1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 35 QualType ET, 36 RValue Result); 37 38 /// Given the address of a variable of pointer type, find the correct 39 /// null to store into it. 40 static llvm::Constant *getNullForVariable(Address addr) { 41 llvm::Type *type = addr.getElementType(); 42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 43 } 44 45 /// Emits an instance of NSConstantString representing the object. 46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 47 { 48 llvm::Constant *C = 49 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 50 // FIXME: This bitcast should just be made an invariant on the Runtime. 51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 52 } 53 54 /// EmitObjCBoxedExpr - This routine generates code to call 55 /// the appropriate expression boxing method. This will either be 56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 57 /// or [NSValue valueWithBytes:objCType:]. 58 /// 59 llvm::Value * 60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 61 // Generate the correct selector for this literal's concrete type. 62 // Get the method. 63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 64 const Expr *SubExpr = E->getSubExpr(); 65 assert(BoxingMethod && "BoxingMethod is null"); 66 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 67 Selector Sel = BoxingMethod->getSelector(); 68 69 // Generate a reference to the class pointer, which will be the receiver. 70 // Assumes that the method was introduced in the class that should be 71 // messaged (avoids pulling it out of the result type). 72 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 73 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 74 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 75 76 CallArgList Args; 77 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 78 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 79 80 // ObjCBoxedExpr supports boxing of structs and unions 81 // via [NSValue valueWithBytes:objCType:] 82 const QualType ValueType(SubExpr->getType().getCanonicalType()); 83 if (ValueType->isObjCBoxableRecordType()) { 84 // Emit CodeGen for first parameter 85 // and cast value to correct type 86 Address Temporary = CreateMemTemp(SubExpr->getType()); 87 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 88 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 89 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 90 91 // Create char array to store type encoding 92 std::string Str; 93 getContext().getObjCEncodingForType(ValueType, Str); 94 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 95 96 // Cast type encoding to correct type 97 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 98 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 99 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 100 101 Args.add(RValue::get(Cast), EncodingQT); 102 } else { 103 Args.add(EmitAnyExpr(SubExpr), ArgQT); 104 } 105 106 RValue result = Runtime.GenerateMessageSend( 107 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 108 Args, ClassDecl, BoxingMethod); 109 return Builder.CreateBitCast(result.getScalarVal(), 110 ConvertType(E->getType())); 111 } 112 113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 114 const ObjCMethodDecl *MethodWithObjects) { 115 ASTContext &Context = CGM.getContext(); 116 const ObjCDictionaryLiteral *DLE = nullptr; 117 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 118 if (!ALE) 119 DLE = cast<ObjCDictionaryLiteral>(E); 120 121 // Compute the type of the array we're initializing. 122 uint64_t NumElements = 123 ALE ? ALE->getNumElements() : DLE->getNumElements(); 124 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 125 NumElements); 126 QualType ElementType = Context.getObjCIdType().withConst(); 127 QualType ElementArrayType 128 = Context.getConstantArrayType(ElementType, APNumElements, 129 ArrayType::Normal, /*IndexTypeQuals=*/0); 130 131 // Allocate the temporary array(s). 132 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 133 Address Keys = Address::invalid(); 134 if (DLE) 135 Keys = CreateMemTemp(ElementArrayType, "keys"); 136 137 // In ARC, we may need to do extra work to keep all the keys and 138 // values alive until after the call. 139 SmallVector<llvm::Value *, 16> NeededObjects; 140 bool TrackNeededObjects = 141 (getLangOpts().ObjCAutoRefCount && 142 CGM.getCodeGenOpts().OptimizationLevel != 0); 143 144 // Perform the actual initialialization of the array(s). 145 for (uint64_t i = 0; i < NumElements; i++) { 146 if (ALE) { 147 // Emit the element and store it to the appropriate array slot. 148 const Expr *Rhs = ALE->getElement(i); 149 LValue LV = MakeAddrLValue( 150 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 151 ElementType, AlignmentSource::Decl); 152 153 llvm::Value *value = EmitScalarExpr(Rhs); 154 EmitStoreThroughLValue(RValue::get(value), LV, true); 155 if (TrackNeededObjects) { 156 NeededObjects.push_back(value); 157 } 158 } else { 159 // Emit the key and store it to the appropriate array slot. 160 const Expr *Key = DLE->getKeyValueElement(i).Key; 161 LValue KeyLV = MakeAddrLValue( 162 Builder.CreateConstArrayGEP(Keys, i, getPointerSize()), 163 ElementType, AlignmentSource::Decl); 164 llvm::Value *keyValue = EmitScalarExpr(Key); 165 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 166 167 // Emit the value and store it to the appropriate array slot. 168 const Expr *Value = DLE->getKeyValueElement(i).Value; 169 LValue ValueLV = MakeAddrLValue( 170 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 171 ElementType, AlignmentSource::Decl); 172 llvm::Value *valueValue = EmitScalarExpr(Value); 173 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 174 if (TrackNeededObjects) { 175 NeededObjects.push_back(keyValue); 176 NeededObjects.push_back(valueValue); 177 } 178 } 179 } 180 181 // Generate the argument list. 182 CallArgList Args; 183 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 184 const ParmVarDecl *argDecl = *PI++; 185 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 186 Args.add(RValue::get(Objects.getPointer()), ArgQT); 187 if (DLE) { 188 argDecl = *PI++; 189 ArgQT = argDecl->getType().getUnqualifiedType(); 190 Args.add(RValue::get(Keys.getPointer()), ArgQT); 191 } 192 argDecl = *PI; 193 ArgQT = argDecl->getType().getUnqualifiedType(); 194 llvm::Value *Count = 195 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 196 Args.add(RValue::get(Count), ArgQT); 197 198 // Generate a reference to the class pointer, which will be the receiver. 199 Selector Sel = MethodWithObjects->getSelector(); 200 QualType ResultType = E->getType(); 201 const ObjCObjectPointerType *InterfacePointerType 202 = ResultType->getAsObjCInterfacePointerType(); 203 ObjCInterfaceDecl *Class 204 = InterfacePointerType->getObjectType()->getInterface(); 205 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 206 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 207 208 // Generate the message send. 209 RValue result = Runtime.GenerateMessageSend( 210 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 211 Receiver, Args, Class, MethodWithObjects); 212 213 // The above message send needs these objects, but in ARC they are 214 // passed in a buffer that is essentially __unsafe_unretained. 215 // Therefore we must prevent the optimizer from releasing them until 216 // after the call. 217 if (TrackNeededObjects) { 218 EmitARCIntrinsicUse(NeededObjects); 219 } 220 221 return Builder.CreateBitCast(result.getScalarVal(), 222 ConvertType(E->getType())); 223 } 224 225 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 226 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 227 } 228 229 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 230 const ObjCDictionaryLiteral *E) { 231 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 232 } 233 234 /// Emit a selector. 235 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 236 // Untyped selector. 237 // Note that this implementation allows for non-constant strings to be passed 238 // as arguments to @selector(). Currently, the only thing preventing this 239 // behaviour is the type checking in the front end. 240 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 241 } 242 243 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 244 // FIXME: This should pass the Decl not the name. 245 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 246 } 247 248 /// \brief Adjust the type of an Objective-C object that doesn't match up due 249 /// to type erasure at various points, e.g., related result types or the use 250 /// of parameterized classes. 251 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 252 RValue Result) { 253 if (!ExpT->isObjCRetainableType()) 254 return Result; 255 256 // If the converted types are the same, we're done. 257 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 258 if (ExpLLVMTy == Result.getScalarVal()->getType()) 259 return Result; 260 261 // We have applied a substitution. Cast the rvalue appropriately. 262 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 263 ExpLLVMTy)); 264 } 265 266 /// Decide whether to extend the lifetime of the receiver of a 267 /// returns-inner-pointer message. 268 static bool 269 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 270 switch (message->getReceiverKind()) { 271 272 // For a normal instance message, we should extend unless the 273 // receiver is loaded from a variable with precise lifetime. 274 case ObjCMessageExpr::Instance: { 275 const Expr *receiver = message->getInstanceReceiver(); 276 277 // Look through OVEs. 278 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 279 if (opaque->getSourceExpr()) 280 receiver = opaque->getSourceExpr()->IgnoreParens(); 281 } 282 283 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 284 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 285 receiver = ice->getSubExpr()->IgnoreParens(); 286 287 // Look through OVEs. 288 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 289 if (opaque->getSourceExpr()) 290 receiver = opaque->getSourceExpr()->IgnoreParens(); 291 } 292 293 // Only __strong variables. 294 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 295 return true; 296 297 // All ivars and fields have precise lifetime. 298 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 299 return false; 300 301 // Otherwise, check for variables. 302 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 303 if (!declRef) return true; 304 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 305 if (!var) return true; 306 307 // All variables have precise lifetime except local variables with 308 // automatic storage duration that aren't specially marked. 309 return (var->hasLocalStorage() && 310 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 311 } 312 313 case ObjCMessageExpr::Class: 314 case ObjCMessageExpr::SuperClass: 315 // It's never necessary for class objects. 316 return false; 317 318 case ObjCMessageExpr::SuperInstance: 319 // We generally assume that 'self' lives throughout a method call. 320 return false; 321 } 322 323 llvm_unreachable("invalid receiver kind"); 324 } 325 326 /// Given an expression of ObjC pointer type, check whether it was 327 /// immediately loaded from an ARC __weak l-value. 328 static const Expr *findWeakLValue(const Expr *E) { 329 assert(E->getType()->isObjCRetainableType()); 330 E = E->IgnoreParens(); 331 if (auto CE = dyn_cast<CastExpr>(E)) { 332 if (CE->getCastKind() == CK_LValueToRValue) { 333 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 334 return CE->getSubExpr(); 335 } 336 } 337 338 return nullptr; 339 } 340 341 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 342 ReturnValueSlot Return) { 343 // Only the lookup mechanism and first two arguments of the method 344 // implementation vary between runtimes. We can get the receiver and 345 // arguments in generic code. 346 347 bool isDelegateInit = E->isDelegateInitCall(); 348 349 const ObjCMethodDecl *method = E->getMethodDecl(); 350 351 // If the method is -retain, and the receiver's being loaded from 352 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 353 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 354 method->getMethodFamily() == OMF_retain) { 355 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 356 LValue lvalue = EmitLValue(lvalueExpr); 357 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress()); 358 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 359 } 360 } 361 362 // We don't retain the receiver in delegate init calls, and this is 363 // safe because the receiver value is always loaded from 'self', 364 // which we zero out. We don't want to Block_copy block receivers, 365 // though. 366 bool retainSelf = 367 (!isDelegateInit && 368 CGM.getLangOpts().ObjCAutoRefCount && 369 method && 370 method->hasAttr<NSConsumesSelfAttr>()); 371 372 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 373 bool isSuperMessage = false; 374 bool isClassMessage = false; 375 ObjCInterfaceDecl *OID = nullptr; 376 // Find the receiver 377 QualType ReceiverType; 378 llvm::Value *Receiver = nullptr; 379 switch (E->getReceiverKind()) { 380 case ObjCMessageExpr::Instance: 381 ReceiverType = E->getInstanceReceiver()->getType(); 382 if (retainSelf) { 383 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 384 E->getInstanceReceiver()); 385 Receiver = ter.getPointer(); 386 if (ter.getInt()) retainSelf = false; 387 } else 388 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 389 break; 390 391 case ObjCMessageExpr::Class: { 392 ReceiverType = E->getClassReceiver(); 393 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 394 assert(ObjTy && "Invalid Objective-C class message send"); 395 OID = ObjTy->getInterface(); 396 assert(OID && "Invalid Objective-C class message send"); 397 Receiver = Runtime.GetClass(*this, OID); 398 isClassMessage = true; 399 break; 400 } 401 402 case ObjCMessageExpr::SuperInstance: 403 ReceiverType = E->getSuperType(); 404 Receiver = LoadObjCSelf(); 405 isSuperMessage = true; 406 break; 407 408 case ObjCMessageExpr::SuperClass: 409 ReceiverType = E->getSuperType(); 410 Receiver = LoadObjCSelf(); 411 isSuperMessage = true; 412 isClassMessage = true; 413 break; 414 } 415 416 if (retainSelf) 417 Receiver = EmitARCRetainNonBlock(Receiver); 418 419 // In ARC, we sometimes want to "extend the lifetime" 420 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 421 // messages. 422 if (getLangOpts().ObjCAutoRefCount && method && 423 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 424 shouldExtendReceiverForInnerPointerMessage(E)) 425 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 426 427 QualType ResultType = method ? method->getReturnType() : E->getType(); 428 429 CallArgList Args; 430 EmitCallArgs(Args, method, E->arguments()); 431 432 // For delegate init calls in ARC, do an unsafe store of null into 433 // self. This represents the call taking direct ownership of that 434 // value. We have to do this after emitting the other call 435 // arguments because they might also reference self, but we don't 436 // have to worry about any of them modifying self because that would 437 // be an undefined read and write of an object in unordered 438 // expressions. 439 if (isDelegateInit) { 440 assert(getLangOpts().ObjCAutoRefCount && 441 "delegate init calls should only be marked in ARC"); 442 443 // Do an unsafe store of null into self. 444 Address selfAddr = 445 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 446 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 447 } 448 449 RValue result; 450 if (isSuperMessage) { 451 // super is only valid in an Objective-C method 452 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 453 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 454 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 455 E->getSelector(), 456 OMD->getClassInterface(), 457 isCategoryImpl, 458 Receiver, 459 isClassMessage, 460 Args, 461 method); 462 } else { 463 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 464 E->getSelector(), 465 Receiver, Args, OID, 466 method); 467 } 468 469 // For delegate init calls in ARC, implicitly store the result of 470 // the call back into self. This takes ownership of the value. 471 if (isDelegateInit) { 472 Address selfAddr = 473 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 474 llvm::Value *newSelf = result.getScalarVal(); 475 476 // The delegate return type isn't necessarily a matching type; in 477 // fact, it's quite likely to be 'id'. 478 llvm::Type *selfTy = selfAddr.getElementType(); 479 newSelf = Builder.CreateBitCast(newSelf, selfTy); 480 481 Builder.CreateStore(newSelf, selfAddr); 482 } 483 484 return AdjustObjCObjectType(*this, E->getType(), result); 485 } 486 487 namespace { 488 struct FinishARCDealloc final : EHScopeStack::Cleanup { 489 void Emit(CodeGenFunction &CGF, Flags flags) override { 490 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 491 492 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 493 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 494 if (!iface->getSuperClass()) return; 495 496 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 497 498 // Call [super dealloc] if we have a superclass. 499 llvm::Value *self = CGF.LoadObjCSelf(); 500 501 CallArgList args; 502 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 503 CGF.getContext().VoidTy, 504 method->getSelector(), 505 iface, 506 isCategory, 507 self, 508 /*is class msg*/ false, 509 args, 510 method); 511 } 512 }; 513 } 514 515 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 516 /// the LLVM function and sets the other context used by 517 /// CodeGenFunction. 518 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 519 const ObjCContainerDecl *CD) { 520 SourceLocation StartLoc = OMD->getLocStart(); 521 FunctionArgList args; 522 // Check if we should generate debug info for this method. 523 if (OMD->hasAttr<NoDebugAttr>()) 524 DebugInfo = nullptr; // disable debug info indefinitely for this function 525 526 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 527 528 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 529 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 530 531 args.push_back(OMD->getSelfDecl()); 532 args.push_back(OMD->getCmdDecl()); 533 534 args.append(OMD->param_begin(), OMD->param_end()); 535 536 CurGD = OMD; 537 CurEHLocation = OMD->getLocEnd(); 538 539 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 540 OMD->getLocation(), StartLoc); 541 542 // In ARC, certain methods get an extra cleanup. 543 if (CGM.getLangOpts().ObjCAutoRefCount && 544 OMD->isInstanceMethod() && 545 OMD->getSelector().isUnarySelector()) { 546 const IdentifierInfo *ident = 547 OMD->getSelector().getIdentifierInfoForSlot(0); 548 if (ident->isStr("dealloc")) 549 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 550 } 551 } 552 553 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 554 LValue lvalue, QualType type); 555 556 /// Generate an Objective-C method. An Objective-C method is a C function with 557 /// its pointer, name, and types registered in the class struture. 558 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 559 StartObjCMethod(OMD, OMD->getClassInterface()); 560 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 561 assert(isa<CompoundStmt>(OMD->getBody())); 562 incrementProfileCounter(OMD->getBody()); 563 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 564 FinishFunction(OMD->getBodyRBrace()); 565 } 566 567 /// emitStructGetterCall - Call the runtime function to load a property 568 /// into the return value slot. 569 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 570 bool isAtomic, bool hasStrong) { 571 ASTContext &Context = CGF.getContext(); 572 573 Address src = 574 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 575 .getAddress(); 576 577 // objc_copyStruct (ReturnValue, &structIvar, 578 // sizeof (Type of Ivar), isAtomic, false); 579 CallArgList args; 580 581 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 582 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 583 584 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 585 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 586 587 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 588 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 589 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 590 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 591 592 llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 593 CGCallee callee = CGCallee::forDirect(fn); 594 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 595 callee, ReturnValueSlot(), args); 596 } 597 598 /// Determine whether the given architecture supports unaligned atomic 599 /// accesses. They don't have to be fast, just faster than a function 600 /// call and a mutex. 601 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 602 // FIXME: Allow unaligned atomic load/store on x86. (It is not 603 // currently supported by the backend.) 604 return 0; 605 } 606 607 /// Return the maximum size that permits atomic accesses for the given 608 /// architecture. 609 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 610 llvm::Triple::ArchType arch) { 611 // ARM has 8-byte atomic accesses, but it's not clear whether we 612 // want to rely on them here. 613 614 // In the default case, just assume that any size up to a pointer is 615 // fine given adequate alignment. 616 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 617 } 618 619 namespace { 620 class PropertyImplStrategy { 621 public: 622 enum StrategyKind { 623 /// The 'native' strategy is to use the architecture's provided 624 /// reads and writes. 625 Native, 626 627 /// Use objc_setProperty and objc_getProperty. 628 GetSetProperty, 629 630 /// Use objc_setProperty for the setter, but use expression 631 /// evaluation for the getter. 632 SetPropertyAndExpressionGet, 633 634 /// Use objc_copyStruct. 635 CopyStruct, 636 637 /// The 'expression' strategy is to emit normal assignment or 638 /// lvalue-to-rvalue expressions. 639 Expression 640 }; 641 642 StrategyKind getKind() const { return StrategyKind(Kind); } 643 644 bool hasStrongMember() const { return HasStrong; } 645 bool isAtomic() const { return IsAtomic; } 646 bool isCopy() const { return IsCopy; } 647 648 CharUnits getIvarSize() const { return IvarSize; } 649 CharUnits getIvarAlignment() const { return IvarAlignment; } 650 651 PropertyImplStrategy(CodeGenModule &CGM, 652 const ObjCPropertyImplDecl *propImpl); 653 654 private: 655 unsigned Kind : 8; 656 unsigned IsAtomic : 1; 657 unsigned IsCopy : 1; 658 unsigned HasStrong : 1; 659 660 CharUnits IvarSize; 661 CharUnits IvarAlignment; 662 }; 663 } 664 665 /// Pick an implementation strategy for the given property synthesis. 666 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 667 const ObjCPropertyImplDecl *propImpl) { 668 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 669 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 670 671 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 672 IsAtomic = prop->isAtomic(); 673 HasStrong = false; // doesn't matter here. 674 675 // Evaluate the ivar's size and alignment. 676 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 677 QualType ivarType = ivar->getType(); 678 std::tie(IvarSize, IvarAlignment) = 679 CGM.getContext().getTypeInfoInChars(ivarType); 680 681 // If we have a copy property, we always have to use getProperty/setProperty. 682 // TODO: we could actually use setProperty and an expression for non-atomics. 683 if (IsCopy) { 684 Kind = GetSetProperty; 685 return; 686 } 687 688 // Handle retain. 689 if (setterKind == ObjCPropertyDecl::Retain) { 690 // In GC-only, there's nothing special that needs to be done. 691 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 692 // fallthrough 693 694 // In ARC, if the property is non-atomic, use expression emission, 695 // which translates to objc_storeStrong. This isn't required, but 696 // it's slightly nicer. 697 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 698 // Using standard expression emission for the setter is only 699 // acceptable if the ivar is __strong, which won't be true if 700 // the property is annotated with __attribute__((NSObject)). 701 // TODO: falling all the way back to objc_setProperty here is 702 // just laziness, though; we could still use objc_storeStrong 703 // if we hacked it right. 704 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 705 Kind = Expression; 706 else 707 Kind = SetPropertyAndExpressionGet; 708 return; 709 710 // Otherwise, we need to at least use setProperty. However, if 711 // the property isn't atomic, we can use normal expression 712 // emission for the getter. 713 } else if (!IsAtomic) { 714 Kind = SetPropertyAndExpressionGet; 715 return; 716 717 // Otherwise, we have to use both setProperty and getProperty. 718 } else { 719 Kind = GetSetProperty; 720 return; 721 } 722 } 723 724 // If we're not atomic, just use expression accesses. 725 if (!IsAtomic) { 726 Kind = Expression; 727 return; 728 } 729 730 // Properties on bitfield ivars need to be emitted using expression 731 // accesses even if they're nominally atomic. 732 if (ivar->isBitField()) { 733 Kind = Expression; 734 return; 735 } 736 737 // GC-qualified or ARC-qualified ivars need to be emitted as 738 // expressions. This actually works out to being atomic anyway, 739 // except for ARC __strong, but that should trigger the above code. 740 if (ivarType.hasNonTrivialObjCLifetime() || 741 (CGM.getLangOpts().getGC() && 742 CGM.getContext().getObjCGCAttrKind(ivarType))) { 743 Kind = Expression; 744 return; 745 } 746 747 // Compute whether the ivar has strong members. 748 if (CGM.getLangOpts().getGC()) 749 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 750 HasStrong = recordType->getDecl()->hasObjectMember(); 751 752 // We can never access structs with object members with a native 753 // access, because we need to use write barriers. This is what 754 // objc_copyStruct is for. 755 if (HasStrong) { 756 Kind = CopyStruct; 757 return; 758 } 759 760 // Otherwise, this is target-dependent and based on the size and 761 // alignment of the ivar. 762 763 // If the size of the ivar is not a power of two, give up. We don't 764 // want to get into the business of doing compare-and-swaps. 765 if (!IvarSize.isPowerOfTwo()) { 766 Kind = CopyStruct; 767 return; 768 } 769 770 llvm::Triple::ArchType arch = 771 CGM.getTarget().getTriple().getArch(); 772 773 // Most architectures require memory to fit within a single cache 774 // line, so the alignment has to be at least the size of the access. 775 // Otherwise we have to grab a lock. 776 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 777 Kind = CopyStruct; 778 return; 779 } 780 781 // If the ivar's size exceeds the architecture's maximum atomic 782 // access size, we have to use CopyStruct. 783 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 784 Kind = CopyStruct; 785 return; 786 } 787 788 // Otherwise, we can use native loads and stores. 789 Kind = Native; 790 } 791 792 /// \brief Generate an Objective-C property getter function. 793 /// 794 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 795 /// is illegal within a category. 796 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 797 const ObjCPropertyImplDecl *PID) { 798 llvm::Constant *AtomicHelperFn = 799 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 800 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 801 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 802 assert(OMD && "Invalid call to generate getter (empty method)"); 803 StartObjCMethod(OMD, IMP->getClassInterface()); 804 805 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 806 807 FinishFunction(); 808 } 809 810 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 811 const Expr *getter = propImpl->getGetterCXXConstructor(); 812 if (!getter) return true; 813 814 // Sema only makes only of these when the ivar has a C++ class type, 815 // so the form is pretty constrained. 816 817 // If the property has a reference type, we might just be binding a 818 // reference, in which case the result will be a gl-value. We should 819 // treat this as a non-trivial operation. 820 if (getter->isGLValue()) 821 return false; 822 823 // If we selected a trivial copy-constructor, we're okay. 824 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 825 return (construct->getConstructor()->isTrivial()); 826 827 // The constructor might require cleanups (in which case it's never 828 // trivial). 829 assert(isa<ExprWithCleanups>(getter)); 830 return false; 831 } 832 833 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 834 /// copy the ivar into the resturn slot. 835 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 836 llvm::Value *returnAddr, 837 ObjCIvarDecl *ivar, 838 llvm::Constant *AtomicHelperFn) { 839 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 840 // AtomicHelperFn); 841 CallArgList args; 842 843 // The 1st argument is the return Slot. 844 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 845 846 // The 2nd argument is the address of the ivar. 847 llvm::Value *ivarAddr = 848 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 849 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 850 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 851 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 852 853 // Third argument is the helper function. 854 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 855 856 llvm::Constant *copyCppAtomicObjectFn = 857 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 858 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 859 CGF.EmitCall( 860 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 861 callee, ReturnValueSlot(), args); 862 } 863 864 void 865 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 866 const ObjCPropertyImplDecl *propImpl, 867 const ObjCMethodDecl *GetterMethodDecl, 868 llvm::Constant *AtomicHelperFn) { 869 // If there's a non-trivial 'get' expression, we just have to emit that. 870 if (!hasTrivialGetExpr(propImpl)) { 871 if (!AtomicHelperFn) { 872 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 873 /*nrvo*/ nullptr); 874 EmitReturnStmt(ret); 875 } 876 else { 877 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 878 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 879 ivar, AtomicHelperFn); 880 } 881 return; 882 } 883 884 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 885 QualType propType = prop->getType(); 886 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 887 888 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 889 890 // Pick an implementation strategy. 891 PropertyImplStrategy strategy(CGM, propImpl); 892 switch (strategy.getKind()) { 893 case PropertyImplStrategy::Native: { 894 // We don't need to do anything for a zero-size struct. 895 if (strategy.getIvarSize().isZero()) 896 return; 897 898 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 899 900 // Currently, all atomic accesses have to be through integer 901 // types, so there's no point in trying to pick a prettier type. 902 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 903 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 904 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 905 906 // Perform an atomic load. This does not impose ordering constraints. 907 Address ivarAddr = LV.getAddress(); 908 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 909 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 910 load->setAtomic(llvm::AtomicOrdering::Unordered); 911 912 // Store that value into the return address. Doing this with a 913 // bitcast is likely to produce some pretty ugly IR, but it's not 914 // the *most* terrible thing in the world. 915 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 916 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 917 llvm::Value *ivarVal = load; 918 if (ivarSize > retTySize) { 919 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 920 ivarVal = Builder.CreateTrunc(load, newTy); 921 bitcastType = newTy->getPointerTo(); 922 } 923 Builder.CreateStore(ivarVal, 924 Builder.CreateBitCast(ReturnValue, bitcastType)); 925 926 // Make sure we don't do an autorelease. 927 AutoreleaseResult = false; 928 return; 929 } 930 931 case PropertyImplStrategy::GetSetProperty: { 932 llvm::Constant *getPropertyFn = 933 CGM.getObjCRuntime().GetPropertyGetFunction(); 934 if (!getPropertyFn) { 935 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 936 return; 937 } 938 CGCallee callee = CGCallee::forDirect(getPropertyFn); 939 940 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 941 // FIXME: Can't this be simpler? This might even be worse than the 942 // corresponding gcc code. 943 llvm::Value *cmd = 944 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 945 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 946 llvm::Value *ivarOffset = 947 EmitIvarOffset(classImpl->getClassInterface(), ivar); 948 949 CallArgList args; 950 args.add(RValue::get(self), getContext().getObjCIdType()); 951 args.add(RValue::get(cmd), getContext().getObjCSelType()); 952 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 953 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 954 getContext().BoolTy); 955 956 // FIXME: We shouldn't need to get the function info here, the 957 // runtime already should have computed it to build the function. 958 llvm::Instruction *CallInstruction; 959 RValue RV = EmitCall( 960 getTypes().arrangeBuiltinFunctionCall(propType, args), 961 callee, ReturnValueSlot(), args, &CallInstruction); 962 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 963 call->setTailCall(); 964 965 // We need to fix the type here. Ivars with copy & retain are 966 // always objects so we don't need to worry about complex or 967 // aggregates. 968 RV = RValue::get(Builder.CreateBitCast( 969 RV.getScalarVal(), 970 getTypes().ConvertType(getterMethod->getReturnType()))); 971 972 EmitReturnOfRValue(RV, propType); 973 974 // objc_getProperty does an autorelease, so we should suppress ours. 975 AutoreleaseResult = false; 976 977 return; 978 } 979 980 case PropertyImplStrategy::CopyStruct: 981 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 982 strategy.hasStrongMember()); 983 return; 984 985 case PropertyImplStrategy::Expression: 986 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 987 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 988 989 QualType ivarType = ivar->getType(); 990 switch (getEvaluationKind(ivarType)) { 991 case TEK_Complex: { 992 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 993 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 994 /*init*/ true); 995 return; 996 } 997 case TEK_Aggregate: 998 // The return value slot is guaranteed to not be aliased, but 999 // that's not necessarily the same as "on the stack", so 1000 // we still potentially need objc_memmove_collectable. 1001 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 1002 return; 1003 case TEK_Scalar: { 1004 llvm::Value *value; 1005 if (propType->isReferenceType()) { 1006 value = LV.getAddress().getPointer(); 1007 } else { 1008 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1009 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1010 if (getLangOpts().ObjCAutoRefCount) { 1011 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1012 } else { 1013 value = EmitARCLoadWeak(LV.getAddress()); 1014 } 1015 1016 // Otherwise we want to do a simple load, suppressing the 1017 // final autorelease. 1018 } else { 1019 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1020 AutoreleaseResult = false; 1021 } 1022 1023 value = Builder.CreateBitCast( 1024 value, ConvertType(GetterMethodDecl->getReturnType())); 1025 } 1026 1027 EmitReturnOfRValue(RValue::get(value), propType); 1028 return; 1029 } 1030 } 1031 llvm_unreachable("bad evaluation kind"); 1032 } 1033 1034 } 1035 llvm_unreachable("bad @property implementation strategy!"); 1036 } 1037 1038 /// emitStructSetterCall - Call the runtime function to store the value 1039 /// from the first formal parameter into the given ivar. 1040 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1041 ObjCIvarDecl *ivar) { 1042 // objc_copyStruct (&structIvar, &Arg, 1043 // sizeof (struct something), true, false); 1044 CallArgList args; 1045 1046 // The first argument is the address of the ivar. 1047 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1048 CGF.LoadObjCSelf(), ivar, 0) 1049 .getPointer(); 1050 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1051 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1052 1053 // The second argument is the address of the parameter variable. 1054 ParmVarDecl *argVar = *OMD->param_begin(); 1055 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1056 VK_LValue, SourceLocation()); 1057 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1058 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1059 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1060 1061 // The third argument is the sizeof the type. 1062 llvm::Value *size = 1063 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1064 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1065 1066 // The fourth argument is the 'isAtomic' flag. 1067 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1068 1069 // The fifth argument is the 'hasStrong' flag. 1070 // FIXME: should this really always be false? 1071 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1072 1073 llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1074 CGCallee callee = CGCallee::forDirect(fn); 1075 CGF.EmitCall( 1076 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1077 callee, ReturnValueSlot(), args); 1078 } 1079 1080 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1081 /// the value from the first formal parameter into the given ivar, using 1082 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1083 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1084 ObjCMethodDecl *OMD, 1085 ObjCIvarDecl *ivar, 1086 llvm::Constant *AtomicHelperFn) { 1087 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1088 // AtomicHelperFn); 1089 CallArgList args; 1090 1091 // The first argument is the address of the ivar. 1092 llvm::Value *ivarAddr = 1093 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1094 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 1095 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1096 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1097 1098 // The second argument is the address of the parameter variable. 1099 ParmVarDecl *argVar = *OMD->param_begin(); 1100 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1101 VK_LValue, SourceLocation()); 1102 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1103 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1104 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1105 1106 // Third argument is the helper function. 1107 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1108 1109 llvm::Constant *fn = 1110 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1111 CGCallee callee = CGCallee::forDirect(fn); 1112 CGF.EmitCall( 1113 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1114 callee, ReturnValueSlot(), args); 1115 } 1116 1117 1118 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1119 Expr *setter = PID->getSetterCXXAssignment(); 1120 if (!setter) return true; 1121 1122 // Sema only makes only of these when the ivar has a C++ class type, 1123 // so the form is pretty constrained. 1124 1125 // An operator call is trivial if the function it calls is trivial. 1126 // This also implies that there's nothing non-trivial going on with 1127 // the arguments, because operator= can only be trivial if it's a 1128 // synthesized assignment operator and therefore both parameters are 1129 // references. 1130 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1131 if (const FunctionDecl *callee 1132 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1133 if (callee->isTrivial()) 1134 return true; 1135 return false; 1136 } 1137 1138 assert(isa<ExprWithCleanups>(setter)); 1139 return false; 1140 } 1141 1142 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1143 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1144 return false; 1145 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1146 } 1147 1148 void 1149 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1150 const ObjCPropertyImplDecl *propImpl, 1151 llvm::Constant *AtomicHelperFn) { 1152 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1153 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1154 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1155 1156 // Just use the setter expression if Sema gave us one and it's 1157 // non-trivial. 1158 if (!hasTrivialSetExpr(propImpl)) { 1159 if (!AtomicHelperFn) 1160 // If non-atomic, assignment is called directly. 1161 EmitStmt(propImpl->getSetterCXXAssignment()); 1162 else 1163 // If atomic, assignment is called via a locking api. 1164 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1165 AtomicHelperFn); 1166 return; 1167 } 1168 1169 PropertyImplStrategy strategy(CGM, propImpl); 1170 switch (strategy.getKind()) { 1171 case PropertyImplStrategy::Native: { 1172 // We don't need to do anything for a zero-size struct. 1173 if (strategy.getIvarSize().isZero()) 1174 return; 1175 1176 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1177 1178 LValue ivarLValue = 1179 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1180 Address ivarAddr = ivarLValue.getAddress(); 1181 1182 // Currently, all atomic accesses have to be through integer 1183 // types, so there's no point in trying to pick a prettier type. 1184 llvm::Type *bitcastType = 1185 llvm::Type::getIntNTy(getLLVMContext(), 1186 getContext().toBits(strategy.getIvarSize())); 1187 1188 // Cast both arguments to the chosen operation type. 1189 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1190 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1191 1192 // This bitcast load is likely to cause some nasty IR. 1193 llvm::Value *load = Builder.CreateLoad(argAddr); 1194 1195 // Perform an atomic store. There are no memory ordering requirements. 1196 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1197 store->setAtomic(llvm::AtomicOrdering::Unordered); 1198 return; 1199 } 1200 1201 case PropertyImplStrategy::GetSetProperty: 1202 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1203 1204 llvm::Constant *setOptimizedPropertyFn = nullptr; 1205 llvm::Constant *setPropertyFn = nullptr; 1206 if (UseOptimizedSetter(CGM)) { 1207 // 10.8 and iOS 6.0 code and GC is off 1208 setOptimizedPropertyFn = 1209 CGM.getObjCRuntime() 1210 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1211 strategy.isCopy()); 1212 if (!setOptimizedPropertyFn) { 1213 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1214 return; 1215 } 1216 } 1217 else { 1218 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1219 if (!setPropertyFn) { 1220 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1221 return; 1222 } 1223 } 1224 1225 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1226 // <is-atomic>, <is-copy>). 1227 llvm::Value *cmd = 1228 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1229 llvm::Value *self = 1230 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1231 llvm::Value *ivarOffset = 1232 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1233 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1234 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1235 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1236 1237 CallArgList args; 1238 args.add(RValue::get(self), getContext().getObjCIdType()); 1239 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1240 if (setOptimizedPropertyFn) { 1241 args.add(RValue::get(arg), getContext().getObjCIdType()); 1242 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1243 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1244 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1245 callee, ReturnValueSlot(), args); 1246 } else { 1247 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1248 args.add(RValue::get(arg), getContext().getObjCIdType()); 1249 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1250 getContext().BoolTy); 1251 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1252 getContext().BoolTy); 1253 // FIXME: We shouldn't need to get the function info here, the runtime 1254 // already should have computed it to build the function. 1255 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1256 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1257 callee, ReturnValueSlot(), args); 1258 } 1259 1260 return; 1261 } 1262 1263 case PropertyImplStrategy::CopyStruct: 1264 emitStructSetterCall(*this, setterMethod, ivar); 1265 return; 1266 1267 case PropertyImplStrategy::Expression: 1268 break; 1269 } 1270 1271 // Otherwise, fake up some ASTs and emit a normal assignment. 1272 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1273 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1274 VK_LValue, SourceLocation()); 1275 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1276 selfDecl->getType(), CK_LValueToRValue, &self, 1277 VK_RValue); 1278 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1279 SourceLocation(), SourceLocation(), 1280 &selfLoad, true, true); 1281 1282 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1283 QualType argType = argDecl->getType().getNonReferenceType(); 1284 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1285 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1286 argType.getUnqualifiedType(), CK_LValueToRValue, 1287 &arg, VK_RValue); 1288 1289 // The property type can differ from the ivar type in some situations with 1290 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1291 // The following absurdity is just to ensure well-formed IR. 1292 CastKind argCK = CK_NoOp; 1293 if (ivarRef.getType()->isObjCObjectPointerType()) { 1294 if (argLoad.getType()->isObjCObjectPointerType()) 1295 argCK = CK_BitCast; 1296 else if (argLoad.getType()->isBlockPointerType()) 1297 argCK = CK_BlockPointerToObjCPointerCast; 1298 else 1299 argCK = CK_CPointerToObjCPointerCast; 1300 } else if (ivarRef.getType()->isBlockPointerType()) { 1301 if (argLoad.getType()->isBlockPointerType()) 1302 argCK = CK_BitCast; 1303 else 1304 argCK = CK_AnyPointerToBlockPointerCast; 1305 } else if (ivarRef.getType()->isPointerType()) { 1306 argCK = CK_BitCast; 1307 } 1308 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1309 ivarRef.getType(), argCK, &argLoad, 1310 VK_RValue); 1311 Expr *finalArg = &argLoad; 1312 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1313 argLoad.getType())) 1314 finalArg = &argCast; 1315 1316 1317 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1318 ivarRef.getType(), VK_RValue, OK_Ordinary, 1319 SourceLocation(), false); 1320 EmitStmt(&assign); 1321 } 1322 1323 /// \brief Generate an Objective-C property setter function. 1324 /// 1325 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1326 /// is illegal within a category. 1327 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1328 const ObjCPropertyImplDecl *PID) { 1329 llvm::Constant *AtomicHelperFn = 1330 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1331 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1332 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1333 assert(OMD && "Invalid call to generate setter (empty method)"); 1334 StartObjCMethod(OMD, IMP->getClassInterface()); 1335 1336 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1337 1338 FinishFunction(); 1339 } 1340 1341 namespace { 1342 struct DestroyIvar final : EHScopeStack::Cleanup { 1343 private: 1344 llvm::Value *addr; 1345 const ObjCIvarDecl *ivar; 1346 CodeGenFunction::Destroyer *destroyer; 1347 bool useEHCleanupForArray; 1348 public: 1349 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1350 CodeGenFunction::Destroyer *destroyer, 1351 bool useEHCleanupForArray) 1352 : addr(addr), ivar(ivar), destroyer(destroyer), 1353 useEHCleanupForArray(useEHCleanupForArray) {} 1354 1355 void Emit(CodeGenFunction &CGF, Flags flags) override { 1356 LValue lvalue 1357 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1358 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1359 flags.isForNormalCleanup() && useEHCleanupForArray); 1360 } 1361 }; 1362 } 1363 1364 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1365 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1366 Address addr, 1367 QualType type) { 1368 llvm::Value *null = getNullForVariable(addr); 1369 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1370 } 1371 1372 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1373 ObjCImplementationDecl *impl) { 1374 CodeGenFunction::RunCleanupsScope scope(CGF); 1375 1376 llvm::Value *self = CGF.LoadObjCSelf(); 1377 1378 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1379 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1380 ivar; ivar = ivar->getNextIvar()) { 1381 QualType type = ivar->getType(); 1382 1383 // Check whether the ivar is a destructible type. 1384 QualType::DestructionKind dtorKind = type.isDestructedType(); 1385 if (!dtorKind) continue; 1386 1387 CodeGenFunction::Destroyer *destroyer = nullptr; 1388 1389 // Use a call to objc_storeStrong to destroy strong ivars, for the 1390 // general benefit of the tools. 1391 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1392 destroyer = destroyARCStrongWithStore; 1393 1394 // Otherwise use the default for the destruction kind. 1395 } else { 1396 destroyer = CGF.getDestroyer(dtorKind); 1397 } 1398 1399 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1400 1401 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1402 cleanupKind & EHCleanup); 1403 } 1404 1405 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1406 } 1407 1408 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1409 ObjCMethodDecl *MD, 1410 bool ctor) { 1411 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1412 StartObjCMethod(MD, IMP->getClassInterface()); 1413 1414 // Emit .cxx_construct. 1415 if (ctor) { 1416 // Suppress the final autorelease in ARC. 1417 AutoreleaseResult = false; 1418 1419 for (const auto *IvarInit : IMP->inits()) { 1420 FieldDecl *Field = IvarInit->getAnyMember(); 1421 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1422 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1423 LoadObjCSelf(), Ivar, 0); 1424 EmitAggExpr(IvarInit->getInit(), 1425 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1426 AggValueSlot::DoesNotNeedGCBarriers, 1427 AggValueSlot::IsNotAliased)); 1428 } 1429 // constructor returns 'self'. 1430 CodeGenTypes &Types = CGM.getTypes(); 1431 QualType IdTy(CGM.getContext().getObjCIdType()); 1432 llvm::Value *SelfAsId = 1433 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1434 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1435 1436 // Emit .cxx_destruct. 1437 } else { 1438 emitCXXDestructMethod(*this, IMP); 1439 } 1440 FinishFunction(); 1441 } 1442 1443 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1444 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1445 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1446 Self->getType(), VK_LValue, SourceLocation()); 1447 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1448 } 1449 1450 QualType CodeGenFunction::TypeOfSelfObject() { 1451 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1452 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1453 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1454 getContext().getCanonicalType(selfDecl->getType())); 1455 return PTy->getPointeeType(); 1456 } 1457 1458 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1459 llvm::Constant *EnumerationMutationFnPtr = 1460 CGM.getObjCRuntime().EnumerationMutationFunction(); 1461 if (!EnumerationMutationFnPtr) { 1462 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1463 return; 1464 } 1465 CGCallee EnumerationMutationFn = 1466 CGCallee::forDirect(EnumerationMutationFnPtr); 1467 1468 CGDebugInfo *DI = getDebugInfo(); 1469 if (DI) 1470 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1471 1472 // The local variable comes into scope immediately. 1473 AutoVarEmission variable = AutoVarEmission::invalid(); 1474 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1475 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1476 1477 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1478 1479 // Fast enumeration state. 1480 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1481 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1482 EmitNullInitialization(StatePtr, StateTy); 1483 1484 // Number of elements in the items array. 1485 static const unsigned NumItems = 16; 1486 1487 // Fetch the countByEnumeratingWithState:objects:count: selector. 1488 IdentifierInfo *II[] = { 1489 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1490 &CGM.getContext().Idents.get("objects"), 1491 &CGM.getContext().Idents.get("count") 1492 }; 1493 Selector FastEnumSel = 1494 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1495 1496 QualType ItemsTy = 1497 getContext().getConstantArrayType(getContext().getObjCIdType(), 1498 llvm::APInt(32, NumItems), 1499 ArrayType::Normal, 0); 1500 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1501 1502 RunCleanupsScope ForScope(*this); 1503 1504 // Emit the collection pointer. In ARC, we do a retain. 1505 llvm::Value *Collection; 1506 if (getLangOpts().ObjCAutoRefCount) { 1507 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1508 1509 // Enter a cleanup to do the release. 1510 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1511 } else { 1512 Collection = EmitScalarExpr(S.getCollection()); 1513 } 1514 1515 // The 'continue' label needs to appear within the cleanup for the 1516 // collection object. 1517 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1518 1519 // Send it our message: 1520 CallArgList Args; 1521 1522 // The first argument is a temporary of the enumeration-state type. 1523 Args.add(RValue::get(StatePtr.getPointer()), 1524 getContext().getPointerType(StateTy)); 1525 1526 // The second argument is a temporary array with space for NumItems 1527 // pointers. We'll actually be loading elements from the array 1528 // pointer written into the control state; this buffer is so that 1529 // collections that *aren't* backed by arrays can still queue up 1530 // batches of elements. 1531 Args.add(RValue::get(ItemsPtr.getPointer()), 1532 getContext().getPointerType(ItemsTy)); 1533 1534 // The third argument is the capacity of that temporary array. 1535 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1536 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1537 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1538 1539 // Start the enumeration. 1540 RValue CountRV = 1541 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1542 getContext().UnsignedLongTy, 1543 FastEnumSel, 1544 Collection, Args); 1545 1546 // The initial number of objects that were returned in the buffer. 1547 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1548 1549 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1550 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1551 1552 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1553 1554 // If the limit pointer was zero to begin with, the collection is 1555 // empty; skip all this. Set the branch weight assuming this has the same 1556 // probability of exiting the loop as any other loop exit. 1557 uint64_t EntryCount = getCurrentProfileCount(); 1558 Builder.CreateCondBr( 1559 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1560 LoopInitBB, 1561 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1562 1563 // Otherwise, initialize the loop. 1564 EmitBlock(LoopInitBB); 1565 1566 // Save the initial mutations value. This is the value at an 1567 // address that was written into the state object by 1568 // countByEnumeratingWithState:objects:count:. 1569 Address StateMutationsPtrPtr = Builder.CreateStructGEP( 1570 StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr"); 1571 llvm::Value *StateMutationsPtr 1572 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1573 1574 llvm::Value *initialMutations = 1575 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1576 "forcoll.initial-mutations"); 1577 1578 // Start looping. This is the point we return to whenever we have a 1579 // fresh, non-empty batch of objects. 1580 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1581 EmitBlock(LoopBodyBB); 1582 1583 // The current index into the buffer. 1584 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1585 index->addIncoming(zero, LoopInitBB); 1586 1587 // The current buffer size. 1588 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1589 count->addIncoming(initialBufferLimit, LoopInitBB); 1590 1591 incrementProfileCounter(&S); 1592 1593 // Check whether the mutations value has changed from where it was 1594 // at start. StateMutationsPtr should actually be invariant between 1595 // refreshes. 1596 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1597 llvm::Value *currentMutations 1598 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1599 "statemutations"); 1600 1601 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1602 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1603 1604 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1605 WasNotMutatedBB, WasMutatedBB); 1606 1607 // If so, call the enumeration-mutation function. 1608 EmitBlock(WasMutatedBB); 1609 llvm::Value *V = 1610 Builder.CreateBitCast(Collection, 1611 ConvertType(getContext().getObjCIdType())); 1612 CallArgList Args2; 1613 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1614 // FIXME: We shouldn't need to get the function info here, the runtime already 1615 // should have computed it to build the function. 1616 EmitCall( 1617 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1618 EnumerationMutationFn, ReturnValueSlot(), Args2); 1619 1620 // Otherwise, or if the mutation function returns, just continue. 1621 EmitBlock(WasNotMutatedBB); 1622 1623 // Initialize the element variable. 1624 RunCleanupsScope elementVariableScope(*this); 1625 bool elementIsVariable; 1626 LValue elementLValue; 1627 QualType elementType; 1628 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1629 // Initialize the variable, in case it's a __block variable or something. 1630 EmitAutoVarInit(variable); 1631 1632 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1633 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1634 VK_LValue, SourceLocation()); 1635 elementLValue = EmitLValue(&tempDRE); 1636 elementType = D->getType(); 1637 elementIsVariable = true; 1638 1639 if (D->isARCPseudoStrong()) 1640 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1641 } else { 1642 elementLValue = LValue(); // suppress warning 1643 elementType = cast<Expr>(S.getElement())->getType(); 1644 elementIsVariable = false; 1645 } 1646 llvm::Type *convertedElementType = ConvertType(elementType); 1647 1648 // Fetch the buffer out of the enumeration state. 1649 // TODO: this pointer should actually be invariant between 1650 // refreshes, which would help us do certain loop optimizations. 1651 Address StateItemsPtr = Builder.CreateStructGEP( 1652 StatePtr, 1, getPointerSize(), "stateitems.ptr"); 1653 llvm::Value *EnumStateItems = 1654 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1655 1656 // Fetch the value at the current index from the buffer. 1657 llvm::Value *CurrentItemPtr = 1658 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1659 llvm::Value *CurrentItem = 1660 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1661 1662 // Cast that value to the right type. 1663 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1664 "currentitem"); 1665 1666 // Make sure we have an l-value. Yes, this gets evaluated every 1667 // time through the loop. 1668 if (!elementIsVariable) { 1669 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1670 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1671 } else { 1672 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1673 /*isInit*/ true); 1674 } 1675 1676 // If we do have an element variable, this assignment is the end of 1677 // its initialization. 1678 if (elementIsVariable) 1679 EmitAutoVarCleanups(variable); 1680 1681 // Perform the loop body, setting up break and continue labels. 1682 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1683 { 1684 RunCleanupsScope Scope(*this); 1685 EmitStmt(S.getBody()); 1686 } 1687 BreakContinueStack.pop_back(); 1688 1689 // Destroy the element variable now. 1690 elementVariableScope.ForceCleanup(); 1691 1692 // Check whether there are more elements. 1693 EmitBlock(AfterBody.getBlock()); 1694 1695 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1696 1697 // First we check in the local buffer. 1698 llvm::Value *indexPlusOne 1699 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1700 1701 // If we haven't overrun the buffer yet, we can continue. 1702 // Set the branch weights based on the simplifying assumption that this is 1703 // like a while-loop, i.e., ignoring that the false branch fetches more 1704 // elements and then returns to the loop. 1705 Builder.CreateCondBr( 1706 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1707 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1708 1709 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1710 count->addIncoming(count, AfterBody.getBlock()); 1711 1712 // Otherwise, we have to fetch more elements. 1713 EmitBlock(FetchMoreBB); 1714 1715 CountRV = 1716 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1717 getContext().UnsignedLongTy, 1718 FastEnumSel, 1719 Collection, Args); 1720 1721 // If we got a zero count, we're done. 1722 llvm::Value *refetchCount = CountRV.getScalarVal(); 1723 1724 // (note that the message send might split FetchMoreBB) 1725 index->addIncoming(zero, Builder.GetInsertBlock()); 1726 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1727 1728 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1729 EmptyBB, LoopBodyBB); 1730 1731 // No more elements. 1732 EmitBlock(EmptyBB); 1733 1734 if (!elementIsVariable) { 1735 // If the element was not a declaration, set it to be null. 1736 1737 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1738 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1739 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1740 } 1741 1742 if (DI) 1743 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1744 1745 ForScope.ForceCleanup(); 1746 EmitBlock(LoopEnd.getBlock()); 1747 } 1748 1749 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1750 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1751 } 1752 1753 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1754 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1755 } 1756 1757 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1758 const ObjCAtSynchronizedStmt &S) { 1759 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1760 } 1761 1762 namespace { 1763 struct CallObjCRelease final : EHScopeStack::Cleanup { 1764 CallObjCRelease(llvm::Value *object) : object(object) {} 1765 llvm::Value *object; 1766 1767 void Emit(CodeGenFunction &CGF, Flags flags) override { 1768 // Releases at the end of the full-expression are imprecise. 1769 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1770 } 1771 }; 1772 } 1773 1774 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1775 /// release at the end of the full-expression. 1776 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1777 llvm::Value *object) { 1778 // If we're in a conditional branch, we need to make the cleanup 1779 // conditional. 1780 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1781 return object; 1782 } 1783 1784 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1785 llvm::Value *value) { 1786 return EmitARCRetainAutorelease(type, value); 1787 } 1788 1789 /// Given a number of pointers, inform the optimizer that they're 1790 /// being intrinsically used up until this point in the program. 1791 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1792 llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use; 1793 if (!fn) { 1794 llvm::FunctionType *fnType = 1795 llvm::FunctionType::get(CGM.VoidTy, None, true); 1796 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use"); 1797 } 1798 1799 // This isn't really a "runtime" function, but as an intrinsic it 1800 // doesn't really matter as long as we align things up. 1801 EmitNounwindRuntimeCall(fn, values); 1802 } 1803 1804 1805 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1806 llvm::FunctionType *type, 1807 StringRef fnName) { 1808 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1809 1810 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) { 1811 // If the target runtime doesn't naturally support ARC, emit weak 1812 // references to the runtime support library. We don't really 1813 // permit this to fail, but we need a particular relocation style. 1814 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 1815 !CGM.getTriple().isOSBinFormatCOFF()) { 1816 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1817 } else if (fnName == "objc_retain" || fnName == "objc_release") { 1818 // If we have Native ARC, set nonlazybind attribute for these APIs for 1819 // performance. 1820 f->addFnAttr(llvm::Attribute::NonLazyBind); 1821 } 1822 } 1823 1824 return fn; 1825 } 1826 1827 /// Perform an operation having the signature 1828 /// i8* (i8*) 1829 /// where a null input causes a no-op and returns null. 1830 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1831 llvm::Value *value, 1832 llvm::Constant *&fn, 1833 StringRef fnName, 1834 bool isTailCall = false) { 1835 if (isa<llvm::ConstantPointerNull>(value)) return value; 1836 1837 if (!fn) { 1838 llvm::FunctionType *fnType = 1839 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 1840 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1841 } 1842 1843 // Cast the argument to 'id'. 1844 llvm::Type *origType = value->getType(); 1845 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1846 1847 // Call the function. 1848 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1849 if (isTailCall) 1850 call->setTailCall(); 1851 1852 // Cast the result back to the original type. 1853 return CGF.Builder.CreateBitCast(call, origType); 1854 } 1855 1856 /// Perform an operation having the following signature: 1857 /// i8* (i8**) 1858 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1859 Address addr, 1860 llvm::Constant *&fn, 1861 StringRef fnName) { 1862 if (!fn) { 1863 llvm::FunctionType *fnType = 1864 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false); 1865 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1866 } 1867 1868 // Cast the argument to 'id*'. 1869 llvm::Type *origType = addr.getElementType(); 1870 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1871 1872 // Call the function. 1873 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 1874 1875 // Cast the result back to a dereference of the original type. 1876 if (origType != CGF.Int8PtrTy) 1877 result = CGF.Builder.CreateBitCast(result, origType); 1878 1879 return result; 1880 } 1881 1882 /// Perform an operation having the following signature: 1883 /// i8* (i8**, i8*) 1884 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1885 Address addr, 1886 llvm::Value *value, 1887 llvm::Constant *&fn, 1888 StringRef fnName, 1889 bool ignored) { 1890 assert(addr.getElementType() == value->getType()); 1891 1892 if (!fn) { 1893 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1894 1895 llvm::FunctionType *fnType 1896 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1897 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1898 } 1899 1900 llvm::Type *origType = value->getType(); 1901 1902 llvm::Value *args[] = { 1903 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 1904 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 1905 }; 1906 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 1907 1908 if (ignored) return nullptr; 1909 1910 return CGF.Builder.CreateBitCast(result, origType); 1911 } 1912 1913 /// Perform an operation having the following signature: 1914 /// void (i8**, i8**) 1915 static void emitARCCopyOperation(CodeGenFunction &CGF, 1916 Address dst, 1917 Address src, 1918 llvm::Constant *&fn, 1919 StringRef fnName) { 1920 assert(dst.getType() == src.getType()); 1921 1922 if (!fn) { 1923 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy }; 1924 1925 llvm::FunctionType *fnType 1926 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1927 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1928 } 1929 1930 llvm::Value *args[] = { 1931 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 1932 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 1933 }; 1934 CGF.EmitNounwindRuntimeCall(fn, args); 1935 } 1936 1937 /// Produce the code to do a retain. Based on the type, calls one of: 1938 /// call i8* \@objc_retain(i8* %value) 1939 /// call i8* \@objc_retainBlock(i8* %value) 1940 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1941 if (type->isBlockPointerType()) 1942 return EmitARCRetainBlock(value, /*mandatory*/ false); 1943 else 1944 return EmitARCRetainNonBlock(value); 1945 } 1946 1947 /// Retain the given object, with normal retain semantics. 1948 /// call i8* \@objc_retain(i8* %value) 1949 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1950 return emitARCValueOperation(*this, value, 1951 CGM.getObjCEntrypoints().objc_retain, 1952 "objc_retain"); 1953 } 1954 1955 /// Retain the given block, with _Block_copy semantics. 1956 /// call i8* \@objc_retainBlock(i8* %value) 1957 /// 1958 /// \param mandatory - If false, emit the call with metadata 1959 /// indicating that it's okay for the optimizer to eliminate this call 1960 /// if it can prove that the block never escapes except down the stack. 1961 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1962 bool mandatory) { 1963 llvm::Value *result 1964 = emitARCValueOperation(*this, value, 1965 CGM.getObjCEntrypoints().objc_retainBlock, 1966 "objc_retainBlock"); 1967 1968 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1969 // tell the optimizer that it doesn't need to do this copy if the 1970 // block doesn't escape, where being passed as an argument doesn't 1971 // count as escaping. 1972 if (!mandatory && isa<llvm::Instruction>(result)) { 1973 llvm::CallInst *call 1974 = cast<llvm::CallInst>(result->stripPointerCasts()); 1975 assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock); 1976 1977 call->setMetadata("clang.arc.copy_on_escape", 1978 llvm::MDNode::get(Builder.getContext(), None)); 1979 } 1980 1981 return result; 1982 } 1983 1984 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 1985 // Fetch the void(void) inline asm which marks that we're going to 1986 // do something with the autoreleased return value. 1987 llvm::InlineAsm *&marker 1988 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 1989 if (!marker) { 1990 StringRef assembly 1991 = CGF.CGM.getTargetCodeGenInfo() 1992 .getARCRetainAutoreleasedReturnValueMarker(); 1993 1994 // If we have an empty assembly string, there's nothing to do. 1995 if (assembly.empty()) { 1996 1997 // Otherwise, at -O0, build an inline asm that we're going to call 1998 // in a moment. 1999 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2000 llvm::FunctionType *type = 2001 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2002 2003 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2004 2005 // If we're at -O1 and above, we don't want to litter the code 2006 // with this marker yet, so leave a breadcrumb for the ARC 2007 // optimizer to pick up. 2008 } else { 2009 llvm::NamedMDNode *metadata = 2010 CGF.CGM.getModule().getOrInsertNamedMetadata( 2011 "clang.arc.retainAutoreleasedReturnValueMarker"); 2012 assert(metadata->getNumOperands() <= 1); 2013 if (metadata->getNumOperands() == 0) { 2014 auto &ctx = CGF.getLLVMContext(); 2015 metadata->addOperand(llvm::MDNode::get(ctx, 2016 llvm::MDString::get(ctx, assembly))); 2017 } 2018 } 2019 } 2020 2021 // Call the marker asm if we made one, which we do only at -O0. 2022 if (marker) 2023 CGF.Builder.CreateCall(marker); 2024 } 2025 2026 /// Retain the given object which is the result of a function call. 2027 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2028 /// 2029 /// Yes, this function name is one character away from a different 2030 /// call with completely different semantics. 2031 llvm::Value * 2032 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2033 emitAutoreleasedReturnValueMarker(*this); 2034 return emitARCValueOperation(*this, value, 2035 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, 2036 "objc_retainAutoreleasedReturnValue"); 2037 } 2038 2039 /// Claim a possibly-autoreleased return value at +0. This is only 2040 /// valid to do in contexts which do not rely on the retain to keep 2041 /// the object valid for for all of its uses; for example, when 2042 /// the value is ignored, or when it is being assigned to an 2043 /// __unsafe_unretained variable. 2044 /// 2045 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2046 llvm::Value * 2047 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2048 emitAutoreleasedReturnValueMarker(*this); 2049 return emitARCValueOperation(*this, value, 2050 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, 2051 "objc_unsafeClaimAutoreleasedReturnValue"); 2052 } 2053 2054 /// Release the given object. 2055 /// call void \@objc_release(i8* %value) 2056 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2057 ARCPreciseLifetime_t precise) { 2058 if (isa<llvm::ConstantPointerNull>(value)) return; 2059 2060 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release; 2061 if (!fn) { 2062 llvm::FunctionType *fnType = 2063 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2064 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 2065 } 2066 2067 // Cast the argument to 'id'. 2068 value = Builder.CreateBitCast(value, Int8PtrTy); 2069 2070 // Call objc_release. 2071 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2072 2073 if (precise == ARCImpreciseLifetime) { 2074 call->setMetadata("clang.imprecise_release", 2075 llvm::MDNode::get(Builder.getContext(), None)); 2076 } 2077 } 2078 2079 /// Destroy a __strong variable. 2080 /// 2081 /// At -O0, emit a call to store 'null' into the address; 2082 /// instrumenting tools prefer this because the address is exposed, 2083 /// but it's relatively cumbersome to optimize. 2084 /// 2085 /// At -O1 and above, just load and call objc_release. 2086 /// 2087 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2088 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2089 ARCPreciseLifetime_t precise) { 2090 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2091 llvm::Value *null = getNullForVariable(addr); 2092 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2093 return; 2094 } 2095 2096 llvm::Value *value = Builder.CreateLoad(addr); 2097 EmitARCRelease(value, precise); 2098 } 2099 2100 /// Store into a strong object. Always calls this: 2101 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2102 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2103 llvm::Value *value, 2104 bool ignored) { 2105 assert(addr.getElementType() == value->getType()); 2106 2107 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2108 if (!fn) { 2109 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 2110 llvm::FunctionType *fnType 2111 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 2112 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 2113 } 2114 2115 llvm::Value *args[] = { 2116 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2117 Builder.CreateBitCast(value, Int8PtrTy) 2118 }; 2119 EmitNounwindRuntimeCall(fn, args); 2120 2121 if (ignored) return nullptr; 2122 return value; 2123 } 2124 2125 /// Store into a strong object. Sometimes calls this: 2126 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2127 /// Other times, breaks it down into components. 2128 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2129 llvm::Value *newValue, 2130 bool ignored) { 2131 QualType type = dst.getType(); 2132 bool isBlock = type->isBlockPointerType(); 2133 2134 // Use a store barrier at -O0 unless this is a block type or the 2135 // lvalue is inadequately aligned. 2136 if (shouldUseFusedARCCalls() && 2137 !isBlock && 2138 (dst.getAlignment().isZero() || 2139 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2140 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2141 } 2142 2143 // Otherwise, split it out. 2144 2145 // Retain the new value. 2146 newValue = EmitARCRetain(type, newValue); 2147 2148 // Read the old value. 2149 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2150 2151 // Store. We do this before the release so that any deallocs won't 2152 // see the old value. 2153 EmitStoreOfScalar(newValue, dst); 2154 2155 // Finally, release the old value. 2156 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2157 2158 return newValue; 2159 } 2160 2161 /// Autorelease the given object. 2162 /// call i8* \@objc_autorelease(i8* %value) 2163 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2164 return emitARCValueOperation(*this, value, 2165 CGM.getObjCEntrypoints().objc_autorelease, 2166 "objc_autorelease"); 2167 } 2168 2169 /// Autorelease the given object. 2170 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2171 llvm::Value * 2172 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2173 return emitARCValueOperation(*this, value, 2174 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2175 "objc_autoreleaseReturnValue", 2176 /*isTailCall*/ true); 2177 } 2178 2179 /// Do a fused retain/autorelease of the given object. 2180 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2181 llvm::Value * 2182 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2183 return emitARCValueOperation(*this, value, 2184 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2185 "objc_retainAutoreleaseReturnValue", 2186 /*isTailCall*/ true); 2187 } 2188 2189 /// Do a fused retain/autorelease of the given object. 2190 /// call i8* \@objc_retainAutorelease(i8* %value) 2191 /// or 2192 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2193 /// call i8* \@objc_autorelease(i8* %retain) 2194 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2195 llvm::Value *value) { 2196 if (!type->isBlockPointerType()) 2197 return EmitARCRetainAutoreleaseNonBlock(value); 2198 2199 if (isa<llvm::ConstantPointerNull>(value)) return value; 2200 2201 llvm::Type *origType = value->getType(); 2202 value = Builder.CreateBitCast(value, Int8PtrTy); 2203 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2204 value = EmitARCAutorelease(value); 2205 return Builder.CreateBitCast(value, origType); 2206 } 2207 2208 /// Do a fused retain/autorelease of the given object. 2209 /// call i8* \@objc_retainAutorelease(i8* %value) 2210 llvm::Value * 2211 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2212 return emitARCValueOperation(*this, value, 2213 CGM.getObjCEntrypoints().objc_retainAutorelease, 2214 "objc_retainAutorelease"); 2215 } 2216 2217 /// i8* \@objc_loadWeak(i8** %addr) 2218 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2219 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2220 return emitARCLoadOperation(*this, addr, 2221 CGM.getObjCEntrypoints().objc_loadWeak, 2222 "objc_loadWeak"); 2223 } 2224 2225 /// i8* \@objc_loadWeakRetained(i8** %addr) 2226 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2227 return emitARCLoadOperation(*this, addr, 2228 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2229 "objc_loadWeakRetained"); 2230 } 2231 2232 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2233 /// Returns %value. 2234 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2235 llvm::Value *value, 2236 bool ignored) { 2237 return emitARCStoreOperation(*this, addr, value, 2238 CGM.getObjCEntrypoints().objc_storeWeak, 2239 "objc_storeWeak", ignored); 2240 } 2241 2242 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2243 /// Returns %value. %addr is known to not have a current weak entry. 2244 /// Essentially equivalent to: 2245 /// *addr = nil; objc_storeWeak(addr, value); 2246 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2247 // If we're initializing to null, just write null to memory; no need 2248 // to get the runtime involved. But don't do this if optimization 2249 // is enabled, because accounting for this would make the optimizer 2250 // much more complicated. 2251 if (isa<llvm::ConstantPointerNull>(value) && 2252 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2253 Builder.CreateStore(value, addr); 2254 return; 2255 } 2256 2257 emitARCStoreOperation(*this, addr, value, 2258 CGM.getObjCEntrypoints().objc_initWeak, 2259 "objc_initWeak", /*ignored*/ true); 2260 } 2261 2262 /// void \@objc_destroyWeak(i8** %addr) 2263 /// Essentially objc_storeWeak(addr, nil). 2264 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2265 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2266 if (!fn) { 2267 llvm::FunctionType *fnType = 2268 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false); 2269 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 2270 } 2271 2272 // Cast the argument to 'id*'. 2273 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2274 2275 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2276 } 2277 2278 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2279 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2280 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2281 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2282 emitARCCopyOperation(*this, dst, src, 2283 CGM.getObjCEntrypoints().objc_moveWeak, 2284 "objc_moveWeak"); 2285 } 2286 2287 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2288 /// Disregards the current value in %dest. Essentially 2289 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2290 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2291 emitARCCopyOperation(*this, dst, src, 2292 CGM.getObjCEntrypoints().objc_copyWeak, 2293 "objc_copyWeak"); 2294 } 2295 2296 /// Produce the code to do a objc_autoreleasepool_push. 2297 /// call i8* \@objc_autoreleasePoolPush(void) 2298 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2299 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2300 if (!fn) { 2301 llvm::FunctionType *fnType = 2302 llvm::FunctionType::get(Int8PtrTy, false); 2303 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 2304 } 2305 2306 return EmitNounwindRuntimeCall(fn); 2307 } 2308 2309 /// Produce the code to do a primitive release. 2310 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2311 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2312 assert(value->getType() == Int8PtrTy); 2313 2314 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2315 if (!fn) { 2316 llvm::FunctionType *fnType = 2317 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2318 2319 // We don't want to use a weak import here; instead we should not 2320 // fall into this path. 2321 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 2322 } 2323 2324 // objc_autoreleasePoolPop can throw. 2325 EmitRuntimeCallOrInvoke(fn, value); 2326 } 2327 2328 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2329 /// Which is: [[NSAutoreleasePool alloc] init]; 2330 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2331 /// init is declared as: - (id) init; in its NSObject super class. 2332 /// 2333 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2334 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2335 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2336 // [NSAutoreleasePool alloc] 2337 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2338 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2339 CallArgList Args; 2340 RValue AllocRV = 2341 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2342 getContext().getObjCIdType(), 2343 AllocSel, Receiver, Args); 2344 2345 // [Receiver init] 2346 Receiver = AllocRV.getScalarVal(); 2347 II = &CGM.getContext().Idents.get("init"); 2348 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2349 RValue InitRV = 2350 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2351 getContext().getObjCIdType(), 2352 InitSel, Receiver, Args); 2353 return InitRV.getScalarVal(); 2354 } 2355 2356 /// Produce the code to do a primitive release. 2357 /// [tmp drain]; 2358 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2359 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2360 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2361 CallArgList Args; 2362 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2363 getContext().VoidTy, DrainSel, Arg, Args); 2364 } 2365 2366 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2367 Address addr, 2368 QualType type) { 2369 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2370 } 2371 2372 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2373 Address addr, 2374 QualType type) { 2375 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2376 } 2377 2378 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2379 Address addr, 2380 QualType type) { 2381 CGF.EmitARCDestroyWeak(addr); 2382 } 2383 2384 namespace { 2385 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2386 llvm::Value *Token; 2387 2388 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2389 2390 void Emit(CodeGenFunction &CGF, Flags flags) override { 2391 CGF.EmitObjCAutoreleasePoolPop(Token); 2392 } 2393 }; 2394 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2395 llvm::Value *Token; 2396 2397 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2398 2399 void Emit(CodeGenFunction &CGF, Flags flags) override { 2400 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2401 } 2402 }; 2403 } 2404 2405 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2406 if (CGM.getLangOpts().ObjCAutoRefCount) 2407 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2408 else 2409 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2410 } 2411 2412 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2413 LValue lvalue, 2414 QualType type) { 2415 switch (type.getObjCLifetime()) { 2416 case Qualifiers::OCL_None: 2417 case Qualifiers::OCL_ExplicitNone: 2418 case Qualifiers::OCL_Strong: 2419 case Qualifiers::OCL_Autoreleasing: 2420 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue, 2421 SourceLocation()).getScalarVal(), 2422 false); 2423 2424 case Qualifiers::OCL_Weak: 2425 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2426 true); 2427 } 2428 2429 llvm_unreachable("impossible lifetime!"); 2430 } 2431 2432 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2433 const Expr *e) { 2434 e = e->IgnoreParens(); 2435 QualType type = e->getType(); 2436 2437 // If we're loading retained from a __strong xvalue, we can avoid 2438 // an extra retain/release pair by zeroing out the source of this 2439 // "move" operation. 2440 if (e->isXValue() && 2441 !type.isConstQualified() && 2442 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2443 // Emit the lvalue. 2444 LValue lv = CGF.EmitLValue(e); 2445 2446 // Load the object pointer. 2447 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2448 SourceLocation()).getScalarVal(); 2449 2450 // Set the source pointer to NULL. 2451 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2452 2453 return TryEmitResult(result, true); 2454 } 2455 2456 // As a very special optimization, in ARC++, if the l-value is the 2457 // result of a non-volatile assignment, do a simple retain of the 2458 // result of the call to objc_storeWeak instead of reloading. 2459 if (CGF.getLangOpts().CPlusPlus && 2460 !type.isVolatileQualified() && 2461 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2462 isa<BinaryOperator>(e) && 2463 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2464 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2465 2466 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2467 } 2468 2469 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2470 llvm::Value *value)> 2471 ValueTransform; 2472 2473 /// Insert code immediately after a call. 2474 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2475 llvm::Value *value, 2476 ValueTransform doAfterCall, 2477 ValueTransform doFallback) { 2478 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2479 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2480 2481 // Place the retain immediately following the call. 2482 CGF.Builder.SetInsertPoint(call->getParent(), 2483 ++llvm::BasicBlock::iterator(call)); 2484 value = doAfterCall(CGF, value); 2485 2486 CGF.Builder.restoreIP(ip); 2487 return value; 2488 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2489 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2490 2491 // Place the retain at the beginning of the normal destination block. 2492 llvm::BasicBlock *BB = invoke->getNormalDest(); 2493 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2494 value = doAfterCall(CGF, value); 2495 2496 CGF.Builder.restoreIP(ip); 2497 return value; 2498 2499 // Bitcasts can arise because of related-result returns. Rewrite 2500 // the operand. 2501 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2502 llvm::Value *operand = bitcast->getOperand(0); 2503 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2504 bitcast->setOperand(0, operand); 2505 return bitcast; 2506 2507 // Generic fall-back case. 2508 } else { 2509 // Retain using the non-block variant: we never need to do a copy 2510 // of a block that's been returned to us. 2511 return doFallback(CGF, value); 2512 } 2513 } 2514 2515 /// Given that the given expression is some sort of call (which does 2516 /// not return retained), emit a retain following it. 2517 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2518 const Expr *e) { 2519 llvm::Value *value = CGF.EmitScalarExpr(e); 2520 return emitARCOperationAfterCall(CGF, value, 2521 [](CodeGenFunction &CGF, llvm::Value *value) { 2522 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2523 }, 2524 [](CodeGenFunction &CGF, llvm::Value *value) { 2525 return CGF.EmitARCRetainNonBlock(value); 2526 }); 2527 } 2528 2529 /// Given that the given expression is some sort of call (which does 2530 /// not return retained), perform an unsafeClaim following it. 2531 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 2532 const Expr *e) { 2533 llvm::Value *value = CGF.EmitScalarExpr(e); 2534 return emitARCOperationAfterCall(CGF, value, 2535 [](CodeGenFunction &CGF, llvm::Value *value) { 2536 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 2537 }, 2538 [](CodeGenFunction &CGF, llvm::Value *value) { 2539 return value; 2540 }); 2541 } 2542 2543 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 2544 bool allowUnsafeClaim) { 2545 if (allowUnsafeClaim && 2546 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 2547 return emitARCUnsafeClaimCallResult(*this, E); 2548 } else { 2549 llvm::Value *value = emitARCRetainCallResult(*this, E); 2550 return EmitObjCConsumeObject(E->getType(), value); 2551 } 2552 } 2553 2554 /// Determine whether it might be important to emit a separate 2555 /// objc_retain_block on the result of the given expression, or 2556 /// whether it's okay to just emit it in a +1 context. 2557 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2558 assert(e->getType()->isBlockPointerType()); 2559 e = e->IgnoreParens(); 2560 2561 // For future goodness, emit block expressions directly in +1 2562 // contexts if we can. 2563 if (isa<BlockExpr>(e)) 2564 return false; 2565 2566 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2567 switch (cast->getCastKind()) { 2568 // Emitting these operations in +1 contexts is goodness. 2569 case CK_LValueToRValue: 2570 case CK_ARCReclaimReturnedObject: 2571 case CK_ARCConsumeObject: 2572 case CK_ARCProduceObject: 2573 return false; 2574 2575 // These operations preserve a block type. 2576 case CK_NoOp: 2577 case CK_BitCast: 2578 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2579 2580 // These operations are known to be bad (or haven't been considered). 2581 case CK_AnyPointerToBlockPointerCast: 2582 default: 2583 return true; 2584 } 2585 } 2586 2587 return true; 2588 } 2589 2590 namespace { 2591 /// A CRTP base class for emitting expressions of retainable object 2592 /// pointer type in ARC. 2593 template <typename Impl, typename Result> class ARCExprEmitter { 2594 protected: 2595 CodeGenFunction &CGF; 2596 Impl &asImpl() { return *static_cast<Impl*>(this); } 2597 2598 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 2599 2600 public: 2601 Result visit(const Expr *e); 2602 Result visitCastExpr(const CastExpr *e); 2603 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 2604 Result visitBinaryOperator(const BinaryOperator *e); 2605 Result visitBinAssign(const BinaryOperator *e); 2606 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 2607 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 2608 Result visitBinAssignWeak(const BinaryOperator *e); 2609 Result visitBinAssignStrong(const BinaryOperator *e); 2610 2611 // Minimal implementation: 2612 // Result visitLValueToRValue(const Expr *e) 2613 // Result visitConsumeObject(const Expr *e) 2614 // Result visitExtendBlockObject(const Expr *e) 2615 // Result visitReclaimReturnedObject(const Expr *e) 2616 // Result visitCall(const Expr *e) 2617 // Result visitExpr(const Expr *e) 2618 // 2619 // Result emitBitCast(Result result, llvm::Type *resultType) 2620 // llvm::Value *getValueOfResult(Result result) 2621 }; 2622 } 2623 2624 /// Try to emit a PseudoObjectExpr under special ARC rules. 2625 /// 2626 /// This massively duplicates emitPseudoObjectRValue. 2627 template <typename Impl, typename Result> 2628 Result 2629 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 2630 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2631 2632 // Find the result expression. 2633 const Expr *resultExpr = E->getResultExpr(); 2634 assert(resultExpr); 2635 Result result; 2636 2637 for (PseudoObjectExpr::const_semantics_iterator 2638 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2639 const Expr *semantic = *i; 2640 2641 // If this semantic expression is an opaque value, bind it 2642 // to the result of its source expression. 2643 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2644 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2645 OVMA opaqueData; 2646 2647 // If this semantic is the result of the pseudo-object 2648 // expression, try to evaluate the source as +1. 2649 if (ov == resultExpr) { 2650 assert(!OVMA::shouldBindAsLValue(ov)); 2651 result = asImpl().visit(ov->getSourceExpr()); 2652 opaqueData = OVMA::bind(CGF, ov, 2653 RValue::get(asImpl().getValueOfResult(result))); 2654 2655 // Otherwise, just bind it. 2656 } else { 2657 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2658 } 2659 opaques.push_back(opaqueData); 2660 2661 // Otherwise, if the expression is the result, evaluate it 2662 // and remember the result. 2663 } else if (semantic == resultExpr) { 2664 result = asImpl().visit(semantic); 2665 2666 // Otherwise, evaluate the expression in an ignored context. 2667 } else { 2668 CGF.EmitIgnoredExpr(semantic); 2669 } 2670 } 2671 2672 // Unbind all the opaques now. 2673 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2674 opaques[i].unbind(CGF); 2675 2676 return result; 2677 } 2678 2679 template <typename Impl, typename Result> 2680 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 2681 switch (e->getCastKind()) { 2682 2683 // No-op casts don't change the type, so we just ignore them. 2684 case CK_NoOp: 2685 return asImpl().visit(e->getSubExpr()); 2686 2687 // These casts can change the type. 2688 case CK_CPointerToObjCPointerCast: 2689 case CK_BlockPointerToObjCPointerCast: 2690 case CK_AnyPointerToBlockPointerCast: 2691 case CK_BitCast: { 2692 llvm::Type *resultType = CGF.ConvertType(e->getType()); 2693 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 2694 Result result = asImpl().visit(e->getSubExpr()); 2695 return asImpl().emitBitCast(result, resultType); 2696 } 2697 2698 // Handle some casts specially. 2699 case CK_LValueToRValue: 2700 return asImpl().visitLValueToRValue(e->getSubExpr()); 2701 case CK_ARCConsumeObject: 2702 return asImpl().visitConsumeObject(e->getSubExpr()); 2703 case CK_ARCExtendBlockObject: 2704 return asImpl().visitExtendBlockObject(e->getSubExpr()); 2705 case CK_ARCReclaimReturnedObject: 2706 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 2707 2708 // Otherwise, use the default logic. 2709 default: 2710 return asImpl().visitExpr(e); 2711 } 2712 } 2713 2714 template <typename Impl, typename Result> 2715 Result 2716 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 2717 switch (e->getOpcode()) { 2718 case BO_Comma: 2719 CGF.EmitIgnoredExpr(e->getLHS()); 2720 CGF.EnsureInsertPoint(); 2721 return asImpl().visit(e->getRHS()); 2722 2723 case BO_Assign: 2724 return asImpl().visitBinAssign(e); 2725 2726 default: 2727 return asImpl().visitExpr(e); 2728 } 2729 } 2730 2731 template <typename Impl, typename Result> 2732 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 2733 switch (e->getLHS()->getType().getObjCLifetime()) { 2734 case Qualifiers::OCL_ExplicitNone: 2735 return asImpl().visitBinAssignUnsafeUnretained(e); 2736 2737 case Qualifiers::OCL_Weak: 2738 return asImpl().visitBinAssignWeak(e); 2739 2740 case Qualifiers::OCL_Autoreleasing: 2741 return asImpl().visitBinAssignAutoreleasing(e); 2742 2743 case Qualifiers::OCL_Strong: 2744 return asImpl().visitBinAssignStrong(e); 2745 2746 case Qualifiers::OCL_None: 2747 return asImpl().visitExpr(e); 2748 } 2749 llvm_unreachable("bad ObjC ownership qualifier"); 2750 } 2751 2752 /// The default rule for __unsafe_unretained emits the RHS recursively, 2753 /// stores into the unsafe variable, and propagates the result outward. 2754 template <typename Impl, typename Result> 2755 Result ARCExprEmitter<Impl,Result>:: 2756 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 2757 // Recursively emit the RHS. 2758 // For __block safety, do this before emitting the LHS. 2759 Result result = asImpl().visit(e->getRHS()); 2760 2761 // Perform the store. 2762 LValue lvalue = 2763 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 2764 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 2765 lvalue); 2766 2767 return result; 2768 } 2769 2770 template <typename Impl, typename Result> 2771 Result 2772 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 2773 return asImpl().visitExpr(e); 2774 } 2775 2776 template <typename Impl, typename Result> 2777 Result 2778 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 2779 return asImpl().visitExpr(e); 2780 } 2781 2782 template <typename Impl, typename Result> 2783 Result 2784 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 2785 return asImpl().visitExpr(e); 2786 } 2787 2788 /// The general expression-emission logic. 2789 template <typename Impl, typename Result> 2790 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 2791 // We should *never* see a nested full-expression here, because if 2792 // we fail to emit at +1, our caller must not retain after we close 2793 // out the full-expression. This isn't as important in the unsafe 2794 // emitter. 2795 assert(!isa<ExprWithCleanups>(e)); 2796 2797 // Look through parens, __extension__, generic selection, etc. 2798 e = e->IgnoreParens(); 2799 2800 // Handle certain kinds of casts. 2801 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2802 return asImpl().visitCastExpr(ce); 2803 2804 // Handle the comma operator. 2805 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 2806 return asImpl().visitBinaryOperator(op); 2807 2808 // TODO: handle conditional operators here 2809 2810 // For calls and message sends, use the retained-call logic. 2811 // Delegate inits are a special case in that they're the only 2812 // returns-retained expression that *isn't* surrounded by 2813 // a consume. 2814 } else if (isa<CallExpr>(e) || 2815 (isa<ObjCMessageExpr>(e) && 2816 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2817 return asImpl().visitCall(e); 2818 2819 // Look through pseudo-object expressions. 2820 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2821 return asImpl().visitPseudoObjectExpr(pseudo); 2822 } 2823 2824 return asImpl().visitExpr(e); 2825 } 2826 2827 namespace { 2828 2829 /// An emitter for +1 results. 2830 struct ARCRetainExprEmitter : 2831 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 2832 2833 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 2834 2835 llvm::Value *getValueOfResult(TryEmitResult result) { 2836 return result.getPointer(); 2837 } 2838 2839 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 2840 llvm::Value *value = result.getPointer(); 2841 value = CGF.Builder.CreateBitCast(value, resultType); 2842 result.setPointer(value); 2843 return result; 2844 } 2845 2846 TryEmitResult visitLValueToRValue(const Expr *e) { 2847 return tryEmitARCRetainLoadOfScalar(CGF, e); 2848 } 2849 2850 /// For consumptions, just emit the subexpression and thus elide 2851 /// the retain/release pair. 2852 TryEmitResult visitConsumeObject(const Expr *e) { 2853 llvm::Value *result = CGF.EmitScalarExpr(e); 2854 return TryEmitResult(result, true); 2855 } 2856 2857 /// Block extends are net +0. Naively, we could just recurse on 2858 /// the subexpression, but actually we need to ensure that the 2859 /// value is copied as a block, so there's a little filter here. 2860 TryEmitResult visitExtendBlockObject(const Expr *e) { 2861 llvm::Value *result; // will be a +0 value 2862 2863 // If we can't safely assume the sub-expression will produce a 2864 // block-copied value, emit the sub-expression at +0. 2865 if (shouldEmitSeparateBlockRetain(e)) { 2866 result = CGF.EmitScalarExpr(e); 2867 2868 // Otherwise, try to emit the sub-expression at +1 recursively. 2869 } else { 2870 TryEmitResult subresult = asImpl().visit(e); 2871 2872 // If that produced a retained value, just use that. 2873 if (subresult.getInt()) { 2874 return subresult; 2875 } 2876 2877 // Otherwise it's +0. 2878 result = subresult.getPointer(); 2879 } 2880 2881 // Retain the object as a block. 2882 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2883 return TryEmitResult(result, true); 2884 } 2885 2886 /// For reclaims, emit the subexpression as a retained call and 2887 /// skip the consumption. 2888 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 2889 llvm::Value *result = emitARCRetainCallResult(CGF, e); 2890 return TryEmitResult(result, true); 2891 } 2892 2893 /// When we have an undecorated call, retroactively do a claim. 2894 TryEmitResult visitCall(const Expr *e) { 2895 llvm::Value *result = emitARCRetainCallResult(CGF, e); 2896 return TryEmitResult(result, true); 2897 } 2898 2899 // TODO: maybe special-case visitBinAssignWeak? 2900 2901 TryEmitResult visitExpr(const Expr *e) { 2902 // We didn't find an obvious production, so emit what we've got and 2903 // tell the caller that we didn't manage to retain. 2904 llvm::Value *result = CGF.EmitScalarExpr(e); 2905 return TryEmitResult(result, false); 2906 } 2907 }; 2908 } 2909 2910 static TryEmitResult 2911 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2912 return ARCRetainExprEmitter(CGF).visit(e); 2913 } 2914 2915 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2916 LValue lvalue, 2917 QualType type) { 2918 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2919 llvm::Value *value = result.getPointer(); 2920 if (!result.getInt()) 2921 value = CGF.EmitARCRetain(type, value); 2922 return value; 2923 } 2924 2925 /// EmitARCRetainScalarExpr - Semantically equivalent to 2926 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2927 /// best-effort attempt to peephole expressions that naturally produce 2928 /// retained objects. 2929 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2930 // The retain needs to happen within the full-expression. 2931 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2932 enterFullExpression(cleanups); 2933 RunCleanupsScope scope(*this); 2934 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 2935 } 2936 2937 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2938 llvm::Value *value = result.getPointer(); 2939 if (!result.getInt()) 2940 value = EmitARCRetain(e->getType(), value); 2941 return value; 2942 } 2943 2944 llvm::Value * 2945 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2946 // The retain needs to happen within the full-expression. 2947 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2948 enterFullExpression(cleanups); 2949 RunCleanupsScope scope(*this); 2950 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 2951 } 2952 2953 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2954 llvm::Value *value = result.getPointer(); 2955 if (result.getInt()) 2956 value = EmitARCAutorelease(value); 2957 else 2958 value = EmitARCRetainAutorelease(e->getType(), value); 2959 return value; 2960 } 2961 2962 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2963 llvm::Value *result; 2964 bool doRetain; 2965 2966 if (shouldEmitSeparateBlockRetain(e)) { 2967 result = EmitScalarExpr(e); 2968 doRetain = true; 2969 } else { 2970 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2971 result = subresult.getPointer(); 2972 doRetain = !subresult.getInt(); 2973 } 2974 2975 if (doRetain) 2976 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2977 return EmitObjCConsumeObject(e->getType(), result); 2978 } 2979 2980 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2981 // In ARC, retain and autorelease the expression. 2982 if (getLangOpts().ObjCAutoRefCount) { 2983 // Do so before running any cleanups for the full-expression. 2984 // EmitARCRetainAutoreleaseScalarExpr does this for us. 2985 return EmitARCRetainAutoreleaseScalarExpr(expr); 2986 } 2987 2988 // Otherwise, use the normal scalar-expression emission. The 2989 // exception machinery doesn't do anything special with the 2990 // exception like retaining it, so there's no safety associated with 2991 // only running cleanups after the throw has started, and when it 2992 // matters it tends to be substantially inferior code. 2993 return EmitScalarExpr(expr); 2994 } 2995 2996 namespace { 2997 2998 /// An emitter for assigning into an __unsafe_unretained context. 2999 struct ARCUnsafeUnretainedExprEmitter : 3000 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3001 3002 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3003 3004 llvm::Value *getValueOfResult(llvm::Value *value) { 3005 return value; 3006 } 3007 3008 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3009 return CGF.Builder.CreateBitCast(value, resultType); 3010 } 3011 3012 llvm::Value *visitLValueToRValue(const Expr *e) { 3013 return CGF.EmitScalarExpr(e); 3014 } 3015 3016 /// For consumptions, just emit the subexpression and perform the 3017 /// consumption like normal. 3018 llvm::Value *visitConsumeObject(const Expr *e) { 3019 llvm::Value *value = CGF.EmitScalarExpr(e); 3020 return CGF.EmitObjCConsumeObject(e->getType(), value); 3021 } 3022 3023 /// No special logic for block extensions. (This probably can't 3024 /// actually happen in this emitter, though.) 3025 llvm::Value *visitExtendBlockObject(const Expr *e) { 3026 return CGF.EmitARCExtendBlockObject(e); 3027 } 3028 3029 /// For reclaims, perform an unsafeClaim if that's enabled. 3030 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3031 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3032 } 3033 3034 /// When we have an undecorated call, just emit it without adding 3035 /// the unsafeClaim. 3036 llvm::Value *visitCall(const Expr *e) { 3037 return CGF.EmitScalarExpr(e); 3038 } 3039 3040 /// Just do normal scalar emission in the default case. 3041 llvm::Value *visitExpr(const Expr *e) { 3042 return CGF.EmitScalarExpr(e); 3043 } 3044 }; 3045 } 3046 3047 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3048 const Expr *e) { 3049 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3050 } 3051 3052 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3053 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3054 /// avoiding any spurious retains, including by performing reclaims 3055 /// with objc_unsafeClaimAutoreleasedReturnValue. 3056 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3057 // Look through full-expressions. 3058 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3059 enterFullExpression(cleanups); 3060 RunCleanupsScope scope(*this); 3061 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3062 } 3063 3064 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3065 } 3066 3067 std::pair<LValue,llvm::Value*> 3068 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3069 bool ignored) { 3070 // Evaluate the RHS first. If we're ignoring the result, assume 3071 // that we can emit at an unsafe +0. 3072 llvm::Value *value; 3073 if (ignored) { 3074 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3075 } else { 3076 value = EmitScalarExpr(e->getRHS()); 3077 } 3078 3079 // Emit the LHS and perform the store. 3080 LValue lvalue = EmitLValue(e->getLHS()); 3081 EmitStoreOfScalar(value, lvalue); 3082 3083 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3084 } 3085 3086 std::pair<LValue,llvm::Value*> 3087 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3088 bool ignored) { 3089 // Evaluate the RHS first. 3090 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3091 llvm::Value *value = result.getPointer(); 3092 3093 bool hasImmediateRetain = result.getInt(); 3094 3095 // If we didn't emit a retained object, and the l-value is of block 3096 // type, then we need to emit the block-retain immediately in case 3097 // it invalidates the l-value. 3098 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3099 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3100 hasImmediateRetain = true; 3101 } 3102 3103 LValue lvalue = EmitLValue(e->getLHS()); 3104 3105 // If the RHS was emitted retained, expand this. 3106 if (hasImmediateRetain) { 3107 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3108 EmitStoreOfScalar(value, lvalue); 3109 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3110 } else { 3111 value = EmitARCStoreStrong(lvalue, value, ignored); 3112 } 3113 3114 return std::pair<LValue,llvm::Value*>(lvalue, value); 3115 } 3116 3117 std::pair<LValue,llvm::Value*> 3118 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3119 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3120 LValue lvalue = EmitLValue(e->getLHS()); 3121 3122 EmitStoreOfScalar(value, lvalue); 3123 3124 return std::pair<LValue,llvm::Value*>(lvalue, value); 3125 } 3126 3127 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3128 const ObjCAutoreleasePoolStmt &ARPS) { 3129 const Stmt *subStmt = ARPS.getSubStmt(); 3130 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3131 3132 CGDebugInfo *DI = getDebugInfo(); 3133 if (DI) 3134 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3135 3136 // Keep track of the current cleanup stack depth. 3137 RunCleanupsScope Scope(*this); 3138 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3139 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3140 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3141 } else { 3142 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3143 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3144 } 3145 3146 for (const auto *I : S.body()) 3147 EmitStmt(I); 3148 3149 if (DI) 3150 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3151 } 3152 3153 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3154 /// make sure it survives garbage collection until this point. 3155 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3156 // We just use an inline assembly. 3157 llvm::FunctionType *extenderType 3158 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3159 llvm::Value *extender 3160 = llvm::InlineAsm::get(extenderType, 3161 /* assembly */ "", 3162 /* constraints */ "r", 3163 /* side effects */ true); 3164 3165 object = Builder.CreateBitCast(object, VoidPtrTy); 3166 EmitNounwindRuntimeCall(extender, object); 3167 } 3168 3169 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3170 /// non-trivial copy assignment function, produce following helper function. 3171 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3172 /// 3173 llvm::Constant * 3174 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3175 const ObjCPropertyImplDecl *PID) { 3176 if (!getLangOpts().CPlusPlus || 3177 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3178 return nullptr; 3179 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3180 if (!Ty->isRecordType()) 3181 return nullptr; 3182 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3183 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3184 return nullptr; 3185 llvm::Constant *HelperFn = nullptr; 3186 if (hasTrivialSetExpr(PID)) 3187 return nullptr; 3188 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3189 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3190 return HelperFn; 3191 3192 ASTContext &C = getContext(); 3193 IdentifierInfo *II 3194 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3195 FunctionDecl *FD = FunctionDecl::Create(C, 3196 C.getTranslationUnitDecl(), 3197 SourceLocation(), 3198 SourceLocation(), II, C.VoidTy, 3199 nullptr, SC_Static, 3200 false, 3201 false); 3202 3203 QualType DestTy = C.getPointerType(Ty); 3204 QualType SrcTy = Ty; 3205 SrcTy.addConst(); 3206 SrcTy = C.getPointerType(SrcTy); 3207 3208 FunctionArgList args; 3209 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 3210 args.push_back(&dstDecl); 3211 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 3212 args.push_back(&srcDecl); 3213 3214 const CGFunctionInfo &FI = 3215 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); 3216 3217 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3218 3219 llvm::Function *Fn = 3220 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3221 "__assign_helper_atomic_property_", 3222 &CGM.getModule()); 3223 3224 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 3225 3226 StartFunction(FD, C.VoidTy, Fn, FI, args); 3227 3228 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 3229 VK_RValue, SourceLocation()); 3230 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 3231 VK_LValue, OK_Ordinary, SourceLocation()); 3232 3233 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 3234 VK_RValue, SourceLocation()); 3235 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3236 VK_LValue, OK_Ordinary, SourceLocation()); 3237 3238 Expr *Args[2] = { &DST, &SRC }; 3239 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3240 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 3241 Args, DestTy->getPointeeType(), 3242 VK_LValue, SourceLocation(), false); 3243 3244 EmitStmt(&TheCall); 3245 3246 FinishFunction(); 3247 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3248 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3249 return HelperFn; 3250 } 3251 3252 llvm::Constant * 3253 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3254 const ObjCPropertyImplDecl *PID) { 3255 if (!getLangOpts().CPlusPlus || 3256 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3257 return nullptr; 3258 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3259 QualType Ty = PD->getType(); 3260 if (!Ty->isRecordType()) 3261 return nullptr; 3262 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3263 return nullptr; 3264 llvm::Constant *HelperFn = nullptr; 3265 3266 if (hasTrivialGetExpr(PID)) 3267 return nullptr; 3268 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3269 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3270 return HelperFn; 3271 3272 3273 ASTContext &C = getContext(); 3274 IdentifierInfo *II 3275 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3276 FunctionDecl *FD = FunctionDecl::Create(C, 3277 C.getTranslationUnitDecl(), 3278 SourceLocation(), 3279 SourceLocation(), II, C.VoidTy, 3280 nullptr, SC_Static, 3281 false, 3282 false); 3283 3284 QualType DestTy = C.getPointerType(Ty); 3285 QualType SrcTy = Ty; 3286 SrcTy.addConst(); 3287 SrcTy = C.getPointerType(SrcTy); 3288 3289 FunctionArgList args; 3290 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 3291 args.push_back(&dstDecl); 3292 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 3293 args.push_back(&srcDecl); 3294 3295 const CGFunctionInfo &FI = 3296 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); 3297 3298 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3299 3300 llvm::Function *Fn = 3301 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3302 "__copy_helper_atomic_property_", &CGM.getModule()); 3303 3304 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 3305 3306 StartFunction(FD, C.VoidTy, Fn, FI, args); 3307 3308 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 3309 VK_RValue, SourceLocation()); 3310 3311 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3312 VK_LValue, OK_Ordinary, SourceLocation()); 3313 3314 CXXConstructExpr *CXXConstExpr = 3315 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3316 3317 SmallVector<Expr*, 4> ConstructorArgs; 3318 ConstructorArgs.push_back(&SRC); 3319 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3320 CXXConstExpr->arg_end()); 3321 3322 CXXConstructExpr *TheCXXConstructExpr = 3323 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3324 CXXConstExpr->getConstructor(), 3325 CXXConstExpr->isElidable(), 3326 ConstructorArgs, 3327 CXXConstExpr->hadMultipleCandidates(), 3328 CXXConstExpr->isListInitialization(), 3329 CXXConstExpr->isStdInitListInitialization(), 3330 CXXConstExpr->requiresZeroInitialization(), 3331 CXXConstExpr->getConstructionKind(), 3332 SourceRange()); 3333 3334 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 3335 VK_RValue, SourceLocation()); 3336 3337 RValue DV = EmitAnyExpr(&DstExpr); 3338 CharUnits Alignment 3339 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3340 EmitAggExpr(TheCXXConstructExpr, 3341 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3342 Qualifiers(), 3343 AggValueSlot::IsDestructed, 3344 AggValueSlot::DoesNotNeedGCBarriers, 3345 AggValueSlot::IsNotAliased)); 3346 3347 FinishFunction(); 3348 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3349 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3350 return HelperFn; 3351 } 3352 3353 llvm::Value * 3354 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3355 // Get selectors for retain/autorelease. 3356 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3357 Selector CopySelector = 3358 getContext().Selectors.getNullarySelector(CopyID); 3359 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3360 Selector AutoreleaseSelector = 3361 getContext().Selectors.getNullarySelector(AutoreleaseID); 3362 3363 // Emit calls to retain/autorelease. 3364 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3365 llvm::Value *Val = Block; 3366 RValue Result; 3367 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3368 Ty, CopySelector, 3369 Val, CallArgList(), nullptr, nullptr); 3370 Val = Result.getScalarVal(); 3371 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3372 Ty, AutoreleaseSelector, 3373 Val, CallArgList(), nullptr, nullptr); 3374 Val = Result.getScalarVal(); 3375 return Val; 3376 } 3377 3378 3379 CGObjCRuntime::~CGObjCRuntime() {} 3380