1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 35 QualType ET, 36 RValue Result); 37 38 /// Given the address of a variable of pointer type, find the correct 39 /// null to store into it. 40 static llvm::Constant *getNullForVariable(Address addr) { 41 llvm::Type *type = addr.getElementType(); 42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 43 } 44 45 /// Emits an instance of NSConstantString representing the object. 46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 47 { 48 llvm::Constant *C = 49 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 50 // FIXME: This bitcast should just be made an invariant on the Runtime. 51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 52 } 53 54 /// EmitObjCBoxedExpr - This routine generates code to call 55 /// the appropriate expression boxing method. This will either be 56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 57 /// or [NSValue valueWithBytes:objCType:]. 58 /// 59 llvm::Value * 60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 61 // Generate the correct selector for this literal's concrete type. 62 // Get the method. 63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 64 const Expr *SubExpr = E->getSubExpr(); 65 assert(BoxingMethod && "BoxingMethod is null"); 66 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 67 Selector Sel = BoxingMethod->getSelector(); 68 69 // Generate a reference to the class pointer, which will be the receiver. 70 // Assumes that the method was introduced in the class that should be 71 // messaged (avoids pulling it out of the result type). 72 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 73 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 74 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 75 76 CallArgList Args; 77 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 78 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 79 80 // ObjCBoxedExpr supports boxing of structs and unions 81 // via [NSValue valueWithBytes:objCType:] 82 const QualType ValueType(SubExpr->getType().getCanonicalType()); 83 if (ValueType->isObjCBoxableRecordType()) { 84 // Emit CodeGen for first parameter 85 // and cast value to correct type 86 Address Temporary = CreateMemTemp(SubExpr->getType()); 87 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 88 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 89 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 90 91 // Create char array to store type encoding 92 std::string Str; 93 getContext().getObjCEncodingForType(ValueType, Str); 94 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 95 96 // Cast type encoding to correct type 97 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 98 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 99 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 100 101 Args.add(RValue::get(Cast), EncodingQT); 102 } else { 103 Args.add(EmitAnyExpr(SubExpr), ArgQT); 104 } 105 106 RValue result = Runtime.GenerateMessageSend( 107 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 108 Args, ClassDecl, BoxingMethod); 109 return Builder.CreateBitCast(result.getScalarVal(), 110 ConvertType(E->getType())); 111 } 112 113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 114 const ObjCMethodDecl *MethodWithObjects) { 115 ASTContext &Context = CGM.getContext(); 116 const ObjCDictionaryLiteral *DLE = nullptr; 117 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 118 if (!ALE) 119 DLE = cast<ObjCDictionaryLiteral>(E); 120 121 // Compute the type of the array we're initializing. 122 uint64_t NumElements = 123 ALE ? ALE->getNumElements() : DLE->getNumElements(); 124 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 125 NumElements); 126 QualType ElementType = Context.getObjCIdType().withConst(); 127 QualType ElementArrayType 128 = Context.getConstantArrayType(ElementType, APNumElements, 129 ArrayType::Normal, /*IndexTypeQuals=*/0); 130 131 // Allocate the temporary array(s). 132 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 133 Address Keys = Address::invalid(); 134 if (DLE) 135 Keys = CreateMemTemp(ElementArrayType, "keys"); 136 137 // In ARC, we may need to do extra work to keep all the keys and 138 // values alive until after the call. 139 SmallVector<llvm::Value *, 16> NeededObjects; 140 bool TrackNeededObjects = 141 (getLangOpts().ObjCAutoRefCount && 142 CGM.getCodeGenOpts().OptimizationLevel != 0); 143 144 // Perform the actual initialialization of the array(s). 145 for (uint64_t i = 0; i < NumElements; i++) { 146 if (ALE) { 147 // Emit the element and store it to the appropriate array slot. 148 const Expr *Rhs = ALE->getElement(i); 149 LValue LV = MakeAddrLValue( 150 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 151 ElementType, AlignmentSource::Decl); 152 153 llvm::Value *value = EmitScalarExpr(Rhs); 154 EmitStoreThroughLValue(RValue::get(value), LV, true); 155 if (TrackNeededObjects) { 156 NeededObjects.push_back(value); 157 } 158 } else { 159 // Emit the key and store it to the appropriate array slot. 160 const Expr *Key = DLE->getKeyValueElement(i).Key; 161 LValue KeyLV = MakeAddrLValue( 162 Builder.CreateConstArrayGEP(Keys, i, getPointerSize()), 163 ElementType, AlignmentSource::Decl); 164 llvm::Value *keyValue = EmitScalarExpr(Key); 165 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 166 167 // Emit the value and store it to the appropriate array slot. 168 const Expr *Value = DLE->getKeyValueElement(i).Value; 169 LValue ValueLV = MakeAddrLValue( 170 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 171 ElementType, AlignmentSource::Decl); 172 llvm::Value *valueValue = EmitScalarExpr(Value); 173 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 174 if (TrackNeededObjects) { 175 NeededObjects.push_back(keyValue); 176 NeededObjects.push_back(valueValue); 177 } 178 } 179 } 180 181 // Generate the argument list. 182 CallArgList Args; 183 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 184 const ParmVarDecl *argDecl = *PI++; 185 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 186 Args.add(RValue::get(Objects.getPointer()), ArgQT); 187 if (DLE) { 188 argDecl = *PI++; 189 ArgQT = argDecl->getType().getUnqualifiedType(); 190 Args.add(RValue::get(Keys.getPointer()), ArgQT); 191 } 192 argDecl = *PI; 193 ArgQT = argDecl->getType().getUnqualifiedType(); 194 llvm::Value *Count = 195 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 196 Args.add(RValue::get(Count), ArgQT); 197 198 // Generate a reference to the class pointer, which will be the receiver. 199 Selector Sel = MethodWithObjects->getSelector(); 200 QualType ResultType = E->getType(); 201 const ObjCObjectPointerType *InterfacePointerType 202 = ResultType->getAsObjCInterfacePointerType(); 203 ObjCInterfaceDecl *Class 204 = InterfacePointerType->getObjectType()->getInterface(); 205 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 206 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 207 208 // Generate the message send. 209 RValue result = Runtime.GenerateMessageSend( 210 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 211 Receiver, Args, Class, MethodWithObjects); 212 213 // The above message send needs these objects, but in ARC they are 214 // passed in a buffer that is essentially __unsafe_unretained. 215 // Therefore we must prevent the optimizer from releasing them until 216 // after the call. 217 if (TrackNeededObjects) { 218 EmitARCIntrinsicUse(NeededObjects); 219 } 220 221 return Builder.CreateBitCast(result.getScalarVal(), 222 ConvertType(E->getType())); 223 } 224 225 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 226 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 227 } 228 229 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 230 const ObjCDictionaryLiteral *E) { 231 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 232 } 233 234 /// Emit a selector. 235 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 236 // Untyped selector. 237 // Note that this implementation allows for non-constant strings to be passed 238 // as arguments to @selector(). Currently, the only thing preventing this 239 // behaviour is the type checking in the front end. 240 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 241 } 242 243 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 244 // FIXME: This should pass the Decl not the name. 245 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 246 } 247 248 /// \brief Adjust the type of an Objective-C object that doesn't match up due 249 /// to type erasure at various points, e.g., related result types or the use 250 /// of parameterized classes. 251 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 252 RValue Result) { 253 if (!ExpT->isObjCRetainableType()) 254 return Result; 255 256 // If the converted types are the same, we're done. 257 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 258 if (ExpLLVMTy == Result.getScalarVal()->getType()) 259 return Result; 260 261 // We have applied a substitution. Cast the rvalue appropriately. 262 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 263 ExpLLVMTy)); 264 } 265 266 /// Decide whether to extend the lifetime of the receiver of a 267 /// returns-inner-pointer message. 268 static bool 269 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 270 switch (message->getReceiverKind()) { 271 272 // For a normal instance message, we should extend unless the 273 // receiver is loaded from a variable with precise lifetime. 274 case ObjCMessageExpr::Instance: { 275 const Expr *receiver = message->getInstanceReceiver(); 276 277 // Look through OVEs. 278 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 279 if (opaque->getSourceExpr()) 280 receiver = opaque->getSourceExpr()->IgnoreParens(); 281 } 282 283 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 284 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 285 receiver = ice->getSubExpr()->IgnoreParens(); 286 287 // Look through OVEs. 288 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 289 if (opaque->getSourceExpr()) 290 receiver = opaque->getSourceExpr()->IgnoreParens(); 291 } 292 293 // Only __strong variables. 294 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 295 return true; 296 297 // All ivars and fields have precise lifetime. 298 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 299 return false; 300 301 // Otherwise, check for variables. 302 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 303 if (!declRef) return true; 304 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 305 if (!var) return true; 306 307 // All variables have precise lifetime except local variables with 308 // automatic storage duration that aren't specially marked. 309 return (var->hasLocalStorage() && 310 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 311 } 312 313 case ObjCMessageExpr::Class: 314 case ObjCMessageExpr::SuperClass: 315 // It's never necessary for class objects. 316 return false; 317 318 case ObjCMessageExpr::SuperInstance: 319 // We generally assume that 'self' lives throughout a method call. 320 return false; 321 } 322 323 llvm_unreachable("invalid receiver kind"); 324 } 325 326 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 327 ReturnValueSlot Return) { 328 // Only the lookup mechanism and first two arguments of the method 329 // implementation vary between runtimes. We can get the receiver and 330 // arguments in generic code. 331 332 bool isDelegateInit = E->isDelegateInitCall(); 333 334 const ObjCMethodDecl *method = E->getMethodDecl(); 335 336 // We don't retain the receiver in delegate init calls, and this is 337 // safe because the receiver value is always loaded from 'self', 338 // which we zero out. We don't want to Block_copy block receivers, 339 // though. 340 bool retainSelf = 341 (!isDelegateInit && 342 CGM.getLangOpts().ObjCAutoRefCount && 343 method && 344 method->hasAttr<NSConsumesSelfAttr>()); 345 346 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 347 bool isSuperMessage = false; 348 bool isClassMessage = false; 349 ObjCInterfaceDecl *OID = nullptr; 350 // Find the receiver 351 QualType ReceiverType; 352 llvm::Value *Receiver = nullptr; 353 switch (E->getReceiverKind()) { 354 case ObjCMessageExpr::Instance: 355 ReceiverType = E->getInstanceReceiver()->getType(); 356 if (retainSelf) { 357 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 358 E->getInstanceReceiver()); 359 Receiver = ter.getPointer(); 360 if (ter.getInt()) retainSelf = false; 361 } else 362 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 363 break; 364 365 case ObjCMessageExpr::Class: { 366 ReceiverType = E->getClassReceiver(); 367 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 368 assert(ObjTy && "Invalid Objective-C class message send"); 369 OID = ObjTy->getInterface(); 370 assert(OID && "Invalid Objective-C class message send"); 371 Receiver = Runtime.GetClass(*this, OID); 372 isClassMessage = true; 373 break; 374 } 375 376 case ObjCMessageExpr::SuperInstance: 377 ReceiverType = E->getSuperType(); 378 Receiver = LoadObjCSelf(); 379 isSuperMessage = true; 380 break; 381 382 case ObjCMessageExpr::SuperClass: 383 ReceiverType = E->getSuperType(); 384 Receiver = LoadObjCSelf(); 385 isSuperMessage = true; 386 isClassMessage = true; 387 break; 388 } 389 390 if (retainSelf) 391 Receiver = EmitARCRetainNonBlock(Receiver); 392 393 // In ARC, we sometimes want to "extend the lifetime" 394 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 395 // messages. 396 if (getLangOpts().ObjCAutoRefCount && method && 397 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 398 shouldExtendReceiverForInnerPointerMessage(E)) 399 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 400 401 QualType ResultType = method ? method->getReturnType() : E->getType(); 402 403 CallArgList Args; 404 EmitCallArgs(Args, method, E->arguments()); 405 406 // For delegate init calls in ARC, do an unsafe store of null into 407 // self. This represents the call taking direct ownership of that 408 // value. We have to do this after emitting the other call 409 // arguments because they might also reference self, but we don't 410 // have to worry about any of them modifying self because that would 411 // be an undefined read and write of an object in unordered 412 // expressions. 413 if (isDelegateInit) { 414 assert(getLangOpts().ObjCAutoRefCount && 415 "delegate init calls should only be marked in ARC"); 416 417 // Do an unsafe store of null into self. 418 Address selfAddr = 419 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 420 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 421 } 422 423 RValue result; 424 if (isSuperMessage) { 425 // super is only valid in an Objective-C method 426 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 427 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 428 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 429 E->getSelector(), 430 OMD->getClassInterface(), 431 isCategoryImpl, 432 Receiver, 433 isClassMessage, 434 Args, 435 method); 436 } else { 437 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 438 E->getSelector(), 439 Receiver, Args, OID, 440 method); 441 } 442 443 // For delegate init calls in ARC, implicitly store the result of 444 // the call back into self. This takes ownership of the value. 445 if (isDelegateInit) { 446 Address selfAddr = 447 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 448 llvm::Value *newSelf = result.getScalarVal(); 449 450 // The delegate return type isn't necessarily a matching type; in 451 // fact, it's quite likely to be 'id'. 452 llvm::Type *selfTy = selfAddr.getElementType(); 453 newSelf = Builder.CreateBitCast(newSelf, selfTy); 454 455 Builder.CreateStore(newSelf, selfAddr); 456 } 457 458 return AdjustObjCObjectType(*this, E->getType(), result); 459 } 460 461 namespace { 462 struct FinishARCDealloc final : EHScopeStack::Cleanup { 463 void Emit(CodeGenFunction &CGF, Flags flags) override { 464 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 465 466 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 467 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 468 if (!iface->getSuperClass()) return; 469 470 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 471 472 // Call [super dealloc] if we have a superclass. 473 llvm::Value *self = CGF.LoadObjCSelf(); 474 475 CallArgList args; 476 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 477 CGF.getContext().VoidTy, 478 method->getSelector(), 479 iface, 480 isCategory, 481 self, 482 /*is class msg*/ false, 483 args, 484 method); 485 } 486 }; 487 } 488 489 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 490 /// the LLVM function and sets the other context used by 491 /// CodeGenFunction. 492 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 493 const ObjCContainerDecl *CD) { 494 SourceLocation StartLoc = OMD->getLocStart(); 495 FunctionArgList args; 496 // Check if we should generate debug info for this method. 497 if (OMD->hasAttr<NoDebugAttr>()) 498 DebugInfo = nullptr; // disable debug info indefinitely for this function 499 500 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 501 502 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 503 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 504 505 args.push_back(OMD->getSelfDecl()); 506 args.push_back(OMD->getCmdDecl()); 507 508 args.append(OMD->param_begin(), OMD->param_end()); 509 510 CurGD = OMD; 511 CurEHLocation = OMD->getLocEnd(); 512 513 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 514 OMD->getLocation(), StartLoc); 515 516 // In ARC, certain methods get an extra cleanup. 517 if (CGM.getLangOpts().ObjCAutoRefCount && 518 OMD->isInstanceMethod() && 519 OMD->getSelector().isUnarySelector()) { 520 const IdentifierInfo *ident = 521 OMD->getSelector().getIdentifierInfoForSlot(0); 522 if (ident->isStr("dealloc")) 523 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 524 } 525 } 526 527 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 528 LValue lvalue, QualType type); 529 530 /// Generate an Objective-C method. An Objective-C method is a C function with 531 /// its pointer, name, and types registered in the class struture. 532 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 533 StartObjCMethod(OMD, OMD->getClassInterface()); 534 PGO.assignRegionCounters(OMD, CurFn); 535 assert(isa<CompoundStmt>(OMD->getBody())); 536 incrementProfileCounter(OMD->getBody()); 537 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 538 FinishFunction(OMD->getBodyRBrace()); 539 } 540 541 /// emitStructGetterCall - Call the runtime function to load a property 542 /// into the return value slot. 543 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 544 bool isAtomic, bool hasStrong) { 545 ASTContext &Context = CGF.getContext(); 546 547 Address src = 548 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 549 .getAddress(); 550 551 // objc_copyStruct (ReturnValue, &structIvar, 552 // sizeof (Type of Ivar), isAtomic, false); 553 CallArgList args; 554 555 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 556 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 557 558 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 559 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 560 561 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 562 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 563 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 564 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 565 566 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 567 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args, 568 FunctionType::ExtInfo(), 569 RequiredArgs::All), 570 fn, ReturnValueSlot(), args); 571 } 572 573 /// Determine whether the given architecture supports unaligned atomic 574 /// accesses. They don't have to be fast, just faster than a function 575 /// call and a mutex. 576 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 577 // FIXME: Allow unaligned atomic load/store on x86. (It is not 578 // currently supported by the backend.) 579 return 0; 580 } 581 582 /// Return the maximum size that permits atomic accesses for the given 583 /// architecture. 584 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 585 llvm::Triple::ArchType arch) { 586 // ARM has 8-byte atomic accesses, but it's not clear whether we 587 // want to rely on them here. 588 589 // In the default case, just assume that any size up to a pointer is 590 // fine given adequate alignment. 591 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 592 } 593 594 namespace { 595 class PropertyImplStrategy { 596 public: 597 enum StrategyKind { 598 /// The 'native' strategy is to use the architecture's provided 599 /// reads and writes. 600 Native, 601 602 /// Use objc_setProperty and objc_getProperty. 603 GetSetProperty, 604 605 /// Use objc_setProperty for the setter, but use expression 606 /// evaluation for the getter. 607 SetPropertyAndExpressionGet, 608 609 /// Use objc_copyStruct. 610 CopyStruct, 611 612 /// The 'expression' strategy is to emit normal assignment or 613 /// lvalue-to-rvalue expressions. 614 Expression 615 }; 616 617 StrategyKind getKind() const { return StrategyKind(Kind); } 618 619 bool hasStrongMember() const { return HasStrong; } 620 bool isAtomic() const { return IsAtomic; } 621 bool isCopy() const { return IsCopy; } 622 623 CharUnits getIvarSize() const { return IvarSize; } 624 CharUnits getIvarAlignment() const { return IvarAlignment; } 625 626 PropertyImplStrategy(CodeGenModule &CGM, 627 const ObjCPropertyImplDecl *propImpl); 628 629 private: 630 unsigned Kind : 8; 631 unsigned IsAtomic : 1; 632 unsigned IsCopy : 1; 633 unsigned HasStrong : 1; 634 635 CharUnits IvarSize; 636 CharUnits IvarAlignment; 637 }; 638 } 639 640 /// Pick an implementation strategy for the given property synthesis. 641 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 642 const ObjCPropertyImplDecl *propImpl) { 643 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 644 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 645 646 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 647 IsAtomic = prop->isAtomic(); 648 HasStrong = false; // doesn't matter here. 649 650 // Evaluate the ivar's size and alignment. 651 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 652 QualType ivarType = ivar->getType(); 653 std::tie(IvarSize, IvarAlignment) = 654 CGM.getContext().getTypeInfoInChars(ivarType); 655 656 // If we have a copy property, we always have to use getProperty/setProperty. 657 // TODO: we could actually use setProperty and an expression for non-atomics. 658 if (IsCopy) { 659 Kind = GetSetProperty; 660 return; 661 } 662 663 // Handle retain. 664 if (setterKind == ObjCPropertyDecl::Retain) { 665 // In GC-only, there's nothing special that needs to be done. 666 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 667 // fallthrough 668 669 // In ARC, if the property is non-atomic, use expression emission, 670 // which translates to objc_storeStrong. This isn't required, but 671 // it's slightly nicer. 672 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 673 // Using standard expression emission for the setter is only 674 // acceptable if the ivar is __strong, which won't be true if 675 // the property is annotated with __attribute__((NSObject)). 676 // TODO: falling all the way back to objc_setProperty here is 677 // just laziness, though; we could still use objc_storeStrong 678 // if we hacked it right. 679 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 680 Kind = Expression; 681 else 682 Kind = SetPropertyAndExpressionGet; 683 return; 684 685 // Otherwise, we need to at least use setProperty. However, if 686 // the property isn't atomic, we can use normal expression 687 // emission for the getter. 688 } else if (!IsAtomic) { 689 Kind = SetPropertyAndExpressionGet; 690 return; 691 692 // Otherwise, we have to use both setProperty and getProperty. 693 } else { 694 Kind = GetSetProperty; 695 return; 696 } 697 } 698 699 // If we're not atomic, just use expression accesses. 700 if (!IsAtomic) { 701 Kind = Expression; 702 return; 703 } 704 705 // Properties on bitfield ivars need to be emitted using expression 706 // accesses even if they're nominally atomic. 707 if (ivar->isBitField()) { 708 Kind = Expression; 709 return; 710 } 711 712 // GC-qualified or ARC-qualified ivars need to be emitted as 713 // expressions. This actually works out to being atomic anyway, 714 // except for ARC __strong, but that should trigger the above code. 715 if (ivarType.hasNonTrivialObjCLifetime() || 716 (CGM.getLangOpts().getGC() && 717 CGM.getContext().getObjCGCAttrKind(ivarType))) { 718 Kind = Expression; 719 return; 720 } 721 722 // Compute whether the ivar has strong members. 723 if (CGM.getLangOpts().getGC()) 724 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 725 HasStrong = recordType->getDecl()->hasObjectMember(); 726 727 // We can never access structs with object members with a native 728 // access, because we need to use write barriers. This is what 729 // objc_copyStruct is for. 730 if (HasStrong) { 731 Kind = CopyStruct; 732 return; 733 } 734 735 // Otherwise, this is target-dependent and based on the size and 736 // alignment of the ivar. 737 738 // If the size of the ivar is not a power of two, give up. We don't 739 // want to get into the business of doing compare-and-swaps. 740 if (!IvarSize.isPowerOfTwo()) { 741 Kind = CopyStruct; 742 return; 743 } 744 745 llvm::Triple::ArchType arch = 746 CGM.getTarget().getTriple().getArch(); 747 748 // Most architectures require memory to fit within a single cache 749 // line, so the alignment has to be at least the size of the access. 750 // Otherwise we have to grab a lock. 751 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 752 Kind = CopyStruct; 753 return; 754 } 755 756 // If the ivar's size exceeds the architecture's maximum atomic 757 // access size, we have to use CopyStruct. 758 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 759 Kind = CopyStruct; 760 return; 761 } 762 763 // Otherwise, we can use native loads and stores. 764 Kind = Native; 765 } 766 767 /// \brief Generate an Objective-C property getter function. 768 /// 769 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 770 /// is illegal within a category. 771 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 772 const ObjCPropertyImplDecl *PID) { 773 llvm::Constant *AtomicHelperFn = 774 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 775 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 776 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 777 assert(OMD && "Invalid call to generate getter (empty method)"); 778 StartObjCMethod(OMD, IMP->getClassInterface()); 779 780 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 781 782 FinishFunction(); 783 } 784 785 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 786 const Expr *getter = propImpl->getGetterCXXConstructor(); 787 if (!getter) return true; 788 789 // Sema only makes only of these when the ivar has a C++ class type, 790 // so the form is pretty constrained. 791 792 // If the property has a reference type, we might just be binding a 793 // reference, in which case the result will be a gl-value. We should 794 // treat this as a non-trivial operation. 795 if (getter->isGLValue()) 796 return false; 797 798 // If we selected a trivial copy-constructor, we're okay. 799 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 800 return (construct->getConstructor()->isTrivial()); 801 802 // The constructor might require cleanups (in which case it's never 803 // trivial). 804 assert(isa<ExprWithCleanups>(getter)); 805 return false; 806 } 807 808 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 809 /// copy the ivar into the resturn slot. 810 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 811 llvm::Value *returnAddr, 812 ObjCIvarDecl *ivar, 813 llvm::Constant *AtomicHelperFn) { 814 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 815 // AtomicHelperFn); 816 CallArgList args; 817 818 // The 1st argument is the return Slot. 819 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 820 821 // The 2nd argument is the address of the ivar. 822 llvm::Value *ivarAddr = 823 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 824 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 825 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 826 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 827 828 // Third argument is the helper function. 829 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 830 831 llvm::Value *copyCppAtomicObjectFn = 832 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 833 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 834 args, 835 FunctionType::ExtInfo(), 836 RequiredArgs::All), 837 copyCppAtomicObjectFn, ReturnValueSlot(), args); 838 } 839 840 void 841 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 842 const ObjCPropertyImplDecl *propImpl, 843 const ObjCMethodDecl *GetterMethodDecl, 844 llvm::Constant *AtomicHelperFn) { 845 // If there's a non-trivial 'get' expression, we just have to emit that. 846 if (!hasTrivialGetExpr(propImpl)) { 847 if (!AtomicHelperFn) { 848 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 849 /*nrvo*/ nullptr); 850 EmitReturnStmt(ret); 851 } 852 else { 853 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 854 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 855 ivar, AtomicHelperFn); 856 } 857 return; 858 } 859 860 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 861 QualType propType = prop->getType(); 862 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 863 864 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 865 866 // Pick an implementation strategy. 867 PropertyImplStrategy strategy(CGM, propImpl); 868 switch (strategy.getKind()) { 869 case PropertyImplStrategy::Native: { 870 // We don't need to do anything for a zero-size struct. 871 if (strategy.getIvarSize().isZero()) 872 return; 873 874 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 875 876 // Currently, all atomic accesses have to be through integer 877 // types, so there's no point in trying to pick a prettier type. 878 llvm::Type *bitcastType = 879 llvm::Type::getIntNTy(getLLVMContext(), 880 getContext().toBits(strategy.getIvarSize())); 881 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 882 883 // Perform an atomic load. This does not impose ordering constraints. 884 Address ivarAddr = LV.getAddress(); 885 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 886 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 887 load->setAtomic(llvm::Unordered); 888 889 // Store that value into the return address. Doing this with a 890 // bitcast is likely to produce some pretty ugly IR, but it's not 891 // the *most* terrible thing in the world. 892 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType)); 893 894 // Make sure we don't do an autorelease. 895 AutoreleaseResult = false; 896 return; 897 } 898 899 case PropertyImplStrategy::GetSetProperty: { 900 llvm::Value *getPropertyFn = 901 CGM.getObjCRuntime().GetPropertyGetFunction(); 902 if (!getPropertyFn) { 903 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 904 return; 905 } 906 907 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 908 // FIXME: Can't this be simpler? This might even be worse than the 909 // corresponding gcc code. 910 llvm::Value *cmd = 911 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 912 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 913 llvm::Value *ivarOffset = 914 EmitIvarOffset(classImpl->getClassInterface(), ivar); 915 916 CallArgList args; 917 args.add(RValue::get(self), getContext().getObjCIdType()); 918 args.add(RValue::get(cmd), getContext().getObjCSelType()); 919 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 920 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 921 getContext().BoolTy); 922 923 // FIXME: We shouldn't need to get the function info here, the 924 // runtime already should have computed it to build the function. 925 llvm::Instruction *CallInstruction; 926 RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args, 927 FunctionType::ExtInfo(), 928 RequiredArgs::All), 929 getPropertyFn, ReturnValueSlot(), args, nullptr, 930 &CallInstruction); 931 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 932 call->setTailCall(); 933 934 // We need to fix the type here. Ivars with copy & retain are 935 // always objects so we don't need to worry about complex or 936 // aggregates. 937 RV = RValue::get(Builder.CreateBitCast( 938 RV.getScalarVal(), 939 getTypes().ConvertType(getterMethod->getReturnType()))); 940 941 EmitReturnOfRValue(RV, propType); 942 943 // objc_getProperty does an autorelease, so we should suppress ours. 944 AutoreleaseResult = false; 945 946 return; 947 } 948 949 case PropertyImplStrategy::CopyStruct: 950 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 951 strategy.hasStrongMember()); 952 return; 953 954 case PropertyImplStrategy::Expression: 955 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 956 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 957 958 QualType ivarType = ivar->getType(); 959 switch (getEvaluationKind(ivarType)) { 960 case TEK_Complex: { 961 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 962 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 963 /*init*/ true); 964 return; 965 } 966 case TEK_Aggregate: 967 // The return value slot is guaranteed to not be aliased, but 968 // that's not necessarily the same as "on the stack", so 969 // we still potentially need objc_memmove_collectable. 970 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 971 return; 972 case TEK_Scalar: { 973 llvm::Value *value; 974 if (propType->isReferenceType()) { 975 value = LV.getAddress().getPointer(); 976 } else { 977 // We want to load and autoreleaseReturnValue ARC __weak ivars. 978 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 979 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 980 981 // Otherwise we want to do a simple load, suppressing the 982 // final autorelease. 983 } else { 984 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 985 AutoreleaseResult = false; 986 } 987 988 value = Builder.CreateBitCast(value, ConvertType(propType)); 989 value = Builder.CreateBitCast( 990 value, ConvertType(GetterMethodDecl->getReturnType())); 991 } 992 993 EmitReturnOfRValue(RValue::get(value), propType); 994 return; 995 } 996 } 997 llvm_unreachable("bad evaluation kind"); 998 } 999 1000 } 1001 llvm_unreachable("bad @property implementation strategy!"); 1002 } 1003 1004 /// emitStructSetterCall - Call the runtime function to store the value 1005 /// from the first formal parameter into the given ivar. 1006 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1007 ObjCIvarDecl *ivar) { 1008 // objc_copyStruct (&structIvar, &Arg, 1009 // sizeof (struct something), true, false); 1010 CallArgList args; 1011 1012 // The first argument is the address of the ivar. 1013 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1014 CGF.LoadObjCSelf(), ivar, 0) 1015 .getPointer(); 1016 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1017 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1018 1019 // The second argument is the address of the parameter variable. 1020 ParmVarDecl *argVar = *OMD->param_begin(); 1021 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1022 VK_LValue, SourceLocation()); 1023 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1024 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1025 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1026 1027 // The third argument is the sizeof the type. 1028 llvm::Value *size = 1029 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1030 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1031 1032 // The fourth argument is the 'isAtomic' flag. 1033 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1034 1035 // The fifth argument is the 'hasStrong' flag. 1036 // FIXME: should this really always be false? 1037 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1038 1039 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1040 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1041 args, 1042 FunctionType::ExtInfo(), 1043 RequiredArgs::All), 1044 copyStructFn, ReturnValueSlot(), args); 1045 } 1046 1047 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1048 /// the value from the first formal parameter into the given ivar, using 1049 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1050 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1051 ObjCMethodDecl *OMD, 1052 ObjCIvarDecl *ivar, 1053 llvm::Constant *AtomicHelperFn) { 1054 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1055 // AtomicHelperFn); 1056 CallArgList args; 1057 1058 // The first argument is the address of the ivar. 1059 llvm::Value *ivarAddr = 1060 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1061 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 1062 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1063 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1064 1065 // The second argument is the address of the parameter variable. 1066 ParmVarDecl *argVar = *OMD->param_begin(); 1067 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1068 VK_LValue, SourceLocation()); 1069 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1070 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1071 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1072 1073 // Third argument is the helper function. 1074 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1075 1076 llvm::Value *copyCppAtomicObjectFn = 1077 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1078 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1079 args, 1080 FunctionType::ExtInfo(), 1081 RequiredArgs::All), 1082 copyCppAtomicObjectFn, ReturnValueSlot(), args); 1083 } 1084 1085 1086 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1087 Expr *setter = PID->getSetterCXXAssignment(); 1088 if (!setter) return true; 1089 1090 // Sema only makes only of these when the ivar has a C++ class type, 1091 // so the form is pretty constrained. 1092 1093 // An operator call is trivial if the function it calls is trivial. 1094 // This also implies that there's nothing non-trivial going on with 1095 // the arguments, because operator= can only be trivial if it's a 1096 // synthesized assignment operator and therefore both parameters are 1097 // references. 1098 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1099 if (const FunctionDecl *callee 1100 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1101 if (callee->isTrivial()) 1102 return true; 1103 return false; 1104 } 1105 1106 assert(isa<ExprWithCleanups>(setter)); 1107 return false; 1108 } 1109 1110 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1111 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1112 return false; 1113 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1114 } 1115 1116 void 1117 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1118 const ObjCPropertyImplDecl *propImpl, 1119 llvm::Constant *AtomicHelperFn) { 1120 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1121 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1122 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1123 1124 // Just use the setter expression if Sema gave us one and it's 1125 // non-trivial. 1126 if (!hasTrivialSetExpr(propImpl)) { 1127 if (!AtomicHelperFn) 1128 // If non-atomic, assignment is called directly. 1129 EmitStmt(propImpl->getSetterCXXAssignment()); 1130 else 1131 // If atomic, assignment is called via a locking api. 1132 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1133 AtomicHelperFn); 1134 return; 1135 } 1136 1137 PropertyImplStrategy strategy(CGM, propImpl); 1138 switch (strategy.getKind()) { 1139 case PropertyImplStrategy::Native: { 1140 // We don't need to do anything for a zero-size struct. 1141 if (strategy.getIvarSize().isZero()) 1142 return; 1143 1144 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1145 1146 LValue ivarLValue = 1147 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1148 Address ivarAddr = ivarLValue.getAddress(); 1149 1150 // Currently, all atomic accesses have to be through integer 1151 // types, so there's no point in trying to pick a prettier type. 1152 llvm::Type *bitcastType = 1153 llvm::Type::getIntNTy(getLLVMContext(), 1154 getContext().toBits(strategy.getIvarSize())); 1155 1156 // Cast both arguments to the chosen operation type. 1157 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1158 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1159 1160 // This bitcast load is likely to cause some nasty IR. 1161 llvm::Value *load = Builder.CreateLoad(argAddr); 1162 1163 // Perform an atomic store. There are no memory ordering requirements. 1164 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1165 store->setAtomic(llvm::Unordered); 1166 return; 1167 } 1168 1169 case PropertyImplStrategy::GetSetProperty: 1170 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1171 1172 llvm::Value *setOptimizedPropertyFn = nullptr; 1173 llvm::Value *setPropertyFn = nullptr; 1174 if (UseOptimizedSetter(CGM)) { 1175 // 10.8 and iOS 6.0 code and GC is off 1176 setOptimizedPropertyFn = 1177 CGM.getObjCRuntime() 1178 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1179 strategy.isCopy()); 1180 if (!setOptimizedPropertyFn) { 1181 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1182 return; 1183 } 1184 } 1185 else { 1186 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1187 if (!setPropertyFn) { 1188 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1189 return; 1190 } 1191 } 1192 1193 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1194 // <is-atomic>, <is-copy>). 1195 llvm::Value *cmd = 1196 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1197 llvm::Value *self = 1198 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1199 llvm::Value *ivarOffset = 1200 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1201 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1202 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1203 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1204 1205 CallArgList args; 1206 args.add(RValue::get(self), getContext().getObjCIdType()); 1207 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1208 if (setOptimizedPropertyFn) { 1209 args.add(RValue::get(arg), getContext().getObjCIdType()); 1210 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1211 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1212 FunctionType::ExtInfo(), 1213 RequiredArgs::All), 1214 setOptimizedPropertyFn, ReturnValueSlot(), args); 1215 } else { 1216 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1217 args.add(RValue::get(arg), getContext().getObjCIdType()); 1218 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1219 getContext().BoolTy); 1220 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1221 getContext().BoolTy); 1222 // FIXME: We shouldn't need to get the function info here, the runtime 1223 // already should have computed it to build the function. 1224 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1225 FunctionType::ExtInfo(), 1226 RequiredArgs::All), 1227 setPropertyFn, ReturnValueSlot(), args); 1228 } 1229 1230 return; 1231 } 1232 1233 case PropertyImplStrategy::CopyStruct: 1234 emitStructSetterCall(*this, setterMethod, ivar); 1235 return; 1236 1237 case PropertyImplStrategy::Expression: 1238 break; 1239 } 1240 1241 // Otherwise, fake up some ASTs and emit a normal assignment. 1242 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1243 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1244 VK_LValue, SourceLocation()); 1245 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1246 selfDecl->getType(), CK_LValueToRValue, &self, 1247 VK_RValue); 1248 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1249 SourceLocation(), SourceLocation(), 1250 &selfLoad, true, true); 1251 1252 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1253 QualType argType = argDecl->getType().getNonReferenceType(); 1254 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1255 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1256 argType.getUnqualifiedType(), CK_LValueToRValue, 1257 &arg, VK_RValue); 1258 1259 // The property type can differ from the ivar type in some situations with 1260 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1261 // The following absurdity is just to ensure well-formed IR. 1262 CastKind argCK = CK_NoOp; 1263 if (ivarRef.getType()->isObjCObjectPointerType()) { 1264 if (argLoad.getType()->isObjCObjectPointerType()) 1265 argCK = CK_BitCast; 1266 else if (argLoad.getType()->isBlockPointerType()) 1267 argCK = CK_BlockPointerToObjCPointerCast; 1268 else 1269 argCK = CK_CPointerToObjCPointerCast; 1270 } else if (ivarRef.getType()->isBlockPointerType()) { 1271 if (argLoad.getType()->isBlockPointerType()) 1272 argCK = CK_BitCast; 1273 else 1274 argCK = CK_AnyPointerToBlockPointerCast; 1275 } else if (ivarRef.getType()->isPointerType()) { 1276 argCK = CK_BitCast; 1277 } 1278 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1279 ivarRef.getType(), argCK, &argLoad, 1280 VK_RValue); 1281 Expr *finalArg = &argLoad; 1282 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1283 argLoad.getType())) 1284 finalArg = &argCast; 1285 1286 1287 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1288 ivarRef.getType(), VK_RValue, OK_Ordinary, 1289 SourceLocation(), false); 1290 EmitStmt(&assign); 1291 } 1292 1293 /// \brief Generate an Objective-C property setter function. 1294 /// 1295 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1296 /// is illegal within a category. 1297 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1298 const ObjCPropertyImplDecl *PID) { 1299 llvm::Constant *AtomicHelperFn = 1300 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1301 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1302 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1303 assert(OMD && "Invalid call to generate setter (empty method)"); 1304 StartObjCMethod(OMD, IMP->getClassInterface()); 1305 1306 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1307 1308 FinishFunction(); 1309 } 1310 1311 namespace { 1312 struct DestroyIvar final : EHScopeStack::Cleanup { 1313 private: 1314 llvm::Value *addr; 1315 const ObjCIvarDecl *ivar; 1316 CodeGenFunction::Destroyer *destroyer; 1317 bool useEHCleanupForArray; 1318 public: 1319 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1320 CodeGenFunction::Destroyer *destroyer, 1321 bool useEHCleanupForArray) 1322 : addr(addr), ivar(ivar), destroyer(destroyer), 1323 useEHCleanupForArray(useEHCleanupForArray) {} 1324 1325 void Emit(CodeGenFunction &CGF, Flags flags) override { 1326 LValue lvalue 1327 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1328 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1329 flags.isForNormalCleanup() && useEHCleanupForArray); 1330 } 1331 }; 1332 } 1333 1334 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1335 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1336 Address addr, 1337 QualType type) { 1338 llvm::Value *null = getNullForVariable(addr); 1339 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1340 } 1341 1342 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1343 ObjCImplementationDecl *impl) { 1344 CodeGenFunction::RunCleanupsScope scope(CGF); 1345 1346 llvm::Value *self = CGF.LoadObjCSelf(); 1347 1348 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1349 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1350 ivar; ivar = ivar->getNextIvar()) { 1351 QualType type = ivar->getType(); 1352 1353 // Check whether the ivar is a destructible type. 1354 QualType::DestructionKind dtorKind = type.isDestructedType(); 1355 if (!dtorKind) continue; 1356 1357 CodeGenFunction::Destroyer *destroyer = nullptr; 1358 1359 // Use a call to objc_storeStrong to destroy strong ivars, for the 1360 // general benefit of the tools. 1361 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1362 destroyer = destroyARCStrongWithStore; 1363 1364 // Otherwise use the default for the destruction kind. 1365 } else { 1366 destroyer = CGF.getDestroyer(dtorKind); 1367 } 1368 1369 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1370 1371 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1372 cleanupKind & EHCleanup); 1373 } 1374 1375 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1376 } 1377 1378 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1379 ObjCMethodDecl *MD, 1380 bool ctor) { 1381 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1382 StartObjCMethod(MD, IMP->getClassInterface()); 1383 1384 // Emit .cxx_construct. 1385 if (ctor) { 1386 // Suppress the final autorelease in ARC. 1387 AutoreleaseResult = false; 1388 1389 for (const auto *IvarInit : IMP->inits()) { 1390 FieldDecl *Field = IvarInit->getAnyMember(); 1391 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1392 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1393 LoadObjCSelf(), Ivar, 0); 1394 EmitAggExpr(IvarInit->getInit(), 1395 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1396 AggValueSlot::DoesNotNeedGCBarriers, 1397 AggValueSlot::IsNotAliased)); 1398 } 1399 // constructor returns 'self'. 1400 CodeGenTypes &Types = CGM.getTypes(); 1401 QualType IdTy(CGM.getContext().getObjCIdType()); 1402 llvm::Value *SelfAsId = 1403 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1404 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1405 1406 // Emit .cxx_destruct. 1407 } else { 1408 emitCXXDestructMethod(*this, IMP); 1409 } 1410 FinishFunction(); 1411 } 1412 1413 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) { 1414 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(); 1415 it++; it++; 1416 const ABIArgInfo &AI = it->info; 1417 // FIXME. Is this sufficient check? 1418 return (AI.getKind() == ABIArgInfo::Indirect); 1419 } 1420 1421 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) { 1422 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 1423 return false; 1424 if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>()) 1425 return FDTTy->getDecl()->hasObjectMember(); 1426 return false; 1427 } 1428 1429 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1430 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1431 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1432 Self->getType(), VK_LValue, SourceLocation()); 1433 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1434 } 1435 1436 QualType CodeGenFunction::TypeOfSelfObject() { 1437 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1438 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1439 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1440 getContext().getCanonicalType(selfDecl->getType())); 1441 return PTy->getPointeeType(); 1442 } 1443 1444 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1445 llvm::Constant *EnumerationMutationFn = 1446 CGM.getObjCRuntime().EnumerationMutationFunction(); 1447 1448 if (!EnumerationMutationFn) { 1449 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1450 return; 1451 } 1452 1453 CGDebugInfo *DI = getDebugInfo(); 1454 if (DI) 1455 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1456 1457 // The local variable comes into scope immediately. 1458 AutoVarEmission variable = AutoVarEmission::invalid(); 1459 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1460 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1461 1462 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1463 1464 // Fast enumeration state. 1465 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1466 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1467 EmitNullInitialization(StatePtr, StateTy); 1468 1469 // Number of elements in the items array. 1470 static const unsigned NumItems = 16; 1471 1472 // Fetch the countByEnumeratingWithState:objects:count: selector. 1473 IdentifierInfo *II[] = { 1474 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1475 &CGM.getContext().Idents.get("objects"), 1476 &CGM.getContext().Idents.get("count") 1477 }; 1478 Selector FastEnumSel = 1479 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1480 1481 QualType ItemsTy = 1482 getContext().getConstantArrayType(getContext().getObjCIdType(), 1483 llvm::APInt(32, NumItems), 1484 ArrayType::Normal, 0); 1485 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1486 1487 // Emit the collection pointer. In ARC, we do a retain. 1488 llvm::Value *Collection; 1489 if (getLangOpts().ObjCAutoRefCount) { 1490 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1491 1492 // Enter a cleanup to do the release. 1493 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1494 } else { 1495 Collection = EmitScalarExpr(S.getCollection()); 1496 } 1497 1498 // The 'continue' label needs to appear within the cleanup for the 1499 // collection object. 1500 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1501 1502 // Send it our message: 1503 CallArgList Args; 1504 1505 // The first argument is a temporary of the enumeration-state type. 1506 Args.add(RValue::get(StatePtr.getPointer()), 1507 getContext().getPointerType(StateTy)); 1508 1509 // The second argument is a temporary array with space for NumItems 1510 // pointers. We'll actually be loading elements from the array 1511 // pointer written into the control state; this buffer is so that 1512 // collections that *aren't* backed by arrays can still queue up 1513 // batches of elements. 1514 Args.add(RValue::get(ItemsPtr.getPointer()), 1515 getContext().getPointerType(ItemsTy)); 1516 1517 // The third argument is the capacity of that temporary array. 1518 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1519 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1520 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1521 1522 // Start the enumeration. 1523 RValue CountRV = 1524 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1525 getContext().UnsignedLongTy, 1526 FastEnumSel, 1527 Collection, Args); 1528 1529 // The initial number of objects that were returned in the buffer. 1530 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1531 1532 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1533 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1534 1535 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1536 1537 // If the limit pointer was zero to begin with, the collection is 1538 // empty; skip all this. Set the branch weight assuming this has the same 1539 // probability of exiting the loop as any other loop exit. 1540 uint64_t EntryCount = getCurrentProfileCount(); 1541 Builder.CreateCondBr( 1542 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1543 LoopInitBB, 1544 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1545 1546 // Otherwise, initialize the loop. 1547 EmitBlock(LoopInitBB); 1548 1549 // Save the initial mutations value. This is the value at an 1550 // address that was written into the state object by 1551 // countByEnumeratingWithState:objects:count:. 1552 Address StateMutationsPtrPtr = Builder.CreateStructGEP( 1553 StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr"); 1554 llvm::Value *StateMutationsPtr 1555 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1556 1557 llvm::Value *initialMutations = 1558 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1559 "forcoll.initial-mutations"); 1560 1561 // Start looping. This is the point we return to whenever we have a 1562 // fresh, non-empty batch of objects. 1563 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1564 EmitBlock(LoopBodyBB); 1565 1566 // The current index into the buffer. 1567 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1568 index->addIncoming(zero, LoopInitBB); 1569 1570 // The current buffer size. 1571 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1572 count->addIncoming(initialBufferLimit, LoopInitBB); 1573 1574 incrementProfileCounter(&S); 1575 1576 // Check whether the mutations value has changed from where it was 1577 // at start. StateMutationsPtr should actually be invariant between 1578 // refreshes. 1579 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1580 llvm::Value *currentMutations 1581 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1582 "statemutations"); 1583 1584 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1585 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1586 1587 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1588 WasNotMutatedBB, WasMutatedBB); 1589 1590 // If so, call the enumeration-mutation function. 1591 EmitBlock(WasMutatedBB); 1592 llvm::Value *V = 1593 Builder.CreateBitCast(Collection, 1594 ConvertType(getContext().getObjCIdType())); 1595 CallArgList Args2; 1596 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1597 // FIXME: We shouldn't need to get the function info here, the runtime already 1598 // should have computed it to build the function. 1599 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2, 1600 FunctionType::ExtInfo(), 1601 RequiredArgs::All), 1602 EnumerationMutationFn, ReturnValueSlot(), Args2); 1603 1604 // Otherwise, or if the mutation function returns, just continue. 1605 EmitBlock(WasNotMutatedBB); 1606 1607 // Initialize the element variable. 1608 RunCleanupsScope elementVariableScope(*this); 1609 bool elementIsVariable; 1610 LValue elementLValue; 1611 QualType elementType; 1612 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1613 // Initialize the variable, in case it's a __block variable or something. 1614 EmitAutoVarInit(variable); 1615 1616 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1617 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1618 VK_LValue, SourceLocation()); 1619 elementLValue = EmitLValue(&tempDRE); 1620 elementType = D->getType(); 1621 elementIsVariable = true; 1622 1623 if (D->isARCPseudoStrong()) 1624 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1625 } else { 1626 elementLValue = LValue(); // suppress warning 1627 elementType = cast<Expr>(S.getElement())->getType(); 1628 elementIsVariable = false; 1629 } 1630 llvm::Type *convertedElementType = ConvertType(elementType); 1631 1632 // Fetch the buffer out of the enumeration state. 1633 // TODO: this pointer should actually be invariant between 1634 // refreshes, which would help us do certain loop optimizations. 1635 Address StateItemsPtr = Builder.CreateStructGEP( 1636 StatePtr, 1, getPointerSize(), "stateitems.ptr"); 1637 llvm::Value *EnumStateItems = 1638 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1639 1640 // Fetch the value at the current index from the buffer. 1641 llvm::Value *CurrentItemPtr = 1642 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1643 llvm::Value *CurrentItem = 1644 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1645 1646 // Cast that value to the right type. 1647 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1648 "currentitem"); 1649 1650 // Make sure we have an l-value. Yes, this gets evaluated every 1651 // time through the loop. 1652 if (!elementIsVariable) { 1653 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1654 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1655 } else { 1656 EmitScalarInit(CurrentItem, elementLValue); 1657 } 1658 1659 // If we do have an element variable, this assignment is the end of 1660 // its initialization. 1661 if (elementIsVariable) 1662 EmitAutoVarCleanups(variable); 1663 1664 // Perform the loop body, setting up break and continue labels. 1665 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1666 { 1667 RunCleanupsScope Scope(*this); 1668 EmitStmt(S.getBody()); 1669 } 1670 BreakContinueStack.pop_back(); 1671 1672 // Destroy the element variable now. 1673 elementVariableScope.ForceCleanup(); 1674 1675 // Check whether there are more elements. 1676 EmitBlock(AfterBody.getBlock()); 1677 1678 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1679 1680 // First we check in the local buffer. 1681 llvm::Value *indexPlusOne 1682 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1683 1684 // If we haven't overrun the buffer yet, we can continue. 1685 // Set the branch weights based on the simplifying assumption that this is 1686 // like a while-loop, i.e., ignoring that the false branch fetches more 1687 // elements and then returns to the loop. 1688 Builder.CreateCondBr( 1689 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1690 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1691 1692 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1693 count->addIncoming(count, AfterBody.getBlock()); 1694 1695 // Otherwise, we have to fetch more elements. 1696 EmitBlock(FetchMoreBB); 1697 1698 CountRV = 1699 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1700 getContext().UnsignedLongTy, 1701 FastEnumSel, 1702 Collection, Args); 1703 1704 // If we got a zero count, we're done. 1705 llvm::Value *refetchCount = CountRV.getScalarVal(); 1706 1707 // (note that the message send might split FetchMoreBB) 1708 index->addIncoming(zero, Builder.GetInsertBlock()); 1709 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1710 1711 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1712 EmptyBB, LoopBodyBB); 1713 1714 // No more elements. 1715 EmitBlock(EmptyBB); 1716 1717 if (!elementIsVariable) { 1718 // If the element was not a declaration, set it to be null. 1719 1720 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1721 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1722 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1723 } 1724 1725 if (DI) 1726 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1727 1728 // Leave the cleanup we entered in ARC. 1729 if (getLangOpts().ObjCAutoRefCount) 1730 PopCleanupBlock(); 1731 1732 EmitBlock(LoopEnd.getBlock()); 1733 } 1734 1735 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1736 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1737 } 1738 1739 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1740 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1741 } 1742 1743 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1744 const ObjCAtSynchronizedStmt &S) { 1745 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1746 } 1747 1748 /// Produce the code for a CK_ARCProduceObject. Just does a 1749 /// primitive retain. 1750 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type, 1751 llvm::Value *value) { 1752 return EmitARCRetain(type, value); 1753 } 1754 1755 namespace { 1756 struct CallObjCRelease final : EHScopeStack::Cleanup { 1757 CallObjCRelease(llvm::Value *object) : object(object) {} 1758 llvm::Value *object; 1759 1760 void Emit(CodeGenFunction &CGF, Flags flags) override { 1761 // Releases at the end of the full-expression are imprecise. 1762 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1763 } 1764 }; 1765 } 1766 1767 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1768 /// release at the end of the full-expression. 1769 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1770 llvm::Value *object) { 1771 // If we're in a conditional branch, we need to make the cleanup 1772 // conditional. 1773 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1774 return object; 1775 } 1776 1777 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1778 llvm::Value *value) { 1779 return EmitARCRetainAutorelease(type, value); 1780 } 1781 1782 /// Given a number of pointers, inform the optimizer that they're 1783 /// being intrinsically used up until this point in the program. 1784 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1785 llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use; 1786 if (!fn) { 1787 llvm::FunctionType *fnType = 1788 llvm::FunctionType::get(CGM.VoidTy, None, true); 1789 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use"); 1790 } 1791 1792 // This isn't really a "runtime" function, but as an intrinsic it 1793 // doesn't really matter as long as we align things up. 1794 EmitNounwindRuntimeCall(fn, values); 1795 } 1796 1797 1798 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1799 llvm::FunctionType *type, 1800 StringRef fnName) { 1801 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1802 1803 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) { 1804 // If the target runtime doesn't naturally support ARC, emit weak 1805 // references to the runtime support library. We don't really 1806 // permit this to fail, but we need a particular relocation style. 1807 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 1808 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1809 } else if (fnName == "objc_retain" || fnName == "objc_release") { 1810 // If we have Native ARC, set nonlazybind attribute for these APIs for 1811 // performance. 1812 f->addFnAttr(llvm::Attribute::NonLazyBind); 1813 } 1814 } 1815 1816 return fn; 1817 } 1818 1819 /// Perform an operation having the signature 1820 /// i8* (i8*) 1821 /// where a null input causes a no-op and returns null. 1822 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1823 llvm::Value *value, 1824 llvm::Constant *&fn, 1825 StringRef fnName, 1826 bool isTailCall = false) { 1827 if (isa<llvm::ConstantPointerNull>(value)) return value; 1828 1829 if (!fn) { 1830 llvm::FunctionType *fnType = 1831 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 1832 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1833 } 1834 1835 // Cast the argument to 'id'. 1836 llvm::Type *origType = value->getType(); 1837 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1838 1839 // Call the function. 1840 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1841 if (isTailCall) 1842 call->setTailCall(); 1843 1844 // Cast the result back to the original type. 1845 return CGF.Builder.CreateBitCast(call, origType); 1846 } 1847 1848 /// Perform an operation having the following signature: 1849 /// i8* (i8**) 1850 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1851 Address addr, 1852 llvm::Constant *&fn, 1853 StringRef fnName) { 1854 if (!fn) { 1855 llvm::FunctionType *fnType = 1856 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false); 1857 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1858 } 1859 1860 // Cast the argument to 'id*'. 1861 llvm::Type *origType = addr.getElementType(); 1862 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1863 1864 // Call the function. 1865 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 1866 1867 // Cast the result back to a dereference of the original type. 1868 if (origType != CGF.Int8PtrTy) 1869 result = CGF.Builder.CreateBitCast(result, origType); 1870 1871 return result; 1872 } 1873 1874 /// Perform an operation having the following signature: 1875 /// i8* (i8**, i8*) 1876 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1877 Address addr, 1878 llvm::Value *value, 1879 llvm::Constant *&fn, 1880 StringRef fnName, 1881 bool ignored) { 1882 assert(addr.getElementType() == value->getType()); 1883 1884 if (!fn) { 1885 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1886 1887 llvm::FunctionType *fnType 1888 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1889 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1890 } 1891 1892 llvm::Type *origType = value->getType(); 1893 1894 llvm::Value *args[] = { 1895 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 1896 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 1897 }; 1898 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 1899 1900 if (ignored) return nullptr; 1901 1902 return CGF.Builder.CreateBitCast(result, origType); 1903 } 1904 1905 /// Perform an operation having the following signature: 1906 /// void (i8**, i8**) 1907 static void emitARCCopyOperation(CodeGenFunction &CGF, 1908 Address dst, 1909 Address src, 1910 llvm::Constant *&fn, 1911 StringRef fnName) { 1912 assert(dst.getType() == src.getType()); 1913 1914 if (!fn) { 1915 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy }; 1916 1917 llvm::FunctionType *fnType 1918 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1919 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1920 } 1921 1922 llvm::Value *args[] = { 1923 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 1924 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 1925 }; 1926 CGF.EmitNounwindRuntimeCall(fn, args); 1927 } 1928 1929 /// Produce the code to do a retain. Based on the type, calls one of: 1930 /// call i8* \@objc_retain(i8* %value) 1931 /// call i8* \@objc_retainBlock(i8* %value) 1932 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1933 if (type->isBlockPointerType()) 1934 return EmitARCRetainBlock(value, /*mandatory*/ false); 1935 else 1936 return EmitARCRetainNonBlock(value); 1937 } 1938 1939 /// Retain the given object, with normal retain semantics. 1940 /// call i8* \@objc_retain(i8* %value) 1941 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1942 return emitARCValueOperation(*this, value, 1943 CGM.getARCEntrypoints().objc_retain, 1944 "objc_retain"); 1945 } 1946 1947 /// Retain the given block, with _Block_copy semantics. 1948 /// call i8* \@objc_retainBlock(i8* %value) 1949 /// 1950 /// \param mandatory - If false, emit the call with metadata 1951 /// indicating that it's okay for the optimizer to eliminate this call 1952 /// if it can prove that the block never escapes except down the stack. 1953 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1954 bool mandatory) { 1955 llvm::Value *result 1956 = emitARCValueOperation(*this, value, 1957 CGM.getARCEntrypoints().objc_retainBlock, 1958 "objc_retainBlock"); 1959 1960 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1961 // tell the optimizer that it doesn't need to do this copy if the 1962 // block doesn't escape, where being passed as an argument doesn't 1963 // count as escaping. 1964 if (!mandatory && isa<llvm::Instruction>(result)) { 1965 llvm::CallInst *call 1966 = cast<llvm::CallInst>(result->stripPointerCasts()); 1967 assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock); 1968 1969 call->setMetadata("clang.arc.copy_on_escape", 1970 llvm::MDNode::get(Builder.getContext(), None)); 1971 } 1972 1973 return result; 1974 } 1975 1976 /// Retain the given object which is the result of a function call. 1977 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 1978 /// 1979 /// Yes, this function name is one character away from a different 1980 /// call with completely different semantics. 1981 llvm::Value * 1982 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 1983 // Fetch the void(void) inline asm which marks that we're going to 1984 // retain the autoreleased return value. 1985 llvm::InlineAsm *&marker 1986 = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker; 1987 if (!marker) { 1988 StringRef assembly 1989 = CGM.getTargetCodeGenInfo() 1990 .getARCRetainAutoreleasedReturnValueMarker(); 1991 1992 // If we have an empty assembly string, there's nothing to do. 1993 if (assembly.empty()) { 1994 1995 // Otherwise, at -O0, build an inline asm that we're going to call 1996 // in a moment. 1997 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1998 llvm::FunctionType *type = 1999 llvm::FunctionType::get(VoidTy, /*variadic*/false); 2000 2001 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2002 2003 // If we're at -O1 and above, we don't want to litter the code 2004 // with this marker yet, so leave a breadcrumb for the ARC 2005 // optimizer to pick up. 2006 } else { 2007 llvm::NamedMDNode *metadata = 2008 CGM.getModule().getOrInsertNamedMetadata( 2009 "clang.arc.retainAutoreleasedReturnValueMarker"); 2010 assert(metadata->getNumOperands() <= 1); 2011 if (metadata->getNumOperands() == 0) { 2012 metadata->addOperand(llvm::MDNode::get( 2013 getLLVMContext(), llvm::MDString::get(getLLVMContext(), assembly))); 2014 } 2015 } 2016 } 2017 2018 // Call the marker asm if we made one, which we do only at -O0. 2019 if (marker) 2020 Builder.CreateCall(marker); 2021 2022 return emitARCValueOperation(*this, value, 2023 CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue, 2024 "objc_retainAutoreleasedReturnValue"); 2025 } 2026 2027 /// Release the given object. 2028 /// call void \@objc_release(i8* %value) 2029 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2030 ARCPreciseLifetime_t precise) { 2031 if (isa<llvm::ConstantPointerNull>(value)) return; 2032 2033 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release; 2034 if (!fn) { 2035 llvm::FunctionType *fnType = 2036 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2037 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 2038 } 2039 2040 // Cast the argument to 'id'. 2041 value = Builder.CreateBitCast(value, Int8PtrTy); 2042 2043 // Call objc_release. 2044 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2045 2046 if (precise == ARCImpreciseLifetime) { 2047 call->setMetadata("clang.imprecise_release", 2048 llvm::MDNode::get(Builder.getContext(), None)); 2049 } 2050 } 2051 2052 /// Destroy a __strong variable. 2053 /// 2054 /// At -O0, emit a call to store 'null' into the address; 2055 /// instrumenting tools prefer this because the address is exposed, 2056 /// but it's relatively cumbersome to optimize. 2057 /// 2058 /// At -O1 and above, just load and call objc_release. 2059 /// 2060 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2061 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2062 ARCPreciseLifetime_t precise) { 2063 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2064 llvm::Value *null = getNullForVariable(addr); 2065 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2066 return; 2067 } 2068 2069 llvm::Value *value = Builder.CreateLoad(addr); 2070 EmitARCRelease(value, precise); 2071 } 2072 2073 /// Store into a strong object. Always calls this: 2074 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2075 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2076 llvm::Value *value, 2077 bool ignored) { 2078 assert(addr.getElementType() == value->getType()); 2079 2080 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong; 2081 if (!fn) { 2082 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 2083 llvm::FunctionType *fnType 2084 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 2085 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 2086 } 2087 2088 llvm::Value *args[] = { 2089 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2090 Builder.CreateBitCast(value, Int8PtrTy) 2091 }; 2092 EmitNounwindRuntimeCall(fn, args); 2093 2094 if (ignored) return nullptr; 2095 return value; 2096 } 2097 2098 /// Store into a strong object. Sometimes calls this: 2099 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2100 /// Other times, breaks it down into components. 2101 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2102 llvm::Value *newValue, 2103 bool ignored) { 2104 QualType type = dst.getType(); 2105 bool isBlock = type->isBlockPointerType(); 2106 2107 // Use a store barrier at -O0 unless this is a block type or the 2108 // lvalue is inadequately aligned. 2109 if (shouldUseFusedARCCalls() && 2110 !isBlock && 2111 (dst.getAlignment().isZero() || 2112 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2113 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2114 } 2115 2116 // Otherwise, split it out. 2117 2118 // Retain the new value. 2119 newValue = EmitARCRetain(type, newValue); 2120 2121 // Read the old value. 2122 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2123 2124 // Store. We do this before the release so that any deallocs won't 2125 // see the old value. 2126 EmitStoreOfScalar(newValue, dst); 2127 2128 // Finally, release the old value. 2129 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2130 2131 return newValue; 2132 } 2133 2134 /// Autorelease the given object. 2135 /// call i8* \@objc_autorelease(i8* %value) 2136 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2137 return emitARCValueOperation(*this, value, 2138 CGM.getARCEntrypoints().objc_autorelease, 2139 "objc_autorelease"); 2140 } 2141 2142 /// Autorelease the given object. 2143 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2144 llvm::Value * 2145 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2146 return emitARCValueOperation(*this, value, 2147 CGM.getARCEntrypoints().objc_autoreleaseReturnValue, 2148 "objc_autoreleaseReturnValue", 2149 /*isTailCall*/ true); 2150 } 2151 2152 /// Do a fused retain/autorelease of the given object. 2153 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2154 llvm::Value * 2155 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2156 return emitARCValueOperation(*this, value, 2157 CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue, 2158 "objc_retainAutoreleaseReturnValue", 2159 /*isTailCall*/ true); 2160 } 2161 2162 /// Do a fused retain/autorelease of the given object. 2163 /// call i8* \@objc_retainAutorelease(i8* %value) 2164 /// or 2165 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2166 /// call i8* \@objc_autorelease(i8* %retain) 2167 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2168 llvm::Value *value) { 2169 if (!type->isBlockPointerType()) 2170 return EmitARCRetainAutoreleaseNonBlock(value); 2171 2172 if (isa<llvm::ConstantPointerNull>(value)) return value; 2173 2174 llvm::Type *origType = value->getType(); 2175 value = Builder.CreateBitCast(value, Int8PtrTy); 2176 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2177 value = EmitARCAutorelease(value); 2178 return Builder.CreateBitCast(value, origType); 2179 } 2180 2181 /// Do a fused retain/autorelease of the given object. 2182 /// call i8* \@objc_retainAutorelease(i8* %value) 2183 llvm::Value * 2184 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2185 return emitARCValueOperation(*this, value, 2186 CGM.getARCEntrypoints().objc_retainAutorelease, 2187 "objc_retainAutorelease"); 2188 } 2189 2190 /// i8* \@objc_loadWeak(i8** %addr) 2191 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2192 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2193 return emitARCLoadOperation(*this, addr, 2194 CGM.getARCEntrypoints().objc_loadWeak, 2195 "objc_loadWeak"); 2196 } 2197 2198 /// i8* \@objc_loadWeakRetained(i8** %addr) 2199 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2200 return emitARCLoadOperation(*this, addr, 2201 CGM.getARCEntrypoints().objc_loadWeakRetained, 2202 "objc_loadWeakRetained"); 2203 } 2204 2205 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2206 /// Returns %value. 2207 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2208 llvm::Value *value, 2209 bool ignored) { 2210 return emitARCStoreOperation(*this, addr, value, 2211 CGM.getARCEntrypoints().objc_storeWeak, 2212 "objc_storeWeak", ignored); 2213 } 2214 2215 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2216 /// Returns %value. %addr is known to not have a current weak entry. 2217 /// Essentially equivalent to: 2218 /// *addr = nil; objc_storeWeak(addr, value); 2219 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2220 // If we're initializing to null, just write null to memory; no need 2221 // to get the runtime involved. But don't do this if optimization 2222 // is enabled, because accounting for this would make the optimizer 2223 // much more complicated. 2224 if (isa<llvm::ConstantPointerNull>(value) && 2225 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2226 Builder.CreateStore(value, addr); 2227 return; 2228 } 2229 2230 emitARCStoreOperation(*this, addr, value, 2231 CGM.getARCEntrypoints().objc_initWeak, 2232 "objc_initWeak", /*ignored*/ true); 2233 } 2234 2235 /// void \@objc_destroyWeak(i8** %addr) 2236 /// Essentially objc_storeWeak(addr, nil). 2237 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2238 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak; 2239 if (!fn) { 2240 llvm::FunctionType *fnType = 2241 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false); 2242 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 2243 } 2244 2245 // Cast the argument to 'id*'. 2246 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2247 2248 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2249 } 2250 2251 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2252 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2253 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2254 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2255 emitARCCopyOperation(*this, dst, src, 2256 CGM.getARCEntrypoints().objc_moveWeak, 2257 "objc_moveWeak"); 2258 } 2259 2260 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2261 /// Disregards the current value in %dest. Essentially 2262 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2263 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2264 emitARCCopyOperation(*this, dst, src, 2265 CGM.getARCEntrypoints().objc_copyWeak, 2266 "objc_copyWeak"); 2267 } 2268 2269 /// Produce the code to do a objc_autoreleasepool_push. 2270 /// call i8* \@objc_autoreleasePoolPush(void) 2271 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2272 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush; 2273 if (!fn) { 2274 llvm::FunctionType *fnType = 2275 llvm::FunctionType::get(Int8PtrTy, false); 2276 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 2277 } 2278 2279 return EmitNounwindRuntimeCall(fn); 2280 } 2281 2282 /// Produce the code to do a primitive release. 2283 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2284 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2285 assert(value->getType() == Int8PtrTy); 2286 2287 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop; 2288 if (!fn) { 2289 llvm::FunctionType *fnType = 2290 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2291 2292 // We don't want to use a weak import here; instead we should not 2293 // fall into this path. 2294 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 2295 } 2296 2297 // objc_autoreleasePoolPop can throw. 2298 EmitRuntimeCallOrInvoke(fn, value); 2299 } 2300 2301 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2302 /// Which is: [[NSAutoreleasePool alloc] init]; 2303 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2304 /// init is declared as: - (id) init; in its NSObject super class. 2305 /// 2306 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2307 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2308 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2309 // [NSAutoreleasePool alloc] 2310 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2311 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2312 CallArgList Args; 2313 RValue AllocRV = 2314 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2315 getContext().getObjCIdType(), 2316 AllocSel, Receiver, Args); 2317 2318 // [Receiver init] 2319 Receiver = AllocRV.getScalarVal(); 2320 II = &CGM.getContext().Idents.get("init"); 2321 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2322 RValue InitRV = 2323 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2324 getContext().getObjCIdType(), 2325 InitSel, Receiver, Args); 2326 return InitRV.getScalarVal(); 2327 } 2328 2329 /// Produce the code to do a primitive release. 2330 /// [tmp drain]; 2331 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2332 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2333 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2334 CallArgList Args; 2335 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2336 getContext().VoidTy, DrainSel, Arg, Args); 2337 } 2338 2339 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2340 Address addr, 2341 QualType type) { 2342 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2343 } 2344 2345 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2346 Address addr, 2347 QualType type) { 2348 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2349 } 2350 2351 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2352 Address addr, 2353 QualType type) { 2354 CGF.EmitARCDestroyWeak(addr); 2355 } 2356 2357 namespace { 2358 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2359 llvm::Value *Token; 2360 2361 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2362 2363 void Emit(CodeGenFunction &CGF, Flags flags) override { 2364 CGF.EmitObjCAutoreleasePoolPop(Token); 2365 } 2366 }; 2367 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2368 llvm::Value *Token; 2369 2370 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2371 2372 void Emit(CodeGenFunction &CGF, Flags flags) override { 2373 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2374 } 2375 }; 2376 } 2377 2378 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2379 if (CGM.getLangOpts().ObjCAutoRefCount) 2380 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2381 else 2382 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2383 } 2384 2385 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2386 LValue lvalue, 2387 QualType type) { 2388 switch (type.getObjCLifetime()) { 2389 case Qualifiers::OCL_None: 2390 case Qualifiers::OCL_ExplicitNone: 2391 case Qualifiers::OCL_Strong: 2392 case Qualifiers::OCL_Autoreleasing: 2393 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue, 2394 SourceLocation()).getScalarVal(), 2395 false); 2396 2397 case Qualifiers::OCL_Weak: 2398 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2399 true); 2400 } 2401 2402 llvm_unreachable("impossible lifetime!"); 2403 } 2404 2405 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2406 const Expr *e) { 2407 e = e->IgnoreParens(); 2408 QualType type = e->getType(); 2409 2410 // If we're loading retained from a __strong xvalue, we can avoid 2411 // an extra retain/release pair by zeroing out the source of this 2412 // "move" operation. 2413 if (e->isXValue() && 2414 !type.isConstQualified() && 2415 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2416 // Emit the lvalue. 2417 LValue lv = CGF.EmitLValue(e); 2418 2419 // Load the object pointer. 2420 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2421 SourceLocation()).getScalarVal(); 2422 2423 // Set the source pointer to NULL. 2424 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2425 2426 return TryEmitResult(result, true); 2427 } 2428 2429 // As a very special optimization, in ARC++, if the l-value is the 2430 // result of a non-volatile assignment, do a simple retain of the 2431 // result of the call to objc_storeWeak instead of reloading. 2432 if (CGF.getLangOpts().CPlusPlus && 2433 !type.isVolatileQualified() && 2434 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2435 isa<BinaryOperator>(e) && 2436 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2437 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2438 2439 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2440 } 2441 2442 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2443 llvm::Value *value); 2444 2445 /// Given that the given expression is some sort of call (which does 2446 /// not return retained), emit a retain following it. 2447 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) { 2448 llvm::Value *value = CGF.EmitScalarExpr(e); 2449 return emitARCRetainAfterCall(CGF, value); 2450 } 2451 2452 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2453 llvm::Value *value) { 2454 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2455 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2456 2457 // Place the retain immediately following the call. 2458 CGF.Builder.SetInsertPoint(call->getParent(), 2459 ++llvm::BasicBlock::iterator(call)); 2460 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2461 2462 CGF.Builder.restoreIP(ip); 2463 return value; 2464 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2465 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2466 2467 // Place the retain at the beginning of the normal destination block. 2468 llvm::BasicBlock *BB = invoke->getNormalDest(); 2469 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2470 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2471 2472 CGF.Builder.restoreIP(ip); 2473 return value; 2474 2475 // Bitcasts can arise because of related-result returns. Rewrite 2476 // the operand. 2477 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2478 llvm::Value *operand = bitcast->getOperand(0); 2479 operand = emitARCRetainAfterCall(CGF, operand); 2480 bitcast->setOperand(0, operand); 2481 return bitcast; 2482 2483 // Generic fall-back case. 2484 } else { 2485 // Retain using the non-block variant: we never need to do a copy 2486 // of a block that's been returned to us. 2487 return CGF.EmitARCRetainNonBlock(value); 2488 } 2489 } 2490 2491 /// Determine whether it might be important to emit a separate 2492 /// objc_retain_block on the result of the given expression, or 2493 /// whether it's okay to just emit it in a +1 context. 2494 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2495 assert(e->getType()->isBlockPointerType()); 2496 e = e->IgnoreParens(); 2497 2498 // For future goodness, emit block expressions directly in +1 2499 // contexts if we can. 2500 if (isa<BlockExpr>(e)) 2501 return false; 2502 2503 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2504 switch (cast->getCastKind()) { 2505 // Emitting these operations in +1 contexts is goodness. 2506 case CK_LValueToRValue: 2507 case CK_ARCReclaimReturnedObject: 2508 case CK_ARCConsumeObject: 2509 case CK_ARCProduceObject: 2510 return false; 2511 2512 // These operations preserve a block type. 2513 case CK_NoOp: 2514 case CK_BitCast: 2515 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2516 2517 // These operations are known to be bad (or haven't been considered). 2518 case CK_AnyPointerToBlockPointerCast: 2519 default: 2520 return true; 2521 } 2522 } 2523 2524 return true; 2525 } 2526 2527 /// Try to emit a PseudoObjectExpr at +1. 2528 /// 2529 /// This massively duplicates emitPseudoObjectRValue. 2530 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF, 2531 const PseudoObjectExpr *E) { 2532 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2533 2534 // Find the result expression. 2535 const Expr *resultExpr = E->getResultExpr(); 2536 assert(resultExpr); 2537 TryEmitResult result; 2538 2539 for (PseudoObjectExpr::const_semantics_iterator 2540 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2541 const Expr *semantic = *i; 2542 2543 // If this semantic expression is an opaque value, bind it 2544 // to the result of its source expression. 2545 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2546 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2547 OVMA opaqueData; 2548 2549 // If this semantic is the result of the pseudo-object 2550 // expression, try to evaluate the source as +1. 2551 if (ov == resultExpr) { 2552 assert(!OVMA::shouldBindAsLValue(ov)); 2553 result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr()); 2554 opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer())); 2555 2556 // Otherwise, just bind it. 2557 } else { 2558 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2559 } 2560 opaques.push_back(opaqueData); 2561 2562 // Otherwise, if the expression is the result, evaluate it 2563 // and remember the result. 2564 } else if (semantic == resultExpr) { 2565 result = tryEmitARCRetainScalarExpr(CGF, semantic); 2566 2567 // Otherwise, evaluate the expression in an ignored context. 2568 } else { 2569 CGF.EmitIgnoredExpr(semantic); 2570 } 2571 } 2572 2573 // Unbind all the opaques now. 2574 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2575 opaques[i].unbind(CGF); 2576 2577 return result; 2578 } 2579 2580 static TryEmitResult 2581 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2582 // We should *never* see a nested full-expression here, because if 2583 // we fail to emit at +1, our caller must not retain after we close 2584 // out the full-expression. 2585 assert(!isa<ExprWithCleanups>(e)); 2586 2587 // The desired result type, if it differs from the type of the 2588 // ultimate opaque expression. 2589 llvm::Type *resultType = nullptr; 2590 2591 while (true) { 2592 e = e->IgnoreParens(); 2593 2594 // There's a break at the end of this if-chain; anything 2595 // that wants to keep looping has to explicitly continue. 2596 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2597 switch (ce->getCastKind()) { 2598 // No-op casts don't change the type, so we just ignore them. 2599 case CK_NoOp: 2600 e = ce->getSubExpr(); 2601 continue; 2602 2603 case CK_LValueToRValue: { 2604 TryEmitResult loadResult 2605 = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr()); 2606 if (resultType) { 2607 llvm::Value *value = loadResult.getPointer(); 2608 value = CGF.Builder.CreateBitCast(value, resultType); 2609 loadResult.setPointer(value); 2610 } 2611 return loadResult; 2612 } 2613 2614 // These casts can change the type, so remember that and 2615 // soldier on. We only need to remember the outermost such 2616 // cast, though. 2617 case CK_CPointerToObjCPointerCast: 2618 case CK_BlockPointerToObjCPointerCast: 2619 case CK_AnyPointerToBlockPointerCast: 2620 case CK_BitCast: 2621 if (!resultType) 2622 resultType = CGF.ConvertType(ce->getType()); 2623 e = ce->getSubExpr(); 2624 assert(e->getType()->hasPointerRepresentation()); 2625 continue; 2626 2627 // For consumptions, just emit the subexpression and thus elide 2628 // the retain/release pair. 2629 case CK_ARCConsumeObject: { 2630 llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr()); 2631 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2632 return TryEmitResult(result, true); 2633 } 2634 2635 // Block extends are net +0. Naively, we could just recurse on 2636 // the subexpression, but actually we need to ensure that the 2637 // value is copied as a block, so there's a little filter here. 2638 case CK_ARCExtendBlockObject: { 2639 llvm::Value *result; // will be a +0 value 2640 2641 // If we can't safely assume the sub-expression will produce a 2642 // block-copied value, emit the sub-expression at +0. 2643 if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) { 2644 result = CGF.EmitScalarExpr(ce->getSubExpr()); 2645 2646 // Otherwise, try to emit the sub-expression at +1 recursively. 2647 } else { 2648 TryEmitResult subresult 2649 = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr()); 2650 result = subresult.getPointer(); 2651 2652 // If that produced a retained value, just use that, 2653 // possibly casting down. 2654 if (subresult.getInt()) { 2655 if (resultType) 2656 result = CGF.Builder.CreateBitCast(result, resultType); 2657 return TryEmitResult(result, true); 2658 } 2659 2660 // Otherwise it's +0. 2661 } 2662 2663 // Retain the object as a block, then cast down. 2664 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2665 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2666 return TryEmitResult(result, true); 2667 } 2668 2669 // For reclaims, emit the subexpression as a retained call and 2670 // skip the consumption. 2671 case CK_ARCReclaimReturnedObject: { 2672 llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr()); 2673 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2674 return TryEmitResult(result, true); 2675 } 2676 2677 default: 2678 break; 2679 } 2680 2681 // Skip __extension__. 2682 } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 2683 if (op->getOpcode() == UO_Extension) { 2684 e = op->getSubExpr(); 2685 continue; 2686 } 2687 2688 // For calls and message sends, use the retained-call logic. 2689 // Delegate inits are a special case in that they're the only 2690 // returns-retained expression that *isn't* surrounded by 2691 // a consume. 2692 } else if (isa<CallExpr>(e) || 2693 (isa<ObjCMessageExpr>(e) && 2694 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2695 llvm::Value *result = emitARCRetainCall(CGF, e); 2696 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2697 return TryEmitResult(result, true); 2698 2699 // Look through pseudo-object expressions. 2700 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2701 TryEmitResult result 2702 = tryEmitARCRetainPseudoObject(CGF, pseudo); 2703 if (resultType) { 2704 llvm::Value *value = result.getPointer(); 2705 value = CGF.Builder.CreateBitCast(value, resultType); 2706 result.setPointer(value); 2707 } 2708 return result; 2709 } 2710 2711 // Conservatively halt the search at any other expression kind. 2712 break; 2713 } 2714 2715 // We didn't find an obvious production, so emit what we've got and 2716 // tell the caller that we didn't manage to retain. 2717 llvm::Value *result = CGF.EmitScalarExpr(e); 2718 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2719 return TryEmitResult(result, false); 2720 } 2721 2722 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2723 LValue lvalue, 2724 QualType type) { 2725 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2726 llvm::Value *value = result.getPointer(); 2727 if (!result.getInt()) 2728 value = CGF.EmitARCRetain(type, value); 2729 return value; 2730 } 2731 2732 /// EmitARCRetainScalarExpr - Semantically equivalent to 2733 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2734 /// best-effort attempt to peephole expressions that naturally produce 2735 /// retained objects. 2736 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2737 // The retain needs to happen within the full-expression. 2738 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2739 enterFullExpression(cleanups); 2740 RunCleanupsScope scope(*this); 2741 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 2742 } 2743 2744 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2745 llvm::Value *value = result.getPointer(); 2746 if (!result.getInt()) 2747 value = EmitARCRetain(e->getType(), value); 2748 return value; 2749 } 2750 2751 llvm::Value * 2752 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2753 // The retain needs to happen within the full-expression. 2754 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2755 enterFullExpression(cleanups); 2756 RunCleanupsScope scope(*this); 2757 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 2758 } 2759 2760 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2761 llvm::Value *value = result.getPointer(); 2762 if (result.getInt()) 2763 value = EmitARCAutorelease(value); 2764 else 2765 value = EmitARCRetainAutorelease(e->getType(), value); 2766 return value; 2767 } 2768 2769 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2770 llvm::Value *result; 2771 bool doRetain; 2772 2773 if (shouldEmitSeparateBlockRetain(e)) { 2774 result = EmitScalarExpr(e); 2775 doRetain = true; 2776 } else { 2777 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2778 result = subresult.getPointer(); 2779 doRetain = !subresult.getInt(); 2780 } 2781 2782 if (doRetain) 2783 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2784 return EmitObjCConsumeObject(e->getType(), result); 2785 } 2786 2787 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2788 // In ARC, retain and autorelease the expression. 2789 if (getLangOpts().ObjCAutoRefCount) { 2790 // Do so before running any cleanups for the full-expression. 2791 // EmitARCRetainAutoreleaseScalarExpr does this for us. 2792 return EmitARCRetainAutoreleaseScalarExpr(expr); 2793 } 2794 2795 // Otherwise, use the normal scalar-expression emission. The 2796 // exception machinery doesn't do anything special with the 2797 // exception like retaining it, so there's no safety associated with 2798 // only running cleanups after the throw has started, and when it 2799 // matters it tends to be substantially inferior code. 2800 return EmitScalarExpr(expr); 2801 } 2802 2803 std::pair<LValue,llvm::Value*> 2804 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 2805 bool ignored) { 2806 // Evaluate the RHS first. 2807 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 2808 llvm::Value *value = result.getPointer(); 2809 2810 bool hasImmediateRetain = result.getInt(); 2811 2812 // If we didn't emit a retained object, and the l-value is of block 2813 // type, then we need to emit the block-retain immediately in case 2814 // it invalidates the l-value. 2815 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 2816 value = EmitARCRetainBlock(value, /*mandatory*/ false); 2817 hasImmediateRetain = true; 2818 } 2819 2820 LValue lvalue = EmitLValue(e->getLHS()); 2821 2822 // If the RHS was emitted retained, expand this. 2823 if (hasImmediateRetain) { 2824 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 2825 EmitStoreOfScalar(value, lvalue); 2826 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 2827 } else { 2828 value = EmitARCStoreStrong(lvalue, value, ignored); 2829 } 2830 2831 return std::pair<LValue,llvm::Value*>(lvalue, value); 2832 } 2833 2834 std::pair<LValue,llvm::Value*> 2835 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 2836 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 2837 LValue lvalue = EmitLValue(e->getLHS()); 2838 2839 EmitStoreOfScalar(value, lvalue); 2840 2841 return std::pair<LValue,llvm::Value*>(lvalue, value); 2842 } 2843 2844 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 2845 const ObjCAutoreleasePoolStmt &ARPS) { 2846 const Stmt *subStmt = ARPS.getSubStmt(); 2847 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 2848 2849 CGDebugInfo *DI = getDebugInfo(); 2850 if (DI) 2851 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 2852 2853 // Keep track of the current cleanup stack depth. 2854 RunCleanupsScope Scope(*this); 2855 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 2856 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 2857 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 2858 } else { 2859 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 2860 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 2861 } 2862 2863 for (const auto *I : S.body()) 2864 EmitStmt(I); 2865 2866 if (DI) 2867 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 2868 } 2869 2870 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2871 /// make sure it survives garbage collection until this point. 2872 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 2873 // We just use an inline assembly. 2874 llvm::FunctionType *extenderType 2875 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 2876 llvm::Value *extender 2877 = llvm::InlineAsm::get(extenderType, 2878 /* assembly */ "", 2879 /* constraints */ "r", 2880 /* side effects */ true); 2881 2882 object = Builder.CreateBitCast(object, VoidPtrTy); 2883 EmitNounwindRuntimeCall(extender, object); 2884 } 2885 2886 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 2887 /// non-trivial copy assignment function, produce following helper function. 2888 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 2889 /// 2890 llvm::Constant * 2891 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 2892 const ObjCPropertyImplDecl *PID) { 2893 if (!getLangOpts().CPlusPlus || 2894 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2895 return nullptr; 2896 QualType Ty = PID->getPropertyIvarDecl()->getType(); 2897 if (!Ty->isRecordType()) 2898 return nullptr; 2899 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2900 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2901 return nullptr; 2902 llvm::Constant *HelperFn = nullptr; 2903 if (hasTrivialSetExpr(PID)) 2904 return nullptr; 2905 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 2906 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 2907 return HelperFn; 2908 2909 ASTContext &C = getContext(); 2910 IdentifierInfo *II 2911 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 2912 FunctionDecl *FD = FunctionDecl::Create(C, 2913 C.getTranslationUnitDecl(), 2914 SourceLocation(), 2915 SourceLocation(), II, C.VoidTy, 2916 nullptr, SC_Static, 2917 false, 2918 false); 2919 2920 QualType DestTy = C.getPointerType(Ty); 2921 QualType SrcTy = Ty; 2922 SrcTy.addConst(); 2923 SrcTy = C.getPointerType(SrcTy); 2924 2925 FunctionArgList args; 2926 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 2927 args.push_back(&dstDecl); 2928 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 2929 args.push_back(&srcDecl); 2930 2931 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 2932 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All); 2933 2934 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2935 2936 llvm::Function *Fn = 2937 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2938 "__assign_helper_atomic_property_", 2939 &CGM.getModule()); 2940 2941 StartFunction(FD, C.VoidTy, Fn, FI, args); 2942 2943 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 2944 VK_RValue, SourceLocation()); 2945 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 2946 VK_LValue, OK_Ordinary, SourceLocation()); 2947 2948 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2949 VK_RValue, SourceLocation()); 2950 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2951 VK_LValue, OK_Ordinary, SourceLocation()); 2952 2953 Expr *Args[2] = { &DST, &SRC }; 2954 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 2955 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 2956 Args, DestTy->getPointeeType(), 2957 VK_LValue, SourceLocation(), false); 2958 2959 EmitStmt(&TheCall); 2960 2961 FinishFunction(); 2962 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 2963 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 2964 return HelperFn; 2965 } 2966 2967 llvm::Constant * 2968 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 2969 const ObjCPropertyImplDecl *PID) { 2970 if (!getLangOpts().CPlusPlus || 2971 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2972 return nullptr; 2973 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2974 QualType Ty = PD->getType(); 2975 if (!Ty->isRecordType()) 2976 return nullptr; 2977 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2978 return nullptr; 2979 llvm::Constant *HelperFn = nullptr; 2980 2981 if (hasTrivialGetExpr(PID)) 2982 return nullptr; 2983 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 2984 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 2985 return HelperFn; 2986 2987 2988 ASTContext &C = getContext(); 2989 IdentifierInfo *II 2990 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 2991 FunctionDecl *FD = FunctionDecl::Create(C, 2992 C.getTranslationUnitDecl(), 2993 SourceLocation(), 2994 SourceLocation(), II, C.VoidTy, 2995 nullptr, SC_Static, 2996 false, 2997 false); 2998 2999 QualType DestTy = C.getPointerType(Ty); 3000 QualType SrcTy = Ty; 3001 SrcTy.addConst(); 3002 SrcTy = C.getPointerType(SrcTy); 3003 3004 FunctionArgList args; 3005 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 3006 args.push_back(&dstDecl); 3007 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 3008 args.push_back(&srcDecl); 3009 3010 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 3011 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All); 3012 3013 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3014 3015 llvm::Function *Fn = 3016 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3017 "__copy_helper_atomic_property_", &CGM.getModule()); 3018 3019 StartFunction(FD, C.VoidTy, Fn, FI, args); 3020 3021 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 3022 VK_RValue, SourceLocation()); 3023 3024 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3025 VK_LValue, OK_Ordinary, SourceLocation()); 3026 3027 CXXConstructExpr *CXXConstExpr = 3028 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3029 3030 SmallVector<Expr*, 4> ConstructorArgs; 3031 ConstructorArgs.push_back(&SRC); 3032 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3033 CXXConstExpr->arg_end()); 3034 3035 CXXConstructExpr *TheCXXConstructExpr = 3036 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3037 CXXConstExpr->getConstructor(), 3038 CXXConstExpr->isElidable(), 3039 ConstructorArgs, 3040 CXXConstExpr->hadMultipleCandidates(), 3041 CXXConstExpr->isListInitialization(), 3042 CXXConstExpr->isStdInitListInitialization(), 3043 CXXConstExpr->requiresZeroInitialization(), 3044 CXXConstExpr->getConstructionKind(), 3045 SourceRange()); 3046 3047 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 3048 VK_RValue, SourceLocation()); 3049 3050 RValue DV = EmitAnyExpr(&DstExpr); 3051 CharUnits Alignment 3052 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3053 EmitAggExpr(TheCXXConstructExpr, 3054 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3055 Qualifiers(), 3056 AggValueSlot::IsDestructed, 3057 AggValueSlot::DoesNotNeedGCBarriers, 3058 AggValueSlot::IsNotAliased)); 3059 3060 FinishFunction(); 3061 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3062 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3063 return HelperFn; 3064 } 3065 3066 llvm::Value * 3067 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3068 // Get selectors for retain/autorelease. 3069 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3070 Selector CopySelector = 3071 getContext().Selectors.getNullarySelector(CopyID); 3072 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3073 Selector AutoreleaseSelector = 3074 getContext().Selectors.getNullarySelector(AutoreleaseID); 3075 3076 // Emit calls to retain/autorelease. 3077 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3078 llvm::Value *Val = Block; 3079 RValue Result; 3080 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3081 Ty, CopySelector, 3082 Val, CallArgList(), nullptr, nullptr); 3083 Val = Result.getScalarVal(); 3084 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3085 Ty, AutoreleaseSelector, 3086 Val, CallArgList(), nullptr, nullptr); 3087 Val = Result.getScalarVal(); 3088 return Val; 3089 } 3090 3091 3092 CGObjCRuntime::~CGObjCRuntime() {} 3093