1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
35                                    QualType ET,
36                                    RValue Result);
37 
38 /// Given the address of a variable of pointer type, find the correct
39 /// null to store into it.
40 static llvm::Constant *getNullForVariable(Address addr) {
41   llvm::Type *type = addr.getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57 /// or [NSValue valueWithBytes:objCType:].
58 ///
59 llvm::Value *
60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61   // Generate the correct selector for this literal's concrete type.
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   const Expr *SubExpr = E->getSubExpr();
65   assert(BoxingMethod && "BoxingMethod is null");
66   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
67   Selector Sel = BoxingMethod->getSelector();
68 
69   // Generate a reference to the class pointer, which will be the receiver.
70   // Assumes that the method was introduced in the class that should be
71   // messaged (avoids pulling it out of the result type).
72   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
73   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
74   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
75 
76   CallArgList Args;
77   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
78   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
79 
80   // ObjCBoxedExpr supports boxing of structs and unions
81   // via [NSValue valueWithBytes:objCType:]
82   const QualType ValueType(SubExpr->getType().getCanonicalType());
83   if (ValueType->isObjCBoxableRecordType()) {
84     // Emit CodeGen for first parameter
85     // and cast value to correct type
86     Address Temporary = CreateMemTemp(SubExpr->getType());
87     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
88     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
89     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
90 
91     // Create char array to store type encoding
92     std::string Str;
93     getContext().getObjCEncodingForType(ValueType, Str);
94     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
95 
96     // Cast type encoding to correct type
97     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
98     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
99     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
100 
101     Args.add(RValue::get(Cast), EncodingQT);
102   } else {
103     Args.add(EmitAnyExpr(SubExpr), ArgQT);
104   }
105 
106   RValue result = Runtime.GenerateMessageSend(
107       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
108       Args, ClassDecl, BoxingMethod);
109   return Builder.CreateBitCast(result.getScalarVal(),
110                                ConvertType(E->getType()));
111 }
112 
113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
114                                     const ObjCMethodDecl *MethodWithObjects) {
115   ASTContext &Context = CGM.getContext();
116   const ObjCDictionaryLiteral *DLE = nullptr;
117   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
118   if (!ALE)
119     DLE = cast<ObjCDictionaryLiteral>(E);
120 
121   // Compute the type of the array we're initializing.
122   uint64_t NumElements =
123     ALE ? ALE->getNumElements() : DLE->getNumElements();
124   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
125                             NumElements);
126   QualType ElementType = Context.getObjCIdType().withConst();
127   QualType ElementArrayType
128     = Context.getConstantArrayType(ElementType, APNumElements,
129                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
130 
131   // Allocate the temporary array(s).
132   Address Objects = CreateMemTemp(ElementArrayType, "objects");
133   Address Keys = Address::invalid();
134   if (DLE)
135     Keys = CreateMemTemp(ElementArrayType, "keys");
136 
137   // In ARC, we may need to do extra work to keep all the keys and
138   // values alive until after the call.
139   SmallVector<llvm::Value *, 16> NeededObjects;
140   bool TrackNeededObjects =
141     (getLangOpts().ObjCAutoRefCount &&
142     CGM.getCodeGenOpts().OptimizationLevel != 0);
143 
144   // Perform the actual initialialization of the array(s).
145   for (uint64_t i = 0; i < NumElements; i++) {
146     if (ALE) {
147       // Emit the element and store it to the appropriate array slot.
148       const Expr *Rhs = ALE->getElement(i);
149       LValue LV = MakeAddrLValue(
150           Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
151           ElementType, AlignmentSource::Decl);
152 
153       llvm::Value *value = EmitScalarExpr(Rhs);
154       EmitStoreThroughLValue(RValue::get(value), LV, true);
155       if (TrackNeededObjects) {
156         NeededObjects.push_back(value);
157       }
158     } else {
159       // Emit the key and store it to the appropriate array slot.
160       const Expr *Key = DLE->getKeyValueElement(i).Key;
161       LValue KeyLV = MakeAddrLValue(
162           Builder.CreateConstArrayGEP(Keys, i, getPointerSize()),
163           ElementType, AlignmentSource::Decl);
164       llvm::Value *keyValue = EmitScalarExpr(Key);
165       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
166 
167       // Emit the value and store it to the appropriate array slot.
168       const Expr *Value = DLE->getKeyValueElement(i).Value;
169       LValue ValueLV = MakeAddrLValue(
170           Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
171           ElementType, AlignmentSource::Decl);
172       llvm::Value *valueValue = EmitScalarExpr(Value);
173       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
174       if (TrackNeededObjects) {
175         NeededObjects.push_back(keyValue);
176         NeededObjects.push_back(valueValue);
177       }
178     }
179   }
180 
181   // Generate the argument list.
182   CallArgList Args;
183   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
184   const ParmVarDecl *argDecl = *PI++;
185   QualType ArgQT = argDecl->getType().getUnqualifiedType();
186   Args.add(RValue::get(Objects.getPointer()), ArgQT);
187   if (DLE) {
188     argDecl = *PI++;
189     ArgQT = argDecl->getType().getUnqualifiedType();
190     Args.add(RValue::get(Keys.getPointer()), ArgQT);
191   }
192   argDecl = *PI;
193   ArgQT = argDecl->getType().getUnqualifiedType();
194   llvm::Value *Count =
195     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
196   Args.add(RValue::get(Count), ArgQT);
197 
198   // Generate a reference to the class pointer, which will be the receiver.
199   Selector Sel = MethodWithObjects->getSelector();
200   QualType ResultType = E->getType();
201   const ObjCObjectPointerType *InterfacePointerType
202     = ResultType->getAsObjCInterfacePointerType();
203   ObjCInterfaceDecl *Class
204     = InterfacePointerType->getObjectType()->getInterface();
205   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
206   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
207 
208   // Generate the message send.
209   RValue result = Runtime.GenerateMessageSend(
210       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
211       Receiver, Args, Class, MethodWithObjects);
212 
213   // The above message send needs these objects, but in ARC they are
214   // passed in a buffer that is essentially __unsafe_unretained.
215   // Therefore we must prevent the optimizer from releasing them until
216   // after the call.
217   if (TrackNeededObjects) {
218     EmitARCIntrinsicUse(NeededObjects);
219   }
220 
221   return Builder.CreateBitCast(result.getScalarVal(),
222                                ConvertType(E->getType()));
223 }
224 
225 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
226   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
227 }
228 
229 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
230                                             const ObjCDictionaryLiteral *E) {
231   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
232 }
233 
234 /// Emit a selector.
235 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
236   // Untyped selector.
237   // Note that this implementation allows for non-constant strings to be passed
238   // as arguments to @selector().  Currently, the only thing preventing this
239   // behaviour is the type checking in the front end.
240   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
241 }
242 
243 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
244   // FIXME: This should pass the Decl not the name.
245   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
246 }
247 
248 /// \brief Adjust the type of an Objective-C object that doesn't match up due
249 /// to type erasure at various points, e.g., related result types or the use
250 /// of parameterized classes.
251 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
252                                    RValue Result) {
253   if (!ExpT->isObjCRetainableType())
254     return Result;
255 
256   // If the converted types are the same, we're done.
257   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
258   if (ExpLLVMTy == Result.getScalarVal()->getType())
259     return Result;
260 
261   // We have applied a substitution. Cast the rvalue appropriately.
262   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
263                                                ExpLLVMTy));
264 }
265 
266 /// Decide whether to extend the lifetime of the receiver of a
267 /// returns-inner-pointer message.
268 static bool
269 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
270   switch (message->getReceiverKind()) {
271 
272   // For a normal instance message, we should extend unless the
273   // receiver is loaded from a variable with precise lifetime.
274   case ObjCMessageExpr::Instance: {
275     const Expr *receiver = message->getInstanceReceiver();
276 
277     // Look through OVEs.
278     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
279       if (opaque->getSourceExpr())
280         receiver = opaque->getSourceExpr()->IgnoreParens();
281     }
282 
283     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
284     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
285     receiver = ice->getSubExpr()->IgnoreParens();
286 
287     // Look through OVEs.
288     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
289       if (opaque->getSourceExpr())
290         receiver = opaque->getSourceExpr()->IgnoreParens();
291     }
292 
293     // Only __strong variables.
294     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
295       return true;
296 
297     // All ivars and fields have precise lifetime.
298     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
299       return false;
300 
301     // Otherwise, check for variables.
302     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
303     if (!declRef) return true;
304     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
305     if (!var) return true;
306 
307     // All variables have precise lifetime except local variables with
308     // automatic storage duration that aren't specially marked.
309     return (var->hasLocalStorage() &&
310             !var->hasAttr<ObjCPreciseLifetimeAttr>());
311   }
312 
313   case ObjCMessageExpr::Class:
314   case ObjCMessageExpr::SuperClass:
315     // It's never necessary for class objects.
316     return false;
317 
318   case ObjCMessageExpr::SuperInstance:
319     // We generally assume that 'self' lives throughout a method call.
320     return false;
321   }
322 
323   llvm_unreachable("invalid receiver kind");
324 }
325 
326 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
327                                             ReturnValueSlot Return) {
328   // Only the lookup mechanism and first two arguments of the method
329   // implementation vary between runtimes.  We can get the receiver and
330   // arguments in generic code.
331 
332   bool isDelegateInit = E->isDelegateInitCall();
333 
334   const ObjCMethodDecl *method = E->getMethodDecl();
335 
336   // We don't retain the receiver in delegate init calls, and this is
337   // safe because the receiver value is always loaded from 'self',
338   // which we zero out.  We don't want to Block_copy block receivers,
339   // though.
340   bool retainSelf =
341     (!isDelegateInit &&
342      CGM.getLangOpts().ObjCAutoRefCount &&
343      method &&
344      method->hasAttr<NSConsumesSelfAttr>());
345 
346   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
347   bool isSuperMessage = false;
348   bool isClassMessage = false;
349   ObjCInterfaceDecl *OID = nullptr;
350   // Find the receiver
351   QualType ReceiverType;
352   llvm::Value *Receiver = nullptr;
353   switch (E->getReceiverKind()) {
354   case ObjCMessageExpr::Instance:
355     ReceiverType = E->getInstanceReceiver()->getType();
356     if (retainSelf) {
357       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
358                                                    E->getInstanceReceiver());
359       Receiver = ter.getPointer();
360       if (ter.getInt()) retainSelf = false;
361     } else
362       Receiver = EmitScalarExpr(E->getInstanceReceiver());
363     break;
364 
365   case ObjCMessageExpr::Class: {
366     ReceiverType = E->getClassReceiver();
367     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
368     assert(ObjTy && "Invalid Objective-C class message send");
369     OID = ObjTy->getInterface();
370     assert(OID && "Invalid Objective-C class message send");
371     Receiver = Runtime.GetClass(*this, OID);
372     isClassMessage = true;
373     break;
374   }
375 
376   case ObjCMessageExpr::SuperInstance:
377     ReceiverType = E->getSuperType();
378     Receiver = LoadObjCSelf();
379     isSuperMessage = true;
380     break;
381 
382   case ObjCMessageExpr::SuperClass:
383     ReceiverType = E->getSuperType();
384     Receiver = LoadObjCSelf();
385     isSuperMessage = true;
386     isClassMessage = true;
387     break;
388   }
389 
390   if (retainSelf)
391     Receiver = EmitARCRetainNonBlock(Receiver);
392 
393   // In ARC, we sometimes want to "extend the lifetime"
394   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
395   // messages.
396   if (getLangOpts().ObjCAutoRefCount && method &&
397       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
398       shouldExtendReceiverForInnerPointerMessage(E))
399     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
400 
401   QualType ResultType = method ? method->getReturnType() : E->getType();
402 
403   CallArgList Args;
404   EmitCallArgs(Args, method, E->arguments());
405 
406   // For delegate init calls in ARC, do an unsafe store of null into
407   // self.  This represents the call taking direct ownership of that
408   // value.  We have to do this after emitting the other call
409   // arguments because they might also reference self, but we don't
410   // have to worry about any of them modifying self because that would
411   // be an undefined read and write of an object in unordered
412   // expressions.
413   if (isDelegateInit) {
414     assert(getLangOpts().ObjCAutoRefCount &&
415            "delegate init calls should only be marked in ARC");
416 
417     // Do an unsafe store of null into self.
418     Address selfAddr =
419       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
420     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
421   }
422 
423   RValue result;
424   if (isSuperMessage) {
425     // super is only valid in an Objective-C method
426     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
427     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
428     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
429                                               E->getSelector(),
430                                               OMD->getClassInterface(),
431                                               isCategoryImpl,
432                                               Receiver,
433                                               isClassMessage,
434                                               Args,
435                                               method);
436   } else {
437     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
438                                          E->getSelector(),
439                                          Receiver, Args, OID,
440                                          method);
441   }
442 
443   // For delegate init calls in ARC, implicitly store the result of
444   // the call back into self.  This takes ownership of the value.
445   if (isDelegateInit) {
446     Address selfAddr =
447       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
448     llvm::Value *newSelf = result.getScalarVal();
449 
450     // The delegate return type isn't necessarily a matching type; in
451     // fact, it's quite likely to be 'id'.
452     llvm::Type *selfTy = selfAddr.getElementType();
453     newSelf = Builder.CreateBitCast(newSelf, selfTy);
454 
455     Builder.CreateStore(newSelf, selfAddr);
456   }
457 
458   return AdjustObjCObjectType(*this, E->getType(), result);
459 }
460 
461 namespace {
462 struct FinishARCDealloc final : EHScopeStack::Cleanup {
463   void Emit(CodeGenFunction &CGF, Flags flags) override {
464     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
465 
466     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
467     const ObjCInterfaceDecl *iface = impl->getClassInterface();
468     if (!iface->getSuperClass()) return;
469 
470     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
471 
472     // Call [super dealloc] if we have a superclass.
473     llvm::Value *self = CGF.LoadObjCSelf();
474 
475     CallArgList args;
476     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
477                                                       CGF.getContext().VoidTy,
478                                                       method->getSelector(),
479                                                       iface,
480                                                       isCategory,
481                                                       self,
482                                                       /*is class msg*/ false,
483                                                       args,
484                                                       method);
485   }
486 };
487 }
488 
489 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
490 /// the LLVM function and sets the other context used by
491 /// CodeGenFunction.
492 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
493                                       const ObjCContainerDecl *CD) {
494   SourceLocation StartLoc = OMD->getLocStart();
495   FunctionArgList args;
496   // Check if we should generate debug info for this method.
497   if (OMD->hasAttr<NoDebugAttr>())
498     DebugInfo = nullptr; // disable debug info indefinitely for this function
499 
500   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
501 
502   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
503   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
504 
505   args.push_back(OMD->getSelfDecl());
506   args.push_back(OMD->getCmdDecl());
507 
508   args.append(OMD->param_begin(), OMD->param_end());
509 
510   CurGD = OMD;
511   CurEHLocation = OMD->getLocEnd();
512 
513   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
514                 OMD->getLocation(), StartLoc);
515 
516   // In ARC, certain methods get an extra cleanup.
517   if (CGM.getLangOpts().ObjCAutoRefCount &&
518       OMD->isInstanceMethod() &&
519       OMD->getSelector().isUnarySelector()) {
520     const IdentifierInfo *ident =
521       OMD->getSelector().getIdentifierInfoForSlot(0);
522     if (ident->isStr("dealloc"))
523       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
524   }
525 }
526 
527 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
528                                               LValue lvalue, QualType type);
529 
530 /// Generate an Objective-C method.  An Objective-C method is a C function with
531 /// its pointer, name, and types registered in the class struture.
532 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
533   StartObjCMethod(OMD, OMD->getClassInterface());
534   PGO.assignRegionCounters(OMD, CurFn);
535   assert(isa<CompoundStmt>(OMD->getBody()));
536   incrementProfileCounter(OMD->getBody());
537   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
538   FinishFunction(OMD->getBodyRBrace());
539 }
540 
541 /// emitStructGetterCall - Call the runtime function to load a property
542 /// into the return value slot.
543 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
544                                  bool isAtomic, bool hasStrong) {
545   ASTContext &Context = CGF.getContext();
546 
547   Address src =
548     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
549        .getAddress();
550 
551   // objc_copyStruct (ReturnValue, &structIvar,
552   //                  sizeof (Type of Ivar), isAtomic, false);
553   CallArgList args;
554 
555   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
556   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
557 
558   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
559   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
560 
561   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
562   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
563   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
564   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
565 
566   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
567   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
568                                                       FunctionType::ExtInfo(),
569                                                       RequiredArgs::All),
570                fn, ReturnValueSlot(), args);
571 }
572 
573 /// Determine whether the given architecture supports unaligned atomic
574 /// accesses.  They don't have to be fast, just faster than a function
575 /// call and a mutex.
576 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
577   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
578   // currently supported by the backend.)
579   return 0;
580 }
581 
582 /// Return the maximum size that permits atomic accesses for the given
583 /// architecture.
584 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
585                                         llvm::Triple::ArchType arch) {
586   // ARM has 8-byte atomic accesses, but it's not clear whether we
587   // want to rely on them here.
588 
589   // In the default case, just assume that any size up to a pointer is
590   // fine given adequate alignment.
591   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
592 }
593 
594 namespace {
595   class PropertyImplStrategy {
596   public:
597     enum StrategyKind {
598       /// The 'native' strategy is to use the architecture's provided
599       /// reads and writes.
600       Native,
601 
602       /// Use objc_setProperty and objc_getProperty.
603       GetSetProperty,
604 
605       /// Use objc_setProperty for the setter, but use expression
606       /// evaluation for the getter.
607       SetPropertyAndExpressionGet,
608 
609       /// Use objc_copyStruct.
610       CopyStruct,
611 
612       /// The 'expression' strategy is to emit normal assignment or
613       /// lvalue-to-rvalue expressions.
614       Expression
615     };
616 
617     StrategyKind getKind() const { return StrategyKind(Kind); }
618 
619     bool hasStrongMember() const { return HasStrong; }
620     bool isAtomic() const { return IsAtomic; }
621     bool isCopy() const { return IsCopy; }
622 
623     CharUnits getIvarSize() const { return IvarSize; }
624     CharUnits getIvarAlignment() const { return IvarAlignment; }
625 
626     PropertyImplStrategy(CodeGenModule &CGM,
627                          const ObjCPropertyImplDecl *propImpl);
628 
629   private:
630     unsigned Kind : 8;
631     unsigned IsAtomic : 1;
632     unsigned IsCopy : 1;
633     unsigned HasStrong : 1;
634 
635     CharUnits IvarSize;
636     CharUnits IvarAlignment;
637   };
638 }
639 
640 /// Pick an implementation strategy for the given property synthesis.
641 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
642                                      const ObjCPropertyImplDecl *propImpl) {
643   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
644   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
645 
646   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
647   IsAtomic = prop->isAtomic();
648   HasStrong = false; // doesn't matter here.
649 
650   // Evaluate the ivar's size and alignment.
651   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
652   QualType ivarType = ivar->getType();
653   std::tie(IvarSize, IvarAlignment) =
654       CGM.getContext().getTypeInfoInChars(ivarType);
655 
656   // If we have a copy property, we always have to use getProperty/setProperty.
657   // TODO: we could actually use setProperty and an expression for non-atomics.
658   if (IsCopy) {
659     Kind = GetSetProperty;
660     return;
661   }
662 
663   // Handle retain.
664   if (setterKind == ObjCPropertyDecl::Retain) {
665     // In GC-only, there's nothing special that needs to be done.
666     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
667       // fallthrough
668 
669     // In ARC, if the property is non-atomic, use expression emission,
670     // which translates to objc_storeStrong.  This isn't required, but
671     // it's slightly nicer.
672     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
673       // Using standard expression emission for the setter is only
674       // acceptable if the ivar is __strong, which won't be true if
675       // the property is annotated with __attribute__((NSObject)).
676       // TODO: falling all the way back to objc_setProperty here is
677       // just laziness, though;  we could still use objc_storeStrong
678       // if we hacked it right.
679       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
680         Kind = Expression;
681       else
682         Kind = SetPropertyAndExpressionGet;
683       return;
684 
685     // Otherwise, we need to at least use setProperty.  However, if
686     // the property isn't atomic, we can use normal expression
687     // emission for the getter.
688     } else if (!IsAtomic) {
689       Kind = SetPropertyAndExpressionGet;
690       return;
691 
692     // Otherwise, we have to use both setProperty and getProperty.
693     } else {
694       Kind = GetSetProperty;
695       return;
696     }
697   }
698 
699   // If we're not atomic, just use expression accesses.
700   if (!IsAtomic) {
701     Kind = Expression;
702     return;
703   }
704 
705   // Properties on bitfield ivars need to be emitted using expression
706   // accesses even if they're nominally atomic.
707   if (ivar->isBitField()) {
708     Kind = Expression;
709     return;
710   }
711 
712   // GC-qualified or ARC-qualified ivars need to be emitted as
713   // expressions.  This actually works out to being atomic anyway,
714   // except for ARC __strong, but that should trigger the above code.
715   if (ivarType.hasNonTrivialObjCLifetime() ||
716       (CGM.getLangOpts().getGC() &&
717        CGM.getContext().getObjCGCAttrKind(ivarType))) {
718     Kind = Expression;
719     return;
720   }
721 
722   // Compute whether the ivar has strong members.
723   if (CGM.getLangOpts().getGC())
724     if (const RecordType *recordType = ivarType->getAs<RecordType>())
725       HasStrong = recordType->getDecl()->hasObjectMember();
726 
727   // We can never access structs with object members with a native
728   // access, because we need to use write barriers.  This is what
729   // objc_copyStruct is for.
730   if (HasStrong) {
731     Kind = CopyStruct;
732     return;
733   }
734 
735   // Otherwise, this is target-dependent and based on the size and
736   // alignment of the ivar.
737 
738   // If the size of the ivar is not a power of two, give up.  We don't
739   // want to get into the business of doing compare-and-swaps.
740   if (!IvarSize.isPowerOfTwo()) {
741     Kind = CopyStruct;
742     return;
743   }
744 
745   llvm::Triple::ArchType arch =
746     CGM.getTarget().getTriple().getArch();
747 
748   // Most architectures require memory to fit within a single cache
749   // line, so the alignment has to be at least the size of the access.
750   // Otherwise we have to grab a lock.
751   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
752     Kind = CopyStruct;
753     return;
754   }
755 
756   // If the ivar's size exceeds the architecture's maximum atomic
757   // access size, we have to use CopyStruct.
758   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
759     Kind = CopyStruct;
760     return;
761   }
762 
763   // Otherwise, we can use native loads and stores.
764   Kind = Native;
765 }
766 
767 /// \brief Generate an Objective-C property getter function.
768 ///
769 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
770 /// is illegal within a category.
771 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
772                                          const ObjCPropertyImplDecl *PID) {
773   llvm::Constant *AtomicHelperFn =
774       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
775   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
776   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
777   assert(OMD && "Invalid call to generate getter (empty method)");
778   StartObjCMethod(OMD, IMP->getClassInterface());
779 
780   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
781 
782   FinishFunction();
783 }
784 
785 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
786   const Expr *getter = propImpl->getGetterCXXConstructor();
787   if (!getter) return true;
788 
789   // Sema only makes only of these when the ivar has a C++ class type,
790   // so the form is pretty constrained.
791 
792   // If the property has a reference type, we might just be binding a
793   // reference, in which case the result will be a gl-value.  We should
794   // treat this as a non-trivial operation.
795   if (getter->isGLValue())
796     return false;
797 
798   // If we selected a trivial copy-constructor, we're okay.
799   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
800     return (construct->getConstructor()->isTrivial());
801 
802   // The constructor might require cleanups (in which case it's never
803   // trivial).
804   assert(isa<ExprWithCleanups>(getter));
805   return false;
806 }
807 
808 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
809 /// copy the ivar into the resturn slot.
810 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
811                                           llvm::Value *returnAddr,
812                                           ObjCIvarDecl *ivar,
813                                           llvm::Constant *AtomicHelperFn) {
814   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
815   //                           AtomicHelperFn);
816   CallArgList args;
817 
818   // The 1st argument is the return Slot.
819   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
820 
821   // The 2nd argument is the address of the ivar.
822   llvm::Value *ivarAddr =
823     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
824                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
825   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
826   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
827 
828   // Third argument is the helper function.
829   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
830 
831   llvm::Value *copyCppAtomicObjectFn =
832     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
833   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
834                                                       args,
835                                                       FunctionType::ExtInfo(),
836                                                       RequiredArgs::All),
837                copyCppAtomicObjectFn, ReturnValueSlot(), args);
838 }
839 
840 void
841 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
842                                         const ObjCPropertyImplDecl *propImpl,
843                                         const ObjCMethodDecl *GetterMethodDecl,
844                                         llvm::Constant *AtomicHelperFn) {
845   // If there's a non-trivial 'get' expression, we just have to emit that.
846   if (!hasTrivialGetExpr(propImpl)) {
847     if (!AtomicHelperFn) {
848       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
849                      /*nrvo*/ nullptr);
850       EmitReturnStmt(ret);
851     }
852     else {
853       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
854       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
855                                     ivar, AtomicHelperFn);
856     }
857     return;
858   }
859 
860   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
861   QualType propType = prop->getType();
862   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
863 
864   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
865 
866   // Pick an implementation strategy.
867   PropertyImplStrategy strategy(CGM, propImpl);
868   switch (strategy.getKind()) {
869   case PropertyImplStrategy::Native: {
870     // We don't need to do anything for a zero-size struct.
871     if (strategy.getIvarSize().isZero())
872       return;
873 
874     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
875 
876     // Currently, all atomic accesses have to be through integer
877     // types, so there's no point in trying to pick a prettier type.
878     llvm::Type *bitcastType =
879       llvm::Type::getIntNTy(getLLVMContext(),
880                             getContext().toBits(strategy.getIvarSize()));
881     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
882 
883     // Perform an atomic load.  This does not impose ordering constraints.
884     Address ivarAddr = LV.getAddress();
885     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
886     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
887     load->setAtomic(llvm::Unordered);
888 
889     // Store that value into the return address.  Doing this with a
890     // bitcast is likely to produce some pretty ugly IR, but it's not
891     // the *most* terrible thing in the world.
892     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
893 
894     // Make sure we don't do an autorelease.
895     AutoreleaseResult = false;
896     return;
897   }
898 
899   case PropertyImplStrategy::GetSetProperty: {
900     llvm::Value *getPropertyFn =
901       CGM.getObjCRuntime().GetPropertyGetFunction();
902     if (!getPropertyFn) {
903       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
904       return;
905     }
906 
907     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
908     // FIXME: Can't this be simpler? This might even be worse than the
909     // corresponding gcc code.
910     llvm::Value *cmd =
911       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
912     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
913     llvm::Value *ivarOffset =
914       EmitIvarOffset(classImpl->getClassInterface(), ivar);
915 
916     CallArgList args;
917     args.add(RValue::get(self), getContext().getObjCIdType());
918     args.add(RValue::get(cmd), getContext().getObjCSelType());
919     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
920     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
921              getContext().BoolTy);
922 
923     // FIXME: We shouldn't need to get the function info here, the
924     // runtime already should have computed it to build the function.
925     llvm::Instruction *CallInstruction;
926     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
927                                                        FunctionType::ExtInfo(),
928                                                             RequiredArgs::All),
929                          getPropertyFn, ReturnValueSlot(), args, nullptr,
930                          &CallInstruction);
931     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
932       call->setTailCall();
933 
934     // We need to fix the type here. Ivars with copy & retain are
935     // always objects so we don't need to worry about complex or
936     // aggregates.
937     RV = RValue::get(Builder.CreateBitCast(
938         RV.getScalarVal(),
939         getTypes().ConvertType(getterMethod->getReturnType())));
940 
941     EmitReturnOfRValue(RV, propType);
942 
943     // objc_getProperty does an autorelease, so we should suppress ours.
944     AutoreleaseResult = false;
945 
946     return;
947   }
948 
949   case PropertyImplStrategy::CopyStruct:
950     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
951                          strategy.hasStrongMember());
952     return;
953 
954   case PropertyImplStrategy::Expression:
955   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
956     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
957 
958     QualType ivarType = ivar->getType();
959     switch (getEvaluationKind(ivarType)) {
960     case TEK_Complex: {
961       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
962       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
963                          /*init*/ true);
964       return;
965     }
966     case TEK_Aggregate:
967       // The return value slot is guaranteed to not be aliased, but
968       // that's not necessarily the same as "on the stack", so
969       // we still potentially need objc_memmove_collectable.
970       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
971       return;
972     case TEK_Scalar: {
973       llvm::Value *value;
974       if (propType->isReferenceType()) {
975         value = LV.getAddress().getPointer();
976       } else {
977         // We want to load and autoreleaseReturnValue ARC __weak ivars.
978         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
979           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
980 
981         // Otherwise we want to do a simple load, suppressing the
982         // final autorelease.
983         } else {
984           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
985           AutoreleaseResult = false;
986         }
987 
988         value = Builder.CreateBitCast(value, ConvertType(propType));
989         value = Builder.CreateBitCast(
990             value, ConvertType(GetterMethodDecl->getReturnType()));
991       }
992 
993       EmitReturnOfRValue(RValue::get(value), propType);
994       return;
995     }
996     }
997     llvm_unreachable("bad evaluation kind");
998   }
999 
1000   }
1001   llvm_unreachable("bad @property implementation strategy!");
1002 }
1003 
1004 /// emitStructSetterCall - Call the runtime function to store the value
1005 /// from the first formal parameter into the given ivar.
1006 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1007                                  ObjCIvarDecl *ivar) {
1008   // objc_copyStruct (&structIvar, &Arg,
1009   //                  sizeof (struct something), true, false);
1010   CallArgList args;
1011 
1012   // The first argument is the address of the ivar.
1013   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1014                                                 CGF.LoadObjCSelf(), ivar, 0)
1015     .getPointer();
1016   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1017   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1018 
1019   // The second argument is the address of the parameter variable.
1020   ParmVarDecl *argVar = *OMD->param_begin();
1021   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1022                      VK_LValue, SourceLocation());
1023   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1024   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1025   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1026 
1027   // The third argument is the sizeof the type.
1028   llvm::Value *size =
1029     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1030   args.add(RValue::get(size), CGF.getContext().getSizeType());
1031 
1032   // The fourth argument is the 'isAtomic' flag.
1033   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1034 
1035   // The fifth argument is the 'hasStrong' flag.
1036   // FIXME: should this really always be false?
1037   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1038 
1039   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1040   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1041                                                       args,
1042                                                       FunctionType::ExtInfo(),
1043                                                       RequiredArgs::All),
1044                copyStructFn, ReturnValueSlot(), args);
1045 }
1046 
1047 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1048 /// the value from the first formal parameter into the given ivar, using
1049 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1050 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1051                                           ObjCMethodDecl *OMD,
1052                                           ObjCIvarDecl *ivar,
1053                                           llvm::Constant *AtomicHelperFn) {
1054   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1055   //                           AtomicHelperFn);
1056   CallArgList args;
1057 
1058   // The first argument is the address of the ivar.
1059   llvm::Value *ivarAddr =
1060     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1061                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
1062   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1063   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1064 
1065   // The second argument is the address of the parameter variable.
1066   ParmVarDecl *argVar = *OMD->param_begin();
1067   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1068                      VK_LValue, SourceLocation());
1069   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1070   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1071   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1072 
1073   // Third argument is the helper function.
1074   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1075 
1076   llvm::Value *copyCppAtomicObjectFn =
1077     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1078   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1079                                                       args,
1080                                                       FunctionType::ExtInfo(),
1081                                                       RequiredArgs::All),
1082                copyCppAtomicObjectFn, ReturnValueSlot(), args);
1083 }
1084 
1085 
1086 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1087   Expr *setter = PID->getSetterCXXAssignment();
1088   if (!setter) return true;
1089 
1090   // Sema only makes only of these when the ivar has a C++ class type,
1091   // so the form is pretty constrained.
1092 
1093   // An operator call is trivial if the function it calls is trivial.
1094   // This also implies that there's nothing non-trivial going on with
1095   // the arguments, because operator= can only be trivial if it's a
1096   // synthesized assignment operator and therefore both parameters are
1097   // references.
1098   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1099     if (const FunctionDecl *callee
1100           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1101       if (callee->isTrivial())
1102         return true;
1103     return false;
1104   }
1105 
1106   assert(isa<ExprWithCleanups>(setter));
1107   return false;
1108 }
1109 
1110 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1111   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1112     return false;
1113   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1114 }
1115 
1116 void
1117 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1118                                         const ObjCPropertyImplDecl *propImpl,
1119                                         llvm::Constant *AtomicHelperFn) {
1120   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1121   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1122   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1123 
1124   // Just use the setter expression if Sema gave us one and it's
1125   // non-trivial.
1126   if (!hasTrivialSetExpr(propImpl)) {
1127     if (!AtomicHelperFn)
1128       // If non-atomic, assignment is called directly.
1129       EmitStmt(propImpl->getSetterCXXAssignment());
1130     else
1131       // If atomic, assignment is called via a locking api.
1132       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1133                                     AtomicHelperFn);
1134     return;
1135   }
1136 
1137   PropertyImplStrategy strategy(CGM, propImpl);
1138   switch (strategy.getKind()) {
1139   case PropertyImplStrategy::Native: {
1140     // We don't need to do anything for a zero-size struct.
1141     if (strategy.getIvarSize().isZero())
1142       return;
1143 
1144     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1145 
1146     LValue ivarLValue =
1147       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1148     Address ivarAddr = ivarLValue.getAddress();
1149 
1150     // Currently, all atomic accesses have to be through integer
1151     // types, so there's no point in trying to pick a prettier type.
1152     llvm::Type *bitcastType =
1153       llvm::Type::getIntNTy(getLLVMContext(),
1154                             getContext().toBits(strategy.getIvarSize()));
1155 
1156     // Cast both arguments to the chosen operation type.
1157     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1158     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1159 
1160     // This bitcast load is likely to cause some nasty IR.
1161     llvm::Value *load = Builder.CreateLoad(argAddr);
1162 
1163     // Perform an atomic store.  There are no memory ordering requirements.
1164     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1165     store->setAtomic(llvm::Unordered);
1166     return;
1167   }
1168 
1169   case PropertyImplStrategy::GetSetProperty:
1170   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1171 
1172     llvm::Value *setOptimizedPropertyFn = nullptr;
1173     llvm::Value *setPropertyFn = nullptr;
1174     if (UseOptimizedSetter(CGM)) {
1175       // 10.8 and iOS 6.0 code and GC is off
1176       setOptimizedPropertyFn =
1177         CGM.getObjCRuntime()
1178            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1179                                             strategy.isCopy());
1180       if (!setOptimizedPropertyFn) {
1181         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1182         return;
1183       }
1184     }
1185     else {
1186       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1187       if (!setPropertyFn) {
1188         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1189         return;
1190       }
1191     }
1192 
1193     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1194     //                       <is-atomic>, <is-copy>).
1195     llvm::Value *cmd =
1196       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1197     llvm::Value *self =
1198       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1199     llvm::Value *ivarOffset =
1200       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1201     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1202     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1203     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1204 
1205     CallArgList args;
1206     args.add(RValue::get(self), getContext().getObjCIdType());
1207     args.add(RValue::get(cmd), getContext().getObjCSelType());
1208     if (setOptimizedPropertyFn) {
1209       args.add(RValue::get(arg), getContext().getObjCIdType());
1210       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1211       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1212                                                   FunctionType::ExtInfo(),
1213                                                   RequiredArgs::All),
1214                setOptimizedPropertyFn, ReturnValueSlot(), args);
1215     } else {
1216       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1217       args.add(RValue::get(arg), getContext().getObjCIdType());
1218       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1219                getContext().BoolTy);
1220       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1221                getContext().BoolTy);
1222       // FIXME: We shouldn't need to get the function info here, the runtime
1223       // already should have computed it to build the function.
1224       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1225                                                   FunctionType::ExtInfo(),
1226                                                   RequiredArgs::All),
1227                setPropertyFn, ReturnValueSlot(), args);
1228     }
1229 
1230     return;
1231   }
1232 
1233   case PropertyImplStrategy::CopyStruct:
1234     emitStructSetterCall(*this, setterMethod, ivar);
1235     return;
1236 
1237   case PropertyImplStrategy::Expression:
1238     break;
1239   }
1240 
1241   // Otherwise, fake up some ASTs and emit a normal assignment.
1242   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1243   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1244                    VK_LValue, SourceLocation());
1245   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1246                             selfDecl->getType(), CK_LValueToRValue, &self,
1247                             VK_RValue);
1248   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1249                           SourceLocation(), SourceLocation(),
1250                           &selfLoad, true, true);
1251 
1252   ParmVarDecl *argDecl = *setterMethod->param_begin();
1253   QualType argType = argDecl->getType().getNonReferenceType();
1254   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1255   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1256                            argType.getUnqualifiedType(), CK_LValueToRValue,
1257                            &arg, VK_RValue);
1258 
1259   // The property type can differ from the ivar type in some situations with
1260   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1261   // The following absurdity is just to ensure well-formed IR.
1262   CastKind argCK = CK_NoOp;
1263   if (ivarRef.getType()->isObjCObjectPointerType()) {
1264     if (argLoad.getType()->isObjCObjectPointerType())
1265       argCK = CK_BitCast;
1266     else if (argLoad.getType()->isBlockPointerType())
1267       argCK = CK_BlockPointerToObjCPointerCast;
1268     else
1269       argCK = CK_CPointerToObjCPointerCast;
1270   } else if (ivarRef.getType()->isBlockPointerType()) {
1271      if (argLoad.getType()->isBlockPointerType())
1272       argCK = CK_BitCast;
1273     else
1274       argCK = CK_AnyPointerToBlockPointerCast;
1275   } else if (ivarRef.getType()->isPointerType()) {
1276     argCK = CK_BitCast;
1277   }
1278   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1279                            ivarRef.getType(), argCK, &argLoad,
1280                            VK_RValue);
1281   Expr *finalArg = &argLoad;
1282   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1283                                            argLoad.getType()))
1284     finalArg = &argCast;
1285 
1286 
1287   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1288                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1289                         SourceLocation(), false);
1290   EmitStmt(&assign);
1291 }
1292 
1293 /// \brief Generate an Objective-C property setter function.
1294 ///
1295 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1296 /// is illegal within a category.
1297 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1298                                          const ObjCPropertyImplDecl *PID) {
1299   llvm::Constant *AtomicHelperFn =
1300       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1301   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1302   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1303   assert(OMD && "Invalid call to generate setter (empty method)");
1304   StartObjCMethod(OMD, IMP->getClassInterface());
1305 
1306   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1307 
1308   FinishFunction();
1309 }
1310 
1311 namespace {
1312   struct DestroyIvar final : EHScopeStack::Cleanup {
1313   private:
1314     llvm::Value *addr;
1315     const ObjCIvarDecl *ivar;
1316     CodeGenFunction::Destroyer *destroyer;
1317     bool useEHCleanupForArray;
1318   public:
1319     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1320                 CodeGenFunction::Destroyer *destroyer,
1321                 bool useEHCleanupForArray)
1322       : addr(addr), ivar(ivar), destroyer(destroyer),
1323         useEHCleanupForArray(useEHCleanupForArray) {}
1324 
1325     void Emit(CodeGenFunction &CGF, Flags flags) override {
1326       LValue lvalue
1327         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1328       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1329                       flags.isForNormalCleanup() && useEHCleanupForArray);
1330     }
1331   };
1332 }
1333 
1334 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1335 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1336                                       Address addr,
1337                                       QualType type) {
1338   llvm::Value *null = getNullForVariable(addr);
1339   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1340 }
1341 
1342 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1343                                   ObjCImplementationDecl *impl) {
1344   CodeGenFunction::RunCleanupsScope scope(CGF);
1345 
1346   llvm::Value *self = CGF.LoadObjCSelf();
1347 
1348   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1349   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1350        ivar; ivar = ivar->getNextIvar()) {
1351     QualType type = ivar->getType();
1352 
1353     // Check whether the ivar is a destructible type.
1354     QualType::DestructionKind dtorKind = type.isDestructedType();
1355     if (!dtorKind) continue;
1356 
1357     CodeGenFunction::Destroyer *destroyer = nullptr;
1358 
1359     // Use a call to objc_storeStrong to destroy strong ivars, for the
1360     // general benefit of the tools.
1361     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1362       destroyer = destroyARCStrongWithStore;
1363 
1364     // Otherwise use the default for the destruction kind.
1365     } else {
1366       destroyer = CGF.getDestroyer(dtorKind);
1367     }
1368 
1369     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1370 
1371     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1372                                          cleanupKind & EHCleanup);
1373   }
1374 
1375   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1376 }
1377 
1378 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1379                                                  ObjCMethodDecl *MD,
1380                                                  bool ctor) {
1381   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1382   StartObjCMethod(MD, IMP->getClassInterface());
1383 
1384   // Emit .cxx_construct.
1385   if (ctor) {
1386     // Suppress the final autorelease in ARC.
1387     AutoreleaseResult = false;
1388 
1389     for (const auto *IvarInit : IMP->inits()) {
1390       FieldDecl *Field = IvarInit->getAnyMember();
1391       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1392       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1393                                     LoadObjCSelf(), Ivar, 0);
1394       EmitAggExpr(IvarInit->getInit(),
1395                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1396                                           AggValueSlot::DoesNotNeedGCBarriers,
1397                                           AggValueSlot::IsNotAliased));
1398     }
1399     // constructor returns 'self'.
1400     CodeGenTypes &Types = CGM.getTypes();
1401     QualType IdTy(CGM.getContext().getObjCIdType());
1402     llvm::Value *SelfAsId =
1403       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1404     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1405 
1406   // Emit .cxx_destruct.
1407   } else {
1408     emitCXXDestructMethod(*this, IMP);
1409   }
1410   FinishFunction();
1411 }
1412 
1413 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1414   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1415   it++; it++;
1416   const ABIArgInfo &AI = it->info;
1417   // FIXME. Is this sufficient check?
1418   return (AI.getKind() == ABIArgInfo::Indirect);
1419 }
1420 
1421 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1422   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1423     return false;
1424   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1425     return FDTTy->getDecl()->hasObjectMember();
1426   return false;
1427 }
1428 
1429 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1430   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1431   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1432                   Self->getType(), VK_LValue, SourceLocation());
1433   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1434 }
1435 
1436 QualType CodeGenFunction::TypeOfSelfObject() {
1437   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1438   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1439   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1440     getContext().getCanonicalType(selfDecl->getType()));
1441   return PTy->getPointeeType();
1442 }
1443 
1444 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1445   llvm::Constant *EnumerationMutationFn =
1446     CGM.getObjCRuntime().EnumerationMutationFunction();
1447 
1448   if (!EnumerationMutationFn) {
1449     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1450     return;
1451   }
1452 
1453   CGDebugInfo *DI = getDebugInfo();
1454   if (DI)
1455     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1456 
1457   // The local variable comes into scope immediately.
1458   AutoVarEmission variable = AutoVarEmission::invalid();
1459   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1460     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1461 
1462   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1463 
1464   // Fast enumeration state.
1465   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1466   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1467   EmitNullInitialization(StatePtr, StateTy);
1468 
1469   // Number of elements in the items array.
1470   static const unsigned NumItems = 16;
1471 
1472   // Fetch the countByEnumeratingWithState:objects:count: selector.
1473   IdentifierInfo *II[] = {
1474     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1475     &CGM.getContext().Idents.get("objects"),
1476     &CGM.getContext().Idents.get("count")
1477   };
1478   Selector FastEnumSel =
1479     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1480 
1481   QualType ItemsTy =
1482     getContext().getConstantArrayType(getContext().getObjCIdType(),
1483                                       llvm::APInt(32, NumItems),
1484                                       ArrayType::Normal, 0);
1485   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1486 
1487   // Emit the collection pointer.  In ARC, we do a retain.
1488   llvm::Value *Collection;
1489   if (getLangOpts().ObjCAutoRefCount) {
1490     Collection = EmitARCRetainScalarExpr(S.getCollection());
1491 
1492     // Enter a cleanup to do the release.
1493     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1494   } else {
1495     Collection = EmitScalarExpr(S.getCollection());
1496   }
1497 
1498   // The 'continue' label needs to appear within the cleanup for the
1499   // collection object.
1500   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1501 
1502   // Send it our message:
1503   CallArgList Args;
1504 
1505   // The first argument is a temporary of the enumeration-state type.
1506   Args.add(RValue::get(StatePtr.getPointer()),
1507            getContext().getPointerType(StateTy));
1508 
1509   // The second argument is a temporary array with space for NumItems
1510   // pointers.  We'll actually be loading elements from the array
1511   // pointer written into the control state; this buffer is so that
1512   // collections that *aren't* backed by arrays can still queue up
1513   // batches of elements.
1514   Args.add(RValue::get(ItemsPtr.getPointer()),
1515            getContext().getPointerType(ItemsTy));
1516 
1517   // The third argument is the capacity of that temporary array.
1518   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1519   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1520   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1521 
1522   // Start the enumeration.
1523   RValue CountRV =
1524     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1525                                              getContext().UnsignedLongTy,
1526                                              FastEnumSel,
1527                                              Collection, Args);
1528 
1529   // The initial number of objects that were returned in the buffer.
1530   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1531 
1532   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1533   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1534 
1535   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1536 
1537   // If the limit pointer was zero to begin with, the collection is
1538   // empty; skip all this. Set the branch weight assuming this has the same
1539   // probability of exiting the loop as any other loop exit.
1540   uint64_t EntryCount = getCurrentProfileCount();
1541   Builder.CreateCondBr(
1542       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1543       LoopInitBB,
1544       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1545 
1546   // Otherwise, initialize the loop.
1547   EmitBlock(LoopInitBB);
1548 
1549   // Save the initial mutations value.  This is the value at an
1550   // address that was written into the state object by
1551   // countByEnumeratingWithState:objects:count:.
1552   Address StateMutationsPtrPtr = Builder.CreateStructGEP(
1553       StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr");
1554   llvm::Value *StateMutationsPtr
1555     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1556 
1557   llvm::Value *initialMutations =
1558     Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1559                               "forcoll.initial-mutations");
1560 
1561   // Start looping.  This is the point we return to whenever we have a
1562   // fresh, non-empty batch of objects.
1563   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1564   EmitBlock(LoopBodyBB);
1565 
1566   // The current index into the buffer.
1567   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1568   index->addIncoming(zero, LoopInitBB);
1569 
1570   // The current buffer size.
1571   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1572   count->addIncoming(initialBufferLimit, LoopInitBB);
1573 
1574   incrementProfileCounter(&S);
1575 
1576   // Check whether the mutations value has changed from where it was
1577   // at start.  StateMutationsPtr should actually be invariant between
1578   // refreshes.
1579   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1580   llvm::Value *currentMutations
1581     = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1582                                 "statemutations");
1583 
1584   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1585   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1586 
1587   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1588                        WasNotMutatedBB, WasMutatedBB);
1589 
1590   // If so, call the enumeration-mutation function.
1591   EmitBlock(WasMutatedBB);
1592   llvm::Value *V =
1593     Builder.CreateBitCast(Collection,
1594                           ConvertType(getContext().getObjCIdType()));
1595   CallArgList Args2;
1596   Args2.add(RValue::get(V), getContext().getObjCIdType());
1597   // FIXME: We shouldn't need to get the function info here, the runtime already
1598   // should have computed it to build the function.
1599   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1600                                                   FunctionType::ExtInfo(),
1601                                                   RequiredArgs::All),
1602            EnumerationMutationFn, ReturnValueSlot(), Args2);
1603 
1604   // Otherwise, or if the mutation function returns, just continue.
1605   EmitBlock(WasNotMutatedBB);
1606 
1607   // Initialize the element variable.
1608   RunCleanupsScope elementVariableScope(*this);
1609   bool elementIsVariable;
1610   LValue elementLValue;
1611   QualType elementType;
1612   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1613     // Initialize the variable, in case it's a __block variable or something.
1614     EmitAutoVarInit(variable);
1615 
1616     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1617     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1618                         VK_LValue, SourceLocation());
1619     elementLValue = EmitLValue(&tempDRE);
1620     elementType = D->getType();
1621     elementIsVariable = true;
1622 
1623     if (D->isARCPseudoStrong())
1624       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1625   } else {
1626     elementLValue = LValue(); // suppress warning
1627     elementType = cast<Expr>(S.getElement())->getType();
1628     elementIsVariable = false;
1629   }
1630   llvm::Type *convertedElementType = ConvertType(elementType);
1631 
1632   // Fetch the buffer out of the enumeration state.
1633   // TODO: this pointer should actually be invariant between
1634   // refreshes, which would help us do certain loop optimizations.
1635   Address StateItemsPtr = Builder.CreateStructGEP(
1636       StatePtr, 1, getPointerSize(), "stateitems.ptr");
1637   llvm::Value *EnumStateItems =
1638     Builder.CreateLoad(StateItemsPtr, "stateitems");
1639 
1640   // Fetch the value at the current index from the buffer.
1641   llvm::Value *CurrentItemPtr =
1642     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1643   llvm::Value *CurrentItem =
1644     Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1645 
1646   // Cast that value to the right type.
1647   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1648                                       "currentitem");
1649 
1650   // Make sure we have an l-value.  Yes, this gets evaluated every
1651   // time through the loop.
1652   if (!elementIsVariable) {
1653     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1654     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1655   } else {
1656     EmitScalarInit(CurrentItem, elementLValue);
1657   }
1658 
1659   // If we do have an element variable, this assignment is the end of
1660   // its initialization.
1661   if (elementIsVariable)
1662     EmitAutoVarCleanups(variable);
1663 
1664   // Perform the loop body, setting up break and continue labels.
1665   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1666   {
1667     RunCleanupsScope Scope(*this);
1668     EmitStmt(S.getBody());
1669   }
1670   BreakContinueStack.pop_back();
1671 
1672   // Destroy the element variable now.
1673   elementVariableScope.ForceCleanup();
1674 
1675   // Check whether there are more elements.
1676   EmitBlock(AfterBody.getBlock());
1677 
1678   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1679 
1680   // First we check in the local buffer.
1681   llvm::Value *indexPlusOne
1682     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1683 
1684   // If we haven't overrun the buffer yet, we can continue.
1685   // Set the branch weights based on the simplifying assumption that this is
1686   // like a while-loop, i.e., ignoring that the false branch fetches more
1687   // elements and then returns to the loop.
1688   Builder.CreateCondBr(
1689       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1690       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1691 
1692   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1693   count->addIncoming(count, AfterBody.getBlock());
1694 
1695   // Otherwise, we have to fetch more elements.
1696   EmitBlock(FetchMoreBB);
1697 
1698   CountRV =
1699     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1700                                              getContext().UnsignedLongTy,
1701                                              FastEnumSel,
1702                                              Collection, Args);
1703 
1704   // If we got a zero count, we're done.
1705   llvm::Value *refetchCount = CountRV.getScalarVal();
1706 
1707   // (note that the message send might split FetchMoreBB)
1708   index->addIncoming(zero, Builder.GetInsertBlock());
1709   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1710 
1711   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1712                        EmptyBB, LoopBodyBB);
1713 
1714   // No more elements.
1715   EmitBlock(EmptyBB);
1716 
1717   if (!elementIsVariable) {
1718     // If the element was not a declaration, set it to be null.
1719 
1720     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1721     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1722     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1723   }
1724 
1725   if (DI)
1726     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1727 
1728   // Leave the cleanup we entered in ARC.
1729   if (getLangOpts().ObjCAutoRefCount)
1730     PopCleanupBlock();
1731 
1732   EmitBlock(LoopEnd.getBlock());
1733 }
1734 
1735 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1736   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1737 }
1738 
1739 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1740   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1741 }
1742 
1743 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1744                                               const ObjCAtSynchronizedStmt &S) {
1745   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1746 }
1747 
1748 /// Produce the code for a CK_ARCProduceObject.  Just does a
1749 /// primitive retain.
1750 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1751                                                     llvm::Value *value) {
1752   return EmitARCRetain(type, value);
1753 }
1754 
1755 namespace {
1756   struct CallObjCRelease final : EHScopeStack::Cleanup {
1757     CallObjCRelease(llvm::Value *object) : object(object) {}
1758     llvm::Value *object;
1759 
1760     void Emit(CodeGenFunction &CGF, Flags flags) override {
1761       // Releases at the end of the full-expression are imprecise.
1762       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1763     }
1764   };
1765 }
1766 
1767 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1768 /// release at the end of the full-expression.
1769 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1770                                                     llvm::Value *object) {
1771   // If we're in a conditional branch, we need to make the cleanup
1772   // conditional.
1773   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1774   return object;
1775 }
1776 
1777 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1778                                                            llvm::Value *value) {
1779   return EmitARCRetainAutorelease(type, value);
1780 }
1781 
1782 /// Given a number of pointers, inform the optimizer that they're
1783 /// being intrinsically used up until this point in the program.
1784 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1785   llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use;
1786   if (!fn) {
1787     llvm::FunctionType *fnType =
1788       llvm::FunctionType::get(CGM.VoidTy, None, true);
1789     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1790   }
1791 
1792   // This isn't really a "runtime" function, but as an intrinsic it
1793   // doesn't really matter as long as we align things up.
1794   EmitNounwindRuntimeCall(fn, values);
1795 }
1796 
1797 
1798 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1799                                                 llvm::FunctionType *type,
1800                                                 StringRef fnName) {
1801   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1802 
1803   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1804     // If the target runtime doesn't naturally support ARC, emit weak
1805     // references to the runtime support library.  We don't really
1806     // permit this to fail, but we need a particular relocation style.
1807     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1808       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1809     } else if (fnName == "objc_retain" || fnName  == "objc_release") {
1810       // If we have Native ARC, set nonlazybind attribute for these APIs for
1811       // performance.
1812       f->addFnAttr(llvm::Attribute::NonLazyBind);
1813     }
1814   }
1815 
1816   return fn;
1817 }
1818 
1819 /// Perform an operation having the signature
1820 ///   i8* (i8*)
1821 /// where a null input causes a no-op and returns null.
1822 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1823                                           llvm::Value *value,
1824                                           llvm::Constant *&fn,
1825                                           StringRef fnName,
1826                                           bool isTailCall = false) {
1827   if (isa<llvm::ConstantPointerNull>(value)) return value;
1828 
1829   if (!fn) {
1830     llvm::FunctionType *fnType =
1831       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1832     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1833   }
1834 
1835   // Cast the argument to 'id'.
1836   llvm::Type *origType = value->getType();
1837   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1838 
1839   // Call the function.
1840   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1841   if (isTailCall)
1842     call->setTailCall();
1843 
1844   // Cast the result back to the original type.
1845   return CGF.Builder.CreateBitCast(call, origType);
1846 }
1847 
1848 /// Perform an operation having the following signature:
1849 ///   i8* (i8**)
1850 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1851                                          Address addr,
1852                                          llvm::Constant *&fn,
1853                                          StringRef fnName) {
1854   if (!fn) {
1855     llvm::FunctionType *fnType =
1856       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1857     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1858   }
1859 
1860   // Cast the argument to 'id*'.
1861   llvm::Type *origType = addr.getElementType();
1862   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1863 
1864   // Call the function.
1865   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
1866 
1867   // Cast the result back to a dereference of the original type.
1868   if (origType != CGF.Int8PtrTy)
1869     result = CGF.Builder.CreateBitCast(result, origType);
1870 
1871   return result;
1872 }
1873 
1874 /// Perform an operation having the following signature:
1875 ///   i8* (i8**, i8*)
1876 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1877                                           Address addr,
1878                                           llvm::Value *value,
1879                                           llvm::Constant *&fn,
1880                                           StringRef fnName,
1881                                           bool ignored) {
1882   assert(addr.getElementType() == value->getType());
1883 
1884   if (!fn) {
1885     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1886 
1887     llvm::FunctionType *fnType
1888       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1889     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1890   }
1891 
1892   llvm::Type *origType = value->getType();
1893 
1894   llvm::Value *args[] = {
1895     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
1896     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1897   };
1898   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1899 
1900   if (ignored) return nullptr;
1901 
1902   return CGF.Builder.CreateBitCast(result, origType);
1903 }
1904 
1905 /// Perform an operation having the following signature:
1906 ///   void (i8**, i8**)
1907 static void emitARCCopyOperation(CodeGenFunction &CGF,
1908                                  Address dst,
1909                                  Address src,
1910                                  llvm::Constant *&fn,
1911                                  StringRef fnName) {
1912   assert(dst.getType() == src.getType());
1913 
1914   if (!fn) {
1915     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1916 
1917     llvm::FunctionType *fnType
1918       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1919     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1920   }
1921 
1922   llvm::Value *args[] = {
1923     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
1924     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
1925   };
1926   CGF.EmitNounwindRuntimeCall(fn, args);
1927 }
1928 
1929 /// Produce the code to do a retain.  Based on the type, calls one of:
1930 ///   call i8* \@objc_retain(i8* %value)
1931 ///   call i8* \@objc_retainBlock(i8* %value)
1932 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1933   if (type->isBlockPointerType())
1934     return EmitARCRetainBlock(value, /*mandatory*/ false);
1935   else
1936     return EmitARCRetainNonBlock(value);
1937 }
1938 
1939 /// Retain the given object, with normal retain semantics.
1940 ///   call i8* \@objc_retain(i8* %value)
1941 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1942   return emitARCValueOperation(*this, value,
1943                                CGM.getARCEntrypoints().objc_retain,
1944                                "objc_retain");
1945 }
1946 
1947 /// Retain the given block, with _Block_copy semantics.
1948 ///   call i8* \@objc_retainBlock(i8* %value)
1949 ///
1950 /// \param mandatory - If false, emit the call with metadata
1951 /// indicating that it's okay for the optimizer to eliminate this call
1952 /// if it can prove that the block never escapes except down the stack.
1953 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1954                                                  bool mandatory) {
1955   llvm::Value *result
1956     = emitARCValueOperation(*this, value,
1957                             CGM.getARCEntrypoints().objc_retainBlock,
1958                             "objc_retainBlock");
1959 
1960   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1961   // tell the optimizer that it doesn't need to do this copy if the
1962   // block doesn't escape, where being passed as an argument doesn't
1963   // count as escaping.
1964   if (!mandatory && isa<llvm::Instruction>(result)) {
1965     llvm::CallInst *call
1966       = cast<llvm::CallInst>(result->stripPointerCasts());
1967     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1968 
1969     call->setMetadata("clang.arc.copy_on_escape",
1970                       llvm::MDNode::get(Builder.getContext(), None));
1971   }
1972 
1973   return result;
1974 }
1975 
1976 /// Retain the given object which is the result of a function call.
1977 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1978 ///
1979 /// Yes, this function name is one character away from a different
1980 /// call with completely different semantics.
1981 llvm::Value *
1982 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1983   // Fetch the void(void) inline asm which marks that we're going to
1984   // retain the autoreleased return value.
1985   llvm::InlineAsm *&marker
1986     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1987   if (!marker) {
1988     StringRef assembly
1989       = CGM.getTargetCodeGenInfo()
1990            .getARCRetainAutoreleasedReturnValueMarker();
1991 
1992     // If we have an empty assembly string, there's nothing to do.
1993     if (assembly.empty()) {
1994 
1995     // Otherwise, at -O0, build an inline asm that we're going to call
1996     // in a moment.
1997     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1998       llvm::FunctionType *type =
1999         llvm::FunctionType::get(VoidTy, /*variadic*/false);
2000 
2001       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2002 
2003     // If we're at -O1 and above, we don't want to litter the code
2004     // with this marker yet, so leave a breadcrumb for the ARC
2005     // optimizer to pick up.
2006     } else {
2007       llvm::NamedMDNode *metadata =
2008         CGM.getModule().getOrInsertNamedMetadata(
2009                             "clang.arc.retainAutoreleasedReturnValueMarker");
2010       assert(metadata->getNumOperands() <= 1);
2011       if (metadata->getNumOperands() == 0) {
2012         metadata->addOperand(llvm::MDNode::get(
2013             getLLVMContext(), llvm::MDString::get(getLLVMContext(), assembly)));
2014       }
2015     }
2016   }
2017 
2018   // Call the marker asm if we made one, which we do only at -O0.
2019   if (marker)
2020     Builder.CreateCall(marker);
2021 
2022   return emitARCValueOperation(*this, value,
2023                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
2024                                "objc_retainAutoreleasedReturnValue");
2025 }
2026 
2027 /// Release the given object.
2028 ///   call void \@objc_release(i8* %value)
2029 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2030                                      ARCPreciseLifetime_t precise) {
2031   if (isa<llvm::ConstantPointerNull>(value)) return;
2032 
2033   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
2034   if (!fn) {
2035     llvm::FunctionType *fnType =
2036       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2037     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
2038   }
2039 
2040   // Cast the argument to 'id'.
2041   value = Builder.CreateBitCast(value, Int8PtrTy);
2042 
2043   // Call objc_release.
2044   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2045 
2046   if (precise == ARCImpreciseLifetime) {
2047     call->setMetadata("clang.imprecise_release",
2048                       llvm::MDNode::get(Builder.getContext(), None));
2049   }
2050 }
2051 
2052 /// Destroy a __strong variable.
2053 ///
2054 /// At -O0, emit a call to store 'null' into the address;
2055 /// instrumenting tools prefer this because the address is exposed,
2056 /// but it's relatively cumbersome to optimize.
2057 ///
2058 /// At -O1 and above, just load and call objc_release.
2059 ///
2060 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2061 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2062                                            ARCPreciseLifetime_t precise) {
2063   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2064     llvm::Value *null = getNullForVariable(addr);
2065     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2066     return;
2067   }
2068 
2069   llvm::Value *value = Builder.CreateLoad(addr);
2070   EmitARCRelease(value, precise);
2071 }
2072 
2073 /// Store into a strong object.  Always calls this:
2074 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2075 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2076                                                      llvm::Value *value,
2077                                                      bool ignored) {
2078   assert(addr.getElementType() == value->getType());
2079 
2080   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
2081   if (!fn) {
2082     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2083     llvm::FunctionType *fnType
2084       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2085     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2086   }
2087 
2088   llvm::Value *args[] = {
2089     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2090     Builder.CreateBitCast(value, Int8PtrTy)
2091   };
2092   EmitNounwindRuntimeCall(fn, args);
2093 
2094   if (ignored) return nullptr;
2095   return value;
2096 }
2097 
2098 /// Store into a strong object.  Sometimes calls this:
2099 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2100 /// Other times, breaks it down into components.
2101 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2102                                                  llvm::Value *newValue,
2103                                                  bool ignored) {
2104   QualType type = dst.getType();
2105   bool isBlock = type->isBlockPointerType();
2106 
2107   // Use a store barrier at -O0 unless this is a block type or the
2108   // lvalue is inadequately aligned.
2109   if (shouldUseFusedARCCalls() &&
2110       !isBlock &&
2111       (dst.getAlignment().isZero() ||
2112        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2113     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2114   }
2115 
2116   // Otherwise, split it out.
2117 
2118   // Retain the new value.
2119   newValue = EmitARCRetain(type, newValue);
2120 
2121   // Read the old value.
2122   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2123 
2124   // Store.  We do this before the release so that any deallocs won't
2125   // see the old value.
2126   EmitStoreOfScalar(newValue, dst);
2127 
2128   // Finally, release the old value.
2129   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2130 
2131   return newValue;
2132 }
2133 
2134 /// Autorelease the given object.
2135 ///   call i8* \@objc_autorelease(i8* %value)
2136 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2137   return emitARCValueOperation(*this, value,
2138                                CGM.getARCEntrypoints().objc_autorelease,
2139                                "objc_autorelease");
2140 }
2141 
2142 /// Autorelease the given object.
2143 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2144 llvm::Value *
2145 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2146   return emitARCValueOperation(*this, value,
2147                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2148                                "objc_autoreleaseReturnValue",
2149                                /*isTailCall*/ true);
2150 }
2151 
2152 /// Do a fused retain/autorelease of the given object.
2153 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2154 llvm::Value *
2155 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2156   return emitARCValueOperation(*this, value,
2157                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2158                                "objc_retainAutoreleaseReturnValue",
2159                                /*isTailCall*/ true);
2160 }
2161 
2162 /// Do a fused retain/autorelease of the given object.
2163 ///   call i8* \@objc_retainAutorelease(i8* %value)
2164 /// or
2165 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2166 ///   call i8* \@objc_autorelease(i8* %retain)
2167 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2168                                                        llvm::Value *value) {
2169   if (!type->isBlockPointerType())
2170     return EmitARCRetainAutoreleaseNonBlock(value);
2171 
2172   if (isa<llvm::ConstantPointerNull>(value)) return value;
2173 
2174   llvm::Type *origType = value->getType();
2175   value = Builder.CreateBitCast(value, Int8PtrTy);
2176   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2177   value = EmitARCAutorelease(value);
2178   return Builder.CreateBitCast(value, origType);
2179 }
2180 
2181 /// Do a fused retain/autorelease of the given object.
2182 ///   call i8* \@objc_retainAutorelease(i8* %value)
2183 llvm::Value *
2184 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2185   return emitARCValueOperation(*this, value,
2186                                CGM.getARCEntrypoints().objc_retainAutorelease,
2187                                "objc_retainAutorelease");
2188 }
2189 
2190 /// i8* \@objc_loadWeak(i8** %addr)
2191 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2192 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2193   return emitARCLoadOperation(*this, addr,
2194                               CGM.getARCEntrypoints().objc_loadWeak,
2195                               "objc_loadWeak");
2196 }
2197 
2198 /// i8* \@objc_loadWeakRetained(i8** %addr)
2199 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2200   return emitARCLoadOperation(*this, addr,
2201                               CGM.getARCEntrypoints().objc_loadWeakRetained,
2202                               "objc_loadWeakRetained");
2203 }
2204 
2205 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2206 /// Returns %value.
2207 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2208                                                llvm::Value *value,
2209                                                bool ignored) {
2210   return emitARCStoreOperation(*this, addr, value,
2211                                CGM.getARCEntrypoints().objc_storeWeak,
2212                                "objc_storeWeak", ignored);
2213 }
2214 
2215 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2216 /// Returns %value.  %addr is known to not have a current weak entry.
2217 /// Essentially equivalent to:
2218 ///   *addr = nil; objc_storeWeak(addr, value);
2219 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2220   // If we're initializing to null, just write null to memory; no need
2221   // to get the runtime involved.  But don't do this if optimization
2222   // is enabled, because accounting for this would make the optimizer
2223   // much more complicated.
2224   if (isa<llvm::ConstantPointerNull>(value) &&
2225       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2226     Builder.CreateStore(value, addr);
2227     return;
2228   }
2229 
2230   emitARCStoreOperation(*this, addr, value,
2231                         CGM.getARCEntrypoints().objc_initWeak,
2232                         "objc_initWeak", /*ignored*/ true);
2233 }
2234 
2235 /// void \@objc_destroyWeak(i8** %addr)
2236 /// Essentially objc_storeWeak(addr, nil).
2237 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2238   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2239   if (!fn) {
2240     llvm::FunctionType *fnType =
2241       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2242     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2243   }
2244 
2245   // Cast the argument to 'id*'.
2246   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2247 
2248   EmitNounwindRuntimeCall(fn, addr.getPointer());
2249 }
2250 
2251 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2252 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2253 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2254 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2255   emitARCCopyOperation(*this, dst, src,
2256                        CGM.getARCEntrypoints().objc_moveWeak,
2257                        "objc_moveWeak");
2258 }
2259 
2260 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2261 /// Disregards the current value in %dest.  Essentially
2262 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2263 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2264   emitARCCopyOperation(*this, dst, src,
2265                        CGM.getARCEntrypoints().objc_copyWeak,
2266                        "objc_copyWeak");
2267 }
2268 
2269 /// Produce the code to do a objc_autoreleasepool_push.
2270 ///   call i8* \@objc_autoreleasePoolPush(void)
2271 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2272   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2273   if (!fn) {
2274     llvm::FunctionType *fnType =
2275       llvm::FunctionType::get(Int8PtrTy, false);
2276     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2277   }
2278 
2279   return EmitNounwindRuntimeCall(fn);
2280 }
2281 
2282 /// Produce the code to do a primitive release.
2283 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2284 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2285   assert(value->getType() == Int8PtrTy);
2286 
2287   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2288   if (!fn) {
2289     llvm::FunctionType *fnType =
2290       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2291 
2292     // We don't want to use a weak import here; instead we should not
2293     // fall into this path.
2294     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2295   }
2296 
2297   // objc_autoreleasePoolPop can throw.
2298   EmitRuntimeCallOrInvoke(fn, value);
2299 }
2300 
2301 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2302 /// Which is: [[NSAutoreleasePool alloc] init];
2303 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2304 /// init is declared as: - (id) init; in its NSObject super class.
2305 ///
2306 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2307   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2308   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2309   // [NSAutoreleasePool alloc]
2310   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2311   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2312   CallArgList Args;
2313   RValue AllocRV =
2314     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2315                                 getContext().getObjCIdType(),
2316                                 AllocSel, Receiver, Args);
2317 
2318   // [Receiver init]
2319   Receiver = AllocRV.getScalarVal();
2320   II = &CGM.getContext().Idents.get("init");
2321   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2322   RValue InitRV =
2323     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2324                                 getContext().getObjCIdType(),
2325                                 InitSel, Receiver, Args);
2326   return InitRV.getScalarVal();
2327 }
2328 
2329 /// Produce the code to do a primitive release.
2330 /// [tmp drain];
2331 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2332   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2333   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2334   CallArgList Args;
2335   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2336                               getContext().VoidTy, DrainSel, Arg, Args);
2337 }
2338 
2339 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2340                                               Address addr,
2341                                               QualType type) {
2342   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2343 }
2344 
2345 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2346                                                 Address addr,
2347                                                 QualType type) {
2348   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2349 }
2350 
2351 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2352                                      Address addr,
2353                                      QualType type) {
2354   CGF.EmitARCDestroyWeak(addr);
2355 }
2356 
2357 namespace {
2358   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2359     llvm::Value *Token;
2360 
2361     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2362 
2363     void Emit(CodeGenFunction &CGF, Flags flags) override {
2364       CGF.EmitObjCAutoreleasePoolPop(Token);
2365     }
2366   };
2367   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2368     llvm::Value *Token;
2369 
2370     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2371 
2372     void Emit(CodeGenFunction &CGF, Flags flags) override {
2373       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2374     }
2375   };
2376 }
2377 
2378 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2379   if (CGM.getLangOpts().ObjCAutoRefCount)
2380     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2381   else
2382     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2383 }
2384 
2385 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2386                                                   LValue lvalue,
2387                                                   QualType type) {
2388   switch (type.getObjCLifetime()) {
2389   case Qualifiers::OCL_None:
2390   case Qualifiers::OCL_ExplicitNone:
2391   case Qualifiers::OCL_Strong:
2392   case Qualifiers::OCL_Autoreleasing:
2393     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2394                                               SourceLocation()).getScalarVal(),
2395                          false);
2396 
2397   case Qualifiers::OCL_Weak:
2398     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2399                          true);
2400   }
2401 
2402   llvm_unreachable("impossible lifetime!");
2403 }
2404 
2405 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2406                                                   const Expr *e) {
2407   e = e->IgnoreParens();
2408   QualType type = e->getType();
2409 
2410   // If we're loading retained from a __strong xvalue, we can avoid
2411   // an extra retain/release pair by zeroing out the source of this
2412   // "move" operation.
2413   if (e->isXValue() &&
2414       !type.isConstQualified() &&
2415       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2416     // Emit the lvalue.
2417     LValue lv = CGF.EmitLValue(e);
2418 
2419     // Load the object pointer.
2420     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2421                                                SourceLocation()).getScalarVal();
2422 
2423     // Set the source pointer to NULL.
2424     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2425 
2426     return TryEmitResult(result, true);
2427   }
2428 
2429   // As a very special optimization, in ARC++, if the l-value is the
2430   // result of a non-volatile assignment, do a simple retain of the
2431   // result of the call to objc_storeWeak instead of reloading.
2432   if (CGF.getLangOpts().CPlusPlus &&
2433       !type.isVolatileQualified() &&
2434       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2435       isa<BinaryOperator>(e) &&
2436       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2437     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2438 
2439   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2440 }
2441 
2442 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2443                                            llvm::Value *value);
2444 
2445 /// Given that the given expression is some sort of call (which does
2446 /// not return retained), emit a retain following it.
2447 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2448   llvm::Value *value = CGF.EmitScalarExpr(e);
2449   return emitARCRetainAfterCall(CGF, value);
2450 }
2451 
2452 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2453                                            llvm::Value *value) {
2454   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2455     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2456 
2457     // Place the retain immediately following the call.
2458     CGF.Builder.SetInsertPoint(call->getParent(),
2459                                ++llvm::BasicBlock::iterator(call));
2460     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2461 
2462     CGF.Builder.restoreIP(ip);
2463     return value;
2464   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2465     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2466 
2467     // Place the retain at the beginning of the normal destination block.
2468     llvm::BasicBlock *BB = invoke->getNormalDest();
2469     CGF.Builder.SetInsertPoint(BB, BB->begin());
2470     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2471 
2472     CGF.Builder.restoreIP(ip);
2473     return value;
2474 
2475   // Bitcasts can arise because of related-result returns.  Rewrite
2476   // the operand.
2477   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2478     llvm::Value *operand = bitcast->getOperand(0);
2479     operand = emitARCRetainAfterCall(CGF, operand);
2480     bitcast->setOperand(0, operand);
2481     return bitcast;
2482 
2483   // Generic fall-back case.
2484   } else {
2485     // Retain using the non-block variant: we never need to do a copy
2486     // of a block that's been returned to us.
2487     return CGF.EmitARCRetainNonBlock(value);
2488   }
2489 }
2490 
2491 /// Determine whether it might be important to emit a separate
2492 /// objc_retain_block on the result of the given expression, or
2493 /// whether it's okay to just emit it in a +1 context.
2494 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2495   assert(e->getType()->isBlockPointerType());
2496   e = e->IgnoreParens();
2497 
2498   // For future goodness, emit block expressions directly in +1
2499   // contexts if we can.
2500   if (isa<BlockExpr>(e))
2501     return false;
2502 
2503   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2504     switch (cast->getCastKind()) {
2505     // Emitting these operations in +1 contexts is goodness.
2506     case CK_LValueToRValue:
2507     case CK_ARCReclaimReturnedObject:
2508     case CK_ARCConsumeObject:
2509     case CK_ARCProduceObject:
2510       return false;
2511 
2512     // These operations preserve a block type.
2513     case CK_NoOp:
2514     case CK_BitCast:
2515       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2516 
2517     // These operations are known to be bad (or haven't been considered).
2518     case CK_AnyPointerToBlockPointerCast:
2519     default:
2520       return true;
2521     }
2522   }
2523 
2524   return true;
2525 }
2526 
2527 /// Try to emit a PseudoObjectExpr at +1.
2528 ///
2529 /// This massively duplicates emitPseudoObjectRValue.
2530 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2531                                                   const PseudoObjectExpr *E) {
2532   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2533 
2534   // Find the result expression.
2535   const Expr *resultExpr = E->getResultExpr();
2536   assert(resultExpr);
2537   TryEmitResult result;
2538 
2539   for (PseudoObjectExpr::const_semantics_iterator
2540          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2541     const Expr *semantic = *i;
2542 
2543     // If this semantic expression is an opaque value, bind it
2544     // to the result of its source expression.
2545     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2546       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2547       OVMA opaqueData;
2548 
2549       // If this semantic is the result of the pseudo-object
2550       // expression, try to evaluate the source as +1.
2551       if (ov == resultExpr) {
2552         assert(!OVMA::shouldBindAsLValue(ov));
2553         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2554         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2555 
2556       // Otherwise, just bind it.
2557       } else {
2558         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2559       }
2560       opaques.push_back(opaqueData);
2561 
2562     // Otherwise, if the expression is the result, evaluate it
2563     // and remember the result.
2564     } else if (semantic == resultExpr) {
2565       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2566 
2567     // Otherwise, evaluate the expression in an ignored context.
2568     } else {
2569       CGF.EmitIgnoredExpr(semantic);
2570     }
2571   }
2572 
2573   // Unbind all the opaques now.
2574   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2575     opaques[i].unbind(CGF);
2576 
2577   return result;
2578 }
2579 
2580 static TryEmitResult
2581 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2582   // We should *never* see a nested full-expression here, because if
2583   // we fail to emit at +1, our caller must not retain after we close
2584   // out the full-expression.
2585   assert(!isa<ExprWithCleanups>(e));
2586 
2587   // The desired result type, if it differs from the type of the
2588   // ultimate opaque expression.
2589   llvm::Type *resultType = nullptr;
2590 
2591   while (true) {
2592     e = e->IgnoreParens();
2593 
2594     // There's a break at the end of this if-chain;  anything
2595     // that wants to keep looping has to explicitly continue.
2596     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2597       switch (ce->getCastKind()) {
2598       // No-op casts don't change the type, so we just ignore them.
2599       case CK_NoOp:
2600         e = ce->getSubExpr();
2601         continue;
2602 
2603       case CK_LValueToRValue: {
2604         TryEmitResult loadResult
2605           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2606         if (resultType) {
2607           llvm::Value *value = loadResult.getPointer();
2608           value = CGF.Builder.CreateBitCast(value, resultType);
2609           loadResult.setPointer(value);
2610         }
2611         return loadResult;
2612       }
2613 
2614       // These casts can change the type, so remember that and
2615       // soldier on.  We only need to remember the outermost such
2616       // cast, though.
2617       case CK_CPointerToObjCPointerCast:
2618       case CK_BlockPointerToObjCPointerCast:
2619       case CK_AnyPointerToBlockPointerCast:
2620       case CK_BitCast:
2621         if (!resultType)
2622           resultType = CGF.ConvertType(ce->getType());
2623         e = ce->getSubExpr();
2624         assert(e->getType()->hasPointerRepresentation());
2625         continue;
2626 
2627       // For consumptions, just emit the subexpression and thus elide
2628       // the retain/release pair.
2629       case CK_ARCConsumeObject: {
2630         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2631         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2632         return TryEmitResult(result, true);
2633       }
2634 
2635       // Block extends are net +0.  Naively, we could just recurse on
2636       // the subexpression, but actually we need to ensure that the
2637       // value is copied as a block, so there's a little filter here.
2638       case CK_ARCExtendBlockObject: {
2639         llvm::Value *result; // will be a +0 value
2640 
2641         // If we can't safely assume the sub-expression will produce a
2642         // block-copied value, emit the sub-expression at +0.
2643         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2644           result = CGF.EmitScalarExpr(ce->getSubExpr());
2645 
2646         // Otherwise, try to emit the sub-expression at +1 recursively.
2647         } else {
2648           TryEmitResult subresult
2649             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2650           result = subresult.getPointer();
2651 
2652           // If that produced a retained value, just use that,
2653           // possibly casting down.
2654           if (subresult.getInt()) {
2655             if (resultType)
2656               result = CGF.Builder.CreateBitCast(result, resultType);
2657             return TryEmitResult(result, true);
2658           }
2659 
2660           // Otherwise it's +0.
2661         }
2662 
2663         // Retain the object as a block, then cast down.
2664         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2665         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2666         return TryEmitResult(result, true);
2667       }
2668 
2669       // For reclaims, emit the subexpression as a retained call and
2670       // skip the consumption.
2671       case CK_ARCReclaimReturnedObject: {
2672         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2673         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2674         return TryEmitResult(result, true);
2675       }
2676 
2677       default:
2678         break;
2679       }
2680 
2681     // Skip __extension__.
2682     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2683       if (op->getOpcode() == UO_Extension) {
2684         e = op->getSubExpr();
2685         continue;
2686       }
2687 
2688     // For calls and message sends, use the retained-call logic.
2689     // Delegate inits are a special case in that they're the only
2690     // returns-retained expression that *isn't* surrounded by
2691     // a consume.
2692     } else if (isa<CallExpr>(e) ||
2693                (isa<ObjCMessageExpr>(e) &&
2694                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2695       llvm::Value *result = emitARCRetainCall(CGF, e);
2696       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2697       return TryEmitResult(result, true);
2698 
2699     // Look through pseudo-object expressions.
2700     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2701       TryEmitResult result
2702         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2703       if (resultType) {
2704         llvm::Value *value = result.getPointer();
2705         value = CGF.Builder.CreateBitCast(value, resultType);
2706         result.setPointer(value);
2707       }
2708       return result;
2709     }
2710 
2711     // Conservatively halt the search at any other expression kind.
2712     break;
2713   }
2714 
2715   // We didn't find an obvious production, so emit what we've got and
2716   // tell the caller that we didn't manage to retain.
2717   llvm::Value *result = CGF.EmitScalarExpr(e);
2718   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2719   return TryEmitResult(result, false);
2720 }
2721 
2722 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2723                                                 LValue lvalue,
2724                                                 QualType type) {
2725   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2726   llvm::Value *value = result.getPointer();
2727   if (!result.getInt())
2728     value = CGF.EmitARCRetain(type, value);
2729   return value;
2730 }
2731 
2732 /// EmitARCRetainScalarExpr - Semantically equivalent to
2733 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2734 /// best-effort attempt to peephole expressions that naturally produce
2735 /// retained objects.
2736 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2737   // The retain needs to happen within the full-expression.
2738   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2739     enterFullExpression(cleanups);
2740     RunCleanupsScope scope(*this);
2741     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2742   }
2743 
2744   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2745   llvm::Value *value = result.getPointer();
2746   if (!result.getInt())
2747     value = EmitARCRetain(e->getType(), value);
2748   return value;
2749 }
2750 
2751 llvm::Value *
2752 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2753   // The retain needs to happen within the full-expression.
2754   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2755     enterFullExpression(cleanups);
2756     RunCleanupsScope scope(*this);
2757     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2758   }
2759 
2760   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2761   llvm::Value *value = result.getPointer();
2762   if (result.getInt())
2763     value = EmitARCAutorelease(value);
2764   else
2765     value = EmitARCRetainAutorelease(e->getType(), value);
2766   return value;
2767 }
2768 
2769 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2770   llvm::Value *result;
2771   bool doRetain;
2772 
2773   if (shouldEmitSeparateBlockRetain(e)) {
2774     result = EmitScalarExpr(e);
2775     doRetain = true;
2776   } else {
2777     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2778     result = subresult.getPointer();
2779     doRetain = !subresult.getInt();
2780   }
2781 
2782   if (doRetain)
2783     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2784   return EmitObjCConsumeObject(e->getType(), result);
2785 }
2786 
2787 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2788   // In ARC, retain and autorelease the expression.
2789   if (getLangOpts().ObjCAutoRefCount) {
2790     // Do so before running any cleanups for the full-expression.
2791     // EmitARCRetainAutoreleaseScalarExpr does this for us.
2792     return EmitARCRetainAutoreleaseScalarExpr(expr);
2793   }
2794 
2795   // Otherwise, use the normal scalar-expression emission.  The
2796   // exception machinery doesn't do anything special with the
2797   // exception like retaining it, so there's no safety associated with
2798   // only running cleanups after the throw has started, and when it
2799   // matters it tends to be substantially inferior code.
2800   return EmitScalarExpr(expr);
2801 }
2802 
2803 std::pair<LValue,llvm::Value*>
2804 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2805                                     bool ignored) {
2806   // Evaluate the RHS first.
2807   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2808   llvm::Value *value = result.getPointer();
2809 
2810   bool hasImmediateRetain = result.getInt();
2811 
2812   // If we didn't emit a retained object, and the l-value is of block
2813   // type, then we need to emit the block-retain immediately in case
2814   // it invalidates the l-value.
2815   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2816     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2817     hasImmediateRetain = true;
2818   }
2819 
2820   LValue lvalue = EmitLValue(e->getLHS());
2821 
2822   // If the RHS was emitted retained, expand this.
2823   if (hasImmediateRetain) {
2824     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
2825     EmitStoreOfScalar(value, lvalue);
2826     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
2827   } else {
2828     value = EmitARCStoreStrong(lvalue, value, ignored);
2829   }
2830 
2831   return std::pair<LValue,llvm::Value*>(lvalue, value);
2832 }
2833 
2834 std::pair<LValue,llvm::Value*>
2835 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2836   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2837   LValue lvalue = EmitLValue(e->getLHS());
2838 
2839   EmitStoreOfScalar(value, lvalue);
2840 
2841   return std::pair<LValue,llvm::Value*>(lvalue, value);
2842 }
2843 
2844 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2845                                           const ObjCAutoreleasePoolStmt &ARPS) {
2846   const Stmt *subStmt = ARPS.getSubStmt();
2847   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2848 
2849   CGDebugInfo *DI = getDebugInfo();
2850   if (DI)
2851     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2852 
2853   // Keep track of the current cleanup stack depth.
2854   RunCleanupsScope Scope(*this);
2855   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2856     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2857     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2858   } else {
2859     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2860     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2861   }
2862 
2863   for (const auto *I : S.body())
2864     EmitStmt(I);
2865 
2866   if (DI)
2867     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2868 }
2869 
2870 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2871 /// make sure it survives garbage collection until this point.
2872 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2873   // We just use an inline assembly.
2874   llvm::FunctionType *extenderType
2875     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2876   llvm::Value *extender
2877     = llvm::InlineAsm::get(extenderType,
2878                            /* assembly */ "",
2879                            /* constraints */ "r",
2880                            /* side effects */ true);
2881 
2882   object = Builder.CreateBitCast(object, VoidPtrTy);
2883   EmitNounwindRuntimeCall(extender, object);
2884 }
2885 
2886 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2887 /// non-trivial copy assignment function, produce following helper function.
2888 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2889 ///
2890 llvm::Constant *
2891 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2892                                         const ObjCPropertyImplDecl *PID) {
2893   if (!getLangOpts().CPlusPlus ||
2894       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2895     return nullptr;
2896   QualType Ty = PID->getPropertyIvarDecl()->getType();
2897   if (!Ty->isRecordType())
2898     return nullptr;
2899   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2900   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2901     return nullptr;
2902   llvm::Constant *HelperFn = nullptr;
2903   if (hasTrivialSetExpr(PID))
2904     return nullptr;
2905   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2906   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2907     return HelperFn;
2908 
2909   ASTContext &C = getContext();
2910   IdentifierInfo *II
2911     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2912   FunctionDecl *FD = FunctionDecl::Create(C,
2913                                           C.getTranslationUnitDecl(),
2914                                           SourceLocation(),
2915                                           SourceLocation(), II, C.VoidTy,
2916                                           nullptr, SC_Static,
2917                                           false,
2918                                           false);
2919 
2920   QualType DestTy = C.getPointerType(Ty);
2921   QualType SrcTy = Ty;
2922   SrcTy.addConst();
2923   SrcTy = C.getPointerType(SrcTy);
2924 
2925   FunctionArgList args;
2926   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
2927   args.push_back(&dstDecl);
2928   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
2929   args.push_back(&srcDecl);
2930 
2931   const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
2932       C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
2933 
2934   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2935 
2936   llvm::Function *Fn =
2937     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2938                            "__assign_helper_atomic_property_",
2939                            &CGM.getModule());
2940 
2941   StartFunction(FD, C.VoidTy, Fn, FI, args);
2942 
2943   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2944                       VK_RValue, SourceLocation());
2945   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2946                     VK_LValue, OK_Ordinary, SourceLocation());
2947 
2948   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2949                       VK_RValue, SourceLocation());
2950   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2951                     VK_LValue, OK_Ordinary, SourceLocation());
2952 
2953   Expr *Args[2] = { &DST, &SRC };
2954   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2955   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2956                               Args, DestTy->getPointeeType(),
2957                               VK_LValue, SourceLocation(), false);
2958 
2959   EmitStmt(&TheCall);
2960 
2961   FinishFunction();
2962   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2963   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2964   return HelperFn;
2965 }
2966 
2967 llvm::Constant *
2968 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2969                                             const ObjCPropertyImplDecl *PID) {
2970   if (!getLangOpts().CPlusPlus ||
2971       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2972     return nullptr;
2973   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2974   QualType Ty = PD->getType();
2975   if (!Ty->isRecordType())
2976     return nullptr;
2977   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2978     return nullptr;
2979   llvm::Constant *HelperFn = nullptr;
2980 
2981   if (hasTrivialGetExpr(PID))
2982     return nullptr;
2983   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2984   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2985     return HelperFn;
2986 
2987 
2988   ASTContext &C = getContext();
2989   IdentifierInfo *II
2990   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2991   FunctionDecl *FD = FunctionDecl::Create(C,
2992                                           C.getTranslationUnitDecl(),
2993                                           SourceLocation(),
2994                                           SourceLocation(), II, C.VoidTy,
2995                                           nullptr, SC_Static,
2996                                           false,
2997                                           false);
2998 
2999   QualType DestTy = C.getPointerType(Ty);
3000   QualType SrcTy = Ty;
3001   SrcTy.addConst();
3002   SrcTy = C.getPointerType(SrcTy);
3003 
3004   FunctionArgList args;
3005   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
3006   args.push_back(&dstDecl);
3007   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
3008   args.push_back(&srcDecl);
3009 
3010   const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
3011       C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
3012 
3013   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3014 
3015   llvm::Function *Fn =
3016   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3017                          "__copy_helper_atomic_property_", &CGM.getModule());
3018 
3019   StartFunction(FD, C.VoidTy, Fn, FI, args);
3020 
3021   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
3022                       VK_RValue, SourceLocation());
3023 
3024   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3025                     VK_LValue, OK_Ordinary, SourceLocation());
3026 
3027   CXXConstructExpr *CXXConstExpr =
3028     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3029 
3030   SmallVector<Expr*, 4> ConstructorArgs;
3031   ConstructorArgs.push_back(&SRC);
3032   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3033                          CXXConstExpr->arg_end());
3034 
3035   CXXConstructExpr *TheCXXConstructExpr =
3036     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3037                              CXXConstExpr->getConstructor(),
3038                              CXXConstExpr->isElidable(),
3039                              ConstructorArgs,
3040                              CXXConstExpr->hadMultipleCandidates(),
3041                              CXXConstExpr->isListInitialization(),
3042                              CXXConstExpr->isStdInitListInitialization(),
3043                              CXXConstExpr->requiresZeroInitialization(),
3044                              CXXConstExpr->getConstructionKind(),
3045                              SourceRange());
3046 
3047   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3048                       VK_RValue, SourceLocation());
3049 
3050   RValue DV = EmitAnyExpr(&DstExpr);
3051   CharUnits Alignment
3052     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3053   EmitAggExpr(TheCXXConstructExpr,
3054               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3055                                     Qualifiers(),
3056                                     AggValueSlot::IsDestructed,
3057                                     AggValueSlot::DoesNotNeedGCBarriers,
3058                                     AggValueSlot::IsNotAliased));
3059 
3060   FinishFunction();
3061   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3062   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3063   return HelperFn;
3064 }
3065 
3066 llvm::Value *
3067 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3068   // Get selectors for retain/autorelease.
3069   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3070   Selector CopySelector =
3071       getContext().Selectors.getNullarySelector(CopyID);
3072   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3073   Selector AutoreleaseSelector =
3074       getContext().Selectors.getNullarySelector(AutoreleaseID);
3075 
3076   // Emit calls to retain/autorelease.
3077   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3078   llvm::Value *Val = Block;
3079   RValue Result;
3080   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3081                                        Ty, CopySelector,
3082                                        Val, CallArgList(), nullptr, nullptr);
3083   Val = Result.getScalarVal();
3084   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3085                                        Ty, AutoreleaseSelector,
3086                                        Val, CallArgList(), nullptr, nullptr);
3087   Val = Result.getScalarVal();
3088   return Val;
3089 }
3090 
3091 
3092 CGObjCRuntime::~CGObjCRuntime() {}
3093