1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/InlineAsm.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
30 static TryEmitResult
31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
32 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
33                                       QualType ET,
34                                       const ObjCMethodDecl *Method,
35                                       RValue Result);
36 
37 /// Given the address of a variable of pointer type, find the correct
38 /// null to store into it.
39 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
40   llvm::Type *type =
41     cast<llvm::PointerType>(addr->getType())->getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString());
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
57 ///
58 llvm::Value *
59 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
60   // Generate the correct selector for this literal's concrete type.
61   const Expr *SubExpr = E->getSubExpr();
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   assert(BoxingMethod && "BoxingMethod is null");
65   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
66   Selector Sel = BoxingMethod->getSelector();
67 
68   // Generate a reference to the class pointer, which will be the receiver.
69   // Assumes that the method was introduced in the class that should be
70   // messaged (avoids pulling it out of the result type).
71   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
72   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
73   llvm::Value *Receiver = Runtime.GetClass(Builder, ClassDecl);
74 
75   const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
76   QualType ArgQT = argDecl->getType().getUnqualifiedType();
77   RValue RV = EmitAnyExpr(SubExpr);
78   CallArgList Args;
79   Args.add(RV, ArgQT);
80 
81   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
82                                               BoxingMethod->getResultType(), Sel, Receiver, Args,
83                                               ClassDecl, BoxingMethod);
84   return Builder.CreateBitCast(result.getScalarVal(),
85                                ConvertType(E->getType()));
86 }
87 
88 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
89                                     const ObjCMethodDecl *MethodWithObjects) {
90   ASTContext &Context = CGM.getContext();
91   const ObjCDictionaryLiteral *DLE = 0;
92   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
93   if (!ALE)
94     DLE = cast<ObjCDictionaryLiteral>(E);
95 
96   // Compute the type of the array we're initializing.
97   uint64_t NumElements =
98     ALE ? ALE->getNumElements() : DLE->getNumElements();
99   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
100                             NumElements);
101   QualType ElementType = Context.getObjCIdType().withConst();
102   QualType ElementArrayType
103     = Context.getConstantArrayType(ElementType, APNumElements,
104                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
105 
106   // Allocate the temporary array(s).
107   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
108   llvm::Value *Keys = 0;
109   if (DLE)
110     Keys = CreateMemTemp(ElementArrayType, "keys");
111 
112   // Perform the actual initialialization of the array(s).
113   for (uint64_t i = 0; i < NumElements; i++) {
114     if (ALE) {
115       // Emit the initializer.
116       const Expr *Rhs = ALE->getElement(i);
117       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
118                                    ElementType,
119                                    Context.getTypeAlignInChars(Rhs->getType()),
120                                    Context);
121       EmitScalarInit(Rhs, /*D=*/0, LV, /*capturedByInit=*/false);
122     } else {
123       // Emit the key initializer.
124       const Expr *Key = DLE->getKeyValueElement(i).Key;
125       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
126                                       ElementType,
127                                     Context.getTypeAlignInChars(Key->getType()),
128                                       Context);
129       EmitScalarInit(Key, /*D=*/0, KeyLV, /*capturedByInit=*/false);
130 
131       // Emit the value initializer.
132       const Expr *Value = DLE->getKeyValueElement(i).Value;
133       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
134                                         ElementType,
135                                   Context.getTypeAlignInChars(Value->getType()),
136                                         Context);
137       EmitScalarInit(Value, /*D=*/0, ValueLV, /*capturedByInit=*/false);
138     }
139   }
140 
141   // Generate the argument list.
142   CallArgList Args;
143   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
144   const ParmVarDecl *argDecl = *PI++;
145   QualType ArgQT = argDecl->getType().getUnqualifiedType();
146   Args.add(RValue::get(Objects), ArgQT);
147   if (DLE) {
148     argDecl = *PI++;
149     ArgQT = argDecl->getType().getUnqualifiedType();
150     Args.add(RValue::get(Keys), ArgQT);
151   }
152   argDecl = *PI;
153   ArgQT = argDecl->getType().getUnqualifiedType();
154   llvm::Value *Count =
155     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
156   Args.add(RValue::get(Count), ArgQT);
157 
158   // Generate a reference to the class pointer, which will be the receiver.
159   Selector Sel = MethodWithObjects->getSelector();
160   QualType ResultType = E->getType();
161   const ObjCObjectPointerType *InterfacePointerType
162     = ResultType->getAsObjCInterfacePointerType();
163   ObjCInterfaceDecl *Class
164     = InterfacePointerType->getObjectType()->getInterface();
165   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
166   llvm::Value *Receiver = Runtime.GetClass(Builder, Class);
167 
168   // Generate the message send.
169   RValue result
170     = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
171                                   MethodWithObjects->getResultType(),
172                                   Sel,
173                                   Receiver, Args, Class,
174                                   MethodWithObjects);
175   return Builder.CreateBitCast(result.getScalarVal(),
176                                ConvertType(E->getType()));
177 }
178 
179 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
180   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
181 }
182 
183 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
184                                             const ObjCDictionaryLiteral *E) {
185   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
186 }
187 
188 /// Emit a selector.
189 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
190   // Untyped selector.
191   // Note that this implementation allows for non-constant strings to be passed
192   // as arguments to @selector().  Currently, the only thing preventing this
193   // behaviour is the type checking in the front end.
194   return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector());
195 }
196 
197 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
198   // FIXME: This should pass the Decl not the name.
199   return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol());
200 }
201 
202 /// \brief Adjust the type of the result of an Objective-C message send
203 /// expression when the method has a related result type.
204 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
205                                       QualType ExpT,
206                                       const ObjCMethodDecl *Method,
207                                       RValue Result) {
208   if (!Method)
209     return Result;
210 
211   if (!Method->hasRelatedResultType() ||
212       CGF.getContext().hasSameType(ExpT, Method->getResultType()) ||
213       !Result.isScalar())
214     return Result;
215 
216   // We have applied a related result type. Cast the rvalue appropriately.
217   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
218                                                CGF.ConvertType(ExpT)));
219 }
220 
221 /// Decide whether to extend the lifetime of the receiver of a
222 /// returns-inner-pointer message.
223 static bool
224 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
225   switch (message->getReceiverKind()) {
226 
227   // For a normal instance message, we should extend unless the
228   // receiver is loaded from a variable with precise lifetime.
229   case ObjCMessageExpr::Instance: {
230     const Expr *receiver = message->getInstanceReceiver();
231     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
232     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
233     receiver = ice->getSubExpr()->IgnoreParens();
234 
235     // Only __strong variables.
236     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
237       return true;
238 
239     // All ivars and fields have precise lifetime.
240     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
241       return false;
242 
243     // Otherwise, check for variables.
244     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
245     if (!declRef) return true;
246     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
247     if (!var) return true;
248 
249     // All variables have precise lifetime except local variables with
250     // automatic storage duration that aren't specially marked.
251     return (var->hasLocalStorage() &&
252             !var->hasAttr<ObjCPreciseLifetimeAttr>());
253   }
254 
255   case ObjCMessageExpr::Class:
256   case ObjCMessageExpr::SuperClass:
257     // It's never necessary for class objects.
258     return false;
259 
260   case ObjCMessageExpr::SuperInstance:
261     // We generally assume that 'self' lives throughout a method call.
262     return false;
263   }
264 
265   llvm_unreachable("invalid receiver kind");
266 }
267 
268 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
269                                             ReturnValueSlot Return) {
270   // Only the lookup mechanism and first two arguments of the method
271   // implementation vary between runtimes.  We can get the receiver and
272   // arguments in generic code.
273 
274   bool isDelegateInit = E->isDelegateInitCall();
275 
276   const ObjCMethodDecl *method = E->getMethodDecl();
277 
278   // We don't retain the receiver in delegate init calls, and this is
279   // safe because the receiver value is always loaded from 'self',
280   // which we zero out.  We don't want to Block_copy block receivers,
281   // though.
282   bool retainSelf =
283     (!isDelegateInit &&
284      CGM.getLangOpts().ObjCAutoRefCount &&
285      method &&
286      method->hasAttr<NSConsumesSelfAttr>());
287 
288   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
289   bool isSuperMessage = false;
290   bool isClassMessage = false;
291   ObjCInterfaceDecl *OID = 0;
292   // Find the receiver
293   QualType ReceiverType;
294   llvm::Value *Receiver = 0;
295   switch (E->getReceiverKind()) {
296   case ObjCMessageExpr::Instance:
297     ReceiverType = E->getInstanceReceiver()->getType();
298     if (retainSelf) {
299       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
300                                                    E->getInstanceReceiver());
301       Receiver = ter.getPointer();
302       if (ter.getInt()) retainSelf = false;
303     } else
304       Receiver = EmitScalarExpr(E->getInstanceReceiver());
305     break;
306 
307   case ObjCMessageExpr::Class: {
308     ReceiverType = E->getClassReceiver();
309     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
310     assert(ObjTy && "Invalid Objective-C class message send");
311     OID = ObjTy->getInterface();
312     assert(OID && "Invalid Objective-C class message send");
313     Receiver = Runtime.GetClass(Builder, OID);
314     isClassMessage = true;
315     break;
316   }
317 
318   case ObjCMessageExpr::SuperInstance:
319     ReceiverType = E->getSuperType();
320     Receiver = LoadObjCSelf();
321     isSuperMessage = true;
322     break;
323 
324   case ObjCMessageExpr::SuperClass:
325     ReceiverType = E->getSuperType();
326     Receiver = LoadObjCSelf();
327     isSuperMessage = true;
328     isClassMessage = true;
329     break;
330   }
331 
332   if (retainSelf)
333     Receiver = EmitARCRetainNonBlock(Receiver);
334 
335   // In ARC, we sometimes want to "extend the lifetime"
336   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
337   // messages.
338   if (getLangOpts().ObjCAutoRefCount && method &&
339       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
340       shouldExtendReceiverForInnerPointerMessage(E))
341     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
342 
343   QualType ResultType =
344     method ? method->getResultType() : E->getType();
345 
346   CallArgList Args;
347   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
348 
349   // For delegate init calls in ARC, do an unsafe store of null into
350   // self.  This represents the call taking direct ownership of that
351   // value.  We have to do this after emitting the other call
352   // arguments because they might also reference self, but we don't
353   // have to worry about any of them modifying self because that would
354   // be an undefined read and write of an object in unordered
355   // expressions.
356   if (isDelegateInit) {
357     assert(getLangOpts().ObjCAutoRefCount &&
358            "delegate init calls should only be marked in ARC");
359 
360     // Do an unsafe store of null into self.
361     llvm::Value *selfAddr =
362       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
363     assert(selfAddr && "no self entry for a delegate init call?");
364 
365     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
366   }
367 
368   RValue result;
369   if (isSuperMessage) {
370     // super is only valid in an Objective-C method
371     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
372     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
373     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
374                                               E->getSelector(),
375                                               OMD->getClassInterface(),
376                                               isCategoryImpl,
377                                               Receiver,
378                                               isClassMessage,
379                                               Args,
380                                               method);
381   } else {
382     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
383                                          E->getSelector(),
384                                          Receiver, Args, OID,
385                                          method);
386   }
387 
388   // For delegate init calls in ARC, implicitly store the result of
389   // the call back into self.  This takes ownership of the value.
390   if (isDelegateInit) {
391     llvm::Value *selfAddr =
392       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
393     llvm::Value *newSelf = result.getScalarVal();
394 
395     // The delegate return type isn't necessarily a matching type; in
396     // fact, it's quite likely to be 'id'.
397     llvm::Type *selfTy =
398       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
399     newSelf = Builder.CreateBitCast(newSelf, selfTy);
400 
401     Builder.CreateStore(newSelf, selfAddr);
402   }
403 
404   return AdjustRelatedResultType(*this, E->getType(), method, result);
405 }
406 
407 namespace {
408 struct FinishARCDealloc : EHScopeStack::Cleanup {
409   void Emit(CodeGenFunction &CGF, Flags flags) {
410     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
411 
412     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
413     const ObjCInterfaceDecl *iface = impl->getClassInterface();
414     if (!iface->getSuperClass()) return;
415 
416     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
417 
418     // Call [super dealloc] if we have a superclass.
419     llvm::Value *self = CGF.LoadObjCSelf();
420 
421     CallArgList args;
422     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
423                                                       CGF.getContext().VoidTy,
424                                                       method->getSelector(),
425                                                       iface,
426                                                       isCategory,
427                                                       self,
428                                                       /*is class msg*/ false,
429                                                       args,
430                                                       method);
431   }
432 };
433 }
434 
435 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
436 /// the LLVM function and sets the other context used by
437 /// CodeGenFunction.
438 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
439                                       const ObjCContainerDecl *CD,
440                                       SourceLocation StartLoc) {
441   FunctionArgList args;
442   // Check if we should generate debug info for this method.
443   if (CGM.getModuleDebugInfo() && !OMD->hasAttr<NoDebugAttr>())
444     DebugInfo = CGM.getModuleDebugInfo();
445 
446   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
447 
448   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
449   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
450 
451   args.push_back(OMD->getSelfDecl());
452   args.push_back(OMD->getCmdDecl());
453 
454   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
455          E = OMD->param_end(); PI != E; ++PI)
456     args.push_back(*PI);
457 
458   CurGD = OMD;
459 
460   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
461 
462   // In ARC, certain methods get an extra cleanup.
463   if (CGM.getLangOpts().ObjCAutoRefCount &&
464       OMD->isInstanceMethod() &&
465       OMD->getSelector().isUnarySelector()) {
466     const IdentifierInfo *ident =
467       OMD->getSelector().getIdentifierInfoForSlot(0);
468     if (ident->isStr("dealloc"))
469       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
470   }
471 }
472 
473 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
474                                               LValue lvalue, QualType type);
475 
476 /// Generate an Objective-C method.  An Objective-C method is a C function with
477 /// its pointer, name, and types registered in the class struture.
478 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
479   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
480   EmitStmt(OMD->getBody());
481   FinishFunction(OMD->getBodyRBrace());
482 }
483 
484 /// emitStructGetterCall - Call the runtime function to load a property
485 /// into the return value slot.
486 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
487                                  bool isAtomic, bool hasStrong) {
488   ASTContext &Context = CGF.getContext();
489 
490   llvm::Value *src =
491     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
492                           ivar, 0).getAddress();
493 
494   // objc_copyStruct (ReturnValue, &structIvar,
495   //                  sizeof (Type of Ivar), isAtomic, false);
496   CallArgList args;
497 
498   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
499   args.add(RValue::get(dest), Context.VoidPtrTy);
500 
501   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
502   args.add(RValue::get(src), Context.VoidPtrTy);
503 
504   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
505   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
506   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
507   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
508 
509   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
510   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
511                                                       FunctionType::ExtInfo(),
512                                                       RequiredArgs::All),
513                fn, ReturnValueSlot(), args);
514 }
515 
516 /// Determine whether the given architecture supports unaligned atomic
517 /// accesses.  They don't have to be fast, just faster than a function
518 /// call and a mutex.
519 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
520   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
521   // currently supported by the backend.)
522   return 0;
523 }
524 
525 /// Return the maximum size that permits atomic accesses for the given
526 /// architecture.
527 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
528                                         llvm::Triple::ArchType arch) {
529   // ARM has 8-byte atomic accesses, but it's not clear whether we
530   // want to rely on them here.
531 
532   // In the default case, just assume that any size up to a pointer is
533   // fine given adequate alignment.
534   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
535 }
536 
537 namespace {
538   class PropertyImplStrategy {
539   public:
540     enum StrategyKind {
541       /// The 'native' strategy is to use the architecture's provided
542       /// reads and writes.
543       Native,
544 
545       /// Use objc_setProperty and objc_getProperty.
546       GetSetProperty,
547 
548       /// Use objc_setProperty for the setter, but use expression
549       /// evaluation for the getter.
550       SetPropertyAndExpressionGet,
551 
552       /// Use objc_copyStruct.
553       CopyStruct,
554 
555       /// The 'expression' strategy is to emit normal assignment or
556       /// lvalue-to-rvalue expressions.
557       Expression
558     };
559 
560     StrategyKind getKind() const { return StrategyKind(Kind); }
561 
562     bool hasStrongMember() const { return HasStrong; }
563     bool isAtomic() const { return IsAtomic; }
564     bool isCopy() const { return IsCopy; }
565 
566     CharUnits getIvarSize() const { return IvarSize; }
567     CharUnits getIvarAlignment() const { return IvarAlignment; }
568 
569     PropertyImplStrategy(CodeGenModule &CGM,
570                          const ObjCPropertyImplDecl *propImpl);
571 
572   private:
573     unsigned Kind : 8;
574     unsigned IsAtomic : 1;
575     unsigned IsCopy : 1;
576     unsigned HasStrong : 1;
577 
578     CharUnits IvarSize;
579     CharUnits IvarAlignment;
580   };
581 }
582 
583 /// Pick an implementation strategy for the the given property synthesis.
584 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
585                                      const ObjCPropertyImplDecl *propImpl) {
586   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
587   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
588 
589   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
590   IsAtomic = prop->isAtomic();
591   HasStrong = false; // doesn't matter here.
592 
593   // Evaluate the ivar's size and alignment.
594   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
595   QualType ivarType = ivar->getType();
596   llvm::tie(IvarSize, IvarAlignment)
597     = CGM.getContext().getTypeInfoInChars(ivarType);
598 
599   // If we have a copy property, we always have to use getProperty/setProperty.
600   // TODO: we could actually use setProperty and an expression for non-atomics.
601   if (IsCopy) {
602     Kind = GetSetProperty;
603     return;
604   }
605 
606   // Handle retain.
607   if (setterKind == ObjCPropertyDecl::Retain) {
608     // In GC-only, there's nothing special that needs to be done.
609     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
610       // fallthrough
611 
612     // In ARC, if the property is non-atomic, use expression emission,
613     // which translates to objc_storeStrong.  This isn't required, but
614     // it's slightly nicer.
615     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
616       Kind = Expression;
617       return;
618 
619     // Otherwise, we need to at least use setProperty.  However, if
620     // the property isn't atomic, we can use normal expression
621     // emission for the getter.
622     } else if (!IsAtomic) {
623       Kind = SetPropertyAndExpressionGet;
624       return;
625 
626     // Otherwise, we have to use both setProperty and getProperty.
627     } else {
628       Kind = GetSetProperty;
629       return;
630     }
631   }
632 
633   // If we're not atomic, just use expression accesses.
634   if (!IsAtomic) {
635     Kind = Expression;
636     return;
637   }
638 
639   // Properties on bitfield ivars need to be emitted using expression
640   // accesses even if they're nominally atomic.
641   if (ivar->isBitField()) {
642     Kind = Expression;
643     return;
644   }
645 
646   // GC-qualified or ARC-qualified ivars need to be emitted as
647   // expressions.  This actually works out to being atomic anyway,
648   // except for ARC __strong, but that should trigger the above code.
649   if (ivarType.hasNonTrivialObjCLifetime() ||
650       (CGM.getLangOpts().getGC() &&
651        CGM.getContext().getObjCGCAttrKind(ivarType))) {
652     Kind = Expression;
653     return;
654   }
655 
656   // Compute whether the ivar has strong members.
657   if (CGM.getLangOpts().getGC())
658     if (const RecordType *recordType = ivarType->getAs<RecordType>())
659       HasStrong = recordType->getDecl()->hasObjectMember();
660 
661   // We can never access structs with object members with a native
662   // access, because we need to use write barriers.  This is what
663   // objc_copyStruct is for.
664   if (HasStrong) {
665     Kind = CopyStruct;
666     return;
667   }
668 
669   // Otherwise, this is target-dependent and based on the size and
670   // alignment of the ivar.
671 
672   // If the size of the ivar is not a power of two, give up.  We don't
673   // want to get into the business of doing compare-and-swaps.
674   if (!IvarSize.isPowerOfTwo()) {
675     Kind = CopyStruct;
676     return;
677   }
678 
679   llvm::Triple::ArchType arch =
680     CGM.getContext().getTargetInfo().getTriple().getArch();
681 
682   // Most architectures require memory to fit within a single cache
683   // line, so the alignment has to be at least the size of the access.
684   // Otherwise we have to grab a lock.
685   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
686     Kind = CopyStruct;
687     return;
688   }
689 
690   // If the ivar's size exceeds the architecture's maximum atomic
691   // access size, we have to use CopyStruct.
692   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
693     Kind = CopyStruct;
694     return;
695   }
696 
697   // Otherwise, we can use native loads and stores.
698   Kind = Native;
699 }
700 
701 /// \brief Generate an Objective-C property getter function.
702 ///
703 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
704 /// is illegal within a category.
705 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
706                                          const ObjCPropertyImplDecl *PID) {
707   llvm::Constant *AtomicHelperFn =
708     GenerateObjCAtomicGetterCopyHelperFunction(PID);
709   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
710   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
711   assert(OMD && "Invalid call to generate getter (empty method)");
712   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
713 
714   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
715 
716   FinishFunction();
717 }
718 
719 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
720   const Expr *getter = propImpl->getGetterCXXConstructor();
721   if (!getter) return true;
722 
723   // Sema only makes only of these when the ivar has a C++ class type,
724   // so the form is pretty constrained.
725 
726   // If the property has a reference type, we might just be binding a
727   // reference, in which case the result will be a gl-value.  We should
728   // treat this as a non-trivial operation.
729   if (getter->isGLValue())
730     return false;
731 
732   // If we selected a trivial copy-constructor, we're okay.
733   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
734     return (construct->getConstructor()->isTrivial());
735 
736   // The constructor might require cleanups (in which case it's never
737   // trivial).
738   assert(isa<ExprWithCleanups>(getter));
739   return false;
740 }
741 
742 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
743 /// copy the ivar into the resturn slot.
744 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
745                                           llvm::Value *returnAddr,
746                                           ObjCIvarDecl *ivar,
747                                           llvm::Constant *AtomicHelperFn) {
748   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
749   //                           AtomicHelperFn);
750   CallArgList args;
751 
752   // The 1st argument is the return Slot.
753   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
754 
755   // The 2nd argument is the address of the ivar.
756   llvm::Value *ivarAddr =
757   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
758                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
759   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
760   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
761 
762   // Third argument is the helper function.
763   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
764 
765   llvm::Value *copyCppAtomicObjectFn =
766   CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
767   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
768                                                       args,
769                                                       FunctionType::ExtInfo(),
770                                                       RequiredArgs::All),
771                copyCppAtomicObjectFn, ReturnValueSlot(), args);
772 }
773 
774 void
775 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
776                                         const ObjCPropertyImplDecl *propImpl,
777                                         const ObjCMethodDecl *GetterMethodDecl,
778                                         llvm::Constant *AtomicHelperFn) {
779   // If there's a non-trivial 'get' expression, we just have to emit that.
780   if (!hasTrivialGetExpr(propImpl)) {
781     if (!AtomicHelperFn) {
782       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
783                      /*nrvo*/ 0);
784       EmitReturnStmt(ret);
785     }
786     else {
787       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
788       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
789                                     ivar, AtomicHelperFn);
790     }
791     return;
792   }
793 
794   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
795   QualType propType = prop->getType();
796   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
797 
798   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
799 
800   // Pick an implementation strategy.
801   PropertyImplStrategy strategy(CGM, propImpl);
802   switch (strategy.getKind()) {
803   case PropertyImplStrategy::Native: {
804     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
805 
806     // Currently, all atomic accesses have to be through integer
807     // types, so there's no point in trying to pick a prettier type.
808     llvm::Type *bitcastType =
809       llvm::Type::getIntNTy(getLLVMContext(),
810                             getContext().toBits(strategy.getIvarSize()));
811     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
812 
813     // Perform an atomic load.  This does not impose ordering constraints.
814     llvm::Value *ivarAddr = LV.getAddress();
815     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
816     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
817     load->setAlignment(strategy.getIvarAlignment().getQuantity());
818     load->setAtomic(llvm::Unordered);
819 
820     // Store that value into the return address.  Doing this with a
821     // bitcast is likely to produce some pretty ugly IR, but it's not
822     // the *most* terrible thing in the world.
823     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
824 
825     // Make sure we don't do an autorelease.
826     AutoreleaseResult = false;
827     return;
828   }
829 
830   case PropertyImplStrategy::GetSetProperty: {
831     llvm::Value *getPropertyFn =
832       CGM.getObjCRuntime().GetPropertyGetFunction();
833     if (!getPropertyFn) {
834       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
835       return;
836     }
837 
838     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
839     // FIXME: Can't this be simpler? This might even be worse than the
840     // corresponding gcc code.
841     llvm::Value *cmd =
842       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
843     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
844     llvm::Value *ivarOffset =
845       EmitIvarOffset(classImpl->getClassInterface(), ivar);
846 
847     CallArgList args;
848     args.add(RValue::get(self), getContext().getObjCIdType());
849     args.add(RValue::get(cmd), getContext().getObjCSelType());
850     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
851     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
852              getContext().BoolTy);
853 
854     // FIXME: We shouldn't need to get the function info here, the
855     // runtime already should have computed it to build the function.
856     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
857                                                        FunctionType::ExtInfo(),
858                                                             RequiredArgs::All),
859                          getPropertyFn, ReturnValueSlot(), args);
860 
861     // We need to fix the type here. Ivars with copy & retain are
862     // always objects so we don't need to worry about complex or
863     // aggregates.
864     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
865            getTypes().ConvertType(getterMethod->getResultType())));
866 
867     EmitReturnOfRValue(RV, propType);
868 
869     // objc_getProperty does an autorelease, so we should suppress ours.
870     AutoreleaseResult = false;
871 
872     return;
873   }
874 
875   case PropertyImplStrategy::CopyStruct:
876     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
877                          strategy.hasStrongMember());
878     return;
879 
880   case PropertyImplStrategy::Expression:
881   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
882     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
883 
884     QualType ivarType = ivar->getType();
885     if (ivarType->isAnyComplexType()) {
886       ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(),
887                                                LV.isVolatileQualified());
888       StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified());
889     } else if (hasAggregateLLVMType(ivarType)) {
890       // The return value slot is guaranteed to not be aliased, but
891       // that's not necessarily the same as "on the stack", so
892       // we still potentially need objc_memmove_collectable.
893       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
894     } else {
895       llvm::Value *value;
896       if (propType->isReferenceType()) {
897         value = LV.getAddress();
898       } else {
899         // We want to load and autoreleaseReturnValue ARC __weak ivars.
900         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
901           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
902 
903         // Otherwise we want to do a simple load, suppressing the
904         // final autorelease.
905         } else {
906           value = EmitLoadOfLValue(LV).getScalarVal();
907           AutoreleaseResult = false;
908         }
909 
910         value = Builder.CreateBitCast(value, ConvertType(propType));
911         value = Builder.CreateBitCast(value,
912                   ConvertType(GetterMethodDecl->getResultType()));
913       }
914 
915       EmitReturnOfRValue(RValue::get(value), propType);
916     }
917     return;
918   }
919 
920   }
921   llvm_unreachable("bad @property implementation strategy!");
922 }
923 
924 /// emitStructSetterCall - Call the runtime function to store the value
925 /// from the first formal parameter into the given ivar.
926 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
927                                  ObjCIvarDecl *ivar) {
928   // objc_copyStruct (&structIvar, &Arg,
929   //                  sizeof (struct something), true, false);
930   CallArgList args;
931 
932   // The first argument is the address of the ivar.
933   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
934                                                 CGF.LoadObjCSelf(), ivar, 0)
935     .getAddress();
936   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
937   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
938 
939   // The second argument is the address of the parameter variable.
940   ParmVarDecl *argVar = *OMD->param_begin();
941   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
942                      VK_LValue, SourceLocation());
943   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
944   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
945   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
946 
947   // The third argument is the sizeof the type.
948   llvm::Value *size =
949     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
950   args.add(RValue::get(size), CGF.getContext().getSizeType());
951 
952   // The fourth argument is the 'isAtomic' flag.
953   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
954 
955   // The fifth argument is the 'hasStrong' flag.
956   // FIXME: should this really always be false?
957   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
958 
959   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
960   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
961                                                       args,
962                                                       FunctionType::ExtInfo(),
963                                                       RequiredArgs::All),
964                copyStructFn, ReturnValueSlot(), args);
965 }
966 
967 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
968 /// the value from the first formal parameter into the given ivar, using
969 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
970 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
971                                           ObjCMethodDecl *OMD,
972                                           ObjCIvarDecl *ivar,
973                                           llvm::Constant *AtomicHelperFn) {
974   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
975   //                           AtomicHelperFn);
976   CallArgList args;
977 
978   // The first argument is the address of the ivar.
979   llvm::Value *ivarAddr =
980     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
981                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
982   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
983   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
984 
985   // The second argument is the address of the parameter variable.
986   ParmVarDecl *argVar = *OMD->param_begin();
987   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
988                      VK_LValue, SourceLocation());
989   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
990   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
991   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
992 
993   // Third argument is the helper function.
994   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
995 
996   llvm::Value *copyCppAtomicObjectFn =
997     CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
998   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
999                                                       args,
1000                                                       FunctionType::ExtInfo(),
1001                                                       RequiredArgs::All),
1002                copyCppAtomicObjectFn, ReturnValueSlot(), args);
1003 
1004 
1005 }
1006 
1007 
1008 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1009   Expr *setter = PID->getSetterCXXAssignment();
1010   if (!setter) return true;
1011 
1012   // Sema only makes only of these when the ivar has a C++ class type,
1013   // so the form is pretty constrained.
1014 
1015   // An operator call is trivial if the function it calls is trivial.
1016   // This also implies that there's nothing non-trivial going on with
1017   // the arguments, because operator= can only be trivial if it's a
1018   // synthesized assignment operator and therefore both parameters are
1019   // references.
1020   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1021     if (const FunctionDecl *callee
1022           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1023       if (callee->isTrivial())
1024         return true;
1025     return false;
1026   }
1027 
1028   assert(isa<ExprWithCleanups>(setter));
1029   return false;
1030 }
1031 
1032 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1033   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1034     return false;
1035   const TargetInfo &Target = CGM.getContext().getTargetInfo();
1036 
1037   if (Target.getPlatformName() != "macosx")
1038     return false;
1039 
1040   return Target.getPlatformMinVersion() >= VersionTuple(10, 8);
1041 }
1042 
1043 void
1044 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1045                                         const ObjCPropertyImplDecl *propImpl,
1046                                         llvm::Constant *AtomicHelperFn) {
1047   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1048   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1049   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1050 
1051   // Just use the setter expression if Sema gave us one and it's
1052   // non-trivial.
1053   if (!hasTrivialSetExpr(propImpl)) {
1054     if (!AtomicHelperFn)
1055       // If non-atomic, assignment is called directly.
1056       EmitStmt(propImpl->getSetterCXXAssignment());
1057     else
1058       // If atomic, assignment is called via a locking api.
1059       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1060                                     AtomicHelperFn);
1061     return;
1062   }
1063 
1064   PropertyImplStrategy strategy(CGM, propImpl);
1065   switch (strategy.getKind()) {
1066   case PropertyImplStrategy::Native: {
1067     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1068 
1069     LValue ivarLValue =
1070       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1071     llvm::Value *ivarAddr = ivarLValue.getAddress();
1072 
1073     // Currently, all atomic accesses have to be through integer
1074     // types, so there's no point in trying to pick a prettier type.
1075     llvm::Type *bitcastType =
1076       llvm::Type::getIntNTy(getLLVMContext(),
1077                             getContext().toBits(strategy.getIvarSize()));
1078     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1079 
1080     // Cast both arguments to the chosen operation type.
1081     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1082     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1083 
1084     // This bitcast load is likely to cause some nasty IR.
1085     llvm::Value *load = Builder.CreateLoad(argAddr);
1086 
1087     // Perform an atomic store.  There are no memory ordering requirements.
1088     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1089     store->setAlignment(strategy.getIvarAlignment().getQuantity());
1090     store->setAtomic(llvm::Unordered);
1091     return;
1092   }
1093 
1094   case PropertyImplStrategy::GetSetProperty:
1095   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1096 
1097     llvm::Value *setOptimizedPropertyFn = 0;
1098     llvm::Value *setPropertyFn = 0;
1099     if (UseOptimizedSetter(CGM)) {
1100       // 10.8 code and GC is off
1101       setOptimizedPropertyFn =
1102         CGM.getObjCRuntime()
1103            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1104                                             strategy.isCopy());
1105       if (!setOptimizedPropertyFn) {
1106         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1107         return;
1108       }
1109     }
1110     else {
1111       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1112       if (!setPropertyFn) {
1113         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1114         return;
1115       }
1116     }
1117 
1118     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1119     //                       <is-atomic>, <is-copy>).
1120     llvm::Value *cmd =
1121       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1122     llvm::Value *self =
1123       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1124     llvm::Value *ivarOffset =
1125       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1126     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1127     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1128 
1129     CallArgList args;
1130     args.add(RValue::get(self), getContext().getObjCIdType());
1131     args.add(RValue::get(cmd), getContext().getObjCSelType());
1132     if (setOptimizedPropertyFn) {
1133       args.add(RValue::get(arg), getContext().getObjCIdType());
1134       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1135       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1136                                                   FunctionType::ExtInfo(),
1137                                                   RequiredArgs::All),
1138                setOptimizedPropertyFn, ReturnValueSlot(), args);
1139     } else {
1140       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1141       args.add(RValue::get(arg), getContext().getObjCIdType());
1142       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1143                getContext().BoolTy);
1144       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1145                getContext().BoolTy);
1146       // FIXME: We shouldn't need to get the function info here, the runtime
1147       // already should have computed it to build the function.
1148       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1149                                                   FunctionType::ExtInfo(),
1150                                                   RequiredArgs::All),
1151                setPropertyFn, ReturnValueSlot(), args);
1152     }
1153 
1154     return;
1155   }
1156 
1157   case PropertyImplStrategy::CopyStruct:
1158     emitStructSetterCall(*this, setterMethod, ivar);
1159     return;
1160 
1161   case PropertyImplStrategy::Expression:
1162     break;
1163   }
1164 
1165   // Otherwise, fake up some ASTs and emit a normal assignment.
1166   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1167   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1168                    VK_LValue, SourceLocation());
1169   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1170                             selfDecl->getType(), CK_LValueToRValue, &self,
1171                             VK_RValue);
1172   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1173                           SourceLocation(), &selfLoad, true, true);
1174 
1175   ParmVarDecl *argDecl = *setterMethod->param_begin();
1176   QualType argType = argDecl->getType().getNonReferenceType();
1177   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1178   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1179                            argType.getUnqualifiedType(), CK_LValueToRValue,
1180                            &arg, VK_RValue);
1181 
1182   // The property type can differ from the ivar type in some situations with
1183   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1184   // The following absurdity is just to ensure well-formed IR.
1185   CastKind argCK = CK_NoOp;
1186   if (ivarRef.getType()->isObjCObjectPointerType()) {
1187     if (argLoad.getType()->isObjCObjectPointerType())
1188       argCK = CK_BitCast;
1189     else if (argLoad.getType()->isBlockPointerType())
1190       argCK = CK_BlockPointerToObjCPointerCast;
1191     else
1192       argCK = CK_CPointerToObjCPointerCast;
1193   } else if (ivarRef.getType()->isBlockPointerType()) {
1194      if (argLoad.getType()->isBlockPointerType())
1195       argCK = CK_BitCast;
1196     else
1197       argCK = CK_AnyPointerToBlockPointerCast;
1198   } else if (ivarRef.getType()->isPointerType()) {
1199     argCK = CK_BitCast;
1200   }
1201   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1202                            ivarRef.getType(), argCK, &argLoad,
1203                            VK_RValue);
1204   Expr *finalArg = &argLoad;
1205   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1206                                            argLoad.getType()))
1207     finalArg = &argCast;
1208 
1209 
1210   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1211                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1212                         SourceLocation());
1213   EmitStmt(&assign);
1214 }
1215 
1216 /// \brief Generate an Objective-C property setter function.
1217 ///
1218 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1219 /// is illegal within a category.
1220 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1221                                          const ObjCPropertyImplDecl *PID) {
1222   llvm::Constant *AtomicHelperFn =
1223     GenerateObjCAtomicSetterCopyHelperFunction(PID);
1224   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1225   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1226   assert(OMD && "Invalid call to generate setter (empty method)");
1227   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
1228 
1229   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1230 
1231   FinishFunction();
1232 }
1233 
1234 namespace {
1235   struct DestroyIvar : EHScopeStack::Cleanup {
1236   private:
1237     llvm::Value *addr;
1238     const ObjCIvarDecl *ivar;
1239     CodeGenFunction::Destroyer *destroyer;
1240     bool useEHCleanupForArray;
1241   public:
1242     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1243                 CodeGenFunction::Destroyer *destroyer,
1244                 bool useEHCleanupForArray)
1245       : addr(addr), ivar(ivar), destroyer(destroyer),
1246         useEHCleanupForArray(useEHCleanupForArray) {}
1247 
1248     void Emit(CodeGenFunction &CGF, Flags flags) {
1249       LValue lvalue
1250         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1251       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1252                       flags.isForNormalCleanup() && useEHCleanupForArray);
1253     }
1254   };
1255 }
1256 
1257 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1258 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1259                                       llvm::Value *addr,
1260                                       QualType type) {
1261   llvm::Value *null = getNullForVariable(addr);
1262   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1263 }
1264 
1265 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1266                                   ObjCImplementationDecl *impl) {
1267   CodeGenFunction::RunCleanupsScope scope(CGF);
1268 
1269   llvm::Value *self = CGF.LoadObjCSelf();
1270 
1271   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1272   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1273        ivar; ivar = ivar->getNextIvar()) {
1274     QualType type = ivar->getType();
1275 
1276     // Check whether the ivar is a destructible type.
1277     QualType::DestructionKind dtorKind = type.isDestructedType();
1278     if (!dtorKind) continue;
1279 
1280     CodeGenFunction::Destroyer *destroyer = 0;
1281 
1282     // Use a call to objc_storeStrong to destroy strong ivars, for the
1283     // general benefit of the tools.
1284     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1285       destroyer = destroyARCStrongWithStore;
1286 
1287     // Otherwise use the default for the destruction kind.
1288     } else {
1289       destroyer = CGF.getDestroyer(dtorKind);
1290     }
1291 
1292     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1293 
1294     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1295                                          cleanupKind & EHCleanup);
1296   }
1297 
1298   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1299 }
1300 
1301 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1302                                                  ObjCMethodDecl *MD,
1303                                                  bool ctor) {
1304   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1305   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1306 
1307   // Emit .cxx_construct.
1308   if (ctor) {
1309     // Suppress the final autorelease in ARC.
1310     AutoreleaseResult = false;
1311 
1312     SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
1313     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1314            E = IMP->init_end(); B != E; ++B) {
1315       CXXCtorInitializer *IvarInit = (*B);
1316       FieldDecl *Field = IvarInit->getAnyMember();
1317       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
1318       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1319                                     LoadObjCSelf(), Ivar, 0);
1320       EmitAggExpr(IvarInit->getInit(),
1321                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1322                                           AggValueSlot::DoesNotNeedGCBarriers,
1323                                           AggValueSlot::IsNotAliased));
1324     }
1325     // constructor returns 'self'.
1326     CodeGenTypes &Types = CGM.getTypes();
1327     QualType IdTy(CGM.getContext().getObjCIdType());
1328     llvm::Value *SelfAsId =
1329       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1330     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1331 
1332   // Emit .cxx_destruct.
1333   } else {
1334     emitCXXDestructMethod(*this, IMP);
1335   }
1336   FinishFunction();
1337 }
1338 
1339 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1340   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1341   it++; it++;
1342   const ABIArgInfo &AI = it->info;
1343   // FIXME. Is this sufficient check?
1344   return (AI.getKind() == ABIArgInfo::Indirect);
1345 }
1346 
1347 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1348   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1349     return false;
1350   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1351     return FDTTy->getDecl()->hasObjectMember();
1352   return false;
1353 }
1354 
1355 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1356   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1357   return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self");
1358 }
1359 
1360 QualType CodeGenFunction::TypeOfSelfObject() {
1361   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1362   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1363   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1364     getContext().getCanonicalType(selfDecl->getType()));
1365   return PTy->getPointeeType();
1366 }
1367 
1368 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1369   llvm::Constant *EnumerationMutationFn =
1370     CGM.getObjCRuntime().EnumerationMutationFunction();
1371 
1372   if (!EnumerationMutationFn) {
1373     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1374     return;
1375   }
1376 
1377   CGDebugInfo *DI = getDebugInfo();
1378   if (DI)
1379     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1380 
1381   // The local variable comes into scope immediately.
1382   AutoVarEmission variable = AutoVarEmission::invalid();
1383   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1384     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1385 
1386   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1387 
1388   // Fast enumeration state.
1389   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1390   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1391   EmitNullInitialization(StatePtr, StateTy);
1392 
1393   // Number of elements in the items array.
1394   static const unsigned NumItems = 16;
1395 
1396   // Fetch the countByEnumeratingWithState:objects:count: selector.
1397   IdentifierInfo *II[] = {
1398     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1399     &CGM.getContext().Idents.get("objects"),
1400     &CGM.getContext().Idents.get("count")
1401   };
1402   Selector FastEnumSel =
1403     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1404 
1405   QualType ItemsTy =
1406     getContext().getConstantArrayType(getContext().getObjCIdType(),
1407                                       llvm::APInt(32, NumItems),
1408                                       ArrayType::Normal, 0);
1409   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1410 
1411   // Emit the collection pointer.  In ARC, we do a retain.
1412   llvm::Value *Collection;
1413   if (getLangOpts().ObjCAutoRefCount) {
1414     Collection = EmitARCRetainScalarExpr(S.getCollection());
1415 
1416     // Enter a cleanup to do the release.
1417     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1418   } else {
1419     Collection = EmitScalarExpr(S.getCollection());
1420   }
1421 
1422   // The 'continue' label needs to appear within the cleanup for the
1423   // collection object.
1424   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1425 
1426   // Send it our message:
1427   CallArgList Args;
1428 
1429   // The first argument is a temporary of the enumeration-state type.
1430   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1431 
1432   // The second argument is a temporary array with space for NumItems
1433   // pointers.  We'll actually be loading elements from the array
1434   // pointer written into the control state; this buffer is so that
1435   // collections that *aren't* backed by arrays can still queue up
1436   // batches of elements.
1437   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1438 
1439   // The third argument is the capacity of that temporary array.
1440   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1441   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1442   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1443 
1444   // Start the enumeration.
1445   RValue CountRV =
1446     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1447                                              getContext().UnsignedLongTy,
1448                                              FastEnumSel,
1449                                              Collection, Args);
1450 
1451   // The initial number of objects that were returned in the buffer.
1452   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1453 
1454   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1455   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1456 
1457   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1458 
1459   // If the limit pointer was zero to begin with, the collection is
1460   // empty; skip all this.
1461   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1462                        EmptyBB, LoopInitBB);
1463 
1464   // Otherwise, initialize the loop.
1465   EmitBlock(LoopInitBB);
1466 
1467   // Save the initial mutations value.  This is the value at an
1468   // address that was written into the state object by
1469   // countByEnumeratingWithState:objects:count:.
1470   llvm::Value *StateMutationsPtrPtr =
1471     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1472   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1473                                                       "mutationsptr");
1474 
1475   llvm::Value *initialMutations =
1476     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1477 
1478   // Start looping.  This is the point we return to whenever we have a
1479   // fresh, non-empty batch of objects.
1480   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1481   EmitBlock(LoopBodyBB);
1482 
1483   // The current index into the buffer.
1484   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1485   index->addIncoming(zero, LoopInitBB);
1486 
1487   // The current buffer size.
1488   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1489   count->addIncoming(initialBufferLimit, LoopInitBB);
1490 
1491   // Check whether the mutations value has changed from where it was
1492   // at start.  StateMutationsPtr should actually be invariant between
1493   // refreshes.
1494   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1495   llvm::Value *currentMutations
1496     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1497 
1498   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1499   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1500 
1501   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1502                        WasNotMutatedBB, WasMutatedBB);
1503 
1504   // If so, call the enumeration-mutation function.
1505   EmitBlock(WasMutatedBB);
1506   llvm::Value *V =
1507     Builder.CreateBitCast(Collection,
1508                           ConvertType(getContext().getObjCIdType()));
1509   CallArgList Args2;
1510   Args2.add(RValue::get(V), getContext().getObjCIdType());
1511   // FIXME: We shouldn't need to get the function info here, the runtime already
1512   // should have computed it to build the function.
1513   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1514                                                   FunctionType::ExtInfo(),
1515                                                   RequiredArgs::All),
1516            EnumerationMutationFn, ReturnValueSlot(), Args2);
1517 
1518   // Otherwise, or if the mutation function returns, just continue.
1519   EmitBlock(WasNotMutatedBB);
1520 
1521   // Initialize the element variable.
1522   RunCleanupsScope elementVariableScope(*this);
1523   bool elementIsVariable;
1524   LValue elementLValue;
1525   QualType elementType;
1526   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1527     // Initialize the variable, in case it's a __block variable or something.
1528     EmitAutoVarInit(variable);
1529 
1530     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1531     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1532                         VK_LValue, SourceLocation());
1533     elementLValue = EmitLValue(&tempDRE);
1534     elementType = D->getType();
1535     elementIsVariable = true;
1536 
1537     if (D->isARCPseudoStrong())
1538       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1539   } else {
1540     elementLValue = LValue(); // suppress warning
1541     elementType = cast<Expr>(S.getElement())->getType();
1542     elementIsVariable = false;
1543   }
1544   llvm::Type *convertedElementType = ConvertType(elementType);
1545 
1546   // Fetch the buffer out of the enumeration state.
1547   // TODO: this pointer should actually be invariant between
1548   // refreshes, which would help us do certain loop optimizations.
1549   llvm::Value *StateItemsPtr =
1550     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1551   llvm::Value *EnumStateItems =
1552     Builder.CreateLoad(StateItemsPtr, "stateitems");
1553 
1554   // Fetch the value at the current index from the buffer.
1555   llvm::Value *CurrentItemPtr =
1556     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1557   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1558 
1559   // Cast that value to the right type.
1560   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1561                                       "currentitem");
1562 
1563   // Make sure we have an l-value.  Yes, this gets evaluated every
1564   // time through the loop.
1565   if (!elementIsVariable) {
1566     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1567     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1568   } else {
1569     EmitScalarInit(CurrentItem, elementLValue);
1570   }
1571 
1572   // If we do have an element variable, this assignment is the end of
1573   // its initialization.
1574   if (elementIsVariable)
1575     EmitAutoVarCleanups(variable);
1576 
1577   // Perform the loop body, setting up break and continue labels.
1578   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1579   {
1580     RunCleanupsScope Scope(*this);
1581     EmitStmt(S.getBody());
1582   }
1583   BreakContinueStack.pop_back();
1584 
1585   // Destroy the element variable now.
1586   elementVariableScope.ForceCleanup();
1587 
1588   // Check whether there are more elements.
1589   EmitBlock(AfterBody.getBlock());
1590 
1591   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1592 
1593   // First we check in the local buffer.
1594   llvm::Value *indexPlusOne
1595     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1596 
1597   // If we haven't overrun the buffer yet, we can continue.
1598   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1599                        LoopBodyBB, FetchMoreBB);
1600 
1601   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1602   count->addIncoming(count, AfterBody.getBlock());
1603 
1604   // Otherwise, we have to fetch more elements.
1605   EmitBlock(FetchMoreBB);
1606 
1607   CountRV =
1608     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1609                                              getContext().UnsignedLongTy,
1610                                              FastEnumSel,
1611                                              Collection, Args);
1612 
1613   // If we got a zero count, we're done.
1614   llvm::Value *refetchCount = CountRV.getScalarVal();
1615 
1616   // (note that the message send might split FetchMoreBB)
1617   index->addIncoming(zero, Builder.GetInsertBlock());
1618   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1619 
1620   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1621                        EmptyBB, LoopBodyBB);
1622 
1623   // No more elements.
1624   EmitBlock(EmptyBB);
1625 
1626   if (!elementIsVariable) {
1627     // If the element was not a declaration, set it to be null.
1628 
1629     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1630     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1631     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1632   }
1633 
1634   if (DI)
1635     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1636 
1637   // Leave the cleanup we entered in ARC.
1638   if (getLangOpts().ObjCAutoRefCount)
1639     PopCleanupBlock();
1640 
1641   EmitBlock(LoopEnd.getBlock());
1642 }
1643 
1644 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1645   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1646 }
1647 
1648 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1649   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1650 }
1651 
1652 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1653                                               const ObjCAtSynchronizedStmt &S) {
1654   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1655 }
1656 
1657 /// Produce the code for a CK_ARCProduceObject.  Just does a
1658 /// primitive retain.
1659 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1660                                                     llvm::Value *value) {
1661   return EmitARCRetain(type, value);
1662 }
1663 
1664 namespace {
1665   struct CallObjCRelease : EHScopeStack::Cleanup {
1666     CallObjCRelease(llvm::Value *object) : object(object) {}
1667     llvm::Value *object;
1668 
1669     void Emit(CodeGenFunction &CGF, Flags flags) {
1670       CGF.EmitARCRelease(object, /*precise*/ true);
1671     }
1672   };
1673 }
1674 
1675 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1676 /// release at the end of the full-expression.
1677 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1678                                                     llvm::Value *object) {
1679   // If we're in a conditional branch, we need to make the cleanup
1680   // conditional.
1681   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1682   return object;
1683 }
1684 
1685 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1686                                                            llvm::Value *value) {
1687   return EmitARCRetainAutorelease(type, value);
1688 }
1689 
1690 
1691 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1692                                                 llvm::FunctionType *type,
1693                                                 StringRef fnName) {
1694   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1695 
1696   // If the target runtime doesn't naturally support ARC, emit weak
1697   // references to the runtime support library.  We don't really
1698   // permit this to fail, but we need a particular relocation style.
1699   if (!CGM.getLangOpts().ObjCRuntime.hasARC())
1700     if (llvm::Function *f = dyn_cast<llvm::Function>(fn))
1701       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1702 
1703   return fn;
1704 }
1705 
1706 /// Perform an operation having the signature
1707 ///   i8* (i8*)
1708 /// where a null input causes a no-op and returns null.
1709 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1710                                           llvm::Value *value,
1711                                           llvm::Constant *&fn,
1712                                           StringRef fnName) {
1713   if (isa<llvm::ConstantPointerNull>(value)) return value;
1714 
1715   if (!fn) {
1716     std::vector<llvm::Type*> args(1, CGF.Int8PtrTy);
1717     llvm::FunctionType *fnType =
1718       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1719     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1720   }
1721 
1722   // Cast the argument to 'id'.
1723   llvm::Type *origType = value->getType();
1724   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1725 
1726   // Call the function.
1727   llvm::CallInst *call = CGF.Builder.CreateCall(fn, value);
1728   call->setDoesNotThrow();
1729 
1730   // Cast the result back to the original type.
1731   return CGF.Builder.CreateBitCast(call, origType);
1732 }
1733 
1734 /// Perform an operation having the following signature:
1735 ///   i8* (i8**)
1736 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1737                                          llvm::Value *addr,
1738                                          llvm::Constant *&fn,
1739                                          StringRef fnName) {
1740   if (!fn) {
1741     std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy);
1742     llvm::FunctionType *fnType =
1743       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1744     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1745   }
1746 
1747   // Cast the argument to 'id*'.
1748   llvm::Type *origType = addr->getType();
1749   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1750 
1751   // Call the function.
1752   llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr);
1753   call->setDoesNotThrow();
1754 
1755   // Cast the result back to a dereference of the original type.
1756   llvm::Value *result = call;
1757   if (origType != CGF.Int8PtrPtrTy)
1758     result = CGF.Builder.CreateBitCast(result,
1759                         cast<llvm::PointerType>(origType)->getElementType());
1760 
1761   return result;
1762 }
1763 
1764 /// Perform an operation having the following signature:
1765 ///   i8* (i8**, i8*)
1766 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1767                                           llvm::Value *addr,
1768                                           llvm::Value *value,
1769                                           llvm::Constant *&fn,
1770                                           StringRef fnName,
1771                                           bool ignored) {
1772   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1773            == value->getType());
1774 
1775   if (!fn) {
1776     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1777 
1778     llvm::FunctionType *fnType
1779       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1780     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1781   }
1782 
1783   llvm::Type *origType = value->getType();
1784 
1785   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1786   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1787 
1788   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value);
1789   result->setDoesNotThrow();
1790 
1791   if (ignored) return 0;
1792 
1793   return CGF.Builder.CreateBitCast(result, origType);
1794 }
1795 
1796 /// Perform an operation having the following signature:
1797 ///   void (i8**, i8**)
1798 static void emitARCCopyOperation(CodeGenFunction &CGF,
1799                                  llvm::Value *dst,
1800                                  llvm::Value *src,
1801                                  llvm::Constant *&fn,
1802                                  StringRef fnName) {
1803   assert(dst->getType() == src->getType());
1804 
1805   if (!fn) {
1806     std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy);
1807     llvm::FunctionType *fnType
1808       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1809     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1810   }
1811 
1812   dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy);
1813   src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy);
1814 
1815   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src);
1816   result->setDoesNotThrow();
1817 }
1818 
1819 /// Produce the code to do a retain.  Based on the type, calls one of:
1820 ///   call i8* \@objc_retain(i8* %value)
1821 ///   call i8* \@objc_retainBlock(i8* %value)
1822 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1823   if (type->isBlockPointerType())
1824     return EmitARCRetainBlock(value, /*mandatory*/ false);
1825   else
1826     return EmitARCRetainNonBlock(value);
1827 }
1828 
1829 /// Retain the given object, with normal retain semantics.
1830 ///   call i8* \@objc_retain(i8* %value)
1831 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1832   return emitARCValueOperation(*this, value,
1833                                CGM.getARCEntrypoints().objc_retain,
1834                                "objc_retain");
1835 }
1836 
1837 /// Retain the given block, with _Block_copy semantics.
1838 ///   call i8* \@objc_retainBlock(i8* %value)
1839 ///
1840 /// \param mandatory - If false, emit the call with metadata
1841 /// indicating that it's okay for the optimizer to eliminate this call
1842 /// if it can prove that the block never escapes except down the stack.
1843 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1844                                                  bool mandatory) {
1845   llvm::Value *result
1846     = emitARCValueOperation(*this, value,
1847                             CGM.getARCEntrypoints().objc_retainBlock,
1848                             "objc_retainBlock");
1849 
1850   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1851   // tell the optimizer that it doesn't need to do this copy if the
1852   // block doesn't escape, where being passed as an argument doesn't
1853   // count as escaping.
1854   if (!mandatory && isa<llvm::Instruction>(result)) {
1855     llvm::CallInst *call
1856       = cast<llvm::CallInst>(result->stripPointerCasts());
1857     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1858 
1859     SmallVector<llvm::Value*,1> args;
1860     call->setMetadata("clang.arc.copy_on_escape",
1861                       llvm::MDNode::get(Builder.getContext(), args));
1862   }
1863 
1864   return result;
1865 }
1866 
1867 /// Retain the given object which is the result of a function call.
1868 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1869 ///
1870 /// Yes, this function name is one character away from a different
1871 /// call with completely different semantics.
1872 llvm::Value *
1873 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1874   // Fetch the void(void) inline asm which marks that we're going to
1875   // retain the autoreleased return value.
1876   llvm::InlineAsm *&marker
1877     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1878   if (!marker) {
1879     StringRef assembly
1880       = CGM.getTargetCodeGenInfo()
1881            .getARCRetainAutoreleasedReturnValueMarker();
1882 
1883     // If we have an empty assembly string, there's nothing to do.
1884     if (assembly.empty()) {
1885 
1886     // Otherwise, at -O0, build an inline asm that we're going to call
1887     // in a moment.
1888     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1889       llvm::FunctionType *type =
1890         llvm::FunctionType::get(VoidTy, /*variadic*/false);
1891 
1892       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1893 
1894     // If we're at -O1 and above, we don't want to litter the code
1895     // with this marker yet, so leave a breadcrumb for the ARC
1896     // optimizer to pick up.
1897     } else {
1898       llvm::NamedMDNode *metadata =
1899         CGM.getModule().getOrInsertNamedMetadata(
1900                             "clang.arc.retainAutoreleasedReturnValueMarker");
1901       assert(metadata->getNumOperands() <= 1);
1902       if (metadata->getNumOperands() == 0) {
1903         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1904         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1905       }
1906     }
1907   }
1908 
1909   // Call the marker asm if we made one, which we do only at -O0.
1910   if (marker) Builder.CreateCall(marker);
1911 
1912   return emitARCValueOperation(*this, value,
1913                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1914                                "objc_retainAutoreleasedReturnValue");
1915 }
1916 
1917 /// Release the given object.
1918 ///   call void \@objc_release(i8* %value)
1919 void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) {
1920   if (isa<llvm::ConstantPointerNull>(value)) return;
1921 
1922   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
1923   if (!fn) {
1924     std::vector<llvm::Type*> args(1, Int8PtrTy);
1925     llvm::FunctionType *fnType =
1926       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
1927     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
1928   }
1929 
1930   // Cast the argument to 'id'.
1931   value = Builder.CreateBitCast(value, Int8PtrTy);
1932 
1933   // Call objc_release.
1934   llvm::CallInst *call = Builder.CreateCall(fn, value);
1935   call->setDoesNotThrow();
1936 
1937   if (!precise) {
1938     SmallVector<llvm::Value*,1> args;
1939     call->setMetadata("clang.imprecise_release",
1940                       llvm::MDNode::get(Builder.getContext(), args));
1941   }
1942 }
1943 
1944 /// Store into a strong object.  Always calls this:
1945 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
1946 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
1947                                                      llvm::Value *value,
1948                                                      bool ignored) {
1949   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1950            == value->getType());
1951 
1952   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
1953   if (!fn) {
1954     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
1955     llvm::FunctionType *fnType
1956       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
1957     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
1958   }
1959 
1960   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
1961   llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy);
1962 
1963   Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow();
1964 
1965   if (ignored) return 0;
1966   return value;
1967 }
1968 
1969 /// Store into a strong object.  Sometimes calls this:
1970 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
1971 /// Other times, breaks it down into components.
1972 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
1973                                                  llvm::Value *newValue,
1974                                                  bool ignored) {
1975   QualType type = dst.getType();
1976   bool isBlock = type->isBlockPointerType();
1977 
1978   // Use a store barrier at -O0 unless this is a block type or the
1979   // lvalue is inadequately aligned.
1980   if (shouldUseFusedARCCalls() &&
1981       !isBlock &&
1982       (dst.getAlignment().isZero() ||
1983        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
1984     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
1985   }
1986 
1987   // Otherwise, split it out.
1988 
1989   // Retain the new value.
1990   newValue = EmitARCRetain(type, newValue);
1991 
1992   // Read the old value.
1993   llvm::Value *oldValue = EmitLoadOfScalar(dst);
1994 
1995   // Store.  We do this before the release so that any deallocs won't
1996   // see the old value.
1997   EmitStoreOfScalar(newValue, dst);
1998 
1999   // Finally, release the old value.
2000   EmitARCRelease(oldValue, /*precise*/ false);
2001 
2002   return newValue;
2003 }
2004 
2005 /// Autorelease the given object.
2006 ///   call i8* \@objc_autorelease(i8* %value)
2007 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2008   return emitARCValueOperation(*this, value,
2009                                CGM.getARCEntrypoints().objc_autorelease,
2010                                "objc_autorelease");
2011 }
2012 
2013 /// Autorelease the given object.
2014 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2015 llvm::Value *
2016 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2017   return emitARCValueOperation(*this, value,
2018                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2019                                "objc_autoreleaseReturnValue");
2020 }
2021 
2022 /// Do a fused retain/autorelease of the given object.
2023 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2024 llvm::Value *
2025 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2026   return emitARCValueOperation(*this, value,
2027                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2028                                "objc_retainAutoreleaseReturnValue");
2029 }
2030 
2031 /// Do a fused retain/autorelease of the given object.
2032 ///   call i8* \@objc_retainAutorelease(i8* %value)
2033 /// or
2034 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2035 ///   call i8* \@objc_autorelease(i8* %retain)
2036 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2037                                                        llvm::Value *value) {
2038   if (!type->isBlockPointerType())
2039     return EmitARCRetainAutoreleaseNonBlock(value);
2040 
2041   if (isa<llvm::ConstantPointerNull>(value)) return value;
2042 
2043   llvm::Type *origType = value->getType();
2044   value = Builder.CreateBitCast(value, Int8PtrTy);
2045   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2046   value = EmitARCAutorelease(value);
2047   return Builder.CreateBitCast(value, origType);
2048 }
2049 
2050 /// Do a fused retain/autorelease of the given object.
2051 ///   call i8* \@objc_retainAutorelease(i8* %value)
2052 llvm::Value *
2053 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2054   return emitARCValueOperation(*this, value,
2055                                CGM.getARCEntrypoints().objc_retainAutorelease,
2056                                "objc_retainAutorelease");
2057 }
2058 
2059 /// i8* \@objc_loadWeak(i8** %addr)
2060 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2061 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2062   return emitARCLoadOperation(*this, addr,
2063                               CGM.getARCEntrypoints().objc_loadWeak,
2064                               "objc_loadWeak");
2065 }
2066 
2067 /// i8* \@objc_loadWeakRetained(i8** %addr)
2068 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2069   return emitARCLoadOperation(*this, addr,
2070                               CGM.getARCEntrypoints().objc_loadWeakRetained,
2071                               "objc_loadWeakRetained");
2072 }
2073 
2074 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2075 /// Returns %value.
2076 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2077                                                llvm::Value *value,
2078                                                bool ignored) {
2079   return emitARCStoreOperation(*this, addr, value,
2080                                CGM.getARCEntrypoints().objc_storeWeak,
2081                                "objc_storeWeak", ignored);
2082 }
2083 
2084 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2085 /// Returns %value.  %addr is known to not have a current weak entry.
2086 /// Essentially equivalent to:
2087 ///   *addr = nil; objc_storeWeak(addr, value);
2088 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2089   // If we're initializing to null, just write null to memory; no need
2090   // to get the runtime involved.  But don't do this if optimization
2091   // is enabled, because accounting for this would make the optimizer
2092   // much more complicated.
2093   if (isa<llvm::ConstantPointerNull>(value) &&
2094       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2095     Builder.CreateStore(value, addr);
2096     return;
2097   }
2098 
2099   emitARCStoreOperation(*this, addr, value,
2100                         CGM.getARCEntrypoints().objc_initWeak,
2101                         "objc_initWeak", /*ignored*/ true);
2102 }
2103 
2104 /// void \@objc_destroyWeak(i8** %addr)
2105 /// Essentially objc_storeWeak(addr, nil).
2106 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2107   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2108   if (!fn) {
2109     std::vector<llvm::Type*> args(1, Int8PtrPtrTy);
2110     llvm::FunctionType *fnType =
2111       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
2112     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2113   }
2114 
2115   // Cast the argument to 'id*'.
2116   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2117 
2118   llvm::CallInst *call = Builder.CreateCall(fn, addr);
2119   call->setDoesNotThrow();
2120 }
2121 
2122 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2123 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2124 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2125 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2126   emitARCCopyOperation(*this, dst, src,
2127                        CGM.getARCEntrypoints().objc_moveWeak,
2128                        "objc_moveWeak");
2129 }
2130 
2131 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2132 /// Disregards the current value in %dest.  Essentially
2133 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2134 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2135   emitARCCopyOperation(*this, dst, src,
2136                        CGM.getARCEntrypoints().objc_copyWeak,
2137                        "objc_copyWeak");
2138 }
2139 
2140 /// Produce the code to do a objc_autoreleasepool_push.
2141 ///   call i8* \@objc_autoreleasePoolPush(void)
2142 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2143   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2144   if (!fn) {
2145     llvm::FunctionType *fnType =
2146       llvm::FunctionType::get(Int8PtrTy, false);
2147     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2148   }
2149 
2150   llvm::CallInst *call = Builder.CreateCall(fn);
2151   call->setDoesNotThrow();
2152 
2153   return call;
2154 }
2155 
2156 /// Produce the code to do a primitive release.
2157 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2158 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2159   assert(value->getType() == Int8PtrTy);
2160 
2161   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2162   if (!fn) {
2163     std::vector<llvm::Type*> args(1, Int8PtrTy);
2164     llvm::FunctionType *fnType =
2165       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
2166 
2167     // We don't want to use a weak import here; instead we should not
2168     // fall into this path.
2169     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2170   }
2171 
2172   llvm::CallInst *call = Builder.CreateCall(fn, value);
2173   call->setDoesNotThrow();
2174 }
2175 
2176 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2177 /// Which is: [[NSAutoreleasePool alloc] init];
2178 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2179 /// init is declared as: - (id) init; in its NSObject super class.
2180 ///
2181 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2182   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2183   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder);
2184   // [NSAutoreleasePool alloc]
2185   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2186   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2187   CallArgList Args;
2188   RValue AllocRV =
2189     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2190                                 getContext().getObjCIdType(),
2191                                 AllocSel, Receiver, Args);
2192 
2193   // [Receiver init]
2194   Receiver = AllocRV.getScalarVal();
2195   II = &CGM.getContext().Idents.get("init");
2196   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2197   RValue InitRV =
2198     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2199                                 getContext().getObjCIdType(),
2200                                 InitSel, Receiver, Args);
2201   return InitRV.getScalarVal();
2202 }
2203 
2204 /// Produce the code to do a primitive release.
2205 /// [tmp drain];
2206 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2207   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2208   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2209   CallArgList Args;
2210   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2211                               getContext().VoidTy, DrainSel, Arg, Args);
2212 }
2213 
2214 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2215                                               llvm::Value *addr,
2216                                               QualType type) {
2217   llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
2218   CGF.EmitARCRelease(ptr, /*precise*/ true);
2219 }
2220 
2221 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2222                                                 llvm::Value *addr,
2223                                                 QualType type) {
2224   llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
2225   CGF.EmitARCRelease(ptr, /*precise*/ false);
2226 }
2227 
2228 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2229                                      llvm::Value *addr,
2230                                      QualType type) {
2231   CGF.EmitARCDestroyWeak(addr);
2232 }
2233 
2234 namespace {
2235   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2236     llvm::Value *Token;
2237 
2238     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2239 
2240     void Emit(CodeGenFunction &CGF, Flags flags) {
2241       CGF.EmitObjCAutoreleasePoolPop(Token);
2242     }
2243   };
2244   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2245     llvm::Value *Token;
2246 
2247     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2248 
2249     void Emit(CodeGenFunction &CGF, Flags flags) {
2250       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2251     }
2252   };
2253 }
2254 
2255 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2256   if (CGM.getLangOpts().ObjCAutoRefCount)
2257     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2258   else
2259     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2260 }
2261 
2262 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2263                                                   LValue lvalue,
2264                                                   QualType type) {
2265   switch (type.getObjCLifetime()) {
2266   case Qualifiers::OCL_None:
2267   case Qualifiers::OCL_ExplicitNone:
2268   case Qualifiers::OCL_Strong:
2269   case Qualifiers::OCL_Autoreleasing:
2270     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
2271                          false);
2272 
2273   case Qualifiers::OCL_Weak:
2274     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2275                          true);
2276   }
2277 
2278   llvm_unreachable("impossible lifetime!");
2279 }
2280 
2281 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2282                                                   const Expr *e) {
2283   e = e->IgnoreParens();
2284   QualType type = e->getType();
2285 
2286   // If we're loading retained from a __strong xvalue, we can avoid
2287   // an extra retain/release pair by zeroing out the source of this
2288   // "move" operation.
2289   if (e->isXValue() &&
2290       !type.isConstQualified() &&
2291       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2292     // Emit the lvalue.
2293     LValue lv = CGF.EmitLValue(e);
2294 
2295     // Load the object pointer.
2296     llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
2297 
2298     // Set the source pointer to NULL.
2299     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2300 
2301     return TryEmitResult(result, true);
2302   }
2303 
2304   // As a very special optimization, in ARC++, if the l-value is the
2305   // result of a non-volatile assignment, do a simple retain of the
2306   // result of the call to objc_storeWeak instead of reloading.
2307   if (CGF.getLangOpts().CPlusPlus &&
2308       !type.isVolatileQualified() &&
2309       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2310       isa<BinaryOperator>(e) &&
2311       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2312     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2313 
2314   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2315 }
2316 
2317 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2318                                            llvm::Value *value);
2319 
2320 /// Given that the given expression is some sort of call (which does
2321 /// not return retained), emit a retain following it.
2322 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2323   llvm::Value *value = CGF.EmitScalarExpr(e);
2324   return emitARCRetainAfterCall(CGF, value);
2325 }
2326 
2327 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2328                                            llvm::Value *value) {
2329   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2330     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2331 
2332     // Place the retain immediately following the call.
2333     CGF.Builder.SetInsertPoint(call->getParent(),
2334                                ++llvm::BasicBlock::iterator(call));
2335     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2336 
2337     CGF.Builder.restoreIP(ip);
2338     return value;
2339   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2340     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2341 
2342     // Place the retain at the beginning of the normal destination block.
2343     llvm::BasicBlock *BB = invoke->getNormalDest();
2344     CGF.Builder.SetInsertPoint(BB, BB->begin());
2345     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2346 
2347     CGF.Builder.restoreIP(ip);
2348     return value;
2349 
2350   // Bitcasts can arise because of related-result returns.  Rewrite
2351   // the operand.
2352   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2353     llvm::Value *operand = bitcast->getOperand(0);
2354     operand = emitARCRetainAfterCall(CGF, operand);
2355     bitcast->setOperand(0, operand);
2356     return bitcast;
2357 
2358   // Generic fall-back case.
2359   } else {
2360     // Retain using the non-block variant: we never need to do a copy
2361     // of a block that's been returned to us.
2362     return CGF.EmitARCRetainNonBlock(value);
2363   }
2364 }
2365 
2366 /// Determine whether it might be important to emit a separate
2367 /// objc_retain_block on the result of the given expression, or
2368 /// whether it's okay to just emit it in a +1 context.
2369 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2370   assert(e->getType()->isBlockPointerType());
2371   e = e->IgnoreParens();
2372 
2373   // For future goodness, emit block expressions directly in +1
2374   // contexts if we can.
2375   if (isa<BlockExpr>(e))
2376     return false;
2377 
2378   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2379     switch (cast->getCastKind()) {
2380     // Emitting these operations in +1 contexts is goodness.
2381     case CK_LValueToRValue:
2382     case CK_ARCReclaimReturnedObject:
2383     case CK_ARCConsumeObject:
2384     case CK_ARCProduceObject:
2385       return false;
2386 
2387     // These operations preserve a block type.
2388     case CK_NoOp:
2389     case CK_BitCast:
2390       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2391 
2392     // These operations are known to be bad (or haven't been considered).
2393     case CK_AnyPointerToBlockPointerCast:
2394     default:
2395       return true;
2396     }
2397   }
2398 
2399   return true;
2400 }
2401 
2402 /// Try to emit a PseudoObjectExpr at +1.
2403 ///
2404 /// This massively duplicates emitPseudoObjectRValue.
2405 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2406                                                   const PseudoObjectExpr *E) {
2407   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2408 
2409   // Find the result expression.
2410   const Expr *resultExpr = E->getResultExpr();
2411   assert(resultExpr);
2412   TryEmitResult result;
2413 
2414   for (PseudoObjectExpr::const_semantics_iterator
2415          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2416     const Expr *semantic = *i;
2417 
2418     // If this semantic expression is an opaque value, bind it
2419     // to the result of its source expression.
2420     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2421       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2422       OVMA opaqueData;
2423 
2424       // If this semantic is the result of the pseudo-object
2425       // expression, try to evaluate the source as +1.
2426       if (ov == resultExpr) {
2427         assert(!OVMA::shouldBindAsLValue(ov));
2428         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2429         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2430 
2431       // Otherwise, just bind it.
2432       } else {
2433         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2434       }
2435       opaques.push_back(opaqueData);
2436 
2437     // Otherwise, if the expression is the result, evaluate it
2438     // and remember the result.
2439     } else if (semantic == resultExpr) {
2440       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2441 
2442     // Otherwise, evaluate the expression in an ignored context.
2443     } else {
2444       CGF.EmitIgnoredExpr(semantic);
2445     }
2446   }
2447 
2448   // Unbind all the opaques now.
2449   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2450     opaques[i].unbind(CGF);
2451 
2452   return result;
2453 }
2454 
2455 static TryEmitResult
2456 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2457   // Look through cleanups.
2458   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2459     CGF.enterFullExpression(cleanups);
2460     CodeGenFunction::RunCleanupsScope scope(CGF);
2461     return tryEmitARCRetainScalarExpr(CGF, cleanups->getSubExpr());
2462   }
2463 
2464   // The desired result type, if it differs from the type of the
2465   // ultimate opaque expression.
2466   llvm::Type *resultType = 0;
2467 
2468   while (true) {
2469     e = e->IgnoreParens();
2470 
2471     // There's a break at the end of this if-chain;  anything
2472     // that wants to keep looping has to explicitly continue.
2473     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2474       switch (ce->getCastKind()) {
2475       // No-op casts don't change the type, so we just ignore them.
2476       case CK_NoOp:
2477         e = ce->getSubExpr();
2478         continue;
2479 
2480       case CK_LValueToRValue: {
2481         TryEmitResult loadResult
2482           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2483         if (resultType) {
2484           llvm::Value *value = loadResult.getPointer();
2485           value = CGF.Builder.CreateBitCast(value, resultType);
2486           loadResult.setPointer(value);
2487         }
2488         return loadResult;
2489       }
2490 
2491       // These casts can change the type, so remember that and
2492       // soldier on.  We only need to remember the outermost such
2493       // cast, though.
2494       case CK_CPointerToObjCPointerCast:
2495       case CK_BlockPointerToObjCPointerCast:
2496       case CK_AnyPointerToBlockPointerCast:
2497       case CK_BitCast:
2498         if (!resultType)
2499           resultType = CGF.ConvertType(ce->getType());
2500         e = ce->getSubExpr();
2501         assert(e->getType()->hasPointerRepresentation());
2502         continue;
2503 
2504       // For consumptions, just emit the subexpression and thus elide
2505       // the retain/release pair.
2506       case CK_ARCConsumeObject: {
2507         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2508         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2509         return TryEmitResult(result, true);
2510       }
2511 
2512       // Block extends are net +0.  Naively, we could just recurse on
2513       // the subexpression, but actually we need to ensure that the
2514       // value is copied as a block, so there's a little filter here.
2515       case CK_ARCExtendBlockObject: {
2516         llvm::Value *result; // will be a +0 value
2517 
2518         // If we can't safely assume the sub-expression will produce a
2519         // block-copied value, emit the sub-expression at +0.
2520         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2521           result = CGF.EmitScalarExpr(ce->getSubExpr());
2522 
2523         // Otherwise, try to emit the sub-expression at +1 recursively.
2524         } else {
2525           TryEmitResult subresult
2526             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2527           result = subresult.getPointer();
2528 
2529           // If that produced a retained value, just use that,
2530           // possibly casting down.
2531           if (subresult.getInt()) {
2532             if (resultType)
2533               result = CGF.Builder.CreateBitCast(result, resultType);
2534             return TryEmitResult(result, true);
2535           }
2536 
2537           // Otherwise it's +0.
2538         }
2539 
2540         // Retain the object as a block, then cast down.
2541         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2542         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2543         return TryEmitResult(result, true);
2544       }
2545 
2546       // For reclaims, emit the subexpression as a retained call and
2547       // skip the consumption.
2548       case CK_ARCReclaimReturnedObject: {
2549         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2550         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2551         return TryEmitResult(result, true);
2552       }
2553 
2554       default:
2555         break;
2556       }
2557 
2558     // Skip __extension__.
2559     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2560       if (op->getOpcode() == UO_Extension) {
2561         e = op->getSubExpr();
2562         continue;
2563       }
2564 
2565     // For calls and message sends, use the retained-call logic.
2566     // Delegate inits are a special case in that they're the only
2567     // returns-retained expression that *isn't* surrounded by
2568     // a consume.
2569     } else if (isa<CallExpr>(e) ||
2570                (isa<ObjCMessageExpr>(e) &&
2571                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2572       llvm::Value *result = emitARCRetainCall(CGF, e);
2573       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2574       return TryEmitResult(result, true);
2575 
2576     // Look through pseudo-object expressions.
2577     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2578       TryEmitResult result
2579         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2580       if (resultType) {
2581         llvm::Value *value = result.getPointer();
2582         value = CGF.Builder.CreateBitCast(value, resultType);
2583         result.setPointer(value);
2584       }
2585       return result;
2586     }
2587 
2588     // Conservatively halt the search at any other expression kind.
2589     break;
2590   }
2591 
2592   // We didn't find an obvious production, so emit what we've got and
2593   // tell the caller that we didn't manage to retain.
2594   llvm::Value *result = CGF.EmitScalarExpr(e);
2595   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2596   return TryEmitResult(result, false);
2597 }
2598 
2599 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2600                                                 LValue lvalue,
2601                                                 QualType type) {
2602   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2603   llvm::Value *value = result.getPointer();
2604   if (!result.getInt())
2605     value = CGF.EmitARCRetain(type, value);
2606   return value;
2607 }
2608 
2609 /// EmitARCRetainScalarExpr - Semantically equivalent to
2610 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2611 /// best-effort attempt to peephole expressions that naturally produce
2612 /// retained objects.
2613 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2614   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2615   llvm::Value *value = result.getPointer();
2616   if (!result.getInt())
2617     value = EmitARCRetain(e->getType(), value);
2618   return value;
2619 }
2620 
2621 llvm::Value *
2622 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2623   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2624   llvm::Value *value = result.getPointer();
2625   if (result.getInt())
2626     value = EmitARCAutorelease(value);
2627   else
2628     value = EmitARCRetainAutorelease(e->getType(), value);
2629   return value;
2630 }
2631 
2632 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2633   llvm::Value *result;
2634   bool doRetain;
2635 
2636   if (shouldEmitSeparateBlockRetain(e)) {
2637     result = EmitScalarExpr(e);
2638     doRetain = true;
2639   } else {
2640     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2641     result = subresult.getPointer();
2642     doRetain = !subresult.getInt();
2643   }
2644 
2645   if (doRetain)
2646     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2647   return EmitObjCConsumeObject(e->getType(), result);
2648 }
2649 
2650 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2651   // In ARC, retain and autorelease the expression.
2652   if (getLangOpts().ObjCAutoRefCount) {
2653     // Do so before running any cleanups for the full-expression.
2654     // tryEmitARCRetainScalarExpr does make an effort to do things
2655     // inside cleanups, but there are crazy cases like
2656     //   @throw A().foo;
2657     // where a full retain+autorelease is required and would
2658     // otherwise happen after the destructor for the temporary.
2659     if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(expr)) {
2660       enterFullExpression(ewc);
2661       expr = ewc->getSubExpr();
2662     }
2663 
2664     CodeGenFunction::RunCleanupsScope cleanups(*this);
2665     return EmitARCRetainAutoreleaseScalarExpr(expr);
2666   }
2667 
2668   // Otherwise, use the normal scalar-expression emission.  The
2669   // exception machinery doesn't do anything special with the
2670   // exception like retaining it, so there's no safety associated with
2671   // only running cleanups after the throw has started, and when it
2672   // matters it tends to be substantially inferior code.
2673   return EmitScalarExpr(expr);
2674 }
2675 
2676 std::pair<LValue,llvm::Value*>
2677 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2678                                     bool ignored) {
2679   // Evaluate the RHS first.
2680   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2681   llvm::Value *value = result.getPointer();
2682 
2683   bool hasImmediateRetain = result.getInt();
2684 
2685   // If we didn't emit a retained object, and the l-value is of block
2686   // type, then we need to emit the block-retain immediately in case
2687   // it invalidates the l-value.
2688   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2689     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2690     hasImmediateRetain = true;
2691   }
2692 
2693   LValue lvalue = EmitLValue(e->getLHS());
2694 
2695   // If the RHS was emitted retained, expand this.
2696   if (hasImmediateRetain) {
2697     llvm::Value *oldValue =
2698       EmitLoadOfScalar(lvalue);
2699     EmitStoreOfScalar(value, lvalue);
2700     EmitARCRelease(oldValue, /*precise*/ false);
2701   } else {
2702     value = EmitARCStoreStrong(lvalue, value, ignored);
2703   }
2704 
2705   return std::pair<LValue,llvm::Value*>(lvalue, value);
2706 }
2707 
2708 std::pair<LValue,llvm::Value*>
2709 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2710   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2711   LValue lvalue = EmitLValue(e->getLHS());
2712 
2713   EmitStoreOfScalar(value, lvalue);
2714 
2715   return std::pair<LValue,llvm::Value*>(lvalue, value);
2716 }
2717 
2718 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2719                                           const ObjCAutoreleasePoolStmt &ARPS) {
2720   const Stmt *subStmt = ARPS.getSubStmt();
2721   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2722 
2723   CGDebugInfo *DI = getDebugInfo();
2724   if (DI)
2725     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2726 
2727   // Keep track of the current cleanup stack depth.
2728   RunCleanupsScope Scope(*this);
2729   if (CGM.getLangOpts().ObjCRuntime.hasARC()) {
2730     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2731     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2732   } else {
2733     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2734     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2735   }
2736 
2737   for (CompoundStmt::const_body_iterator I = S.body_begin(),
2738        E = S.body_end(); I != E; ++I)
2739     EmitStmt(*I);
2740 
2741   if (DI)
2742     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2743 }
2744 
2745 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2746 /// make sure it survives garbage collection until this point.
2747 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2748   // We just use an inline assembly.
2749   llvm::FunctionType *extenderType
2750     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2751   llvm::Value *extender
2752     = llvm::InlineAsm::get(extenderType,
2753                            /* assembly */ "",
2754                            /* constraints */ "r",
2755                            /* side effects */ true);
2756 
2757   object = Builder.CreateBitCast(object, VoidPtrTy);
2758   Builder.CreateCall(extender, object)->setDoesNotThrow();
2759 }
2760 
2761 static bool hasAtomicCopyHelperAPI(const ObjCRuntime &runtime) {
2762   // For now, only NeXT has these APIs.
2763   return runtime.isNeXTFamily();
2764 }
2765 
2766 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2767 /// non-trivial copy assignment function, produce following helper function.
2768 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2769 ///
2770 llvm::Constant *
2771 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2772                                         const ObjCPropertyImplDecl *PID) {
2773   // FIXME. This api is for NeXt runtime only for now.
2774   if (!getLangOpts().CPlusPlus ||
2775       !hasAtomicCopyHelperAPI(getLangOpts().ObjCRuntime))
2776     return 0;
2777   QualType Ty = PID->getPropertyIvarDecl()->getType();
2778   if (!Ty->isRecordType())
2779     return 0;
2780   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2781   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2782     return 0;
2783   llvm::Constant * HelperFn = 0;
2784   if (hasTrivialSetExpr(PID))
2785     return 0;
2786   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2787   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2788     return HelperFn;
2789 
2790   ASTContext &C = getContext();
2791   IdentifierInfo *II
2792     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2793   FunctionDecl *FD = FunctionDecl::Create(C,
2794                                           C.getTranslationUnitDecl(),
2795                                           SourceLocation(),
2796                                           SourceLocation(), II, C.VoidTy, 0,
2797                                           SC_Static,
2798                                           SC_None,
2799                                           false,
2800                                           false);
2801 
2802   QualType DestTy = C.getPointerType(Ty);
2803   QualType SrcTy = Ty;
2804   SrcTy.addConst();
2805   SrcTy = C.getPointerType(SrcTy);
2806 
2807   FunctionArgList args;
2808   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2809   args.push_back(&dstDecl);
2810   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2811   args.push_back(&srcDecl);
2812 
2813   const CGFunctionInfo &FI =
2814     CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2815                                               FunctionType::ExtInfo(),
2816                                               RequiredArgs::All);
2817 
2818   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2819 
2820   llvm::Function *Fn =
2821     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2822                            "__assign_helper_atomic_property_",
2823                            &CGM.getModule());
2824 
2825   if (CGM.getModuleDebugInfo())
2826     DebugInfo = CGM.getModuleDebugInfo();
2827 
2828 
2829   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2830 
2831   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2832                       VK_RValue, SourceLocation());
2833   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2834                     VK_LValue, OK_Ordinary, SourceLocation());
2835 
2836   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2837                       VK_RValue, SourceLocation());
2838   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2839                     VK_LValue, OK_Ordinary, SourceLocation());
2840 
2841   Expr *Args[2] = { &DST, &SRC };
2842   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2843   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2844                               Args, 2, DestTy->getPointeeType(),
2845                               VK_LValue, SourceLocation());
2846 
2847   EmitStmt(&TheCall);
2848 
2849   FinishFunction();
2850   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2851   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2852   return HelperFn;
2853 }
2854 
2855 llvm::Constant *
2856 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2857                                             const ObjCPropertyImplDecl *PID) {
2858   // FIXME. This api is for NeXt runtime only for now.
2859   if (!getLangOpts().CPlusPlus ||
2860       !hasAtomicCopyHelperAPI(getLangOpts().ObjCRuntime))
2861     return 0;
2862   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2863   QualType Ty = PD->getType();
2864   if (!Ty->isRecordType())
2865     return 0;
2866   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2867     return 0;
2868   llvm::Constant * HelperFn = 0;
2869 
2870   if (hasTrivialGetExpr(PID))
2871     return 0;
2872   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2873   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2874     return HelperFn;
2875 
2876 
2877   ASTContext &C = getContext();
2878   IdentifierInfo *II
2879   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2880   FunctionDecl *FD = FunctionDecl::Create(C,
2881                                           C.getTranslationUnitDecl(),
2882                                           SourceLocation(),
2883                                           SourceLocation(), II, C.VoidTy, 0,
2884                                           SC_Static,
2885                                           SC_None,
2886                                           false,
2887                                           false);
2888 
2889   QualType DestTy = C.getPointerType(Ty);
2890   QualType SrcTy = Ty;
2891   SrcTy.addConst();
2892   SrcTy = C.getPointerType(SrcTy);
2893 
2894   FunctionArgList args;
2895   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2896   args.push_back(&dstDecl);
2897   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2898   args.push_back(&srcDecl);
2899 
2900   const CGFunctionInfo &FI =
2901   CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2902                                             FunctionType::ExtInfo(),
2903                                             RequiredArgs::All);
2904 
2905   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2906 
2907   llvm::Function *Fn =
2908   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2909                          "__copy_helper_atomic_property_", &CGM.getModule());
2910 
2911   if (CGM.getModuleDebugInfo())
2912     DebugInfo = CGM.getModuleDebugInfo();
2913 
2914 
2915   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2916 
2917   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2918                       VK_RValue, SourceLocation());
2919 
2920   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2921                     VK_LValue, OK_Ordinary, SourceLocation());
2922 
2923   CXXConstructExpr *CXXConstExpr =
2924     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
2925 
2926   SmallVector<Expr*, 4> ConstructorArgs;
2927   ConstructorArgs.push_back(&SRC);
2928   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
2929   ++A;
2930 
2931   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
2932        A != AEnd; ++A)
2933     ConstructorArgs.push_back(*A);
2934 
2935   CXXConstructExpr *TheCXXConstructExpr =
2936     CXXConstructExpr::Create(C, Ty, SourceLocation(),
2937                              CXXConstExpr->getConstructor(),
2938                              CXXConstExpr->isElidable(),
2939                              &ConstructorArgs[0], ConstructorArgs.size(),
2940                              CXXConstExpr->hadMultipleCandidates(),
2941                              CXXConstExpr->isListInitialization(),
2942                              CXXConstExpr->requiresZeroInitialization(),
2943                              CXXConstExpr->getConstructionKind(),
2944                              SourceRange());
2945 
2946   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2947                       VK_RValue, SourceLocation());
2948 
2949   RValue DV = EmitAnyExpr(&DstExpr);
2950   CharUnits Alignment
2951     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
2952   EmitAggExpr(TheCXXConstructExpr,
2953               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
2954                                     AggValueSlot::IsDestructed,
2955                                     AggValueSlot::DoesNotNeedGCBarriers,
2956                                     AggValueSlot::IsNotAliased));
2957 
2958   FinishFunction();
2959   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2960   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
2961   return HelperFn;
2962 }
2963 
2964 llvm::Value *
2965 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
2966   // Get selectors for retain/autorelease.
2967   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
2968   Selector CopySelector =
2969       getContext().Selectors.getNullarySelector(CopyID);
2970   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
2971   Selector AutoreleaseSelector =
2972       getContext().Selectors.getNullarySelector(AutoreleaseID);
2973 
2974   // Emit calls to retain/autorelease.
2975   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2976   llvm::Value *Val = Block;
2977   RValue Result;
2978   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2979                                        Ty, CopySelector,
2980                                        Val, CallArgList(), 0, 0);
2981   Val = Result.getScalarVal();
2982   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2983                                        Ty, AutoreleaseSelector,
2984                                        Val, CallArgList(), 0, 0);
2985   Val = Result.getScalarVal();
2986   return Val;
2987 }
2988 
2989 
2990 CGObjCRuntime::~CGObjCRuntime() {}
2991