1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Objective-C code as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/StmtObjC.h" 23 #include "clang/Basic/Diagnostic.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 35 QualType ET, 36 RValue Result); 37 38 /// Given the address of a variable of pointer type, find the correct 39 /// null to store into it. 40 static llvm::Constant *getNullForVariable(Address addr) { 41 llvm::Type *type = addr.getElementType(); 42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 43 } 44 45 /// Emits an instance of NSConstantString representing the object. 46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 47 { 48 llvm::Constant *C = 49 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 50 // FIXME: This bitcast should just be made an invariant on the Runtime. 51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 52 } 53 54 /// EmitObjCBoxedExpr - This routine generates code to call 55 /// the appropriate expression boxing method. This will either be 56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 57 /// or [NSValue valueWithBytes:objCType:]. 58 /// 59 llvm::Value * 60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 61 // Generate the correct selector for this literal's concrete type. 62 // Get the method. 63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 64 const Expr *SubExpr = E->getSubExpr(); 65 66 if (E->isExpressibleAsConstantInitializer()) { 67 ConstantEmitter ConstEmitter(CGM); 68 return ConstEmitter.tryEmitAbstract(E, E->getType()); 69 } 70 71 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 72 Selector Sel = BoxingMethod->getSelector(); 73 74 // Generate a reference to the class pointer, which will be the receiver. 75 // Assumes that the method was introduced in the class that should be 76 // messaged (avoids pulling it out of the result type). 77 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 78 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 79 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 80 81 CallArgList Args; 82 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 83 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 84 85 // ObjCBoxedExpr supports boxing of structs and unions 86 // via [NSValue valueWithBytes:objCType:] 87 const QualType ValueType(SubExpr->getType().getCanonicalType()); 88 if (ValueType->isObjCBoxableRecordType()) { 89 // Emit CodeGen for first parameter 90 // and cast value to correct type 91 Address Temporary = CreateMemTemp(SubExpr->getType()); 92 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 93 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 94 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 95 96 // Create char array to store type encoding 97 std::string Str; 98 getContext().getObjCEncodingForType(ValueType, Str); 99 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 100 101 // Cast type encoding to correct type 102 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 103 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 104 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 105 106 Args.add(RValue::get(Cast), EncodingQT); 107 } else { 108 Args.add(EmitAnyExpr(SubExpr), ArgQT); 109 } 110 111 RValue result = Runtime.GenerateMessageSend( 112 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 113 Args, ClassDecl, BoxingMethod); 114 return Builder.CreateBitCast(result.getScalarVal(), 115 ConvertType(E->getType())); 116 } 117 118 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 119 const ObjCMethodDecl *MethodWithObjects) { 120 ASTContext &Context = CGM.getContext(); 121 const ObjCDictionaryLiteral *DLE = nullptr; 122 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 123 if (!ALE) 124 DLE = cast<ObjCDictionaryLiteral>(E); 125 126 // Optimize empty collections by referencing constants, when available. 127 uint64_t NumElements = 128 ALE ? ALE->getNumElements() : DLE->getNumElements(); 129 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 130 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 131 QualType IdTy(CGM.getContext().getObjCIdType()); 132 llvm::Constant *Constant = 133 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 134 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 135 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); 136 cast<llvm::LoadInst>(Ptr)->setMetadata( 137 CGM.getModule().getMDKindID("invariant.load"), 138 llvm::MDNode::get(getLLVMContext(), None)); 139 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 140 } 141 142 // Compute the type of the array we're initializing. 143 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 144 NumElements); 145 QualType ElementType = Context.getObjCIdType().withConst(); 146 QualType ElementArrayType 147 = Context.getConstantArrayType(ElementType, APNumElements, nullptr, 148 ArrayType::Normal, /*IndexTypeQuals=*/0); 149 150 // Allocate the temporary array(s). 151 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 152 Address Keys = Address::invalid(); 153 if (DLE) 154 Keys = CreateMemTemp(ElementArrayType, "keys"); 155 156 // In ARC, we may need to do extra work to keep all the keys and 157 // values alive until after the call. 158 SmallVector<llvm::Value *, 16> NeededObjects; 159 bool TrackNeededObjects = 160 (getLangOpts().ObjCAutoRefCount && 161 CGM.getCodeGenOpts().OptimizationLevel != 0); 162 163 // Perform the actual initialialization of the array(s). 164 for (uint64_t i = 0; i < NumElements; i++) { 165 if (ALE) { 166 // Emit the element and store it to the appropriate array slot. 167 const Expr *Rhs = ALE->getElement(i); 168 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 169 ElementType, AlignmentSource::Decl); 170 171 llvm::Value *value = EmitScalarExpr(Rhs); 172 EmitStoreThroughLValue(RValue::get(value), LV, true); 173 if (TrackNeededObjects) { 174 NeededObjects.push_back(value); 175 } 176 } else { 177 // Emit the key and store it to the appropriate array slot. 178 const Expr *Key = DLE->getKeyValueElement(i).Key; 179 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i), 180 ElementType, AlignmentSource::Decl); 181 llvm::Value *keyValue = EmitScalarExpr(Key); 182 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 183 184 // Emit the value and store it to the appropriate array slot. 185 const Expr *Value = DLE->getKeyValueElement(i).Value; 186 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 187 ElementType, AlignmentSource::Decl); 188 llvm::Value *valueValue = EmitScalarExpr(Value); 189 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 190 if (TrackNeededObjects) { 191 NeededObjects.push_back(keyValue); 192 NeededObjects.push_back(valueValue); 193 } 194 } 195 } 196 197 // Generate the argument list. 198 CallArgList Args; 199 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 200 const ParmVarDecl *argDecl = *PI++; 201 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 202 Args.add(RValue::get(Objects.getPointer()), ArgQT); 203 if (DLE) { 204 argDecl = *PI++; 205 ArgQT = argDecl->getType().getUnqualifiedType(); 206 Args.add(RValue::get(Keys.getPointer()), ArgQT); 207 } 208 argDecl = *PI; 209 ArgQT = argDecl->getType().getUnqualifiedType(); 210 llvm::Value *Count = 211 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 212 Args.add(RValue::get(Count), ArgQT); 213 214 // Generate a reference to the class pointer, which will be the receiver. 215 Selector Sel = MethodWithObjects->getSelector(); 216 QualType ResultType = E->getType(); 217 const ObjCObjectPointerType *InterfacePointerType 218 = ResultType->getAsObjCInterfacePointerType(); 219 ObjCInterfaceDecl *Class 220 = InterfacePointerType->getObjectType()->getInterface(); 221 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 222 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 223 224 // Generate the message send. 225 RValue result = Runtime.GenerateMessageSend( 226 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 227 Receiver, Args, Class, MethodWithObjects); 228 229 // The above message send needs these objects, but in ARC they are 230 // passed in a buffer that is essentially __unsafe_unretained. 231 // Therefore we must prevent the optimizer from releasing them until 232 // after the call. 233 if (TrackNeededObjects) { 234 EmitARCIntrinsicUse(NeededObjects); 235 } 236 237 return Builder.CreateBitCast(result.getScalarVal(), 238 ConvertType(E->getType())); 239 } 240 241 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 242 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 243 } 244 245 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 246 const ObjCDictionaryLiteral *E) { 247 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 248 } 249 250 /// Emit a selector. 251 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 252 // Untyped selector. 253 // Note that this implementation allows for non-constant strings to be passed 254 // as arguments to @selector(). Currently, the only thing preventing this 255 // behaviour is the type checking in the front end. 256 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 257 } 258 259 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 260 // FIXME: This should pass the Decl not the name. 261 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 262 } 263 264 /// Adjust the type of an Objective-C object that doesn't match up due 265 /// to type erasure at various points, e.g., related result types or the use 266 /// of parameterized classes. 267 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 268 RValue Result) { 269 if (!ExpT->isObjCRetainableType()) 270 return Result; 271 272 // If the converted types are the same, we're done. 273 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 274 if (ExpLLVMTy == Result.getScalarVal()->getType()) 275 return Result; 276 277 // We have applied a substitution. Cast the rvalue appropriately. 278 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 279 ExpLLVMTy)); 280 } 281 282 /// Decide whether to extend the lifetime of the receiver of a 283 /// returns-inner-pointer message. 284 static bool 285 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 286 switch (message->getReceiverKind()) { 287 288 // For a normal instance message, we should extend unless the 289 // receiver is loaded from a variable with precise lifetime. 290 case ObjCMessageExpr::Instance: { 291 const Expr *receiver = message->getInstanceReceiver(); 292 293 // Look through OVEs. 294 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 295 if (opaque->getSourceExpr()) 296 receiver = opaque->getSourceExpr()->IgnoreParens(); 297 } 298 299 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 300 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 301 receiver = ice->getSubExpr()->IgnoreParens(); 302 303 // Look through OVEs. 304 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 305 if (opaque->getSourceExpr()) 306 receiver = opaque->getSourceExpr()->IgnoreParens(); 307 } 308 309 // Only __strong variables. 310 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 311 return true; 312 313 // All ivars and fields have precise lifetime. 314 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 315 return false; 316 317 // Otherwise, check for variables. 318 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 319 if (!declRef) return true; 320 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 321 if (!var) return true; 322 323 // All variables have precise lifetime except local variables with 324 // automatic storage duration that aren't specially marked. 325 return (var->hasLocalStorage() && 326 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 327 } 328 329 case ObjCMessageExpr::Class: 330 case ObjCMessageExpr::SuperClass: 331 // It's never necessary for class objects. 332 return false; 333 334 case ObjCMessageExpr::SuperInstance: 335 // We generally assume that 'self' lives throughout a method call. 336 return false; 337 } 338 339 llvm_unreachable("invalid receiver kind"); 340 } 341 342 /// Given an expression of ObjC pointer type, check whether it was 343 /// immediately loaded from an ARC __weak l-value. 344 static const Expr *findWeakLValue(const Expr *E) { 345 assert(E->getType()->isObjCRetainableType()); 346 E = E->IgnoreParens(); 347 if (auto CE = dyn_cast<CastExpr>(E)) { 348 if (CE->getCastKind() == CK_LValueToRValue) { 349 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 350 return CE->getSubExpr(); 351 } 352 } 353 354 return nullptr; 355 } 356 357 /// The ObjC runtime may provide entrypoints that are likely to be faster 358 /// than an ordinary message send of the appropriate selector. 359 /// 360 /// The entrypoints are guaranteed to be equivalent to just sending the 361 /// corresponding message. If the entrypoint is implemented naively as just a 362 /// message send, using it is a trade-off: it sacrifices a few cycles of 363 /// overhead to save a small amount of code. However, it's possible for 364 /// runtimes to detect and special-case classes that use "standard" 365 /// behavior; if that's dynamically a large proportion of all objects, using 366 /// the entrypoint will also be faster than using a message send. 367 /// 368 /// If the runtime does support a required entrypoint, then this method will 369 /// generate a call and return the resulting value. Otherwise it will return 370 /// None and the caller can generate a msgSend instead. 371 static Optional<llvm::Value *> 372 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType, 373 llvm::Value *Receiver, 374 const CallArgList& Args, Selector Sel, 375 const ObjCMethodDecl *method, 376 bool isClassMessage) { 377 auto &CGM = CGF.CGM; 378 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) 379 return None; 380 381 auto &Runtime = CGM.getLangOpts().ObjCRuntime; 382 switch (Sel.getMethodFamily()) { 383 case OMF_alloc: 384 if (isClassMessage && 385 Runtime.shouldUseRuntimeFunctionsForAlloc() && 386 ResultType->isObjCObjectPointerType()) { 387 // [Foo alloc] -> objc_alloc(Foo) or 388 // [self alloc] -> objc_alloc(self) 389 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc") 390 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType)); 391 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or 392 // [self allocWithZone:nil] -> objc_allocWithZone(self) 393 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && 394 Args.size() == 1 && Args.front().getType()->isPointerType() && 395 Sel.getNameForSlot(0) == "allocWithZone") { 396 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); 397 if (isa<llvm::ConstantPointerNull>(arg)) 398 return CGF.EmitObjCAllocWithZone(Receiver, 399 CGF.ConvertType(ResultType)); 400 return None; 401 } 402 } 403 break; 404 405 case OMF_autorelease: 406 if (ResultType->isObjCObjectPointerType() && 407 CGM.getLangOpts().getGC() == LangOptions::NonGC && 408 Runtime.shouldUseARCFunctionsForRetainRelease()) 409 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType)); 410 break; 411 412 case OMF_retain: 413 if (ResultType->isObjCObjectPointerType() && 414 CGM.getLangOpts().getGC() == LangOptions::NonGC && 415 Runtime.shouldUseARCFunctionsForRetainRelease()) 416 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType)); 417 break; 418 419 case OMF_release: 420 if (ResultType->isVoidType() && 421 CGM.getLangOpts().getGC() == LangOptions::NonGC && 422 Runtime.shouldUseARCFunctionsForRetainRelease()) { 423 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime); 424 return nullptr; 425 } 426 break; 427 428 default: 429 break; 430 } 431 return None; 432 } 433 434 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend( 435 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, 436 Selector Sel, llvm::Value *Receiver, const CallArgList &Args, 437 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method, 438 bool isClassMessage) { 439 if (Optional<llvm::Value *> SpecializedResult = 440 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args, 441 Sel, Method, isClassMessage)) { 442 return RValue::get(SpecializedResult.getValue()); 443 } 444 return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID, 445 Method); 446 } 447 448 /// Instead of '[[MyClass alloc] init]', try to generate 449 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the 450 /// caller side, as well as the optimized objc_alloc. 451 static Optional<llvm::Value *> 452 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) { 453 auto &Runtime = CGF.getLangOpts().ObjCRuntime; 454 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit()) 455 return None; 456 457 // Match the exact pattern '[[MyClass alloc] init]'. 458 Selector Sel = OME->getSelector(); 459 if (OME->getReceiverKind() != ObjCMessageExpr::Instance || 460 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() || 461 Sel.getNameForSlot(0) != "init") 462 return None; 463 464 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' 465 // with 'cls' a Class. 466 auto *SubOME = 467 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts()); 468 if (!SubOME) 469 return None; 470 Selector SubSel = SubOME->getSelector(); 471 472 if (!SubOME->getType()->isObjCObjectPointerType() || 473 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc") 474 return None; 475 476 llvm::Value *Receiver = nullptr; 477 switch (SubOME->getReceiverKind()) { 478 case ObjCMessageExpr::Instance: 479 if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType()) 480 return None; 481 Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver()); 482 break; 483 484 case ObjCMessageExpr::Class: { 485 QualType ReceiverType = SubOME->getClassReceiver(); 486 const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>(); 487 const ObjCInterfaceDecl *ID = ObjTy->getInterface(); 488 assert(ID && "null interface should be impossible here"); 489 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID); 490 break; 491 } 492 case ObjCMessageExpr::SuperInstance: 493 case ObjCMessageExpr::SuperClass: 494 return None; 495 } 496 497 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType())); 498 } 499 500 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 501 ReturnValueSlot Return) { 502 // Only the lookup mechanism and first two arguments of the method 503 // implementation vary between runtimes. We can get the receiver and 504 // arguments in generic code. 505 506 bool isDelegateInit = E->isDelegateInitCall(); 507 508 const ObjCMethodDecl *method = E->getMethodDecl(); 509 510 // If the method is -retain, and the receiver's being loaded from 511 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 512 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 513 method->getMethodFamily() == OMF_retain) { 514 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 515 LValue lvalue = EmitLValue(lvalueExpr); 516 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this)); 517 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 518 } 519 } 520 521 if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E)) 522 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val)); 523 524 // We don't retain the receiver in delegate init calls, and this is 525 // safe because the receiver value is always loaded from 'self', 526 // which we zero out. We don't want to Block_copy block receivers, 527 // though. 528 bool retainSelf = 529 (!isDelegateInit && 530 CGM.getLangOpts().ObjCAutoRefCount && 531 method && 532 method->hasAttr<NSConsumesSelfAttr>()); 533 534 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 535 bool isSuperMessage = false; 536 bool isClassMessage = false; 537 ObjCInterfaceDecl *OID = nullptr; 538 // Find the receiver 539 QualType ReceiverType; 540 llvm::Value *Receiver = nullptr; 541 switch (E->getReceiverKind()) { 542 case ObjCMessageExpr::Instance: 543 ReceiverType = E->getInstanceReceiver()->getType(); 544 isClassMessage = ReceiverType->isObjCClassType(); 545 if (retainSelf) { 546 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 547 E->getInstanceReceiver()); 548 Receiver = ter.getPointer(); 549 if (ter.getInt()) retainSelf = false; 550 } else 551 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 552 break; 553 554 case ObjCMessageExpr::Class: { 555 ReceiverType = E->getClassReceiver(); 556 OID = ReceiverType->castAs<ObjCObjectType>()->getInterface(); 557 assert(OID && "Invalid Objective-C class message send"); 558 Receiver = Runtime.GetClass(*this, OID); 559 isClassMessage = true; 560 break; 561 } 562 563 case ObjCMessageExpr::SuperInstance: 564 ReceiverType = E->getSuperType(); 565 Receiver = LoadObjCSelf(); 566 isSuperMessage = true; 567 break; 568 569 case ObjCMessageExpr::SuperClass: 570 ReceiverType = E->getSuperType(); 571 Receiver = LoadObjCSelf(); 572 isSuperMessage = true; 573 isClassMessage = true; 574 break; 575 } 576 577 if (retainSelf) 578 Receiver = EmitARCRetainNonBlock(Receiver); 579 580 // In ARC, we sometimes want to "extend the lifetime" 581 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 582 // messages. 583 if (getLangOpts().ObjCAutoRefCount && method && 584 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 585 shouldExtendReceiverForInnerPointerMessage(E)) 586 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 587 588 QualType ResultType = method ? method->getReturnType() : E->getType(); 589 590 CallArgList Args; 591 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 592 593 // For delegate init calls in ARC, do an unsafe store of null into 594 // self. This represents the call taking direct ownership of that 595 // value. We have to do this after emitting the other call 596 // arguments because they might also reference self, but we don't 597 // have to worry about any of them modifying self because that would 598 // be an undefined read and write of an object in unordered 599 // expressions. 600 if (isDelegateInit) { 601 assert(getLangOpts().ObjCAutoRefCount && 602 "delegate init calls should only be marked in ARC"); 603 604 // Do an unsafe store of null into self. 605 Address selfAddr = 606 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 607 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 608 } 609 610 RValue result; 611 if (isSuperMessage) { 612 // super is only valid in an Objective-C method 613 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 614 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 615 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 616 E->getSelector(), 617 OMD->getClassInterface(), 618 isCategoryImpl, 619 Receiver, 620 isClassMessage, 621 Args, 622 method); 623 } else { 624 // Call runtime methods directly if we can. 625 result = Runtime.GeneratePossiblySpecializedMessageSend( 626 *this, Return, ResultType, E->getSelector(), Receiver, Args, OID, 627 method, isClassMessage); 628 } 629 630 // For delegate init calls in ARC, implicitly store the result of 631 // the call back into self. This takes ownership of the value. 632 if (isDelegateInit) { 633 Address selfAddr = 634 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 635 llvm::Value *newSelf = result.getScalarVal(); 636 637 // The delegate return type isn't necessarily a matching type; in 638 // fact, it's quite likely to be 'id'. 639 llvm::Type *selfTy = selfAddr.getElementType(); 640 newSelf = Builder.CreateBitCast(newSelf, selfTy); 641 642 Builder.CreateStore(newSelf, selfAddr); 643 } 644 645 return AdjustObjCObjectType(*this, E->getType(), result); 646 } 647 648 namespace { 649 struct FinishARCDealloc final : EHScopeStack::Cleanup { 650 void Emit(CodeGenFunction &CGF, Flags flags) override { 651 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 652 653 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 654 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 655 if (!iface->getSuperClass()) return; 656 657 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 658 659 // Call [super dealloc] if we have a superclass. 660 llvm::Value *self = CGF.LoadObjCSelf(); 661 662 CallArgList args; 663 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 664 CGF.getContext().VoidTy, 665 method->getSelector(), 666 iface, 667 isCategory, 668 self, 669 /*is class msg*/ false, 670 args, 671 method); 672 } 673 }; 674 } 675 676 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 677 /// the LLVM function and sets the other context used by 678 /// CodeGenFunction. 679 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 680 const ObjCContainerDecl *CD) { 681 SourceLocation StartLoc = OMD->getBeginLoc(); 682 FunctionArgList args; 683 // Check if we should generate debug info for this method. 684 if (OMD->hasAttr<NoDebugAttr>()) 685 DebugInfo = nullptr; // disable debug info indefinitely for this function 686 687 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 688 689 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 690 if (OMD->isDirectMethod()) { 691 Fn->setVisibility(llvm::Function::HiddenVisibility); 692 CGM.SetLLVMFunctionAttributes(OMD, FI, Fn); 693 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn); 694 } else { 695 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 696 } 697 698 args.push_back(OMD->getSelfDecl()); 699 args.push_back(OMD->getCmdDecl()); 700 701 args.append(OMD->param_begin(), OMD->param_end()); 702 703 CurGD = OMD; 704 CurEHLocation = OMD->getEndLoc(); 705 706 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 707 OMD->getLocation(), StartLoc); 708 709 if (OMD->isDirectMethod()) { 710 // This function is a direct call, it has to implement a nil check 711 // on entry. 712 // 713 // TODO: possibly have several entry points to elide the check 714 CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD); 715 } 716 717 // In ARC, certain methods get an extra cleanup. 718 if (CGM.getLangOpts().ObjCAutoRefCount && 719 OMD->isInstanceMethod() && 720 OMD->getSelector().isUnarySelector()) { 721 const IdentifierInfo *ident = 722 OMD->getSelector().getIdentifierInfoForSlot(0); 723 if (ident->isStr("dealloc")) 724 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 725 } 726 } 727 728 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 729 LValue lvalue, QualType type); 730 731 /// Generate an Objective-C method. An Objective-C method is a C function with 732 /// its pointer, name, and types registered in the class structure. 733 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 734 StartObjCMethod(OMD, OMD->getClassInterface()); 735 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 736 assert(isa<CompoundStmt>(OMD->getBody())); 737 incrementProfileCounter(OMD->getBody()); 738 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 739 FinishFunction(OMD->getBodyRBrace()); 740 } 741 742 /// emitStructGetterCall - Call the runtime function to load a property 743 /// into the return value slot. 744 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 745 bool isAtomic, bool hasStrong) { 746 ASTContext &Context = CGF.getContext(); 747 748 Address src = 749 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 750 .getAddress(CGF); 751 752 // objc_copyStruct (ReturnValue, &structIvar, 753 // sizeof (Type of Ivar), isAtomic, false); 754 CallArgList args; 755 756 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 757 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 758 759 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 760 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 761 762 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 763 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 764 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 765 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 766 767 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 768 CGCallee callee = CGCallee::forDirect(fn); 769 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 770 callee, ReturnValueSlot(), args); 771 } 772 773 /// Determine whether the given architecture supports unaligned atomic 774 /// accesses. They don't have to be fast, just faster than a function 775 /// call and a mutex. 776 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 777 // FIXME: Allow unaligned atomic load/store on x86. (It is not 778 // currently supported by the backend.) 779 return 0; 780 } 781 782 /// Return the maximum size that permits atomic accesses for the given 783 /// architecture. 784 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 785 llvm::Triple::ArchType arch) { 786 // ARM has 8-byte atomic accesses, but it's not clear whether we 787 // want to rely on them here. 788 789 // In the default case, just assume that any size up to a pointer is 790 // fine given adequate alignment. 791 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 792 } 793 794 namespace { 795 class PropertyImplStrategy { 796 public: 797 enum StrategyKind { 798 /// The 'native' strategy is to use the architecture's provided 799 /// reads and writes. 800 Native, 801 802 /// Use objc_setProperty and objc_getProperty. 803 GetSetProperty, 804 805 /// Use objc_setProperty for the setter, but use expression 806 /// evaluation for the getter. 807 SetPropertyAndExpressionGet, 808 809 /// Use objc_copyStruct. 810 CopyStruct, 811 812 /// The 'expression' strategy is to emit normal assignment or 813 /// lvalue-to-rvalue expressions. 814 Expression 815 }; 816 817 StrategyKind getKind() const { return StrategyKind(Kind); } 818 819 bool hasStrongMember() const { return HasStrong; } 820 bool isAtomic() const { return IsAtomic; } 821 bool isCopy() const { return IsCopy; } 822 823 CharUnits getIvarSize() const { return IvarSize; } 824 CharUnits getIvarAlignment() const { return IvarAlignment; } 825 826 PropertyImplStrategy(CodeGenModule &CGM, 827 const ObjCPropertyImplDecl *propImpl); 828 829 private: 830 unsigned Kind : 8; 831 unsigned IsAtomic : 1; 832 unsigned IsCopy : 1; 833 unsigned HasStrong : 1; 834 835 CharUnits IvarSize; 836 CharUnits IvarAlignment; 837 }; 838 } 839 840 /// Pick an implementation strategy for the given property synthesis. 841 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 842 const ObjCPropertyImplDecl *propImpl) { 843 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 844 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 845 846 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 847 IsAtomic = prop->isAtomic(); 848 HasStrong = false; // doesn't matter here. 849 850 // Evaluate the ivar's size and alignment. 851 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 852 QualType ivarType = ivar->getType(); 853 std::tie(IvarSize, IvarAlignment) = 854 CGM.getContext().getTypeInfoInChars(ivarType); 855 856 // If we have a copy property, we always have to use getProperty/setProperty. 857 // TODO: we could actually use setProperty and an expression for non-atomics. 858 if (IsCopy) { 859 Kind = GetSetProperty; 860 return; 861 } 862 863 // Handle retain. 864 if (setterKind == ObjCPropertyDecl::Retain) { 865 // In GC-only, there's nothing special that needs to be done. 866 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 867 // fallthrough 868 869 // In ARC, if the property is non-atomic, use expression emission, 870 // which translates to objc_storeStrong. This isn't required, but 871 // it's slightly nicer. 872 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 873 // Using standard expression emission for the setter is only 874 // acceptable if the ivar is __strong, which won't be true if 875 // the property is annotated with __attribute__((NSObject)). 876 // TODO: falling all the way back to objc_setProperty here is 877 // just laziness, though; we could still use objc_storeStrong 878 // if we hacked it right. 879 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 880 Kind = Expression; 881 else 882 Kind = SetPropertyAndExpressionGet; 883 return; 884 885 // Otherwise, we need to at least use setProperty. However, if 886 // the property isn't atomic, we can use normal expression 887 // emission for the getter. 888 } else if (!IsAtomic) { 889 Kind = SetPropertyAndExpressionGet; 890 return; 891 892 // Otherwise, we have to use both setProperty and getProperty. 893 } else { 894 Kind = GetSetProperty; 895 return; 896 } 897 } 898 899 // If we're not atomic, just use expression accesses. 900 if (!IsAtomic) { 901 Kind = Expression; 902 return; 903 } 904 905 // Properties on bitfield ivars need to be emitted using expression 906 // accesses even if they're nominally atomic. 907 if (ivar->isBitField()) { 908 Kind = Expression; 909 return; 910 } 911 912 // GC-qualified or ARC-qualified ivars need to be emitted as 913 // expressions. This actually works out to being atomic anyway, 914 // except for ARC __strong, but that should trigger the above code. 915 if (ivarType.hasNonTrivialObjCLifetime() || 916 (CGM.getLangOpts().getGC() && 917 CGM.getContext().getObjCGCAttrKind(ivarType))) { 918 Kind = Expression; 919 return; 920 } 921 922 // Compute whether the ivar has strong members. 923 if (CGM.getLangOpts().getGC()) 924 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 925 HasStrong = recordType->getDecl()->hasObjectMember(); 926 927 // We can never access structs with object members with a native 928 // access, because we need to use write barriers. This is what 929 // objc_copyStruct is for. 930 if (HasStrong) { 931 Kind = CopyStruct; 932 return; 933 } 934 935 // Otherwise, this is target-dependent and based on the size and 936 // alignment of the ivar. 937 938 // If the size of the ivar is not a power of two, give up. We don't 939 // want to get into the business of doing compare-and-swaps. 940 if (!IvarSize.isPowerOfTwo()) { 941 Kind = CopyStruct; 942 return; 943 } 944 945 llvm::Triple::ArchType arch = 946 CGM.getTarget().getTriple().getArch(); 947 948 // Most architectures require memory to fit within a single cache 949 // line, so the alignment has to be at least the size of the access. 950 // Otherwise we have to grab a lock. 951 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 952 Kind = CopyStruct; 953 return; 954 } 955 956 // If the ivar's size exceeds the architecture's maximum atomic 957 // access size, we have to use CopyStruct. 958 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 959 Kind = CopyStruct; 960 return; 961 } 962 963 // Otherwise, we can use native loads and stores. 964 Kind = Native; 965 } 966 967 /// Generate an Objective-C property getter function. 968 /// 969 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 970 /// is illegal within a category. 971 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 972 const ObjCPropertyImplDecl *PID) { 973 llvm::Constant *AtomicHelperFn = 974 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 975 ObjCMethodDecl *OMD = PID->getGetterMethodDecl(); 976 assert(OMD && "Invalid call to generate getter (empty method)"); 977 StartObjCMethod(OMD, IMP->getClassInterface()); 978 979 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 980 981 FinishFunction(OMD->getEndLoc()); 982 } 983 984 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 985 const Expr *getter = propImpl->getGetterCXXConstructor(); 986 if (!getter) return true; 987 988 // Sema only makes only of these when the ivar has a C++ class type, 989 // so the form is pretty constrained. 990 991 // If the property has a reference type, we might just be binding a 992 // reference, in which case the result will be a gl-value. We should 993 // treat this as a non-trivial operation. 994 if (getter->isGLValue()) 995 return false; 996 997 // If we selected a trivial copy-constructor, we're okay. 998 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 999 return (construct->getConstructor()->isTrivial()); 1000 1001 // The constructor might require cleanups (in which case it's never 1002 // trivial). 1003 assert(isa<ExprWithCleanups>(getter)); 1004 return false; 1005 } 1006 1007 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 1008 /// copy the ivar into the resturn slot. 1009 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 1010 llvm::Value *returnAddr, 1011 ObjCIvarDecl *ivar, 1012 llvm::Constant *AtomicHelperFn) { 1013 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 1014 // AtomicHelperFn); 1015 CallArgList args; 1016 1017 // The 1st argument is the return Slot. 1018 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 1019 1020 // The 2nd argument is the address of the ivar. 1021 llvm::Value *ivarAddr = 1022 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1023 .getPointer(CGF); 1024 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1025 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1026 1027 // Third argument is the helper function. 1028 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1029 1030 llvm::FunctionCallee copyCppAtomicObjectFn = 1031 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 1032 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 1033 CGF.EmitCall( 1034 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1035 callee, ReturnValueSlot(), args); 1036 } 1037 1038 void 1039 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1040 const ObjCPropertyImplDecl *propImpl, 1041 const ObjCMethodDecl *GetterMethodDecl, 1042 llvm::Constant *AtomicHelperFn) { 1043 // If there's a non-trivial 'get' expression, we just have to emit that. 1044 if (!hasTrivialGetExpr(propImpl)) { 1045 if (!AtomicHelperFn) { 1046 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(), 1047 propImpl->getGetterCXXConstructor(), 1048 /* NRVOCandidate=*/nullptr); 1049 EmitReturnStmt(*ret); 1050 } 1051 else { 1052 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1053 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 1054 ivar, AtomicHelperFn); 1055 } 1056 return; 1057 } 1058 1059 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1060 QualType propType = prop->getType(); 1061 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl(); 1062 1063 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1064 1065 // Pick an implementation strategy. 1066 PropertyImplStrategy strategy(CGM, propImpl); 1067 switch (strategy.getKind()) { 1068 case PropertyImplStrategy::Native: { 1069 // We don't need to do anything for a zero-size struct. 1070 if (strategy.getIvarSize().isZero()) 1071 return; 1072 1073 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1074 1075 // Currently, all atomic accesses have to be through integer 1076 // types, so there's no point in trying to pick a prettier type. 1077 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 1078 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 1079 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1080 1081 // Perform an atomic load. This does not impose ordering constraints. 1082 Address ivarAddr = LV.getAddress(*this); 1083 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1084 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 1085 load->setAtomic(llvm::AtomicOrdering::Unordered); 1086 1087 // Store that value into the return address. Doing this with a 1088 // bitcast is likely to produce some pretty ugly IR, but it's not 1089 // the *most* terrible thing in the world. 1090 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 1091 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 1092 llvm::Value *ivarVal = load; 1093 if (ivarSize > retTySize) { 1094 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 1095 ivarVal = Builder.CreateTrunc(load, newTy); 1096 bitcastType = newTy->getPointerTo(); 1097 } 1098 Builder.CreateStore(ivarVal, 1099 Builder.CreateBitCast(ReturnValue, bitcastType)); 1100 1101 // Make sure we don't do an autorelease. 1102 AutoreleaseResult = false; 1103 return; 1104 } 1105 1106 case PropertyImplStrategy::GetSetProperty: { 1107 llvm::FunctionCallee getPropertyFn = 1108 CGM.getObjCRuntime().GetPropertyGetFunction(); 1109 if (!getPropertyFn) { 1110 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 1111 return; 1112 } 1113 CGCallee callee = CGCallee::forDirect(getPropertyFn); 1114 1115 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 1116 // FIXME: Can't this be simpler? This might even be worse than the 1117 // corresponding gcc code. 1118 llvm::Value *cmd = 1119 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 1120 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1121 llvm::Value *ivarOffset = 1122 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1123 1124 CallArgList args; 1125 args.add(RValue::get(self), getContext().getObjCIdType()); 1126 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1127 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1128 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1129 getContext().BoolTy); 1130 1131 // FIXME: We shouldn't need to get the function info here, the 1132 // runtime already should have computed it to build the function. 1133 llvm::CallBase *CallInstruction; 1134 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall( 1135 getContext().getObjCIdType(), args), 1136 callee, ReturnValueSlot(), args, &CallInstruction); 1137 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 1138 call->setTailCall(); 1139 1140 // We need to fix the type here. Ivars with copy & retain are 1141 // always objects so we don't need to worry about complex or 1142 // aggregates. 1143 RV = RValue::get(Builder.CreateBitCast( 1144 RV.getScalarVal(), 1145 getTypes().ConvertType(getterMethod->getReturnType()))); 1146 1147 EmitReturnOfRValue(RV, propType); 1148 1149 // objc_getProperty does an autorelease, so we should suppress ours. 1150 AutoreleaseResult = false; 1151 1152 return; 1153 } 1154 1155 case PropertyImplStrategy::CopyStruct: 1156 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 1157 strategy.hasStrongMember()); 1158 return; 1159 1160 case PropertyImplStrategy::Expression: 1161 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1162 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1163 1164 QualType ivarType = ivar->getType(); 1165 switch (getEvaluationKind(ivarType)) { 1166 case TEK_Complex: { 1167 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1168 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1169 /*init*/ true); 1170 return; 1171 } 1172 case TEK_Aggregate: { 1173 // The return value slot is guaranteed to not be aliased, but 1174 // that's not necessarily the same as "on the stack", so 1175 // we still potentially need objc_memmove_collectable. 1176 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1177 /* Src= */ LV, ivarType, getOverlapForReturnValue()); 1178 return; 1179 } 1180 case TEK_Scalar: { 1181 llvm::Value *value; 1182 if (propType->isReferenceType()) { 1183 value = LV.getAddress(*this).getPointer(); 1184 } else { 1185 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1186 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1187 if (getLangOpts().ObjCAutoRefCount) { 1188 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1189 } else { 1190 value = EmitARCLoadWeak(LV.getAddress(*this)); 1191 } 1192 1193 // Otherwise we want to do a simple load, suppressing the 1194 // final autorelease. 1195 } else { 1196 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1197 AutoreleaseResult = false; 1198 } 1199 1200 value = Builder.CreateBitCast( 1201 value, ConvertType(GetterMethodDecl->getReturnType())); 1202 } 1203 1204 EmitReturnOfRValue(RValue::get(value), propType); 1205 return; 1206 } 1207 } 1208 llvm_unreachable("bad evaluation kind"); 1209 } 1210 1211 } 1212 llvm_unreachable("bad @property implementation strategy!"); 1213 } 1214 1215 /// emitStructSetterCall - Call the runtime function to store the value 1216 /// from the first formal parameter into the given ivar. 1217 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1218 ObjCIvarDecl *ivar) { 1219 // objc_copyStruct (&structIvar, &Arg, 1220 // sizeof (struct something), true, false); 1221 CallArgList args; 1222 1223 // The first argument is the address of the ivar. 1224 llvm::Value *ivarAddr = 1225 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1226 .getPointer(CGF); 1227 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1228 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1229 1230 // The second argument is the address of the parameter variable. 1231 ParmVarDecl *argVar = *OMD->param_begin(); 1232 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1233 argVar->getType().getNonReferenceType(), VK_LValue, 1234 SourceLocation()); 1235 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1236 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1237 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1238 1239 // The third argument is the sizeof the type. 1240 llvm::Value *size = 1241 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1242 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1243 1244 // The fourth argument is the 'isAtomic' flag. 1245 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1246 1247 // The fifth argument is the 'hasStrong' flag. 1248 // FIXME: should this really always be false? 1249 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1250 1251 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1252 CGCallee callee = CGCallee::forDirect(fn); 1253 CGF.EmitCall( 1254 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1255 callee, ReturnValueSlot(), args); 1256 } 1257 1258 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1259 /// the value from the first formal parameter into the given ivar, using 1260 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1261 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1262 ObjCMethodDecl *OMD, 1263 ObjCIvarDecl *ivar, 1264 llvm::Constant *AtomicHelperFn) { 1265 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1266 // AtomicHelperFn); 1267 CallArgList args; 1268 1269 // The first argument is the address of the ivar. 1270 llvm::Value *ivarAddr = 1271 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1272 .getPointer(CGF); 1273 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1274 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1275 1276 // The second argument is the address of the parameter variable. 1277 ParmVarDecl *argVar = *OMD->param_begin(); 1278 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1279 argVar->getType().getNonReferenceType(), VK_LValue, 1280 SourceLocation()); 1281 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1282 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1283 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1284 1285 // Third argument is the helper function. 1286 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1287 1288 llvm::FunctionCallee fn = 1289 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1290 CGCallee callee = CGCallee::forDirect(fn); 1291 CGF.EmitCall( 1292 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1293 callee, ReturnValueSlot(), args); 1294 } 1295 1296 1297 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1298 Expr *setter = PID->getSetterCXXAssignment(); 1299 if (!setter) return true; 1300 1301 // Sema only makes only of these when the ivar has a C++ class type, 1302 // so the form is pretty constrained. 1303 1304 // An operator call is trivial if the function it calls is trivial. 1305 // This also implies that there's nothing non-trivial going on with 1306 // the arguments, because operator= can only be trivial if it's a 1307 // synthesized assignment operator and therefore both parameters are 1308 // references. 1309 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1310 if (const FunctionDecl *callee 1311 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1312 if (callee->isTrivial()) 1313 return true; 1314 return false; 1315 } 1316 1317 assert(isa<ExprWithCleanups>(setter)); 1318 return false; 1319 } 1320 1321 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1322 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1323 return false; 1324 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1325 } 1326 1327 void 1328 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1329 const ObjCPropertyImplDecl *propImpl, 1330 llvm::Constant *AtomicHelperFn) { 1331 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1332 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl(); 1333 1334 // Just use the setter expression if Sema gave us one and it's 1335 // non-trivial. 1336 if (!hasTrivialSetExpr(propImpl)) { 1337 if (!AtomicHelperFn) 1338 // If non-atomic, assignment is called directly. 1339 EmitStmt(propImpl->getSetterCXXAssignment()); 1340 else 1341 // If atomic, assignment is called via a locking api. 1342 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1343 AtomicHelperFn); 1344 return; 1345 } 1346 1347 PropertyImplStrategy strategy(CGM, propImpl); 1348 switch (strategy.getKind()) { 1349 case PropertyImplStrategy::Native: { 1350 // We don't need to do anything for a zero-size struct. 1351 if (strategy.getIvarSize().isZero()) 1352 return; 1353 1354 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1355 1356 LValue ivarLValue = 1357 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1358 Address ivarAddr = ivarLValue.getAddress(*this); 1359 1360 // Currently, all atomic accesses have to be through integer 1361 // types, so there's no point in trying to pick a prettier type. 1362 llvm::Type *bitcastType = 1363 llvm::Type::getIntNTy(getLLVMContext(), 1364 getContext().toBits(strategy.getIvarSize())); 1365 1366 // Cast both arguments to the chosen operation type. 1367 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1368 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1369 1370 // This bitcast load is likely to cause some nasty IR. 1371 llvm::Value *load = Builder.CreateLoad(argAddr); 1372 1373 // Perform an atomic store. There are no memory ordering requirements. 1374 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1375 store->setAtomic(llvm::AtomicOrdering::Unordered); 1376 return; 1377 } 1378 1379 case PropertyImplStrategy::GetSetProperty: 1380 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1381 1382 llvm::FunctionCallee setOptimizedPropertyFn = nullptr; 1383 llvm::FunctionCallee setPropertyFn = nullptr; 1384 if (UseOptimizedSetter(CGM)) { 1385 // 10.8 and iOS 6.0 code and GC is off 1386 setOptimizedPropertyFn = 1387 CGM.getObjCRuntime().GetOptimizedPropertySetFunction( 1388 strategy.isAtomic(), strategy.isCopy()); 1389 if (!setOptimizedPropertyFn) { 1390 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1391 return; 1392 } 1393 } 1394 else { 1395 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1396 if (!setPropertyFn) { 1397 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1398 return; 1399 } 1400 } 1401 1402 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1403 // <is-atomic>, <is-copy>). 1404 llvm::Value *cmd = 1405 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1406 llvm::Value *self = 1407 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1408 llvm::Value *ivarOffset = 1409 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1410 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1411 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1412 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1413 1414 CallArgList args; 1415 args.add(RValue::get(self), getContext().getObjCIdType()); 1416 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1417 if (setOptimizedPropertyFn) { 1418 args.add(RValue::get(arg), getContext().getObjCIdType()); 1419 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1420 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1421 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1422 callee, ReturnValueSlot(), args); 1423 } else { 1424 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1425 args.add(RValue::get(arg), getContext().getObjCIdType()); 1426 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1427 getContext().BoolTy); 1428 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1429 getContext().BoolTy); 1430 // FIXME: We shouldn't need to get the function info here, the runtime 1431 // already should have computed it to build the function. 1432 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1433 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1434 callee, ReturnValueSlot(), args); 1435 } 1436 1437 return; 1438 } 1439 1440 case PropertyImplStrategy::CopyStruct: 1441 emitStructSetterCall(*this, setterMethod, ivar); 1442 return; 1443 1444 case PropertyImplStrategy::Expression: 1445 break; 1446 } 1447 1448 // Otherwise, fake up some ASTs and emit a normal assignment. 1449 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1450 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(), 1451 VK_LValue, SourceLocation()); 1452 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(), 1453 CK_LValueToRValue, &self, VK_RValue, 1454 FPOptionsOverride()); 1455 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1456 SourceLocation(), SourceLocation(), 1457 &selfLoad, true, true); 1458 1459 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1460 QualType argType = argDecl->getType().getNonReferenceType(); 1461 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue, 1462 SourceLocation()); 1463 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1464 argType.getUnqualifiedType(), CK_LValueToRValue, 1465 &arg, VK_RValue, FPOptionsOverride()); 1466 1467 // The property type can differ from the ivar type in some situations with 1468 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1469 // The following absurdity is just to ensure well-formed IR. 1470 CastKind argCK = CK_NoOp; 1471 if (ivarRef.getType()->isObjCObjectPointerType()) { 1472 if (argLoad.getType()->isObjCObjectPointerType()) 1473 argCK = CK_BitCast; 1474 else if (argLoad.getType()->isBlockPointerType()) 1475 argCK = CK_BlockPointerToObjCPointerCast; 1476 else 1477 argCK = CK_CPointerToObjCPointerCast; 1478 } else if (ivarRef.getType()->isBlockPointerType()) { 1479 if (argLoad.getType()->isBlockPointerType()) 1480 argCK = CK_BitCast; 1481 else 1482 argCK = CK_AnyPointerToBlockPointerCast; 1483 } else if (ivarRef.getType()->isPointerType()) { 1484 argCK = CK_BitCast; 1485 } 1486 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK, 1487 &argLoad, VK_RValue, FPOptionsOverride()); 1488 Expr *finalArg = &argLoad; 1489 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1490 argLoad.getType())) 1491 finalArg = &argCast; 1492 1493 BinaryOperator *assign = BinaryOperator::Create( 1494 getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), VK_RValue, 1495 OK_Ordinary, SourceLocation(), FPOptionsOverride()); 1496 EmitStmt(assign); 1497 } 1498 1499 /// Generate an Objective-C property setter function. 1500 /// 1501 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1502 /// is illegal within a category. 1503 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1504 const ObjCPropertyImplDecl *PID) { 1505 llvm::Constant *AtomicHelperFn = 1506 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1507 ObjCMethodDecl *OMD = PID->getSetterMethodDecl(); 1508 assert(OMD && "Invalid call to generate setter (empty method)"); 1509 StartObjCMethod(OMD, IMP->getClassInterface()); 1510 1511 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1512 1513 FinishFunction(OMD->getEndLoc()); 1514 } 1515 1516 namespace { 1517 struct DestroyIvar final : EHScopeStack::Cleanup { 1518 private: 1519 llvm::Value *addr; 1520 const ObjCIvarDecl *ivar; 1521 CodeGenFunction::Destroyer *destroyer; 1522 bool useEHCleanupForArray; 1523 public: 1524 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1525 CodeGenFunction::Destroyer *destroyer, 1526 bool useEHCleanupForArray) 1527 : addr(addr), ivar(ivar), destroyer(destroyer), 1528 useEHCleanupForArray(useEHCleanupForArray) {} 1529 1530 void Emit(CodeGenFunction &CGF, Flags flags) override { 1531 LValue lvalue 1532 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1533 CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer, 1534 flags.isForNormalCleanup() && useEHCleanupForArray); 1535 } 1536 }; 1537 } 1538 1539 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1540 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1541 Address addr, 1542 QualType type) { 1543 llvm::Value *null = getNullForVariable(addr); 1544 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1545 } 1546 1547 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1548 ObjCImplementationDecl *impl) { 1549 CodeGenFunction::RunCleanupsScope scope(CGF); 1550 1551 llvm::Value *self = CGF.LoadObjCSelf(); 1552 1553 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1554 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1555 ivar; ivar = ivar->getNextIvar()) { 1556 QualType type = ivar->getType(); 1557 1558 // Check whether the ivar is a destructible type. 1559 QualType::DestructionKind dtorKind = type.isDestructedType(); 1560 if (!dtorKind) continue; 1561 1562 CodeGenFunction::Destroyer *destroyer = nullptr; 1563 1564 // Use a call to objc_storeStrong to destroy strong ivars, for the 1565 // general benefit of the tools. 1566 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1567 destroyer = destroyARCStrongWithStore; 1568 1569 // Otherwise use the default for the destruction kind. 1570 } else { 1571 destroyer = CGF.getDestroyer(dtorKind); 1572 } 1573 1574 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1575 1576 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1577 cleanupKind & EHCleanup); 1578 } 1579 1580 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1581 } 1582 1583 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1584 ObjCMethodDecl *MD, 1585 bool ctor) { 1586 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1587 StartObjCMethod(MD, IMP->getClassInterface()); 1588 1589 // Emit .cxx_construct. 1590 if (ctor) { 1591 // Suppress the final autorelease in ARC. 1592 AutoreleaseResult = false; 1593 1594 for (const auto *IvarInit : IMP->inits()) { 1595 FieldDecl *Field = IvarInit->getAnyMember(); 1596 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1597 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1598 LoadObjCSelf(), Ivar, 0); 1599 EmitAggExpr(IvarInit->getInit(), 1600 AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed, 1601 AggValueSlot::DoesNotNeedGCBarriers, 1602 AggValueSlot::IsNotAliased, 1603 AggValueSlot::DoesNotOverlap)); 1604 } 1605 // constructor returns 'self'. 1606 CodeGenTypes &Types = CGM.getTypes(); 1607 QualType IdTy(CGM.getContext().getObjCIdType()); 1608 llvm::Value *SelfAsId = 1609 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1610 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1611 1612 // Emit .cxx_destruct. 1613 } else { 1614 emitCXXDestructMethod(*this, IMP); 1615 } 1616 FinishFunction(); 1617 } 1618 1619 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1620 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1621 DeclRefExpr DRE(getContext(), Self, 1622 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1623 Self->getType(), VK_LValue, SourceLocation()); 1624 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1625 } 1626 1627 QualType CodeGenFunction::TypeOfSelfObject() { 1628 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1629 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1630 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1631 getContext().getCanonicalType(selfDecl->getType())); 1632 return PTy->getPointeeType(); 1633 } 1634 1635 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1636 llvm::FunctionCallee EnumerationMutationFnPtr = 1637 CGM.getObjCRuntime().EnumerationMutationFunction(); 1638 if (!EnumerationMutationFnPtr) { 1639 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1640 return; 1641 } 1642 CGCallee EnumerationMutationFn = 1643 CGCallee::forDirect(EnumerationMutationFnPtr); 1644 1645 CGDebugInfo *DI = getDebugInfo(); 1646 if (DI) 1647 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1648 1649 RunCleanupsScope ForScope(*this); 1650 1651 // The local variable comes into scope immediately. 1652 AutoVarEmission variable = AutoVarEmission::invalid(); 1653 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1654 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1655 1656 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1657 1658 // Fast enumeration state. 1659 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1660 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1661 EmitNullInitialization(StatePtr, StateTy); 1662 1663 // Number of elements in the items array. 1664 static const unsigned NumItems = 16; 1665 1666 // Fetch the countByEnumeratingWithState:objects:count: selector. 1667 IdentifierInfo *II[] = { 1668 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1669 &CGM.getContext().Idents.get("objects"), 1670 &CGM.getContext().Idents.get("count") 1671 }; 1672 Selector FastEnumSel = 1673 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1674 1675 QualType ItemsTy = 1676 getContext().getConstantArrayType(getContext().getObjCIdType(), 1677 llvm::APInt(32, NumItems), nullptr, 1678 ArrayType::Normal, 0); 1679 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1680 1681 // Emit the collection pointer. In ARC, we do a retain. 1682 llvm::Value *Collection; 1683 if (getLangOpts().ObjCAutoRefCount) { 1684 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1685 1686 // Enter a cleanup to do the release. 1687 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1688 } else { 1689 Collection = EmitScalarExpr(S.getCollection()); 1690 } 1691 1692 // The 'continue' label needs to appear within the cleanup for the 1693 // collection object. 1694 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1695 1696 // Send it our message: 1697 CallArgList Args; 1698 1699 // The first argument is a temporary of the enumeration-state type. 1700 Args.add(RValue::get(StatePtr.getPointer()), 1701 getContext().getPointerType(StateTy)); 1702 1703 // The second argument is a temporary array with space for NumItems 1704 // pointers. We'll actually be loading elements from the array 1705 // pointer written into the control state; this buffer is so that 1706 // collections that *aren't* backed by arrays can still queue up 1707 // batches of elements. 1708 Args.add(RValue::get(ItemsPtr.getPointer()), 1709 getContext().getPointerType(ItemsTy)); 1710 1711 // The third argument is the capacity of that temporary array. 1712 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1713 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1714 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1715 1716 // Start the enumeration. 1717 RValue CountRV = 1718 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1719 getContext().getNSUIntegerType(), 1720 FastEnumSel, Collection, Args); 1721 1722 // The initial number of objects that were returned in the buffer. 1723 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1724 1725 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1726 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1727 1728 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1729 1730 // If the limit pointer was zero to begin with, the collection is 1731 // empty; skip all this. Set the branch weight assuming this has the same 1732 // probability of exiting the loop as any other loop exit. 1733 uint64_t EntryCount = getCurrentProfileCount(); 1734 Builder.CreateCondBr( 1735 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1736 LoopInitBB, 1737 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1738 1739 // Otherwise, initialize the loop. 1740 EmitBlock(LoopInitBB); 1741 1742 // Save the initial mutations value. This is the value at an 1743 // address that was written into the state object by 1744 // countByEnumeratingWithState:objects:count:. 1745 Address StateMutationsPtrPtr = 1746 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1747 llvm::Value *StateMutationsPtr 1748 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1749 1750 llvm::Value *initialMutations = 1751 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1752 "forcoll.initial-mutations"); 1753 1754 // Start looping. This is the point we return to whenever we have a 1755 // fresh, non-empty batch of objects. 1756 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1757 EmitBlock(LoopBodyBB); 1758 1759 // The current index into the buffer. 1760 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1761 index->addIncoming(zero, LoopInitBB); 1762 1763 // The current buffer size. 1764 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1765 count->addIncoming(initialBufferLimit, LoopInitBB); 1766 1767 incrementProfileCounter(&S); 1768 1769 // Check whether the mutations value has changed from where it was 1770 // at start. StateMutationsPtr should actually be invariant between 1771 // refreshes. 1772 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1773 llvm::Value *currentMutations 1774 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1775 "statemutations"); 1776 1777 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1778 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1779 1780 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1781 WasNotMutatedBB, WasMutatedBB); 1782 1783 // If so, call the enumeration-mutation function. 1784 EmitBlock(WasMutatedBB); 1785 llvm::Value *V = 1786 Builder.CreateBitCast(Collection, 1787 ConvertType(getContext().getObjCIdType())); 1788 CallArgList Args2; 1789 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1790 // FIXME: We shouldn't need to get the function info here, the runtime already 1791 // should have computed it to build the function. 1792 EmitCall( 1793 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1794 EnumerationMutationFn, ReturnValueSlot(), Args2); 1795 1796 // Otherwise, or if the mutation function returns, just continue. 1797 EmitBlock(WasNotMutatedBB); 1798 1799 // Initialize the element variable. 1800 RunCleanupsScope elementVariableScope(*this); 1801 bool elementIsVariable; 1802 LValue elementLValue; 1803 QualType elementType; 1804 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1805 // Initialize the variable, in case it's a __block variable or something. 1806 EmitAutoVarInit(variable); 1807 1808 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl()); 1809 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false, 1810 D->getType(), VK_LValue, SourceLocation()); 1811 elementLValue = EmitLValue(&tempDRE); 1812 elementType = D->getType(); 1813 elementIsVariable = true; 1814 1815 if (D->isARCPseudoStrong()) 1816 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1817 } else { 1818 elementLValue = LValue(); // suppress warning 1819 elementType = cast<Expr>(S.getElement())->getType(); 1820 elementIsVariable = false; 1821 } 1822 llvm::Type *convertedElementType = ConvertType(elementType); 1823 1824 // Fetch the buffer out of the enumeration state. 1825 // TODO: this pointer should actually be invariant between 1826 // refreshes, which would help us do certain loop optimizations. 1827 Address StateItemsPtr = 1828 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1829 llvm::Value *EnumStateItems = 1830 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1831 1832 // Fetch the value at the current index from the buffer. 1833 llvm::Value *CurrentItemPtr = 1834 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1835 llvm::Value *CurrentItem = 1836 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1837 1838 if (SanOpts.has(SanitizerKind::ObjCCast)) { 1839 // Before using an item from the collection, check that the implicit cast 1840 // from id to the element type is valid. This is done with instrumentation 1841 // roughly corresponding to: 1842 // 1843 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ } 1844 const ObjCObjectPointerType *ObjPtrTy = 1845 elementType->getAsObjCInterfacePointerType(); 1846 const ObjCInterfaceType *InterfaceTy = 1847 ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr; 1848 if (InterfaceTy) { 1849 SanitizerScope SanScope(this); 1850 auto &C = CGM.getContext(); 1851 assert(InterfaceTy->getDecl() && "No decl for ObjC interface type"); 1852 Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C); 1853 CallArgList IsKindOfClassArgs; 1854 llvm::Value *Cls = 1855 CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl()); 1856 IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType()); 1857 llvm::Value *IsClass = 1858 CGM.getObjCRuntime() 1859 .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy, 1860 IsKindOfClassSel, CurrentItem, 1861 IsKindOfClassArgs) 1862 .getScalarVal(); 1863 llvm::Constant *StaticData[] = { 1864 EmitCheckSourceLocation(S.getBeginLoc()), 1865 EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))}; 1866 EmitCheck({{IsClass, SanitizerKind::ObjCCast}}, 1867 SanitizerHandler::InvalidObjCCast, 1868 ArrayRef<llvm::Constant *>(StaticData), CurrentItem); 1869 } 1870 } 1871 1872 // Cast that value to the right type. 1873 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1874 "currentitem"); 1875 1876 // Make sure we have an l-value. Yes, this gets evaluated every 1877 // time through the loop. 1878 if (!elementIsVariable) { 1879 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1880 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1881 } else { 1882 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1883 /*isInit*/ true); 1884 } 1885 1886 // If we do have an element variable, this assignment is the end of 1887 // its initialization. 1888 if (elementIsVariable) 1889 EmitAutoVarCleanups(variable); 1890 1891 // Perform the loop body, setting up break and continue labels. 1892 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1893 { 1894 RunCleanupsScope Scope(*this); 1895 EmitStmt(S.getBody()); 1896 } 1897 BreakContinueStack.pop_back(); 1898 1899 // Destroy the element variable now. 1900 elementVariableScope.ForceCleanup(); 1901 1902 // Check whether there are more elements. 1903 EmitBlock(AfterBody.getBlock()); 1904 1905 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1906 1907 // First we check in the local buffer. 1908 llvm::Value *indexPlusOne = 1909 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 1910 1911 // If we haven't overrun the buffer yet, we can continue. 1912 // Set the branch weights based on the simplifying assumption that this is 1913 // like a while-loop, i.e., ignoring that the false branch fetches more 1914 // elements and then returns to the loop. 1915 Builder.CreateCondBr( 1916 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1917 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1918 1919 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1920 count->addIncoming(count, AfterBody.getBlock()); 1921 1922 // Otherwise, we have to fetch more elements. 1923 EmitBlock(FetchMoreBB); 1924 1925 CountRV = 1926 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1927 getContext().getNSUIntegerType(), 1928 FastEnumSel, Collection, Args); 1929 1930 // If we got a zero count, we're done. 1931 llvm::Value *refetchCount = CountRV.getScalarVal(); 1932 1933 // (note that the message send might split FetchMoreBB) 1934 index->addIncoming(zero, Builder.GetInsertBlock()); 1935 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1936 1937 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1938 EmptyBB, LoopBodyBB); 1939 1940 // No more elements. 1941 EmitBlock(EmptyBB); 1942 1943 if (!elementIsVariable) { 1944 // If the element was not a declaration, set it to be null. 1945 1946 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1947 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1948 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1949 } 1950 1951 if (DI) 1952 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1953 1954 ForScope.ForceCleanup(); 1955 EmitBlock(LoopEnd.getBlock()); 1956 } 1957 1958 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1959 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1960 } 1961 1962 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1963 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1964 } 1965 1966 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1967 const ObjCAtSynchronizedStmt &S) { 1968 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1969 } 1970 1971 namespace { 1972 struct CallObjCRelease final : EHScopeStack::Cleanup { 1973 CallObjCRelease(llvm::Value *object) : object(object) {} 1974 llvm::Value *object; 1975 1976 void Emit(CodeGenFunction &CGF, Flags flags) override { 1977 // Releases at the end of the full-expression are imprecise. 1978 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1979 } 1980 }; 1981 } 1982 1983 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1984 /// release at the end of the full-expression. 1985 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1986 llvm::Value *object) { 1987 // If we're in a conditional branch, we need to make the cleanup 1988 // conditional. 1989 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1990 return object; 1991 } 1992 1993 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1994 llvm::Value *value) { 1995 return EmitARCRetainAutorelease(type, value); 1996 } 1997 1998 /// Given a number of pointers, inform the optimizer that they're 1999 /// being intrinsically used up until this point in the program. 2000 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 2001 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use; 2002 if (!fn) 2003 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use); 2004 2005 // This isn't really a "runtime" function, but as an intrinsic it 2006 // doesn't really matter as long as we align things up. 2007 EmitNounwindRuntimeCall(fn, values); 2008 } 2009 2010 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) { 2011 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 2012 // If the target runtime doesn't naturally support ARC, emit weak 2013 // references to the runtime support library. We don't really 2014 // permit this to fail, but we need a particular relocation style. 2015 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 2016 !CGM.getTriple().isOSBinFormatCOFF()) { 2017 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2018 } 2019 } 2020 } 2021 2022 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, 2023 llvm::FunctionCallee RTF) { 2024 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee()); 2025 } 2026 2027 /// Perform an operation having the signature 2028 /// i8* (i8*) 2029 /// where a null input causes a no-op and returns null. 2030 static llvm::Value *emitARCValueOperation( 2031 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, 2032 llvm::Function *&fn, llvm::Intrinsic::ID IntID, 2033 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) { 2034 if (isa<llvm::ConstantPointerNull>(value)) 2035 return value; 2036 2037 if (!fn) { 2038 fn = CGF.CGM.getIntrinsic(IntID); 2039 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2040 } 2041 2042 // Cast the argument to 'id'. 2043 llvm::Type *origType = returnType ? returnType : value->getType(); 2044 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2045 2046 // Call the function. 2047 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 2048 call->setTailCallKind(tailKind); 2049 2050 // Cast the result back to the original type. 2051 return CGF.Builder.CreateBitCast(call, origType); 2052 } 2053 2054 /// Perform an operation having the following signature: 2055 /// i8* (i8**) 2056 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr, 2057 llvm::Function *&fn, 2058 llvm::Intrinsic::ID IntID) { 2059 if (!fn) { 2060 fn = CGF.CGM.getIntrinsic(IntID); 2061 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2062 } 2063 2064 // Cast the argument to 'id*'. 2065 llvm::Type *origType = addr.getElementType(); 2066 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 2067 2068 // Call the function. 2069 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 2070 2071 // Cast the result back to a dereference of the original type. 2072 if (origType != CGF.Int8PtrTy) 2073 result = CGF.Builder.CreateBitCast(result, origType); 2074 2075 return result; 2076 } 2077 2078 /// Perform an operation having the following signature: 2079 /// i8* (i8**, i8*) 2080 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr, 2081 llvm::Value *value, 2082 llvm::Function *&fn, 2083 llvm::Intrinsic::ID IntID, 2084 bool ignored) { 2085 assert(addr.getElementType() == value->getType()); 2086 2087 if (!fn) { 2088 fn = CGF.CGM.getIntrinsic(IntID); 2089 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2090 } 2091 2092 llvm::Type *origType = value->getType(); 2093 2094 llvm::Value *args[] = { 2095 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 2096 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 2097 }; 2098 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 2099 2100 if (ignored) return nullptr; 2101 2102 return CGF.Builder.CreateBitCast(result, origType); 2103 } 2104 2105 /// Perform an operation having the following signature: 2106 /// void (i8**, i8**) 2107 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, 2108 llvm::Function *&fn, 2109 llvm::Intrinsic::ID IntID) { 2110 assert(dst.getType() == src.getType()); 2111 2112 if (!fn) { 2113 fn = CGF.CGM.getIntrinsic(IntID); 2114 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2115 } 2116 2117 llvm::Value *args[] = { 2118 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 2119 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 2120 }; 2121 CGF.EmitNounwindRuntimeCall(fn, args); 2122 } 2123 2124 /// Perform an operation having the signature 2125 /// i8* (i8*) 2126 /// where a null input causes a no-op and returns null. 2127 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, 2128 llvm::Value *value, 2129 llvm::Type *returnType, 2130 llvm::FunctionCallee &fn, 2131 StringRef fnName) { 2132 if (isa<llvm::ConstantPointerNull>(value)) 2133 return value; 2134 2135 if (!fn) { 2136 llvm::FunctionType *fnType = 2137 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 2138 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName); 2139 2140 // We have Native ARC, so set nonlazybind attribute for performance 2141 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2142 if (fnName == "objc_retain") 2143 f->addFnAttr(llvm::Attribute::NonLazyBind); 2144 } 2145 2146 // Cast the argument to 'id'. 2147 llvm::Type *origType = returnType ? returnType : value->getType(); 2148 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2149 2150 // Call the function. 2151 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value); 2152 2153 // Cast the result back to the original type. 2154 return CGF.Builder.CreateBitCast(Inst, origType); 2155 } 2156 2157 /// Produce the code to do a retain. Based on the type, calls one of: 2158 /// call i8* \@objc_retain(i8* %value) 2159 /// call i8* \@objc_retainBlock(i8* %value) 2160 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 2161 if (type->isBlockPointerType()) 2162 return EmitARCRetainBlock(value, /*mandatory*/ false); 2163 else 2164 return EmitARCRetainNonBlock(value); 2165 } 2166 2167 /// Retain the given object, with normal retain semantics. 2168 /// call i8* \@objc_retain(i8* %value) 2169 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 2170 return emitARCValueOperation(*this, value, nullptr, 2171 CGM.getObjCEntrypoints().objc_retain, 2172 llvm::Intrinsic::objc_retain); 2173 } 2174 2175 /// Retain the given block, with _Block_copy semantics. 2176 /// call i8* \@objc_retainBlock(i8* %value) 2177 /// 2178 /// \param mandatory - If false, emit the call with metadata 2179 /// indicating that it's okay for the optimizer to eliminate this call 2180 /// if it can prove that the block never escapes except down the stack. 2181 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 2182 bool mandatory) { 2183 llvm::Value *result 2184 = emitARCValueOperation(*this, value, nullptr, 2185 CGM.getObjCEntrypoints().objc_retainBlock, 2186 llvm::Intrinsic::objc_retainBlock); 2187 2188 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 2189 // tell the optimizer that it doesn't need to do this copy if the 2190 // block doesn't escape, where being passed as an argument doesn't 2191 // count as escaping. 2192 if (!mandatory && isa<llvm::Instruction>(result)) { 2193 llvm::CallInst *call 2194 = cast<llvm::CallInst>(result->stripPointerCasts()); 2195 assert(call->getCalledOperand() == 2196 CGM.getObjCEntrypoints().objc_retainBlock); 2197 2198 call->setMetadata("clang.arc.copy_on_escape", 2199 llvm::MDNode::get(Builder.getContext(), None)); 2200 } 2201 2202 return result; 2203 } 2204 2205 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 2206 // Fetch the void(void) inline asm which marks that we're going to 2207 // do something with the autoreleased return value. 2208 llvm::InlineAsm *&marker 2209 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2210 if (!marker) { 2211 StringRef assembly 2212 = CGF.CGM.getTargetCodeGenInfo() 2213 .getARCRetainAutoreleasedReturnValueMarker(); 2214 2215 // If we have an empty assembly string, there's nothing to do. 2216 if (assembly.empty()) { 2217 2218 // Otherwise, at -O0, build an inline asm that we're going to call 2219 // in a moment. 2220 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2221 llvm::FunctionType *type = 2222 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2223 2224 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2225 2226 // If we're at -O1 and above, we don't want to litter the code 2227 // with this marker yet, so leave a breadcrumb for the ARC 2228 // optimizer to pick up. 2229 } else { 2230 const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker"; 2231 if (!CGF.CGM.getModule().getModuleFlag(markerKey)) { 2232 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly); 2233 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str); 2234 } 2235 } 2236 } 2237 2238 // Call the marker asm if we made one, which we do only at -O0. 2239 if (marker) 2240 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker)); 2241 } 2242 2243 /// Retain the given object which is the result of a function call. 2244 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2245 /// 2246 /// Yes, this function name is one character away from a different 2247 /// call with completely different semantics. 2248 llvm::Value * 2249 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2250 emitAutoreleasedReturnValueMarker(*this); 2251 llvm::CallInst::TailCallKind tailKind = 2252 CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail() 2253 ? llvm::CallInst::TCK_NoTail 2254 : llvm::CallInst::TCK_None; 2255 return emitARCValueOperation( 2256 *this, value, nullptr, 2257 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, 2258 llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind); 2259 } 2260 2261 /// Claim a possibly-autoreleased return value at +0. This is only 2262 /// valid to do in contexts which do not rely on the retain to keep 2263 /// the object valid for all of its uses; for example, when 2264 /// the value is ignored, or when it is being assigned to an 2265 /// __unsafe_unretained variable. 2266 /// 2267 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2268 llvm::Value * 2269 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2270 emitAutoreleasedReturnValueMarker(*this); 2271 llvm::CallInst::TailCallKind tailKind = 2272 CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail() 2273 ? llvm::CallInst::TCK_NoTail 2274 : llvm::CallInst::TCK_None; 2275 return emitARCValueOperation( 2276 *this, value, nullptr, 2277 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, 2278 llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue, tailKind); 2279 } 2280 2281 /// Release the given object. 2282 /// call void \@objc_release(i8* %value) 2283 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2284 ARCPreciseLifetime_t precise) { 2285 if (isa<llvm::ConstantPointerNull>(value)) return; 2286 2287 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release; 2288 if (!fn) { 2289 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release); 2290 setARCRuntimeFunctionLinkage(CGM, fn); 2291 } 2292 2293 // Cast the argument to 'id'. 2294 value = Builder.CreateBitCast(value, Int8PtrTy); 2295 2296 // Call objc_release. 2297 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2298 2299 if (precise == ARCImpreciseLifetime) { 2300 call->setMetadata("clang.imprecise_release", 2301 llvm::MDNode::get(Builder.getContext(), None)); 2302 } 2303 } 2304 2305 /// Destroy a __strong variable. 2306 /// 2307 /// At -O0, emit a call to store 'null' into the address; 2308 /// instrumenting tools prefer this because the address is exposed, 2309 /// but it's relatively cumbersome to optimize. 2310 /// 2311 /// At -O1 and above, just load and call objc_release. 2312 /// 2313 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2314 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2315 ARCPreciseLifetime_t precise) { 2316 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2317 llvm::Value *null = getNullForVariable(addr); 2318 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2319 return; 2320 } 2321 2322 llvm::Value *value = Builder.CreateLoad(addr); 2323 EmitARCRelease(value, precise); 2324 } 2325 2326 /// Store into a strong object. Always calls this: 2327 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2328 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2329 llvm::Value *value, 2330 bool ignored) { 2331 assert(addr.getElementType() == value->getType()); 2332 2333 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2334 if (!fn) { 2335 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong); 2336 setARCRuntimeFunctionLinkage(CGM, fn); 2337 } 2338 2339 llvm::Value *args[] = { 2340 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2341 Builder.CreateBitCast(value, Int8PtrTy) 2342 }; 2343 EmitNounwindRuntimeCall(fn, args); 2344 2345 if (ignored) return nullptr; 2346 return value; 2347 } 2348 2349 /// Store into a strong object. Sometimes calls this: 2350 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2351 /// Other times, breaks it down into components. 2352 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2353 llvm::Value *newValue, 2354 bool ignored) { 2355 QualType type = dst.getType(); 2356 bool isBlock = type->isBlockPointerType(); 2357 2358 // Use a store barrier at -O0 unless this is a block type or the 2359 // lvalue is inadequately aligned. 2360 if (shouldUseFusedARCCalls() && 2361 !isBlock && 2362 (dst.getAlignment().isZero() || 2363 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2364 return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored); 2365 } 2366 2367 // Otherwise, split it out. 2368 2369 // Retain the new value. 2370 newValue = EmitARCRetain(type, newValue); 2371 2372 // Read the old value. 2373 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2374 2375 // Store. We do this before the release so that any deallocs won't 2376 // see the old value. 2377 EmitStoreOfScalar(newValue, dst); 2378 2379 // Finally, release the old value. 2380 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2381 2382 return newValue; 2383 } 2384 2385 /// Autorelease the given object. 2386 /// call i8* \@objc_autorelease(i8* %value) 2387 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2388 return emitARCValueOperation(*this, value, nullptr, 2389 CGM.getObjCEntrypoints().objc_autorelease, 2390 llvm::Intrinsic::objc_autorelease); 2391 } 2392 2393 /// Autorelease the given object. 2394 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2395 llvm::Value * 2396 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2397 return emitARCValueOperation(*this, value, nullptr, 2398 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2399 llvm::Intrinsic::objc_autoreleaseReturnValue, 2400 llvm::CallInst::TCK_Tail); 2401 } 2402 2403 /// Do a fused retain/autorelease of the given object. 2404 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2405 llvm::Value * 2406 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2407 return emitARCValueOperation(*this, value, nullptr, 2408 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2409 llvm::Intrinsic::objc_retainAutoreleaseReturnValue, 2410 llvm::CallInst::TCK_Tail); 2411 } 2412 2413 /// Do a fused retain/autorelease of the given object. 2414 /// call i8* \@objc_retainAutorelease(i8* %value) 2415 /// or 2416 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2417 /// call i8* \@objc_autorelease(i8* %retain) 2418 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2419 llvm::Value *value) { 2420 if (!type->isBlockPointerType()) 2421 return EmitARCRetainAutoreleaseNonBlock(value); 2422 2423 if (isa<llvm::ConstantPointerNull>(value)) return value; 2424 2425 llvm::Type *origType = value->getType(); 2426 value = Builder.CreateBitCast(value, Int8PtrTy); 2427 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2428 value = EmitARCAutorelease(value); 2429 return Builder.CreateBitCast(value, origType); 2430 } 2431 2432 /// Do a fused retain/autorelease of the given object. 2433 /// call i8* \@objc_retainAutorelease(i8* %value) 2434 llvm::Value * 2435 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2436 return emitARCValueOperation(*this, value, nullptr, 2437 CGM.getObjCEntrypoints().objc_retainAutorelease, 2438 llvm::Intrinsic::objc_retainAutorelease); 2439 } 2440 2441 /// i8* \@objc_loadWeak(i8** %addr) 2442 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2443 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2444 return emitARCLoadOperation(*this, addr, 2445 CGM.getObjCEntrypoints().objc_loadWeak, 2446 llvm::Intrinsic::objc_loadWeak); 2447 } 2448 2449 /// i8* \@objc_loadWeakRetained(i8** %addr) 2450 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2451 return emitARCLoadOperation(*this, addr, 2452 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2453 llvm::Intrinsic::objc_loadWeakRetained); 2454 } 2455 2456 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2457 /// Returns %value. 2458 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2459 llvm::Value *value, 2460 bool ignored) { 2461 return emitARCStoreOperation(*this, addr, value, 2462 CGM.getObjCEntrypoints().objc_storeWeak, 2463 llvm::Intrinsic::objc_storeWeak, ignored); 2464 } 2465 2466 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2467 /// Returns %value. %addr is known to not have a current weak entry. 2468 /// Essentially equivalent to: 2469 /// *addr = nil; objc_storeWeak(addr, value); 2470 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2471 // If we're initializing to null, just write null to memory; no need 2472 // to get the runtime involved. But don't do this if optimization 2473 // is enabled, because accounting for this would make the optimizer 2474 // much more complicated. 2475 if (isa<llvm::ConstantPointerNull>(value) && 2476 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2477 Builder.CreateStore(value, addr); 2478 return; 2479 } 2480 2481 emitARCStoreOperation(*this, addr, value, 2482 CGM.getObjCEntrypoints().objc_initWeak, 2483 llvm::Intrinsic::objc_initWeak, /*ignored*/ true); 2484 } 2485 2486 /// void \@objc_destroyWeak(i8** %addr) 2487 /// Essentially objc_storeWeak(addr, nil). 2488 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2489 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2490 if (!fn) { 2491 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak); 2492 setARCRuntimeFunctionLinkage(CGM, fn); 2493 } 2494 2495 // Cast the argument to 'id*'. 2496 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2497 2498 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2499 } 2500 2501 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2502 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2503 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2504 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2505 emitARCCopyOperation(*this, dst, src, 2506 CGM.getObjCEntrypoints().objc_moveWeak, 2507 llvm::Intrinsic::objc_moveWeak); 2508 } 2509 2510 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2511 /// Disregards the current value in %dest. Essentially 2512 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2513 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2514 emitARCCopyOperation(*this, dst, src, 2515 CGM.getObjCEntrypoints().objc_copyWeak, 2516 llvm::Intrinsic::objc_copyWeak); 2517 } 2518 2519 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, 2520 Address SrcAddr) { 2521 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2522 Object = EmitObjCConsumeObject(Ty, Object); 2523 EmitARCStoreWeak(DstAddr, Object, false); 2524 } 2525 2526 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, 2527 Address SrcAddr) { 2528 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2529 Object = EmitObjCConsumeObject(Ty, Object); 2530 EmitARCStoreWeak(DstAddr, Object, false); 2531 EmitARCDestroyWeak(SrcAddr); 2532 } 2533 2534 /// Produce the code to do a objc_autoreleasepool_push. 2535 /// call i8* \@objc_autoreleasePoolPush(void) 2536 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2537 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2538 if (!fn) { 2539 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush); 2540 setARCRuntimeFunctionLinkage(CGM, fn); 2541 } 2542 2543 return EmitNounwindRuntimeCall(fn); 2544 } 2545 2546 /// Produce the code to do a primitive release. 2547 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2548 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2549 assert(value->getType() == Int8PtrTy); 2550 2551 if (getInvokeDest()) { 2552 // Call the runtime method not the intrinsic if we are handling exceptions 2553 llvm::FunctionCallee &fn = 2554 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; 2555 if (!fn) { 2556 llvm::FunctionType *fnType = 2557 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2558 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop"); 2559 setARCRuntimeFunctionLinkage(CGM, fn); 2560 } 2561 2562 // objc_autoreleasePoolPop can throw. 2563 EmitRuntimeCallOrInvoke(fn, value); 2564 } else { 2565 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2566 if (!fn) { 2567 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop); 2568 setARCRuntimeFunctionLinkage(CGM, fn); 2569 } 2570 2571 EmitRuntimeCall(fn, value); 2572 } 2573 } 2574 2575 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2576 /// Which is: [[NSAutoreleasePool alloc] init]; 2577 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2578 /// init is declared as: - (id) init; in its NSObject super class. 2579 /// 2580 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2581 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2582 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2583 // [NSAutoreleasePool alloc] 2584 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2585 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2586 CallArgList Args; 2587 RValue AllocRV = 2588 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2589 getContext().getObjCIdType(), 2590 AllocSel, Receiver, Args); 2591 2592 // [Receiver init] 2593 Receiver = AllocRV.getScalarVal(); 2594 II = &CGM.getContext().Idents.get("init"); 2595 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2596 RValue InitRV = 2597 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2598 getContext().getObjCIdType(), 2599 InitSel, Receiver, Args); 2600 return InitRV.getScalarVal(); 2601 } 2602 2603 /// Allocate the given objc object. 2604 /// call i8* \@objc_alloc(i8* %value) 2605 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, 2606 llvm::Type *resultType) { 2607 return emitObjCValueOperation(*this, value, resultType, 2608 CGM.getObjCEntrypoints().objc_alloc, 2609 "objc_alloc"); 2610 } 2611 2612 /// Allocate the given objc object. 2613 /// call i8* \@objc_allocWithZone(i8* %value) 2614 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, 2615 llvm::Type *resultType) { 2616 return emitObjCValueOperation(*this, value, resultType, 2617 CGM.getObjCEntrypoints().objc_allocWithZone, 2618 "objc_allocWithZone"); 2619 } 2620 2621 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value, 2622 llvm::Type *resultType) { 2623 return emitObjCValueOperation(*this, value, resultType, 2624 CGM.getObjCEntrypoints().objc_alloc_init, 2625 "objc_alloc_init"); 2626 } 2627 2628 /// Produce the code to do a primitive release. 2629 /// [tmp drain]; 2630 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2631 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2632 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2633 CallArgList Args; 2634 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2635 getContext().VoidTy, DrainSel, Arg, Args); 2636 } 2637 2638 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2639 Address addr, 2640 QualType type) { 2641 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2642 } 2643 2644 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2645 Address addr, 2646 QualType type) { 2647 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2648 } 2649 2650 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2651 Address addr, 2652 QualType type) { 2653 CGF.EmitARCDestroyWeak(addr); 2654 } 2655 2656 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2657 QualType type) { 2658 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2659 CGF.EmitARCIntrinsicUse(value); 2660 } 2661 2662 /// Autorelease the given object. 2663 /// call i8* \@objc_autorelease(i8* %value) 2664 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value, 2665 llvm::Type *returnType) { 2666 return emitObjCValueOperation( 2667 *this, value, returnType, 2668 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction, 2669 "objc_autorelease"); 2670 } 2671 2672 /// Retain the given object, with normal retain semantics. 2673 /// call i8* \@objc_retain(i8* %value) 2674 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value, 2675 llvm::Type *returnType) { 2676 return emitObjCValueOperation( 2677 *this, value, returnType, 2678 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain"); 2679 } 2680 2681 /// Release the given object. 2682 /// call void \@objc_release(i8* %value) 2683 void CodeGenFunction::EmitObjCRelease(llvm::Value *value, 2684 ARCPreciseLifetime_t precise) { 2685 if (isa<llvm::ConstantPointerNull>(value)) return; 2686 2687 llvm::FunctionCallee &fn = 2688 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction; 2689 if (!fn) { 2690 llvm::FunctionType *fnType = 2691 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2692 fn = CGM.CreateRuntimeFunction(fnType, "objc_release"); 2693 setARCRuntimeFunctionLinkage(CGM, fn); 2694 // We have Native ARC, so set nonlazybind attribute for performance 2695 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2696 f->addFnAttr(llvm::Attribute::NonLazyBind); 2697 } 2698 2699 // Cast the argument to 'id'. 2700 value = Builder.CreateBitCast(value, Int8PtrTy); 2701 2702 // Call objc_release. 2703 llvm::CallBase *call = EmitCallOrInvoke(fn, value); 2704 2705 if (precise == ARCImpreciseLifetime) { 2706 call->setMetadata("clang.imprecise_release", 2707 llvm::MDNode::get(Builder.getContext(), None)); 2708 } 2709 } 2710 2711 namespace { 2712 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2713 llvm::Value *Token; 2714 2715 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2716 2717 void Emit(CodeGenFunction &CGF, Flags flags) override { 2718 CGF.EmitObjCAutoreleasePoolPop(Token); 2719 } 2720 }; 2721 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2722 llvm::Value *Token; 2723 2724 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2725 2726 void Emit(CodeGenFunction &CGF, Flags flags) override { 2727 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2728 } 2729 }; 2730 } 2731 2732 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2733 if (CGM.getLangOpts().ObjCAutoRefCount) 2734 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2735 else 2736 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2737 } 2738 2739 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { 2740 switch (lifetime) { 2741 case Qualifiers::OCL_None: 2742 case Qualifiers::OCL_ExplicitNone: 2743 case Qualifiers::OCL_Strong: 2744 case Qualifiers::OCL_Autoreleasing: 2745 return true; 2746 2747 case Qualifiers::OCL_Weak: 2748 return false; 2749 } 2750 2751 llvm_unreachable("impossible lifetime!"); 2752 } 2753 2754 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2755 LValue lvalue, 2756 QualType type) { 2757 llvm::Value *result; 2758 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime()); 2759 if (shouldRetain) { 2760 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal(); 2761 } else { 2762 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); 2763 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF)); 2764 } 2765 return TryEmitResult(result, !shouldRetain); 2766 } 2767 2768 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2769 const Expr *e) { 2770 e = e->IgnoreParens(); 2771 QualType type = e->getType(); 2772 2773 // If we're loading retained from a __strong xvalue, we can avoid 2774 // an extra retain/release pair by zeroing out the source of this 2775 // "move" operation. 2776 if (e->isXValue() && 2777 !type.isConstQualified() && 2778 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2779 // Emit the lvalue. 2780 LValue lv = CGF.EmitLValue(e); 2781 2782 // Load the object pointer. 2783 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2784 SourceLocation()).getScalarVal(); 2785 2786 // Set the source pointer to NULL. 2787 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv); 2788 2789 return TryEmitResult(result, true); 2790 } 2791 2792 // As a very special optimization, in ARC++, if the l-value is the 2793 // result of a non-volatile assignment, do a simple retain of the 2794 // result of the call to objc_storeWeak instead of reloading. 2795 if (CGF.getLangOpts().CPlusPlus && 2796 !type.isVolatileQualified() && 2797 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2798 isa<BinaryOperator>(e) && 2799 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2800 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2801 2802 // Try to emit code for scalar constant instead of emitting LValue and 2803 // loading it because we are not guaranteed to have an l-value. One of such 2804 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. 2805 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) { 2806 auto *DRE = const_cast<DeclRefExpr *>(decl_expr); 2807 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE)) 2808 return TryEmitResult(CGF.emitScalarConstant(constant, DRE), 2809 !shouldRetainObjCLifetime(type.getObjCLifetime())); 2810 } 2811 2812 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2813 } 2814 2815 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2816 llvm::Value *value)> 2817 ValueTransform; 2818 2819 /// Insert code immediately after a call. 2820 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2821 llvm::Value *value, 2822 ValueTransform doAfterCall, 2823 ValueTransform doFallback) { 2824 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2825 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2826 2827 // Place the retain immediately following the call. 2828 CGF.Builder.SetInsertPoint(call->getParent(), 2829 ++llvm::BasicBlock::iterator(call)); 2830 value = doAfterCall(CGF, value); 2831 2832 CGF.Builder.restoreIP(ip); 2833 return value; 2834 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2835 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2836 2837 // Place the retain at the beginning of the normal destination block. 2838 llvm::BasicBlock *BB = invoke->getNormalDest(); 2839 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2840 value = doAfterCall(CGF, value); 2841 2842 CGF.Builder.restoreIP(ip); 2843 return value; 2844 2845 // Bitcasts can arise because of related-result returns. Rewrite 2846 // the operand. 2847 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2848 llvm::Value *operand = bitcast->getOperand(0); 2849 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2850 bitcast->setOperand(0, operand); 2851 return bitcast; 2852 2853 // Generic fall-back case. 2854 } else { 2855 // Retain using the non-block variant: we never need to do a copy 2856 // of a block that's been returned to us. 2857 return doFallback(CGF, value); 2858 } 2859 } 2860 2861 /// Given that the given expression is some sort of call (which does 2862 /// not return retained), emit a retain following it. 2863 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2864 const Expr *e) { 2865 llvm::Value *value = CGF.EmitScalarExpr(e); 2866 return emitARCOperationAfterCall(CGF, value, 2867 [](CodeGenFunction &CGF, llvm::Value *value) { 2868 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2869 }, 2870 [](CodeGenFunction &CGF, llvm::Value *value) { 2871 return CGF.EmitARCRetainNonBlock(value); 2872 }); 2873 } 2874 2875 /// Given that the given expression is some sort of call (which does 2876 /// not return retained), perform an unsafeClaim following it. 2877 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 2878 const Expr *e) { 2879 llvm::Value *value = CGF.EmitScalarExpr(e); 2880 return emitARCOperationAfterCall(CGF, value, 2881 [](CodeGenFunction &CGF, llvm::Value *value) { 2882 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 2883 }, 2884 [](CodeGenFunction &CGF, llvm::Value *value) { 2885 return value; 2886 }); 2887 } 2888 2889 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 2890 bool allowUnsafeClaim) { 2891 if (allowUnsafeClaim && 2892 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 2893 return emitARCUnsafeClaimCallResult(*this, E); 2894 } else { 2895 llvm::Value *value = emitARCRetainCallResult(*this, E); 2896 return EmitObjCConsumeObject(E->getType(), value); 2897 } 2898 } 2899 2900 /// Determine whether it might be important to emit a separate 2901 /// objc_retain_block on the result of the given expression, or 2902 /// whether it's okay to just emit it in a +1 context. 2903 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2904 assert(e->getType()->isBlockPointerType()); 2905 e = e->IgnoreParens(); 2906 2907 // For future goodness, emit block expressions directly in +1 2908 // contexts if we can. 2909 if (isa<BlockExpr>(e)) 2910 return false; 2911 2912 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2913 switch (cast->getCastKind()) { 2914 // Emitting these operations in +1 contexts is goodness. 2915 case CK_LValueToRValue: 2916 case CK_ARCReclaimReturnedObject: 2917 case CK_ARCConsumeObject: 2918 case CK_ARCProduceObject: 2919 return false; 2920 2921 // These operations preserve a block type. 2922 case CK_NoOp: 2923 case CK_BitCast: 2924 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2925 2926 // These operations are known to be bad (or haven't been considered). 2927 case CK_AnyPointerToBlockPointerCast: 2928 default: 2929 return true; 2930 } 2931 } 2932 2933 return true; 2934 } 2935 2936 namespace { 2937 /// A CRTP base class for emitting expressions of retainable object 2938 /// pointer type in ARC. 2939 template <typename Impl, typename Result> class ARCExprEmitter { 2940 protected: 2941 CodeGenFunction &CGF; 2942 Impl &asImpl() { return *static_cast<Impl*>(this); } 2943 2944 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 2945 2946 public: 2947 Result visit(const Expr *e); 2948 Result visitCastExpr(const CastExpr *e); 2949 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 2950 Result visitBlockExpr(const BlockExpr *e); 2951 Result visitBinaryOperator(const BinaryOperator *e); 2952 Result visitBinAssign(const BinaryOperator *e); 2953 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 2954 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 2955 Result visitBinAssignWeak(const BinaryOperator *e); 2956 Result visitBinAssignStrong(const BinaryOperator *e); 2957 2958 // Minimal implementation: 2959 // Result visitLValueToRValue(const Expr *e) 2960 // Result visitConsumeObject(const Expr *e) 2961 // Result visitExtendBlockObject(const Expr *e) 2962 // Result visitReclaimReturnedObject(const Expr *e) 2963 // Result visitCall(const Expr *e) 2964 // Result visitExpr(const Expr *e) 2965 // 2966 // Result emitBitCast(Result result, llvm::Type *resultType) 2967 // llvm::Value *getValueOfResult(Result result) 2968 }; 2969 } 2970 2971 /// Try to emit a PseudoObjectExpr under special ARC rules. 2972 /// 2973 /// This massively duplicates emitPseudoObjectRValue. 2974 template <typename Impl, typename Result> 2975 Result 2976 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 2977 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2978 2979 // Find the result expression. 2980 const Expr *resultExpr = E->getResultExpr(); 2981 assert(resultExpr); 2982 Result result; 2983 2984 for (PseudoObjectExpr::const_semantics_iterator 2985 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2986 const Expr *semantic = *i; 2987 2988 // If this semantic expression is an opaque value, bind it 2989 // to the result of its source expression. 2990 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2991 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2992 OVMA opaqueData; 2993 2994 // If this semantic is the result of the pseudo-object 2995 // expression, try to evaluate the source as +1. 2996 if (ov == resultExpr) { 2997 assert(!OVMA::shouldBindAsLValue(ov)); 2998 result = asImpl().visit(ov->getSourceExpr()); 2999 opaqueData = OVMA::bind(CGF, ov, 3000 RValue::get(asImpl().getValueOfResult(result))); 3001 3002 // Otherwise, just bind it. 3003 } else { 3004 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3005 } 3006 opaques.push_back(opaqueData); 3007 3008 // Otherwise, if the expression is the result, evaluate it 3009 // and remember the result. 3010 } else if (semantic == resultExpr) { 3011 result = asImpl().visit(semantic); 3012 3013 // Otherwise, evaluate the expression in an ignored context. 3014 } else { 3015 CGF.EmitIgnoredExpr(semantic); 3016 } 3017 } 3018 3019 // Unbind all the opaques now. 3020 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3021 opaques[i].unbind(CGF); 3022 3023 return result; 3024 } 3025 3026 template <typename Impl, typename Result> 3027 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) { 3028 // The default implementation just forwards the expression to visitExpr. 3029 return asImpl().visitExpr(e); 3030 } 3031 3032 template <typename Impl, typename Result> 3033 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 3034 switch (e->getCastKind()) { 3035 3036 // No-op casts don't change the type, so we just ignore them. 3037 case CK_NoOp: 3038 return asImpl().visit(e->getSubExpr()); 3039 3040 // These casts can change the type. 3041 case CK_CPointerToObjCPointerCast: 3042 case CK_BlockPointerToObjCPointerCast: 3043 case CK_AnyPointerToBlockPointerCast: 3044 case CK_BitCast: { 3045 llvm::Type *resultType = CGF.ConvertType(e->getType()); 3046 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 3047 Result result = asImpl().visit(e->getSubExpr()); 3048 return asImpl().emitBitCast(result, resultType); 3049 } 3050 3051 // Handle some casts specially. 3052 case CK_LValueToRValue: 3053 return asImpl().visitLValueToRValue(e->getSubExpr()); 3054 case CK_ARCConsumeObject: 3055 return asImpl().visitConsumeObject(e->getSubExpr()); 3056 case CK_ARCExtendBlockObject: 3057 return asImpl().visitExtendBlockObject(e->getSubExpr()); 3058 case CK_ARCReclaimReturnedObject: 3059 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 3060 3061 // Otherwise, use the default logic. 3062 default: 3063 return asImpl().visitExpr(e); 3064 } 3065 } 3066 3067 template <typename Impl, typename Result> 3068 Result 3069 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 3070 switch (e->getOpcode()) { 3071 case BO_Comma: 3072 CGF.EmitIgnoredExpr(e->getLHS()); 3073 CGF.EnsureInsertPoint(); 3074 return asImpl().visit(e->getRHS()); 3075 3076 case BO_Assign: 3077 return asImpl().visitBinAssign(e); 3078 3079 default: 3080 return asImpl().visitExpr(e); 3081 } 3082 } 3083 3084 template <typename Impl, typename Result> 3085 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 3086 switch (e->getLHS()->getType().getObjCLifetime()) { 3087 case Qualifiers::OCL_ExplicitNone: 3088 return asImpl().visitBinAssignUnsafeUnretained(e); 3089 3090 case Qualifiers::OCL_Weak: 3091 return asImpl().visitBinAssignWeak(e); 3092 3093 case Qualifiers::OCL_Autoreleasing: 3094 return asImpl().visitBinAssignAutoreleasing(e); 3095 3096 case Qualifiers::OCL_Strong: 3097 return asImpl().visitBinAssignStrong(e); 3098 3099 case Qualifiers::OCL_None: 3100 return asImpl().visitExpr(e); 3101 } 3102 llvm_unreachable("bad ObjC ownership qualifier"); 3103 } 3104 3105 /// The default rule for __unsafe_unretained emits the RHS recursively, 3106 /// stores into the unsafe variable, and propagates the result outward. 3107 template <typename Impl, typename Result> 3108 Result ARCExprEmitter<Impl,Result>:: 3109 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 3110 // Recursively emit the RHS. 3111 // For __block safety, do this before emitting the LHS. 3112 Result result = asImpl().visit(e->getRHS()); 3113 3114 // Perform the store. 3115 LValue lvalue = 3116 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 3117 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 3118 lvalue); 3119 3120 return result; 3121 } 3122 3123 template <typename Impl, typename Result> 3124 Result 3125 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 3126 return asImpl().visitExpr(e); 3127 } 3128 3129 template <typename Impl, typename Result> 3130 Result 3131 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 3132 return asImpl().visitExpr(e); 3133 } 3134 3135 template <typename Impl, typename Result> 3136 Result 3137 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 3138 return asImpl().visitExpr(e); 3139 } 3140 3141 /// The general expression-emission logic. 3142 template <typename Impl, typename Result> 3143 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 3144 // We should *never* see a nested full-expression here, because if 3145 // we fail to emit at +1, our caller must not retain after we close 3146 // out the full-expression. This isn't as important in the unsafe 3147 // emitter. 3148 assert(!isa<ExprWithCleanups>(e)); 3149 3150 // Look through parens, __extension__, generic selection, etc. 3151 e = e->IgnoreParens(); 3152 3153 // Handle certain kinds of casts. 3154 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 3155 return asImpl().visitCastExpr(ce); 3156 3157 // Handle the comma operator. 3158 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 3159 return asImpl().visitBinaryOperator(op); 3160 3161 // TODO: handle conditional operators here 3162 3163 // For calls and message sends, use the retained-call logic. 3164 // Delegate inits are a special case in that they're the only 3165 // returns-retained expression that *isn't* surrounded by 3166 // a consume. 3167 } else if (isa<CallExpr>(e) || 3168 (isa<ObjCMessageExpr>(e) && 3169 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 3170 return asImpl().visitCall(e); 3171 3172 // Look through pseudo-object expressions. 3173 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 3174 return asImpl().visitPseudoObjectExpr(pseudo); 3175 } else if (auto *be = dyn_cast<BlockExpr>(e)) 3176 return asImpl().visitBlockExpr(be); 3177 3178 return asImpl().visitExpr(e); 3179 } 3180 3181 namespace { 3182 3183 /// An emitter for +1 results. 3184 struct ARCRetainExprEmitter : 3185 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 3186 3187 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3188 3189 llvm::Value *getValueOfResult(TryEmitResult result) { 3190 return result.getPointer(); 3191 } 3192 3193 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 3194 llvm::Value *value = result.getPointer(); 3195 value = CGF.Builder.CreateBitCast(value, resultType); 3196 result.setPointer(value); 3197 return result; 3198 } 3199 3200 TryEmitResult visitLValueToRValue(const Expr *e) { 3201 return tryEmitARCRetainLoadOfScalar(CGF, e); 3202 } 3203 3204 /// For consumptions, just emit the subexpression and thus elide 3205 /// the retain/release pair. 3206 TryEmitResult visitConsumeObject(const Expr *e) { 3207 llvm::Value *result = CGF.EmitScalarExpr(e); 3208 return TryEmitResult(result, true); 3209 } 3210 3211 TryEmitResult visitBlockExpr(const BlockExpr *e) { 3212 TryEmitResult result = visitExpr(e); 3213 // Avoid the block-retain if this is a block literal that doesn't need to be 3214 // copied to the heap. 3215 if (e->getBlockDecl()->canAvoidCopyToHeap()) 3216 result.setInt(true); 3217 return result; 3218 } 3219 3220 /// Block extends are net +0. Naively, we could just recurse on 3221 /// the subexpression, but actually we need to ensure that the 3222 /// value is copied as a block, so there's a little filter here. 3223 TryEmitResult visitExtendBlockObject(const Expr *e) { 3224 llvm::Value *result; // will be a +0 value 3225 3226 // If we can't safely assume the sub-expression will produce a 3227 // block-copied value, emit the sub-expression at +0. 3228 if (shouldEmitSeparateBlockRetain(e)) { 3229 result = CGF.EmitScalarExpr(e); 3230 3231 // Otherwise, try to emit the sub-expression at +1 recursively. 3232 } else { 3233 TryEmitResult subresult = asImpl().visit(e); 3234 3235 // If that produced a retained value, just use that. 3236 if (subresult.getInt()) { 3237 return subresult; 3238 } 3239 3240 // Otherwise it's +0. 3241 result = subresult.getPointer(); 3242 } 3243 3244 // Retain the object as a block. 3245 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 3246 return TryEmitResult(result, true); 3247 } 3248 3249 /// For reclaims, emit the subexpression as a retained call and 3250 /// skip the consumption. 3251 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 3252 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3253 return TryEmitResult(result, true); 3254 } 3255 3256 /// When we have an undecorated call, retroactively do a claim. 3257 TryEmitResult visitCall(const Expr *e) { 3258 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3259 return TryEmitResult(result, true); 3260 } 3261 3262 // TODO: maybe special-case visitBinAssignWeak? 3263 3264 TryEmitResult visitExpr(const Expr *e) { 3265 // We didn't find an obvious production, so emit what we've got and 3266 // tell the caller that we didn't manage to retain. 3267 llvm::Value *result = CGF.EmitScalarExpr(e); 3268 return TryEmitResult(result, false); 3269 } 3270 }; 3271 } 3272 3273 static TryEmitResult 3274 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 3275 return ARCRetainExprEmitter(CGF).visit(e); 3276 } 3277 3278 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 3279 LValue lvalue, 3280 QualType type) { 3281 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 3282 llvm::Value *value = result.getPointer(); 3283 if (!result.getInt()) 3284 value = CGF.EmitARCRetain(type, value); 3285 return value; 3286 } 3287 3288 /// EmitARCRetainScalarExpr - Semantically equivalent to 3289 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 3290 /// best-effort attempt to peephole expressions that naturally produce 3291 /// retained objects. 3292 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 3293 // The retain needs to happen within the full-expression. 3294 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3295 RunCleanupsScope scope(*this); 3296 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 3297 } 3298 3299 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3300 llvm::Value *value = result.getPointer(); 3301 if (!result.getInt()) 3302 value = EmitARCRetain(e->getType(), value); 3303 return value; 3304 } 3305 3306 llvm::Value * 3307 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 3308 // The retain needs to happen within the full-expression. 3309 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3310 RunCleanupsScope scope(*this); 3311 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 3312 } 3313 3314 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3315 llvm::Value *value = result.getPointer(); 3316 if (result.getInt()) 3317 value = EmitARCAutorelease(value); 3318 else 3319 value = EmitARCRetainAutorelease(e->getType(), value); 3320 return value; 3321 } 3322 3323 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 3324 llvm::Value *result; 3325 bool doRetain; 3326 3327 if (shouldEmitSeparateBlockRetain(e)) { 3328 result = EmitScalarExpr(e); 3329 doRetain = true; 3330 } else { 3331 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 3332 result = subresult.getPointer(); 3333 doRetain = !subresult.getInt(); 3334 } 3335 3336 if (doRetain) 3337 result = EmitARCRetainBlock(result, /*mandatory*/ true); 3338 return EmitObjCConsumeObject(e->getType(), result); 3339 } 3340 3341 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3342 // In ARC, retain and autorelease the expression. 3343 if (getLangOpts().ObjCAutoRefCount) { 3344 // Do so before running any cleanups for the full-expression. 3345 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3346 return EmitARCRetainAutoreleaseScalarExpr(expr); 3347 } 3348 3349 // Otherwise, use the normal scalar-expression emission. The 3350 // exception machinery doesn't do anything special with the 3351 // exception like retaining it, so there's no safety associated with 3352 // only running cleanups after the throw has started, and when it 3353 // matters it tends to be substantially inferior code. 3354 return EmitScalarExpr(expr); 3355 } 3356 3357 namespace { 3358 3359 /// An emitter for assigning into an __unsafe_unretained context. 3360 struct ARCUnsafeUnretainedExprEmitter : 3361 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3362 3363 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3364 3365 llvm::Value *getValueOfResult(llvm::Value *value) { 3366 return value; 3367 } 3368 3369 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3370 return CGF.Builder.CreateBitCast(value, resultType); 3371 } 3372 3373 llvm::Value *visitLValueToRValue(const Expr *e) { 3374 return CGF.EmitScalarExpr(e); 3375 } 3376 3377 /// For consumptions, just emit the subexpression and perform the 3378 /// consumption like normal. 3379 llvm::Value *visitConsumeObject(const Expr *e) { 3380 llvm::Value *value = CGF.EmitScalarExpr(e); 3381 return CGF.EmitObjCConsumeObject(e->getType(), value); 3382 } 3383 3384 /// No special logic for block extensions. (This probably can't 3385 /// actually happen in this emitter, though.) 3386 llvm::Value *visitExtendBlockObject(const Expr *e) { 3387 return CGF.EmitARCExtendBlockObject(e); 3388 } 3389 3390 /// For reclaims, perform an unsafeClaim if that's enabled. 3391 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3392 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3393 } 3394 3395 /// When we have an undecorated call, just emit it without adding 3396 /// the unsafeClaim. 3397 llvm::Value *visitCall(const Expr *e) { 3398 return CGF.EmitScalarExpr(e); 3399 } 3400 3401 /// Just do normal scalar emission in the default case. 3402 llvm::Value *visitExpr(const Expr *e) { 3403 return CGF.EmitScalarExpr(e); 3404 } 3405 }; 3406 } 3407 3408 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3409 const Expr *e) { 3410 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3411 } 3412 3413 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3414 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3415 /// avoiding any spurious retains, including by performing reclaims 3416 /// with objc_unsafeClaimAutoreleasedReturnValue. 3417 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3418 // Look through full-expressions. 3419 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3420 RunCleanupsScope scope(*this); 3421 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3422 } 3423 3424 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3425 } 3426 3427 std::pair<LValue,llvm::Value*> 3428 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3429 bool ignored) { 3430 // Evaluate the RHS first. If we're ignoring the result, assume 3431 // that we can emit at an unsafe +0. 3432 llvm::Value *value; 3433 if (ignored) { 3434 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3435 } else { 3436 value = EmitScalarExpr(e->getRHS()); 3437 } 3438 3439 // Emit the LHS and perform the store. 3440 LValue lvalue = EmitLValue(e->getLHS()); 3441 EmitStoreOfScalar(value, lvalue); 3442 3443 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3444 } 3445 3446 std::pair<LValue,llvm::Value*> 3447 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3448 bool ignored) { 3449 // Evaluate the RHS first. 3450 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3451 llvm::Value *value = result.getPointer(); 3452 3453 bool hasImmediateRetain = result.getInt(); 3454 3455 // If we didn't emit a retained object, and the l-value is of block 3456 // type, then we need to emit the block-retain immediately in case 3457 // it invalidates the l-value. 3458 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3459 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3460 hasImmediateRetain = true; 3461 } 3462 3463 LValue lvalue = EmitLValue(e->getLHS()); 3464 3465 // If the RHS was emitted retained, expand this. 3466 if (hasImmediateRetain) { 3467 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3468 EmitStoreOfScalar(value, lvalue); 3469 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3470 } else { 3471 value = EmitARCStoreStrong(lvalue, value, ignored); 3472 } 3473 3474 return std::pair<LValue,llvm::Value*>(lvalue, value); 3475 } 3476 3477 std::pair<LValue,llvm::Value*> 3478 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3479 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3480 LValue lvalue = EmitLValue(e->getLHS()); 3481 3482 EmitStoreOfScalar(value, lvalue); 3483 3484 return std::pair<LValue,llvm::Value*>(lvalue, value); 3485 } 3486 3487 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3488 const ObjCAutoreleasePoolStmt &ARPS) { 3489 const Stmt *subStmt = ARPS.getSubStmt(); 3490 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3491 3492 CGDebugInfo *DI = getDebugInfo(); 3493 if (DI) 3494 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3495 3496 // Keep track of the current cleanup stack depth. 3497 RunCleanupsScope Scope(*this); 3498 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3499 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3500 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3501 } else { 3502 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3503 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3504 } 3505 3506 for (const auto *I : S.body()) 3507 EmitStmt(I); 3508 3509 if (DI) 3510 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3511 } 3512 3513 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3514 /// make sure it survives garbage collection until this point. 3515 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3516 // We just use an inline assembly. 3517 llvm::FunctionType *extenderType 3518 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3519 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType, 3520 /* assembly */ "", 3521 /* constraints */ "r", 3522 /* side effects */ true); 3523 3524 object = Builder.CreateBitCast(object, VoidPtrTy); 3525 EmitNounwindRuntimeCall(extender, object); 3526 } 3527 3528 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3529 /// non-trivial copy assignment function, produce following helper function. 3530 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3531 /// 3532 llvm::Constant * 3533 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3534 const ObjCPropertyImplDecl *PID) { 3535 if (!getLangOpts().CPlusPlus || 3536 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3537 return nullptr; 3538 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3539 if (!Ty->isRecordType()) 3540 return nullptr; 3541 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3542 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3543 return nullptr; 3544 llvm::Constant *HelperFn = nullptr; 3545 if (hasTrivialSetExpr(PID)) 3546 return nullptr; 3547 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3548 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3549 return HelperFn; 3550 3551 ASTContext &C = getContext(); 3552 IdentifierInfo *II 3553 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3554 3555 QualType ReturnTy = C.VoidTy; 3556 QualType DestTy = C.getPointerType(Ty); 3557 QualType SrcTy = Ty; 3558 SrcTy.addConst(); 3559 SrcTy = C.getPointerType(SrcTy); 3560 3561 SmallVector<QualType, 2> ArgTys; 3562 ArgTys.push_back(DestTy); 3563 ArgTys.push_back(SrcTy); 3564 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3565 3566 FunctionDecl *FD = FunctionDecl::Create( 3567 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3568 FunctionTy, nullptr, SC_Static, false, false); 3569 3570 FunctionArgList args; 3571 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3572 ImplicitParamDecl::Other); 3573 args.push_back(&DstDecl); 3574 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3575 ImplicitParamDecl::Other); 3576 args.push_back(&SrcDecl); 3577 3578 const CGFunctionInfo &FI = 3579 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3580 3581 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3582 3583 llvm::Function *Fn = 3584 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3585 "__assign_helper_atomic_property_", 3586 &CGM.getModule()); 3587 3588 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3589 3590 StartFunction(FD, ReturnTy, Fn, FI, args); 3591 3592 DeclRefExpr DstExpr(C, &DstDecl, false, DestTy, VK_RValue, SourceLocation()); 3593 UnaryOperator *DST = UnaryOperator::Create( 3594 C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary, 3595 SourceLocation(), false, FPOptionsOverride()); 3596 3597 DeclRefExpr SrcExpr(C, &SrcDecl, false, SrcTy, VK_RValue, SourceLocation()); 3598 UnaryOperator *SRC = UnaryOperator::Create( 3599 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3600 SourceLocation(), false, FPOptionsOverride()); 3601 3602 Expr *Args[2] = {DST, SRC}; 3603 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3604 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 3605 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(), 3606 VK_LValue, SourceLocation(), FPOptionsOverride()); 3607 3608 EmitStmt(TheCall); 3609 3610 FinishFunction(); 3611 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3612 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3613 return HelperFn; 3614 } 3615 3616 llvm::Constant * 3617 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3618 const ObjCPropertyImplDecl *PID) { 3619 if (!getLangOpts().CPlusPlus || 3620 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3621 return nullptr; 3622 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3623 QualType Ty = PD->getType(); 3624 if (!Ty->isRecordType()) 3625 return nullptr; 3626 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3627 return nullptr; 3628 llvm::Constant *HelperFn = nullptr; 3629 if (hasTrivialGetExpr(PID)) 3630 return nullptr; 3631 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3632 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3633 return HelperFn; 3634 3635 ASTContext &C = getContext(); 3636 IdentifierInfo *II = 3637 &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3638 3639 QualType ReturnTy = C.VoidTy; 3640 QualType DestTy = C.getPointerType(Ty); 3641 QualType SrcTy = Ty; 3642 SrcTy.addConst(); 3643 SrcTy = C.getPointerType(SrcTy); 3644 3645 SmallVector<QualType, 2> ArgTys; 3646 ArgTys.push_back(DestTy); 3647 ArgTys.push_back(SrcTy); 3648 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3649 3650 FunctionDecl *FD = FunctionDecl::Create( 3651 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3652 FunctionTy, nullptr, SC_Static, false, false); 3653 3654 FunctionArgList args; 3655 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3656 ImplicitParamDecl::Other); 3657 args.push_back(&DstDecl); 3658 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3659 ImplicitParamDecl::Other); 3660 args.push_back(&SrcDecl); 3661 3662 const CGFunctionInfo &FI = 3663 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3664 3665 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3666 3667 llvm::Function *Fn = llvm::Function::Create( 3668 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_", 3669 &CGM.getModule()); 3670 3671 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3672 3673 StartFunction(FD, ReturnTy, Fn, FI, args); 3674 3675 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue, 3676 SourceLocation()); 3677 3678 UnaryOperator *SRC = UnaryOperator::Create( 3679 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3680 SourceLocation(), false, FPOptionsOverride()); 3681 3682 CXXConstructExpr *CXXConstExpr = 3683 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3684 3685 SmallVector<Expr*, 4> ConstructorArgs; 3686 ConstructorArgs.push_back(SRC); 3687 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3688 CXXConstExpr->arg_end()); 3689 3690 CXXConstructExpr *TheCXXConstructExpr = 3691 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3692 CXXConstExpr->getConstructor(), 3693 CXXConstExpr->isElidable(), 3694 ConstructorArgs, 3695 CXXConstExpr->hadMultipleCandidates(), 3696 CXXConstExpr->isListInitialization(), 3697 CXXConstExpr->isStdInitListInitialization(), 3698 CXXConstExpr->requiresZeroInitialization(), 3699 CXXConstExpr->getConstructionKind(), 3700 SourceRange()); 3701 3702 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue, 3703 SourceLocation()); 3704 3705 RValue DV = EmitAnyExpr(&DstExpr); 3706 CharUnits Alignment 3707 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3708 EmitAggExpr(TheCXXConstructExpr, 3709 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3710 Qualifiers(), 3711 AggValueSlot::IsDestructed, 3712 AggValueSlot::DoesNotNeedGCBarriers, 3713 AggValueSlot::IsNotAliased, 3714 AggValueSlot::DoesNotOverlap)); 3715 3716 FinishFunction(); 3717 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3718 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3719 return HelperFn; 3720 } 3721 3722 llvm::Value * 3723 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3724 // Get selectors for retain/autorelease. 3725 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3726 Selector CopySelector = 3727 getContext().Selectors.getNullarySelector(CopyID); 3728 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3729 Selector AutoreleaseSelector = 3730 getContext().Selectors.getNullarySelector(AutoreleaseID); 3731 3732 // Emit calls to retain/autorelease. 3733 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3734 llvm::Value *Val = Block; 3735 RValue Result; 3736 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3737 Ty, CopySelector, 3738 Val, CallArgList(), nullptr, nullptr); 3739 Val = Result.getScalarVal(); 3740 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3741 Ty, AutoreleaseSelector, 3742 Val, CallArgList(), nullptr, nullptr); 3743 Val = Result.getScalarVal(); 3744 return Val; 3745 } 3746 3747 llvm::Value * 3748 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) { 3749 assert(Args.size() == 3 && "Expected 3 argument here!"); 3750 3751 if (!CGM.IsOSVersionAtLeastFn) { 3752 llvm::FunctionType *FTy = 3753 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 3754 CGM.IsOSVersionAtLeastFn = 3755 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 3756 } 3757 3758 llvm::Value *CallRes = 3759 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 3760 3761 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 3762 } 3763 3764 void CodeGenModule::emitAtAvailableLinkGuard() { 3765 if (!IsOSVersionAtLeastFn) 3766 return; 3767 // @available requires CoreFoundation only on Darwin. 3768 if (!Target.getTriple().isOSDarwin()) 3769 return; 3770 // Add -framework CoreFoundation to the linker commands. We still want to 3771 // emit the core foundation reference down below because otherwise if 3772 // CoreFoundation is not used in the code, the linker won't link the 3773 // framework. 3774 auto &Context = getLLVMContext(); 3775 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3776 llvm::MDString::get(Context, "CoreFoundation")}; 3777 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 3778 // Emit a reference to a symbol from CoreFoundation to ensure that 3779 // CoreFoundation is linked into the final binary. 3780 llvm::FunctionType *FTy = 3781 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 3782 llvm::FunctionCallee CFFunc = 3783 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 3784 3785 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 3786 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction( 3787 CheckFTy, "__clang_at_available_requires_core_foundation_framework", 3788 llvm::AttributeList(), /*Local=*/true); 3789 llvm::Function *CFLinkCheckFunc = 3790 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts()); 3791 if (CFLinkCheckFunc->empty()) { 3792 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 3793 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 3794 CodeGenFunction CGF(*this); 3795 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 3796 CGF.EmitNounwindRuntimeCall(CFFunc, 3797 llvm::Constant::getNullValue(VoidPtrTy)); 3798 CGF.Builder.CreateUnreachable(); 3799 addCompilerUsedGlobal(CFLinkCheckFunc); 3800 } 3801 } 3802 3803 CGObjCRuntime::~CGObjCRuntime() {} 3804