1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
35                                    QualType ET,
36                                    RValue Result);
37 
38 /// Given the address of a variable of pointer type, find the correct
39 /// null to store into it.
40 static llvm::Constant *getNullForVariable(Address addr) {
41   llvm::Type *type = addr.getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57 /// or [NSValue valueWithBytes:objCType:].
58 ///
59 llvm::Value *
60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61   // Generate the correct selector for this literal's concrete type.
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   const Expr *SubExpr = E->getSubExpr();
65 
66   if (E->isExpressibleAsConstantInitializer()) {
67     ConstantEmitter ConstEmitter(CGM);
68     return ConstEmitter.tryEmitAbstract(E, E->getType());
69   }
70 
71   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
72   Selector Sel = BoxingMethod->getSelector();
73 
74   // Generate a reference to the class pointer, which will be the receiver.
75   // Assumes that the method was introduced in the class that should be
76   // messaged (avoids pulling it out of the result type).
77   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
78   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
79   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
80 
81   CallArgList Args;
82   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
83   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
84 
85   // ObjCBoxedExpr supports boxing of structs and unions
86   // via [NSValue valueWithBytes:objCType:]
87   const QualType ValueType(SubExpr->getType().getCanonicalType());
88   if (ValueType->isObjCBoxableRecordType()) {
89     // Emit CodeGen for first parameter
90     // and cast value to correct type
91     Address Temporary = CreateMemTemp(SubExpr->getType());
92     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
93     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
94     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
95 
96     // Create char array to store type encoding
97     std::string Str;
98     getContext().getObjCEncodingForType(ValueType, Str);
99     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
100 
101     // Cast type encoding to correct type
102     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
103     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
104     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
105 
106     Args.add(RValue::get(Cast), EncodingQT);
107   } else {
108     Args.add(EmitAnyExpr(SubExpr), ArgQT);
109   }
110 
111   RValue result = Runtime.GenerateMessageSend(
112       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
113       Args, ClassDecl, BoxingMethod);
114   return Builder.CreateBitCast(result.getScalarVal(),
115                                ConvertType(E->getType()));
116 }
117 
118 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
119                                     const ObjCMethodDecl *MethodWithObjects) {
120   ASTContext &Context = CGM.getContext();
121   const ObjCDictionaryLiteral *DLE = nullptr;
122   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
123   if (!ALE)
124     DLE = cast<ObjCDictionaryLiteral>(E);
125 
126   // Optimize empty collections by referencing constants, when available.
127   uint64_t NumElements =
128     ALE ? ALE->getNumElements() : DLE->getNumElements();
129   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
130     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
131     QualType IdTy(CGM.getContext().getObjCIdType());
132     llvm::Constant *Constant =
133         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
134     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
135     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
136     cast<llvm::LoadInst>(Ptr)->setMetadata(
137         CGM.getModule().getMDKindID("invariant.load"),
138         llvm::MDNode::get(getLLVMContext(), None));
139     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
140   }
141 
142   // Compute the type of the array we're initializing.
143   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
144                             NumElements);
145   QualType ElementType = Context.getObjCIdType().withConst();
146   QualType ElementArrayType
147     = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
148                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
149 
150   // Allocate the temporary array(s).
151   Address Objects = CreateMemTemp(ElementArrayType, "objects");
152   Address Keys = Address::invalid();
153   if (DLE)
154     Keys = CreateMemTemp(ElementArrayType, "keys");
155 
156   // In ARC, we may need to do extra work to keep all the keys and
157   // values alive until after the call.
158   SmallVector<llvm::Value *, 16> NeededObjects;
159   bool TrackNeededObjects =
160     (getLangOpts().ObjCAutoRefCount &&
161     CGM.getCodeGenOpts().OptimizationLevel != 0);
162 
163   // Perform the actual initialialization of the array(s).
164   for (uint64_t i = 0; i < NumElements; i++) {
165     if (ALE) {
166       // Emit the element and store it to the appropriate array slot.
167       const Expr *Rhs = ALE->getElement(i);
168       LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
169                                  ElementType, AlignmentSource::Decl);
170 
171       llvm::Value *value = EmitScalarExpr(Rhs);
172       EmitStoreThroughLValue(RValue::get(value), LV, true);
173       if (TrackNeededObjects) {
174         NeededObjects.push_back(value);
175       }
176     } else {
177       // Emit the key and store it to the appropriate array slot.
178       const Expr *Key = DLE->getKeyValueElement(i).Key;
179       LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
180                                     ElementType, AlignmentSource::Decl);
181       llvm::Value *keyValue = EmitScalarExpr(Key);
182       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
183 
184       // Emit the value and store it to the appropriate array slot.
185       const Expr *Value = DLE->getKeyValueElement(i).Value;
186       LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
187                                       ElementType, AlignmentSource::Decl);
188       llvm::Value *valueValue = EmitScalarExpr(Value);
189       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
190       if (TrackNeededObjects) {
191         NeededObjects.push_back(keyValue);
192         NeededObjects.push_back(valueValue);
193       }
194     }
195   }
196 
197   // Generate the argument list.
198   CallArgList Args;
199   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
200   const ParmVarDecl *argDecl = *PI++;
201   QualType ArgQT = argDecl->getType().getUnqualifiedType();
202   Args.add(RValue::get(Objects.getPointer()), ArgQT);
203   if (DLE) {
204     argDecl = *PI++;
205     ArgQT = argDecl->getType().getUnqualifiedType();
206     Args.add(RValue::get(Keys.getPointer()), ArgQT);
207   }
208   argDecl = *PI;
209   ArgQT = argDecl->getType().getUnqualifiedType();
210   llvm::Value *Count =
211     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
212   Args.add(RValue::get(Count), ArgQT);
213 
214   // Generate a reference to the class pointer, which will be the receiver.
215   Selector Sel = MethodWithObjects->getSelector();
216   QualType ResultType = E->getType();
217   const ObjCObjectPointerType *InterfacePointerType
218     = ResultType->getAsObjCInterfacePointerType();
219   ObjCInterfaceDecl *Class
220     = InterfacePointerType->getObjectType()->getInterface();
221   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
222   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
223 
224   // Generate the message send.
225   RValue result = Runtime.GenerateMessageSend(
226       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
227       Receiver, Args, Class, MethodWithObjects);
228 
229   // The above message send needs these objects, but in ARC they are
230   // passed in a buffer that is essentially __unsafe_unretained.
231   // Therefore we must prevent the optimizer from releasing them until
232   // after the call.
233   if (TrackNeededObjects) {
234     EmitARCIntrinsicUse(NeededObjects);
235   }
236 
237   return Builder.CreateBitCast(result.getScalarVal(),
238                                ConvertType(E->getType()));
239 }
240 
241 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
242   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
243 }
244 
245 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
246                                             const ObjCDictionaryLiteral *E) {
247   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
248 }
249 
250 /// Emit a selector.
251 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
252   // Untyped selector.
253   // Note that this implementation allows for non-constant strings to be passed
254   // as arguments to @selector().  Currently, the only thing preventing this
255   // behaviour is the type checking in the front end.
256   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
257 }
258 
259 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
260   // FIXME: This should pass the Decl not the name.
261   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
262 }
263 
264 /// Adjust the type of an Objective-C object that doesn't match up due
265 /// to type erasure at various points, e.g., related result types or the use
266 /// of parameterized classes.
267 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
268                                    RValue Result) {
269   if (!ExpT->isObjCRetainableType())
270     return Result;
271 
272   // If the converted types are the same, we're done.
273   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
274   if (ExpLLVMTy == Result.getScalarVal()->getType())
275     return Result;
276 
277   // We have applied a substitution. Cast the rvalue appropriately.
278   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
279                                                ExpLLVMTy));
280 }
281 
282 /// Decide whether to extend the lifetime of the receiver of a
283 /// returns-inner-pointer message.
284 static bool
285 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
286   switch (message->getReceiverKind()) {
287 
288   // For a normal instance message, we should extend unless the
289   // receiver is loaded from a variable with precise lifetime.
290   case ObjCMessageExpr::Instance: {
291     const Expr *receiver = message->getInstanceReceiver();
292 
293     // Look through OVEs.
294     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
295       if (opaque->getSourceExpr())
296         receiver = opaque->getSourceExpr()->IgnoreParens();
297     }
298 
299     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
300     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
301     receiver = ice->getSubExpr()->IgnoreParens();
302 
303     // Look through OVEs.
304     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
305       if (opaque->getSourceExpr())
306         receiver = opaque->getSourceExpr()->IgnoreParens();
307     }
308 
309     // Only __strong variables.
310     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
311       return true;
312 
313     // All ivars and fields have precise lifetime.
314     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
315       return false;
316 
317     // Otherwise, check for variables.
318     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
319     if (!declRef) return true;
320     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
321     if (!var) return true;
322 
323     // All variables have precise lifetime except local variables with
324     // automatic storage duration that aren't specially marked.
325     return (var->hasLocalStorage() &&
326             !var->hasAttr<ObjCPreciseLifetimeAttr>());
327   }
328 
329   case ObjCMessageExpr::Class:
330   case ObjCMessageExpr::SuperClass:
331     // It's never necessary for class objects.
332     return false;
333 
334   case ObjCMessageExpr::SuperInstance:
335     // We generally assume that 'self' lives throughout a method call.
336     return false;
337   }
338 
339   llvm_unreachable("invalid receiver kind");
340 }
341 
342 /// Given an expression of ObjC pointer type, check whether it was
343 /// immediately loaded from an ARC __weak l-value.
344 static const Expr *findWeakLValue(const Expr *E) {
345   assert(E->getType()->isObjCRetainableType());
346   E = E->IgnoreParens();
347   if (auto CE = dyn_cast<CastExpr>(E)) {
348     if (CE->getCastKind() == CK_LValueToRValue) {
349       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
350         return CE->getSubExpr();
351     }
352   }
353 
354   return nullptr;
355 }
356 
357 /// The ObjC runtime may provide entrypoints that are likely to be faster
358 /// than an ordinary message send of the appropriate selector.
359 ///
360 /// The entrypoints are guaranteed to be equivalent to just sending the
361 /// corresponding message.  If the entrypoint is implemented naively as just a
362 /// message send, using it is a trade-off: it sacrifices a few cycles of
363 /// overhead to save a small amount of code.  However, it's possible for
364 /// runtimes to detect and special-case classes that use "standard"
365 /// behavior; if that's dynamically a large proportion of all objects, using
366 /// the entrypoint will also be faster than using a message send.
367 ///
368 /// If the runtime does support a required entrypoint, then this method will
369 /// generate a call and return the resulting value.  Otherwise it will return
370 /// None and the caller can generate a msgSend instead.
371 static Optional<llvm::Value *>
372 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
373                                   llvm::Value *Receiver,
374                                   const CallArgList& Args, Selector Sel,
375                                   const ObjCMethodDecl *method,
376                                   bool isClassMessage) {
377   auto &CGM = CGF.CGM;
378   if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
379     return None;
380 
381   auto &Runtime = CGM.getLangOpts().ObjCRuntime;
382   switch (Sel.getMethodFamily()) {
383   case OMF_alloc:
384     if (isClassMessage &&
385         Runtime.shouldUseRuntimeFunctionsForAlloc() &&
386         ResultType->isObjCObjectPointerType()) {
387         // [Foo alloc] -> objc_alloc(Foo) or
388         // [self alloc] -> objc_alloc(self)
389         if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
390           return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
391         // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
392         // [self allocWithZone:nil] -> objc_allocWithZone(self)
393         if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
394             Args.size() == 1 && Args.front().getType()->isPointerType() &&
395             Sel.getNameForSlot(0) == "allocWithZone") {
396           const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
397           if (isa<llvm::ConstantPointerNull>(arg))
398             return CGF.EmitObjCAllocWithZone(Receiver,
399                                              CGF.ConvertType(ResultType));
400           return None;
401         }
402     }
403     break;
404 
405   case OMF_autorelease:
406     if (ResultType->isObjCObjectPointerType() &&
407         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
408         Runtime.shouldUseARCFunctionsForRetainRelease())
409       return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
410     break;
411 
412   case OMF_retain:
413     if (ResultType->isObjCObjectPointerType() &&
414         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
415         Runtime.shouldUseARCFunctionsForRetainRelease())
416       return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
417     break;
418 
419   case OMF_release:
420     if (ResultType->isVoidType() &&
421         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
422         Runtime.shouldUseARCFunctionsForRetainRelease()) {
423       CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
424       return nullptr;
425     }
426     break;
427 
428   default:
429     break;
430   }
431   return None;
432 }
433 
434 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
435     CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
436     Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
437     const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
438     bool isClassMessage) {
439   if (Optional<llvm::Value *> SpecializedResult =
440           tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
441                                             Sel, Method, isClassMessage)) {
442     return RValue::get(SpecializedResult.getValue());
443   }
444   return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
445                              Method);
446 }
447 
448 /// Instead of '[[MyClass alloc] init]', try to generate
449 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
450 /// caller side, as well as the optimized objc_alloc.
451 static Optional<llvm::Value *>
452 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
453   auto &Runtime = CGF.getLangOpts().ObjCRuntime;
454   if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
455     return None;
456 
457   // Match the exact pattern '[[MyClass alloc] init]'.
458   Selector Sel = OME->getSelector();
459   if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
460       !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
461       Sel.getNameForSlot(0) != "init")
462     return None;
463 
464   // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
465   // with 'cls' a Class.
466   auto *SubOME =
467       dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
468   if (!SubOME)
469     return None;
470   Selector SubSel = SubOME->getSelector();
471 
472   if (!SubOME->getType()->isObjCObjectPointerType() ||
473       !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
474     return None;
475 
476   llvm::Value *Receiver = nullptr;
477   switch (SubOME->getReceiverKind()) {
478   case ObjCMessageExpr::Instance:
479     if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
480       return None;
481     Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
482     break;
483 
484   case ObjCMessageExpr::Class: {
485     QualType ReceiverType = SubOME->getClassReceiver();
486     const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
487     const ObjCInterfaceDecl *ID = ObjTy->getInterface();
488     assert(ID && "null interface should be impossible here");
489     Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
490     break;
491   }
492   case ObjCMessageExpr::SuperInstance:
493   case ObjCMessageExpr::SuperClass:
494     return None;
495   }
496 
497   return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
498 }
499 
500 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
501                                             ReturnValueSlot Return) {
502   // Only the lookup mechanism and first two arguments of the method
503   // implementation vary between runtimes.  We can get the receiver and
504   // arguments in generic code.
505 
506   bool isDelegateInit = E->isDelegateInitCall();
507 
508   const ObjCMethodDecl *method = E->getMethodDecl();
509 
510   // If the method is -retain, and the receiver's being loaded from
511   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
512   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
513       method->getMethodFamily() == OMF_retain) {
514     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
515       LValue lvalue = EmitLValue(lvalueExpr);
516       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
517       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
518     }
519   }
520 
521   if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
522     return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
523 
524   // We don't retain the receiver in delegate init calls, and this is
525   // safe because the receiver value is always loaded from 'self',
526   // which we zero out.  We don't want to Block_copy block receivers,
527   // though.
528   bool retainSelf =
529     (!isDelegateInit &&
530      CGM.getLangOpts().ObjCAutoRefCount &&
531      method &&
532      method->hasAttr<NSConsumesSelfAttr>());
533 
534   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
535   bool isSuperMessage = false;
536   bool isClassMessage = false;
537   ObjCInterfaceDecl *OID = nullptr;
538   // Find the receiver
539   QualType ReceiverType;
540   llvm::Value *Receiver = nullptr;
541   switch (E->getReceiverKind()) {
542   case ObjCMessageExpr::Instance:
543     ReceiverType = E->getInstanceReceiver()->getType();
544     isClassMessage = ReceiverType->isObjCClassType();
545     if (retainSelf) {
546       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
547                                                    E->getInstanceReceiver());
548       Receiver = ter.getPointer();
549       if (ter.getInt()) retainSelf = false;
550     } else
551       Receiver = EmitScalarExpr(E->getInstanceReceiver());
552     break;
553 
554   case ObjCMessageExpr::Class: {
555     ReceiverType = E->getClassReceiver();
556     OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
557     assert(OID && "Invalid Objective-C class message send");
558     Receiver = Runtime.GetClass(*this, OID);
559     isClassMessage = true;
560     break;
561   }
562 
563   case ObjCMessageExpr::SuperInstance:
564     ReceiverType = E->getSuperType();
565     Receiver = LoadObjCSelf();
566     isSuperMessage = true;
567     break;
568 
569   case ObjCMessageExpr::SuperClass:
570     ReceiverType = E->getSuperType();
571     Receiver = LoadObjCSelf();
572     isSuperMessage = true;
573     isClassMessage = true;
574     break;
575   }
576 
577   if (retainSelf)
578     Receiver = EmitARCRetainNonBlock(Receiver);
579 
580   // In ARC, we sometimes want to "extend the lifetime"
581   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
582   // messages.
583   if (getLangOpts().ObjCAutoRefCount && method &&
584       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
585       shouldExtendReceiverForInnerPointerMessage(E))
586     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
587 
588   QualType ResultType = method ? method->getReturnType() : E->getType();
589 
590   CallArgList Args;
591   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
592 
593   // For delegate init calls in ARC, do an unsafe store of null into
594   // self.  This represents the call taking direct ownership of that
595   // value.  We have to do this after emitting the other call
596   // arguments because they might also reference self, but we don't
597   // have to worry about any of them modifying self because that would
598   // be an undefined read and write of an object in unordered
599   // expressions.
600   if (isDelegateInit) {
601     assert(getLangOpts().ObjCAutoRefCount &&
602            "delegate init calls should only be marked in ARC");
603 
604     // Do an unsafe store of null into self.
605     Address selfAddr =
606       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
607     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
608   }
609 
610   RValue result;
611   if (isSuperMessage) {
612     // super is only valid in an Objective-C method
613     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
614     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
615     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
616                                               E->getSelector(),
617                                               OMD->getClassInterface(),
618                                               isCategoryImpl,
619                                               Receiver,
620                                               isClassMessage,
621                                               Args,
622                                               method);
623   } else {
624     // Call runtime methods directly if we can.
625     result = Runtime.GeneratePossiblySpecializedMessageSend(
626         *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
627         method, isClassMessage);
628   }
629 
630   // For delegate init calls in ARC, implicitly store the result of
631   // the call back into self.  This takes ownership of the value.
632   if (isDelegateInit) {
633     Address selfAddr =
634       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
635     llvm::Value *newSelf = result.getScalarVal();
636 
637     // The delegate return type isn't necessarily a matching type; in
638     // fact, it's quite likely to be 'id'.
639     llvm::Type *selfTy = selfAddr.getElementType();
640     newSelf = Builder.CreateBitCast(newSelf, selfTy);
641 
642     Builder.CreateStore(newSelf, selfAddr);
643   }
644 
645   return AdjustObjCObjectType(*this, E->getType(), result);
646 }
647 
648 namespace {
649 struct FinishARCDealloc final : EHScopeStack::Cleanup {
650   void Emit(CodeGenFunction &CGF, Flags flags) override {
651     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
652 
653     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
654     const ObjCInterfaceDecl *iface = impl->getClassInterface();
655     if (!iface->getSuperClass()) return;
656 
657     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
658 
659     // Call [super dealloc] if we have a superclass.
660     llvm::Value *self = CGF.LoadObjCSelf();
661 
662     CallArgList args;
663     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
664                                                       CGF.getContext().VoidTy,
665                                                       method->getSelector(),
666                                                       iface,
667                                                       isCategory,
668                                                       self,
669                                                       /*is class msg*/ false,
670                                                       args,
671                                                       method);
672   }
673 };
674 }
675 
676 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
677 /// the LLVM function and sets the other context used by
678 /// CodeGenFunction.
679 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
680                                       const ObjCContainerDecl *CD) {
681   SourceLocation StartLoc = OMD->getBeginLoc();
682   FunctionArgList args;
683   // Check if we should generate debug info for this method.
684   if (OMD->hasAttr<NoDebugAttr>())
685     DebugInfo = nullptr; // disable debug info indefinitely for this function
686 
687   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
688 
689   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
690   if (OMD->isDirectMethod()) {
691     Fn->setVisibility(llvm::Function::HiddenVisibility);
692     CGM.SetLLVMFunctionAttributes(OMD, FI, Fn);
693     CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
694   } else {
695     CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
696   }
697 
698   args.push_back(OMD->getSelfDecl());
699   args.push_back(OMD->getCmdDecl());
700 
701   args.append(OMD->param_begin(), OMD->param_end());
702 
703   CurGD = OMD;
704   CurEHLocation = OMD->getEndLoc();
705 
706   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
707                 OMD->getLocation(), StartLoc);
708 
709   if (OMD->isDirectMethod()) {
710     // This function is a direct call, it has to implement a nil check
711     // on entry.
712     //
713     // TODO: possibly have several entry points to elide the check
714     CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
715   }
716 
717   // In ARC, certain methods get an extra cleanup.
718   if (CGM.getLangOpts().ObjCAutoRefCount &&
719       OMD->isInstanceMethod() &&
720       OMD->getSelector().isUnarySelector()) {
721     const IdentifierInfo *ident =
722       OMD->getSelector().getIdentifierInfoForSlot(0);
723     if (ident->isStr("dealloc"))
724       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
725   }
726 }
727 
728 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
729                                               LValue lvalue, QualType type);
730 
731 /// Generate an Objective-C method.  An Objective-C method is a C function with
732 /// its pointer, name, and types registered in the class structure.
733 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
734   StartObjCMethod(OMD, OMD->getClassInterface());
735   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
736   assert(isa<CompoundStmt>(OMD->getBody()));
737   incrementProfileCounter(OMD->getBody());
738   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
739   FinishFunction(OMD->getBodyRBrace());
740 }
741 
742 /// emitStructGetterCall - Call the runtime function to load a property
743 /// into the return value slot.
744 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
745                                  bool isAtomic, bool hasStrong) {
746   ASTContext &Context = CGF.getContext();
747 
748   Address src =
749       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
750           .getAddress(CGF);
751 
752   // objc_copyStruct (ReturnValue, &structIvar,
753   //                  sizeof (Type of Ivar), isAtomic, false);
754   CallArgList args;
755 
756   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
757   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
758 
759   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
760   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
761 
762   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
763   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
764   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
765   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
766 
767   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
768   CGCallee callee = CGCallee::forDirect(fn);
769   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
770                callee, ReturnValueSlot(), args);
771 }
772 
773 /// Determine whether the given architecture supports unaligned atomic
774 /// accesses.  They don't have to be fast, just faster than a function
775 /// call and a mutex.
776 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
777   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
778   // currently supported by the backend.)
779   return 0;
780 }
781 
782 /// Return the maximum size that permits atomic accesses for the given
783 /// architecture.
784 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
785                                         llvm::Triple::ArchType arch) {
786   // ARM has 8-byte atomic accesses, but it's not clear whether we
787   // want to rely on them here.
788 
789   // In the default case, just assume that any size up to a pointer is
790   // fine given adequate alignment.
791   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
792 }
793 
794 namespace {
795   class PropertyImplStrategy {
796   public:
797     enum StrategyKind {
798       /// The 'native' strategy is to use the architecture's provided
799       /// reads and writes.
800       Native,
801 
802       /// Use objc_setProperty and objc_getProperty.
803       GetSetProperty,
804 
805       /// Use objc_setProperty for the setter, but use expression
806       /// evaluation for the getter.
807       SetPropertyAndExpressionGet,
808 
809       /// Use objc_copyStruct.
810       CopyStruct,
811 
812       /// The 'expression' strategy is to emit normal assignment or
813       /// lvalue-to-rvalue expressions.
814       Expression
815     };
816 
817     StrategyKind getKind() const { return StrategyKind(Kind); }
818 
819     bool hasStrongMember() const { return HasStrong; }
820     bool isAtomic() const { return IsAtomic; }
821     bool isCopy() const { return IsCopy; }
822 
823     CharUnits getIvarSize() const { return IvarSize; }
824     CharUnits getIvarAlignment() const { return IvarAlignment; }
825 
826     PropertyImplStrategy(CodeGenModule &CGM,
827                          const ObjCPropertyImplDecl *propImpl);
828 
829   private:
830     unsigned Kind : 8;
831     unsigned IsAtomic : 1;
832     unsigned IsCopy : 1;
833     unsigned HasStrong : 1;
834 
835     CharUnits IvarSize;
836     CharUnits IvarAlignment;
837   };
838 }
839 
840 /// Pick an implementation strategy for the given property synthesis.
841 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
842                                      const ObjCPropertyImplDecl *propImpl) {
843   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
844   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
845 
846   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
847   IsAtomic = prop->isAtomic();
848   HasStrong = false; // doesn't matter here.
849 
850   // Evaluate the ivar's size and alignment.
851   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
852   QualType ivarType = ivar->getType();
853   std::tie(IvarSize, IvarAlignment) =
854       CGM.getContext().getTypeInfoInChars(ivarType);
855 
856   // If we have a copy property, we always have to use getProperty/setProperty.
857   // TODO: we could actually use setProperty and an expression for non-atomics.
858   if (IsCopy) {
859     Kind = GetSetProperty;
860     return;
861   }
862 
863   // Handle retain.
864   if (setterKind == ObjCPropertyDecl::Retain) {
865     // In GC-only, there's nothing special that needs to be done.
866     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
867       // fallthrough
868 
869     // In ARC, if the property is non-atomic, use expression emission,
870     // which translates to objc_storeStrong.  This isn't required, but
871     // it's slightly nicer.
872     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
873       // Using standard expression emission for the setter is only
874       // acceptable if the ivar is __strong, which won't be true if
875       // the property is annotated with __attribute__((NSObject)).
876       // TODO: falling all the way back to objc_setProperty here is
877       // just laziness, though;  we could still use objc_storeStrong
878       // if we hacked it right.
879       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
880         Kind = Expression;
881       else
882         Kind = SetPropertyAndExpressionGet;
883       return;
884 
885     // Otherwise, we need to at least use setProperty.  However, if
886     // the property isn't atomic, we can use normal expression
887     // emission for the getter.
888     } else if (!IsAtomic) {
889       Kind = SetPropertyAndExpressionGet;
890       return;
891 
892     // Otherwise, we have to use both setProperty and getProperty.
893     } else {
894       Kind = GetSetProperty;
895       return;
896     }
897   }
898 
899   // If we're not atomic, just use expression accesses.
900   if (!IsAtomic) {
901     Kind = Expression;
902     return;
903   }
904 
905   // Properties on bitfield ivars need to be emitted using expression
906   // accesses even if they're nominally atomic.
907   if (ivar->isBitField()) {
908     Kind = Expression;
909     return;
910   }
911 
912   // GC-qualified or ARC-qualified ivars need to be emitted as
913   // expressions.  This actually works out to being atomic anyway,
914   // except for ARC __strong, but that should trigger the above code.
915   if (ivarType.hasNonTrivialObjCLifetime() ||
916       (CGM.getLangOpts().getGC() &&
917        CGM.getContext().getObjCGCAttrKind(ivarType))) {
918     Kind = Expression;
919     return;
920   }
921 
922   // Compute whether the ivar has strong members.
923   if (CGM.getLangOpts().getGC())
924     if (const RecordType *recordType = ivarType->getAs<RecordType>())
925       HasStrong = recordType->getDecl()->hasObjectMember();
926 
927   // We can never access structs with object members with a native
928   // access, because we need to use write barriers.  This is what
929   // objc_copyStruct is for.
930   if (HasStrong) {
931     Kind = CopyStruct;
932     return;
933   }
934 
935   // Otherwise, this is target-dependent and based on the size and
936   // alignment of the ivar.
937 
938   // If the size of the ivar is not a power of two, give up.  We don't
939   // want to get into the business of doing compare-and-swaps.
940   if (!IvarSize.isPowerOfTwo()) {
941     Kind = CopyStruct;
942     return;
943   }
944 
945   llvm::Triple::ArchType arch =
946     CGM.getTarget().getTriple().getArch();
947 
948   // Most architectures require memory to fit within a single cache
949   // line, so the alignment has to be at least the size of the access.
950   // Otherwise we have to grab a lock.
951   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
952     Kind = CopyStruct;
953     return;
954   }
955 
956   // If the ivar's size exceeds the architecture's maximum atomic
957   // access size, we have to use CopyStruct.
958   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
959     Kind = CopyStruct;
960     return;
961   }
962 
963   // Otherwise, we can use native loads and stores.
964   Kind = Native;
965 }
966 
967 /// Generate an Objective-C property getter function.
968 ///
969 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
970 /// is illegal within a category.
971 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
972                                          const ObjCPropertyImplDecl *PID) {
973   llvm::Constant *AtomicHelperFn =
974       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
975   ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
976   assert(OMD && "Invalid call to generate getter (empty method)");
977   StartObjCMethod(OMD, IMP->getClassInterface());
978 
979   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
980 
981   FinishFunction(OMD->getEndLoc());
982 }
983 
984 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
985   const Expr *getter = propImpl->getGetterCXXConstructor();
986   if (!getter) return true;
987 
988   // Sema only makes only of these when the ivar has a C++ class type,
989   // so the form is pretty constrained.
990 
991   // If the property has a reference type, we might just be binding a
992   // reference, in which case the result will be a gl-value.  We should
993   // treat this as a non-trivial operation.
994   if (getter->isGLValue())
995     return false;
996 
997   // If we selected a trivial copy-constructor, we're okay.
998   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
999     return (construct->getConstructor()->isTrivial());
1000 
1001   // The constructor might require cleanups (in which case it's never
1002   // trivial).
1003   assert(isa<ExprWithCleanups>(getter));
1004   return false;
1005 }
1006 
1007 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1008 /// copy the ivar into the resturn slot.
1009 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1010                                           llvm::Value *returnAddr,
1011                                           ObjCIvarDecl *ivar,
1012                                           llvm::Constant *AtomicHelperFn) {
1013   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1014   //                           AtomicHelperFn);
1015   CallArgList args;
1016 
1017   // The 1st argument is the return Slot.
1018   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1019 
1020   // The 2nd argument is the address of the ivar.
1021   llvm::Value *ivarAddr =
1022       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1023           .getPointer(CGF);
1024   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1025   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1026 
1027   // Third argument is the helper function.
1028   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1029 
1030   llvm::FunctionCallee copyCppAtomicObjectFn =
1031       CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1032   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1033   CGF.EmitCall(
1034       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1035                callee, ReturnValueSlot(), args);
1036 }
1037 
1038 void
1039 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1040                                         const ObjCPropertyImplDecl *propImpl,
1041                                         const ObjCMethodDecl *GetterMethodDecl,
1042                                         llvm::Constant *AtomicHelperFn) {
1043   // If there's a non-trivial 'get' expression, we just have to emit that.
1044   if (!hasTrivialGetExpr(propImpl)) {
1045     if (!AtomicHelperFn) {
1046       auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1047                                      propImpl->getGetterCXXConstructor(),
1048                                      /* NRVOCandidate=*/nullptr);
1049       EmitReturnStmt(*ret);
1050     }
1051     else {
1052       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1053       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1054                                     ivar, AtomicHelperFn);
1055     }
1056     return;
1057   }
1058 
1059   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1060   QualType propType = prop->getType();
1061   ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1062 
1063   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1064 
1065   // Pick an implementation strategy.
1066   PropertyImplStrategy strategy(CGM, propImpl);
1067   switch (strategy.getKind()) {
1068   case PropertyImplStrategy::Native: {
1069     // We don't need to do anything for a zero-size struct.
1070     if (strategy.getIvarSize().isZero())
1071       return;
1072 
1073     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1074 
1075     // Currently, all atomic accesses have to be through integer
1076     // types, so there's no point in trying to pick a prettier type.
1077     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1078     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1079     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1080 
1081     // Perform an atomic load.  This does not impose ordering constraints.
1082     Address ivarAddr = LV.getAddress(*this);
1083     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1084     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1085     load->setAtomic(llvm::AtomicOrdering::Unordered);
1086 
1087     // Store that value into the return address.  Doing this with a
1088     // bitcast is likely to produce some pretty ugly IR, but it's not
1089     // the *most* terrible thing in the world.
1090     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1091     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1092     llvm::Value *ivarVal = load;
1093     if (ivarSize > retTySize) {
1094       llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1095       ivarVal = Builder.CreateTrunc(load, newTy);
1096       bitcastType = newTy->getPointerTo();
1097     }
1098     Builder.CreateStore(ivarVal,
1099                         Builder.CreateBitCast(ReturnValue, bitcastType));
1100 
1101     // Make sure we don't do an autorelease.
1102     AutoreleaseResult = false;
1103     return;
1104   }
1105 
1106   case PropertyImplStrategy::GetSetProperty: {
1107     llvm::FunctionCallee getPropertyFn =
1108         CGM.getObjCRuntime().GetPropertyGetFunction();
1109     if (!getPropertyFn) {
1110       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1111       return;
1112     }
1113     CGCallee callee = CGCallee::forDirect(getPropertyFn);
1114 
1115     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1116     // FIXME: Can't this be simpler? This might even be worse than the
1117     // corresponding gcc code.
1118     llvm::Value *cmd =
1119       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1120     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1121     llvm::Value *ivarOffset =
1122       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1123 
1124     CallArgList args;
1125     args.add(RValue::get(self), getContext().getObjCIdType());
1126     args.add(RValue::get(cmd), getContext().getObjCSelType());
1127     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1128     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1129              getContext().BoolTy);
1130 
1131     // FIXME: We shouldn't need to get the function info here, the
1132     // runtime already should have computed it to build the function.
1133     llvm::CallBase *CallInstruction;
1134     RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1135                              getContext().getObjCIdType(), args),
1136                          callee, ReturnValueSlot(), args, &CallInstruction);
1137     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1138       call->setTailCall();
1139 
1140     // We need to fix the type here. Ivars with copy & retain are
1141     // always objects so we don't need to worry about complex or
1142     // aggregates.
1143     RV = RValue::get(Builder.CreateBitCast(
1144         RV.getScalarVal(),
1145         getTypes().ConvertType(getterMethod->getReturnType())));
1146 
1147     EmitReturnOfRValue(RV, propType);
1148 
1149     // objc_getProperty does an autorelease, so we should suppress ours.
1150     AutoreleaseResult = false;
1151 
1152     return;
1153   }
1154 
1155   case PropertyImplStrategy::CopyStruct:
1156     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1157                          strategy.hasStrongMember());
1158     return;
1159 
1160   case PropertyImplStrategy::Expression:
1161   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1162     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1163 
1164     QualType ivarType = ivar->getType();
1165     switch (getEvaluationKind(ivarType)) {
1166     case TEK_Complex: {
1167       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1168       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1169                          /*init*/ true);
1170       return;
1171     }
1172     case TEK_Aggregate: {
1173       // The return value slot is guaranteed to not be aliased, but
1174       // that's not necessarily the same as "on the stack", so
1175       // we still potentially need objc_memmove_collectable.
1176       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1177                         /* Src= */ LV, ivarType, getOverlapForReturnValue());
1178       return;
1179     }
1180     case TEK_Scalar: {
1181       llvm::Value *value;
1182       if (propType->isReferenceType()) {
1183         value = LV.getAddress(*this).getPointer();
1184       } else {
1185         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1186         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1187           if (getLangOpts().ObjCAutoRefCount) {
1188             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1189           } else {
1190             value = EmitARCLoadWeak(LV.getAddress(*this));
1191           }
1192 
1193         // Otherwise we want to do a simple load, suppressing the
1194         // final autorelease.
1195         } else {
1196           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1197           AutoreleaseResult = false;
1198         }
1199 
1200         value = Builder.CreateBitCast(
1201             value, ConvertType(GetterMethodDecl->getReturnType()));
1202       }
1203 
1204       EmitReturnOfRValue(RValue::get(value), propType);
1205       return;
1206     }
1207     }
1208     llvm_unreachable("bad evaluation kind");
1209   }
1210 
1211   }
1212   llvm_unreachable("bad @property implementation strategy!");
1213 }
1214 
1215 /// emitStructSetterCall - Call the runtime function to store the value
1216 /// from the first formal parameter into the given ivar.
1217 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1218                                  ObjCIvarDecl *ivar) {
1219   // objc_copyStruct (&structIvar, &Arg,
1220   //                  sizeof (struct something), true, false);
1221   CallArgList args;
1222 
1223   // The first argument is the address of the ivar.
1224   llvm::Value *ivarAddr =
1225       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1226           .getPointer(CGF);
1227   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1228   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1229 
1230   // The second argument is the address of the parameter variable.
1231   ParmVarDecl *argVar = *OMD->param_begin();
1232   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1233                      argVar->getType().getNonReferenceType(), VK_LValue,
1234                      SourceLocation());
1235   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1236   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1237   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1238 
1239   // The third argument is the sizeof the type.
1240   llvm::Value *size =
1241     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1242   args.add(RValue::get(size), CGF.getContext().getSizeType());
1243 
1244   // The fourth argument is the 'isAtomic' flag.
1245   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1246 
1247   // The fifth argument is the 'hasStrong' flag.
1248   // FIXME: should this really always be false?
1249   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1250 
1251   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1252   CGCallee callee = CGCallee::forDirect(fn);
1253   CGF.EmitCall(
1254       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1255                callee, ReturnValueSlot(), args);
1256 }
1257 
1258 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1259 /// the value from the first formal parameter into the given ivar, using
1260 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1261 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1262                                           ObjCMethodDecl *OMD,
1263                                           ObjCIvarDecl *ivar,
1264                                           llvm::Constant *AtomicHelperFn) {
1265   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1266   //                           AtomicHelperFn);
1267   CallArgList args;
1268 
1269   // The first argument is the address of the ivar.
1270   llvm::Value *ivarAddr =
1271       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1272           .getPointer(CGF);
1273   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1274   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1275 
1276   // The second argument is the address of the parameter variable.
1277   ParmVarDecl *argVar = *OMD->param_begin();
1278   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1279                      argVar->getType().getNonReferenceType(), VK_LValue,
1280                      SourceLocation());
1281   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1282   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1283   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1284 
1285   // Third argument is the helper function.
1286   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1287 
1288   llvm::FunctionCallee fn =
1289       CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1290   CGCallee callee = CGCallee::forDirect(fn);
1291   CGF.EmitCall(
1292       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1293                callee, ReturnValueSlot(), args);
1294 }
1295 
1296 
1297 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1298   Expr *setter = PID->getSetterCXXAssignment();
1299   if (!setter) return true;
1300 
1301   // Sema only makes only of these when the ivar has a C++ class type,
1302   // so the form is pretty constrained.
1303 
1304   // An operator call is trivial if the function it calls is trivial.
1305   // This also implies that there's nothing non-trivial going on with
1306   // the arguments, because operator= can only be trivial if it's a
1307   // synthesized assignment operator and therefore both parameters are
1308   // references.
1309   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1310     if (const FunctionDecl *callee
1311           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1312       if (callee->isTrivial())
1313         return true;
1314     return false;
1315   }
1316 
1317   assert(isa<ExprWithCleanups>(setter));
1318   return false;
1319 }
1320 
1321 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1322   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1323     return false;
1324   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1325 }
1326 
1327 void
1328 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1329                                         const ObjCPropertyImplDecl *propImpl,
1330                                         llvm::Constant *AtomicHelperFn) {
1331   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1332   ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1333 
1334   // Just use the setter expression if Sema gave us one and it's
1335   // non-trivial.
1336   if (!hasTrivialSetExpr(propImpl)) {
1337     if (!AtomicHelperFn)
1338       // If non-atomic, assignment is called directly.
1339       EmitStmt(propImpl->getSetterCXXAssignment());
1340     else
1341       // If atomic, assignment is called via a locking api.
1342       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1343                                     AtomicHelperFn);
1344     return;
1345   }
1346 
1347   PropertyImplStrategy strategy(CGM, propImpl);
1348   switch (strategy.getKind()) {
1349   case PropertyImplStrategy::Native: {
1350     // We don't need to do anything for a zero-size struct.
1351     if (strategy.getIvarSize().isZero())
1352       return;
1353 
1354     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1355 
1356     LValue ivarLValue =
1357       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1358     Address ivarAddr = ivarLValue.getAddress(*this);
1359 
1360     // Currently, all atomic accesses have to be through integer
1361     // types, so there's no point in trying to pick a prettier type.
1362     llvm::Type *bitcastType =
1363       llvm::Type::getIntNTy(getLLVMContext(),
1364                             getContext().toBits(strategy.getIvarSize()));
1365 
1366     // Cast both arguments to the chosen operation type.
1367     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1368     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1369 
1370     // This bitcast load is likely to cause some nasty IR.
1371     llvm::Value *load = Builder.CreateLoad(argAddr);
1372 
1373     // Perform an atomic store.  There are no memory ordering requirements.
1374     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1375     store->setAtomic(llvm::AtomicOrdering::Unordered);
1376     return;
1377   }
1378 
1379   case PropertyImplStrategy::GetSetProperty:
1380   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1381 
1382     llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1383     llvm::FunctionCallee setPropertyFn = nullptr;
1384     if (UseOptimizedSetter(CGM)) {
1385       // 10.8 and iOS 6.0 code and GC is off
1386       setOptimizedPropertyFn =
1387           CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1388               strategy.isAtomic(), strategy.isCopy());
1389       if (!setOptimizedPropertyFn) {
1390         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1391         return;
1392       }
1393     }
1394     else {
1395       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1396       if (!setPropertyFn) {
1397         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1398         return;
1399       }
1400     }
1401 
1402     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1403     //                       <is-atomic>, <is-copy>).
1404     llvm::Value *cmd =
1405       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1406     llvm::Value *self =
1407       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1408     llvm::Value *ivarOffset =
1409       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1410     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1411     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1412     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1413 
1414     CallArgList args;
1415     args.add(RValue::get(self), getContext().getObjCIdType());
1416     args.add(RValue::get(cmd), getContext().getObjCSelType());
1417     if (setOptimizedPropertyFn) {
1418       args.add(RValue::get(arg), getContext().getObjCIdType());
1419       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1420       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1421       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1422                callee, ReturnValueSlot(), args);
1423     } else {
1424       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1425       args.add(RValue::get(arg), getContext().getObjCIdType());
1426       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1427                getContext().BoolTy);
1428       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1429                getContext().BoolTy);
1430       // FIXME: We shouldn't need to get the function info here, the runtime
1431       // already should have computed it to build the function.
1432       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1433       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1434                callee, ReturnValueSlot(), args);
1435     }
1436 
1437     return;
1438   }
1439 
1440   case PropertyImplStrategy::CopyStruct:
1441     emitStructSetterCall(*this, setterMethod, ivar);
1442     return;
1443 
1444   case PropertyImplStrategy::Expression:
1445     break;
1446   }
1447 
1448   // Otherwise, fake up some ASTs and emit a normal assignment.
1449   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1450   DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1451                    VK_LValue, SourceLocation());
1452   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1453                             CK_LValueToRValue, &self, VK_RValue,
1454                             FPOptionsOverride());
1455   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1456                           SourceLocation(), SourceLocation(),
1457                           &selfLoad, true, true);
1458 
1459   ParmVarDecl *argDecl = *setterMethod->param_begin();
1460   QualType argType = argDecl->getType().getNonReferenceType();
1461   DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1462                   SourceLocation());
1463   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1464                            argType.getUnqualifiedType(), CK_LValueToRValue,
1465                            &arg, VK_RValue, FPOptionsOverride());
1466 
1467   // The property type can differ from the ivar type in some situations with
1468   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1469   // The following absurdity is just to ensure well-formed IR.
1470   CastKind argCK = CK_NoOp;
1471   if (ivarRef.getType()->isObjCObjectPointerType()) {
1472     if (argLoad.getType()->isObjCObjectPointerType())
1473       argCK = CK_BitCast;
1474     else if (argLoad.getType()->isBlockPointerType())
1475       argCK = CK_BlockPointerToObjCPointerCast;
1476     else
1477       argCK = CK_CPointerToObjCPointerCast;
1478   } else if (ivarRef.getType()->isBlockPointerType()) {
1479      if (argLoad.getType()->isBlockPointerType())
1480       argCK = CK_BitCast;
1481     else
1482       argCK = CK_AnyPointerToBlockPointerCast;
1483   } else if (ivarRef.getType()->isPointerType()) {
1484     argCK = CK_BitCast;
1485   }
1486   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1487                            &argLoad, VK_RValue, FPOptionsOverride());
1488   Expr *finalArg = &argLoad;
1489   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1490                                            argLoad.getType()))
1491     finalArg = &argCast;
1492 
1493   BinaryOperator *assign = BinaryOperator::Create(
1494       getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), VK_RValue,
1495       OK_Ordinary, SourceLocation(), FPOptionsOverride());
1496   EmitStmt(assign);
1497 }
1498 
1499 /// Generate an Objective-C property setter function.
1500 ///
1501 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1502 /// is illegal within a category.
1503 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1504                                          const ObjCPropertyImplDecl *PID) {
1505   llvm::Constant *AtomicHelperFn =
1506       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1507   ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1508   assert(OMD && "Invalid call to generate setter (empty method)");
1509   StartObjCMethod(OMD, IMP->getClassInterface());
1510 
1511   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1512 
1513   FinishFunction(OMD->getEndLoc());
1514 }
1515 
1516 namespace {
1517   struct DestroyIvar final : EHScopeStack::Cleanup {
1518   private:
1519     llvm::Value *addr;
1520     const ObjCIvarDecl *ivar;
1521     CodeGenFunction::Destroyer *destroyer;
1522     bool useEHCleanupForArray;
1523   public:
1524     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1525                 CodeGenFunction::Destroyer *destroyer,
1526                 bool useEHCleanupForArray)
1527       : addr(addr), ivar(ivar), destroyer(destroyer),
1528         useEHCleanupForArray(useEHCleanupForArray) {}
1529 
1530     void Emit(CodeGenFunction &CGF, Flags flags) override {
1531       LValue lvalue
1532         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1533       CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1534                       flags.isForNormalCleanup() && useEHCleanupForArray);
1535     }
1536   };
1537 }
1538 
1539 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1540 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1541                                       Address addr,
1542                                       QualType type) {
1543   llvm::Value *null = getNullForVariable(addr);
1544   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1545 }
1546 
1547 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1548                                   ObjCImplementationDecl *impl) {
1549   CodeGenFunction::RunCleanupsScope scope(CGF);
1550 
1551   llvm::Value *self = CGF.LoadObjCSelf();
1552 
1553   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1554   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1555        ivar; ivar = ivar->getNextIvar()) {
1556     QualType type = ivar->getType();
1557 
1558     // Check whether the ivar is a destructible type.
1559     QualType::DestructionKind dtorKind = type.isDestructedType();
1560     if (!dtorKind) continue;
1561 
1562     CodeGenFunction::Destroyer *destroyer = nullptr;
1563 
1564     // Use a call to objc_storeStrong to destroy strong ivars, for the
1565     // general benefit of the tools.
1566     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1567       destroyer = destroyARCStrongWithStore;
1568 
1569     // Otherwise use the default for the destruction kind.
1570     } else {
1571       destroyer = CGF.getDestroyer(dtorKind);
1572     }
1573 
1574     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1575 
1576     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1577                                          cleanupKind & EHCleanup);
1578   }
1579 
1580   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1581 }
1582 
1583 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1584                                                  ObjCMethodDecl *MD,
1585                                                  bool ctor) {
1586   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1587   StartObjCMethod(MD, IMP->getClassInterface());
1588 
1589   // Emit .cxx_construct.
1590   if (ctor) {
1591     // Suppress the final autorelease in ARC.
1592     AutoreleaseResult = false;
1593 
1594     for (const auto *IvarInit : IMP->inits()) {
1595       FieldDecl *Field = IvarInit->getAnyMember();
1596       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1597       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1598                                     LoadObjCSelf(), Ivar, 0);
1599       EmitAggExpr(IvarInit->getInit(),
1600                   AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1601                                           AggValueSlot::DoesNotNeedGCBarriers,
1602                                           AggValueSlot::IsNotAliased,
1603                                           AggValueSlot::DoesNotOverlap));
1604     }
1605     // constructor returns 'self'.
1606     CodeGenTypes &Types = CGM.getTypes();
1607     QualType IdTy(CGM.getContext().getObjCIdType());
1608     llvm::Value *SelfAsId =
1609       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1610     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1611 
1612   // Emit .cxx_destruct.
1613   } else {
1614     emitCXXDestructMethod(*this, IMP);
1615   }
1616   FinishFunction();
1617 }
1618 
1619 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1620   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1621   DeclRefExpr DRE(getContext(), Self,
1622                   /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1623                   Self->getType(), VK_LValue, SourceLocation());
1624   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1625 }
1626 
1627 QualType CodeGenFunction::TypeOfSelfObject() {
1628   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1629   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1630   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1631     getContext().getCanonicalType(selfDecl->getType()));
1632   return PTy->getPointeeType();
1633 }
1634 
1635 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1636   llvm::FunctionCallee EnumerationMutationFnPtr =
1637       CGM.getObjCRuntime().EnumerationMutationFunction();
1638   if (!EnumerationMutationFnPtr) {
1639     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1640     return;
1641   }
1642   CGCallee EnumerationMutationFn =
1643     CGCallee::forDirect(EnumerationMutationFnPtr);
1644 
1645   CGDebugInfo *DI = getDebugInfo();
1646   if (DI)
1647     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1648 
1649   RunCleanupsScope ForScope(*this);
1650 
1651   // The local variable comes into scope immediately.
1652   AutoVarEmission variable = AutoVarEmission::invalid();
1653   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1654     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1655 
1656   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1657 
1658   // Fast enumeration state.
1659   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1660   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1661   EmitNullInitialization(StatePtr, StateTy);
1662 
1663   // Number of elements in the items array.
1664   static const unsigned NumItems = 16;
1665 
1666   // Fetch the countByEnumeratingWithState:objects:count: selector.
1667   IdentifierInfo *II[] = {
1668     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1669     &CGM.getContext().Idents.get("objects"),
1670     &CGM.getContext().Idents.get("count")
1671   };
1672   Selector FastEnumSel =
1673     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1674 
1675   QualType ItemsTy =
1676     getContext().getConstantArrayType(getContext().getObjCIdType(),
1677                                       llvm::APInt(32, NumItems), nullptr,
1678                                       ArrayType::Normal, 0);
1679   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1680 
1681   // Emit the collection pointer.  In ARC, we do a retain.
1682   llvm::Value *Collection;
1683   if (getLangOpts().ObjCAutoRefCount) {
1684     Collection = EmitARCRetainScalarExpr(S.getCollection());
1685 
1686     // Enter a cleanup to do the release.
1687     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1688   } else {
1689     Collection = EmitScalarExpr(S.getCollection());
1690   }
1691 
1692   // The 'continue' label needs to appear within the cleanup for the
1693   // collection object.
1694   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1695 
1696   // Send it our message:
1697   CallArgList Args;
1698 
1699   // The first argument is a temporary of the enumeration-state type.
1700   Args.add(RValue::get(StatePtr.getPointer()),
1701            getContext().getPointerType(StateTy));
1702 
1703   // The second argument is a temporary array with space for NumItems
1704   // pointers.  We'll actually be loading elements from the array
1705   // pointer written into the control state; this buffer is so that
1706   // collections that *aren't* backed by arrays can still queue up
1707   // batches of elements.
1708   Args.add(RValue::get(ItemsPtr.getPointer()),
1709            getContext().getPointerType(ItemsTy));
1710 
1711   // The third argument is the capacity of that temporary array.
1712   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1713   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1714   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1715 
1716   // Start the enumeration.
1717   RValue CountRV =
1718       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1719                                                getContext().getNSUIntegerType(),
1720                                                FastEnumSel, Collection, Args);
1721 
1722   // The initial number of objects that were returned in the buffer.
1723   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1724 
1725   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1726   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1727 
1728   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1729 
1730   // If the limit pointer was zero to begin with, the collection is
1731   // empty; skip all this. Set the branch weight assuming this has the same
1732   // probability of exiting the loop as any other loop exit.
1733   uint64_t EntryCount = getCurrentProfileCount();
1734   Builder.CreateCondBr(
1735       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1736       LoopInitBB,
1737       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1738 
1739   // Otherwise, initialize the loop.
1740   EmitBlock(LoopInitBB);
1741 
1742   // Save the initial mutations value.  This is the value at an
1743   // address that was written into the state object by
1744   // countByEnumeratingWithState:objects:count:.
1745   Address StateMutationsPtrPtr =
1746       Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1747   llvm::Value *StateMutationsPtr
1748     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1749 
1750   llvm::Value *initialMutations =
1751     Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1752                               "forcoll.initial-mutations");
1753 
1754   // Start looping.  This is the point we return to whenever we have a
1755   // fresh, non-empty batch of objects.
1756   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1757   EmitBlock(LoopBodyBB);
1758 
1759   // The current index into the buffer.
1760   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1761   index->addIncoming(zero, LoopInitBB);
1762 
1763   // The current buffer size.
1764   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1765   count->addIncoming(initialBufferLimit, LoopInitBB);
1766 
1767   incrementProfileCounter(&S);
1768 
1769   // Check whether the mutations value has changed from where it was
1770   // at start.  StateMutationsPtr should actually be invariant between
1771   // refreshes.
1772   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1773   llvm::Value *currentMutations
1774     = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1775                                 "statemutations");
1776 
1777   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1778   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1779 
1780   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1781                        WasNotMutatedBB, WasMutatedBB);
1782 
1783   // If so, call the enumeration-mutation function.
1784   EmitBlock(WasMutatedBB);
1785   llvm::Value *V =
1786     Builder.CreateBitCast(Collection,
1787                           ConvertType(getContext().getObjCIdType()));
1788   CallArgList Args2;
1789   Args2.add(RValue::get(V), getContext().getObjCIdType());
1790   // FIXME: We shouldn't need to get the function info here, the runtime already
1791   // should have computed it to build the function.
1792   EmitCall(
1793           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1794            EnumerationMutationFn, ReturnValueSlot(), Args2);
1795 
1796   // Otherwise, or if the mutation function returns, just continue.
1797   EmitBlock(WasNotMutatedBB);
1798 
1799   // Initialize the element variable.
1800   RunCleanupsScope elementVariableScope(*this);
1801   bool elementIsVariable;
1802   LValue elementLValue;
1803   QualType elementType;
1804   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1805     // Initialize the variable, in case it's a __block variable or something.
1806     EmitAutoVarInit(variable);
1807 
1808     const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1809     DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1810                         D->getType(), VK_LValue, SourceLocation());
1811     elementLValue = EmitLValue(&tempDRE);
1812     elementType = D->getType();
1813     elementIsVariable = true;
1814 
1815     if (D->isARCPseudoStrong())
1816       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1817   } else {
1818     elementLValue = LValue(); // suppress warning
1819     elementType = cast<Expr>(S.getElement())->getType();
1820     elementIsVariable = false;
1821   }
1822   llvm::Type *convertedElementType = ConvertType(elementType);
1823 
1824   // Fetch the buffer out of the enumeration state.
1825   // TODO: this pointer should actually be invariant between
1826   // refreshes, which would help us do certain loop optimizations.
1827   Address StateItemsPtr =
1828       Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1829   llvm::Value *EnumStateItems =
1830     Builder.CreateLoad(StateItemsPtr, "stateitems");
1831 
1832   // Fetch the value at the current index from the buffer.
1833   llvm::Value *CurrentItemPtr =
1834     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1835   llvm::Value *CurrentItem =
1836     Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1837 
1838   if (SanOpts.has(SanitizerKind::ObjCCast)) {
1839     // Before using an item from the collection, check that the implicit cast
1840     // from id to the element type is valid. This is done with instrumentation
1841     // roughly corresponding to:
1842     //
1843     //   if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1844     const ObjCObjectPointerType *ObjPtrTy =
1845         elementType->getAsObjCInterfacePointerType();
1846     const ObjCInterfaceType *InterfaceTy =
1847         ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1848     if (InterfaceTy) {
1849       SanitizerScope SanScope(this);
1850       auto &C = CGM.getContext();
1851       assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1852       Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1853       CallArgList IsKindOfClassArgs;
1854       llvm::Value *Cls =
1855           CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1856       IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1857       llvm::Value *IsClass =
1858           CGM.getObjCRuntime()
1859               .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1860                                    IsKindOfClassSel, CurrentItem,
1861                                    IsKindOfClassArgs)
1862               .getScalarVal();
1863       llvm::Constant *StaticData[] = {
1864           EmitCheckSourceLocation(S.getBeginLoc()),
1865           EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1866       EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1867                 SanitizerHandler::InvalidObjCCast,
1868                 ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1869     }
1870   }
1871 
1872   // Cast that value to the right type.
1873   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1874                                       "currentitem");
1875 
1876   // Make sure we have an l-value.  Yes, this gets evaluated every
1877   // time through the loop.
1878   if (!elementIsVariable) {
1879     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1880     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1881   } else {
1882     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1883                            /*isInit*/ true);
1884   }
1885 
1886   // If we do have an element variable, this assignment is the end of
1887   // its initialization.
1888   if (elementIsVariable)
1889     EmitAutoVarCleanups(variable);
1890 
1891   // Perform the loop body, setting up break and continue labels.
1892   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1893   {
1894     RunCleanupsScope Scope(*this);
1895     EmitStmt(S.getBody());
1896   }
1897   BreakContinueStack.pop_back();
1898 
1899   // Destroy the element variable now.
1900   elementVariableScope.ForceCleanup();
1901 
1902   // Check whether there are more elements.
1903   EmitBlock(AfterBody.getBlock());
1904 
1905   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1906 
1907   // First we check in the local buffer.
1908   llvm::Value *indexPlusOne =
1909       Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1910 
1911   // If we haven't overrun the buffer yet, we can continue.
1912   // Set the branch weights based on the simplifying assumption that this is
1913   // like a while-loop, i.e., ignoring that the false branch fetches more
1914   // elements and then returns to the loop.
1915   Builder.CreateCondBr(
1916       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1917       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1918 
1919   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1920   count->addIncoming(count, AfterBody.getBlock());
1921 
1922   // Otherwise, we have to fetch more elements.
1923   EmitBlock(FetchMoreBB);
1924 
1925   CountRV =
1926       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1927                                                getContext().getNSUIntegerType(),
1928                                                FastEnumSel, Collection, Args);
1929 
1930   // If we got a zero count, we're done.
1931   llvm::Value *refetchCount = CountRV.getScalarVal();
1932 
1933   // (note that the message send might split FetchMoreBB)
1934   index->addIncoming(zero, Builder.GetInsertBlock());
1935   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1936 
1937   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1938                        EmptyBB, LoopBodyBB);
1939 
1940   // No more elements.
1941   EmitBlock(EmptyBB);
1942 
1943   if (!elementIsVariable) {
1944     // If the element was not a declaration, set it to be null.
1945 
1946     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1947     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1948     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1949   }
1950 
1951   if (DI)
1952     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1953 
1954   ForScope.ForceCleanup();
1955   EmitBlock(LoopEnd.getBlock());
1956 }
1957 
1958 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1959   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1960 }
1961 
1962 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1963   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1964 }
1965 
1966 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1967                                               const ObjCAtSynchronizedStmt &S) {
1968   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1969 }
1970 
1971 namespace {
1972   struct CallObjCRelease final : EHScopeStack::Cleanup {
1973     CallObjCRelease(llvm::Value *object) : object(object) {}
1974     llvm::Value *object;
1975 
1976     void Emit(CodeGenFunction &CGF, Flags flags) override {
1977       // Releases at the end of the full-expression are imprecise.
1978       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1979     }
1980   };
1981 }
1982 
1983 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1984 /// release at the end of the full-expression.
1985 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1986                                                     llvm::Value *object) {
1987   // If we're in a conditional branch, we need to make the cleanup
1988   // conditional.
1989   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1990   return object;
1991 }
1992 
1993 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1994                                                            llvm::Value *value) {
1995   return EmitARCRetainAutorelease(type, value);
1996 }
1997 
1998 /// Given a number of pointers, inform the optimizer that they're
1999 /// being intrinsically used up until this point in the program.
2000 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2001   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2002   if (!fn)
2003     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2004 
2005   // This isn't really a "runtime" function, but as an intrinsic it
2006   // doesn't really matter as long as we align things up.
2007   EmitNounwindRuntimeCall(fn, values);
2008 }
2009 
2010 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2011   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2012     // If the target runtime doesn't naturally support ARC, emit weak
2013     // references to the runtime support library.  We don't really
2014     // permit this to fail, but we need a particular relocation style.
2015     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2016         !CGM.getTriple().isOSBinFormatCOFF()) {
2017       F->setLinkage(llvm::Function::ExternalWeakLinkage);
2018     }
2019   }
2020 }
2021 
2022 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2023                                          llvm::FunctionCallee RTF) {
2024   setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2025 }
2026 
2027 /// Perform an operation having the signature
2028 ///   i8* (i8*)
2029 /// where a null input causes a no-op and returns null.
2030 static llvm::Value *emitARCValueOperation(
2031     CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2032     llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2033     llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2034   if (isa<llvm::ConstantPointerNull>(value))
2035     return value;
2036 
2037   if (!fn) {
2038     fn = CGF.CGM.getIntrinsic(IntID);
2039     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2040   }
2041 
2042   // Cast the argument to 'id'.
2043   llvm::Type *origType = returnType ? returnType : value->getType();
2044   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2045 
2046   // Call the function.
2047   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2048   call->setTailCallKind(tailKind);
2049 
2050   // Cast the result back to the original type.
2051   return CGF.Builder.CreateBitCast(call, origType);
2052 }
2053 
2054 /// Perform an operation having the following signature:
2055 ///   i8* (i8**)
2056 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2057                                          llvm::Function *&fn,
2058                                          llvm::Intrinsic::ID IntID) {
2059   if (!fn) {
2060     fn = CGF.CGM.getIntrinsic(IntID);
2061     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2062   }
2063 
2064   // Cast the argument to 'id*'.
2065   llvm::Type *origType = addr.getElementType();
2066   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
2067 
2068   // Call the function.
2069   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2070 
2071   // Cast the result back to a dereference of the original type.
2072   if (origType != CGF.Int8PtrTy)
2073     result = CGF.Builder.CreateBitCast(result, origType);
2074 
2075   return result;
2076 }
2077 
2078 /// Perform an operation having the following signature:
2079 ///   i8* (i8**, i8*)
2080 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2081                                           llvm::Value *value,
2082                                           llvm::Function *&fn,
2083                                           llvm::Intrinsic::ID IntID,
2084                                           bool ignored) {
2085   assert(addr.getElementType() == value->getType());
2086 
2087   if (!fn) {
2088     fn = CGF.CGM.getIntrinsic(IntID);
2089     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2090   }
2091 
2092   llvm::Type *origType = value->getType();
2093 
2094   llvm::Value *args[] = {
2095     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2096     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2097   };
2098   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2099 
2100   if (ignored) return nullptr;
2101 
2102   return CGF.Builder.CreateBitCast(result, origType);
2103 }
2104 
2105 /// Perform an operation having the following signature:
2106 ///   void (i8**, i8**)
2107 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2108                                  llvm::Function *&fn,
2109                                  llvm::Intrinsic::ID IntID) {
2110   assert(dst.getType() == src.getType());
2111 
2112   if (!fn) {
2113     fn = CGF.CGM.getIntrinsic(IntID);
2114     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2115   }
2116 
2117   llvm::Value *args[] = {
2118     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2119     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2120   };
2121   CGF.EmitNounwindRuntimeCall(fn, args);
2122 }
2123 
2124 /// Perform an operation having the signature
2125 ///   i8* (i8*)
2126 /// where a null input causes a no-op and returns null.
2127 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2128                                            llvm::Value *value,
2129                                            llvm::Type *returnType,
2130                                            llvm::FunctionCallee &fn,
2131                                            StringRef fnName) {
2132   if (isa<llvm::ConstantPointerNull>(value))
2133     return value;
2134 
2135   if (!fn) {
2136     llvm::FunctionType *fnType =
2137       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2138     fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2139 
2140     // We have Native ARC, so set nonlazybind attribute for performance
2141     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2142       if (fnName == "objc_retain")
2143         f->addFnAttr(llvm::Attribute::NonLazyBind);
2144   }
2145 
2146   // Cast the argument to 'id'.
2147   llvm::Type *origType = returnType ? returnType : value->getType();
2148   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2149 
2150   // Call the function.
2151   llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2152 
2153   // Cast the result back to the original type.
2154   return CGF.Builder.CreateBitCast(Inst, origType);
2155 }
2156 
2157 /// Produce the code to do a retain.  Based on the type, calls one of:
2158 ///   call i8* \@objc_retain(i8* %value)
2159 ///   call i8* \@objc_retainBlock(i8* %value)
2160 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2161   if (type->isBlockPointerType())
2162     return EmitARCRetainBlock(value, /*mandatory*/ false);
2163   else
2164     return EmitARCRetainNonBlock(value);
2165 }
2166 
2167 /// Retain the given object, with normal retain semantics.
2168 ///   call i8* \@objc_retain(i8* %value)
2169 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2170   return emitARCValueOperation(*this, value, nullptr,
2171                                CGM.getObjCEntrypoints().objc_retain,
2172                                llvm::Intrinsic::objc_retain);
2173 }
2174 
2175 /// Retain the given block, with _Block_copy semantics.
2176 ///   call i8* \@objc_retainBlock(i8* %value)
2177 ///
2178 /// \param mandatory - If false, emit the call with metadata
2179 /// indicating that it's okay for the optimizer to eliminate this call
2180 /// if it can prove that the block never escapes except down the stack.
2181 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2182                                                  bool mandatory) {
2183   llvm::Value *result
2184     = emitARCValueOperation(*this, value, nullptr,
2185                             CGM.getObjCEntrypoints().objc_retainBlock,
2186                             llvm::Intrinsic::objc_retainBlock);
2187 
2188   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2189   // tell the optimizer that it doesn't need to do this copy if the
2190   // block doesn't escape, where being passed as an argument doesn't
2191   // count as escaping.
2192   if (!mandatory && isa<llvm::Instruction>(result)) {
2193     llvm::CallInst *call
2194       = cast<llvm::CallInst>(result->stripPointerCasts());
2195     assert(call->getCalledOperand() ==
2196            CGM.getObjCEntrypoints().objc_retainBlock);
2197 
2198     call->setMetadata("clang.arc.copy_on_escape",
2199                       llvm::MDNode::get(Builder.getContext(), None));
2200   }
2201 
2202   return result;
2203 }
2204 
2205 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2206   // Fetch the void(void) inline asm which marks that we're going to
2207   // do something with the autoreleased return value.
2208   llvm::InlineAsm *&marker
2209     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2210   if (!marker) {
2211     StringRef assembly
2212       = CGF.CGM.getTargetCodeGenInfo()
2213            .getARCRetainAutoreleasedReturnValueMarker();
2214 
2215     // If we have an empty assembly string, there's nothing to do.
2216     if (assembly.empty()) {
2217 
2218     // Otherwise, at -O0, build an inline asm that we're going to call
2219     // in a moment.
2220     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2221       llvm::FunctionType *type =
2222         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2223 
2224       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2225 
2226     // If we're at -O1 and above, we don't want to litter the code
2227     // with this marker yet, so leave a breadcrumb for the ARC
2228     // optimizer to pick up.
2229     } else {
2230       const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker";
2231       if (!CGF.CGM.getModule().getModuleFlag(markerKey)) {
2232         auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2233         CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str);
2234       }
2235     }
2236   }
2237 
2238   // Call the marker asm if we made one, which we do only at -O0.
2239   if (marker)
2240     CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2241 }
2242 
2243 /// Retain the given object which is the result of a function call.
2244 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2245 ///
2246 /// Yes, this function name is one character away from a different
2247 /// call with completely different semantics.
2248 llvm::Value *
2249 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2250   emitAutoreleasedReturnValueMarker(*this);
2251   llvm::CallInst::TailCallKind tailKind =
2252       CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail()
2253           ? llvm::CallInst::TCK_NoTail
2254           : llvm::CallInst::TCK_None;
2255   return emitARCValueOperation(
2256       *this, value, nullptr,
2257       CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2258       llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind);
2259 }
2260 
2261 /// Claim a possibly-autoreleased return value at +0.  This is only
2262 /// valid to do in contexts which do not rely on the retain to keep
2263 /// the object valid for all of its uses; for example, when
2264 /// the value is ignored, or when it is being assigned to an
2265 /// __unsafe_unretained variable.
2266 ///
2267 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2268 llvm::Value *
2269 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2270   emitAutoreleasedReturnValueMarker(*this);
2271   llvm::CallInst::TailCallKind tailKind =
2272       CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail()
2273           ? llvm::CallInst::TCK_NoTail
2274           : llvm::CallInst::TCK_None;
2275   return emitARCValueOperation(
2276       *this, value, nullptr,
2277       CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2278       llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue, tailKind);
2279 }
2280 
2281 /// Release the given object.
2282 ///   call void \@objc_release(i8* %value)
2283 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2284                                      ARCPreciseLifetime_t precise) {
2285   if (isa<llvm::ConstantPointerNull>(value)) return;
2286 
2287   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2288   if (!fn) {
2289     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release);
2290     setARCRuntimeFunctionLinkage(CGM, fn);
2291   }
2292 
2293   // Cast the argument to 'id'.
2294   value = Builder.CreateBitCast(value, Int8PtrTy);
2295 
2296   // Call objc_release.
2297   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2298 
2299   if (precise == ARCImpreciseLifetime) {
2300     call->setMetadata("clang.imprecise_release",
2301                       llvm::MDNode::get(Builder.getContext(), None));
2302   }
2303 }
2304 
2305 /// Destroy a __strong variable.
2306 ///
2307 /// At -O0, emit a call to store 'null' into the address;
2308 /// instrumenting tools prefer this because the address is exposed,
2309 /// but it's relatively cumbersome to optimize.
2310 ///
2311 /// At -O1 and above, just load and call objc_release.
2312 ///
2313 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2314 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2315                                            ARCPreciseLifetime_t precise) {
2316   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2317     llvm::Value *null = getNullForVariable(addr);
2318     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2319     return;
2320   }
2321 
2322   llvm::Value *value = Builder.CreateLoad(addr);
2323   EmitARCRelease(value, precise);
2324 }
2325 
2326 /// Store into a strong object.  Always calls this:
2327 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2328 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2329                                                      llvm::Value *value,
2330                                                      bool ignored) {
2331   assert(addr.getElementType() == value->getType());
2332 
2333   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2334   if (!fn) {
2335     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong);
2336     setARCRuntimeFunctionLinkage(CGM, fn);
2337   }
2338 
2339   llvm::Value *args[] = {
2340     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2341     Builder.CreateBitCast(value, Int8PtrTy)
2342   };
2343   EmitNounwindRuntimeCall(fn, args);
2344 
2345   if (ignored) return nullptr;
2346   return value;
2347 }
2348 
2349 /// Store into a strong object.  Sometimes calls this:
2350 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2351 /// Other times, breaks it down into components.
2352 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2353                                                  llvm::Value *newValue,
2354                                                  bool ignored) {
2355   QualType type = dst.getType();
2356   bool isBlock = type->isBlockPointerType();
2357 
2358   // Use a store barrier at -O0 unless this is a block type or the
2359   // lvalue is inadequately aligned.
2360   if (shouldUseFusedARCCalls() &&
2361       !isBlock &&
2362       (dst.getAlignment().isZero() ||
2363        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2364     return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2365   }
2366 
2367   // Otherwise, split it out.
2368 
2369   // Retain the new value.
2370   newValue = EmitARCRetain(type, newValue);
2371 
2372   // Read the old value.
2373   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2374 
2375   // Store.  We do this before the release so that any deallocs won't
2376   // see the old value.
2377   EmitStoreOfScalar(newValue, dst);
2378 
2379   // Finally, release the old value.
2380   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2381 
2382   return newValue;
2383 }
2384 
2385 /// Autorelease the given object.
2386 ///   call i8* \@objc_autorelease(i8* %value)
2387 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2388   return emitARCValueOperation(*this, value, nullptr,
2389                                CGM.getObjCEntrypoints().objc_autorelease,
2390                                llvm::Intrinsic::objc_autorelease);
2391 }
2392 
2393 /// Autorelease the given object.
2394 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2395 llvm::Value *
2396 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2397   return emitARCValueOperation(*this, value, nullptr,
2398                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2399                                llvm::Intrinsic::objc_autoreleaseReturnValue,
2400                                llvm::CallInst::TCK_Tail);
2401 }
2402 
2403 /// Do a fused retain/autorelease of the given object.
2404 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2405 llvm::Value *
2406 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2407   return emitARCValueOperation(*this, value, nullptr,
2408                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2409                              llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2410                                llvm::CallInst::TCK_Tail);
2411 }
2412 
2413 /// Do a fused retain/autorelease of the given object.
2414 ///   call i8* \@objc_retainAutorelease(i8* %value)
2415 /// or
2416 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2417 ///   call i8* \@objc_autorelease(i8* %retain)
2418 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2419                                                        llvm::Value *value) {
2420   if (!type->isBlockPointerType())
2421     return EmitARCRetainAutoreleaseNonBlock(value);
2422 
2423   if (isa<llvm::ConstantPointerNull>(value)) return value;
2424 
2425   llvm::Type *origType = value->getType();
2426   value = Builder.CreateBitCast(value, Int8PtrTy);
2427   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2428   value = EmitARCAutorelease(value);
2429   return Builder.CreateBitCast(value, origType);
2430 }
2431 
2432 /// Do a fused retain/autorelease of the given object.
2433 ///   call i8* \@objc_retainAutorelease(i8* %value)
2434 llvm::Value *
2435 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2436   return emitARCValueOperation(*this, value, nullptr,
2437                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2438                                llvm::Intrinsic::objc_retainAutorelease);
2439 }
2440 
2441 /// i8* \@objc_loadWeak(i8** %addr)
2442 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2443 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2444   return emitARCLoadOperation(*this, addr,
2445                               CGM.getObjCEntrypoints().objc_loadWeak,
2446                               llvm::Intrinsic::objc_loadWeak);
2447 }
2448 
2449 /// i8* \@objc_loadWeakRetained(i8** %addr)
2450 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2451   return emitARCLoadOperation(*this, addr,
2452                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2453                               llvm::Intrinsic::objc_loadWeakRetained);
2454 }
2455 
2456 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2457 /// Returns %value.
2458 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2459                                                llvm::Value *value,
2460                                                bool ignored) {
2461   return emitARCStoreOperation(*this, addr, value,
2462                                CGM.getObjCEntrypoints().objc_storeWeak,
2463                                llvm::Intrinsic::objc_storeWeak, ignored);
2464 }
2465 
2466 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2467 /// Returns %value.  %addr is known to not have a current weak entry.
2468 /// Essentially equivalent to:
2469 ///   *addr = nil; objc_storeWeak(addr, value);
2470 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2471   // If we're initializing to null, just write null to memory; no need
2472   // to get the runtime involved.  But don't do this if optimization
2473   // is enabled, because accounting for this would make the optimizer
2474   // much more complicated.
2475   if (isa<llvm::ConstantPointerNull>(value) &&
2476       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2477     Builder.CreateStore(value, addr);
2478     return;
2479   }
2480 
2481   emitARCStoreOperation(*this, addr, value,
2482                         CGM.getObjCEntrypoints().objc_initWeak,
2483                         llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2484 }
2485 
2486 /// void \@objc_destroyWeak(i8** %addr)
2487 /// Essentially objc_storeWeak(addr, nil).
2488 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2489   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2490   if (!fn) {
2491     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak);
2492     setARCRuntimeFunctionLinkage(CGM, fn);
2493   }
2494 
2495   // Cast the argument to 'id*'.
2496   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2497 
2498   EmitNounwindRuntimeCall(fn, addr.getPointer());
2499 }
2500 
2501 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2502 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2503 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2504 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2505   emitARCCopyOperation(*this, dst, src,
2506                        CGM.getObjCEntrypoints().objc_moveWeak,
2507                        llvm::Intrinsic::objc_moveWeak);
2508 }
2509 
2510 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2511 /// Disregards the current value in %dest.  Essentially
2512 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2513 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2514   emitARCCopyOperation(*this, dst, src,
2515                        CGM.getObjCEntrypoints().objc_copyWeak,
2516                        llvm::Intrinsic::objc_copyWeak);
2517 }
2518 
2519 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2520                                             Address SrcAddr) {
2521   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2522   Object = EmitObjCConsumeObject(Ty, Object);
2523   EmitARCStoreWeak(DstAddr, Object, false);
2524 }
2525 
2526 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2527                                             Address SrcAddr) {
2528   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2529   Object = EmitObjCConsumeObject(Ty, Object);
2530   EmitARCStoreWeak(DstAddr, Object, false);
2531   EmitARCDestroyWeak(SrcAddr);
2532 }
2533 
2534 /// Produce the code to do a objc_autoreleasepool_push.
2535 ///   call i8* \@objc_autoreleasePoolPush(void)
2536 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2537   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2538   if (!fn) {
2539     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush);
2540     setARCRuntimeFunctionLinkage(CGM, fn);
2541   }
2542 
2543   return EmitNounwindRuntimeCall(fn);
2544 }
2545 
2546 /// Produce the code to do a primitive release.
2547 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2548 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2549   assert(value->getType() == Int8PtrTy);
2550 
2551   if (getInvokeDest()) {
2552     // Call the runtime method not the intrinsic if we are handling exceptions
2553     llvm::FunctionCallee &fn =
2554         CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2555     if (!fn) {
2556       llvm::FunctionType *fnType =
2557         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2558       fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2559       setARCRuntimeFunctionLinkage(CGM, fn);
2560     }
2561 
2562     // objc_autoreleasePoolPop can throw.
2563     EmitRuntimeCallOrInvoke(fn, value);
2564   } else {
2565     llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2566     if (!fn) {
2567       fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop);
2568       setARCRuntimeFunctionLinkage(CGM, fn);
2569     }
2570 
2571     EmitRuntimeCall(fn, value);
2572   }
2573 }
2574 
2575 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2576 /// Which is: [[NSAutoreleasePool alloc] init];
2577 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2578 /// init is declared as: - (id) init; in its NSObject super class.
2579 ///
2580 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2581   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2582   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2583   // [NSAutoreleasePool alloc]
2584   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2585   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2586   CallArgList Args;
2587   RValue AllocRV =
2588     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2589                                 getContext().getObjCIdType(),
2590                                 AllocSel, Receiver, Args);
2591 
2592   // [Receiver init]
2593   Receiver = AllocRV.getScalarVal();
2594   II = &CGM.getContext().Idents.get("init");
2595   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2596   RValue InitRV =
2597     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2598                                 getContext().getObjCIdType(),
2599                                 InitSel, Receiver, Args);
2600   return InitRV.getScalarVal();
2601 }
2602 
2603 /// Allocate the given objc object.
2604 ///   call i8* \@objc_alloc(i8* %value)
2605 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2606                                             llvm::Type *resultType) {
2607   return emitObjCValueOperation(*this, value, resultType,
2608                                 CGM.getObjCEntrypoints().objc_alloc,
2609                                 "objc_alloc");
2610 }
2611 
2612 /// Allocate the given objc object.
2613 ///   call i8* \@objc_allocWithZone(i8* %value)
2614 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2615                                                     llvm::Type *resultType) {
2616   return emitObjCValueOperation(*this, value, resultType,
2617                                 CGM.getObjCEntrypoints().objc_allocWithZone,
2618                                 "objc_allocWithZone");
2619 }
2620 
2621 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2622                                                 llvm::Type *resultType) {
2623   return emitObjCValueOperation(*this, value, resultType,
2624                                 CGM.getObjCEntrypoints().objc_alloc_init,
2625                                 "objc_alloc_init");
2626 }
2627 
2628 /// Produce the code to do a primitive release.
2629 /// [tmp drain];
2630 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2631   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2632   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2633   CallArgList Args;
2634   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2635                               getContext().VoidTy, DrainSel, Arg, Args);
2636 }
2637 
2638 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2639                                               Address addr,
2640                                               QualType type) {
2641   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2642 }
2643 
2644 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2645                                                 Address addr,
2646                                                 QualType type) {
2647   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2648 }
2649 
2650 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2651                                      Address addr,
2652                                      QualType type) {
2653   CGF.EmitARCDestroyWeak(addr);
2654 }
2655 
2656 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2657                                           QualType type) {
2658   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2659   CGF.EmitARCIntrinsicUse(value);
2660 }
2661 
2662 /// Autorelease the given object.
2663 ///   call i8* \@objc_autorelease(i8* %value)
2664 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2665                                                   llvm::Type *returnType) {
2666   return emitObjCValueOperation(
2667       *this, value, returnType,
2668       CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2669       "objc_autorelease");
2670 }
2671 
2672 /// Retain the given object, with normal retain semantics.
2673 ///   call i8* \@objc_retain(i8* %value)
2674 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2675                                                      llvm::Type *returnType) {
2676   return emitObjCValueOperation(
2677       *this, value, returnType,
2678       CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2679 }
2680 
2681 /// Release the given object.
2682 ///   call void \@objc_release(i8* %value)
2683 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2684                                       ARCPreciseLifetime_t precise) {
2685   if (isa<llvm::ConstantPointerNull>(value)) return;
2686 
2687   llvm::FunctionCallee &fn =
2688       CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2689   if (!fn) {
2690     llvm::FunctionType *fnType =
2691         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2692     fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2693     setARCRuntimeFunctionLinkage(CGM, fn);
2694     // We have Native ARC, so set nonlazybind attribute for performance
2695     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2696       f->addFnAttr(llvm::Attribute::NonLazyBind);
2697   }
2698 
2699   // Cast the argument to 'id'.
2700   value = Builder.CreateBitCast(value, Int8PtrTy);
2701 
2702   // Call objc_release.
2703   llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2704 
2705   if (precise == ARCImpreciseLifetime) {
2706     call->setMetadata("clang.imprecise_release",
2707                       llvm::MDNode::get(Builder.getContext(), None));
2708   }
2709 }
2710 
2711 namespace {
2712   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2713     llvm::Value *Token;
2714 
2715     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2716 
2717     void Emit(CodeGenFunction &CGF, Flags flags) override {
2718       CGF.EmitObjCAutoreleasePoolPop(Token);
2719     }
2720   };
2721   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2722     llvm::Value *Token;
2723 
2724     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2725 
2726     void Emit(CodeGenFunction &CGF, Flags flags) override {
2727       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2728     }
2729   };
2730 }
2731 
2732 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2733   if (CGM.getLangOpts().ObjCAutoRefCount)
2734     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2735   else
2736     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2737 }
2738 
2739 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2740   switch (lifetime) {
2741   case Qualifiers::OCL_None:
2742   case Qualifiers::OCL_ExplicitNone:
2743   case Qualifiers::OCL_Strong:
2744   case Qualifiers::OCL_Autoreleasing:
2745     return true;
2746 
2747   case Qualifiers::OCL_Weak:
2748     return false;
2749   }
2750 
2751   llvm_unreachable("impossible lifetime!");
2752 }
2753 
2754 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2755                                                   LValue lvalue,
2756                                                   QualType type) {
2757   llvm::Value *result;
2758   bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2759   if (shouldRetain) {
2760     result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2761   } else {
2762     assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2763     result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2764   }
2765   return TryEmitResult(result, !shouldRetain);
2766 }
2767 
2768 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2769                                                   const Expr *e) {
2770   e = e->IgnoreParens();
2771   QualType type = e->getType();
2772 
2773   // If we're loading retained from a __strong xvalue, we can avoid
2774   // an extra retain/release pair by zeroing out the source of this
2775   // "move" operation.
2776   if (e->isXValue() &&
2777       !type.isConstQualified() &&
2778       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2779     // Emit the lvalue.
2780     LValue lv = CGF.EmitLValue(e);
2781 
2782     // Load the object pointer.
2783     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2784                                                SourceLocation()).getScalarVal();
2785 
2786     // Set the source pointer to NULL.
2787     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2788 
2789     return TryEmitResult(result, true);
2790   }
2791 
2792   // As a very special optimization, in ARC++, if the l-value is the
2793   // result of a non-volatile assignment, do a simple retain of the
2794   // result of the call to objc_storeWeak instead of reloading.
2795   if (CGF.getLangOpts().CPlusPlus &&
2796       !type.isVolatileQualified() &&
2797       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2798       isa<BinaryOperator>(e) &&
2799       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2800     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2801 
2802   // Try to emit code for scalar constant instead of emitting LValue and
2803   // loading it because we are not guaranteed to have an l-value. One of such
2804   // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2805   if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2806     auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2807     if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2808       return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2809                            !shouldRetainObjCLifetime(type.getObjCLifetime()));
2810   }
2811 
2812   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2813 }
2814 
2815 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2816                                          llvm::Value *value)>
2817   ValueTransform;
2818 
2819 /// Insert code immediately after a call.
2820 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2821                                               llvm::Value *value,
2822                                               ValueTransform doAfterCall,
2823                                               ValueTransform doFallback) {
2824   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2825     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2826 
2827     // Place the retain immediately following the call.
2828     CGF.Builder.SetInsertPoint(call->getParent(),
2829                                ++llvm::BasicBlock::iterator(call));
2830     value = doAfterCall(CGF, value);
2831 
2832     CGF.Builder.restoreIP(ip);
2833     return value;
2834   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2835     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2836 
2837     // Place the retain at the beginning of the normal destination block.
2838     llvm::BasicBlock *BB = invoke->getNormalDest();
2839     CGF.Builder.SetInsertPoint(BB, BB->begin());
2840     value = doAfterCall(CGF, value);
2841 
2842     CGF.Builder.restoreIP(ip);
2843     return value;
2844 
2845   // Bitcasts can arise because of related-result returns.  Rewrite
2846   // the operand.
2847   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2848     llvm::Value *operand = bitcast->getOperand(0);
2849     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2850     bitcast->setOperand(0, operand);
2851     return bitcast;
2852 
2853   // Generic fall-back case.
2854   } else {
2855     // Retain using the non-block variant: we never need to do a copy
2856     // of a block that's been returned to us.
2857     return doFallback(CGF, value);
2858   }
2859 }
2860 
2861 /// Given that the given expression is some sort of call (which does
2862 /// not return retained), emit a retain following it.
2863 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2864                                             const Expr *e) {
2865   llvm::Value *value = CGF.EmitScalarExpr(e);
2866   return emitARCOperationAfterCall(CGF, value,
2867            [](CodeGenFunction &CGF, llvm::Value *value) {
2868              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2869            },
2870            [](CodeGenFunction &CGF, llvm::Value *value) {
2871              return CGF.EmitARCRetainNonBlock(value);
2872            });
2873 }
2874 
2875 /// Given that the given expression is some sort of call (which does
2876 /// not return retained), perform an unsafeClaim following it.
2877 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2878                                                  const Expr *e) {
2879   llvm::Value *value = CGF.EmitScalarExpr(e);
2880   return emitARCOperationAfterCall(CGF, value,
2881            [](CodeGenFunction &CGF, llvm::Value *value) {
2882              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2883            },
2884            [](CodeGenFunction &CGF, llvm::Value *value) {
2885              return value;
2886            });
2887 }
2888 
2889 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2890                                                       bool allowUnsafeClaim) {
2891   if (allowUnsafeClaim &&
2892       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2893     return emitARCUnsafeClaimCallResult(*this, E);
2894   } else {
2895     llvm::Value *value = emitARCRetainCallResult(*this, E);
2896     return EmitObjCConsumeObject(E->getType(), value);
2897   }
2898 }
2899 
2900 /// Determine whether it might be important to emit a separate
2901 /// objc_retain_block on the result of the given expression, or
2902 /// whether it's okay to just emit it in a +1 context.
2903 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2904   assert(e->getType()->isBlockPointerType());
2905   e = e->IgnoreParens();
2906 
2907   // For future goodness, emit block expressions directly in +1
2908   // contexts if we can.
2909   if (isa<BlockExpr>(e))
2910     return false;
2911 
2912   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2913     switch (cast->getCastKind()) {
2914     // Emitting these operations in +1 contexts is goodness.
2915     case CK_LValueToRValue:
2916     case CK_ARCReclaimReturnedObject:
2917     case CK_ARCConsumeObject:
2918     case CK_ARCProduceObject:
2919       return false;
2920 
2921     // These operations preserve a block type.
2922     case CK_NoOp:
2923     case CK_BitCast:
2924       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2925 
2926     // These operations are known to be bad (or haven't been considered).
2927     case CK_AnyPointerToBlockPointerCast:
2928     default:
2929       return true;
2930     }
2931   }
2932 
2933   return true;
2934 }
2935 
2936 namespace {
2937 /// A CRTP base class for emitting expressions of retainable object
2938 /// pointer type in ARC.
2939 template <typename Impl, typename Result> class ARCExprEmitter {
2940 protected:
2941   CodeGenFunction &CGF;
2942   Impl &asImpl() { return *static_cast<Impl*>(this); }
2943 
2944   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2945 
2946 public:
2947   Result visit(const Expr *e);
2948   Result visitCastExpr(const CastExpr *e);
2949   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2950   Result visitBlockExpr(const BlockExpr *e);
2951   Result visitBinaryOperator(const BinaryOperator *e);
2952   Result visitBinAssign(const BinaryOperator *e);
2953   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2954   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2955   Result visitBinAssignWeak(const BinaryOperator *e);
2956   Result visitBinAssignStrong(const BinaryOperator *e);
2957 
2958   // Minimal implementation:
2959   //   Result visitLValueToRValue(const Expr *e)
2960   //   Result visitConsumeObject(const Expr *e)
2961   //   Result visitExtendBlockObject(const Expr *e)
2962   //   Result visitReclaimReturnedObject(const Expr *e)
2963   //   Result visitCall(const Expr *e)
2964   //   Result visitExpr(const Expr *e)
2965   //
2966   //   Result emitBitCast(Result result, llvm::Type *resultType)
2967   //   llvm::Value *getValueOfResult(Result result)
2968 };
2969 }
2970 
2971 /// Try to emit a PseudoObjectExpr under special ARC rules.
2972 ///
2973 /// This massively duplicates emitPseudoObjectRValue.
2974 template <typename Impl, typename Result>
2975 Result
2976 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2977   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2978 
2979   // Find the result expression.
2980   const Expr *resultExpr = E->getResultExpr();
2981   assert(resultExpr);
2982   Result result;
2983 
2984   for (PseudoObjectExpr::const_semantics_iterator
2985          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2986     const Expr *semantic = *i;
2987 
2988     // If this semantic expression is an opaque value, bind it
2989     // to the result of its source expression.
2990     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2991       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2992       OVMA opaqueData;
2993 
2994       // If this semantic is the result of the pseudo-object
2995       // expression, try to evaluate the source as +1.
2996       if (ov == resultExpr) {
2997         assert(!OVMA::shouldBindAsLValue(ov));
2998         result = asImpl().visit(ov->getSourceExpr());
2999         opaqueData = OVMA::bind(CGF, ov,
3000                             RValue::get(asImpl().getValueOfResult(result)));
3001 
3002       // Otherwise, just bind it.
3003       } else {
3004         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3005       }
3006       opaques.push_back(opaqueData);
3007 
3008     // Otherwise, if the expression is the result, evaluate it
3009     // and remember the result.
3010     } else if (semantic == resultExpr) {
3011       result = asImpl().visit(semantic);
3012 
3013     // Otherwise, evaluate the expression in an ignored context.
3014     } else {
3015       CGF.EmitIgnoredExpr(semantic);
3016     }
3017   }
3018 
3019   // Unbind all the opaques now.
3020   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3021     opaques[i].unbind(CGF);
3022 
3023   return result;
3024 }
3025 
3026 template <typename Impl, typename Result>
3027 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3028   // The default implementation just forwards the expression to visitExpr.
3029   return asImpl().visitExpr(e);
3030 }
3031 
3032 template <typename Impl, typename Result>
3033 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3034   switch (e->getCastKind()) {
3035 
3036   // No-op casts don't change the type, so we just ignore them.
3037   case CK_NoOp:
3038     return asImpl().visit(e->getSubExpr());
3039 
3040   // These casts can change the type.
3041   case CK_CPointerToObjCPointerCast:
3042   case CK_BlockPointerToObjCPointerCast:
3043   case CK_AnyPointerToBlockPointerCast:
3044   case CK_BitCast: {
3045     llvm::Type *resultType = CGF.ConvertType(e->getType());
3046     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3047     Result result = asImpl().visit(e->getSubExpr());
3048     return asImpl().emitBitCast(result, resultType);
3049   }
3050 
3051   // Handle some casts specially.
3052   case CK_LValueToRValue:
3053     return asImpl().visitLValueToRValue(e->getSubExpr());
3054   case CK_ARCConsumeObject:
3055     return asImpl().visitConsumeObject(e->getSubExpr());
3056   case CK_ARCExtendBlockObject:
3057     return asImpl().visitExtendBlockObject(e->getSubExpr());
3058   case CK_ARCReclaimReturnedObject:
3059     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3060 
3061   // Otherwise, use the default logic.
3062   default:
3063     return asImpl().visitExpr(e);
3064   }
3065 }
3066 
3067 template <typename Impl, typename Result>
3068 Result
3069 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3070   switch (e->getOpcode()) {
3071   case BO_Comma:
3072     CGF.EmitIgnoredExpr(e->getLHS());
3073     CGF.EnsureInsertPoint();
3074     return asImpl().visit(e->getRHS());
3075 
3076   case BO_Assign:
3077     return asImpl().visitBinAssign(e);
3078 
3079   default:
3080     return asImpl().visitExpr(e);
3081   }
3082 }
3083 
3084 template <typename Impl, typename Result>
3085 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3086   switch (e->getLHS()->getType().getObjCLifetime()) {
3087   case Qualifiers::OCL_ExplicitNone:
3088     return asImpl().visitBinAssignUnsafeUnretained(e);
3089 
3090   case Qualifiers::OCL_Weak:
3091     return asImpl().visitBinAssignWeak(e);
3092 
3093   case Qualifiers::OCL_Autoreleasing:
3094     return asImpl().visitBinAssignAutoreleasing(e);
3095 
3096   case Qualifiers::OCL_Strong:
3097     return asImpl().visitBinAssignStrong(e);
3098 
3099   case Qualifiers::OCL_None:
3100     return asImpl().visitExpr(e);
3101   }
3102   llvm_unreachable("bad ObjC ownership qualifier");
3103 }
3104 
3105 /// The default rule for __unsafe_unretained emits the RHS recursively,
3106 /// stores into the unsafe variable, and propagates the result outward.
3107 template <typename Impl, typename Result>
3108 Result ARCExprEmitter<Impl,Result>::
3109                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3110   // Recursively emit the RHS.
3111   // For __block safety, do this before emitting the LHS.
3112   Result result = asImpl().visit(e->getRHS());
3113 
3114   // Perform the store.
3115   LValue lvalue =
3116     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3117   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3118                              lvalue);
3119 
3120   return result;
3121 }
3122 
3123 template <typename Impl, typename Result>
3124 Result
3125 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3126   return asImpl().visitExpr(e);
3127 }
3128 
3129 template <typename Impl, typename Result>
3130 Result
3131 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3132   return asImpl().visitExpr(e);
3133 }
3134 
3135 template <typename Impl, typename Result>
3136 Result
3137 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3138   return asImpl().visitExpr(e);
3139 }
3140 
3141 /// The general expression-emission logic.
3142 template <typename Impl, typename Result>
3143 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3144   // We should *never* see a nested full-expression here, because if
3145   // we fail to emit at +1, our caller must not retain after we close
3146   // out the full-expression.  This isn't as important in the unsafe
3147   // emitter.
3148   assert(!isa<ExprWithCleanups>(e));
3149 
3150   // Look through parens, __extension__, generic selection, etc.
3151   e = e->IgnoreParens();
3152 
3153   // Handle certain kinds of casts.
3154   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3155     return asImpl().visitCastExpr(ce);
3156 
3157   // Handle the comma operator.
3158   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3159     return asImpl().visitBinaryOperator(op);
3160 
3161   // TODO: handle conditional operators here
3162 
3163   // For calls and message sends, use the retained-call logic.
3164   // Delegate inits are a special case in that they're the only
3165   // returns-retained expression that *isn't* surrounded by
3166   // a consume.
3167   } else if (isa<CallExpr>(e) ||
3168              (isa<ObjCMessageExpr>(e) &&
3169               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3170     return asImpl().visitCall(e);
3171 
3172   // Look through pseudo-object expressions.
3173   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3174     return asImpl().visitPseudoObjectExpr(pseudo);
3175   } else if (auto *be = dyn_cast<BlockExpr>(e))
3176     return asImpl().visitBlockExpr(be);
3177 
3178   return asImpl().visitExpr(e);
3179 }
3180 
3181 namespace {
3182 
3183 /// An emitter for +1 results.
3184 struct ARCRetainExprEmitter :
3185   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3186 
3187   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3188 
3189   llvm::Value *getValueOfResult(TryEmitResult result) {
3190     return result.getPointer();
3191   }
3192 
3193   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3194     llvm::Value *value = result.getPointer();
3195     value = CGF.Builder.CreateBitCast(value, resultType);
3196     result.setPointer(value);
3197     return result;
3198   }
3199 
3200   TryEmitResult visitLValueToRValue(const Expr *e) {
3201     return tryEmitARCRetainLoadOfScalar(CGF, e);
3202   }
3203 
3204   /// For consumptions, just emit the subexpression and thus elide
3205   /// the retain/release pair.
3206   TryEmitResult visitConsumeObject(const Expr *e) {
3207     llvm::Value *result = CGF.EmitScalarExpr(e);
3208     return TryEmitResult(result, true);
3209   }
3210 
3211   TryEmitResult visitBlockExpr(const BlockExpr *e) {
3212     TryEmitResult result = visitExpr(e);
3213     // Avoid the block-retain if this is a block literal that doesn't need to be
3214     // copied to the heap.
3215     if (e->getBlockDecl()->canAvoidCopyToHeap())
3216       result.setInt(true);
3217     return result;
3218   }
3219 
3220   /// Block extends are net +0.  Naively, we could just recurse on
3221   /// the subexpression, but actually we need to ensure that the
3222   /// value is copied as a block, so there's a little filter here.
3223   TryEmitResult visitExtendBlockObject(const Expr *e) {
3224     llvm::Value *result; // will be a +0 value
3225 
3226     // If we can't safely assume the sub-expression will produce a
3227     // block-copied value, emit the sub-expression at +0.
3228     if (shouldEmitSeparateBlockRetain(e)) {
3229       result = CGF.EmitScalarExpr(e);
3230 
3231     // Otherwise, try to emit the sub-expression at +1 recursively.
3232     } else {
3233       TryEmitResult subresult = asImpl().visit(e);
3234 
3235       // If that produced a retained value, just use that.
3236       if (subresult.getInt()) {
3237         return subresult;
3238       }
3239 
3240       // Otherwise it's +0.
3241       result = subresult.getPointer();
3242     }
3243 
3244     // Retain the object as a block.
3245     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3246     return TryEmitResult(result, true);
3247   }
3248 
3249   /// For reclaims, emit the subexpression as a retained call and
3250   /// skip the consumption.
3251   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3252     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3253     return TryEmitResult(result, true);
3254   }
3255 
3256   /// When we have an undecorated call, retroactively do a claim.
3257   TryEmitResult visitCall(const Expr *e) {
3258     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3259     return TryEmitResult(result, true);
3260   }
3261 
3262   // TODO: maybe special-case visitBinAssignWeak?
3263 
3264   TryEmitResult visitExpr(const Expr *e) {
3265     // We didn't find an obvious production, so emit what we've got and
3266     // tell the caller that we didn't manage to retain.
3267     llvm::Value *result = CGF.EmitScalarExpr(e);
3268     return TryEmitResult(result, false);
3269   }
3270 };
3271 }
3272 
3273 static TryEmitResult
3274 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3275   return ARCRetainExprEmitter(CGF).visit(e);
3276 }
3277 
3278 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3279                                                 LValue lvalue,
3280                                                 QualType type) {
3281   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3282   llvm::Value *value = result.getPointer();
3283   if (!result.getInt())
3284     value = CGF.EmitARCRetain(type, value);
3285   return value;
3286 }
3287 
3288 /// EmitARCRetainScalarExpr - Semantically equivalent to
3289 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3290 /// best-effort attempt to peephole expressions that naturally produce
3291 /// retained objects.
3292 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3293   // The retain needs to happen within the full-expression.
3294   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3295     RunCleanupsScope scope(*this);
3296     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3297   }
3298 
3299   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3300   llvm::Value *value = result.getPointer();
3301   if (!result.getInt())
3302     value = EmitARCRetain(e->getType(), value);
3303   return value;
3304 }
3305 
3306 llvm::Value *
3307 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3308   // The retain needs to happen within the full-expression.
3309   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3310     RunCleanupsScope scope(*this);
3311     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3312   }
3313 
3314   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3315   llvm::Value *value = result.getPointer();
3316   if (result.getInt())
3317     value = EmitARCAutorelease(value);
3318   else
3319     value = EmitARCRetainAutorelease(e->getType(), value);
3320   return value;
3321 }
3322 
3323 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3324   llvm::Value *result;
3325   bool doRetain;
3326 
3327   if (shouldEmitSeparateBlockRetain(e)) {
3328     result = EmitScalarExpr(e);
3329     doRetain = true;
3330   } else {
3331     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3332     result = subresult.getPointer();
3333     doRetain = !subresult.getInt();
3334   }
3335 
3336   if (doRetain)
3337     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3338   return EmitObjCConsumeObject(e->getType(), result);
3339 }
3340 
3341 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3342   // In ARC, retain and autorelease the expression.
3343   if (getLangOpts().ObjCAutoRefCount) {
3344     // Do so before running any cleanups for the full-expression.
3345     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3346     return EmitARCRetainAutoreleaseScalarExpr(expr);
3347   }
3348 
3349   // Otherwise, use the normal scalar-expression emission.  The
3350   // exception machinery doesn't do anything special with the
3351   // exception like retaining it, so there's no safety associated with
3352   // only running cleanups after the throw has started, and when it
3353   // matters it tends to be substantially inferior code.
3354   return EmitScalarExpr(expr);
3355 }
3356 
3357 namespace {
3358 
3359 /// An emitter for assigning into an __unsafe_unretained context.
3360 struct ARCUnsafeUnretainedExprEmitter :
3361   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3362 
3363   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3364 
3365   llvm::Value *getValueOfResult(llvm::Value *value) {
3366     return value;
3367   }
3368 
3369   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3370     return CGF.Builder.CreateBitCast(value, resultType);
3371   }
3372 
3373   llvm::Value *visitLValueToRValue(const Expr *e) {
3374     return CGF.EmitScalarExpr(e);
3375   }
3376 
3377   /// For consumptions, just emit the subexpression and perform the
3378   /// consumption like normal.
3379   llvm::Value *visitConsumeObject(const Expr *e) {
3380     llvm::Value *value = CGF.EmitScalarExpr(e);
3381     return CGF.EmitObjCConsumeObject(e->getType(), value);
3382   }
3383 
3384   /// No special logic for block extensions.  (This probably can't
3385   /// actually happen in this emitter, though.)
3386   llvm::Value *visitExtendBlockObject(const Expr *e) {
3387     return CGF.EmitARCExtendBlockObject(e);
3388   }
3389 
3390   /// For reclaims, perform an unsafeClaim if that's enabled.
3391   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3392     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3393   }
3394 
3395   /// When we have an undecorated call, just emit it without adding
3396   /// the unsafeClaim.
3397   llvm::Value *visitCall(const Expr *e) {
3398     return CGF.EmitScalarExpr(e);
3399   }
3400 
3401   /// Just do normal scalar emission in the default case.
3402   llvm::Value *visitExpr(const Expr *e) {
3403     return CGF.EmitScalarExpr(e);
3404   }
3405 };
3406 }
3407 
3408 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3409                                                       const Expr *e) {
3410   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3411 }
3412 
3413 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3414 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3415 /// avoiding any spurious retains, including by performing reclaims
3416 /// with objc_unsafeClaimAutoreleasedReturnValue.
3417 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3418   // Look through full-expressions.
3419   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3420     RunCleanupsScope scope(*this);
3421     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3422   }
3423 
3424   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3425 }
3426 
3427 std::pair<LValue,llvm::Value*>
3428 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3429                                               bool ignored) {
3430   // Evaluate the RHS first.  If we're ignoring the result, assume
3431   // that we can emit at an unsafe +0.
3432   llvm::Value *value;
3433   if (ignored) {
3434     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3435   } else {
3436     value = EmitScalarExpr(e->getRHS());
3437   }
3438 
3439   // Emit the LHS and perform the store.
3440   LValue lvalue = EmitLValue(e->getLHS());
3441   EmitStoreOfScalar(value, lvalue);
3442 
3443   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3444 }
3445 
3446 std::pair<LValue,llvm::Value*>
3447 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3448                                     bool ignored) {
3449   // Evaluate the RHS first.
3450   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3451   llvm::Value *value = result.getPointer();
3452 
3453   bool hasImmediateRetain = result.getInt();
3454 
3455   // If we didn't emit a retained object, and the l-value is of block
3456   // type, then we need to emit the block-retain immediately in case
3457   // it invalidates the l-value.
3458   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3459     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3460     hasImmediateRetain = true;
3461   }
3462 
3463   LValue lvalue = EmitLValue(e->getLHS());
3464 
3465   // If the RHS was emitted retained, expand this.
3466   if (hasImmediateRetain) {
3467     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3468     EmitStoreOfScalar(value, lvalue);
3469     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3470   } else {
3471     value = EmitARCStoreStrong(lvalue, value, ignored);
3472   }
3473 
3474   return std::pair<LValue,llvm::Value*>(lvalue, value);
3475 }
3476 
3477 std::pair<LValue,llvm::Value*>
3478 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3479   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3480   LValue lvalue = EmitLValue(e->getLHS());
3481 
3482   EmitStoreOfScalar(value, lvalue);
3483 
3484   return std::pair<LValue,llvm::Value*>(lvalue, value);
3485 }
3486 
3487 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3488                                           const ObjCAutoreleasePoolStmt &ARPS) {
3489   const Stmt *subStmt = ARPS.getSubStmt();
3490   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3491 
3492   CGDebugInfo *DI = getDebugInfo();
3493   if (DI)
3494     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3495 
3496   // Keep track of the current cleanup stack depth.
3497   RunCleanupsScope Scope(*this);
3498   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3499     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3500     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3501   } else {
3502     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3503     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3504   }
3505 
3506   for (const auto *I : S.body())
3507     EmitStmt(I);
3508 
3509   if (DI)
3510     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3511 }
3512 
3513 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3514 /// make sure it survives garbage collection until this point.
3515 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3516   // We just use an inline assembly.
3517   llvm::FunctionType *extenderType
3518     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3519   llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3520                                                    /* assembly */ "",
3521                                                    /* constraints */ "r",
3522                                                    /* side effects */ true);
3523 
3524   object = Builder.CreateBitCast(object, VoidPtrTy);
3525   EmitNounwindRuntimeCall(extender, object);
3526 }
3527 
3528 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3529 /// non-trivial copy assignment function, produce following helper function.
3530 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3531 ///
3532 llvm::Constant *
3533 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3534                                         const ObjCPropertyImplDecl *PID) {
3535   if (!getLangOpts().CPlusPlus ||
3536       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3537     return nullptr;
3538   QualType Ty = PID->getPropertyIvarDecl()->getType();
3539   if (!Ty->isRecordType())
3540     return nullptr;
3541   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3542   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3543     return nullptr;
3544   llvm::Constant *HelperFn = nullptr;
3545   if (hasTrivialSetExpr(PID))
3546     return nullptr;
3547   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3548   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3549     return HelperFn;
3550 
3551   ASTContext &C = getContext();
3552   IdentifierInfo *II
3553     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3554 
3555   QualType ReturnTy = C.VoidTy;
3556   QualType DestTy = C.getPointerType(Ty);
3557   QualType SrcTy = Ty;
3558   SrcTy.addConst();
3559   SrcTy = C.getPointerType(SrcTy);
3560 
3561   SmallVector<QualType, 2> ArgTys;
3562   ArgTys.push_back(DestTy);
3563   ArgTys.push_back(SrcTy);
3564   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3565 
3566   FunctionDecl *FD = FunctionDecl::Create(
3567       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3568       FunctionTy, nullptr, SC_Static, false, false);
3569 
3570   FunctionArgList args;
3571   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3572                             ImplicitParamDecl::Other);
3573   args.push_back(&DstDecl);
3574   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3575                             ImplicitParamDecl::Other);
3576   args.push_back(&SrcDecl);
3577 
3578   const CGFunctionInfo &FI =
3579       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3580 
3581   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3582 
3583   llvm::Function *Fn =
3584     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3585                            "__assign_helper_atomic_property_",
3586                            &CGM.getModule());
3587 
3588   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3589 
3590   StartFunction(FD, ReturnTy, Fn, FI, args);
3591 
3592   DeclRefExpr DstExpr(C, &DstDecl, false, DestTy, VK_RValue, SourceLocation());
3593   UnaryOperator *DST = UnaryOperator::Create(
3594       C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3595       SourceLocation(), false, FPOptionsOverride());
3596 
3597   DeclRefExpr SrcExpr(C, &SrcDecl, false, SrcTy, VK_RValue, SourceLocation());
3598   UnaryOperator *SRC = UnaryOperator::Create(
3599       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3600       SourceLocation(), false, FPOptionsOverride());
3601 
3602   Expr *Args[2] = {DST, SRC};
3603   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3604   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3605       C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3606       VK_LValue, SourceLocation(), FPOptionsOverride());
3607 
3608   EmitStmt(TheCall);
3609 
3610   FinishFunction();
3611   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3612   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3613   return HelperFn;
3614 }
3615 
3616 llvm::Constant *
3617 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3618                                             const ObjCPropertyImplDecl *PID) {
3619   if (!getLangOpts().CPlusPlus ||
3620       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3621     return nullptr;
3622   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3623   QualType Ty = PD->getType();
3624   if (!Ty->isRecordType())
3625     return nullptr;
3626   if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3627     return nullptr;
3628   llvm::Constant *HelperFn = nullptr;
3629   if (hasTrivialGetExpr(PID))
3630     return nullptr;
3631   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3632   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3633     return HelperFn;
3634 
3635   ASTContext &C = getContext();
3636   IdentifierInfo *II =
3637       &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3638 
3639   QualType ReturnTy = C.VoidTy;
3640   QualType DestTy = C.getPointerType(Ty);
3641   QualType SrcTy = Ty;
3642   SrcTy.addConst();
3643   SrcTy = C.getPointerType(SrcTy);
3644 
3645   SmallVector<QualType, 2> ArgTys;
3646   ArgTys.push_back(DestTy);
3647   ArgTys.push_back(SrcTy);
3648   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3649 
3650   FunctionDecl *FD = FunctionDecl::Create(
3651       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3652       FunctionTy, nullptr, SC_Static, false, false);
3653 
3654   FunctionArgList args;
3655   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3656                             ImplicitParamDecl::Other);
3657   args.push_back(&DstDecl);
3658   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3659                             ImplicitParamDecl::Other);
3660   args.push_back(&SrcDecl);
3661 
3662   const CGFunctionInfo &FI =
3663       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3664 
3665   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3666 
3667   llvm::Function *Fn = llvm::Function::Create(
3668       LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3669       &CGM.getModule());
3670 
3671   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3672 
3673   StartFunction(FD, ReturnTy, Fn, FI, args);
3674 
3675   DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3676                       SourceLocation());
3677 
3678   UnaryOperator *SRC = UnaryOperator::Create(
3679       C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3680       SourceLocation(), false, FPOptionsOverride());
3681 
3682   CXXConstructExpr *CXXConstExpr =
3683     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3684 
3685   SmallVector<Expr*, 4> ConstructorArgs;
3686   ConstructorArgs.push_back(SRC);
3687   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3688                          CXXConstExpr->arg_end());
3689 
3690   CXXConstructExpr *TheCXXConstructExpr =
3691     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3692                              CXXConstExpr->getConstructor(),
3693                              CXXConstExpr->isElidable(),
3694                              ConstructorArgs,
3695                              CXXConstExpr->hadMultipleCandidates(),
3696                              CXXConstExpr->isListInitialization(),
3697                              CXXConstExpr->isStdInitListInitialization(),
3698                              CXXConstExpr->requiresZeroInitialization(),
3699                              CXXConstExpr->getConstructionKind(),
3700                              SourceRange());
3701 
3702   DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3703                       SourceLocation());
3704 
3705   RValue DV = EmitAnyExpr(&DstExpr);
3706   CharUnits Alignment
3707     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3708   EmitAggExpr(TheCXXConstructExpr,
3709               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3710                                     Qualifiers(),
3711                                     AggValueSlot::IsDestructed,
3712                                     AggValueSlot::DoesNotNeedGCBarriers,
3713                                     AggValueSlot::IsNotAliased,
3714                                     AggValueSlot::DoesNotOverlap));
3715 
3716   FinishFunction();
3717   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3718   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3719   return HelperFn;
3720 }
3721 
3722 llvm::Value *
3723 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3724   // Get selectors for retain/autorelease.
3725   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3726   Selector CopySelector =
3727       getContext().Selectors.getNullarySelector(CopyID);
3728   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3729   Selector AutoreleaseSelector =
3730       getContext().Selectors.getNullarySelector(AutoreleaseID);
3731 
3732   // Emit calls to retain/autorelease.
3733   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3734   llvm::Value *Val = Block;
3735   RValue Result;
3736   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3737                                        Ty, CopySelector,
3738                                        Val, CallArgList(), nullptr, nullptr);
3739   Val = Result.getScalarVal();
3740   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3741                                        Ty, AutoreleaseSelector,
3742                                        Val, CallArgList(), nullptr, nullptr);
3743   Val = Result.getScalarVal();
3744   return Val;
3745 }
3746 
3747 llvm::Value *
3748 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) {
3749   assert(Args.size() == 3 && "Expected 3 argument here!");
3750 
3751   if (!CGM.IsOSVersionAtLeastFn) {
3752     llvm::FunctionType *FTy =
3753         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3754     CGM.IsOSVersionAtLeastFn =
3755         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3756   }
3757 
3758   llvm::Value *CallRes =
3759       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3760 
3761   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3762 }
3763 
3764 void CodeGenModule::emitAtAvailableLinkGuard() {
3765   if (!IsOSVersionAtLeastFn)
3766     return;
3767   // @available requires CoreFoundation only on Darwin.
3768   if (!Target.getTriple().isOSDarwin())
3769     return;
3770   // Add -framework CoreFoundation to the linker commands. We still want to
3771   // emit the core foundation reference down below because otherwise if
3772   // CoreFoundation is not used in the code, the linker won't link the
3773   // framework.
3774   auto &Context = getLLVMContext();
3775   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3776                              llvm::MDString::get(Context, "CoreFoundation")};
3777   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3778   // Emit a reference to a symbol from CoreFoundation to ensure that
3779   // CoreFoundation is linked into the final binary.
3780   llvm::FunctionType *FTy =
3781       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3782   llvm::FunctionCallee CFFunc =
3783       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3784 
3785   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3786   llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
3787       CheckFTy, "__clang_at_available_requires_core_foundation_framework",
3788       llvm::AttributeList(), /*Local=*/true);
3789   llvm::Function *CFLinkCheckFunc =
3790       cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
3791   if (CFLinkCheckFunc->empty()) {
3792     CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3793     CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3794     CodeGenFunction CGF(*this);
3795     CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3796     CGF.EmitNounwindRuntimeCall(CFFunc,
3797                                 llvm::Constant::getNullValue(VoidPtrTy));
3798     CGF.Builder.CreateUnreachable();
3799     addCompilerUsedGlobal(CFLinkCheckFunc);
3800   }
3801 }
3802 
3803 CGObjCRuntime::~CGObjCRuntime() {}
3804