1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/InlineAsm.h" 26 using namespace clang; 27 using namespace CodeGen; 28 29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 30 static TryEmitResult 31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 32 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 33 QualType ET, 34 const ObjCMethodDecl *Method, 35 RValue Result); 36 37 /// Given the address of a variable of pointer type, find the correct 38 /// null to store into it. 39 static llvm::Constant *getNullForVariable(llvm::Value *addr) { 40 llvm::Type *type = 41 cast<llvm::PointerType>(addr->getType())->getElementType(); 42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 43 } 44 45 /// Emits an instance of NSConstantString representing the object. 46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 47 { 48 llvm::Constant *C = 49 CGM.getObjCRuntime().GenerateConstantString(E->getString()); 50 // FIXME: This bitcast should just be made an invariant on the Runtime. 51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 52 } 53 54 /// EmitObjCBoxedExpr - This routine generates code to call 55 /// the appropriate expression boxing method. This will either be 56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:]. 57 /// 58 llvm::Value * 59 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 60 // Generate the correct selector for this literal's concrete type. 61 const Expr *SubExpr = E->getSubExpr(); 62 // Get the method. 63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 64 assert(BoxingMethod && "BoxingMethod is null"); 65 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 66 Selector Sel = BoxingMethod->getSelector(); 67 68 // Generate a reference to the class pointer, which will be the receiver. 69 // Assumes that the method was introduced in the class that should be 70 // messaged (avoids pulling it out of the result type). 71 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 72 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 73 llvm::Value *Receiver = Runtime.GetClass(Builder, ClassDecl); 74 75 const ParmVarDecl *argDecl = *BoxingMethod->param_begin(); 76 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 77 RValue RV = EmitAnyExpr(SubExpr); 78 CallArgList Args; 79 Args.add(RV, ArgQT); 80 81 RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 82 BoxingMethod->getResultType(), Sel, Receiver, Args, 83 ClassDecl, BoxingMethod); 84 return Builder.CreateBitCast(result.getScalarVal(), 85 ConvertType(E->getType())); 86 } 87 88 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 89 const ObjCMethodDecl *MethodWithObjects) { 90 ASTContext &Context = CGM.getContext(); 91 const ObjCDictionaryLiteral *DLE = 0; 92 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 93 if (!ALE) 94 DLE = cast<ObjCDictionaryLiteral>(E); 95 96 // Compute the type of the array we're initializing. 97 uint64_t NumElements = 98 ALE ? ALE->getNumElements() : DLE->getNumElements(); 99 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 100 NumElements); 101 QualType ElementType = Context.getObjCIdType().withConst(); 102 QualType ElementArrayType 103 = Context.getConstantArrayType(ElementType, APNumElements, 104 ArrayType::Normal, /*IndexTypeQuals=*/0); 105 106 // Allocate the temporary array(s). 107 llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects"); 108 llvm::Value *Keys = 0; 109 if (DLE) 110 Keys = CreateMemTemp(ElementArrayType, "keys"); 111 112 // Perform the actual initialialization of the array(s). 113 for (uint64_t i = 0; i < NumElements; i++) { 114 if (ALE) { 115 // Emit the initializer. 116 const Expr *Rhs = ALE->getElement(i); 117 LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i), 118 ElementType, 119 Context.getTypeAlignInChars(Rhs->getType()), 120 Context); 121 EmitScalarInit(Rhs, /*D=*/0, LV, /*capturedByInit=*/false); 122 } else { 123 // Emit the key initializer. 124 const Expr *Key = DLE->getKeyValueElement(i).Key; 125 LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i), 126 ElementType, 127 Context.getTypeAlignInChars(Key->getType()), 128 Context); 129 EmitScalarInit(Key, /*D=*/0, KeyLV, /*capturedByInit=*/false); 130 131 // Emit the value initializer. 132 const Expr *Value = DLE->getKeyValueElement(i).Value; 133 LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i), 134 ElementType, 135 Context.getTypeAlignInChars(Value->getType()), 136 Context); 137 EmitScalarInit(Value, /*D=*/0, ValueLV, /*capturedByInit=*/false); 138 } 139 } 140 141 // Generate the argument list. 142 CallArgList Args; 143 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 144 const ParmVarDecl *argDecl = *PI++; 145 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 146 Args.add(RValue::get(Objects), ArgQT); 147 if (DLE) { 148 argDecl = *PI++; 149 ArgQT = argDecl->getType().getUnqualifiedType(); 150 Args.add(RValue::get(Keys), ArgQT); 151 } 152 argDecl = *PI; 153 ArgQT = argDecl->getType().getUnqualifiedType(); 154 llvm::Value *Count = 155 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 156 Args.add(RValue::get(Count), ArgQT); 157 158 // Generate a reference to the class pointer, which will be the receiver. 159 Selector Sel = MethodWithObjects->getSelector(); 160 QualType ResultType = E->getType(); 161 const ObjCObjectPointerType *InterfacePointerType 162 = ResultType->getAsObjCInterfacePointerType(); 163 ObjCInterfaceDecl *Class 164 = InterfacePointerType->getObjectType()->getInterface(); 165 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 166 llvm::Value *Receiver = Runtime.GetClass(Builder, Class); 167 168 // Generate the message send. 169 RValue result 170 = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 171 MethodWithObjects->getResultType(), 172 Sel, 173 Receiver, Args, Class, 174 MethodWithObjects); 175 return Builder.CreateBitCast(result.getScalarVal(), 176 ConvertType(E->getType())); 177 } 178 179 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 180 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 181 } 182 183 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 184 const ObjCDictionaryLiteral *E) { 185 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 186 } 187 188 /// Emit a selector. 189 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 190 // Untyped selector. 191 // Note that this implementation allows for non-constant strings to be passed 192 // as arguments to @selector(). Currently, the only thing preventing this 193 // behaviour is the type checking in the front end. 194 return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector()); 195 } 196 197 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 198 // FIXME: This should pass the Decl not the name. 199 return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol()); 200 } 201 202 /// \brief Adjust the type of the result of an Objective-C message send 203 /// expression when the method has a related result type. 204 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 205 QualType ExpT, 206 const ObjCMethodDecl *Method, 207 RValue Result) { 208 if (!Method) 209 return Result; 210 211 if (!Method->hasRelatedResultType() || 212 CGF.getContext().hasSameType(ExpT, Method->getResultType()) || 213 !Result.isScalar()) 214 return Result; 215 216 // We have applied a related result type. Cast the rvalue appropriately. 217 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 218 CGF.ConvertType(ExpT))); 219 } 220 221 /// Decide whether to extend the lifetime of the receiver of a 222 /// returns-inner-pointer message. 223 static bool 224 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 225 switch (message->getReceiverKind()) { 226 227 // For a normal instance message, we should extend unless the 228 // receiver is loaded from a variable with precise lifetime. 229 case ObjCMessageExpr::Instance: { 230 const Expr *receiver = message->getInstanceReceiver(); 231 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 232 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 233 receiver = ice->getSubExpr()->IgnoreParens(); 234 235 // Only __strong variables. 236 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 237 return true; 238 239 // All ivars and fields have precise lifetime. 240 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 241 return false; 242 243 // Otherwise, check for variables. 244 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 245 if (!declRef) return true; 246 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 247 if (!var) return true; 248 249 // All variables have precise lifetime except local variables with 250 // automatic storage duration that aren't specially marked. 251 return (var->hasLocalStorage() && 252 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 253 } 254 255 case ObjCMessageExpr::Class: 256 case ObjCMessageExpr::SuperClass: 257 // It's never necessary for class objects. 258 return false; 259 260 case ObjCMessageExpr::SuperInstance: 261 // We generally assume that 'self' lives throughout a method call. 262 return false; 263 } 264 265 llvm_unreachable("invalid receiver kind"); 266 } 267 268 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 269 ReturnValueSlot Return) { 270 // Only the lookup mechanism and first two arguments of the method 271 // implementation vary between runtimes. We can get the receiver and 272 // arguments in generic code. 273 274 bool isDelegateInit = E->isDelegateInitCall(); 275 276 const ObjCMethodDecl *method = E->getMethodDecl(); 277 278 // We don't retain the receiver in delegate init calls, and this is 279 // safe because the receiver value is always loaded from 'self', 280 // which we zero out. We don't want to Block_copy block receivers, 281 // though. 282 bool retainSelf = 283 (!isDelegateInit && 284 CGM.getLangOpts().ObjCAutoRefCount && 285 method && 286 method->hasAttr<NSConsumesSelfAttr>()); 287 288 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 289 bool isSuperMessage = false; 290 bool isClassMessage = false; 291 ObjCInterfaceDecl *OID = 0; 292 // Find the receiver 293 QualType ReceiverType; 294 llvm::Value *Receiver = 0; 295 switch (E->getReceiverKind()) { 296 case ObjCMessageExpr::Instance: 297 ReceiverType = E->getInstanceReceiver()->getType(); 298 if (retainSelf) { 299 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 300 E->getInstanceReceiver()); 301 Receiver = ter.getPointer(); 302 if (ter.getInt()) retainSelf = false; 303 } else 304 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 305 break; 306 307 case ObjCMessageExpr::Class: { 308 ReceiverType = E->getClassReceiver(); 309 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 310 assert(ObjTy && "Invalid Objective-C class message send"); 311 OID = ObjTy->getInterface(); 312 assert(OID && "Invalid Objective-C class message send"); 313 Receiver = Runtime.GetClass(Builder, OID); 314 isClassMessage = true; 315 break; 316 } 317 318 case ObjCMessageExpr::SuperInstance: 319 ReceiverType = E->getSuperType(); 320 Receiver = LoadObjCSelf(); 321 isSuperMessage = true; 322 break; 323 324 case ObjCMessageExpr::SuperClass: 325 ReceiverType = E->getSuperType(); 326 Receiver = LoadObjCSelf(); 327 isSuperMessage = true; 328 isClassMessage = true; 329 break; 330 } 331 332 if (retainSelf) 333 Receiver = EmitARCRetainNonBlock(Receiver); 334 335 // In ARC, we sometimes want to "extend the lifetime" 336 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 337 // messages. 338 if (getLangOpts().ObjCAutoRefCount && method && 339 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 340 shouldExtendReceiverForInnerPointerMessage(E)) 341 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 342 343 QualType ResultType = 344 method ? method->getResultType() : E->getType(); 345 346 CallArgList Args; 347 EmitCallArgs(Args, method, E->arg_begin(), E->arg_end()); 348 349 // For delegate init calls in ARC, do an unsafe store of null into 350 // self. This represents the call taking direct ownership of that 351 // value. We have to do this after emitting the other call 352 // arguments because they might also reference self, but we don't 353 // have to worry about any of them modifying self because that would 354 // be an undefined read and write of an object in unordered 355 // expressions. 356 if (isDelegateInit) { 357 assert(getLangOpts().ObjCAutoRefCount && 358 "delegate init calls should only be marked in ARC"); 359 360 // Do an unsafe store of null into self. 361 llvm::Value *selfAddr = 362 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 363 assert(selfAddr && "no self entry for a delegate init call?"); 364 365 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 366 } 367 368 RValue result; 369 if (isSuperMessage) { 370 // super is only valid in an Objective-C method 371 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 372 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 373 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 374 E->getSelector(), 375 OMD->getClassInterface(), 376 isCategoryImpl, 377 Receiver, 378 isClassMessage, 379 Args, 380 method); 381 } else { 382 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 383 E->getSelector(), 384 Receiver, Args, OID, 385 method); 386 } 387 388 // For delegate init calls in ARC, implicitly store the result of 389 // the call back into self. This takes ownership of the value. 390 if (isDelegateInit) { 391 llvm::Value *selfAddr = 392 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 393 llvm::Value *newSelf = result.getScalarVal(); 394 395 // The delegate return type isn't necessarily a matching type; in 396 // fact, it's quite likely to be 'id'. 397 llvm::Type *selfTy = 398 cast<llvm::PointerType>(selfAddr->getType())->getElementType(); 399 newSelf = Builder.CreateBitCast(newSelf, selfTy); 400 401 Builder.CreateStore(newSelf, selfAddr); 402 } 403 404 return AdjustRelatedResultType(*this, E->getType(), method, result); 405 } 406 407 namespace { 408 struct FinishARCDealloc : EHScopeStack::Cleanup { 409 void Emit(CodeGenFunction &CGF, Flags flags) { 410 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 411 412 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 413 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 414 if (!iface->getSuperClass()) return; 415 416 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 417 418 // Call [super dealloc] if we have a superclass. 419 llvm::Value *self = CGF.LoadObjCSelf(); 420 421 CallArgList args; 422 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 423 CGF.getContext().VoidTy, 424 method->getSelector(), 425 iface, 426 isCategory, 427 self, 428 /*is class msg*/ false, 429 args, 430 method); 431 } 432 }; 433 } 434 435 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 436 /// the LLVM function and sets the other context used by 437 /// CodeGenFunction. 438 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 439 const ObjCContainerDecl *CD, 440 SourceLocation StartLoc) { 441 FunctionArgList args; 442 // Check if we should generate debug info for this method. 443 if (!OMD->hasAttr<NoDebugAttr>()) 444 maybeInitializeDebugInfo(); 445 446 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 447 448 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 449 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 450 451 args.push_back(OMD->getSelfDecl()); 452 args.push_back(OMD->getCmdDecl()); 453 454 for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(), 455 E = OMD->param_end(); PI != E; ++PI) 456 args.push_back(*PI); 457 458 CurGD = OMD; 459 460 StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc); 461 462 // In ARC, certain methods get an extra cleanup. 463 if (CGM.getLangOpts().ObjCAutoRefCount && 464 OMD->isInstanceMethod() && 465 OMD->getSelector().isUnarySelector()) { 466 const IdentifierInfo *ident = 467 OMD->getSelector().getIdentifierInfoForSlot(0); 468 if (ident->isStr("dealloc")) 469 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 470 } 471 } 472 473 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 474 LValue lvalue, QualType type); 475 476 /// Generate an Objective-C method. An Objective-C method is a C function with 477 /// its pointer, name, and types registered in the class struture. 478 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 479 StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart()); 480 EmitStmt(OMD->getBody()); 481 FinishFunction(OMD->getBodyRBrace()); 482 } 483 484 /// emitStructGetterCall - Call the runtime function to load a property 485 /// into the return value slot. 486 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 487 bool isAtomic, bool hasStrong) { 488 ASTContext &Context = CGF.getContext(); 489 490 llvm::Value *src = 491 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), 492 ivar, 0).getAddress(); 493 494 // objc_copyStruct (ReturnValue, &structIvar, 495 // sizeof (Type of Ivar), isAtomic, false); 496 CallArgList args; 497 498 llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 499 args.add(RValue::get(dest), Context.VoidPtrTy); 500 501 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 502 args.add(RValue::get(src), Context.VoidPtrTy); 503 504 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 505 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 506 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 507 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 508 509 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 510 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args, 511 FunctionType::ExtInfo(), 512 RequiredArgs::All), 513 fn, ReturnValueSlot(), args); 514 } 515 516 /// Determine whether the given architecture supports unaligned atomic 517 /// accesses. They don't have to be fast, just faster than a function 518 /// call and a mutex. 519 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 520 // FIXME: Allow unaligned atomic load/store on x86. (It is not 521 // currently supported by the backend.) 522 return 0; 523 } 524 525 /// Return the maximum size that permits atomic accesses for the given 526 /// architecture. 527 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 528 llvm::Triple::ArchType arch) { 529 // ARM has 8-byte atomic accesses, but it's not clear whether we 530 // want to rely on them here. 531 532 // In the default case, just assume that any size up to a pointer is 533 // fine given adequate alignment. 534 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 535 } 536 537 namespace { 538 class PropertyImplStrategy { 539 public: 540 enum StrategyKind { 541 /// The 'native' strategy is to use the architecture's provided 542 /// reads and writes. 543 Native, 544 545 /// Use objc_setProperty and objc_getProperty. 546 GetSetProperty, 547 548 /// Use objc_setProperty for the setter, but use expression 549 /// evaluation for the getter. 550 SetPropertyAndExpressionGet, 551 552 /// Use objc_copyStruct. 553 CopyStruct, 554 555 /// The 'expression' strategy is to emit normal assignment or 556 /// lvalue-to-rvalue expressions. 557 Expression 558 }; 559 560 StrategyKind getKind() const { return StrategyKind(Kind); } 561 562 bool hasStrongMember() const { return HasStrong; } 563 bool isAtomic() const { return IsAtomic; } 564 bool isCopy() const { return IsCopy; } 565 566 CharUnits getIvarSize() const { return IvarSize; } 567 CharUnits getIvarAlignment() const { return IvarAlignment; } 568 569 PropertyImplStrategy(CodeGenModule &CGM, 570 const ObjCPropertyImplDecl *propImpl); 571 572 private: 573 unsigned Kind : 8; 574 unsigned IsAtomic : 1; 575 unsigned IsCopy : 1; 576 unsigned HasStrong : 1; 577 578 CharUnits IvarSize; 579 CharUnits IvarAlignment; 580 }; 581 } 582 583 /// Pick an implementation strategy for the given property synthesis. 584 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 585 const ObjCPropertyImplDecl *propImpl) { 586 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 587 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 588 589 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 590 IsAtomic = prop->isAtomic(); 591 HasStrong = false; // doesn't matter here. 592 593 // Evaluate the ivar's size and alignment. 594 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 595 QualType ivarType = ivar->getType(); 596 llvm::tie(IvarSize, IvarAlignment) 597 = CGM.getContext().getTypeInfoInChars(ivarType); 598 599 // If we have a copy property, we always have to use getProperty/setProperty. 600 // TODO: we could actually use setProperty and an expression for non-atomics. 601 if (IsCopy) { 602 Kind = GetSetProperty; 603 return; 604 } 605 606 // Handle retain. 607 if (setterKind == ObjCPropertyDecl::Retain) { 608 // In GC-only, there's nothing special that needs to be done. 609 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 610 // fallthrough 611 612 // In ARC, if the property is non-atomic, use expression emission, 613 // which translates to objc_storeStrong. This isn't required, but 614 // it's slightly nicer. 615 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 616 // Using standard expression emission for the setter is only 617 // acceptable if the ivar is __strong, which won't be true if 618 // the property is annotated with __attribute__((NSObject)). 619 // TODO: falling all the way back to objc_setProperty here is 620 // just laziness, though; we could still use objc_storeStrong 621 // if we hacked it right. 622 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 623 Kind = Expression; 624 else 625 Kind = SetPropertyAndExpressionGet; 626 return; 627 628 // Otherwise, we need to at least use setProperty. However, if 629 // the property isn't atomic, we can use normal expression 630 // emission for the getter. 631 } else if (!IsAtomic) { 632 Kind = SetPropertyAndExpressionGet; 633 return; 634 635 // Otherwise, we have to use both setProperty and getProperty. 636 } else { 637 Kind = GetSetProperty; 638 return; 639 } 640 } 641 642 // If we're not atomic, just use expression accesses. 643 if (!IsAtomic) { 644 Kind = Expression; 645 return; 646 } 647 648 // Properties on bitfield ivars need to be emitted using expression 649 // accesses even if they're nominally atomic. 650 if (ivar->isBitField()) { 651 Kind = Expression; 652 return; 653 } 654 655 // GC-qualified or ARC-qualified ivars need to be emitted as 656 // expressions. This actually works out to being atomic anyway, 657 // except for ARC __strong, but that should trigger the above code. 658 if (ivarType.hasNonTrivialObjCLifetime() || 659 (CGM.getLangOpts().getGC() && 660 CGM.getContext().getObjCGCAttrKind(ivarType))) { 661 Kind = Expression; 662 return; 663 } 664 665 // Compute whether the ivar has strong members. 666 if (CGM.getLangOpts().getGC()) 667 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 668 HasStrong = recordType->getDecl()->hasObjectMember(); 669 670 // We can never access structs with object members with a native 671 // access, because we need to use write barriers. This is what 672 // objc_copyStruct is for. 673 if (HasStrong) { 674 Kind = CopyStruct; 675 return; 676 } 677 678 // Otherwise, this is target-dependent and based on the size and 679 // alignment of the ivar. 680 681 // If the size of the ivar is not a power of two, give up. We don't 682 // want to get into the business of doing compare-and-swaps. 683 if (!IvarSize.isPowerOfTwo()) { 684 Kind = CopyStruct; 685 return; 686 } 687 688 llvm::Triple::ArchType arch = 689 CGM.getContext().getTargetInfo().getTriple().getArch(); 690 691 // Most architectures require memory to fit within a single cache 692 // line, so the alignment has to be at least the size of the access. 693 // Otherwise we have to grab a lock. 694 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 695 Kind = CopyStruct; 696 return; 697 } 698 699 // If the ivar's size exceeds the architecture's maximum atomic 700 // access size, we have to use CopyStruct. 701 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 702 Kind = CopyStruct; 703 return; 704 } 705 706 // Otherwise, we can use native loads and stores. 707 Kind = Native; 708 } 709 710 /// \brief Generate an Objective-C property getter function. 711 /// 712 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 713 /// is illegal within a category. 714 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 715 const ObjCPropertyImplDecl *PID) { 716 llvm::Constant *AtomicHelperFn = 717 GenerateObjCAtomicGetterCopyHelperFunction(PID); 718 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 719 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 720 assert(OMD && "Invalid call to generate getter (empty method)"); 721 StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart()); 722 723 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 724 725 FinishFunction(); 726 } 727 728 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 729 const Expr *getter = propImpl->getGetterCXXConstructor(); 730 if (!getter) return true; 731 732 // Sema only makes only of these when the ivar has a C++ class type, 733 // so the form is pretty constrained. 734 735 // If the property has a reference type, we might just be binding a 736 // reference, in which case the result will be a gl-value. We should 737 // treat this as a non-trivial operation. 738 if (getter->isGLValue()) 739 return false; 740 741 // If we selected a trivial copy-constructor, we're okay. 742 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 743 return (construct->getConstructor()->isTrivial()); 744 745 // The constructor might require cleanups (in which case it's never 746 // trivial). 747 assert(isa<ExprWithCleanups>(getter)); 748 return false; 749 } 750 751 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 752 /// copy the ivar into the resturn slot. 753 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 754 llvm::Value *returnAddr, 755 ObjCIvarDecl *ivar, 756 llvm::Constant *AtomicHelperFn) { 757 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 758 // AtomicHelperFn); 759 CallArgList args; 760 761 // The 1st argument is the return Slot. 762 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 763 764 // The 2nd argument is the address of the ivar. 765 llvm::Value *ivarAddr = 766 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 767 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 768 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 769 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 770 771 // Third argument is the helper function. 772 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 773 774 llvm::Value *copyCppAtomicObjectFn = 775 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 776 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 777 args, 778 FunctionType::ExtInfo(), 779 RequiredArgs::All), 780 copyCppAtomicObjectFn, ReturnValueSlot(), args); 781 } 782 783 void 784 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 785 const ObjCPropertyImplDecl *propImpl, 786 const ObjCMethodDecl *GetterMethodDecl, 787 llvm::Constant *AtomicHelperFn) { 788 // If there's a non-trivial 'get' expression, we just have to emit that. 789 if (!hasTrivialGetExpr(propImpl)) { 790 if (!AtomicHelperFn) { 791 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 792 /*nrvo*/ 0); 793 EmitReturnStmt(ret); 794 } 795 else { 796 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 797 emitCPPObjectAtomicGetterCall(*this, ReturnValue, 798 ivar, AtomicHelperFn); 799 } 800 return; 801 } 802 803 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 804 QualType propType = prop->getType(); 805 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 806 807 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 808 809 // Pick an implementation strategy. 810 PropertyImplStrategy strategy(CGM, propImpl); 811 switch (strategy.getKind()) { 812 case PropertyImplStrategy::Native: { 813 // We don't need to do anything for a zero-size struct. 814 if (strategy.getIvarSize().isZero()) 815 return; 816 817 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 818 819 // Currently, all atomic accesses have to be through integer 820 // types, so there's no point in trying to pick a prettier type. 821 llvm::Type *bitcastType = 822 llvm::Type::getIntNTy(getLLVMContext(), 823 getContext().toBits(strategy.getIvarSize())); 824 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 825 826 // Perform an atomic load. This does not impose ordering constraints. 827 llvm::Value *ivarAddr = LV.getAddress(); 828 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 829 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 830 load->setAlignment(strategy.getIvarAlignment().getQuantity()); 831 load->setAtomic(llvm::Unordered); 832 833 // Store that value into the return address. Doing this with a 834 // bitcast is likely to produce some pretty ugly IR, but it's not 835 // the *most* terrible thing in the world. 836 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType)); 837 838 // Make sure we don't do an autorelease. 839 AutoreleaseResult = false; 840 return; 841 } 842 843 case PropertyImplStrategy::GetSetProperty: { 844 llvm::Value *getPropertyFn = 845 CGM.getObjCRuntime().GetPropertyGetFunction(); 846 if (!getPropertyFn) { 847 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 848 return; 849 } 850 851 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 852 // FIXME: Can't this be simpler? This might even be worse than the 853 // corresponding gcc code. 854 llvm::Value *cmd = 855 Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd"); 856 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 857 llvm::Value *ivarOffset = 858 EmitIvarOffset(classImpl->getClassInterface(), ivar); 859 860 CallArgList args; 861 args.add(RValue::get(self), getContext().getObjCIdType()); 862 args.add(RValue::get(cmd), getContext().getObjCSelType()); 863 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 864 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 865 getContext().BoolTy); 866 867 // FIXME: We shouldn't need to get the function info here, the 868 // runtime already should have computed it to build the function. 869 RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args, 870 FunctionType::ExtInfo(), 871 RequiredArgs::All), 872 getPropertyFn, ReturnValueSlot(), args); 873 874 // We need to fix the type here. Ivars with copy & retain are 875 // always objects so we don't need to worry about complex or 876 // aggregates. 877 RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(), 878 getTypes().ConvertType(getterMethod->getResultType()))); 879 880 EmitReturnOfRValue(RV, propType); 881 882 // objc_getProperty does an autorelease, so we should suppress ours. 883 AutoreleaseResult = false; 884 885 return; 886 } 887 888 case PropertyImplStrategy::CopyStruct: 889 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 890 strategy.hasStrongMember()); 891 return; 892 893 case PropertyImplStrategy::Expression: 894 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 895 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 896 897 QualType ivarType = ivar->getType(); 898 if (ivarType->isAnyComplexType()) { 899 ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(), 900 LV.isVolatileQualified()); 901 StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified()); 902 } else if (hasAggregateLLVMType(ivarType)) { 903 // The return value slot is guaranteed to not be aliased, but 904 // that's not necessarily the same as "on the stack", so 905 // we still potentially need objc_memmove_collectable. 906 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 907 } else { 908 llvm::Value *value; 909 if (propType->isReferenceType()) { 910 value = LV.getAddress(); 911 } else { 912 // We want to load and autoreleaseReturnValue ARC __weak ivars. 913 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 914 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 915 916 // Otherwise we want to do a simple load, suppressing the 917 // final autorelease. 918 } else { 919 value = EmitLoadOfLValue(LV).getScalarVal(); 920 AutoreleaseResult = false; 921 } 922 923 value = Builder.CreateBitCast(value, ConvertType(propType)); 924 value = Builder.CreateBitCast(value, 925 ConvertType(GetterMethodDecl->getResultType())); 926 } 927 928 EmitReturnOfRValue(RValue::get(value), propType); 929 } 930 return; 931 } 932 933 } 934 llvm_unreachable("bad @property implementation strategy!"); 935 } 936 937 /// emitStructSetterCall - Call the runtime function to store the value 938 /// from the first formal parameter into the given ivar. 939 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 940 ObjCIvarDecl *ivar) { 941 // objc_copyStruct (&structIvar, &Arg, 942 // sizeof (struct something), true, false); 943 CallArgList args; 944 945 // The first argument is the address of the ivar. 946 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 947 CGF.LoadObjCSelf(), ivar, 0) 948 .getAddress(); 949 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 950 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 951 952 // The second argument is the address of the parameter variable. 953 ParmVarDecl *argVar = *OMD->param_begin(); 954 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 955 VK_LValue, SourceLocation()); 956 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 957 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 958 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 959 960 // The third argument is the sizeof the type. 961 llvm::Value *size = 962 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 963 args.add(RValue::get(size), CGF.getContext().getSizeType()); 964 965 // The fourth argument is the 'isAtomic' flag. 966 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 967 968 // The fifth argument is the 'hasStrong' flag. 969 // FIXME: should this really always be false? 970 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 971 972 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 973 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 974 args, 975 FunctionType::ExtInfo(), 976 RequiredArgs::All), 977 copyStructFn, ReturnValueSlot(), args); 978 } 979 980 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 981 /// the value from the first formal parameter into the given ivar, using 982 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 983 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 984 ObjCMethodDecl *OMD, 985 ObjCIvarDecl *ivar, 986 llvm::Constant *AtomicHelperFn) { 987 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 988 // AtomicHelperFn); 989 CallArgList args; 990 991 // The first argument is the address of the ivar. 992 llvm::Value *ivarAddr = 993 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 994 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 995 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 996 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 997 998 // The second argument is the address of the parameter variable. 999 ParmVarDecl *argVar = *OMD->param_begin(); 1000 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1001 VK_LValue, SourceLocation()); 1002 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 1003 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1004 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1005 1006 // Third argument is the helper function. 1007 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1008 1009 llvm::Value *copyCppAtomicObjectFn = 1010 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1011 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1012 args, 1013 FunctionType::ExtInfo(), 1014 RequiredArgs::All), 1015 copyCppAtomicObjectFn, ReturnValueSlot(), args); 1016 1017 1018 } 1019 1020 1021 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1022 Expr *setter = PID->getSetterCXXAssignment(); 1023 if (!setter) return true; 1024 1025 // Sema only makes only of these when the ivar has a C++ class type, 1026 // so the form is pretty constrained. 1027 1028 // An operator call is trivial if the function it calls is trivial. 1029 // This also implies that there's nothing non-trivial going on with 1030 // the arguments, because operator= can only be trivial if it's a 1031 // synthesized assignment operator and therefore both parameters are 1032 // references. 1033 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1034 if (const FunctionDecl *callee 1035 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1036 if (callee->isTrivial()) 1037 return true; 1038 return false; 1039 } 1040 1041 assert(isa<ExprWithCleanups>(setter)); 1042 return false; 1043 } 1044 1045 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1046 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1047 return false; 1048 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1049 } 1050 1051 void 1052 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1053 const ObjCPropertyImplDecl *propImpl, 1054 llvm::Constant *AtomicHelperFn) { 1055 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1056 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1057 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1058 1059 // Just use the setter expression if Sema gave us one and it's 1060 // non-trivial. 1061 if (!hasTrivialSetExpr(propImpl)) { 1062 if (!AtomicHelperFn) 1063 // If non-atomic, assignment is called directly. 1064 EmitStmt(propImpl->getSetterCXXAssignment()); 1065 else 1066 // If atomic, assignment is called via a locking api. 1067 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1068 AtomicHelperFn); 1069 return; 1070 } 1071 1072 PropertyImplStrategy strategy(CGM, propImpl); 1073 switch (strategy.getKind()) { 1074 case PropertyImplStrategy::Native: { 1075 // We don't need to do anything for a zero-size struct. 1076 if (strategy.getIvarSize().isZero()) 1077 return; 1078 1079 llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()]; 1080 1081 LValue ivarLValue = 1082 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1083 llvm::Value *ivarAddr = ivarLValue.getAddress(); 1084 1085 // Currently, all atomic accesses have to be through integer 1086 // types, so there's no point in trying to pick a prettier type. 1087 llvm::Type *bitcastType = 1088 llvm::Type::getIntNTy(getLLVMContext(), 1089 getContext().toBits(strategy.getIvarSize())); 1090 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1091 1092 // Cast both arguments to the chosen operation type. 1093 argAddr = Builder.CreateBitCast(argAddr, bitcastType); 1094 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1095 1096 // This bitcast load is likely to cause some nasty IR. 1097 llvm::Value *load = Builder.CreateLoad(argAddr); 1098 1099 // Perform an atomic store. There are no memory ordering requirements. 1100 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1101 store->setAlignment(strategy.getIvarAlignment().getQuantity()); 1102 store->setAtomic(llvm::Unordered); 1103 return; 1104 } 1105 1106 case PropertyImplStrategy::GetSetProperty: 1107 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1108 1109 llvm::Value *setOptimizedPropertyFn = 0; 1110 llvm::Value *setPropertyFn = 0; 1111 if (UseOptimizedSetter(CGM)) { 1112 // 10.8 and iOS 6.0 code and GC is off 1113 setOptimizedPropertyFn = 1114 CGM.getObjCRuntime() 1115 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1116 strategy.isCopy()); 1117 if (!setOptimizedPropertyFn) { 1118 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1119 return; 1120 } 1121 } 1122 else { 1123 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1124 if (!setPropertyFn) { 1125 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1126 return; 1127 } 1128 } 1129 1130 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1131 // <is-atomic>, <is-copy>). 1132 llvm::Value *cmd = 1133 Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]); 1134 llvm::Value *self = 1135 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1136 llvm::Value *ivarOffset = 1137 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1138 llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()]; 1139 arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy); 1140 1141 CallArgList args; 1142 args.add(RValue::get(self), getContext().getObjCIdType()); 1143 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1144 if (setOptimizedPropertyFn) { 1145 args.add(RValue::get(arg), getContext().getObjCIdType()); 1146 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1147 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1148 FunctionType::ExtInfo(), 1149 RequiredArgs::All), 1150 setOptimizedPropertyFn, ReturnValueSlot(), args); 1151 } else { 1152 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1153 args.add(RValue::get(arg), getContext().getObjCIdType()); 1154 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1155 getContext().BoolTy); 1156 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1157 getContext().BoolTy); 1158 // FIXME: We shouldn't need to get the function info here, the runtime 1159 // already should have computed it to build the function. 1160 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1161 FunctionType::ExtInfo(), 1162 RequiredArgs::All), 1163 setPropertyFn, ReturnValueSlot(), args); 1164 } 1165 1166 return; 1167 } 1168 1169 case PropertyImplStrategy::CopyStruct: 1170 emitStructSetterCall(*this, setterMethod, ivar); 1171 return; 1172 1173 case PropertyImplStrategy::Expression: 1174 break; 1175 } 1176 1177 // Otherwise, fake up some ASTs and emit a normal assignment. 1178 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1179 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1180 VK_LValue, SourceLocation()); 1181 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1182 selfDecl->getType(), CK_LValueToRValue, &self, 1183 VK_RValue); 1184 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1185 SourceLocation(), &selfLoad, true, true); 1186 1187 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1188 QualType argType = argDecl->getType().getNonReferenceType(); 1189 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1190 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1191 argType.getUnqualifiedType(), CK_LValueToRValue, 1192 &arg, VK_RValue); 1193 1194 // The property type can differ from the ivar type in some situations with 1195 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1196 // The following absurdity is just to ensure well-formed IR. 1197 CastKind argCK = CK_NoOp; 1198 if (ivarRef.getType()->isObjCObjectPointerType()) { 1199 if (argLoad.getType()->isObjCObjectPointerType()) 1200 argCK = CK_BitCast; 1201 else if (argLoad.getType()->isBlockPointerType()) 1202 argCK = CK_BlockPointerToObjCPointerCast; 1203 else 1204 argCK = CK_CPointerToObjCPointerCast; 1205 } else if (ivarRef.getType()->isBlockPointerType()) { 1206 if (argLoad.getType()->isBlockPointerType()) 1207 argCK = CK_BitCast; 1208 else 1209 argCK = CK_AnyPointerToBlockPointerCast; 1210 } else if (ivarRef.getType()->isPointerType()) { 1211 argCK = CK_BitCast; 1212 } 1213 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1214 ivarRef.getType(), argCK, &argLoad, 1215 VK_RValue); 1216 Expr *finalArg = &argLoad; 1217 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1218 argLoad.getType())) 1219 finalArg = &argCast; 1220 1221 1222 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1223 ivarRef.getType(), VK_RValue, OK_Ordinary, 1224 SourceLocation(), false); 1225 EmitStmt(&assign); 1226 } 1227 1228 /// \brief Generate an Objective-C property setter function. 1229 /// 1230 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1231 /// is illegal within a category. 1232 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1233 const ObjCPropertyImplDecl *PID) { 1234 llvm::Constant *AtomicHelperFn = 1235 GenerateObjCAtomicSetterCopyHelperFunction(PID); 1236 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1237 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1238 assert(OMD && "Invalid call to generate setter (empty method)"); 1239 StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart()); 1240 1241 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1242 1243 FinishFunction(); 1244 } 1245 1246 namespace { 1247 struct DestroyIvar : EHScopeStack::Cleanup { 1248 private: 1249 llvm::Value *addr; 1250 const ObjCIvarDecl *ivar; 1251 CodeGenFunction::Destroyer *destroyer; 1252 bool useEHCleanupForArray; 1253 public: 1254 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1255 CodeGenFunction::Destroyer *destroyer, 1256 bool useEHCleanupForArray) 1257 : addr(addr), ivar(ivar), destroyer(destroyer), 1258 useEHCleanupForArray(useEHCleanupForArray) {} 1259 1260 void Emit(CodeGenFunction &CGF, Flags flags) { 1261 LValue lvalue 1262 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1263 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1264 flags.isForNormalCleanup() && useEHCleanupForArray); 1265 } 1266 }; 1267 } 1268 1269 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1270 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1271 llvm::Value *addr, 1272 QualType type) { 1273 llvm::Value *null = getNullForVariable(addr); 1274 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1275 } 1276 1277 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1278 ObjCImplementationDecl *impl) { 1279 CodeGenFunction::RunCleanupsScope scope(CGF); 1280 1281 llvm::Value *self = CGF.LoadObjCSelf(); 1282 1283 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1284 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1285 ivar; ivar = ivar->getNextIvar()) { 1286 QualType type = ivar->getType(); 1287 1288 // Check whether the ivar is a destructible type. 1289 QualType::DestructionKind dtorKind = type.isDestructedType(); 1290 if (!dtorKind) continue; 1291 1292 CodeGenFunction::Destroyer *destroyer = 0; 1293 1294 // Use a call to objc_storeStrong to destroy strong ivars, for the 1295 // general benefit of the tools. 1296 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1297 destroyer = destroyARCStrongWithStore; 1298 1299 // Otherwise use the default for the destruction kind. 1300 } else { 1301 destroyer = CGF.getDestroyer(dtorKind); 1302 } 1303 1304 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1305 1306 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1307 cleanupKind & EHCleanup); 1308 } 1309 1310 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1311 } 1312 1313 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1314 ObjCMethodDecl *MD, 1315 bool ctor) { 1316 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1317 StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart()); 1318 1319 // Emit .cxx_construct. 1320 if (ctor) { 1321 // Suppress the final autorelease in ARC. 1322 AutoreleaseResult = false; 1323 1324 SmallVector<CXXCtorInitializer *, 8> IvarInitializers; 1325 for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(), 1326 E = IMP->init_end(); B != E; ++B) { 1327 CXXCtorInitializer *IvarInit = (*B); 1328 FieldDecl *Field = IvarInit->getAnyMember(); 1329 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1330 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1331 LoadObjCSelf(), Ivar, 0); 1332 EmitAggExpr(IvarInit->getInit(), 1333 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1334 AggValueSlot::DoesNotNeedGCBarriers, 1335 AggValueSlot::IsNotAliased)); 1336 } 1337 // constructor returns 'self'. 1338 CodeGenTypes &Types = CGM.getTypes(); 1339 QualType IdTy(CGM.getContext().getObjCIdType()); 1340 llvm::Value *SelfAsId = 1341 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1342 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1343 1344 // Emit .cxx_destruct. 1345 } else { 1346 emitCXXDestructMethod(*this, IMP); 1347 } 1348 FinishFunction(); 1349 } 1350 1351 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) { 1352 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(); 1353 it++; it++; 1354 const ABIArgInfo &AI = it->info; 1355 // FIXME. Is this sufficient check? 1356 return (AI.getKind() == ABIArgInfo::Indirect); 1357 } 1358 1359 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) { 1360 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 1361 return false; 1362 if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>()) 1363 return FDTTy->getDecl()->hasObjectMember(); 1364 return false; 1365 } 1366 1367 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1368 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1369 return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self"); 1370 } 1371 1372 QualType CodeGenFunction::TypeOfSelfObject() { 1373 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1374 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1375 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1376 getContext().getCanonicalType(selfDecl->getType())); 1377 return PTy->getPointeeType(); 1378 } 1379 1380 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1381 llvm::Constant *EnumerationMutationFn = 1382 CGM.getObjCRuntime().EnumerationMutationFunction(); 1383 1384 if (!EnumerationMutationFn) { 1385 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1386 return; 1387 } 1388 1389 CGDebugInfo *DI = getDebugInfo(); 1390 if (DI) 1391 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1392 1393 // The local variable comes into scope immediately. 1394 AutoVarEmission variable = AutoVarEmission::invalid(); 1395 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1396 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1397 1398 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1399 1400 // Fast enumeration state. 1401 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1402 llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1403 EmitNullInitialization(StatePtr, StateTy); 1404 1405 // Number of elements in the items array. 1406 static const unsigned NumItems = 16; 1407 1408 // Fetch the countByEnumeratingWithState:objects:count: selector. 1409 IdentifierInfo *II[] = { 1410 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1411 &CGM.getContext().Idents.get("objects"), 1412 &CGM.getContext().Idents.get("count") 1413 }; 1414 Selector FastEnumSel = 1415 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1416 1417 QualType ItemsTy = 1418 getContext().getConstantArrayType(getContext().getObjCIdType(), 1419 llvm::APInt(32, NumItems), 1420 ArrayType::Normal, 0); 1421 llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1422 1423 // Emit the collection pointer. In ARC, we do a retain. 1424 llvm::Value *Collection; 1425 if (getLangOpts().ObjCAutoRefCount) { 1426 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1427 1428 // Enter a cleanup to do the release. 1429 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1430 } else { 1431 Collection = EmitScalarExpr(S.getCollection()); 1432 } 1433 1434 // The 'continue' label needs to appear within the cleanup for the 1435 // collection object. 1436 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1437 1438 // Send it our message: 1439 CallArgList Args; 1440 1441 // The first argument is a temporary of the enumeration-state type. 1442 Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy)); 1443 1444 // The second argument is a temporary array with space for NumItems 1445 // pointers. We'll actually be loading elements from the array 1446 // pointer written into the control state; this buffer is so that 1447 // collections that *aren't* backed by arrays can still queue up 1448 // batches of elements. 1449 Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy)); 1450 1451 // The third argument is the capacity of that temporary array. 1452 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1453 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1454 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1455 1456 // Start the enumeration. 1457 RValue CountRV = 1458 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1459 getContext().UnsignedLongTy, 1460 FastEnumSel, 1461 Collection, Args); 1462 1463 // The initial number of objects that were returned in the buffer. 1464 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1465 1466 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1467 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1468 1469 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1470 1471 // If the limit pointer was zero to begin with, the collection is 1472 // empty; skip all this. 1473 Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), 1474 EmptyBB, LoopInitBB); 1475 1476 // Otherwise, initialize the loop. 1477 EmitBlock(LoopInitBB); 1478 1479 // Save the initial mutations value. This is the value at an 1480 // address that was written into the state object by 1481 // countByEnumeratingWithState:objects:count:. 1482 llvm::Value *StateMutationsPtrPtr = 1483 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1484 llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, 1485 "mutationsptr"); 1486 1487 llvm::Value *initialMutations = 1488 Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations"); 1489 1490 // Start looping. This is the point we return to whenever we have a 1491 // fresh, non-empty batch of objects. 1492 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1493 EmitBlock(LoopBodyBB); 1494 1495 // The current index into the buffer. 1496 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1497 index->addIncoming(zero, LoopInitBB); 1498 1499 // The current buffer size. 1500 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1501 count->addIncoming(initialBufferLimit, LoopInitBB); 1502 1503 // Check whether the mutations value has changed from where it was 1504 // at start. StateMutationsPtr should actually be invariant between 1505 // refreshes. 1506 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1507 llvm::Value *currentMutations 1508 = Builder.CreateLoad(StateMutationsPtr, "statemutations"); 1509 1510 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1511 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1512 1513 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1514 WasNotMutatedBB, WasMutatedBB); 1515 1516 // If so, call the enumeration-mutation function. 1517 EmitBlock(WasMutatedBB); 1518 llvm::Value *V = 1519 Builder.CreateBitCast(Collection, 1520 ConvertType(getContext().getObjCIdType())); 1521 CallArgList Args2; 1522 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1523 // FIXME: We shouldn't need to get the function info here, the runtime already 1524 // should have computed it to build the function. 1525 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2, 1526 FunctionType::ExtInfo(), 1527 RequiredArgs::All), 1528 EnumerationMutationFn, ReturnValueSlot(), Args2); 1529 1530 // Otherwise, or if the mutation function returns, just continue. 1531 EmitBlock(WasNotMutatedBB); 1532 1533 // Initialize the element variable. 1534 RunCleanupsScope elementVariableScope(*this); 1535 bool elementIsVariable; 1536 LValue elementLValue; 1537 QualType elementType; 1538 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1539 // Initialize the variable, in case it's a __block variable or something. 1540 EmitAutoVarInit(variable); 1541 1542 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1543 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1544 VK_LValue, SourceLocation()); 1545 elementLValue = EmitLValue(&tempDRE); 1546 elementType = D->getType(); 1547 elementIsVariable = true; 1548 1549 if (D->isARCPseudoStrong()) 1550 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1551 } else { 1552 elementLValue = LValue(); // suppress warning 1553 elementType = cast<Expr>(S.getElement())->getType(); 1554 elementIsVariable = false; 1555 } 1556 llvm::Type *convertedElementType = ConvertType(elementType); 1557 1558 // Fetch the buffer out of the enumeration state. 1559 // TODO: this pointer should actually be invariant between 1560 // refreshes, which would help us do certain loop optimizations. 1561 llvm::Value *StateItemsPtr = 1562 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1563 llvm::Value *EnumStateItems = 1564 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1565 1566 // Fetch the value at the current index from the buffer. 1567 llvm::Value *CurrentItemPtr = 1568 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1569 llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr); 1570 1571 // Cast that value to the right type. 1572 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1573 "currentitem"); 1574 1575 // Make sure we have an l-value. Yes, this gets evaluated every 1576 // time through the loop. 1577 if (!elementIsVariable) { 1578 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1579 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1580 } else { 1581 EmitScalarInit(CurrentItem, elementLValue); 1582 } 1583 1584 // If we do have an element variable, this assignment is the end of 1585 // its initialization. 1586 if (elementIsVariable) 1587 EmitAutoVarCleanups(variable); 1588 1589 // Perform the loop body, setting up break and continue labels. 1590 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1591 { 1592 RunCleanupsScope Scope(*this); 1593 EmitStmt(S.getBody()); 1594 } 1595 BreakContinueStack.pop_back(); 1596 1597 // Destroy the element variable now. 1598 elementVariableScope.ForceCleanup(); 1599 1600 // Check whether there are more elements. 1601 EmitBlock(AfterBody.getBlock()); 1602 1603 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1604 1605 // First we check in the local buffer. 1606 llvm::Value *indexPlusOne 1607 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1608 1609 // If we haven't overrun the buffer yet, we can continue. 1610 Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count), 1611 LoopBodyBB, FetchMoreBB); 1612 1613 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1614 count->addIncoming(count, AfterBody.getBlock()); 1615 1616 // Otherwise, we have to fetch more elements. 1617 EmitBlock(FetchMoreBB); 1618 1619 CountRV = 1620 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1621 getContext().UnsignedLongTy, 1622 FastEnumSel, 1623 Collection, Args); 1624 1625 // If we got a zero count, we're done. 1626 llvm::Value *refetchCount = CountRV.getScalarVal(); 1627 1628 // (note that the message send might split FetchMoreBB) 1629 index->addIncoming(zero, Builder.GetInsertBlock()); 1630 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1631 1632 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1633 EmptyBB, LoopBodyBB); 1634 1635 // No more elements. 1636 EmitBlock(EmptyBB); 1637 1638 if (!elementIsVariable) { 1639 // If the element was not a declaration, set it to be null. 1640 1641 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1642 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1643 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1644 } 1645 1646 if (DI) 1647 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1648 1649 // Leave the cleanup we entered in ARC. 1650 if (getLangOpts().ObjCAutoRefCount) 1651 PopCleanupBlock(); 1652 1653 EmitBlock(LoopEnd.getBlock()); 1654 } 1655 1656 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1657 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1658 } 1659 1660 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1661 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1662 } 1663 1664 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1665 const ObjCAtSynchronizedStmt &S) { 1666 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1667 } 1668 1669 /// Produce the code for a CK_ARCProduceObject. Just does a 1670 /// primitive retain. 1671 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type, 1672 llvm::Value *value) { 1673 return EmitARCRetain(type, value); 1674 } 1675 1676 namespace { 1677 struct CallObjCRelease : EHScopeStack::Cleanup { 1678 CallObjCRelease(llvm::Value *object) : object(object) {} 1679 llvm::Value *object; 1680 1681 void Emit(CodeGenFunction &CGF, Flags flags) { 1682 CGF.EmitARCRelease(object, /*precise*/ true); 1683 } 1684 }; 1685 } 1686 1687 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1688 /// release at the end of the full-expression. 1689 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1690 llvm::Value *object) { 1691 // If we're in a conditional branch, we need to make the cleanup 1692 // conditional. 1693 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1694 return object; 1695 } 1696 1697 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1698 llvm::Value *value) { 1699 return EmitARCRetainAutorelease(type, value); 1700 } 1701 1702 1703 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1704 llvm::FunctionType *type, 1705 StringRef fnName) { 1706 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1707 1708 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) { 1709 // If the target runtime doesn't naturally support ARC, emit weak 1710 // references to the runtime support library. We don't really 1711 // permit this to fail, but we need a particular relocation style. 1712 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 1713 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1714 } else if (fnName == "objc_retain" || fnName == "objc_release") { 1715 // If we have Native ARC, set nonlazybind attribute for these APIs for 1716 // performance. 1717 f->addFnAttr(llvm::Attribute::NonLazyBind); 1718 } 1719 } 1720 1721 return fn; 1722 } 1723 1724 /// Perform an operation having the signature 1725 /// i8* (i8*) 1726 /// where a null input causes a no-op and returns null. 1727 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1728 llvm::Value *value, 1729 llvm::Constant *&fn, 1730 StringRef fnName, 1731 bool isTailCall = false) { 1732 if (isa<llvm::ConstantPointerNull>(value)) return value; 1733 1734 if (!fn) { 1735 std::vector<llvm::Type*> args(1, CGF.Int8PtrTy); 1736 llvm::FunctionType *fnType = 1737 llvm::FunctionType::get(CGF.Int8PtrTy, args, false); 1738 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1739 } 1740 1741 // Cast the argument to 'id'. 1742 llvm::Type *origType = value->getType(); 1743 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1744 1745 // Call the function. 1746 llvm::CallInst *call = CGF.Builder.CreateCall(fn, value); 1747 call->setDoesNotThrow(); 1748 if (isTailCall) 1749 call->setTailCall(); 1750 1751 // Cast the result back to the original type. 1752 return CGF.Builder.CreateBitCast(call, origType); 1753 } 1754 1755 /// Perform an operation having the following signature: 1756 /// i8* (i8**) 1757 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1758 llvm::Value *addr, 1759 llvm::Constant *&fn, 1760 StringRef fnName) { 1761 if (!fn) { 1762 std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy); 1763 llvm::FunctionType *fnType = 1764 llvm::FunctionType::get(CGF.Int8PtrTy, args, false); 1765 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1766 } 1767 1768 // Cast the argument to 'id*'. 1769 llvm::Type *origType = addr->getType(); 1770 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1771 1772 // Call the function. 1773 llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr); 1774 call->setDoesNotThrow(); 1775 1776 // Cast the result back to a dereference of the original type. 1777 llvm::Value *result = call; 1778 if (origType != CGF.Int8PtrPtrTy) 1779 result = CGF.Builder.CreateBitCast(result, 1780 cast<llvm::PointerType>(origType)->getElementType()); 1781 1782 return result; 1783 } 1784 1785 /// Perform an operation having the following signature: 1786 /// i8* (i8**, i8*) 1787 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1788 llvm::Value *addr, 1789 llvm::Value *value, 1790 llvm::Constant *&fn, 1791 StringRef fnName, 1792 bool ignored) { 1793 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 1794 == value->getType()); 1795 1796 if (!fn) { 1797 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1798 1799 llvm::FunctionType *fnType 1800 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1801 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1802 } 1803 1804 llvm::Type *origType = value->getType(); 1805 1806 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1807 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1808 1809 llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value); 1810 result->setDoesNotThrow(); 1811 1812 if (ignored) return 0; 1813 1814 return CGF.Builder.CreateBitCast(result, origType); 1815 } 1816 1817 /// Perform an operation having the following signature: 1818 /// void (i8**, i8**) 1819 static void emitARCCopyOperation(CodeGenFunction &CGF, 1820 llvm::Value *dst, 1821 llvm::Value *src, 1822 llvm::Constant *&fn, 1823 StringRef fnName) { 1824 assert(dst->getType() == src->getType()); 1825 1826 if (!fn) { 1827 std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy); 1828 llvm::FunctionType *fnType 1829 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1830 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1831 } 1832 1833 dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy); 1834 src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy); 1835 1836 llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src); 1837 result->setDoesNotThrow(); 1838 } 1839 1840 /// Produce the code to do a retain. Based on the type, calls one of: 1841 /// call i8* \@objc_retain(i8* %value) 1842 /// call i8* \@objc_retainBlock(i8* %value) 1843 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1844 if (type->isBlockPointerType()) 1845 return EmitARCRetainBlock(value, /*mandatory*/ false); 1846 else 1847 return EmitARCRetainNonBlock(value); 1848 } 1849 1850 /// Retain the given object, with normal retain semantics. 1851 /// call i8* \@objc_retain(i8* %value) 1852 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1853 return emitARCValueOperation(*this, value, 1854 CGM.getARCEntrypoints().objc_retain, 1855 "objc_retain"); 1856 } 1857 1858 /// Retain the given block, with _Block_copy semantics. 1859 /// call i8* \@objc_retainBlock(i8* %value) 1860 /// 1861 /// \param mandatory - If false, emit the call with metadata 1862 /// indicating that it's okay for the optimizer to eliminate this call 1863 /// if it can prove that the block never escapes except down the stack. 1864 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1865 bool mandatory) { 1866 llvm::Value *result 1867 = emitARCValueOperation(*this, value, 1868 CGM.getARCEntrypoints().objc_retainBlock, 1869 "objc_retainBlock"); 1870 1871 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1872 // tell the optimizer that it doesn't need to do this copy if the 1873 // block doesn't escape, where being passed as an argument doesn't 1874 // count as escaping. 1875 if (!mandatory && isa<llvm::Instruction>(result)) { 1876 llvm::CallInst *call 1877 = cast<llvm::CallInst>(result->stripPointerCasts()); 1878 assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock); 1879 1880 SmallVector<llvm::Value*,1> args; 1881 call->setMetadata("clang.arc.copy_on_escape", 1882 llvm::MDNode::get(Builder.getContext(), args)); 1883 } 1884 1885 return result; 1886 } 1887 1888 /// Retain the given object which is the result of a function call. 1889 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 1890 /// 1891 /// Yes, this function name is one character away from a different 1892 /// call with completely different semantics. 1893 llvm::Value * 1894 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 1895 // Fetch the void(void) inline asm which marks that we're going to 1896 // retain the autoreleased return value. 1897 llvm::InlineAsm *&marker 1898 = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker; 1899 if (!marker) { 1900 StringRef assembly 1901 = CGM.getTargetCodeGenInfo() 1902 .getARCRetainAutoreleasedReturnValueMarker(); 1903 1904 // If we have an empty assembly string, there's nothing to do. 1905 if (assembly.empty()) { 1906 1907 // Otherwise, at -O0, build an inline asm that we're going to call 1908 // in a moment. 1909 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1910 llvm::FunctionType *type = 1911 llvm::FunctionType::get(VoidTy, /*variadic*/false); 1912 1913 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 1914 1915 // If we're at -O1 and above, we don't want to litter the code 1916 // with this marker yet, so leave a breadcrumb for the ARC 1917 // optimizer to pick up. 1918 } else { 1919 llvm::NamedMDNode *metadata = 1920 CGM.getModule().getOrInsertNamedMetadata( 1921 "clang.arc.retainAutoreleasedReturnValueMarker"); 1922 assert(metadata->getNumOperands() <= 1); 1923 if (metadata->getNumOperands() == 0) { 1924 llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly); 1925 metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string)); 1926 } 1927 } 1928 } 1929 1930 // Call the marker asm if we made one, which we do only at -O0. 1931 if (marker) Builder.CreateCall(marker); 1932 1933 return emitARCValueOperation(*this, value, 1934 CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue, 1935 "objc_retainAutoreleasedReturnValue"); 1936 } 1937 1938 /// Release the given object. 1939 /// call void \@objc_release(i8* %value) 1940 void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) { 1941 if (isa<llvm::ConstantPointerNull>(value)) return; 1942 1943 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release; 1944 if (!fn) { 1945 std::vector<llvm::Type*> args(1, Int8PtrTy); 1946 llvm::FunctionType *fnType = 1947 llvm::FunctionType::get(Builder.getVoidTy(), args, false); 1948 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 1949 } 1950 1951 // Cast the argument to 'id'. 1952 value = Builder.CreateBitCast(value, Int8PtrTy); 1953 1954 // Call objc_release. 1955 llvm::CallInst *call = Builder.CreateCall(fn, value); 1956 call->setDoesNotThrow(); 1957 1958 if (!precise) { 1959 SmallVector<llvm::Value*,1> args; 1960 call->setMetadata("clang.imprecise_release", 1961 llvm::MDNode::get(Builder.getContext(), args)); 1962 } 1963 } 1964 1965 /// Destroy a __strong variable. 1966 /// 1967 /// At -O0, emit a call to store 'null' into the address; 1968 /// instrumenting tools prefer this because the address is exposed, 1969 /// but it's relatively cumbersome to optimize. 1970 /// 1971 /// At -O1 and above, just load and call objc_release. 1972 /// 1973 /// call void \@objc_storeStrong(i8** %addr, i8* null) 1974 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr, bool precise) { 1975 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1976 llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType()); 1977 llvm::Value *null = llvm::ConstantPointerNull::get( 1978 cast<llvm::PointerType>(addrTy->getElementType())); 1979 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1980 return; 1981 } 1982 1983 llvm::Value *value = Builder.CreateLoad(addr); 1984 EmitARCRelease(value, precise); 1985 } 1986 1987 /// Store into a strong object. Always calls this: 1988 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 1989 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr, 1990 llvm::Value *value, 1991 bool ignored) { 1992 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 1993 == value->getType()); 1994 1995 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong; 1996 if (!fn) { 1997 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 1998 llvm::FunctionType *fnType 1999 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 2000 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 2001 } 2002 2003 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2004 llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy); 2005 2006 Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow(); 2007 2008 if (ignored) return 0; 2009 return value; 2010 } 2011 2012 /// Store into a strong object. Sometimes calls this: 2013 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2014 /// Other times, breaks it down into components. 2015 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2016 llvm::Value *newValue, 2017 bool ignored) { 2018 QualType type = dst.getType(); 2019 bool isBlock = type->isBlockPointerType(); 2020 2021 // Use a store barrier at -O0 unless this is a block type or the 2022 // lvalue is inadequately aligned. 2023 if (shouldUseFusedARCCalls() && 2024 !isBlock && 2025 (dst.getAlignment().isZero() || 2026 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2027 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2028 } 2029 2030 // Otherwise, split it out. 2031 2032 // Retain the new value. 2033 newValue = EmitARCRetain(type, newValue); 2034 2035 // Read the old value. 2036 llvm::Value *oldValue = EmitLoadOfScalar(dst); 2037 2038 // Store. We do this before the release so that any deallocs won't 2039 // see the old value. 2040 EmitStoreOfScalar(newValue, dst); 2041 2042 // Finally, release the old value. 2043 EmitARCRelease(oldValue, /*precise*/ false); 2044 2045 return newValue; 2046 } 2047 2048 /// Autorelease the given object. 2049 /// call i8* \@objc_autorelease(i8* %value) 2050 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2051 return emitARCValueOperation(*this, value, 2052 CGM.getARCEntrypoints().objc_autorelease, 2053 "objc_autorelease"); 2054 } 2055 2056 /// Autorelease the given object. 2057 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2058 llvm::Value * 2059 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2060 return emitARCValueOperation(*this, value, 2061 CGM.getARCEntrypoints().objc_autoreleaseReturnValue, 2062 "objc_autoreleaseReturnValue", 2063 /*isTailCall*/ true); 2064 } 2065 2066 /// Do a fused retain/autorelease of the given object. 2067 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2068 llvm::Value * 2069 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2070 return emitARCValueOperation(*this, value, 2071 CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue, 2072 "objc_retainAutoreleaseReturnValue", 2073 /*isTailCall*/ true); 2074 } 2075 2076 /// Do a fused retain/autorelease of the given object. 2077 /// call i8* \@objc_retainAutorelease(i8* %value) 2078 /// or 2079 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2080 /// call i8* \@objc_autorelease(i8* %retain) 2081 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2082 llvm::Value *value) { 2083 if (!type->isBlockPointerType()) 2084 return EmitARCRetainAutoreleaseNonBlock(value); 2085 2086 if (isa<llvm::ConstantPointerNull>(value)) return value; 2087 2088 llvm::Type *origType = value->getType(); 2089 value = Builder.CreateBitCast(value, Int8PtrTy); 2090 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2091 value = EmitARCAutorelease(value); 2092 return Builder.CreateBitCast(value, origType); 2093 } 2094 2095 /// Do a fused retain/autorelease of the given object. 2096 /// call i8* \@objc_retainAutorelease(i8* %value) 2097 llvm::Value * 2098 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2099 return emitARCValueOperation(*this, value, 2100 CGM.getARCEntrypoints().objc_retainAutorelease, 2101 "objc_retainAutorelease"); 2102 } 2103 2104 /// i8* \@objc_loadWeak(i8** %addr) 2105 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2106 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) { 2107 return emitARCLoadOperation(*this, addr, 2108 CGM.getARCEntrypoints().objc_loadWeak, 2109 "objc_loadWeak"); 2110 } 2111 2112 /// i8* \@objc_loadWeakRetained(i8** %addr) 2113 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) { 2114 return emitARCLoadOperation(*this, addr, 2115 CGM.getARCEntrypoints().objc_loadWeakRetained, 2116 "objc_loadWeakRetained"); 2117 } 2118 2119 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2120 /// Returns %value. 2121 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr, 2122 llvm::Value *value, 2123 bool ignored) { 2124 return emitARCStoreOperation(*this, addr, value, 2125 CGM.getARCEntrypoints().objc_storeWeak, 2126 "objc_storeWeak", ignored); 2127 } 2128 2129 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2130 /// Returns %value. %addr is known to not have a current weak entry. 2131 /// Essentially equivalent to: 2132 /// *addr = nil; objc_storeWeak(addr, value); 2133 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) { 2134 // If we're initializing to null, just write null to memory; no need 2135 // to get the runtime involved. But don't do this if optimization 2136 // is enabled, because accounting for this would make the optimizer 2137 // much more complicated. 2138 if (isa<llvm::ConstantPointerNull>(value) && 2139 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2140 Builder.CreateStore(value, addr); 2141 return; 2142 } 2143 2144 emitARCStoreOperation(*this, addr, value, 2145 CGM.getARCEntrypoints().objc_initWeak, 2146 "objc_initWeak", /*ignored*/ true); 2147 } 2148 2149 /// void \@objc_destroyWeak(i8** %addr) 2150 /// Essentially objc_storeWeak(addr, nil). 2151 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) { 2152 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak; 2153 if (!fn) { 2154 std::vector<llvm::Type*> args(1, Int8PtrPtrTy); 2155 llvm::FunctionType *fnType = 2156 llvm::FunctionType::get(Builder.getVoidTy(), args, false); 2157 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 2158 } 2159 2160 // Cast the argument to 'id*'. 2161 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2162 2163 llvm::CallInst *call = Builder.CreateCall(fn, addr); 2164 call->setDoesNotThrow(); 2165 } 2166 2167 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2168 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2169 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2170 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) { 2171 emitARCCopyOperation(*this, dst, src, 2172 CGM.getARCEntrypoints().objc_moveWeak, 2173 "objc_moveWeak"); 2174 } 2175 2176 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2177 /// Disregards the current value in %dest. Essentially 2178 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2179 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) { 2180 emitARCCopyOperation(*this, dst, src, 2181 CGM.getARCEntrypoints().objc_copyWeak, 2182 "objc_copyWeak"); 2183 } 2184 2185 /// Produce the code to do a objc_autoreleasepool_push. 2186 /// call i8* \@objc_autoreleasePoolPush(void) 2187 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2188 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush; 2189 if (!fn) { 2190 llvm::FunctionType *fnType = 2191 llvm::FunctionType::get(Int8PtrTy, false); 2192 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 2193 } 2194 2195 llvm::CallInst *call = Builder.CreateCall(fn); 2196 call->setDoesNotThrow(); 2197 2198 return call; 2199 } 2200 2201 /// Produce the code to do a primitive release. 2202 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2203 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2204 assert(value->getType() == Int8PtrTy); 2205 2206 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop; 2207 if (!fn) { 2208 std::vector<llvm::Type*> args(1, Int8PtrTy); 2209 llvm::FunctionType *fnType = 2210 llvm::FunctionType::get(Builder.getVoidTy(), args, false); 2211 2212 // We don't want to use a weak import here; instead we should not 2213 // fall into this path. 2214 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 2215 } 2216 2217 llvm::CallInst *call = Builder.CreateCall(fn, value); 2218 call->setDoesNotThrow(); 2219 } 2220 2221 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2222 /// Which is: [[NSAutoreleasePool alloc] init]; 2223 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2224 /// init is declared as: - (id) init; in its NSObject super class. 2225 /// 2226 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2227 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2228 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder); 2229 // [NSAutoreleasePool alloc] 2230 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2231 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2232 CallArgList Args; 2233 RValue AllocRV = 2234 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2235 getContext().getObjCIdType(), 2236 AllocSel, Receiver, Args); 2237 2238 // [Receiver init] 2239 Receiver = AllocRV.getScalarVal(); 2240 II = &CGM.getContext().Idents.get("init"); 2241 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2242 RValue InitRV = 2243 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2244 getContext().getObjCIdType(), 2245 InitSel, Receiver, Args); 2246 return InitRV.getScalarVal(); 2247 } 2248 2249 /// Produce the code to do a primitive release. 2250 /// [tmp drain]; 2251 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2252 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2253 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2254 CallArgList Args; 2255 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2256 getContext().VoidTy, DrainSel, Arg, Args); 2257 } 2258 2259 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2260 llvm::Value *addr, 2261 QualType type) { 2262 CGF.EmitARCDestroyStrong(addr, /*precise*/ true); 2263 } 2264 2265 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2266 llvm::Value *addr, 2267 QualType type) { 2268 CGF.EmitARCDestroyStrong(addr, /*precise*/ false); 2269 } 2270 2271 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2272 llvm::Value *addr, 2273 QualType type) { 2274 CGF.EmitARCDestroyWeak(addr); 2275 } 2276 2277 namespace { 2278 struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup { 2279 llvm::Value *Token; 2280 2281 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2282 2283 void Emit(CodeGenFunction &CGF, Flags flags) { 2284 CGF.EmitObjCAutoreleasePoolPop(Token); 2285 } 2286 }; 2287 struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup { 2288 llvm::Value *Token; 2289 2290 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2291 2292 void Emit(CodeGenFunction &CGF, Flags flags) { 2293 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2294 } 2295 }; 2296 } 2297 2298 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2299 if (CGM.getLangOpts().ObjCAutoRefCount) 2300 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2301 else 2302 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2303 } 2304 2305 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2306 LValue lvalue, 2307 QualType type) { 2308 switch (type.getObjCLifetime()) { 2309 case Qualifiers::OCL_None: 2310 case Qualifiers::OCL_ExplicitNone: 2311 case Qualifiers::OCL_Strong: 2312 case Qualifiers::OCL_Autoreleasing: 2313 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(), 2314 false); 2315 2316 case Qualifiers::OCL_Weak: 2317 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2318 true); 2319 } 2320 2321 llvm_unreachable("impossible lifetime!"); 2322 } 2323 2324 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2325 const Expr *e) { 2326 e = e->IgnoreParens(); 2327 QualType type = e->getType(); 2328 2329 // If we're loading retained from a __strong xvalue, we can avoid 2330 // an extra retain/release pair by zeroing out the source of this 2331 // "move" operation. 2332 if (e->isXValue() && 2333 !type.isConstQualified() && 2334 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2335 // Emit the lvalue. 2336 LValue lv = CGF.EmitLValue(e); 2337 2338 // Load the object pointer. 2339 llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal(); 2340 2341 // Set the source pointer to NULL. 2342 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2343 2344 return TryEmitResult(result, true); 2345 } 2346 2347 // As a very special optimization, in ARC++, if the l-value is the 2348 // result of a non-volatile assignment, do a simple retain of the 2349 // result of the call to objc_storeWeak instead of reloading. 2350 if (CGF.getLangOpts().CPlusPlus && 2351 !type.isVolatileQualified() && 2352 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2353 isa<BinaryOperator>(e) && 2354 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2355 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2356 2357 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2358 } 2359 2360 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2361 llvm::Value *value); 2362 2363 /// Given that the given expression is some sort of call (which does 2364 /// not return retained), emit a retain following it. 2365 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) { 2366 llvm::Value *value = CGF.EmitScalarExpr(e); 2367 return emitARCRetainAfterCall(CGF, value); 2368 } 2369 2370 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2371 llvm::Value *value) { 2372 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2373 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2374 2375 // Place the retain immediately following the call. 2376 CGF.Builder.SetInsertPoint(call->getParent(), 2377 ++llvm::BasicBlock::iterator(call)); 2378 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2379 2380 CGF.Builder.restoreIP(ip); 2381 return value; 2382 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2383 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2384 2385 // Place the retain at the beginning of the normal destination block. 2386 llvm::BasicBlock *BB = invoke->getNormalDest(); 2387 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2388 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2389 2390 CGF.Builder.restoreIP(ip); 2391 return value; 2392 2393 // Bitcasts can arise because of related-result returns. Rewrite 2394 // the operand. 2395 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2396 llvm::Value *operand = bitcast->getOperand(0); 2397 operand = emitARCRetainAfterCall(CGF, operand); 2398 bitcast->setOperand(0, operand); 2399 return bitcast; 2400 2401 // Generic fall-back case. 2402 } else { 2403 // Retain using the non-block variant: we never need to do a copy 2404 // of a block that's been returned to us. 2405 return CGF.EmitARCRetainNonBlock(value); 2406 } 2407 } 2408 2409 /// Determine whether it might be important to emit a separate 2410 /// objc_retain_block on the result of the given expression, or 2411 /// whether it's okay to just emit it in a +1 context. 2412 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2413 assert(e->getType()->isBlockPointerType()); 2414 e = e->IgnoreParens(); 2415 2416 // For future goodness, emit block expressions directly in +1 2417 // contexts if we can. 2418 if (isa<BlockExpr>(e)) 2419 return false; 2420 2421 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2422 switch (cast->getCastKind()) { 2423 // Emitting these operations in +1 contexts is goodness. 2424 case CK_LValueToRValue: 2425 case CK_ARCReclaimReturnedObject: 2426 case CK_ARCConsumeObject: 2427 case CK_ARCProduceObject: 2428 return false; 2429 2430 // These operations preserve a block type. 2431 case CK_NoOp: 2432 case CK_BitCast: 2433 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2434 2435 // These operations are known to be bad (or haven't been considered). 2436 case CK_AnyPointerToBlockPointerCast: 2437 default: 2438 return true; 2439 } 2440 } 2441 2442 return true; 2443 } 2444 2445 /// Try to emit a PseudoObjectExpr at +1. 2446 /// 2447 /// This massively duplicates emitPseudoObjectRValue. 2448 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF, 2449 const PseudoObjectExpr *E) { 2450 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2451 2452 // Find the result expression. 2453 const Expr *resultExpr = E->getResultExpr(); 2454 assert(resultExpr); 2455 TryEmitResult result; 2456 2457 for (PseudoObjectExpr::const_semantics_iterator 2458 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2459 const Expr *semantic = *i; 2460 2461 // If this semantic expression is an opaque value, bind it 2462 // to the result of its source expression. 2463 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2464 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2465 OVMA opaqueData; 2466 2467 // If this semantic is the result of the pseudo-object 2468 // expression, try to evaluate the source as +1. 2469 if (ov == resultExpr) { 2470 assert(!OVMA::shouldBindAsLValue(ov)); 2471 result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr()); 2472 opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer())); 2473 2474 // Otherwise, just bind it. 2475 } else { 2476 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2477 } 2478 opaques.push_back(opaqueData); 2479 2480 // Otherwise, if the expression is the result, evaluate it 2481 // and remember the result. 2482 } else if (semantic == resultExpr) { 2483 result = tryEmitARCRetainScalarExpr(CGF, semantic); 2484 2485 // Otherwise, evaluate the expression in an ignored context. 2486 } else { 2487 CGF.EmitIgnoredExpr(semantic); 2488 } 2489 } 2490 2491 // Unbind all the opaques now. 2492 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2493 opaques[i].unbind(CGF); 2494 2495 return result; 2496 } 2497 2498 static TryEmitResult 2499 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2500 // We should *never* see a nested full-expression here, because if 2501 // we fail to emit at +1, our caller must not retain after we close 2502 // out the full-expression. 2503 assert(!isa<ExprWithCleanups>(e)); 2504 2505 // The desired result type, if it differs from the type of the 2506 // ultimate opaque expression. 2507 llvm::Type *resultType = 0; 2508 2509 while (true) { 2510 e = e->IgnoreParens(); 2511 2512 // There's a break at the end of this if-chain; anything 2513 // that wants to keep looping has to explicitly continue. 2514 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2515 switch (ce->getCastKind()) { 2516 // No-op casts don't change the type, so we just ignore them. 2517 case CK_NoOp: 2518 e = ce->getSubExpr(); 2519 continue; 2520 2521 case CK_LValueToRValue: { 2522 TryEmitResult loadResult 2523 = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr()); 2524 if (resultType) { 2525 llvm::Value *value = loadResult.getPointer(); 2526 value = CGF.Builder.CreateBitCast(value, resultType); 2527 loadResult.setPointer(value); 2528 } 2529 return loadResult; 2530 } 2531 2532 // These casts can change the type, so remember that and 2533 // soldier on. We only need to remember the outermost such 2534 // cast, though. 2535 case CK_CPointerToObjCPointerCast: 2536 case CK_BlockPointerToObjCPointerCast: 2537 case CK_AnyPointerToBlockPointerCast: 2538 case CK_BitCast: 2539 if (!resultType) 2540 resultType = CGF.ConvertType(ce->getType()); 2541 e = ce->getSubExpr(); 2542 assert(e->getType()->hasPointerRepresentation()); 2543 continue; 2544 2545 // For consumptions, just emit the subexpression and thus elide 2546 // the retain/release pair. 2547 case CK_ARCConsumeObject: { 2548 llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr()); 2549 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2550 return TryEmitResult(result, true); 2551 } 2552 2553 // Block extends are net +0. Naively, we could just recurse on 2554 // the subexpression, but actually we need to ensure that the 2555 // value is copied as a block, so there's a little filter here. 2556 case CK_ARCExtendBlockObject: { 2557 llvm::Value *result; // will be a +0 value 2558 2559 // If we can't safely assume the sub-expression will produce a 2560 // block-copied value, emit the sub-expression at +0. 2561 if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) { 2562 result = CGF.EmitScalarExpr(ce->getSubExpr()); 2563 2564 // Otherwise, try to emit the sub-expression at +1 recursively. 2565 } else { 2566 TryEmitResult subresult 2567 = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr()); 2568 result = subresult.getPointer(); 2569 2570 // If that produced a retained value, just use that, 2571 // possibly casting down. 2572 if (subresult.getInt()) { 2573 if (resultType) 2574 result = CGF.Builder.CreateBitCast(result, resultType); 2575 return TryEmitResult(result, true); 2576 } 2577 2578 // Otherwise it's +0. 2579 } 2580 2581 // Retain the object as a block, then cast down. 2582 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2583 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2584 return TryEmitResult(result, true); 2585 } 2586 2587 // For reclaims, emit the subexpression as a retained call and 2588 // skip the consumption. 2589 case CK_ARCReclaimReturnedObject: { 2590 llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr()); 2591 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2592 return TryEmitResult(result, true); 2593 } 2594 2595 default: 2596 break; 2597 } 2598 2599 // Skip __extension__. 2600 } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 2601 if (op->getOpcode() == UO_Extension) { 2602 e = op->getSubExpr(); 2603 continue; 2604 } 2605 2606 // For calls and message sends, use the retained-call logic. 2607 // Delegate inits are a special case in that they're the only 2608 // returns-retained expression that *isn't* surrounded by 2609 // a consume. 2610 } else if (isa<CallExpr>(e) || 2611 (isa<ObjCMessageExpr>(e) && 2612 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2613 llvm::Value *result = emitARCRetainCall(CGF, e); 2614 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2615 return TryEmitResult(result, true); 2616 2617 // Look through pseudo-object expressions. 2618 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2619 TryEmitResult result 2620 = tryEmitARCRetainPseudoObject(CGF, pseudo); 2621 if (resultType) { 2622 llvm::Value *value = result.getPointer(); 2623 value = CGF.Builder.CreateBitCast(value, resultType); 2624 result.setPointer(value); 2625 } 2626 return result; 2627 } 2628 2629 // Conservatively halt the search at any other expression kind. 2630 break; 2631 } 2632 2633 // We didn't find an obvious production, so emit what we've got and 2634 // tell the caller that we didn't manage to retain. 2635 llvm::Value *result = CGF.EmitScalarExpr(e); 2636 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2637 return TryEmitResult(result, false); 2638 } 2639 2640 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2641 LValue lvalue, 2642 QualType type) { 2643 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2644 llvm::Value *value = result.getPointer(); 2645 if (!result.getInt()) 2646 value = CGF.EmitARCRetain(type, value); 2647 return value; 2648 } 2649 2650 /// EmitARCRetainScalarExpr - Semantically equivalent to 2651 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2652 /// best-effort attempt to peephole expressions that naturally produce 2653 /// retained objects. 2654 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2655 // The retain needs to happen within the full-expression. 2656 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2657 enterFullExpression(cleanups); 2658 RunCleanupsScope scope(*this); 2659 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 2660 } 2661 2662 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2663 llvm::Value *value = result.getPointer(); 2664 if (!result.getInt()) 2665 value = EmitARCRetain(e->getType(), value); 2666 return value; 2667 } 2668 2669 llvm::Value * 2670 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2671 // The retain needs to happen within the full-expression. 2672 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2673 enterFullExpression(cleanups); 2674 RunCleanupsScope scope(*this); 2675 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 2676 } 2677 2678 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2679 llvm::Value *value = result.getPointer(); 2680 if (result.getInt()) 2681 value = EmitARCAutorelease(value); 2682 else 2683 value = EmitARCRetainAutorelease(e->getType(), value); 2684 return value; 2685 } 2686 2687 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2688 llvm::Value *result; 2689 bool doRetain; 2690 2691 if (shouldEmitSeparateBlockRetain(e)) { 2692 result = EmitScalarExpr(e); 2693 doRetain = true; 2694 } else { 2695 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2696 result = subresult.getPointer(); 2697 doRetain = !subresult.getInt(); 2698 } 2699 2700 if (doRetain) 2701 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2702 return EmitObjCConsumeObject(e->getType(), result); 2703 } 2704 2705 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2706 // In ARC, retain and autorelease the expression. 2707 if (getLangOpts().ObjCAutoRefCount) { 2708 // Do so before running any cleanups for the full-expression. 2709 // EmitARCRetainAutoreleaseScalarExpr does this for us. 2710 return EmitARCRetainAutoreleaseScalarExpr(expr); 2711 } 2712 2713 // Otherwise, use the normal scalar-expression emission. The 2714 // exception machinery doesn't do anything special with the 2715 // exception like retaining it, so there's no safety associated with 2716 // only running cleanups after the throw has started, and when it 2717 // matters it tends to be substantially inferior code. 2718 return EmitScalarExpr(expr); 2719 } 2720 2721 std::pair<LValue,llvm::Value*> 2722 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 2723 bool ignored) { 2724 // Evaluate the RHS first. 2725 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 2726 llvm::Value *value = result.getPointer(); 2727 2728 bool hasImmediateRetain = result.getInt(); 2729 2730 // If we didn't emit a retained object, and the l-value is of block 2731 // type, then we need to emit the block-retain immediately in case 2732 // it invalidates the l-value. 2733 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 2734 value = EmitARCRetainBlock(value, /*mandatory*/ false); 2735 hasImmediateRetain = true; 2736 } 2737 2738 LValue lvalue = EmitLValue(e->getLHS()); 2739 2740 // If the RHS was emitted retained, expand this. 2741 if (hasImmediateRetain) { 2742 llvm::Value *oldValue = 2743 EmitLoadOfScalar(lvalue); 2744 EmitStoreOfScalar(value, lvalue); 2745 EmitARCRelease(oldValue, /*precise*/ false); 2746 } else { 2747 value = EmitARCStoreStrong(lvalue, value, ignored); 2748 } 2749 2750 return std::pair<LValue,llvm::Value*>(lvalue, value); 2751 } 2752 2753 std::pair<LValue,llvm::Value*> 2754 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 2755 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 2756 LValue lvalue = EmitLValue(e->getLHS()); 2757 2758 EmitStoreOfScalar(value, lvalue); 2759 2760 return std::pair<LValue,llvm::Value*>(lvalue, value); 2761 } 2762 2763 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 2764 const ObjCAutoreleasePoolStmt &ARPS) { 2765 const Stmt *subStmt = ARPS.getSubStmt(); 2766 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 2767 2768 CGDebugInfo *DI = getDebugInfo(); 2769 if (DI) 2770 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 2771 2772 // Keep track of the current cleanup stack depth. 2773 RunCleanupsScope Scope(*this); 2774 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 2775 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 2776 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 2777 } else { 2778 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 2779 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 2780 } 2781 2782 for (CompoundStmt::const_body_iterator I = S.body_begin(), 2783 E = S.body_end(); I != E; ++I) 2784 EmitStmt(*I); 2785 2786 if (DI) 2787 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 2788 } 2789 2790 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2791 /// make sure it survives garbage collection until this point. 2792 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 2793 // We just use an inline assembly. 2794 llvm::FunctionType *extenderType 2795 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 2796 llvm::Value *extender 2797 = llvm::InlineAsm::get(extenderType, 2798 /* assembly */ "", 2799 /* constraints */ "r", 2800 /* side effects */ true); 2801 2802 object = Builder.CreateBitCast(object, VoidPtrTy); 2803 Builder.CreateCall(extender, object)->setDoesNotThrow(); 2804 } 2805 2806 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 2807 /// non-trivial copy assignment function, produce following helper function. 2808 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 2809 /// 2810 llvm::Constant * 2811 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 2812 const ObjCPropertyImplDecl *PID) { 2813 if (!getLangOpts().CPlusPlus || 2814 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2815 return 0; 2816 QualType Ty = PID->getPropertyIvarDecl()->getType(); 2817 if (!Ty->isRecordType()) 2818 return 0; 2819 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2820 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2821 return 0; 2822 llvm::Constant * HelperFn = 0; 2823 if (hasTrivialSetExpr(PID)) 2824 return 0; 2825 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 2826 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 2827 return HelperFn; 2828 2829 ASTContext &C = getContext(); 2830 IdentifierInfo *II 2831 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 2832 FunctionDecl *FD = FunctionDecl::Create(C, 2833 C.getTranslationUnitDecl(), 2834 SourceLocation(), 2835 SourceLocation(), II, C.VoidTy, 0, 2836 SC_Static, 2837 SC_None, 2838 false, 2839 false); 2840 2841 QualType DestTy = C.getPointerType(Ty); 2842 QualType SrcTy = Ty; 2843 SrcTy.addConst(); 2844 SrcTy = C.getPointerType(SrcTy); 2845 2846 FunctionArgList args; 2847 ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy); 2848 args.push_back(&dstDecl); 2849 ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy); 2850 args.push_back(&srcDecl); 2851 2852 const CGFunctionInfo &FI = 2853 CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args, 2854 FunctionType::ExtInfo(), 2855 RequiredArgs::All); 2856 2857 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2858 2859 llvm::Function *Fn = 2860 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2861 "__assign_helper_atomic_property_", 2862 &CGM.getModule()); 2863 2864 // Initialize debug info if needed. 2865 maybeInitializeDebugInfo(); 2866 2867 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation()); 2868 2869 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 2870 VK_RValue, SourceLocation()); 2871 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 2872 VK_LValue, OK_Ordinary, SourceLocation()); 2873 2874 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2875 VK_RValue, SourceLocation()); 2876 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2877 VK_LValue, OK_Ordinary, SourceLocation()); 2878 2879 Expr *Args[2] = { &DST, &SRC }; 2880 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 2881 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 2882 Args, DestTy->getPointeeType(), 2883 VK_LValue, SourceLocation(), false); 2884 2885 EmitStmt(&TheCall); 2886 2887 FinishFunction(); 2888 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 2889 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 2890 return HelperFn; 2891 } 2892 2893 llvm::Constant * 2894 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 2895 const ObjCPropertyImplDecl *PID) { 2896 if (!getLangOpts().CPlusPlus || 2897 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2898 return 0; 2899 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2900 QualType Ty = PD->getType(); 2901 if (!Ty->isRecordType()) 2902 return 0; 2903 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2904 return 0; 2905 llvm::Constant * HelperFn = 0; 2906 2907 if (hasTrivialGetExpr(PID)) 2908 return 0; 2909 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 2910 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 2911 return HelperFn; 2912 2913 2914 ASTContext &C = getContext(); 2915 IdentifierInfo *II 2916 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 2917 FunctionDecl *FD = FunctionDecl::Create(C, 2918 C.getTranslationUnitDecl(), 2919 SourceLocation(), 2920 SourceLocation(), II, C.VoidTy, 0, 2921 SC_Static, 2922 SC_None, 2923 false, 2924 false); 2925 2926 QualType DestTy = C.getPointerType(Ty); 2927 QualType SrcTy = Ty; 2928 SrcTy.addConst(); 2929 SrcTy = C.getPointerType(SrcTy); 2930 2931 FunctionArgList args; 2932 ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy); 2933 args.push_back(&dstDecl); 2934 ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy); 2935 args.push_back(&srcDecl); 2936 2937 const CGFunctionInfo &FI = 2938 CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args, 2939 FunctionType::ExtInfo(), 2940 RequiredArgs::All); 2941 2942 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2943 2944 llvm::Function *Fn = 2945 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2946 "__copy_helper_atomic_property_", &CGM.getModule()); 2947 2948 // Initialize debug info if needed. 2949 maybeInitializeDebugInfo(); 2950 2951 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation()); 2952 2953 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2954 VK_RValue, SourceLocation()); 2955 2956 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2957 VK_LValue, OK_Ordinary, SourceLocation()); 2958 2959 CXXConstructExpr *CXXConstExpr = 2960 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 2961 2962 SmallVector<Expr*, 4> ConstructorArgs; 2963 ConstructorArgs.push_back(&SRC); 2964 CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin(); 2965 ++A; 2966 2967 for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end(); 2968 A != AEnd; ++A) 2969 ConstructorArgs.push_back(*A); 2970 2971 CXXConstructExpr *TheCXXConstructExpr = 2972 CXXConstructExpr::Create(C, Ty, SourceLocation(), 2973 CXXConstExpr->getConstructor(), 2974 CXXConstExpr->isElidable(), 2975 ConstructorArgs, 2976 CXXConstExpr->hadMultipleCandidates(), 2977 CXXConstExpr->isListInitialization(), 2978 CXXConstExpr->requiresZeroInitialization(), 2979 CXXConstExpr->getConstructionKind(), 2980 SourceRange()); 2981 2982 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 2983 VK_RValue, SourceLocation()); 2984 2985 RValue DV = EmitAnyExpr(&DstExpr); 2986 CharUnits Alignment 2987 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 2988 EmitAggExpr(TheCXXConstructExpr, 2989 AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(), 2990 AggValueSlot::IsDestructed, 2991 AggValueSlot::DoesNotNeedGCBarriers, 2992 AggValueSlot::IsNotAliased)); 2993 2994 FinishFunction(); 2995 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 2996 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 2997 return HelperFn; 2998 } 2999 3000 llvm::Value * 3001 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3002 // Get selectors for retain/autorelease. 3003 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3004 Selector CopySelector = 3005 getContext().Selectors.getNullarySelector(CopyID); 3006 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3007 Selector AutoreleaseSelector = 3008 getContext().Selectors.getNullarySelector(AutoreleaseID); 3009 3010 // Emit calls to retain/autorelease. 3011 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3012 llvm::Value *Val = Block; 3013 RValue Result; 3014 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3015 Ty, CopySelector, 3016 Val, CallArgList(), 0, 0); 3017 Val = Result.getScalarVal(); 3018 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3019 Ty, AutoreleaseSelector, 3020 Val, CallArgList(), 0, 0); 3021 Val = Result.getScalarVal(); 3022 return Val; 3023 } 3024 3025 3026 CGObjCRuntime::~CGObjCRuntime() {} 3027