1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
35                                       QualType ET,
36                                       const ObjCMethodDecl *Method,
37                                       RValue Result);
38 
39 /// Given the address of a variable of pointer type, find the correct
40 /// null to store into it.
41 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
42   llvm::Type *type =
43     cast<llvm::PointerType>(addr->getType())->getElementType();
44   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
45 }
46 
47 /// Emits an instance of NSConstantString representing the object.
48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
49 {
50   llvm::Constant *C =
51       CGM.getObjCRuntime().GenerateConstantString(E->getString());
52   // FIXME: This bitcast should just be made an invariant on the Runtime.
53   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
54 }
55 
56 /// EmitObjCBoxedExpr - This routine generates code to call
57 /// the appropriate expression boxing method. This will either be
58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
59 /// or [NSValue valueWithBytes:objCType:].
60 ///
61 llvm::Value *
62 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
63   // Generate the correct selector for this literal's concrete type.
64   // Get the method.
65   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
66   const Expr *SubExpr = E->getSubExpr();
67   assert(BoxingMethod && "BoxingMethod is null");
68   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
69   Selector Sel = BoxingMethod->getSelector();
70 
71   // Generate a reference to the class pointer, which will be the receiver.
72   // Assumes that the method was introduced in the class that should be
73   // messaged (avoids pulling it out of the result type).
74   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
75   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
76   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
77 
78   CallArgList Args;
79   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
80   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
81 
82   // ObjCBoxedExpr supports boxing of structs and unions
83   // via [NSValue valueWithBytes:objCType:]
84   const QualType ValueType(SubExpr->getType().getCanonicalType());
85   if (ValueType->isObjCBoxableRecordType()) {
86     // Emit CodeGen for first parameter
87     // and cast value to correct type
88     llvm::Value *Temporary = CreateMemTemp(SubExpr->getType());
89     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
90     llvm::Value *BitCast = Builder.CreateBitCast(Temporary,
91                                                  ConvertType(ArgQT));
92     Args.add(RValue::get(BitCast), ArgQT);
93 
94     // Create char array to store type encoding
95     std::string Str;
96     getContext().getObjCEncodingForType(ValueType, Str);
97     llvm::GlobalVariable *GV = CGM.GetAddrOfConstantCString(Str);
98 
99     // Cast type encoding to correct type
100     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
101     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
102     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
103 
104     Args.add(RValue::get(Cast), EncodingQT);
105   } else {
106     Args.add(EmitAnyExpr(SubExpr), ArgQT);
107   }
108 
109   RValue result = Runtime.GenerateMessageSend(
110       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
111       Args, ClassDecl, BoxingMethod);
112   return Builder.CreateBitCast(result.getScalarVal(),
113                                ConvertType(E->getType()));
114 }
115 
116 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
117                                     const ObjCMethodDecl *MethodWithObjects) {
118   ASTContext &Context = CGM.getContext();
119   const ObjCDictionaryLiteral *DLE = nullptr;
120   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
121   if (!ALE)
122     DLE = cast<ObjCDictionaryLiteral>(E);
123 
124   // Compute the type of the array we're initializing.
125   uint64_t NumElements =
126     ALE ? ALE->getNumElements() : DLE->getNumElements();
127   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
128                             NumElements);
129   QualType ElementType = Context.getObjCIdType().withConst();
130   QualType ElementArrayType
131     = Context.getConstantArrayType(ElementType, APNumElements,
132                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
133 
134   // Allocate the temporary array(s).
135   llvm::AllocaInst *Objects = CreateMemTemp(ElementArrayType, "objects");
136   llvm::AllocaInst *Keys = nullptr;
137   if (DLE)
138     Keys = CreateMemTemp(ElementArrayType, "keys");
139 
140   // In ARC, we may need to do extra work to keep all the keys and
141   // values alive until after the call.
142   SmallVector<llvm::Value *, 16> NeededObjects;
143   bool TrackNeededObjects =
144     (getLangOpts().ObjCAutoRefCount &&
145     CGM.getCodeGenOpts().OptimizationLevel != 0);
146 
147   // Perform the actual initialialization of the array(s).
148   for (uint64_t i = 0; i < NumElements; i++) {
149     if (ALE) {
150       // Emit the element and store it to the appropriate array slot.
151       const Expr *Rhs = ALE->getElement(i);
152       LValue LV = LValue::MakeAddr(
153           Builder.CreateStructGEP(Objects->getAllocatedType(), Objects, i),
154           ElementType, Context.getTypeAlignInChars(Rhs->getType()), Context);
155 
156       llvm::Value *value = EmitScalarExpr(Rhs);
157       EmitStoreThroughLValue(RValue::get(value), LV, true);
158       if (TrackNeededObjects) {
159         NeededObjects.push_back(value);
160       }
161     } else {
162       // Emit the key and store it to the appropriate array slot.
163       const Expr *Key = DLE->getKeyValueElement(i).Key;
164       LValue KeyLV = LValue::MakeAddr(
165           Builder.CreateStructGEP(Keys->getAllocatedType(), Keys, i),
166           ElementType, Context.getTypeAlignInChars(Key->getType()), Context);
167       llvm::Value *keyValue = EmitScalarExpr(Key);
168       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
169 
170       // Emit the value and store it to the appropriate array slot.
171       const Expr *Value = DLE->getKeyValueElement(i).Value;
172       LValue ValueLV = LValue::MakeAddr(
173           Builder.CreateStructGEP(Objects->getAllocatedType(), Objects, i),
174           ElementType, Context.getTypeAlignInChars(Value->getType()), Context);
175       llvm::Value *valueValue = EmitScalarExpr(Value);
176       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
177       if (TrackNeededObjects) {
178         NeededObjects.push_back(keyValue);
179         NeededObjects.push_back(valueValue);
180       }
181     }
182   }
183 
184   // Generate the argument list.
185   CallArgList Args;
186   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
187   const ParmVarDecl *argDecl = *PI++;
188   QualType ArgQT = argDecl->getType().getUnqualifiedType();
189   Args.add(RValue::get(Objects), ArgQT);
190   if (DLE) {
191     argDecl = *PI++;
192     ArgQT = argDecl->getType().getUnqualifiedType();
193     Args.add(RValue::get(Keys), ArgQT);
194   }
195   argDecl = *PI;
196   ArgQT = argDecl->getType().getUnqualifiedType();
197   llvm::Value *Count =
198     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
199   Args.add(RValue::get(Count), ArgQT);
200 
201   // Generate a reference to the class pointer, which will be the receiver.
202   Selector Sel = MethodWithObjects->getSelector();
203   QualType ResultType = E->getType();
204   const ObjCObjectPointerType *InterfacePointerType
205     = ResultType->getAsObjCInterfacePointerType();
206   ObjCInterfaceDecl *Class
207     = InterfacePointerType->getObjectType()->getInterface();
208   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
209   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
210 
211   // Generate the message send.
212   RValue result = Runtime.GenerateMessageSend(
213       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
214       Receiver, Args, Class, MethodWithObjects);
215 
216   // The above message send needs these objects, but in ARC they are
217   // passed in a buffer that is essentially __unsafe_unretained.
218   // Therefore we must prevent the optimizer from releasing them until
219   // after the call.
220   if (TrackNeededObjects) {
221     EmitARCIntrinsicUse(NeededObjects);
222   }
223 
224   return Builder.CreateBitCast(result.getScalarVal(),
225                                ConvertType(E->getType()));
226 }
227 
228 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
229   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
230 }
231 
232 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
233                                             const ObjCDictionaryLiteral *E) {
234   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
235 }
236 
237 /// Emit a selector.
238 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
239   // Untyped selector.
240   // Note that this implementation allows for non-constant strings to be passed
241   // as arguments to @selector().  Currently, the only thing preventing this
242   // behaviour is the type checking in the front end.
243   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
244 }
245 
246 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
247   // FIXME: This should pass the Decl not the name.
248   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
249 }
250 
251 /// \brief Adjust the type of the result of an Objective-C message send
252 /// expression when the method has a related result type.
253 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
254                                       QualType ExpT,
255                                       const ObjCMethodDecl *Method,
256                                       RValue Result) {
257   if (!Method)
258     return Result;
259 
260   if (!Method->hasRelatedResultType() ||
261       CGF.getContext().hasSameType(ExpT, Method->getReturnType()) ||
262       !Result.isScalar())
263     return Result;
264 
265   // We have applied a related result type. Cast the rvalue appropriately.
266   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
267                                                CGF.ConvertType(ExpT)));
268 }
269 
270 /// Decide whether to extend the lifetime of the receiver of a
271 /// returns-inner-pointer message.
272 static bool
273 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
274   switch (message->getReceiverKind()) {
275 
276   // For a normal instance message, we should extend unless the
277   // receiver is loaded from a variable with precise lifetime.
278   case ObjCMessageExpr::Instance: {
279     const Expr *receiver = message->getInstanceReceiver();
280     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
281     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
282     receiver = ice->getSubExpr()->IgnoreParens();
283 
284     // Only __strong variables.
285     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
286       return true;
287 
288     // All ivars and fields have precise lifetime.
289     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
290       return false;
291 
292     // Otherwise, check for variables.
293     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
294     if (!declRef) return true;
295     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
296     if (!var) return true;
297 
298     // All variables have precise lifetime except local variables with
299     // automatic storage duration that aren't specially marked.
300     return (var->hasLocalStorage() &&
301             !var->hasAttr<ObjCPreciseLifetimeAttr>());
302   }
303 
304   case ObjCMessageExpr::Class:
305   case ObjCMessageExpr::SuperClass:
306     // It's never necessary for class objects.
307     return false;
308 
309   case ObjCMessageExpr::SuperInstance:
310     // We generally assume that 'self' lives throughout a method call.
311     return false;
312   }
313 
314   llvm_unreachable("invalid receiver kind");
315 }
316 
317 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
318                                             ReturnValueSlot Return) {
319   // Only the lookup mechanism and first two arguments of the method
320   // implementation vary between runtimes.  We can get the receiver and
321   // arguments in generic code.
322 
323   bool isDelegateInit = E->isDelegateInitCall();
324 
325   const ObjCMethodDecl *method = E->getMethodDecl();
326 
327   // We don't retain the receiver in delegate init calls, and this is
328   // safe because the receiver value is always loaded from 'self',
329   // which we zero out.  We don't want to Block_copy block receivers,
330   // though.
331   bool retainSelf =
332     (!isDelegateInit &&
333      CGM.getLangOpts().ObjCAutoRefCount &&
334      method &&
335      method->hasAttr<NSConsumesSelfAttr>());
336 
337   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
338   bool isSuperMessage = false;
339   bool isClassMessage = false;
340   ObjCInterfaceDecl *OID = nullptr;
341   // Find the receiver
342   QualType ReceiverType;
343   llvm::Value *Receiver = nullptr;
344   switch (E->getReceiverKind()) {
345   case ObjCMessageExpr::Instance:
346     ReceiverType = E->getInstanceReceiver()->getType();
347     if (retainSelf) {
348       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
349                                                    E->getInstanceReceiver());
350       Receiver = ter.getPointer();
351       if (ter.getInt()) retainSelf = false;
352     } else
353       Receiver = EmitScalarExpr(E->getInstanceReceiver());
354     break;
355 
356   case ObjCMessageExpr::Class: {
357     ReceiverType = E->getClassReceiver();
358     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
359     assert(ObjTy && "Invalid Objective-C class message send");
360     OID = ObjTy->getInterface();
361     assert(OID && "Invalid Objective-C class message send");
362     Receiver = Runtime.GetClass(*this, OID);
363     isClassMessage = true;
364     break;
365   }
366 
367   case ObjCMessageExpr::SuperInstance:
368     ReceiverType = E->getSuperType();
369     Receiver = LoadObjCSelf();
370     isSuperMessage = true;
371     break;
372 
373   case ObjCMessageExpr::SuperClass:
374     ReceiverType = E->getSuperType();
375     Receiver = LoadObjCSelf();
376     isSuperMessage = true;
377     isClassMessage = true;
378     break;
379   }
380 
381   if (retainSelf)
382     Receiver = EmitARCRetainNonBlock(Receiver);
383 
384   // In ARC, we sometimes want to "extend the lifetime"
385   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
386   // messages.
387   if (getLangOpts().ObjCAutoRefCount && method &&
388       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
389       shouldExtendReceiverForInnerPointerMessage(E))
390     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
391 
392   QualType ResultType = method ? method->getReturnType() : E->getType();
393 
394   CallArgList Args;
395   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
396 
397   // For delegate init calls in ARC, do an unsafe store of null into
398   // self.  This represents the call taking direct ownership of that
399   // value.  We have to do this after emitting the other call
400   // arguments because they might also reference self, but we don't
401   // have to worry about any of them modifying self because that would
402   // be an undefined read and write of an object in unordered
403   // expressions.
404   if (isDelegateInit) {
405     assert(getLangOpts().ObjCAutoRefCount &&
406            "delegate init calls should only be marked in ARC");
407 
408     // Do an unsafe store of null into self.
409     llvm::Value *selfAddr =
410       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
411     assert(selfAddr && "no self entry for a delegate init call?");
412 
413     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
414   }
415 
416   RValue result;
417   if (isSuperMessage) {
418     // super is only valid in an Objective-C method
419     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
420     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
421     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
422                                               E->getSelector(),
423                                               OMD->getClassInterface(),
424                                               isCategoryImpl,
425                                               Receiver,
426                                               isClassMessage,
427                                               Args,
428                                               method);
429   } else {
430     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
431                                          E->getSelector(),
432                                          Receiver, Args, OID,
433                                          method);
434   }
435 
436   // For delegate init calls in ARC, implicitly store the result of
437   // the call back into self.  This takes ownership of the value.
438   if (isDelegateInit) {
439     llvm::Value *selfAddr =
440       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
441     llvm::Value *newSelf = result.getScalarVal();
442 
443     // The delegate return type isn't necessarily a matching type; in
444     // fact, it's quite likely to be 'id'.
445     llvm::Type *selfTy =
446       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
447     newSelf = Builder.CreateBitCast(newSelf, selfTy);
448 
449     Builder.CreateStore(newSelf, selfAddr);
450   }
451 
452   return AdjustRelatedResultType(*this, E->getType(), method, result);
453 }
454 
455 namespace {
456 struct FinishARCDealloc : EHScopeStack::Cleanup {
457   void Emit(CodeGenFunction &CGF, Flags flags) override {
458     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
459 
460     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
461     const ObjCInterfaceDecl *iface = impl->getClassInterface();
462     if (!iface->getSuperClass()) return;
463 
464     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
465 
466     // Call [super dealloc] if we have a superclass.
467     llvm::Value *self = CGF.LoadObjCSelf();
468 
469     CallArgList args;
470     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
471                                                       CGF.getContext().VoidTy,
472                                                       method->getSelector(),
473                                                       iface,
474                                                       isCategory,
475                                                       self,
476                                                       /*is class msg*/ false,
477                                                       args,
478                                                       method);
479   }
480 };
481 }
482 
483 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
484 /// the LLVM function and sets the other context used by
485 /// CodeGenFunction.
486 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
487                                       const ObjCContainerDecl *CD) {
488   SourceLocation StartLoc = OMD->getLocStart();
489   FunctionArgList args;
490   // Check if we should generate debug info for this method.
491   if (OMD->hasAttr<NoDebugAttr>())
492     DebugInfo = nullptr; // disable debug info indefinitely for this function
493 
494   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
495 
496   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
497   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
498 
499   args.push_back(OMD->getSelfDecl());
500   args.push_back(OMD->getCmdDecl());
501 
502   args.append(OMD->param_begin(), OMD->param_end());
503 
504   CurGD = OMD;
505   CurEHLocation = OMD->getLocEnd();
506 
507   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
508                 OMD->getLocation(), StartLoc);
509 
510   // In ARC, certain methods get an extra cleanup.
511   if (CGM.getLangOpts().ObjCAutoRefCount &&
512       OMD->isInstanceMethod() &&
513       OMD->getSelector().isUnarySelector()) {
514     const IdentifierInfo *ident =
515       OMD->getSelector().getIdentifierInfoForSlot(0);
516     if (ident->isStr("dealloc"))
517       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
518   }
519 }
520 
521 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
522                                               LValue lvalue, QualType type);
523 
524 /// Generate an Objective-C method.  An Objective-C method is a C function with
525 /// its pointer, name, and types registered in the class struture.
526 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
527   StartObjCMethod(OMD, OMD->getClassInterface());
528   PGO.assignRegionCounters(OMD, CurFn);
529   assert(isa<CompoundStmt>(OMD->getBody()));
530   incrementProfileCounter(OMD->getBody());
531   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
532   FinishFunction(OMD->getBodyRBrace());
533 }
534 
535 /// emitStructGetterCall - Call the runtime function to load a property
536 /// into the return value slot.
537 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
538                                  bool isAtomic, bool hasStrong) {
539   ASTContext &Context = CGF.getContext();
540 
541   llvm::Value *src =
542     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
543                           ivar, 0).getAddress();
544 
545   // objc_copyStruct (ReturnValue, &structIvar,
546   //                  sizeof (Type of Ivar), isAtomic, false);
547   CallArgList args;
548 
549   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
550   args.add(RValue::get(dest), Context.VoidPtrTy);
551 
552   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
553   args.add(RValue::get(src), Context.VoidPtrTy);
554 
555   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
556   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
557   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
558   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
559 
560   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
561   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
562                                                       FunctionType::ExtInfo(),
563                                                       RequiredArgs::All),
564                fn, ReturnValueSlot(), args);
565 }
566 
567 /// Determine whether the given architecture supports unaligned atomic
568 /// accesses.  They don't have to be fast, just faster than a function
569 /// call and a mutex.
570 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
571   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
572   // currently supported by the backend.)
573   return 0;
574 }
575 
576 /// Return the maximum size that permits atomic accesses for the given
577 /// architecture.
578 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
579                                         llvm::Triple::ArchType arch) {
580   // ARM has 8-byte atomic accesses, but it's not clear whether we
581   // want to rely on them here.
582 
583   // In the default case, just assume that any size up to a pointer is
584   // fine given adequate alignment.
585   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
586 }
587 
588 namespace {
589   class PropertyImplStrategy {
590   public:
591     enum StrategyKind {
592       /// The 'native' strategy is to use the architecture's provided
593       /// reads and writes.
594       Native,
595 
596       /// Use objc_setProperty and objc_getProperty.
597       GetSetProperty,
598 
599       /// Use objc_setProperty for the setter, but use expression
600       /// evaluation for the getter.
601       SetPropertyAndExpressionGet,
602 
603       /// Use objc_copyStruct.
604       CopyStruct,
605 
606       /// The 'expression' strategy is to emit normal assignment or
607       /// lvalue-to-rvalue expressions.
608       Expression
609     };
610 
611     StrategyKind getKind() const { return StrategyKind(Kind); }
612 
613     bool hasStrongMember() const { return HasStrong; }
614     bool isAtomic() const { return IsAtomic; }
615     bool isCopy() const { return IsCopy; }
616 
617     CharUnits getIvarSize() const { return IvarSize; }
618     CharUnits getIvarAlignment() const { return IvarAlignment; }
619 
620     PropertyImplStrategy(CodeGenModule &CGM,
621                          const ObjCPropertyImplDecl *propImpl);
622 
623   private:
624     unsigned Kind : 8;
625     unsigned IsAtomic : 1;
626     unsigned IsCopy : 1;
627     unsigned HasStrong : 1;
628 
629     CharUnits IvarSize;
630     CharUnits IvarAlignment;
631   };
632 }
633 
634 /// Pick an implementation strategy for the given property synthesis.
635 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
636                                      const ObjCPropertyImplDecl *propImpl) {
637   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
638   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
639 
640   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
641   IsAtomic = prop->isAtomic();
642   HasStrong = false; // doesn't matter here.
643 
644   // Evaluate the ivar's size and alignment.
645   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
646   QualType ivarType = ivar->getType();
647   std::tie(IvarSize, IvarAlignment) =
648       CGM.getContext().getTypeInfoInChars(ivarType);
649 
650   // If we have a copy property, we always have to use getProperty/setProperty.
651   // TODO: we could actually use setProperty and an expression for non-atomics.
652   if (IsCopy) {
653     Kind = GetSetProperty;
654     return;
655   }
656 
657   // Handle retain.
658   if (setterKind == ObjCPropertyDecl::Retain) {
659     // In GC-only, there's nothing special that needs to be done.
660     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
661       // fallthrough
662 
663     // In ARC, if the property is non-atomic, use expression emission,
664     // which translates to objc_storeStrong.  This isn't required, but
665     // it's slightly nicer.
666     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
667       // Using standard expression emission for the setter is only
668       // acceptable if the ivar is __strong, which won't be true if
669       // the property is annotated with __attribute__((NSObject)).
670       // TODO: falling all the way back to objc_setProperty here is
671       // just laziness, though;  we could still use objc_storeStrong
672       // if we hacked it right.
673       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
674         Kind = Expression;
675       else
676         Kind = SetPropertyAndExpressionGet;
677       return;
678 
679     // Otherwise, we need to at least use setProperty.  However, if
680     // the property isn't atomic, we can use normal expression
681     // emission for the getter.
682     } else if (!IsAtomic) {
683       Kind = SetPropertyAndExpressionGet;
684       return;
685 
686     // Otherwise, we have to use both setProperty and getProperty.
687     } else {
688       Kind = GetSetProperty;
689       return;
690     }
691   }
692 
693   // If we're not atomic, just use expression accesses.
694   if (!IsAtomic) {
695     Kind = Expression;
696     return;
697   }
698 
699   // Properties on bitfield ivars need to be emitted using expression
700   // accesses even if they're nominally atomic.
701   if (ivar->isBitField()) {
702     Kind = Expression;
703     return;
704   }
705 
706   // GC-qualified or ARC-qualified ivars need to be emitted as
707   // expressions.  This actually works out to being atomic anyway,
708   // except for ARC __strong, but that should trigger the above code.
709   if (ivarType.hasNonTrivialObjCLifetime() ||
710       (CGM.getLangOpts().getGC() &&
711        CGM.getContext().getObjCGCAttrKind(ivarType))) {
712     Kind = Expression;
713     return;
714   }
715 
716   // Compute whether the ivar has strong members.
717   if (CGM.getLangOpts().getGC())
718     if (const RecordType *recordType = ivarType->getAs<RecordType>())
719       HasStrong = recordType->getDecl()->hasObjectMember();
720 
721   // We can never access structs with object members with a native
722   // access, because we need to use write barriers.  This is what
723   // objc_copyStruct is for.
724   if (HasStrong) {
725     Kind = CopyStruct;
726     return;
727   }
728 
729   // Otherwise, this is target-dependent and based on the size and
730   // alignment of the ivar.
731 
732   // If the size of the ivar is not a power of two, give up.  We don't
733   // want to get into the business of doing compare-and-swaps.
734   if (!IvarSize.isPowerOfTwo()) {
735     Kind = CopyStruct;
736     return;
737   }
738 
739   llvm::Triple::ArchType arch =
740     CGM.getTarget().getTriple().getArch();
741 
742   // Most architectures require memory to fit within a single cache
743   // line, so the alignment has to be at least the size of the access.
744   // Otherwise we have to grab a lock.
745   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
746     Kind = CopyStruct;
747     return;
748   }
749 
750   // If the ivar's size exceeds the architecture's maximum atomic
751   // access size, we have to use CopyStruct.
752   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
753     Kind = CopyStruct;
754     return;
755   }
756 
757   // Otherwise, we can use native loads and stores.
758   Kind = Native;
759 }
760 
761 /// \brief Generate an Objective-C property getter function.
762 ///
763 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
764 /// is illegal within a category.
765 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
766                                          const ObjCPropertyImplDecl *PID) {
767   llvm::Constant *AtomicHelperFn =
768       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
769   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
770   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
771   assert(OMD && "Invalid call to generate getter (empty method)");
772   StartObjCMethod(OMD, IMP->getClassInterface());
773 
774   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
775 
776   FinishFunction();
777 }
778 
779 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
780   const Expr *getter = propImpl->getGetterCXXConstructor();
781   if (!getter) return true;
782 
783   // Sema only makes only of these when the ivar has a C++ class type,
784   // so the form is pretty constrained.
785 
786   // If the property has a reference type, we might just be binding a
787   // reference, in which case the result will be a gl-value.  We should
788   // treat this as a non-trivial operation.
789   if (getter->isGLValue())
790     return false;
791 
792   // If we selected a trivial copy-constructor, we're okay.
793   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
794     return (construct->getConstructor()->isTrivial());
795 
796   // The constructor might require cleanups (in which case it's never
797   // trivial).
798   assert(isa<ExprWithCleanups>(getter));
799   return false;
800 }
801 
802 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
803 /// copy the ivar into the resturn slot.
804 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
805                                           llvm::Value *returnAddr,
806                                           ObjCIvarDecl *ivar,
807                                           llvm::Constant *AtomicHelperFn) {
808   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
809   //                           AtomicHelperFn);
810   CallArgList args;
811 
812   // The 1st argument is the return Slot.
813   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
814 
815   // The 2nd argument is the address of the ivar.
816   llvm::Value *ivarAddr =
817   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
818                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
819   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
820   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
821 
822   // Third argument is the helper function.
823   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
824 
825   llvm::Value *copyCppAtomicObjectFn =
826     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
827   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
828                                                       args,
829                                                       FunctionType::ExtInfo(),
830                                                       RequiredArgs::All),
831                copyCppAtomicObjectFn, ReturnValueSlot(), args);
832 }
833 
834 void
835 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
836                                         const ObjCPropertyImplDecl *propImpl,
837                                         const ObjCMethodDecl *GetterMethodDecl,
838                                         llvm::Constant *AtomicHelperFn) {
839   // If there's a non-trivial 'get' expression, we just have to emit that.
840   if (!hasTrivialGetExpr(propImpl)) {
841     if (!AtomicHelperFn) {
842       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
843                      /*nrvo*/ nullptr);
844       EmitReturnStmt(ret);
845     }
846     else {
847       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
848       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
849                                     ivar, AtomicHelperFn);
850     }
851     return;
852   }
853 
854   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
855   QualType propType = prop->getType();
856   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
857 
858   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
859 
860   // Pick an implementation strategy.
861   PropertyImplStrategy strategy(CGM, propImpl);
862   switch (strategy.getKind()) {
863   case PropertyImplStrategy::Native: {
864     // We don't need to do anything for a zero-size struct.
865     if (strategy.getIvarSize().isZero())
866       return;
867 
868     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
869 
870     // Currently, all atomic accesses have to be through integer
871     // types, so there's no point in trying to pick a prettier type.
872     llvm::Type *bitcastType =
873       llvm::Type::getIntNTy(getLLVMContext(),
874                             getContext().toBits(strategy.getIvarSize()));
875     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
876 
877     // Perform an atomic load.  This does not impose ordering constraints.
878     llvm::Value *ivarAddr = LV.getAddress();
879     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
880     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
881     load->setAlignment(strategy.getIvarAlignment().getQuantity());
882     load->setAtomic(llvm::Unordered);
883 
884     // Store that value into the return address.  Doing this with a
885     // bitcast is likely to produce some pretty ugly IR, but it's not
886     // the *most* terrible thing in the world.
887     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
888 
889     // Make sure we don't do an autorelease.
890     AutoreleaseResult = false;
891     return;
892   }
893 
894   case PropertyImplStrategy::GetSetProperty: {
895     llvm::Value *getPropertyFn =
896       CGM.getObjCRuntime().GetPropertyGetFunction();
897     if (!getPropertyFn) {
898       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
899       return;
900     }
901 
902     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
903     // FIXME: Can't this be simpler? This might even be worse than the
904     // corresponding gcc code.
905     llvm::Value *cmd =
906       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
907     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
908     llvm::Value *ivarOffset =
909       EmitIvarOffset(classImpl->getClassInterface(), ivar);
910 
911     CallArgList args;
912     args.add(RValue::get(self), getContext().getObjCIdType());
913     args.add(RValue::get(cmd), getContext().getObjCSelType());
914     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
915     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
916              getContext().BoolTy);
917 
918     // FIXME: We shouldn't need to get the function info here, the
919     // runtime already should have computed it to build the function.
920     llvm::Instruction *CallInstruction;
921     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
922                                                        FunctionType::ExtInfo(),
923                                                             RequiredArgs::All),
924                          getPropertyFn, ReturnValueSlot(), args, nullptr,
925                          &CallInstruction);
926     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
927       call->setTailCall();
928 
929     // We need to fix the type here. Ivars with copy & retain are
930     // always objects so we don't need to worry about complex or
931     // aggregates.
932     RV = RValue::get(Builder.CreateBitCast(
933         RV.getScalarVal(),
934         getTypes().ConvertType(getterMethod->getReturnType())));
935 
936     EmitReturnOfRValue(RV, propType);
937 
938     // objc_getProperty does an autorelease, so we should suppress ours.
939     AutoreleaseResult = false;
940 
941     return;
942   }
943 
944   case PropertyImplStrategy::CopyStruct:
945     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
946                          strategy.hasStrongMember());
947     return;
948 
949   case PropertyImplStrategy::Expression:
950   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
951     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
952 
953     QualType ivarType = ivar->getType();
954     switch (getEvaluationKind(ivarType)) {
955     case TEK_Complex: {
956       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
957       EmitStoreOfComplex(pair,
958                          MakeNaturalAlignAddrLValue(ReturnValue, ivarType),
959                          /*init*/ true);
960       return;
961     }
962     case TEK_Aggregate:
963       // The return value slot is guaranteed to not be aliased, but
964       // that's not necessarily the same as "on the stack", so
965       // we still potentially need objc_memmove_collectable.
966       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
967       return;
968     case TEK_Scalar: {
969       llvm::Value *value;
970       if (propType->isReferenceType()) {
971         value = LV.getAddress();
972       } else {
973         // We want to load and autoreleaseReturnValue ARC __weak ivars.
974         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
975           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
976 
977         // Otherwise we want to do a simple load, suppressing the
978         // final autorelease.
979         } else {
980           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
981           AutoreleaseResult = false;
982         }
983 
984         value = Builder.CreateBitCast(value, ConvertType(propType));
985         value = Builder.CreateBitCast(
986             value, ConvertType(GetterMethodDecl->getReturnType()));
987       }
988 
989       EmitReturnOfRValue(RValue::get(value), propType);
990       return;
991     }
992     }
993     llvm_unreachable("bad evaluation kind");
994   }
995 
996   }
997   llvm_unreachable("bad @property implementation strategy!");
998 }
999 
1000 /// emitStructSetterCall - Call the runtime function to store the value
1001 /// from the first formal parameter into the given ivar.
1002 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1003                                  ObjCIvarDecl *ivar) {
1004   // objc_copyStruct (&structIvar, &Arg,
1005   //                  sizeof (struct something), true, false);
1006   CallArgList args;
1007 
1008   // The first argument is the address of the ivar.
1009   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1010                                                 CGF.LoadObjCSelf(), ivar, 0)
1011     .getAddress();
1012   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1013   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1014 
1015   // The second argument is the address of the parameter variable.
1016   ParmVarDecl *argVar = *OMD->param_begin();
1017   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1018                      VK_LValue, SourceLocation());
1019   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1020   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1021   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1022 
1023   // The third argument is the sizeof the type.
1024   llvm::Value *size =
1025     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1026   args.add(RValue::get(size), CGF.getContext().getSizeType());
1027 
1028   // The fourth argument is the 'isAtomic' flag.
1029   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1030 
1031   // The fifth argument is the 'hasStrong' flag.
1032   // FIXME: should this really always be false?
1033   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1034 
1035   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1036   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1037                                                       args,
1038                                                       FunctionType::ExtInfo(),
1039                                                       RequiredArgs::All),
1040                copyStructFn, ReturnValueSlot(), args);
1041 }
1042 
1043 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1044 /// the value from the first formal parameter into the given ivar, using
1045 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1046 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1047                                           ObjCMethodDecl *OMD,
1048                                           ObjCIvarDecl *ivar,
1049                                           llvm::Constant *AtomicHelperFn) {
1050   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1051   //                           AtomicHelperFn);
1052   CallArgList args;
1053 
1054   // The first argument is the address of the ivar.
1055   llvm::Value *ivarAddr =
1056     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1057                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
1058   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1059   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1060 
1061   // The second argument is the address of the parameter variable.
1062   ParmVarDecl *argVar = *OMD->param_begin();
1063   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1064                      VK_LValue, SourceLocation());
1065   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1066   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1067   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1068 
1069   // Third argument is the helper function.
1070   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1071 
1072   llvm::Value *copyCppAtomicObjectFn =
1073     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1074   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1075                                                       args,
1076                                                       FunctionType::ExtInfo(),
1077                                                       RequiredArgs::All),
1078                copyCppAtomicObjectFn, ReturnValueSlot(), args);
1079 }
1080 
1081 
1082 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1083   Expr *setter = PID->getSetterCXXAssignment();
1084   if (!setter) return true;
1085 
1086   // Sema only makes only of these when the ivar has a C++ class type,
1087   // so the form is pretty constrained.
1088 
1089   // An operator call is trivial if the function it calls is trivial.
1090   // This also implies that there's nothing non-trivial going on with
1091   // the arguments, because operator= can only be trivial if it's a
1092   // synthesized assignment operator and therefore both parameters are
1093   // references.
1094   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1095     if (const FunctionDecl *callee
1096           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1097       if (callee->isTrivial())
1098         return true;
1099     return false;
1100   }
1101 
1102   assert(isa<ExprWithCleanups>(setter));
1103   return false;
1104 }
1105 
1106 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1107   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1108     return false;
1109   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1110 }
1111 
1112 void
1113 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1114                                         const ObjCPropertyImplDecl *propImpl,
1115                                         llvm::Constant *AtomicHelperFn) {
1116   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1117   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1118   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1119 
1120   // Just use the setter expression if Sema gave us one and it's
1121   // non-trivial.
1122   if (!hasTrivialSetExpr(propImpl)) {
1123     if (!AtomicHelperFn)
1124       // If non-atomic, assignment is called directly.
1125       EmitStmt(propImpl->getSetterCXXAssignment());
1126     else
1127       // If atomic, assignment is called via a locking api.
1128       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1129                                     AtomicHelperFn);
1130     return;
1131   }
1132 
1133   PropertyImplStrategy strategy(CGM, propImpl);
1134   switch (strategy.getKind()) {
1135   case PropertyImplStrategy::Native: {
1136     // We don't need to do anything for a zero-size struct.
1137     if (strategy.getIvarSize().isZero())
1138       return;
1139 
1140     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1141 
1142     LValue ivarLValue =
1143       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1144     llvm::Value *ivarAddr = ivarLValue.getAddress();
1145 
1146     // Currently, all atomic accesses have to be through integer
1147     // types, so there's no point in trying to pick a prettier type.
1148     llvm::Type *bitcastType =
1149       llvm::Type::getIntNTy(getLLVMContext(),
1150                             getContext().toBits(strategy.getIvarSize()));
1151     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1152 
1153     // Cast both arguments to the chosen operation type.
1154     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1155     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1156 
1157     // This bitcast load is likely to cause some nasty IR.
1158     llvm::Value *load = Builder.CreateLoad(argAddr);
1159 
1160     // Perform an atomic store.  There are no memory ordering requirements.
1161     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1162     store->setAlignment(strategy.getIvarAlignment().getQuantity());
1163     store->setAtomic(llvm::Unordered);
1164     return;
1165   }
1166 
1167   case PropertyImplStrategy::GetSetProperty:
1168   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1169 
1170     llvm::Value *setOptimizedPropertyFn = nullptr;
1171     llvm::Value *setPropertyFn = nullptr;
1172     if (UseOptimizedSetter(CGM)) {
1173       // 10.8 and iOS 6.0 code and GC is off
1174       setOptimizedPropertyFn =
1175         CGM.getObjCRuntime()
1176            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1177                                             strategy.isCopy());
1178       if (!setOptimizedPropertyFn) {
1179         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1180         return;
1181       }
1182     }
1183     else {
1184       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1185       if (!setPropertyFn) {
1186         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1187         return;
1188       }
1189     }
1190 
1191     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1192     //                       <is-atomic>, <is-copy>).
1193     llvm::Value *cmd =
1194       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1195     llvm::Value *self =
1196       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1197     llvm::Value *ivarOffset =
1198       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1199     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1200     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1201 
1202     CallArgList args;
1203     args.add(RValue::get(self), getContext().getObjCIdType());
1204     args.add(RValue::get(cmd), getContext().getObjCSelType());
1205     if (setOptimizedPropertyFn) {
1206       args.add(RValue::get(arg), getContext().getObjCIdType());
1207       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1208       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1209                                                   FunctionType::ExtInfo(),
1210                                                   RequiredArgs::All),
1211                setOptimizedPropertyFn, ReturnValueSlot(), args);
1212     } else {
1213       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1214       args.add(RValue::get(arg), getContext().getObjCIdType());
1215       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1216                getContext().BoolTy);
1217       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1218                getContext().BoolTy);
1219       // FIXME: We shouldn't need to get the function info here, the runtime
1220       // already should have computed it to build the function.
1221       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1222                                                   FunctionType::ExtInfo(),
1223                                                   RequiredArgs::All),
1224                setPropertyFn, ReturnValueSlot(), args);
1225     }
1226 
1227     return;
1228   }
1229 
1230   case PropertyImplStrategy::CopyStruct:
1231     emitStructSetterCall(*this, setterMethod, ivar);
1232     return;
1233 
1234   case PropertyImplStrategy::Expression:
1235     break;
1236   }
1237 
1238   // Otherwise, fake up some ASTs and emit a normal assignment.
1239   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1240   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1241                    VK_LValue, SourceLocation());
1242   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1243                             selfDecl->getType(), CK_LValueToRValue, &self,
1244                             VK_RValue);
1245   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1246                           SourceLocation(), SourceLocation(),
1247                           &selfLoad, true, true);
1248 
1249   ParmVarDecl *argDecl = *setterMethod->param_begin();
1250   QualType argType = argDecl->getType().getNonReferenceType();
1251   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1252   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1253                            argType.getUnqualifiedType(), CK_LValueToRValue,
1254                            &arg, VK_RValue);
1255 
1256   // The property type can differ from the ivar type in some situations with
1257   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1258   // The following absurdity is just to ensure well-formed IR.
1259   CastKind argCK = CK_NoOp;
1260   if (ivarRef.getType()->isObjCObjectPointerType()) {
1261     if (argLoad.getType()->isObjCObjectPointerType())
1262       argCK = CK_BitCast;
1263     else if (argLoad.getType()->isBlockPointerType())
1264       argCK = CK_BlockPointerToObjCPointerCast;
1265     else
1266       argCK = CK_CPointerToObjCPointerCast;
1267   } else if (ivarRef.getType()->isBlockPointerType()) {
1268      if (argLoad.getType()->isBlockPointerType())
1269       argCK = CK_BitCast;
1270     else
1271       argCK = CK_AnyPointerToBlockPointerCast;
1272   } else if (ivarRef.getType()->isPointerType()) {
1273     argCK = CK_BitCast;
1274   }
1275   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1276                            ivarRef.getType(), argCK, &argLoad,
1277                            VK_RValue);
1278   Expr *finalArg = &argLoad;
1279   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1280                                            argLoad.getType()))
1281     finalArg = &argCast;
1282 
1283 
1284   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1285                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1286                         SourceLocation(), false);
1287   EmitStmt(&assign);
1288 }
1289 
1290 /// \brief Generate an Objective-C property setter function.
1291 ///
1292 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1293 /// is illegal within a category.
1294 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1295                                          const ObjCPropertyImplDecl *PID) {
1296   llvm::Constant *AtomicHelperFn =
1297       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1298   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1299   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1300   assert(OMD && "Invalid call to generate setter (empty method)");
1301   StartObjCMethod(OMD, IMP->getClassInterface());
1302 
1303   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1304 
1305   FinishFunction();
1306 }
1307 
1308 namespace {
1309   struct DestroyIvar : EHScopeStack::Cleanup {
1310   private:
1311     llvm::Value *addr;
1312     const ObjCIvarDecl *ivar;
1313     CodeGenFunction::Destroyer *destroyer;
1314     bool useEHCleanupForArray;
1315   public:
1316     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1317                 CodeGenFunction::Destroyer *destroyer,
1318                 bool useEHCleanupForArray)
1319       : addr(addr), ivar(ivar), destroyer(destroyer),
1320         useEHCleanupForArray(useEHCleanupForArray) {}
1321 
1322     void Emit(CodeGenFunction &CGF, Flags flags) override {
1323       LValue lvalue
1324         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1325       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1326                       flags.isForNormalCleanup() && useEHCleanupForArray);
1327     }
1328   };
1329 }
1330 
1331 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1332 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1333                                       llvm::Value *addr,
1334                                       QualType type) {
1335   llvm::Value *null = getNullForVariable(addr);
1336   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1337 }
1338 
1339 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1340                                   ObjCImplementationDecl *impl) {
1341   CodeGenFunction::RunCleanupsScope scope(CGF);
1342 
1343   llvm::Value *self = CGF.LoadObjCSelf();
1344 
1345   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1346   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1347        ivar; ivar = ivar->getNextIvar()) {
1348     QualType type = ivar->getType();
1349 
1350     // Check whether the ivar is a destructible type.
1351     QualType::DestructionKind dtorKind = type.isDestructedType();
1352     if (!dtorKind) continue;
1353 
1354     CodeGenFunction::Destroyer *destroyer = nullptr;
1355 
1356     // Use a call to objc_storeStrong to destroy strong ivars, for the
1357     // general benefit of the tools.
1358     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1359       destroyer = destroyARCStrongWithStore;
1360 
1361     // Otherwise use the default for the destruction kind.
1362     } else {
1363       destroyer = CGF.getDestroyer(dtorKind);
1364     }
1365 
1366     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1367 
1368     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1369                                          cleanupKind & EHCleanup);
1370   }
1371 
1372   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1373 }
1374 
1375 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1376                                                  ObjCMethodDecl *MD,
1377                                                  bool ctor) {
1378   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1379   StartObjCMethod(MD, IMP->getClassInterface());
1380 
1381   // Emit .cxx_construct.
1382   if (ctor) {
1383     // Suppress the final autorelease in ARC.
1384     AutoreleaseResult = false;
1385 
1386     for (const auto *IvarInit : IMP->inits()) {
1387       FieldDecl *Field = IvarInit->getAnyMember();
1388       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1389       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1390                                     LoadObjCSelf(), Ivar, 0);
1391       EmitAggExpr(IvarInit->getInit(),
1392                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1393                                           AggValueSlot::DoesNotNeedGCBarriers,
1394                                           AggValueSlot::IsNotAliased));
1395     }
1396     // constructor returns 'self'.
1397     CodeGenTypes &Types = CGM.getTypes();
1398     QualType IdTy(CGM.getContext().getObjCIdType());
1399     llvm::Value *SelfAsId =
1400       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1401     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1402 
1403   // Emit .cxx_destruct.
1404   } else {
1405     emitCXXDestructMethod(*this, IMP);
1406   }
1407   FinishFunction();
1408 }
1409 
1410 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1411   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1412   it++; it++;
1413   const ABIArgInfo &AI = it->info;
1414   // FIXME. Is this sufficient check?
1415   return (AI.getKind() == ABIArgInfo::Indirect);
1416 }
1417 
1418 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1419   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1420     return false;
1421   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1422     return FDTTy->getDecl()->hasObjectMember();
1423   return false;
1424 }
1425 
1426 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1427   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1428   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1429                   Self->getType(), VK_LValue, SourceLocation());
1430   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1431 }
1432 
1433 QualType CodeGenFunction::TypeOfSelfObject() {
1434   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1435   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1436   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1437     getContext().getCanonicalType(selfDecl->getType()));
1438   return PTy->getPointeeType();
1439 }
1440 
1441 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1442   llvm::Constant *EnumerationMutationFn =
1443     CGM.getObjCRuntime().EnumerationMutationFunction();
1444 
1445   if (!EnumerationMutationFn) {
1446     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1447     return;
1448   }
1449 
1450   CGDebugInfo *DI = getDebugInfo();
1451   if (DI)
1452     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1453 
1454   // The local variable comes into scope immediately.
1455   AutoVarEmission variable = AutoVarEmission::invalid();
1456   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1457     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1458 
1459   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1460 
1461   // Fast enumeration state.
1462   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1463   llvm::AllocaInst *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1464   EmitNullInitialization(StatePtr, StateTy);
1465 
1466   // Number of elements in the items array.
1467   static const unsigned NumItems = 16;
1468 
1469   // Fetch the countByEnumeratingWithState:objects:count: selector.
1470   IdentifierInfo *II[] = {
1471     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1472     &CGM.getContext().Idents.get("objects"),
1473     &CGM.getContext().Idents.get("count")
1474   };
1475   Selector FastEnumSel =
1476     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1477 
1478   QualType ItemsTy =
1479     getContext().getConstantArrayType(getContext().getObjCIdType(),
1480                                       llvm::APInt(32, NumItems),
1481                                       ArrayType::Normal, 0);
1482   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1483 
1484   // Emit the collection pointer.  In ARC, we do a retain.
1485   llvm::Value *Collection;
1486   if (getLangOpts().ObjCAutoRefCount) {
1487     Collection = EmitARCRetainScalarExpr(S.getCollection());
1488 
1489     // Enter a cleanup to do the release.
1490     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1491   } else {
1492     Collection = EmitScalarExpr(S.getCollection());
1493   }
1494 
1495   // The 'continue' label needs to appear within the cleanup for the
1496   // collection object.
1497   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1498 
1499   // Send it our message:
1500   CallArgList Args;
1501 
1502   // The first argument is a temporary of the enumeration-state type.
1503   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1504 
1505   // The second argument is a temporary array with space for NumItems
1506   // pointers.  We'll actually be loading elements from the array
1507   // pointer written into the control state; this buffer is so that
1508   // collections that *aren't* backed by arrays can still queue up
1509   // batches of elements.
1510   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1511 
1512   // The third argument is the capacity of that temporary array.
1513   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1514   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1515   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1516 
1517   // Start the enumeration.
1518   RValue CountRV =
1519     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1520                                              getContext().UnsignedLongTy,
1521                                              FastEnumSel,
1522                                              Collection, Args);
1523 
1524   // The initial number of objects that were returned in the buffer.
1525   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1526 
1527   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1528   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1529 
1530   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1531 
1532   // If the limit pointer was zero to begin with, the collection is
1533   // empty; skip all this. Set the branch weight assuming this has the same
1534   // probability of exiting the loop as any other loop exit.
1535   uint64_t EntryCount = getCurrentProfileCount();
1536   Builder.CreateCondBr(
1537       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1538       LoopInitBB,
1539       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1540 
1541   // Otherwise, initialize the loop.
1542   EmitBlock(LoopInitBB);
1543 
1544   // Save the initial mutations value.  This is the value at an
1545   // address that was written into the state object by
1546   // countByEnumeratingWithState:objects:count:.
1547   llvm::Value *StateMutationsPtrPtr = Builder.CreateStructGEP(
1548       StatePtr->getAllocatedType(), StatePtr, 2, "mutationsptr.ptr");
1549   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1550                                                       "mutationsptr");
1551 
1552   llvm::Value *initialMutations =
1553     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1554 
1555   // Start looping.  This is the point we return to whenever we have a
1556   // fresh, non-empty batch of objects.
1557   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1558   EmitBlock(LoopBodyBB);
1559 
1560   // The current index into the buffer.
1561   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1562   index->addIncoming(zero, LoopInitBB);
1563 
1564   // The current buffer size.
1565   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1566   count->addIncoming(initialBufferLimit, LoopInitBB);
1567 
1568   incrementProfileCounter(&S);
1569 
1570   // Check whether the mutations value has changed from where it was
1571   // at start.  StateMutationsPtr should actually be invariant between
1572   // refreshes.
1573   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1574   llvm::Value *currentMutations
1575     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1576 
1577   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1578   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1579 
1580   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1581                        WasNotMutatedBB, WasMutatedBB);
1582 
1583   // If so, call the enumeration-mutation function.
1584   EmitBlock(WasMutatedBB);
1585   llvm::Value *V =
1586     Builder.CreateBitCast(Collection,
1587                           ConvertType(getContext().getObjCIdType()));
1588   CallArgList Args2;
1589   Args2.add(RValue::get(V), getContext().getObjCIdType());
1590   // FIXME: We shouldn't need to get the function info here, the runtime already
1591   // should have computed it to build the function.
1592   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1593                                                   FunctionType::ExtInfo(),
1594                                                   RequiredArgs::All),
1595            EnumerationMutationFn, ReturnValueSlot(), Args2);
1596 
1597   // Otherwise, or if the mutation function returns, just continue.
1598   EmitBlock(WasNotMutatedBB);
1599 
1600   // Initialize the element variable.
1601   RunCleanupsScope elementVariableScope(*this);
1602   bool elementIsVariable;
1603   LValue elementLValue;
1604   QualType elementType;
1605   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1606     // Initialize the variable, in case it's a __block variable or something.
1607     EmitAutoVarInit(variable);
1608 
1609     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1610     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1611                         VK_LValue, SourceLocation());
1612     elementLValue = EmitLValue(&tempDRE);
1613     elementType = D->getType();
1614     elementIsVariable = true;
1615 
1616     if (D->isARCPseudoStrong())
1617       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1618   } else {
1619     elementLValue = LValue(); // suppress warning
1620     elementType = cast<Expr>(S.getElement())->getType();
1621     elementIsVariable = false;
1622   }
1623   llvm::Type *convertedElementType = ConvertType(elementType);
1624 
1625   // Fetch the buffer out of the enumeration state.
1626   // TODO: this pointer should actually be invariant between
1627   // refreshes, which would help us do certain loop optimizations.
1628   llvm::Value *StateItemsPtr = Builder.CreateStructGEP(
1629       StatePtr->getAllocatedType(), StatePtr, 1, "stateitems.ptr");
1630   llvm::Value *EnumStateItems =
1631     Builder.CreateLoad(StateItemsPtr, "stateitems");
1632 
1633   // Fetch the value at the current index from the buffer.
1634   llvm::Value *CurrentItemPtr =
1635     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1636   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1637 
1638   // Cast that value to the right type.
1639   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1640                                       "currentitem");
1641 
1642   // Make sure we have an l-value.  Yes, this gets evaluated every
1643   // time through the loop.
1644   if (!elementIsVariable) {
1645     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1646     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1647   } else {
1648     EmitScalarInit(CurrentItem, elementLValue);
1649   }
1650 
1651   // If we do have an element variable, this assignment is the end of
1652   // its initialization.
1653   if (elementIsVariable)
1654     EmitAutoVarCleanups(variable);
1655 
1656   // Perform the loop body, setting up break and continue labels.
1657   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1658   {
1659     RunCleanupsScope Scope(*this);
1660     EmitStmt(S.getBody());
1661   }
1662   BreakContinueStack.pop_back();
1663 
1664   // Destroy the element variable now.
1665   elementVariableScope.ForceCleanup();
1666 
1667   // Check whether there are more elements.
1668   EmitBlock(AfterBody.getBlock());
1669 
1670   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1671 
1672   // First we check in the local buffer.
1673   llvm::Value *indexPlusOne
1674     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1675 
1676   // If we haven't overrun the buffer yet, we can continue.
1677   // Set the branch weights based on the simplifying assumption that this is
1678   // like a while-loop, i.e., ignoring that the false branch fetches more
1679   // elements and then returns to the loop.
1680   Builder.CreateCondBr(
1681       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1682       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1683 
1684   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1685   count->addIncoming(count, AfterBody.getBlock());
1686 
1687   // Otherwise, we have to fetch more elements.
1688   EmitBlock(FetchMoreBB);
1689 
1690   CountRV =
1691     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1692                                              getContext().UnsignedLongTy,
1693                                              FastEnumSel,
1694                                              Collection, Args);
1695 
1696   // If we got a zero count, we're done.
1697   llvm::Value *refetchCount = CountRV.getScalarVal();
1698 
1699   // (note that the message send might split FetchMoreBB)
1700   index->addIncoming(zero, Builder.GetInsertBlock());
1701   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1702 
1703   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1704                        EmptyBB, LoopBodyBB);
1705 
1706   // No more elements.
1707   EmitBlock(EmptyBB);
1708 
1709   if (!elementIsVariable) {
1710     // If the element was not a declaration, set it to be null.
1711 
1712     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1713     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1714     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1715   }
1716 
1717   if (DI)
1718     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1719 
1720   // Leave the cleanup we entered in ARC.
1721   if (getLangOpts().ObjCAutoRefCount)
1722     PopCleanupBlock();
1723 
1724   EmitBlock(LoopEnd.getBlock());
1725 }
1726 
1727 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1728   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1729 }
1730 
1731 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1732   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1733 }
1734 
1735 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1736                                               const ObjCAtSynchronizedStmt &S) {
1737   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1738 }
1739 
1740 /// Produce the code for a CK_ARCProduceObject.  Just does a
1741 /// primitive retain.
1742 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1743                                                     llvm::Value *value) {
1744   return EmitARCRetain(type, value);
1745 }
1746 
1747 namespace {
1748   struct CallObjCRelease : EHScopeStack::Cleanup {
1749     CallObjCRelease(llvm::Value *object) : object(object) {}
1750     llvm::Value *object;
1751 
1752     void Emit(CodeGenFunction &CGF, Flags flags) override {
1753       // Releases at the end of the full-expression are imprecise.
1754       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1755     }
1756   };
1757 }
1758 
1759 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1760 /// release at the end of the full-expression.
1761 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1762                                                     llvm::Value *object) {
1763   // If we're in a conditional branch, we need to make the cleanup
1764   // conditional.
1765   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1766   return object;
1767 }
1768 
1769 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1770                                                            llvm::Value *value) {
1771   return EmitARCRetainAutorelease(type, value);
1772 }
1773 
1774 /// Given a number of pointers, inform the optimizer that they're
1775 /// being intrinsically used up until this point in the program.
1776 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1777   llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use;
1778   if (!fn) {
1779     llvm::FunctionType *fnType =
1780       llvm::FunctionType::get(CGM.VoidTy, None, true);
1781     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1782   }
1783 
1784   // This isn't really a "runtime" function, but as an intrinsic it
1785   // doesn't really matter as long as we align things up.
1786   EmitNounwindRuntimeCall(fn, values);
1787 }
1788 
1789 
1790 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1791                                                 llvm::FunctionType *type,
1792                                                 StringRef fnName) {
1793   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1794 
1795   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1796     // If the target runtime doesn't naturally support ARC, emit weak
1797     // references to the runtime support library.  We don't really
1798     // permit this to fail, but we need a particular relocation style.
1799     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1800       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1801     } else if (fnName == "objc_retain" || fnName  == "objc_release") {
1802       // If we have Native ARC, set nonlazybind attribute for these APIs for
1803       // performance.
1804       f->addFnAttr(llvm::Attribute::NonLazyBind);
1805     }
1806   }
1807 
1808   return fn;
1809 }
1810 
1811 /// Perform an operation having the signature
1812 ///   i8* (i8*)
1813 /// where a null input causes a no-op and returns null.
1814 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1815                                           llvm::Value *value,
1816                                           llvm::Constant *&fn,
1817                                           StringRef fnName,
1818                                           bool isTailCall = false) {
1819   if (isa<llvm::ConstantPointerNull>(value)) return value;
1820 
1821   if (!fn) {
1822     llvm::FunctionType *fnType =
1823       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1824     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1825   }
1826 
1827   // Cast the argument to 'id'.
1828   llvm::Type *origType = value->getType();
1829   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1830 
1831   // Call the function.
1832   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1833   if (isTailCall)
1834     call->setTailCall();
1835 
1836   // Cast the result back to the original type.
1837   return CGF.Builder.CreateBitCast(call, origType);
1838 }
1839 
1840 /// Perform an operation having the following signature:
1841 ///   i8* (i8**)
1842 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1843                                          llvm::Value *addr,
1844                                          llvm::Constant *&fn,
1845                                          StringRef fnName) {
1846   if (!fn) {
1847     llvm::FunctionType *fnType =
1848       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1849     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1850   }
1851 
1852   // Cast the argument to 'id*'.
1853   llvm::Type *origType = addr->getType();
1854   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1855 
1856   // Call the function.
1857   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr);
1858 
1859   // Cast the result back to a dereference of the original type.
1860   if (origType != CGF.Int8PtrPtrTy)
1861     result = CGF.Builder.CreateBitCast(result,
1862                         cast<llvm::PointerType>(origType)->getElementType());
1863 
1864   return result;
1865 }
1866 
1867 /// Perform an operation having the following signature:
1868 ///   i8* (i8**, i8*)
1869 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1870                                           llvm::Value *addr,
1871                                           llvm::Value *value,
1872                                           llvm::Constant *&fn,
1873                                           StringRef fnName,
1874                                           bool ignored) {
1875   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1876            == value->getType());
1877 
1878   if (!fn) {
1879     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1880 
1881     llvm::FunctionType *fnType
1882       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1883     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1884   }
1885 
1886   llvm::Type *origType = value->getType();
1887 
1888   llvm::Value *args[] = {
1889     CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy),
1890     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1891   };
1892   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1893 
1894   if (ignored) return nullptr;
1895 
1896   return CGF.Builder.CreateBitCast(result, origType);
1897 }
1898 
1899 /// Perform an operation having the following signature:
1900 ///   void (i8**, i8**)
1901 static void emitARCCopyOperation(CodeGenFunction &CGF,
1902                                  llvm::Value *dst,
1903                                  llvm::Value *src,
1904                                  llvm::Constant *&fn,
1905                                  StringRef fnName) {
1906   assert(dst->getType() == src->getType());
1907 
1908   if (!fn) {
1909     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1910 
1911     llvm::FunctionType *fnType
1912       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1913     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1914   }
1915 
1916   llvm::Value *args[] = {
1917     CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy),
1918     CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy)
1919   };
1920   CGF.EmitNounwindRuntimeCall(fn, args);
1921 }
1922 
1923 /// Produce the code to do a retain.  Based on the type, calls one of:
1924 ///   call i8* \@objc_retain(i8* %value)
1925 ///   call i8* \@objc_retainBlock(i8* %value)
1926 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1927   if (type->isBlockPointerType())
1928     return EmitARCRetainBlock(value, /*mandatory*/ false);
1929   else
1930     return EmitARCRetainNonBlock(value);
1931 }
1932 
1933 /// Retain the given object, with normal retain semantics.
1934 ///   call i8* \@objc_retain(i8* %value)
1935 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1936   return emitARCValueOperation(*this, value,
1937                                CGM.getARCEntrypoints().objc_retain,
1938                                "objc_retain");
1939 }
1940 
1941 /// Retain the given block, with _Block_copy semantics.
1942 ///   call i8* \@objc_retainBlock(i8* %value)
1943 ///
1944 /// \param mandatory - If false, emit the call with metadata
1945 /// indicating that it's okay for the optimizer to eliminate this call
1946 /// if it can prove that the block never escapes except down the stack.
1947 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1948                                                  bool mandatory) {
1949   llvm::Value *result
1950     = emitARCValueOperation(*this, value,
1951                             CGM.getARCEntrypoints().objc_retainBlock,
1952                             "objc_retainBlock");
1953 
1954   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1955   // tell the optimizer that it doesn't need to do this copy if the
1956   // block doesn't escape, where being passed as an argument doesn't
1957   // count as escaping.
1958   if (!mandatory && isa<llvm::Instruction>(result)) {
1959     llvm::CallInst *call
1960       = cast<llvm::CallInst>(result->stripPointerCasts());
1961     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1962 
1963     call->setMetadata("clang.arc.copy_on_escape",
1964                       llvm::MDNode::get(Builder.getContext(), None));
1965   }
1966 
1967   return result;
1968 }
1969 
1970 /// Retain the given object which is the result of a function call.
1971 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1972 ///
1973 /// Yes, this function name is one character away from a different
1974 /// call with completely different semantics.
1975 llvm::Value *
1976 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1977   // Fetch the void(void) inline asm which marks that we're going to
1978   // retain the autoreleased return value.
1979   llvm::InlineAsm *&marker
1980     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1981   if (!marker) {
1982     StringRef assembly
1983       = CGM.getTargetCodeGenInfo()
1984            .getARCRetainAutoreleasedReturnValueMarker();
1985 
1986     // If we have an empty assembly string, there's nothing to do.
1987     if (assembly.empty()) {
1988 
1989     // Otherwise, at -O0, build an inline asm that we're going to call
1990     // in a moment.
1991     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1992       llvm::FunctionType *type =
1993         llvm::FunctionType::get(VoidTy, /*variadic*/false);
1994 
1995       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1996 
1997     // If we're at -O1 and above, we don't want to litter the code
1998     // with this marker yet, so leave a breadcrumb for the ARC
1999     // optimizer to pick up.
2000     } else {
2001       llvm::NamedMDNode *metadata =
2002         CGM.getModule().getOrInsertNamedMetadata(
2003                             "clang.arc.retainAutoreleasedReturnValueMarker");
2004       assert(metadata->getNumOperands() <= 1);
2005       if (metadata->getNumOperands() == 0) {
2006         metadata->addOperand(llvm::MDNode::get(
2007             getLLVMContext(), llvm::MDString::get(getLLVMContext(), assembly)));
2008       }
2009     }
2010   }
2011 
2012   // Call the marker asm if we made one, which we do only at -O0.
2013   if (marker)
2014     Builder.CreateCall(marker, {});
2015 
2016   return emitARCValueOperation(*this, value,
2017                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
2018                                "objc_retainAutoreleasedReturnValue");
2019 }
2020 
2021 /// Release the given object.
2022 ///   call void \@objc_release(i8* %value)
2023 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2024                                      ARCPreciseLifetime_t precise) {
2025   if (isa<llvm::ConstantPointerNull>(value)) return;
2026 
2027   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
2028   if (!fn) {
2029     llvm::FunctionType *fnType =
2030       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2031     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
2032   }
2033 
2034   // Cast the argument to 'id'.
2035   value = Builder.CreateBitCast(value, Int8PtrTy);
2036 
2037   // Call objc_release.
2038   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2039 
2040   if (precise == ARCImpreciseLifetime) {
2041     call->setMetadata("clang.imprecise_release",
2042                       llvm::MDNode::get(Builder.getContext(), None));
2043   }
2044 }
2045 
2046 /// Destroy a __strong variable.
2047 ///
2048 /// At -O0, emit a call to store 'null' into the address;
2049 /// instrumenting tools prefer this because the address is exposed,
2050 /// but it's relatively cumbersome to optimize.
2051 ///
2052 /// At -O1 and above, just load and call objc_release.
2053 ///
2054 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2055 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr,
2056                                            ARCPreciseLifetime_t precise) {
2057   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2058     llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
2059     llvm::Value *null = llvm::ConstantPointerNull::get(
2060                           cast<llvm::PointerType>(addrTy->getElementType()));
2061     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2062     return;
2063   }
2064 
2065   llvm::Value *value = Builder.CreateLoad(addr);
2066   EmitARCRelease(value, precise);
2067 }
2068 
2069 /// Store into a strong object.  Always calls this:
2070 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2071 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
2072                                                      llvm::Value *value,
2073                                                      bool ignored) {
2074   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
2075            == value->getType());
2076 
2077   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
2078   if (!fn) {
2079     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2080     llvm::FunctionType *fnType
2081       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2082     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2083   }
2084 
2085   llvm::Value *args[] = {
2086     Builder.CreateBitCast(addr, Int8PtrPtrTy),
2087     Builder.CreateBitCast(value, Int8PtrTy)
2088   };
2089   EmitNounwindRuntimeCall(fn, args);
2090 
2091   if (ignored) return nullptr;
2092   return value;
2093 }
2094 
2095 /// Store into a strong object.  Sometimes calls this:
2096 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2097 /// Other times, breaks it down into components.
2098 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2099                                                  llvm::Value *newValue,
2100                                                  bool ignored) {
2101   QualType type = dst.getType();
2102   bool isBlock = type->isBlockPointerType();
2103 
2104   // Use a store barrier at -O0 unless this is a block type or the
2105   // lvalue is inadequately aligned.
2106   if (shouldUseFusedARCCalls() &&
2107       !isBlock &&
2108       (dst.getAlignment().isZero() ||
2109        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2110     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2111   }
2112 
2113   // Otherwise, split it out.
2114 
2115   // Retain the new value.
2116   newValue = EmitARCRetain(type, newValue);
2117 
2118   // Read the old value.
2119   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2120 
2121   // Store.  We do this before the release so that any deallocs won't
2122   // see the old value.
2123   EmitStoreOfScalar(newValue, dst);
2124 
2125   // Finally, release the old value.
2126   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2127 
2128   return newValue;
2129 }
2130 
2131 /// Autorelease the given object.
2132 ///   call i8* \@objc_autorelease(i8* %value)
2133 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2134   return emitARCValueOperation(*this, value,
2135                                CGM.getARCEntrypoints().objc_autorelease,
2136                                "objc_autorelease");
2137 }
2138 
2139 /// Autorelease the given object.
2140 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2141 llvm::Value *
2142 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2143   return emitARCValueOperation(*this, value,
2144                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2145                                "objc_autoreleaseReturnValue",
2146                                /*isTailCall*/ true);
2147 }
2148 
2149 /// Do a fused retain/autorelease of the given object.
2150 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2151 llvm::Value *
2152 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2153   return emitARCValueOperation(*this, value,
2154                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2155                                "objc_retainAutoreleaseReturnValue",
2156                                /*isTailCall*/ true);
2157 }
2158 
2159 /// Do a fused retain/autorelease of the given object.
2160 ///   call i8* \@objc_retainAutorelease(i8* %value)
2161 /// or
2162 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2163 ///   call i8* \@objc_autorelease(i8* %retain)
2164 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2165                                                        llvm::Value *value) {
2166   if (!type->isBlockPointerType())
2167     return EmitARCRetainAutoreleaseNonBlock(value);
2168 
2169   if (isa<llvm::ConstantPointerNull>(value)) return value;
2170 
2171   llvm::Type *origType = value->getType();
2172   value = Builder.CreateBitCast(value, Int8PtrTy);
2173   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2174   value = EmitARCAutorelease(value);
2175   return Builder.CreateBitCast(value, origType);
2176 }
2177 
2178 /// Do a fused retain/autorelease of the given object.
2179 ///   call i8* \@objc_retainAutorelease(i8* %value)
2180 llvm::Value *
2181 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2182   return emitARCValueOperation(*this, value,
2183                                CGM.getARCEntrypoints().objc_retainAutorelease,
2184                                "objc_retainAutorelease");
2185 }
2186 
2187 /// i8* \@objc_loadWeak(i8** %addr)
2188 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2189 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2190   return emitARCLoadOperation(*this, addr,
2191                               CGM.getARCEntrypoints().objc_loadWeak,
2192                               "objc_loadWeak");
2193 }
2194 
2195 /// i8* \@objc_loadWeakRetained(i8** %addr)
2196 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2197   return emitARCLoadOperation(*this, addr,
2198                               CGM.getARCEntrypoints().objc_loadWeakRetained,
2199                               "objc_loadWeakRetained");
2200 }
2201 
2202 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2203 /// Returns %value.
2204 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2205                                                llvm::Value *value,
2206                                                bool ignored) {
2207   return emitARCStoreOperation(*this, addr, value,
2208                                CGM.getARCEntrypoints().objc_storeWeak,
2209                                "objc_storeWeak", ignored);
2210 }
2211 
2212 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2213 /// Returns %value.  %addr is known to not have a current weak entry.
2214 /// Essentially equivalent to:
2215 ///   *addr = nil; objc_storeWeak(addr, value);
2216 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2217   // If we're initializing to null, just write null to memory; no need
2218   // to get the runtime involved.  But don't do this if optimization
2219   // is enabled, because accounting for this would make the optimizer
2220   // much more complicated.
2221   if (isa<llvm::ConstantPointerNull>(value) &&
2222       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2223     Builder.CreateStore(value, addr);
2224     return;
2225   }
2226 
2227   emitARCStoreOperation(*this, addr, value,
2228                         CGM.getARCEntrypoints().objc_initWeak,
2229                         "objc_initWeak", /*ignored*/ true);
2230 }
2231 
2232 /// void \@objc_destroyWeak(i8** %addr)
2233 /// Essentially objc_storeWeak(addr, nil).
2234 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2235   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2236   if (!fn) {
2237     llvm::FunctionType *fnType =
2238       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2239     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2240   }
2241 
2242   // Cast the argument to 'id*'.
2243   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2244 
2245   EmitNounwindRuntimeCall(fn, addr);
2246 }
2247 
2248 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2249 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2250 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2251 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2252   emitARCCopyOperation(*this, dst, src,
2253                        CGM.getARCEntrypoints().objc_moveWeak,
2254                        "objc_moveWeak");
2255 }
2256 
2257 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2258 /// Disregards the current value in %dest.  Essentially
2259 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2260 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2261   emitARCCopyOperation(*this, dst, src,
2262                        CGM.getARCEntrypoints().objc_copyWeak,
2263                        "objc_copyWeak");
2264 }
2265 
2266 /// Produce the code to do a objc_autoreleasepool_push.
2267 ///   call i8* \@objc_autoreleasePoolPush(void)
2268 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2269   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2270   if (!fn) {
2271     llvm::FunctionType *fnType =
2272       llvm::FunctionType::get(Int8PtrTy, false);
2273     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2274   }
2275 
2276   return EmitNounwindRuntimeCall(fn);
2277 }
2278 
2279 /// Produce the code to do a primitive release.
2280 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2281 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2282   assert(value->getType() == Int8PtrTy);
2283 
2284   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2285   if (!fn) {
2286     llvm::FunctionType *fnType =
2287       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2288 
2289     // We don't want to use a weak import here; instead we should not
2290     // fall into this path.
2291     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2292   }
2293 
2294   // objc_autoreleasePoolPop can throw.
2295   EmitRuntimeCallOrInvoke(fn, value);
2296 }
2297 
2298 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2299 /// Which is: [[NSAutoreleasePool alloc] init];
2300 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2301 /// init is declared as: - (id) init; in its NSObject super class.
2302 ///
2303 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2304   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2305   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2306   // [NSAutoreleasePool alloc]
2307   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2308   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2309   CallArgList Args;
2310   RValue AllocRV =
2311     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2312                                 getContext().getObjCIdType(),
2313                                 AllocSel, Receiver, Args);
2314 
2315   // [Receiver init]
2316   Receiver = AllocRV.getScalarVal();
2317   II = &CGM.getContext().Idents.get("init");
2318   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2319   RValue InitRV =
2320     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2321                                 getContext().getObjCIdType(),
2322                                 InitSel, Receiver, Args);
2323   return InitRV.getScalarVal();
2324 }
2325 
2326 /// Produce the code to do a primitive release.
2327 /// [tmp drain];
2328 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2329   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2330   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2331   CallArgList Args;
2332   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2333                               getContext().VoidTy, DrainSel, Arg, Args);
2334 }
2335 
2336 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2337                                               llvm::Value *addr,
2338                                               QualType type) {
2339   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2340 }
2341 
2342 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2343                                                 llvm::Value *addr,
2344                                                 QualType type) {
2345   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2346 }
2347 
2348 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2349                                      llvm::Value *addr,
2350                                      QualType type) {
2351   CGF.EmitARCDestroyWeak(addr);
2352 }
2353 
2354 namespace {
2355   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2356     llvm::Value *Token;
2357 
2358     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2359 
2360     void Emit(CodeGenFunction &CGF, Flags flags) override {
2361       CGF.EmitObjCAutoreleasePoolPop(Token);
2362     }
2363   };
2364   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2365     llvm::Value *Token;
2366 
2367     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2368 
2369     void Emit(CodeGenFunction &CGF, Flags flags) override {
2370       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2371     }
2372   };
2373 }
2374 
2375 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2376   if (CGM.getLangOpts().ObjCAutoRefCount)
2377     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2378   else
2379     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2380 }
2381 
2382 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2383                                                   LValue lvalue,
2384                                                   QualType type) {
2385   switch (type.getObjCLifetime()) {
2386   case Qualifiers::OCL_None:
2387   case Qualifiers::OCL_ExplicitNone:
2388   case Qualifiers::OCL_Strong:
2389   case Qualifiers::OCL_Autoreleasing:
2390     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2391                                               SourceLocation()).getScalarVal(),
2392                          false);
2393 
2394   case Qualifiers::OCL_Weak:
2395     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2396                          true);
2397   }
2398 
2399   llvm_unreachable("impossible lifetime!");
2400 }
2401 
2402 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2403                                                   const Expr *e) {
2404   e = e->IgnoreParens();
2405   QualType type = e->getType();
2406 
2407   // If we're loading retained from a __strong xvalue, we can avoid
2408   // an extra retain/release pair by zeroing out the source of this
2409   // "move" operation.
2410   if (e->isXValue() &&
2411       !type.isConstQualified() &&
2412       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2413     // Emit the lvalue.
2414     LValue lv = CGF.EmitLValue(e);
2415 
2416     // Load the object pointer.
2417     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2418                                                SourceLocation()).getScalarVal();
2419 
2420     // Set the source pointer to NULL.
2421     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2422 
2423     return TryEmitResult(result, true);
2424   }
2425 
2426   // As a very special optimization, in ARC++, if the l-value is the
2427   // result of a non-volatile assignment, do a simple retain of the
2428   // result of the call to objc_storeWeak instead of reloading.
2429   if (CGF.getLangOpts().CPlusPlus &&
2430       !type.isVolatileQualified() &&
2431       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2432       isa<BinaryOperator>(e) &&
2433       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2434     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2435 
2436   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2437 }
2438 
2439 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2440                                            llvm::Value *value);
2441 
2442 /// Given that the given expression is some sort of call (which does
2443 /// not return retained), emit a retain following it.
2444 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2445   llvm::Value *value = CGF.EmitScalarExpr(e);
2446   return emitARCRetainAfterCall(CGF, value);
2447 }
2448 
2449 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2450                                            llvm::Value *value) {
2451   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2452     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2453 
2454     // Place the retain immediately following the call.
2455     CGF.Builder.SetInsertPoint(call->getParent(),
2456                                ++llvm::BasicBlock::iterator(call));
2457     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2458 
2459     CGF.Builder.restoreIP(ip);
2460     return value;
2461   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2462     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2463 
2464     // Place the retain at the beginning of the normal destination block.
2465     llvm::BasicBlock *BB = invoke->getNormalDest();
2466     CGF.Builder.SetInsertPoint(BB, BB->begin());
2467     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2468 
2469     CGF.Builder.restoreIP(ip);
2470     return value;
2471 
2472   // Bitcasts can arise because of related-result returns.  Rewrite
2473   // the operand.
2474   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2475     llvm::Value *operand = bitcast->getOperand(0);
2476     operand = emitARCRetainAfterCall(CGF, operand);
2477     bitcast->setOperand(0, operand);
2478     return bitcast;
2479 
2480   // Generic fall-back case.
2481   } else {
2482     // Retain using the non-block variant: we never need to do a copy
2483     // of a block that's been returned to us.
2484     return CGF.EmitARCRetainNonBlock(value);
2485   }
2486 }
2487 
2488 /// Determine whether it might be important to emit a separate
2489 /// objc_retain_block on the result of the given expression, or
2490 /// whether it's okay to just emit it in a +1 context.
2491 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2492   assert(e->getType()->isBlockPointerType());
2493   e = e->IgnoreParens();
2494 
2495   // For future goodness, emit block expressions directly in +1
2496   // contexts if we can.
2497   if (isa<BlockExpr>(e))
2498     return false;
2499 
2500   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2501     switch (cast->getCastKind()) {
2502     // Emitting these operations in +1 contexts is goodness.
2503     case CK_LValueToRValue:
2504     case CK_ARCReclaimReturnedObject:
2505     case CK_ARCConsumeObject:
2506     case CK_ARCProduceObject:
2507       return false;
2508 
2509     // These operations preserve a block type.
2510     case CK_NoOp:
2511     case CK_BitCast:
2512       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2513 
2514     // These operations are known to be bad (or haven't been considered).
2515     case CK_AnyPointerToBlockPointerCast:
2516     default:
2517       return true;
2518     }
2519   }
2520 
2521   return true;
2522 }
2523 
2524 /// Try to emit a PseudoObjectExpr at +1.
2525 ///
2526 /// This massively duplicates emitPseudoObjectRValue.
2527 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2528                                                   const PseudoObjectExpr *E) {
2529   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2530 
2531   // Find the result expression.
2532   const Expr *resultExpr = E->getResultExpr();
2533   assert(resultExpr);
2534   TryEmitResult result;
2535 
2536   for (PseudoObjectExpr::const_semantics_iterator
2537          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2538     const Expr *semantic = *i;
2539 
2540     // If this semantic expression is an opaque value, bind it
2541     // to the result of its source expression.
2542     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2543       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2544       OVMA opaqueData;
2545 
2546       // If this semantic is the result of the pseudo-object
2547       // expression, try to evaluate the source as +1.
2548       if (ov == resultExpr) {
2549         assert(!OVMA::shouldBindAsLValue(ov));
2550         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2551         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2552 
2553       // Otherwise, just bind it.
2554       } else {
2555         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2556       }
2557       opaques.push_back(opaqueData);
2558 
2559     // Otherwise, if the expression is the result, evaluate it
2560     // and remember the result.
2561     } else if (semantic == resultExpr) {
2562       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2563 
2564     // Otherwise, evaluate the expression in an ignored context.
2565     } else {
2566       CGF.EmitIgnoredExpr(semantic);
2567     }
2568   }
2569 
2570   // Unbind all the opaques now.
2571   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2572     opaques[i].unbind(CGF);
2573 
2574   return result;
2575 }
2576 
2577 static TryEmitResult
2578 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2579   // We should *never* see a nested full-expression here, because if
2580   // we fail to emit at +1, our caller must not retain after we close
2581   // out the full-expression.
2582   assert(!isa<ExprWithCleanups>(e));
2583 
2584   // The desired result type, if it differs from the type of the
2585   // ultimate opaque expression.
2586   llvm::Type *resultType = nullptr;
2587 
2588   while (true) {
2589     e = e->IgnoreParens();
2590 
2591     // There's a break at the end of this if-chain;  anything
2592     // that wants to keep looping has to explicitly continue.
2593     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2594       switch (ce->getCastKind()) {
2595       // No-op casts don't change the type, so we just ignore them.
2596       case CK_NoOp:
2597         e = ce->getSubExpr();
2598         continue;
2599 
2600       case CK_LValueToRValue: {
2601         TryEmitResult loadResult
2602           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2603         if (resultType) {
2604           llvm::Value *value = loadResult.getPointer();
2605           value = CGF.Builder.CreateBitCast(value, resultType);
2606           loadResult.setPointer(value);
2607         }
2608         return loadResult;
2609       }
2610 
2611       // These casts can change the type, so remember that and
2612       // soldier on.  We only need to remember the outermost such
2613       // cast, though.
2614       case CK_CPointerToObjCPointerCast:
2615       case CK_BlockPointerToObjCPointerCast:
2616       case CK_AnyPointerToBlockPointerCast:
2617       case CK_BitCast:
2618         if (!resultType)
2619           resultType = CGF.ConvertType(ce->getType());
2620         e = ce->getSubExpr();
2621         assert(e->getType()->hasPointerRepresentation());
2622         continue;
2623 
2624       // For consumptions, just emit the subexpression and thus elide
2625       // the retain/release pair.
2626       case CK_ARCConsumeObject: {
2627         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2628         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2629         return TryEmitResult(result, true);
2630       }
2631 
2632       // Block extends are net +0.  Naively, we could just recurse on
2633       // the subexpression, but actually we need to ensure that the
2634       // value is copied as a block, so there's a little filter here.
2635       case CK_ARCExtendBlockObject: {
2636         llvm::Value *result; // will be a +0 value
2637 
2638         // If we can't safely assume the sub-expression will produce a
2639         // block-copied value, emit the sub-expression at +0.
2640         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2641           result = CGF.EmitScalarExpr(ce->getSubExpr());
2642 
2643         // Otherwise, try to emit the sub-expression at +1 recursively.
2644         } else {
2645           TryEmitResult subresult
2646             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2647           result = subresult.getPointer();
2648 
2649           // If that produced a retained value, just use that,
2650           // possibly casting down.
2651           if (subresult.getInt()) {
2652             if (resultType)
2653               result = CGF.Builder.CreateBitCast(result, resultType);
2654             return TryEmitResult(result, true);
2655           }
2656 
2657           // Otherwise it's +0.
2658         }
2659 
2660         // Retain the object as a block, then cast down.
2661         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2662         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2663         return TryEmitResult(result, true);
2664       }
2665 
2666       // For reclaims, emit the subexpression as a retained call and
2667       // skip the consumption.
2668       case CK_ARCReclaimReturnedObject: {
2669         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2670         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2671         return TryEmitResult(result, true);
2672       }
2673 
2674       default:
2675         break;
2676       }
2677 
2678     // Skip __extension__.
2679     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2680       if (op->getOpcode() == UO_Extension) {
2681         e = op->getSubExpr();
2682         continue;
2683       }
2684 
2685     // For calls and message sends, use the retained-call logic.
2686     // Delegate inits are a special case in that they're the only
2687     // returns-retained expression that *isn't* surrounded by
2688     // a consume.
2689     } else if (isa<CallExpr>(e) ||
2690                (isa<ObjCMessageExpr>(e) &&
2691                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2692       llvm::Value *result = emitARCRetainCall(CGF, e);
2693       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2694       return TryEmitResult(result, true);
2695 
2696     // Look through pseudo-object expressions.
2697     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2698       TryEmitResult result
2699         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2700       if (resultType) {
2701         llvm::Value *value = result.getPointer();
2702         value = CGF.Builder.CreateBitCast(value, resultType);
2703         result.setPointer(value);
2704       }
2705       return result;
2706     }
2707 
2708     // Conservatively halt the search at any other expression kind.
2709     break;
2710   }
2711 
2712   // We didn't find an obvious production, so emit what we've got and
2713   // tell the caller that we didn't manage to retain.
2714   llvm::Value *result = CGF.EmitScalarExpr(e);
2715   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2716   return TryEmitResult(result, false);
2717 }
2718 
2719 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2720                                                 LValue lvalue,
2721                                                 QualType type) {
2722   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2723   llvm::Value *value = result.getPointer();
2724   if (!result.getInt())
2725     value = CGF.EmitARCRetain(type, value);
2726   return value;
2727 }
2728 
2729 /// EmitARCRetainScalarExpr - Semantically equivalent to
2730 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2731 /// best-effort attempt to peephole expressions that naturally produce
2732 /// retained objects.
2733 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2734   // The retain needs to happen within the full-expression.
2735   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2736     enterFullExpression(cleanups);
2737     RunCleanupsScope scope(*this);
2738     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2739   }
2740 
2741   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2742   llvm::Value *value = result.getPointer();
2743   if (!result.getInt())
2744     value = EmitARCRetain(e->getType(), value);
2745   return value;
2746 }
2747 
2748 llvm::Value *
2749 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2750   // The retain needs to happen within the full-expression.
2751   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2752     enterFullExpression(cleanups);
2753     RunCleanupsScope scope(*this);
2754     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2755   }
2756 
2757   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2758   llvm::Value *value = result.getPointer();
2759   if (result.getInt())
2760     value = EmitARCAutorelease(value);
2761   else
2762     value = EmitARCRetainAutorelease(e->getType(), value);
2763   return value;
2764 }
2765 
2766 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2767   llvm::Value *result;
2768   bool doRetain;
2769 
2770   if (shouldEmitSeparateBlockRetain(e)) {
2771     result = EmitScalarExpr(e);
2772     doRetain = true;
2773   } else {
2774     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2775     result = subresult.getPointer();
2776     doRetain = !subresult.getInt();
2777   }
2778 
2779   if (doRetain)
2780     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2781   return EmitObjCConsumeObject(e->getType(), result);
2782 }
2783 
2784 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2785   // In ARC, retain and autorelease the expression.
2786   if (getLangOpts().ObjCAutoRefCount) {
2787     // Do so before running any cleanups for the full-expression.
2788     // EmitARCRetainAutoreleaseScalarExpr does this for us.
2789     return EmitARCRetainAutoreleaseScalarExpr(expr);
2790   }
2791 
2792   // Otherwise, use the normal scalar-expression emission.  The
2793   // exception machinery doesn't do anything special with the
2794   // exception like retaining it, so there's no safety associated with
2795   // only running cleanups after the throw has started, and when it
2796   // matters it tends to be substantially inferior code.
2797   return EmitScalarExpr(expr);
2798 }
2799 
2800 std::pair<LValue,llvm::Value*>
2801 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2802                                     bool ignored) {
2803   // Evaluate the RHS first.
2804   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2805   llvm::Value *value = result.getPointer();
2806 
2807   bool hasImmediateRetain = result.getInt();
2808 
2809   // If we didn't emit a retained object, and the l-value is of block
2810   // type, then we need to emit the block-retain immediately in case
2811   // it invalidates the l-value.
2812   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2813     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2814     hasImmediateRetain = true;
2815   }
2816 
2817   LValue lvalue = EmitLValue(e->getLHS());
2818 
2819   // If the RHS was emitted retained, expand this.
2820   if (hasImmediateRetain) {
2821     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
2822     EmitStoreOfScalar(value, lvalue);
2823     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
2824   } else {
2825     value = EmitARCStoreStrong(lvalue, value, ignored);
2826   }
2827 
2828   return std::pair<LValue,llvm::Value*>(lvalue, value);
2829 }
2830 
2831 std::pair<LValue,llvm::Value*>
2832 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2833   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2834   LValue lvalue = EmitLValue(e->getLHS());
2835 
2836   EmitStoreOfScalar(value, lvalue);
2837 
2838   return std::pair<LValue,llvm::Value*>(lvalue, value);
2839 }
2840 
2841 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2842                                           const ObjCAutoreleasePoolStmt &ARPS) {
2843   const Stmt *subStmt = ARPS.getSubStmt();
2844   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2845 
2846   CGDebugInfo *DI = getDebugInfo();
2847   if (DI)
2848     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2849 
2850   // Keep track of the current cleanup stack depth.
2851   RunCleanupsScope Scope(*this);
2852   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2853     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2854     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2855   } else {
2856     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2857     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2858   }
2859 
2860   for (const auto *I : S.body())
2861     EmitStmt(I);
2862 
2863   if (DI)
2864     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2865 }
2866 
2867 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2868 /// make sure it survives garbage collection until this point.
2869 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2870   // We just use an inline assembly.
2871   llvm::FunctionType *extenderType
2872     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2873   llvm::Value *extender
2874     = llvm::InlineAsm::get(extenderType,
2875                            /* assembly */ "",
2876                            /* constraints */ "r",
2877                            /* side effects */ true);
2878 
2879   object = Builder.CreateBitCast(object, VoidPtrTy);
2880   EmitNounwindRuntimeCall(extender, object);
2881 }
2882 
2883 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2884 /// non-trivial copy assignment function, produce following helper function.
2885 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2886 ///
2887 llvm::Constant *
2888 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2889                                         const ObjCPropertyImplDecl *PID) {
2890   if (!getLangOpts().CPlusPlus ||
2891       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2892     return nullptr;
2893   QualType Ty = PID->getPropertyIvarDecl()->getType();
2894   if (!Ty->isRecordType())
2895     return nullptr;
2896   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2897   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2898     return nullptr;
2899   llvm::Constant *HelperFn = nullptr;
2900   if (hasTrivialSetExpr(PID))
2901     return nullptr;
2902   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2903   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2904     return HelperFn;
2905 
2906   ASTContext &C = getContext();
2907   IdentifierInfo *II
2908     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2909   FunctionDecl *FD = FunctionDecl::Create(C,
2910                                           C.getTranslationUnitDecl(),
2911                                           SourceLocation(),
2912                                           SourceLocation(), II, C.VoidTy,
2913                                           nullptr, SC_Static,
2914                                           false,
2915                                           false);
2916 
2917   QualType DestTy = C.getPointerType(Ty);
2918   QualType SrcTy = Ty;
2919   SrcTy.addConst();
2920   SrcTy = C.getPointerType(SrcTy);
2921 
2922   FunctionArgList args;
2923   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
2924   args.push_back(&dstDecl);
2925   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
2926   args.push_back(&srcDecl);
2927 
2928   const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
2929       C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
2930 
2931   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2932 
2933   llvm::Function *Fn =
2934     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2935                            "__assign_helper_atomic_property_",
2936                            &CGM.getModule());
2937 
2938   StartFunction(FD, C.VoidTy, Fn, FI, args);
2939 
2940   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2941                       VK_RValue, SourceLocation());
2942   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2943                     VK_LValue, OK_Ordinary, SourceLocation());
2944 
2945   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2946                       VK_RValue, SourceLocation());
2947   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2948                     VK_LValue, OK_Ordinary, SourceLocation());
2949 
2950   Expr *Args[2] = { &DST, &SRC };
2951   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2952   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2953                               Args, DestTy->getPointeeType(),
2954                               VK_LValue, SourceLocation(), false);
2955 
2956   EmitStmt(&TheCall);
2957 
2958   FinishFunction();
2959   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2960   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2961   return HelperFn;
2962 }
2963 
2964 llvm::Constant *
2965 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2966                                             const ObjCPropertyImplDecl *PID) {
2967   if (!getLangOpts().CPlusPlus ||
2968       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2969     return nullptr;
2970   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2971   QualType Ty = PD->getType();
2972   if (!Ty->isRecordType())
2973     return nullptr;
2974   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2975     return nullptr;
2976   llvm::Constant *HelperFn = nullptr;
2977 
2978   if (hasTrivialGetExpr(PID))
2979     return nullptr;
2980   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2981   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2982     return HelperFn;
2983 
2984 
2985   ASTContext &C = getContext();
2986   IdentifierInfo *II
2987   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2988   FunctionDecl *FD = FunctionDecl::Create(C,
2989                                           C.getTranslationUnitDecl(),
2990                                           SourceLocation(),
2991                                           SourceLocation(), II, C.VoidTy,
2992                                           nullptr, SC_Static,
2993                                           false,
2994                                           false);
2995 
2996   QualType DestTy = C.getPointerType(Ty);
2997   QualType SrcTy = Ty;
2998   SrcTy.addConst();
2999   SrcTy = C.getPointerType(SrcTy);
3000 
3001   FunctionArgList args;
3002   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
3003   args.push_back(&dstDecl);
3004   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
3005   args.push_back(&srcDecl);
3006 
3007   const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
3008       C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
3009 
3010   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3011 
3012   llvm::Function *Fn =
3013   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3014                          "__copy_helper_atomic_property_", &CGM.getModule());
3015 
3016   StartFunction(FD, C.VoidTy, Fn, FI, args);
3017 
3018   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
3019                       VK_RValue, SourceLocation());
3020 
3021   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3022                     VK_LValue, OK_Ordinary, SourceLocation());
3023 
3024   CXXConstructExpr *CXXConstExpr =
3025     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3026 
3027   SmallVector<Expr*, 4> ConstructorArgs;
3028   ConstructorArgs.push_back(&SRC);
3029   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3030                          CXXConstExpr->arg_end());
3031 
3032   CXXConstructExpr *TheCXXConstructExpr =
3033     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3034                              CXXConstExpr->getConstructor(),
3035                              CXXConstExpr->isElidable(),
3036                              ConstructorArgs,
3037                              CXXConstExpr->hadMultipleCandidates(),
3038                              CXXConstExpr->isListInitialization(),
3039                              CXXConstExpr->isStdInitListInitialization(),
3040                              CXXConstExpr->requiresZeroInitialization(),
3041                              CXXConstExpr->getConstructionKind(),
3042                              SourceRange());
3043 
3044   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3045                       VK_RValue, SourceLocation());
3046 
3047   RValue DV = EmitAnyExpr(&DstExpr);
3048   CharUnits Alignment
3049     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3050   EmitAggExpr(TheCXXConstructExpr,
3051               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
3052                                     AggValueSlot::IsDestructed,
3053                                     AggValueSlot::DoesNotNeedGCBarriers,
3054                                     AggValueSlot::IsNotAliased));
3055 
3056   FinishFunction();
3057   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3058   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3059   return HelperFn;
3060 }
3061 
3062 llvm::Value *
3063 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3064   // Get selectors for retain/autorelease.
3065   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3066   Selector CopySelector =
3067       getContext().Selectors.getNullarySelector(CopyID);
3068   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3069   Selector AutoreleaseSelector =
3070       getContext().Selectors.getNullarySelector(AutoreleaseID);
3071 
3072   // Emit calls to retain/autorelease.
3073   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3074   llvm::Value *Val = Block;
3075   RValue Result;
3076   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3077                                        Ty, CopySelector,
3078                                        Val, CallArgList(), nullptr, nullptr);
3079   Val = Result.getScalarVal();
3080   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3081                                        Ty, AutoreleaseSelector,
3082                                        Val, CallArgList(), nullptr, nullptr);
3083   Val = Result.getScalarVal();
3084   return Val;
3085 }
3086 
3087 
3088 CGObjCRuntime::~CGObjCRuntime() {}
3089