2468   e = e->IgnoreParens();
2469 
2470   // For future goodness, emit block expressions directly in +1
2471   // contexts if we can.
2472   if (isa<BlockExpr>(e))
2473     return false;
2474 
2475   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2476     switch (cast->getCastKind()) {
2477     // Emitting these operations in +1 contexts is goodness.
2478     case CK_LValueToRValue:
2479     case CK_ARCReclaimReturnedObject:
2480     case CK_ARCConsumeObject:
2481     case CK_ARCProduceObject:
2482       return false;
2483 
2484     // These operations preserve a block type.
2485     case CK_NoOp:
2486     case CK_BitCast:
2487       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2488 
2489     // These operations are known to be bad (or haven't been considered).
2490     case CK_AnyPointerToBlockPointerCast:
2491     default:
2492       return true;
2493     }
2494   }
2495 
2496   return true;
2497 }
2498 
2499 /// Try to emit a PseudoObjectExpr at +1.
2500 ///
2501 /// This massively duplicates emitPseudoObjectRValue.
2502 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2503                                                   const PseudoObjectExpr *E) {
2504   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2505 
2506   // Find the result expression.
2507   const Expr *resultExpr = E->getResultExpr();
2508   assert(resultExpr);
2509   TryEmitResult result;
2510 
2511   for (PseudoObjectExpr::const_semantics_iterator
2512          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2513     const Expr *semantic = *i;
2514 
2515     // If this semantic expression is an opaque value, bind it
2516     // to the result of its source expression.
2517     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2518       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2519       OVMA opaqueData;
2520 
2521       // If this semantic is the result of the pseudo-object
2522       // expression, try to evaluate the source as +1.
2523       if (ov == resultExpr) {
2524         assert(!OVMA::shouldBindAsLValue(ov));
2525         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2526         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2527 
2528       // Otherwise, just bind it.
2529       } else {
2530         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2531       }
2532       opaques.push_back(opaqueData);
2533 
2534     // Otherwise, if the expression is the result, evaluate it
2535     // and remember the result.
2536     } else if (semantic == resultExpr) {
2537       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2538 
2539     // Otherwise, evaluate the expression in an ignored context.
2540     } else {
2541       CGF.EmitIgnoredExpr(semantic);
2542     }
2543   }
2544 
2545   // Unbind all the opaques now.
2546   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2547     opaques[i].unbind(CGF);
2548 
2549   return result;
2550 }
2551 
2552 static TryEmitResult
2553 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2554   // We should *never* see a nested full-expression here, because if
2555   // we fail to emit at +1, our caller must not retain after we close
2556   // out the full-expression.
2557   assert(!isa<ExprWithCleanups>(e));
2558 
2559   // The desired result type, if it differs from the type of the
2560   // ultimate opaque expression.
2561   llvm::Type *resultType = 0;
2562 
2563   while (true) {
2564     e = e->IgnoreParens();
2565 
2566     // There's a break at the end of this if-chain;  anything
2567     // that wants to keep looping has to explicitly continue.
2568     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2569       switch (ce->getCastKind()) {
2570       // No-op casts don't change the type, so we just ignore them.
2571       case CK_NoOp:
2572         e = ce->getSubExpr();
2573         continue;
2574 
2575       case CK_LValueToRValue: {
2576         TryEmitResult loadResult
2577           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2578         if (resultType) {
2579           llvm::Value *value = loadResult.getPointer();
2580           value = CGF.Builder.CreateBitCast(value, resultType);
2581           loadResult.setPointer(value);
2582         }
2583         return loadResult;
2584       }
2585 
2586       // These casts can change the type, so remember that and
2587       // soldier on.  We only need to remember the outermost such
2588       // cast, though.
2589       case CK_CPointerToObjCPointerCast:
2590       case CK_BlockPointerToObjCPointerCast:
2591       case CK_AnyPointerToBlockPointerCast:
2592       case CK_BitCast:
2593         if (!resultType)
2594           resultType = CGF.ConvertType(ce->getType());
2595         e = ce->getSubExpr();
2596         assert(e->getType()->hasPointerRepresentation());
2597         continue;
2598 
2599       // For consumptions, just emit the subexpression and thus elide
2600       // the retain/release pair.
2601       case CK_ARCConsumeObject: {
2602         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2603         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2604         return TryEmitResult(result, true);
2605       }
2606 
2607       // Block extends are net +0.  Naively, we could just recurse on
2608       // the subexpression, but actually we need to ensure that the
2609       // value is copied as a block, so there's a little filter here.
2610       case CK_ARCExtendBlockObject: {
2611         llvm::Value *result; // will be a +0 value
2612 
2613         // If we can't safely assume the sub-expression will produce a
2614         // block-copied value, emit the sub-expression at +0.
2615         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2616           result = CGF.EmitScalarExpr(ce->getSubExpr());
2617 
2618         // Otherwise, try to emit the sub-expression at +1 recursively.
2619         } else {
2620           TryEmitResult subresult
2621             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2622           result = subresult.getPointer();
2623 
2624           // If that produced a retained value, just use that,
2625           // possibly casting down.
2626           if (subresult.getInt()) {
2627             if (resultType)
2628               result = CGF.Builder.CreateBitCast(result, resultType);
2629             return TryEmitResult(result, true);
2630           }
2631 
2632           // Otherwise it's +0.
2633         }
2634 
2635         // Retain the object as a block, then cast down.
2636         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2637         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2638         return TryEmitResult(result, true);
2639       }
2640 
2641       // For reclaims, emit the subexpression as a retained call and
2642       // skip the consumption.
2643       case CK_ARCReclaimReturnedObject: {
2644         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2645         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2646         return TryEmitResult(result, true);
2647       }
2648 
2649       default:
2650         break;
2651       }
2652 
2653     // Skip __extension__.
2654     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2655       if (op->getOpcode() == UO_Extension) {
2656         e = op->getSubExpr();
2657         continue;
2658       }
2659 
2660     // For calls and message sends, use the retained-call logic.
2661     // Delegate inits are a special case in that they're the only
2662     // returns-retained expression that *isn't* surrounded by
2663     // a consume.
2664     } else if (isa<CallExpr>(e) ||
2665                (isa<ObjCMessageExpr>(e) &&
2666                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2667       llvm::Value *result = emitARCRetainCall(CGF, e);
2668       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2669       return TryEmitResult(result, true);
2670 
2671     // Look through pseudo-object expressions.
2672     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2673       TryEmitResult result
2674         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2675       if (resultType) {
2676         llvm::Value *value = result.getPointer();
2677         value = CGF.Builder.CreateBitCast(value, resultType);
2678         result.setPointer(value);
2679       }
2680       return result;
2681     }
2682 
2683     // Conservatively halt the search at any other expression kind.
2684     break;
2685   }
2686 
2687   // We didn't find an obvious production, so emit what we've got and
2688   // tell the caller that we didn't manage to retain.
2689   llvm::Value *result = CGF.EmitScalarExpr(e);
2690   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2691   return TryEmitResult(result, false);
2692 }
2693 
2694 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2695                                                 LValue lvalue,
2696                                                 QualType type) {
2697   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2698   llvm::Value *value = result.getPointer();
2699   if (!result.getInt())
2700     value = CGF.EmitARCRetain(type, value);
2701   return value;
2702 }
2703 
2704 /// EmitARCRetainScalarExpr - Semantically equivalent to
2705 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2706 /// best-effort attempt to peephole expressions that naturally produce
2707 /// retained objects.
2708 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2709   // The retain needs to happen within the full-expression.
2710   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2711     enterFullExpression(cleanups);
2712     RunCleanupsScope scope(*this);
2713     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2714   }
2715 
2716   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2717   llvm::Value *value = result.getPointer();
2718   if (!result.getInt())
2719     value = EmitARCRetain(e->getType(), value);
2720   return value;
2721 }
2722 
2723 llvm::Value *
2724 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2725   // The retain needs to happen within the full-expression.
2726   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2727     enterFullExpression(cleanups);
2728     RunCleanupsScope scope(*this);
2729     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2730   }
2731 
2732   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2733   llvm::Value *value = result.getPointer();
2734   if (result.getInt())
2735     value = EmitARCAutorelease(value);
2736   else
2737     value = EmitARCRetainAutorelease(e->getType(), value);
2738   return value;
2739 }
2740 
2741 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2742   llvm::Value *result;
2743   bool doRetain;
2744 
2745   if (shouldEmitSeparateBlockRetain(e)) {
2746     result = EmitScalarExpr(e);
2747     doRetain = true;
2748   } else {
2749     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2750     result = subresult.getPointer();
2751     doRetain = !subresult.getInt();
2752   }
2753 
2754   if (doRetain)
2755     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2756   return EmitObjCConsumeObject(e->getType(), result);
2757 }
2758 
2759 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2760   // In ARC, retain and autorelease the expression.
2761   if (getLangOpts().ObjCAutoRefCount) {
2762     // Do so before running any cleanups for the full-expression.
2763     // EmitARCRetainAutoreleaseScalarExpr does this for us.
2764     return EmitARCRetainAutoreleaseScalarExpr(expr);
2765   }
2766 
2767   // Otherwise, use the normal scalar-expression emission.  The
2768   // exception machinery doesn't do anything special with the
2769   // exception like retaining it, so there's no safety associated with
2770   // only running cleanups after the throw has started, and when it
2771   // matters it tends to be substantially inferior code.
2772   return EmitScalarExpr(expr);
2773 }
2774 
2775 std::pair<LValue,llvm::Value*>
2776 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2777                                     bool ignored) {
2778   // Evaluate the RHS first.
2779   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2780   llvm::Value *value = result.getPointer();
2781 
2782   bool hasImmediateRetain = result.getInt();
2783 
2784   // If we didn't emit a retained object, and the l-value is of block
2785   // type, then we need to emit the block-retain immediately in case
2786   // it invalidates the l-value.
2787   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2788     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2789     hasImmediateRetain = true;
2790   }
2791 
2792   LValue lvalue = EmitLValue(e->getLHS());
2793 
2794   // If the RHS was emitted retained, expand this.
2795   if (hasImmediateRetain) {
2796     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
2797     EmitStoreOfScalar(value, lvalue);
2798     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
2799   } else {
2800     value = EmitARCStoreStrong(lvalue, value, ignored);
2801   }
2802 
2803   return std::pair<LValue,llvm::Value*>(lvalue, value);
2804 }
2805 
2806 std::pair<LValue,llvm::Value*>
2807 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2808   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2809   LValue lvalue = EmitLValue(e->getLHS());
2810 
2811   EmitStoreOfScalar(value, lvalue);
2812 
2813   return std::pair<LValue,llvm::Value*>(lvalue, value);
2814 }
2815 
2816 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2817                                           const ObjCAutoreleasePoolStmt &ARPS) {
2818   const Stmt *subStmt = ARPS.getSubStmt();
2819   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2820 
2821   CGDebugInfo *DI = getDebugInfo();
2822   if (DI)
2823     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2824 
2825   // Keep track of the current cleanup stack depth.
2826   RunCleanupsScope Scope(*this);
2827   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2828     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2829     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2830   } else {
2831     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2832     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2833   }
2834 
2835   for (CompoundStmt::const_body_iterator I = S.body_begin(),
2836        E = S.body_end(); I != E; ++I)
2837     EmitStmt(*I);
2838 
2839   if (DI)
2840     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2841 }
2842 
2843 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2844 /// make sure it survives garbage collection until this point.
2845 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2846   // We just use an inline assembly.
2847   llvm::FunctionType *extenderType
2848     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2849   llvm::Value *extender
2850     = llvm::InlineAsm::get(extenderType,
2851                            /* assembly */ "",
2852                            /* constraints */ "r",
2853                            /* side effects */ true);
2854 
2855   object = Builder.CreateBitCast(object, VoidPtrTy);
2856   EmitNounwindRuntimeCall(extender, object);
2857 }
2858 
2859 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2860 /// non-trivial copy assignment function, produce following helper function.
2861 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2862 ///
2863 llvm::Constant *
2864 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2865                                         const ObjCPropertyImplDecl *PID) {
2866   if (!getLangOpts().CPlusPlus ||
2867       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2868     return 0;
2869   QualType Ty = PID->getPropertyIvarDecl()->getType();
2870   if (!Ty->isRecordType())
2871     return 0;
2872   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2873   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2874     return 0;
2875   llvm::Constant * HelperFn = 0;
2876   if (hasTrivialSetExpr(PID))
2877     return 0;
2878   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2879   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2880     return HelperFn;
2881 
2882   ASTContext &C = getContext();
2883   IdentifierInfo *II
2884     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2885   FunctionDecl *FD = FunctionDecl::Create(C,
2886                                           C.getTranslationUnitDecl(),
2887                                           SourceLocation(),
2888                                           SourceLocation(), II, C.VoidTy, 0,
2889                                           SC_Static,
2890                                           false,
2891                                           false);
2892 
2893   QualType DestTy = C.getPointerType(Ty);
2894   QualType SrcTy = Ty;
2895   SrcTy.addConst();
2896   SrcTy = C.getPointerType(SrcTy);
2897 
2898   FunctionArgList args;
2899   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2900   args.push_back(&dstDecl);
2901   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2902   args.push_back(&srcDecl);
2903 
2904   const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
2905       C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
2906 
2907   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2908 
2909   llvm::Function *Fn =
2910     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2911                            "__assign_helper_atomic_property_",
2912                            &CGM.getModule());
2913 
2914   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2915 
2916   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2917                       VK_RValue, SourceLocation());
2918   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2919                     VK_LValue, OK_Ordinary, SourceLocation());
2920 
2921   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2922                       VK_RValue, SourceLocation());
2923   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2924                     VK_LValue, OK_Ordinary, SourceLocation());
2925 
2926   Expr *Args[2] = { &DST, &SRC };
2927   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2928   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2929                               Args, DestTy->getPointeeType(),
2930                               VK_LValue, SourceLocation(), false);
2931 
2932   EmitStmt(&TheCall);
2933 
2934   FinishFunction();
2935   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2936   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2937   return HelperFn;
2938 }
2939 
2940 llvm::Constant *
2941 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2942                                             const ObjCPropertyImplDecl *PID) {
2943   if (!getLangOpts().CPlusPlus ||
2944       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2945     return 0;
2946   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2947   QualType Ty = PD->getType();
2948   if (!Ty->isRecordType())
2949     return 0;
2950   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2951     return 0;
2952   llvm::Constant * HelperFn = 0;
2953 
2954   if (hasTrivialGetExpr(PID))
2955     return 0;
2956   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2957   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2958     return HelperFn;
2959 
2960 
2961   ASTContext &C = getContext();
2962   IdentifierInfo *II
2963   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2964   FunctionDecl *FD = FunctionDecl::Create(C,
2965                                           C.getTranslationUnitDecl(),
2966                                           SourceLocation(),
2967                                           SourceLocation(), II, C.VoidTy, 0,
2968                                           SC_Static,
2969                                           false,
2970                                           false);
2971 
2972   QualType DestTy = C.getPointerType(Ty);
2973   QualType SrcTy = Ty;
2974   SrcTy.addConst();
2975   SrcTy = C.getPointerType(SrcTy);
2976 
2977   FunctionArgList args;
2978   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2979   args.push_back(&dstDecl);
2980   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2981   args.push_back(&srcDecl);
2982 
2983   const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
2984       C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
2985 
2986   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2987 
2988   llvm::Function *Fn =
2989   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2990                          "__copy_helper_atomic_property_", &CGM.getModule());
2991 
2992   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2993 
2994   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2995                       VK_RValue, SourceLocation());
2996 
2997   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2998                     VK_LValue, OK_Ordinary, SourceLocation());
2999 
3000   CXXConstructExpr *CXXConstExpr =
3001     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3002 
3003   SmallVector<Expr*, 4> ConstructorArgs;
3004   ConstructorArgs.push_back(&SRC);
3005   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
3006   ++A;
3007 
3008   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
3009        A != AEnd; ++A)
3010     ConstructorArgs.push_back(*A);
3011 
3012   CXXConstructExpr *TheCXXConstructExpr =
3013     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3014                              CXXConstExpr->getConstructor(),
3015                              CXXConstExpr->isElidable(),
3016                              ConstructorArgs,
3017                              CXXConstExpr->hadMultipleCandidates(),
3018                              CXXConstExpr->isListInitialization(),
3019                              CXXConstExpr->requiresZeroInitialization(),
3020                              CXXConstExpr->getConstructionKind(),
3021                              SourceRange());
3022 
3023   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3024                       VK_RValue, SourceLocation());
3025 
3026   RValue DV = EmitAnyExpr(&DstExpr);
3027   CharUnits Alignment
3028     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3029   EmitAggExpr(TheCXXConstructExpr,
3030               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
3031                                     AggValueSlot::IsDestructed,
3032                                     AggValueSlot::DoesNotNeedGCBarriers,
3033                                     AggValueSlot::IsNotAliased));
3034 
3035   FinishFunction();
3036   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3037   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3038   return HelperFn;
3039 }
3040 
3041 llvm::Value *
3042 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3043   // Get selectors for retain/autorelease.
3044   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3045   Selector CopySelector =
3046       getContext().Selectors.getNullarySelector(CopyID);
3047   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3048   Selector AutoreleaseSelector =
3049       getContext().Selectors.getNullarySelector(AutoreleaseID);
3050 
3051   // Emit calls to retain/autorelease.
3052   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3053   llvm::Value *Val = Block;
3054   RValue Result;
3055   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3056                                        Ty, CopySelector,
3057                                        Val, CallArgList(), 0, 0);
3058   Val = Result.getScalarVal();
3059   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3060                                        Ty, AutoreleaseSelector,
3061                                        Val, CallArgList(), 0, 0);
3062   Val = Result.getScalarVal();
3063   return Val;
3064 }
3065 
3066 
3067 CGObjCRuntime::~CGObjCRuntime() {}
3068