1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/InlineAsm.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
30 static TryEmitResult
31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
32 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
33                                       QualType ET,
34                                       const ObjCMethodDecl *Method,
35                                       RValue Result);
36 
37 /// Given the address of a variable of pointer type, find the correct
38 /// null to store into it.
39 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
40   llvm::Type *type =
41     cast<llvm::PointerType>(addr->getType())->getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString());
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
57 ///
58 llvm::Value *
59 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
60   // Generate the correct selector for this literal's concrete type.
61   const Expr *SubExpr = E->getSubExpr();
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   assert(BoxingMethod && "BoxingMethod is null");
65   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
66   Selector Sel = BoxingMethod->getSelector();
67 
68   // Generate a reference to the class pointer, which will be the receiver.
69   // Assumes that the method was introduced in the class that should be
70   // messaged (avoids pulling it out of the result type).
71   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
72   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
73   llvm::Value *Receiver = Runtime.GetClass(Builder, ClassDecl);
74 
75   const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
76   QualType ArgQT = argDecl->getType().getUnqualifiedType();
77   RValue RV = EmitAnyExpr(SubExpr);
78   CallArgList Args;
79   Args.add(RV, ArgQT);
80 
81   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
82                                               BoxingMethod->getResultType(), Sel, Receiver, Args,
83                                               ClassDecl, BoxingMethod);
84   return Builder.CreateBitCast(result.getScalarVal(),
85                                ConvertType(E->getType()));
86 }
87 
88 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
89                                     const ObjCMethodDecl *MethodWithObjects) {
90   ASTContext &Context = CGM.getContext();
91   const ObjCDictionaryLiteral *DLE = 0;
92   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
93   if (!ALE)
94     DLE = cast<ObjCDictionaryLiteral>(E);
95 
96   // Compute the type of the array we're initializing.
97   uint64_t NumElements =
98     ALE ? ALE->getNumElements() : DLE->getNumElements();
99   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
100                             NumElements);
101   QualType ElementType = Context.getObjCIdType().withConst();
102   QualType ElementArrayType
103     = Context.getConstantArrayType(ElementType, APNumElements,
104                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
105 
106   // Allocate the temporary array(s).
107   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
108   llvm::Value *Keys = 0;
109   if (DLE)
110     Keys = CreateMemTemp(ElementArrayType, "keys");
111 
112   // Perform the actual initialialization of the array(s).
113   for (uint64_t i = 0; i < NumElements; i++) {
114     if (ALE) {
115       // Emit the initializer.
116       const Expr *Rhs = ALE->getElement(i);
117       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
118                                    ElementType,
119                                    Context.getTypeAlignInChars(Rhs->getType()),
120                                    Context);
121       EmitScalarInit(Rhs, /*D=*/0, LV, /*capturedByInit=*/false);
122     } else {
123       // Emit the key initializer.
124       const Expr *Key = DLE->getKeyValueElement(i).Key;
125       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
126                                       ElementType,
127                                     Context.getTypeAlignInChars(Key->getType()),
128                                       Context);
129       EmitScalarInit(Key, /*D=*/0, KeyLV, /*capturedByInit=*/false);
130 
131       // Emit the value initializer.
132       const Expr *Value = DLE->getKeyValueElement(i).Value;
133       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
134                                         ElementType,
135                                   Context.getTypeAlignInChars(Value->getType()),
136                                         Context);
137       EmitScalarInit(Value, /*D=*/0, ValueLV, /*capturedByInit=*/false);
138     }
139   }
140 
141   // Generate the argument list.
142   CallArgList Args;
143   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
144   const ParmVarDecl *argDecl = *PI++;
145   QualType ArgQT = argDecl->getType().getUnqualifiedType();
146   Args.add(RValue::get(Objects), ArgQT);
147   if (DLE) {
148     argDecl = *PI++;
149     ArgQT = argDecl->getType().getUnqualifiedType();
150     Args.add(RValue::get(Keys), ArgQT);
151   }
152   argDecl = *PI;
153   ArgQT = argDecl->getType().getUnqualifiedType();
154   llvm::Value *Count =
155     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
156   Args.add(RValue::get(Count), ArgQT);
157 
158   // Generate a reference to the class pointer, which will be the receiver.
159   Selector Sel = MethodWithObjects->getSelector();
160   QualType ResultType = E->getType();
161   const ObjCObjectPointerType *InterfacePointerType
162     = ResultType->getAsObjCInterfacePointerType();
163   ObjCInterfaceDecl *Class
164     = InterfacePointerType->getObjectType()->getInterface();
165   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
166   llvm::Value *Receiver = Runtime.GetClass(Builder, Class);
167 
168   // Generate the message send.
169   RValue result
170     = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
171                                   MethodWithObjects->getResultType(),
172                                   Sel,
173                                   Receiver, Args, Class,
174                                   MethodWithObjects);
175   return Builder.CreateBitCast(result.getScalarVal(),
176                                ConvertType(E->getType()));
177 }
178 
179 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
180   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
181 }
182 
183 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
184                                             const ObjCDictionaryLiteral *E) {
185   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
186 }
187 
188 /// Emit a selector.
189 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
190   // Untyped selector.
191   // Note that this implementation allows for non-constant strings to be passed
192   // as arguments to @selector().  Currently, the only thing preventing this
193   // behaviour is the type checking in the front end.
194   return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector());
195 }
196 
197 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
198   // FIXME: This should pass the Decl not the name.
199   return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol());
200 }
201 
202 /// \brief Adjust the type of the result of an Objective-C message send
203 /// expression when the method has a related result type.
204 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
205                                       QualType ExpT,
206                                       const ObjCMethodDecl *Method,
207                                       RValue Result) {
208   if (!Method)
209     return Result;
210 
211   if (!Method->hasRelatedResultType() ||
212       CGF.getContext().hasSameType(ExpT, Method->getResultType()) ||
213       !Result.isScalar())
214     return Result;
215 
216   // We have applied a related result type. Cast the rvalue appropriately.
217   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
218                                                CGF.ConvertType(ExpT)));
219 }
220 
221 /// Decide whether to extend the lifetime of the receiver of a
222 /// returns-inner-pointer message.
223 static bool
224 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
225   switch (message->getReceiverKind()) {
226 
227   // For a normal instance message, we should extend unless the
228   // receiver is loaded from a variable with precise lifetime.
229   case ObjCMessageExpr::Instance: {
230     const Expr *receiver = message->getInstanceReceiver();
231     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
232     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
233     receiver = ice->getSubExpr()->IgnoreParens();
234 
235     // Only __strong variables.
236     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
237       return true;
238 
239     // All ivars and fields have precise lifetime.
240     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
241       return false;
242 
243     // Otherwise, check for variables.
244     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
245     if (!declRef) return true;
246     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
247     if (!var) return true;
248 
249     // All variables have precise lifetime except local variables with
250     // automatic storage duration that aren't specially marked.
251     return (var->hasLocalStorage() &&
252             !var->hasAttr<ObjCPreciseLifetimeAttr>());
253   }
254 
255   case ObjCMessageExpr::Class:
256   case ObjCMessageExpr::SuperClass:
257     // It's never necessary for class objects.
258     return false;
259 
260   case ObjCMessageExpr::SuperInstance:
261     // We generally assume that 'self' lives throughout a method call.
262     return false;
263   }
264 
265   llvm_unreachable("invalid receiver kind");
266 }
267 
268 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
269                                             ReturnValueSlot Return) {
270   // Only the lookup mechanism and first two arguments of the method
271   // implementation vary between runtimes.  We can get the receiver and
272   // arguments in generic code.
273 
274   bool isDelegateInit = E->isDelegateInitCall();
275 
276   const ObjCMethodDecl *method = E->getMethodDecl();
277 
278   // We don't retain the receiver in delegate init calls, and this is
279   // safe because the receiver value is always loaded from 'self',
280   // which we zero out.  We don't want to Block_copy block receivers,
281   // though.
282   bool retainSelf =
283     (!isDelegateInit &&
284      CGM.getLangOpts().ObjCAutoRefCount &&
285      method &&
286      method->hasAttr<NSConsumesSelfAttr>());
287 
288   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
289   bool isSuperMessage = false;
290   bool isClassMessage = false;
291   ObjCInterfaceDecl *OID = 0;
292   // Find the receiver
293   QualType ReceiverType;
294   llvm::Value *Receiver = 0;
295   switch (E->getReceiverKind()) {
296   case ObjCMessageExpr::Instance:
297     ReceiverType = E->getInstanceReceiver()->getType();
298     if (retainSelf) {
299       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
300                                                    E->getInstanceReceiver());
301       Receiver = ter.getPointer();
302       if (ter.getInt()) retainSelf = false;
303     } else
304       Receiver = EmitScalarExpr(E->getInstanceReceiver());
305     break;
306 
307   case ObjCMessageExpr::Class: {
308     ReceiverType = E->getClassReceiver();
309     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
310     assert(ObjTy && "Invalid Objective-C class message send");
311     OID = ObjTy->getInterface();
312     assert(OID && "Invalid Objective-C class message send");
313     Receiver = Runtime.GetClass(Builder, OID);
314     isClassMessage = true;
315     break;
316   }
317 
318   case ObjCMessageExpr::SuperInstance:
319     ReceiverType = E->getSuperType();
320     Receiver = LoadObjCSelf();
321     isSuperMessage = true;
322     break;
323 
324   case ObjCMessageExpr::SuperClass:
325     ReceiverType = E->getSuperType();
326     Receiver = LoadObjCSelf();
327     isSuperMessage = true;
328     isClassMessage = true;
329     break;
330   }
331 
332   if (retainSelf)
333     Receiver = EmitARCRetainNonBlock(Receiver);
334 
335   // In ARC, we sometimes want to "extend the lifetime"
336   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
337   // messages.
338   if (getLangOpts().ObjCAutoRefCount && method &&
339       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
340       shouldExtendReceiverForInnerPointerMessage(E))
341     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
342 
343   QualType ResultType =
344     method ? method->getResultType() : E->getType();
345 
346   CallArgList Args;
347   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
348 
349   // For delegate init calls in ARC, do an unsafe store of null into
350   // self.  This represents the call taking direct ownership of that
351   // value.  We have to do this after emitting the other call
352   // arguments because they might also reference self, but we don't
353   // have to worry about any of them modifying self because that would
354   // be an undefined read and write of an object in unordered
355   // expressions.
356   if (isDelegateInit) {
357     assert(getLangOpts().ObjCAutoRefCount &&
358            "delegate init calls should only be marked in ARC");
359 
360     // Do an unsafe store of null into self.
361     llvm::Value *selfAddr =
362       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
363     assert(selfAddr && "no self entry for a delegate init call?");
364 
365     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
366   }
367 
368   RValue result;
369   if (isSuperMessage) {
370     // super is only valid in an Objective-C method
371     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
372     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
373     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
374                                               E->getSelector(),
375                                               OMD->getClassInterface(),
376                                               isCategoryImpl,
377                                               Receiver,
378                                               isClassMessage,
379                                               Args,
380                                               method);
381   } else {
382     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
383                                          E->getSelector(),
384                                          Receiver, Args, OID,
385                                          method);
386   }
387 
388   // For delegate init calls in ARC, implicitly store the result of
389   // the call back into self.  This takes ownership of the value.
390   if (isDelegateInit) {
391     llvm::Value *selfAddr =
392       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
393     llvm::Value *newSelf = result.getScalarVal();
394 
395     // The delegate return type isn't necessarily a matching type; in
396     // fact, it's quite likely to be 'id'.
397     llvm::Type *selfTy =
398       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
399     newSelf = Builder.CreateBitCast(newSelf, selfTy);
400 
401     Builder.CreateStore(newSelf, selfAddr);
402   }
403 
404   return AdjustRelatedResultType(*this, E->getType(), method, result);
405 }
406 
407 namespace {
408 struct FinishARCDealloc : EHScopeStack::Cleanup {
409   void Emit(CodeGenFunction &CGF, Flags flags) {
410     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
411 
412     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
413     const ObjCInterfaceDecl *iface = impl->getClassInterface();
414     if (!iface->getSuperClass()) return;
415 
416     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
417 
418     // Call [super dealloc] if we have a superclass.
419     llvm::Value *self = CGF.LoadObjCSelf();
420 
421     CallArgList args;
422     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
423                                                       CGF.getContext().VoidTy,
424                                                       method->getSelector(),
425                                                       iface,
426                                                       isCategory,
427                                                       self,
428                                                       /*is class msg*/ false,
429                                                       args,
430                                                       method);
431   }
432 };
433 }
434 
435 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
436 /// the LLVM function and sets the other context used by
437 /// CodeGenFunction.
438 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
439                                       const ObjCContainerDecl *CD,
440                                       SourceLocation StartLoc) {
441   FunctionArgList args;
442   // Check if we should generate debug info for this method.
443   if (!OMD->hasAttr<NoDebugAttr>())
444     maybeInitializeDebugInfo();
445 
446   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
447 
448   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
449   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
450 
451   args.push_back(OMD->getSelfDecl());
452   args.push_back(OMD->getCmdDecl());
453 
454   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
455          E = OMD->param_end(); PI != E; ++PI)
456     args.push_back(*PI);
457 
458   CurGD = OMD;
459 
460   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
461 
462   // In ARC, certain methods get an extra cleanup.
463   if (CGM.getLangOpts().ObjCAutoRefCount &&
464       OMD->isInstanceMethod() &&
465       OMD->getSelector().isUnarySelector()) {
466     const IdentifierInfo *ident =
467       OMD->getSelector().getIdentifierInfoForSlot(0);
468     if (ident->isStr("dealloc"))
469       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
470   }
471 }
472 
473 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
474                                               LValue lvalue, QualType type);
475 
476 /// Generate an Objective-C method.  An Objective-C method is a C function with
477 /// its pointer, name, and types registered in the class struture.
478 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
479   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
480   EmitStmt(OMD->getBody());
481   FinishFunction(OMD->getBodyRBrace());
482 }
483 
484 /// emitStructGetterCall - Call the runtime function to load a property
485 /// into the return value slot.
486 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
487                                  bool isAtomic, bool hasStrong) {
488   ASTContext &Context = CGF.getContext();
489 
490   llvm::Value *src =
491     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
492                           ivar, 0).getAddress();
493 
494   // objc_copyStruct (ReturnValue, &structIvar,
495   //                  sizeof (Type of Ivar), isAtomic, false);
496   CallArgList args;
497 
498   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
499   args.add(RValue::get(dest), Context.VoidPtrTy);
500 
501   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
502   args.add(RValue::get(src), Context.VoidPtrTy);
503 
504   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
505   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
506   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
507   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
508 
509   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
510   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
511                                                       FunctionType::ExtInfo(),
512                                                       RequiredArgs::All),
513                fn, ReturnValueSlot(), args);
514 }
515 
516 /// Determine whether the given architecture supports unaligned atomic
517 /// accesses.  They don't have to be fast, just faster than a function
518 /// call and a mutex.
519 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
520   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
521   // currently supported by the backend.)
522   return 0;
523 }
524 
525 /// Return the maximum size that permits atomic accesses for the given
526 /// architecture.
527 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
528                                         llvm::Triple::ArchType arch) {
529   // ARM has 8-byte atomic accesses, but it's not clear whether we
530   // want to rely on them here.
531 
532   // In the default case, just assume that any size up to a pointer is
533   // fine given adequate alignment.
534   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
535 }
536 
537 namespace {
538   class PropertyImplStrategy {
539   public:
540     enum StrategyKind {
541       /// The 'native' strategy is to use the architecture's provided
542       /// reads and writes.
543       Native,
544 
545       /// Use objc_setProperty and objc_getProperty.
546       GetSetProperty,
547 
548       /// Use objc_setProperty for the setter, but use expression
549       /// evaluation for the getter.
550       SetPropertyAndExpressionGet,
551 
552       /// Use objc_copyStruct.
553       CopyStruct,
554 
555       /// The 'expression' strategy is to emit normal assignment or
556       /// lvalue-to-rvalue expressions.
557       Expression
558     };
559 
560     StrategyKind getKind() const { return StrategyKind(Kind); }
561 
562     bool hasStrongMember() const { return HasStrong; }
563     bool isAtomic() const { return IsAtomic; }
564     bool isCopy() const { return IsCopy; }
565 
566     CharUnits getIvarSize() const { return IvarSize; }
567     CharUnits getIvarAlignment() const { return IvarAlignment; }
568 
569     PropertyImplStrategy(CodeGenModule &CGM,
570                          const ObjCPropertyImplDecl *propImpl);
571 
572   private:
573     unsigned Kind : 8;
574     unsigned IsAtomic : 1;
575     unsigned IsCopy : 1;
576     unsigned HasStrong : 1;
577 
578     CharUnits IvarSize;
579     CharUnits IvarAlignment;
580   };
581 }
582 
583 /// Pick an implementation strategy for the given property synthesis.
584 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
585                                      const ObjCPropertyImplDecl *propImpl) {
586   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
587   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
588 
589   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
590   IsAtomic = prop->isAtomic();
591   HasStrong = false; // doesn't matter here.
592 
593   // Evaluate the ivar's size and alignment.
594   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
595   QualType ivarType = ivar->getType();
596   llvm::tie(IvarSize, IvarAlignment)
597     = CGM.getContext().getTypeInfoInChars(ivarType);
598 
599   // If we have a copy property, we always have to use getProperty/setProperty.
600   // TODO: we could actually use setProperty and an expression for non-atomics.
601   if (IsCopy) {
602     Kind = GetSetProperty;
603     return;
604   }
605 
606   // Handle retain.
607   if (setterKind == ObjCPropertyDecl::Retain) {
608     // In GC-only, there's nothing special that needs to be done.
609     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
610       // fallthrough
611 
612     // In ARC, if the property is non-atomic, use expression emission,
613     // which translates to objc_storeStrong.  This isn't required, but
614     // it's slightly nicer.
615     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
616       // Using standard expression emission for the setter is only
617       // acceptable if the ivar is __strong, which won't be true if
618       // the property is annotated with __attribute__((NSObject)).
619       // TODO: falling all the way back to objc_setProperty here is
620       // just laziness, though;  we could still use objc_storeStrong
621       // if we hacked it right.
622       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
623         Kind = Expression;
624       else
625         Kind = SetPropertyAndExpressionGet;
626       return;
627 
628     // Otherwise, we need to at least use setProperty.  However, if
629     // the property isn't atomic, we can use normal expression
630     // emission for the getter.
631     } else if (!IsAtomic) {
632       Kind = SetPropertyAndExpressionGet;
633       return;
634 
635     // Otherwise, we have to use both setProperty and getProperty.
636     } else {
637       Kind = GetSetProperty;
638       return;
639     }
640   }
641 
642   // If we're not atomic, just use expression accesses.
643   if (!IsAtomic) {
644     Kind = Expression;
645     return;
646   }
647 
648   // Properties on bitfield ivars need to be emitted using expression
649   // accesses even if they're nominally atomic.
650   if (ivar->isBitField()) {
651     Kind = Expression;
652     return;
653   }
654 
655   // GC-qualified or ARC-qualified ivars need to be emitted as
656   // expressions.  This actually works out to being atomic anyway,
657   // except for ARC __strong, but that should trigger the above code.
658   if (ivarType.hasNonTrivialObjCLifetime() ||
659       (CGM.getLangOpts().getGC() &&
660        CGM.getContext().getObjCGCAttrKind(ivarType))) {
661     Kind = Expression;
662     return;
663   }
664 
665   // Compute whether the ivar has strong members.
666   if (CGM.getLangOpts().getGC())
667     if (const RecordType *recordType = ivarType->getAs<RecordType>())
668       HasStrong = recordType->getDecl()->hasObjectMember();
669 
670   // We can never access structs with object members with a native
671   // access, because we need to use write barriers.  This is what
672   // objc_copyStruct is for.
673   if (HasStrong) {
674     Kind = CopyStruct;
675     return;
676   }
677 
678   // Otherwise, this is target-dependent and based on the size and
679   // alignment of the ivar.
680 
681   // If the size of the ivar is not a power of two, give up.  We don't
682   // want to get into the business of doing compare-and-swaps.
683   if (!IvarSize.isPowerOfTwo()) {
684     Kind = CopyStruct;
685     return;
686   }
687 
688   llvm::Triple::ArchType arch =
689     CGM.getContext().getTargetInfo().getTriple().getArch();
690 
691   // Most architectures require memory to fit within a single cache
692   // line, so the alignment has to be at least the size of the access.
693   // Otherwise we have to grab a lock.
694   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
695     Kind = CopyStruct;
696     return;
697   }
698 
699   // If the ivar's size exceeds the architecture's maximum atomic
700   // access size, we have to use CopyStruct.
701   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
702     Kind = CopyStruct;
703     return;
704   }
705 
706   // Otherwise, we can use native loads and stores.
707   Kind = Native;
708 }
709 
710 /// \brief Generate an Objective-C property getter function.
711 ///
712 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
713 /// is illegal within a category.
714 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
715                                          const ObjCPropertyImplDecl *PID) {
716   llvm::Constant *AtomicHelperFn =
717     GenerateObjCAtomicGetterCopyHelperFunction(PID);
718   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
719   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
720   assert(OMD && "Invalid call to generate getter (empty method)");
721   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
722 
723   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
724 
725   FinishFunction();
726 }
727 
728 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
729   const Expr *getter = propImpl->getGetterCXXConstructor();
730   if (!getter) return true;
731 
732   // Sema only makes only of these when the ivar has a C++ class type,
733   // so the form is pretty constrained.
734 
735   // If the property has a reference type, we might just be binding a
736   // reference, in which case the result will be a gl-value.  We should
737   // treat this as a non-trivial operation.
738   if (getter->isGLValue())
739     return false;
740 
741   // If we selected a trivial copy-constructor, we're okay.
742   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
743     return (construct->getConstructor()->isTrivial());
744 
745   // The constructor might require cleanups (in which case it's never
746   // trivial).
747   assert(isa<ExprWithCleanups>(getter));
748   return false;
749 }
750 
751 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
752 /// copy the ivar into the resturn slot.
753 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
754                                           llvm::Value *returnAddr,
755                                           ObjCIvarDecl *ivar,
756                                           llvm::Constant *AtomicHelperFn) {
757   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
758   //                           AtomicHelperFn);
759   CallArgList args;
760 
761   // The 1st argument is the return Slot.
762   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
763 
764   // The 2nd argument is the address of the ivar.
765   llvm::Value *ivarAddr =
766   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
767                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
768   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
769   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
770 
771   // Third argument is the helper function.
772   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
773 
774   llvm::Value *copyCppAtomicObjectFn =
775     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
776   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
777                                                       args,
778                                                       FunctionType::ExtInfo(),
779                                                       RequiredArgs::All),
780                copyCppAtomicObjectFn, ReturnValueSlot(), args);
781 }
782 
783 void
784 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
785                                         const ObjCPropertyImplDecl *propImpl,
786                                         const ObjCMethodDecl *GetterMethodDecl,
787                                         llvm::Constant *AtomicHelperFn) {
788   // If there's a non-trivial 'get' expression, we just have to emit that.
789   if (!hasTrivialGetExpr(propImpl)) {
790     if (!AtomicHelperFn) {
791       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
792                      /*nrvo*/ 0);
793       EmitReturnStmt(ret);
794     }
795     else {
796       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
797       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
798                                     ivar, AtomicHelperFn);
799     }
800     return;
801   }
802 
803   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
804   QualType propType = prop->getType();
805   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
806 
807   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
808 
809   // Pick an implementation strategy.
810   PropertyImplStrategy strategy(CGM, propImpl);
811   switch (strategy.getKind()) {
812   case PropertyImplStrategy::Native: {
813     // We don't need to do anything for a zero-size struct.
814     if (strategy.getIvarSize().isZero())
815       return;
816 
817     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
818 
819     // Currently, all atomic accesses have to be through integer
820     // types, so there's no point in trying to pick a prettier type.
821     llvm::Type *bitcastType =
822       llvm::Type::getIntNTy(getLLVMContext(),
823                             getContext().toBits(strategy.getIvarSize()));
824     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
825 
826     // Perform an atomic load.  This does not impose ordering constraints.
827     llvm::Value *ivarAddr = LV.getAddress();
828     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
829     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
830     load->setAlignment(strategy.getIvarAlignment().getQuantity());
831     load->setAtomic(llvm::Unordered);
832 
833     // Store that value into the return address.  Doing this with a
834     // bitcast is likely to produce some pretty ugly IR, but it's not
835     // the *most* terrible thing in the world.
836     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
837 
838     // Make sure we don't do an autorelease.
839     AutoreleaseResult = false;
840     return;
841   }
842 
843   case PropertyImplStrategy::GetSetProperty: {
844     llvm::Value *getPropertyFn =
845       CGM.getObjCRuntime().GetPropertyGetFunction();
846     if (!getPropertyFn) {
847       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
848       return;
849     }
850 
851     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
852     // FIXME: Can't this be simpler? This might even be worse than the
853     // corresponding gcc code.
854     llvm::Value *cmd =
855       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
856     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
857     llvm::Value *ivarOffset =
858       EmitIvarOffset(classImpl->getClassInterface(), ivar);
859 
860     CallArgList args;
861     args.add(RValue::get(self), getContext().getObjCIdType());
862     args.add(RValue::get(cmd), getContext().getObjCSelType());
863     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
864     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
865              getContext().BoolTy);
866 
867     // FIXME: We shouldn't need to get the function info here, the
868     // runtime already should have computed it to build the function.
869     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
870                                                        FunctionType::ExtInfo(),
871                                                             RequiredArgs::All),
872                          getPropertyFn, ReturnValueSlot(), args);
873 
874     // We need to fix the type here. Ivars with copy & retain are
875     // always objects so we don't need to worry about complex or
876     // aggregates.
877     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
878            getTypes().ConvertType(getterMethod->getResultType())));
879 
880     EmitReturnOfRValue(RV, propType);
881 
882     // objc_getProperty does an autorelease, so we should suppress ours.
883     AutoreleaseResult = false;
884 
885     return;
886   }
887 
888   case PropertyImplStrategy::CopyStruct:
889     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
890                          strategy.hasStrongMember());
891     return;
892 
893   case PropertyImplStrategy::Expression:
894   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
895     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
896 
897     QualType ivarType = ivar->getType();
898     if (ivarType->isAnyComplexType()) {
899       ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(),
900                                                LV.isVolatileQualified());
901       StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified());
902     } else if (hasAggregateLLVMType(ivarType)) {
903       // The return value slot is guaranteed to not be aliased, but
904       // that's not necessarily the same as "on the stack", so
905       // we still potentially need objc_memmove_collectable.
906       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
907     } else {
908       llvm::Value *value;
909       if (propType->isReferenceType()) {
910         value = LV.getAddress();
911       } else {
912         // We want to load and autoreleaseReturnValue ARC __weak ivars.
913         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
914           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
915 
916         // Otherwise we want to do a simple load, suppressing the
917         // final autorelease.
918         } else {
919           value = EmitLoadOfLValue(LV).getScalarVal();
920           AutoreleaseResult = false;
921         }
922 
923         value = Builder.CreateBitCast(value, ConvertType(propType));
924         value = Builder.CreateBitCast(value,
925                   ConvertType(GetterMethodDecl->getResultType()));
926       }
927 
928       EmitReturnOfRValue(RValue::get(value), propType);
929     }
930     return;
931   }
932 
933   }
934   llvm_unreachable("bad @property implementation strategy!");
935 }
936 
937 /// emitStructSetterCall - Call the runtime function to store the value
938 /// from the first formal parameter into the given ivar.
939 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
940                                  ObjCIvarDecl *ivar) {
941   // objc_copyStruct (&structIvar, &Arg,
942   //                  sizeof (struct something), true, false);
943   CallArgList args;
944 
945   // The first argument is the address of the ivar.
946   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
947                                                 CGF.LoadObjCSelf(), ivar, 0)
948     .getAddress();
949   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
950   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
951 
952   // The second argument is the address of the parameter variable.
953   ParmVarDecl *argVar = *OMD->param_begin();
954   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
955                      VK_LValue, SourceLocation());
956   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
957   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
958   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
959 
960   // The third argument is the sizeof the type.
961   llvm::Value *size =
962     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
963   args.add(RValue::get(size), CGF.getContext().getSizeType());
964 
965   // The fourth argument is the 'isAtomic' flag.
966   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
967 
968   // The fifth argument is the 'hasStrong' flag.
969   // FIXME: should this really always be false?
970   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
971 
972   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
973   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
974                                                       args,
975                                                       FunctionType::ExtInfo(),
976                                                       RequiredArgs::All),
977                copyStructFn, ReturnValueSlot(), args);
978 }
979 
980 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
981 /// the value from the first formal parameter into the given ivar, using
982 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
983 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
984                                           ObjCMethodDecl *OMD,
985                                           ObjCIvarDecl *ivar,
986                                           llvm::Constant *AtomicHelperFn) {
987   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
988   //                           AtomicHelperFn);
989   CallArgList args;
990 
991   // The first argument is the address of the ivar.
992   llvm::Value *ivarAddr =
993     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
994                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
995   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
996   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
997 
998   // The second argument is the address of the parameter variable.
999   ParmVarDecl *argVar = *OMD->param_begin();
1000   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1001                      VK_LValue, SourceLocation());
1002   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1003   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1004   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1005 
1006   // Third argument is the helper function.
1007   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1008 
1009   llvm::Value *copyCppAtomicObjectFn =
1010     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1011   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1012                                                       args,
1013                                                       FunctionType::ExtInfo(),
1014                                                       RequiredArgs::All),
1015                copyCppAtomicObjectFn, ReturnValueSlot(), args);
1016 
1017 
1018 }
1019 
1020 
1021 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1022   Expr *setter = PID->getSetterCXXAssignment();
1023   if (!setter) return true;
1024 
1025   // Sema only makes only of these when the ivar has a C++ class type,
1026   // so the form is pretty constrained.
1027 
1028   // An operator call is trivial if the function it calls is trivial.
1029   // This also implies that there's nothing non-trivial going on with
1030   // the arguments, because operator= can only be trivial if it's a
1031   // synthesized assignment operator and therefore both parameters are
1032   // references.
1033   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1034     if (const FunctionDecl *callee
1035           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1036       if (callee->isTrivial())
1037         return true;
1038     return false;
1039   }
1040 
1041   assert(isa<ExprWithCleanups>(setter));
1042   return false;
1043 }
1044 
1045 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1046   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1047     return false;
1048   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1049 }
1050 
1051 void
1052 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1053                                         const ObjCPropertyImplDecl *propImpl,
1054                                         llvm::Constant *AtomicHelperFn) {
1055   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1056   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1057   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1058 
1059   // Just use the setter expression if Sema gave us one and it's
1060   // non-trivial.
1061   if (!hasTrivialSetExpr(propImpl)) {
1062     if (!AtomicHelperFn)
1063       // If non-atomic, assignment is called directly.
1064       EmitStmt(propImpl->getSetterCXXAssignment());
1065     else
1066       // If atomic, assignment is called via a locking api.
1067       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1068                                     AtomicHelperFn);
1069     return;
1070   }
1071 
1072   PropertyImplStrategy strategy(CGM, propImpl);
1073   switch (strategy.getKind()) {
1074   case PropertyImplStrategy::Native: {
1075     // We don't need to do anything for a zero-size struct.
1076     if (strategy.getIvarSize().isZero())
1077       return;
1078 
1079     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1080 
1081     LValue ivarLValue =
1082       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1083     llvm::Value *ivarAddr = ivarLValue.getAddress();
1084 
1085     // Currently, all atomic accesses have to be through integer
1086     // types, so there's no point in trying to pick a prettier type.
1087     llvm::Type *bitcastType =
1088       llvm::Type::getIntNTy(getLLVMContext(),
1089                             getContext().toBits(strategy.getIvarSize()));
1090     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1091 
1092     // Cast both arguments to the chosen operation type.
1093     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1094     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1095 
1096     // This bitcast load is likely to cause some nasty IR.
1097     llvm::Value *load = Builder.CreateLoad(argAddr);
1098 
1099     // Perform an atomic store.  There are no memory ordering requirements.
1100     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1101     store->setAlignment(strategy.getIvarAlignment().getQuantity());
1102     store->setAtomic(llvm::Unordered);
1103     return;
1104   }
1105 
1106   case PropertyImplStrategy::GetSetProperty:
1107   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1108 
1109     llvm::Value *setOptimizedPropertyFn = 0;
1110     llvm::Value *setPropertyFn = 0;
1111     if (UseOptimizedSetter(CGM)) {
1112       // 10.8 and iOS 6.0 code and GC is off
1113       setOptimizedPropertyFn =
1114         CGM.getObjCRuntime()
1115            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1116                                             strategy.isCopy());
1117       if (!setOptimizedPropertyFn) {
1118         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1119         return;
1120       }
1121     }
1122     else {
1123       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1124       if (!setPropertyFn) {
1125         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1126         return;
1127       }
1128     }
1129 
1130     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1131     //                       <is-atomic>, <is-copy>).
1132     llvm::Value *cmd =
1133       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1134     llvm::Value *self =
1135       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1136     llvm::Value *ivarOffset =
1137       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1138     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1139     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1140 
1141     CallArgList args;
1142     args.add(RValue::get(self), getContext().getObjCIdType());
1143     args.add(RValue::get(cmd), getContext().getObjCSelType());
1144     if (setOptimizedPropertyFn) {
1145       args.add(RValue::get(arg), getContext().getObjCIdType());
1146       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1147       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1148                                                   FunctionType::ExtInfo(),
1149                                                   RequiredArgs::All),
1150                setOptimizedPropertyFn, ReturnValueSlot(), args);
1151     } else {
1152       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1153       args.add(RValue::get(arg), getContext().getObjCIdType());
1154       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1155                getContext().BoolTy);
1156       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1157                getContext().BoolTy);
1158       // FIXME: We shouldn't need to get the function info here, the runtime
1159       // already should have computed it to build the function.
1160       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1161                                                   FunctionType::ExtInfo(),
1162                                                   RequiredArgs::All),
1163                setPropertyFn, ReturnValueSlot(), args);
1164     }
1165 
1166     return;
1167   }
1168 
1169   case PropertyImplStrategy::CopyStruct:
1170     emitStructSetterCall(*this, setterMethod, ivar);
1171     return;
1172 
1173   case PropertyImplStrategy::Expression:
1174     break;
1175   }
1176 
1177   // Otherwise, fake up some ASTs and emit a normal assignment.
1178   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1179   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1180                    VK_LValue, SourceLocation());
1181   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1182                             selfDecl->getType(), CK_LValueToRValue, &self,
1183                             VK_RValue);
1184   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1185                           SourceLocation(), &selfLoad, true, true);
1186 
1187   ParmVarDecl *argDecl = *setterMethod->param_begin();
1188   QualType argType = argDecl->getType().getNonReferenceType();
1189   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1190   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1191                            argType.getUnqualifiedType(), CK_LValueToRValue,
1192                            &arg, VK_RValue);
1193 
1194   // The property type can differ from the ivar type in some situations with
1195   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1196   // The following absurdity is just to ensure well-formed IR.
1197   CastKind argCK = CK_NoOp;
1198   if (ivarRef.getType()->isObjCObjectPointerType()) {
1199     if (argLoad.getType()->isObjCObjectPointerType())
1200       argCK = CK_BitCast;
1201     else if (argLoad.getType()->isBlockPointerType())
1202       argCK = CK_BlockPointerToObjCPointerCast;
1203     else
1204       argCK = CK_CPointerToObjCPointerCast;
1205   } else if (ivarRef.getType()->isBlockPointerType()) {
1206      if (argLoad.getType()->isBlockPointerType())
1207       argCK = CK_BitCast;
1208     else
1209       argCK = CK_AnyPointerToBlockPointerCast;
1210   } else if (ivarRef.getType()->isPointerType()) {
1211     argCK = CK_BitCast;
1212   }
1213   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1214                            ivarRef.getType(), argCK, &argLoad,
1215                            VK_RValue);
1216   Expr *finalArg = &argLoad;
1217   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1218                                            argLoad.getType()))
1219     finalArg = &argCast;
1220 
1221 
1222   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1223                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1224                         SourceLocation(), false);
1225   EmitStmt(&assign);
1226 }
1227 
1228 /// \brief Generate an Objective-C property setter function.
1229 ///
1230 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1231 /// is illegal within a category.
1232 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1233                                          const ObjCPropertyImplDecl *PID) {
1234   llvm::Constant *AtomicHelperFn =
1235     GenerateObjCAtomicSetterCopyHelperFunction(PID);
1236   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1237   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1238   assert(OMD && "Invalid call to generate setter (empty method)");
1239   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
1240 
1241   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1242 
1243   FinishFunction();
1244 }
1245 
1246 namespace {
1247   struct DestroyIvar : EHScopeStack::Cleanup {
1248   private:
1249     llvm::Value *addr;
1250     const ObjCIvarDecl *ivar;
1251     CodeGenFunction::Destroyer *destroyer;
1252     bool useEHCleanupForArray;
1253   public:
1254     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1255                 CodeGenFunction::Destroyer *destroyer,
1256                 bool useEHCleanupForArray)
1257       : addr(addr), ivar(ivar), destroyer(destroyer),
1258         useEHCleanupForArray(useEHCleanupForArray) {}
1259 
1260     void Emit(CodeGenFunction &CGF, Flags flags) {
1261       LValue lvalue
1262         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1263       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1264                       flags.isForNormalCleanup() && useEHCleanupForArray);
1265     }
1266   };
1267 }
1268 
1269 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1270 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1271                                       llvm::Value *addr,
1272                                       QualType type) {
1273   llvm::Value *null = getNullForVariable(addr);
1274   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1275 }
1276 
1277 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1278                                   ObjCImplementationDecl *impl) {
1279   CodeGenFunction::RunCleanupsScope scope(CGF);
1280 
1281   llvm::Value *self = CGF.LoadObjCSelf();
1282 
1283   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1284   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1285        ivar; ivar = ivar->getNextIvar()) {
1286     QualType type = ivar->getType();
1287 
1288     // Check whether the ivar is a destructible type.
1289     QualType::DestructionKind dtorKind = type.isDestructedType();
1290     if (!dtorKind) continue;
1291 
1292     CodeGenFunction::Destroyer *destroyer = 0;
1293 
1294     // Use a call to objc_storeStrong to destroy strong ivars, for the
1295     // general benefit of the tools.
1296     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1297       destroyer = destroyARCStrongWithStore;
1298 
1299     // Otherwise use the default for the destruction kind.
1300     } else {
1301       destroyer = CGF.getDestroyer(dtorKind);
1302     }
1303 
1304     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1305 
1306     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1307                                          cleanupKind & EHCleanup);
1308   }
1309 
1310   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1311 }
1312 
1313 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1314                                                  ObjCMethodDecl *MD,
1315                                                  bool ctor) {
1316   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1317   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1318 
1319   // Emit .cxx_construct.
1320   if (ctor) {
1321     // Suppress the final autorelease in ARC.
1322     AutoreleaseResult = false;
1323 
1324     SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
1325     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1326            E = IMP->init_end(); B != E; ++B) {
1327       CXXCtorInitializer *IvarInit = (*B);
1328       FieldDecl *Field = IvarInit->getAnyMember();
1329       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
1330       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1331                                     LoadObjCSelf(), Ivar, 0);
1332       EmitAggExpr(IvarInit->getInit(),
1333                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1334                                           AggValueSlot::DoesNotNeedGCBarriers,
1335                                           AggValueSlot::IsNotAliased));
1336     }
1337     // constructor returns 'self'.
1338     CodeGenTypes &Types = CGM.getTypes();
1339     QualType IdTy(CGM.getContext().getObjCIdType());
1340     llvm::Value *SelfAsId =
1341       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1342     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1343 
1344   // Emit .cxx_destruct.
1345   } else {
1346     emitCXXDestructMethod(*this, IMP);
1347   }
1348   FinishFunction();
1349 }
1350 
1351 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1352   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1353   it++; it++;
1354   const ABIArgInfo &AI = it->info;
1355   // FIXME. Is this sufficient check?
1356   return (AI.getKind() == ABIArgInfo::Indirect);
1357 }
1358 
1359 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1360   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1361     return false;
1362   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1363     return FDTTy->getDecl()->hasObjectMember();
1364   return false;
1365 }
1366 
1367 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1368   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1369   return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self");
1370 }
1371 
1372 QualType CodeGenFunction::TypeOfSelfObject() {
1373   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1374   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1375   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1376     getContext().getCanonicalType(selfDecl->getType()));
1377   return PTy->getPointeeType();
1378 }
1379 
1380 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1381   llvm::Constant *EnumerationMutationFn =
1382     CGM.getObjCRuntime().EnumerationMutationFunction();
1383 
1384   if (!EnumerationMutationFn) {
1385     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1386     return;
1387   }
1388 
1389   CGDebugInfo *DI = getDebugInfo();
1390   if (DI)
1391     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1392 
1393   // The local variable comes into scope immediately.
1394   AutoVarEmission variable = AutoVarEmission::invalid();
1395   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1396     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1397 
1398   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1399 
1400   // Fast enumeration state.
1401   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1402   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1403   EmitNullInitialization(StatePtr, StateTy);
1404 
1405   // Number of elements in the items array.
1406   static const unsigned NumItems = 16;
1407 
1408   // Fetch the countByEnumeratingWithState:objects:count: selector.
1409   IdentifierInfo *II[] = {
1410     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1411     &CGM.getContext().Idents.get("objects"),
1412     &CGM.getContext().Idents.get("count")
1413   };
1414   Selector FastEnumSel =
1415     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1416 
1417   QualType ItemsTy =
1418     getContext().getConstantArrayType(getContext().getObjCIdType(),
1419                                       llvm::APInt(32, NumItems),
1420                                       ArrayType::Normal, 0);
1421   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1422 
1423   // Emit the collection pointer.  In ARC, we do a retain.
1424   llvm::Value *Collection;
1425   if (getLangOpts().ObjCAutoRefCount) {
1426     Collection = EmitARCRetainScalarExpr(S.getCollection());
1427 
1428     // Enter a cleanup to do the release.
1429     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1430   } else {
1431     Collection = EmitScalarExpr(S.getCollection());
1432   }
1433 
1434   // The 'continue' label needs to appear within the cleanup for the
1435   // collection object.
1436   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1437 
1438   // Send it our message:
1439   CallArgList Args;
1440 
1441   // The first argument is a temporary of the enumeration-state type.
1442   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1443 
1444   // The second argument is a temporary array with space for NumItems
1445   // pointers.  We'll actually be loading elements from the array
1446   // pointer written into the control state; this buffer is so that
1447   // collections that *aren't* backed by arrays can still queue up
1448   // batches of elements.
1449   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1450 
1451   // The third argument is the capacity of that temporary array.
1452   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1453   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1454   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1455 
1456   // Start the enumeration.
1457   RValue CountRV =
1458     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1459                                              getContext().UnsignedLongTy,
1460                                              FastEnumSel,
1461                                              Collection, Args);
1462 
1463   // The initial number of objects that were returned in the buffer.
1464   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1465 
1466   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1467   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1468 
1469   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1470 
1471   // If the limit pointer was zero to begin with, the collection is
1472   // empty; skip all this.
1473   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1474                        EmptyBB, LoopInitBB);
1475 
1476   // Otherwise, initialize the loop.
1477   EmitBlock(LoopInitBB);
1478 
1479   // Save the initial mutations value.  This is the value at an
1480   // address that was written into the state object by
1481   // countByEnumeratingWithState:objects:count:.
1482   llvm::Value *StateMutationsPtrPtr =
1483     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1484   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1485                                                       "mutationsptr");
1486 
1487   llvm::Value *initialMutations =
1488     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1489 
1490   // Start looping.  This is the point we return to whenever we have a
1491   // fresh, non-empty batch of objects.
1492   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1493   EmitBlock(LoopBodyBB);
1494 
1495   // The current index into the buffer.
1496   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1497   index->addIncoming(zero, LoopInitBB);
1498 
1499   // The current buffer size.
1500   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1501   count->addIncoming(initialBufferLimit, LoopInitBB);
1502 
1503   // Check whether the mutations value has changed from where it was
1504   // at start.  StateMutationsPtr should actually be invariant between
1505   // refreshes.
1506   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1507   llvm::Value *currentMutations
1508     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1509 
1510   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1511   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1512 
1513   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1514                        WasNotMutatedBB, WasMutatedBB);
1515 
1516   // If so, call the enumeration-mutation function.
1517   EmitBlock(WasMutatedBB);
1518   llvm::Value *V =
1519     Builder.CreateBitCast(Collection,
1520                           ConvertType(getContext().getObjCIdType()));
1521   CallArgList Args2;
1522   Args2.add(RValue::get(V), getContext().getObjCIdType());
1523   // FIXME: We shouldn't need to get the function info here, the runtime already
1524   // should have computed it to build the function.
1525   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1526                                                   FunctionType::ExtInfo(),
1527                                                   RequiredArgs::All),
1528            EnumerationMutationFn, ReturnValueSlot(), Args2);
1529 
1530   // Otherwise, or if the mutation function returns, just continue.
1531   EmitBlock(WasNotMutatedBB);
1532 
1533   // Initialize the element variable.
1534   RunCleanupsScope elementVariableScope(*this);
1535   bool elementIsVariable;
1536   LValue elementLValue;
1537   QualType elementType;
1538   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1539     // Initialize the variable, in case it's a __block variable or something.
1540     EmitAutoVarInit(variable);
1541 
1542     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1543     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1544                         VK_LValue, SourceLocation());
1545     elementLValue = EmitLValue(&tempDRE);
1546     elementType = D->getType();
1547     elementIsVariable = true;
1548 
1549     if (D->isARCPseudoStrong())
1550       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1551   } else {
1552     elementLValue = LValue(); // suppress warning
1553     elementType = cast<Expr>(S.getElement())->getType();
1554     elementIsVariable = false;
1555   }
1556   llvm::Type *convertedElementType = ConvertType(elementType);
1557 
1558   // Fetch the buffer out of the enumeration state.
1559   // TODO: this pointer should actually be invariant between
1560   // refreshes, which would help us do certain loop optimizations.
1561   llvm::Value *StateItemsPtr =
1562     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1563   llvm::Value *EnumStateItems =
1564     Builder.CreateLoad(StateItemsPtr, "stateitems");
1565 
1566   // Fetch the value at the current index from the buffer.
1567   llvm::Value *CurrentItemPtr =
1568     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1569   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1570 
1571   // Cast that value to the right type.
1572   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1573                                       "currentitem");
1574 
1575   // Make sure we have an l-value.  Yes, this gets evaluated every
1576   // time through the loop.
1577   if (!elementIsVariable) {
1578     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1579     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1580   } else {
1581     EmitScalarInit(CurrentItem, elementLValue);
1582   }
1583 
1584   // If we do have an element variable, this assignment is the end of
1585   // its initialization.
1586   if (elementIsVariable)
1587     EmitAutoVarCleanups(variable);
1588 
1589   // Perform the loop body, setting up break and continue labels.
1590   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1591   {
1592     RunCleanupsScope Scope(*this);
1593     EmitStmt(S.getBody());
1594   }
1595   BreakContinueStack.pop_back();
1596 
1597   // Destroy the element variable now.
1598   elementVariableScope.ForceCleanup();
1599 
1600   // Check whether there are more elements.
1601   EmitBlock(AfterBody.getBlock());
1602 
1603   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1604 
1605   // First we check in the local buffer.
1606   llvm::Value *indexPlusOne
1607     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1608 
1609   // If we haven't overrun the buffer yet, we can continue.
1610   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1611                        LoopBodyBB, FetchMoreBB);
1612 
1613   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1614   count->addIncoming(count, AfterBody.getBlock());
1615 
1616   // Otherwise, we have to fetch more elements.
1617   EmitBlock(FetchMoreBB);
1618 
1619   CountRV =
1620     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1621                                              getContext().UnsignedLongTy,
1622                                              FastEnumSel,
1623                                              Collection, Args);
1624 
1625   // If we got a zero count, we're done.
1626   llvm::Value *refetchCount = CountRV.getScalarVal();
1627 
1628   // (note that the message send might split FetchMoreBB)
1629   index->addIncoming(zero, Builder.GetInsertBlock());
1630   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1631 
1632   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1633                        EmptyBB, LoopBodyBB);
1634 
1635   // No more elements.
1636   EmitBlock(EmptyBB);
1637 
1638   if (!elementIsVariable) {
1639     // If the element was not a declaration, set it to be null.
1640 
1641     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1642     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1643     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1644   }
1645 
1646   if (DI)
1647     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1648 
1649   // Leave the cleanup we entered in ARC.
1650   if (getLangOpts().ObjCAutoRefCount)
1651     PopCleanupBlock();
1652 
1653   EmitBlock(LoopEnd.getBlock());
1654 }
1655 
1656 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1657   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1658 }
1659 
1660 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1661   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1662 }
1663 
1664 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1665                                               const ObjCAtSynchronizedStmt &S) {
1666   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1667 }
1668 
1669 /// Produce the code for a CK_ARCProduceObject.  Just does a
1670 /// primitive retain.
1671 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1672                                                     llvm::Value *value) {
1673   return EmitARCRetain(type, value);
1674 }
1675 
1676 namespace {
1677   struct CallObjCRelease : EHScopeStack::Cleanup {
1678     CallObjCRelease(llvm::Value *object) : object(object) {}
1679     llvm::Value *object;
1680 
1681     void Emit(CodeGenFunction &CGF, Flags flags) {
1682       CGF.EmitARCRelease(object, /*precise*/ true);
1683     }
1684   };
1685 }
1686 
1687 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1688 /// release at the end of the full-expression.
1689 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1690                                                     llvm::Value *object) {
1691   // If we're in a conditional branch, we need to make the cleanup
1692   // conditional.
1693   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1694   return object;
1695 }
1696 
1697 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1698                                                            llvm::Value *value) {
1699   return EmitARCRetainAutorelease(type, value);
1700 }
1701 
1702 
1703 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1704                                                 llvm::FunctionType *type,
1705                                                 StringRef fnName) {
1706   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1707 
1708   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1709     // If the target runtime doesn't naturally support ARC, emit weak
1710     // references to the runtime support library.  We don't really
1711     // permit this to fail, but we need a particular relocation style.
1712     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1713       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1714     } else if (fnName == "objc_retain" || fnName  == "objc_release") {
1715       // If we have Native ARC, set nonlazybind attribute for these APIs for
1716       // performance.
1717       f->addFnAttr(llvm::Attribute::NonLazyBind);
1718     }
1719   }
1720 
1721   return fn;
1722 }
1723 
1724 /// Perform an operation having the signature
1725 ///   i8* (i8*)
1726 /// where a null input causes a no-op and returns null.
1727 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1728                                           llvm::Value *value,
1729                                           llvm::Constant *&fn,
1730                                           StringRef fnName,
1731                                           bool isTailCall = false) {
1732   if (isa<llvm::ConstantPointerNull>(value)) return value;
1733 
1734   if (!fn) {
1735     std::vector<llvm::Type*> args(1, CGF.Int8PtrTy);
1736     llvm::FunctionType *fnType =
1737       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1738     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1739   }
1740 
1741   // Cast the argument to 'id'.
1742   llvm::Type *origType = value->getType();
1743   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1744 
1745   // Call the function.
1746   llvm::CallInst *call = CGF.Builder.CreateCall(fn, value);
1747   call->setDoesNotThrow();
1748   if (isTailCall)
1749     call->setTailCall();
1750 
1751   // Cast the result back to the original type.
1752   return CGF.Builder.CreateBitCast(call, origType);
1753 }
1754 
1755 /// Perform an operation having the following signature:
1756 ///   i8* (i8**)
1757 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1758                                          llvm::Value *addr,
1759                                          llvm::Constant *&fn,
1760                                          StringRef fnName) {
1761   if (!fn) {
1762     std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy);
1763     llvm::FunctionType *fnType =
1764       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1765     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1766   }
1767 
1768   // Cast the argument to 'id*'.
1769   llvm::Type *origType = addr->getType();
1770   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1771 
1772   // Call the function.
1773   llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr);
1774   call->setDoesNotThrow();
1775 
1776   // Cast the result back to a dereference of the original type.
1777   llvm::Value *result = call;
1778   if (origType != CGF.Int8PtrPtrTy)
1779     result = CGF.Builder.CreateBitCast(result,
1780                         cast<llvm::PointerType>(origType)->getElementType());
1781 
1782   return result;
1783 }
1784 
1785 /// Perform an operation having the following signature:
1786 ///   i8* (i8**, i8*)
1787 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1788                                           llvm::Value *addr,
1789                                           llvm::Value *value,
1790                                           llvm::Constant *&fn,
1791                                           StringRef fnName,
1792                                           bool ignored) {
1793   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1794            == value->getType());
1795 
1796   if (!fn) {
1797     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1798 
1799     llvm::FunctionType *fnType
1800       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1801     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1802   }
1803 
1804   llvm::Type *origType = value->getType();
1805 
1806   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1807   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1808 
1809   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value);
1810   result->setDoesNotThrow();
1811 
1812   if (ignored) return 0;
1813 
1814   return CGF.Builder.CreateBitCast(result, origType);
1815 }
1816 
1817 /// Perform an operation having the following signature:
1818 ///   void (i8**, i8**)
1819 static void emitARCCopyOperation(CodeGenFunction &CGF,
1820                                  llvm::Value *dst,
1821                                  llvm::Value *src,
1822                                  llvm::Constant *&fn,
1823                                  StringRef fnName) {
1824   assert(dst->getType() == src->getType());
1825 
1826   if (!fn) {
1827     std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy);
1828     llvm::FunctionType *fnType
1829       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1830     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1831   }
1832 
1833   dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy);
1834   src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy);
1835 
1836   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src);
1837   result->setDoesNotThrow();
1838 }
1839 
1840 /// Produce the code to do a retain.  Based on the type, calls one of:
1841 ///   call i8* \@objc_retain(i8* %value)
1842 ///   call i8* \@objc_retainBlock(i8* %value)
1843 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1844   if (type->isBlockPointerType())
1845     return EmitARCRetainBlock(value, /*mandatory*/ false);
1846   else
1847     return EmitARCRetainNonBlock(value);
1848 }
1849 
1850 /// Retain the given object, with normal retain semantics.
1851 ///   call i8* \@objc_retain(i8* %value)
1852 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1853   return emitARCValueOperation(*this, value,
1854                                CGM.getARCEntrypoints().objc_retain,
1855                                "objc_retain");
1856 }
1857 
1858 /// Retain the given block, with _Block_copy semantics.
1859 ///   call i8* \@objc_retainBlock(i8* %value)
1860 ///
1861 /// \param mandatory - If false, emit the call with metadata
1862 /// indicating that it's okay for the optimizer to eliminate this call
1863 /// if it can prove that the block never escapes except down the stack.
1864 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1865                                                  bool mandatory) {
1866   llvm::Value *result
1867     = emitARCValueOperation(*this, value,
1868                             CGM.getARCEntrypoints().objc_retainBlock,
1869                             "objc_retainBlock");
1870 
1871   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1872   // tell the optimizer that it doesn't need to do this copy if the
1873   // block doesn't escape, where being passed as an argument doesn't
1874   // count as escaping.
1875   if (!mandatory && isa<llvm::Instruction>(result)) {
1876     llvm::CallInst *call
1877       = cast<llvm::CallInst>(result->stripPointerCasts());
1878     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1879 
1880     SmallVector<llvm::Value*,1> args;
1881     call->setMetadata("clang.arc.copy_on_escape",
1882                       llvm::MDNode::get(Builder.getContext(), args));
1883   }
1884 
1885   return result;
1886 }
1887 
1888 /// Retain the given object which is the result of a function call.
1889 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1890 ///
1891 /// Yes, this function name is one character away from a different
1892 /// call with completely different semantics.
1893 llvm::Value *
1894 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1895   // Fetch the void(void) inline asm which marks that we're going to
1896   // retain the autoreleased return value.
1897   llvm::InlineAsm *&marker
1898     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1899   if (!marker) {
1900     StringRef assembly
1901       = CGM.getTargetCodeGenInfo()
1902            .getARCRetainAutoreleasedReturnValueMarker();
1903 
1904     // If we have an empty assembly string, there's nothing to do.
1905     if (assembly.empty()) {
1906 
1907     // Otherwise, at -O0, build an inline asm that we're going to call
1908     // in a moment.
1909     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1910       llvm::FunctionType *type =
1911         llvm::FunctionType::get(VoidTy, /*variadic*/false);
1912 
1913       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1914 
1915     // If we're at -O1 and above, we don't want to litter the code
1916     // with this marker yet, so leave a breadcrumb for the ARC
1917     // optimizer to pick up.
1918     } else {
1919       llvm::NamedMDNode *metadata =
1920         CGM.getModule().getOrInsertNamedMetadata(
1921                             "clang.arc.retainAutoreleasedReturnValueMarker");
1922       assert(metadata->getNumOperands() <= 1);
1923       if (metadata->getNumOperands() == 0) {
1924         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1925         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1926       }
1927     }
1928   }
1929 
1930   // Call the marker asm if we made one, which we do only at -O0.
1931   if (marker) Builder.CreateCall(marker);
1932 
1933   return emitARCValueOperation(*this, value,
1934                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1935                                "objc_retainAutoreleasedReturnValue");
1936 }
1937 
1938 /// Release the given object.
1939 ///   call void \@objc_release(i8* %value)
1940 void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) {
1941   if (isa<llvm::ConstantPointerNull>(value)) return;
1942 
1943   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
1944   if (!fn) {
1945     std::vector<llvm::Type*> args(1, Int8PtrTy);
1946     llvm::FunctionType *fnType =
1947       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
1948     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
1949   }
1950 
1951   // Cast the argument to 'id'.
1952   value = Builder.CreateBitCast(value, Int8PtrTy);
1953 
1954   // Call objc_release.
1955   llvm::CallInst *call = Builder.CreateCall(fn, value);
1956   call->setDoesNotThrow();
1957 
1958   if (!precise) {
1959     SmallVector<llvm::Value*,1> args;
1960     call->setMetadata("clang.imprecise_release",
1961                       llvm::MDNode::get(Builder.getContext(), args));
1962   }
1963 }
1964 
1965 /// Destroy a __strong variable.
1966 ///
1967 /// At -O0, emit a call to store 'null' into the address;
1968 /// instrumenting tools prefer this because the address is exposed,
1969 /// but it's relatively cumbersome to optimize.
1970 ///
1971 /// At -O1 and above, just load and call objc_release.
1972 ///
1973 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
1974 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr, bool precise) {
1975   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1976     llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
1977     llvm::Value *null = llvm::ConstantPointerNull::get(
1978                           cast<llvm::PointerType>(addrTy->getElementType()));
1979     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1980     return;
1981   }
1982 
1983   llvm::Value *value = Builder.CreateLoad(addr);
1984   EmitARCRelease(value, precise);
1985 }
1986 
1987 /// Store into a strong object.  Always calls this:
1988 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
1989 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
1990                                                      llvm::Value *value,
1991                                                      bool ignored) {
1992   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1993            == value->getType());
1994 
1995   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
1996   if (!fn) {
1997     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
1998     llvm::FunctionType *fnType
1999       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2000     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2001   }
2002 
2003   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2004   llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy);
2005 
2006   Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow();
2007 
2008   if (ignored) return 0;
2009   return value;
2010 }
2011 
2012 /// Store into a strong object.  Sometimes calls this:
2013 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2014 /// Other times, breaks it down into components.
2015 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2016                                                  llvm::Value *newValue,
2017                                                  bool ignored) {
2018   QualType type = dst.getType();
2019   bool isBlock = type->isBlockPointerType();
2020 
2021   // Use a store barrier at -O0 unless this is a block type or the
2022   // lvalue is inadequately aligned.
2023   if (shouldUseFusedARCCalls() &&
2024       !isBlock &&
2025       (dst.getAlignment().isZero() ||
2026        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2027     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2028   }
2029 
2030   // Otherwise, split it out.
2031 
2032   // Retain the new value.
2033   newValue = EmitARCRetain(type, newValue);
2034 
2035   // Read the old value.
2036   llvm::Value *oldValue = EmitLoadOfScalar(dst);
2037 
2038   // Store.  We do this before the release so that any deallocs won't
2039   // see the old value.
2040   EmitStoreOfScalar(newValue, dst);
2041 
2042   // Finally, release the old value.
2043   EmitARCRelease(oldValue, /*precise*/ false);
2044 
2045   return newValue;
2046 }
2047 
2048 /// Autorelease the given object.
2049 ///   call i8* \@objc_autorelease(i8* %value)
2050 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2051   return emitARCValueOperation(*this, value,
2052                                CGM.getARCEntrypoints().objc_autorelease,
2053                                "objc_autorelease");
2054 }
2055 
2056 /// Autorelease the given object.
2057 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2058 llvm::Value *
2059 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2060   return emitARCValueOperation(*this, value,
2061                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2062                                "objc_autoreleaseReturnValue",
2063                                /*isTailCall*/ true);
2064 }
2065 
2066 /// Do a fused retain/autorelease of the given object.
2067 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2068 llvm::Value *
2069 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2070   return emitARCValueOperation(*this, value,
2071                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2072                                "objc_retainAutoreleaseReturnValue",
2073                                /*isTailCall*/ true);
2074 }
2075 
2076 /// Do a fused retain/autorelease of the given object.
2077 ///   call i8* \@objc_retainAutorelease(i8* %value)
2078 /// or
2079 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2080 ///   call i8* \@objc_autorelease(i8* %retain)
2081 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2082                                                        llvm::Value *value) {
2083   if (!type->isBlockPointerType())
2084     return EmitARCRetainAutoreleaseNonBlock(value);
2085 
2086   if (isa<llvm::ConstantPointerNull>(value)) return value;
2087 
2088   llvm::Type *origType = value->getType();
2089   value = Builder.CreateBitCast(value, Int8PtrTy);
2090   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2091   value = EmitARCAutorelease(value);
2092   return Builder.CreateBitCast(value, origType);
2093 }
2094 
2095 /// Do a fused retain/autorelease of the given object.
2096 ///   call i8* \@objc_retainAutorelease(i8* %value)
2097 llvm::Value *
2098 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2099   return emitARCValueOperation(*this, value,
2100                                CGM.getARCEntrypoints().objc_retainAutorelease,
2101                                "objc_retainAutorelease");
2102 }
2103 
2104 /// i8* \@objc_loadWeak(i8** %addr)
2105 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2106 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2107   return emitARCLoadOperation(*this, addr,
2108                               CGM.getARCEntrypoints().objc_loadWeak,
2109                               "objc_loadWeak");
2110 }
2111 
2112 /// i8* \@objc_loadWeakRetained(i8** %addr)
2113 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2114   return emitARCLoadOperation(*this, addr,
2115                               CGM.getARCEntrypoints().objc_loadWeakRetained,
2116                               "objc_loadWeakRetained");
2117 }
2118 
2119 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2120 /// Returns %value.
2121 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2122                                                llvm::Value *value,
2123                                                bool ignored) {
2124   return emitARCStoreOperation(*this, addr, value,
2125                                CGM.getARCEntrypoints().objc_storeWeak,
2126                                "objc_storeWeak", ignored);
2127 }
2128 
2129 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2130 /// Returns %value.  %addr is known to not have a current weak entry.
2131 /// Essentially equivalent to:
2132 ///   *addr = nil; objc_storeWeak(addr, value);
2133 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2134   // If we're initializing to null, just write null to memory; no need
2135   // to get the runtime involved.  But don't do this if optimization
2136   // is enabled, because accounting for this would make the optimizer
2137   // much more complicated.
2138   if (isa<llvm::ConstantPointerNull>(value) &&
2139       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2140     Builder.CreateStore(value, addr);
2141     return;
2142   }
2143 
2144   emitARCStoreOperation(*this, addr, value,
2145                         CGM.getARCEntrypoints().objc_initWeak,
2146                         "objc_initWeak", /*ignored*/ true);
2147 }
2148 
2149 /// void \@objc_destroyWeak(i8** %addr)
2150 /// Essentially objc_storeWeak(addr, nil).
2151 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2152   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2153   if (!fn) {
2154     std::vector<llvm::Type*> args(1, Int8PtrPtrTy);
2155     llvm::FunctionType *fnType =
2156       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
2157     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2158   }
2159 
2160   // Cast the argument to 'id*'.
2161   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2162 
2163   llvm::CallInst *call = Builder.CreateCall(fn, addr);
2164   call->setDoesNotThrow();
2165 }
2166 
2167 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2168 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2169 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2170 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2171   emitARCCopyOperation(*this, dst, src,
2172                        CGM.getARCEntrypoints().objc_moveWeak,
2173                        "objc_moveWeak");
2174 }
2175 
2176 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2177 /// Disregards the current value in %dest.  Essentially
2178 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2179 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2180   emitARCCopyOperation(*this, dst, src,
2181                        CGM.getARCEntrypoints().objc_copyWeak,
2182                        "objc_copyWeak");
2183 }
2184 
2185 /// Produce the code to do a objc_autoreleasepool_push.
2186 ///   call i8* \@objc_autoreleasePoolPush(void)
2187 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2188   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2189   if (!fn) {
2190     llvm::FunctionType *fnType =
2191       llvm::FunctionType::get(Int8PtrTy, false);
2192     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2193   }
2194 
2195   llvm::CallInst *call = Builder.CreateCall(fn);
2196   call->setDoesNotThrow();
2197 
2198   return call;
2199 }
2200 
2201 /// Produce the code to do a primitive release.
2202 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2203 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2204   assert(value->getType() == Int8PtrTy);
2205 
2206   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2207   if (!fn) {
2208     std::vector<llvm::Type*> args(1, Int8PtrTy);
2209     llvm::FunctionType *fnType =
2210       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
2211 
2212     // We don't want to use a weak import here; instead we should not
2213     // fall into this path.
2214     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2215   }
2216 
2217   llvm::CallInst *call = Builder.CreateCall(fn, value);
2218   call->setDoesNotThrow();
2219 }
2220 
2221 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2222 /// Which is: [[NSAutoreleasePool alloc] init];
2223 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2224 /// init is declared as: - (id) init; in its NSObject super class.
2225 ///
2226 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2227   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2228   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder);
2229   // [NSAutoreleasePool alloc]
2230   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2231   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2232   CallArgList Args;
2233   RValue AllocRV =
2234     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2235                                 getContext().getObjCIdType(),
2236                                 AllocSel, Receiver, Args);
2237 
2238   // [Receiver init]
2239   Receiver = AllocRV.getScalarVal();
2240   II = &CGM.getContext().Idents.get("init");
2241   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2242   RValue InitRV =
2243     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2244                                 getContext().getObjCIdType(),
2245                                 InitSel, Receiver, Args);
2246   return InitRV.getScalarVal();
2247 }
2248 
2249 /// Produce the code to do a primitive release.
2250 /// [tmp drain];
2251 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2252   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2253   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2254   CallArgList Args;
2255   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2256                               getContext().VoidTy, DrainSel, Arg, Args);
2257 }
2258 
2259 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2260                                               llvm::Value *addr,
2261                                               QualType type) {
2262   CGF.EmitARCDestroyStrong(addr, /*precise*/ true);
2263 }
2264 
2265 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2266                                                 llvm::Value *addr,
2267                                                 QualType type) {
2268   CGF.EmitARCDestroyStrong(addr, /*precise*/ false);
2269 }
2270 
2271 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2272                                      llvm::Value *addr,
2273                                      QualType type) {
2274   CGF.EmitARCDestroyWeak(addr);
2275 }
2276 
2277 namespace {
2278   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2279     llvm::Value *Token;
2280 
2281     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2282 
2283     void Emit(CodeGenFunction &CGF, Flags flags) {
2284       CGF.EmitObjCAutoreleasePoolPop(Token);
2285     }
2286   };
2287   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2288     llvm::Value *Token;
2289 
2290     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2291 
2292     void Emit(CodeGenFunction &CGF, Flags flags) {
2293       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2294     }
2295   };
2296 }
2297 
2298 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2299   if (CGM.getLangOpts().ObjCAutoRefCount)
2300     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2301   else
2302     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2303 }
2304 
2305 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2306                                                   LValue lvalue,
2307                                                   QualType type) {
2308   switch (type.getObjCLifetime()) {
2309   case Qualifiers::OCL_None:
2310   case Qualifiers::OCL_ExplicitNone:
2311   case Qualifiers::OCL_Strong:
2312   case Qualifiers::OCL_Autoreleasing:
2313     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
2314                          false);
2315 
2316   case Qualifiers::OCL_Weak:
2317     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2318                          true);
2319   }
2320 
2321   llvm_unreachable("impossible lifetime!");
2322 }
2323 
2324 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2325                                                   const Expr *e) {
2326   e = e->IgnoreParens();
2327   QualType type = e->getType();
2328 
2329   // If we're loading retained from a __strong xvalue, we can avoid
2330   // an extra retain/release pair by zeroing out the source of this
2331   // "move" operation.
2332   if (e->isXValue() &&
2333       !type.isConstQualified() &&
2334       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2335     // Emit the lvalue.
2336     LValue lv = CGF.EmitLValue(e);
2337 
2338     // Load the object pointer.
2339     llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
2340 
2341     // Set the source pointer to NULL.
2342     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2343 
2344     return TryEmitResult(result, true);
2345   }
2346 
2347   // As a very special optimization, in ARC++, if the l-value is the
2348   // result of a non-volatile assignment, do a simple retain of the
2349   // result of the call to objc_storeWeak instead of reloading.
2350   if (CGF.getLangOpts().CPlusPlus &&
2351       !type.isVolatileQualified() &&
2352       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2353       isa<BinaryOperator>(e) &&
2354       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2355     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2356 
2357   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2358 }
2359 
2360 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2361                                            llvm::Value *value);
2362 
2363 /// Given that the given expression is some sort of call (which does
2364 /// not return retained), emit a retain following it.
2365 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2366   llvm::Value *value = CGF.EmitScalarExpr(e);
2367   return emitARCRetainAfterCall(CGF, value);
2368 }
2369 
2370 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2371                                            llvm::Value *value) {
2372   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2373     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2374 
2375     // Place the retain immediately following the call.
2376     CGF.Builder.SetInsertPoint(call->getParent(),
2377                                ++llvm::BasicBlock::iterator(call));
2378     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2379 
2380     CGF.Builder.restoreIP(ip);
2381     return value;
2382   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2383     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2384 
2385     // Place the retain at the beginning of the normal destination block.
2386     llvm::BasicBlock *BB = invoke->getNormalDest();
2387     CGF.Builder.SetInsertPoint(BB, BB->begin());
2388     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2389 
2390     CGF.Builder.restoreIP(ip);
2391     return value;
2392 
2393   // Bitcasts can arise because of related-result returns.  Rewrite
2394   // the operand.
2395   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2396     llvm::Value *operand = bitcast->getOperand(0);
2397     operand = emitARCRetainAfterCall(CGF, operand);
2398     bitcast->setOperand(0, operand);
2399     return bitcast;
2400 
2401   // Generic fall-back case.
2402   } else {
2403     // Retain using the non-block variant: we never need to do a copy
2404     // of a block that's been returned to us.
2405     return CGF.EmitARCRetainNonBlock(value);
2406   }
2407 }
2408 
2409 /// Determine whether it might be important to emit a separate
2410 /// objc_retain_block on the result of the given expression, or
2411 /// whether it's okay to just emit it in a +1 context.
2412 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2413   assert(e->getType()->isBlockPointerType());
2414   e = e->IgnoreParens();
2415 
2416   // For future goodness, emit block expressions directly in +1
2417   // contexts if we can.
2418   if (isa<BlockExpr>(e))
2419     return false;
2420 
2421   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2422     switch (cast->getCastKind()) {
2423     // Emitting these operations in +1 contexts is goodness.
2424     case CK_LValueToRValue:
2425     case CK_ARCReclaimReturnedObject:
2426     case CK_ARCConsumeObject:
2427     case CK_ARCProduceObject:
2428       return false;
2429 
2430     // These operations preserve a block type.
2431     case CK_NoOp:
2432     case CK_BitCast:
2433       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2434 
2435     // These operations are known to be bad (or haven't been considered).
2436     case CK_AnyPointerToBlockPointerCast:
2437     default:
2438       return true;
2439     }
2440   }
2441 
2442   return true;
2443 }
2444 
2445 /// Try to emit a PseudoObjectExpr at +1.
2446 ///
2447 /// This massively duplicates emitPseudoObjectRValue.
2448 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2449                                                   const PseudoObjectExpr *E) {
2450   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2451 
2452   // Find the result expression.
2453   const Expr *resultExpr = E->getResultExpr();
2454   assert(resultExpr);
2455   TryEmitResult result;
2456 
2457   for (PseudoObjectExpr::const_semantics_iterator
2458          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2459     const Expr *semantic = *i;
2460 
2461     // If this semantic expression is an opaque value, bind it
2462     // to the result of its source expression.
2463     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2464       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2465       OVMA opaqueData;
2466 
2467       // If this semantic is the result of the pseudo-object
2468       // expression, try to evaluate the source as +1.
2469       if (ov == resultExpr) {
2470         assert(!OVMA::shouldBindAsLValue(ov));
2471         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2472         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2473 
2474       // Otherwise, just bind it.
2475       } else {
2476         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2477       }
2478       opaques.push_back(opaqueData);
2479 
2480     // Otherwise, if the expression is the result, evaluate it
2481     // and remember the result.
2482     } else if (semantic == resultExpr) {
2483       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2484 
2485     // Otherwise, evaluate the expression in an ignored context.
2486     } else {
2487       CGF.EmitIgnoredExpr(semantic);
2488     }
2489   }
2490 
2491   // Unbind all the opaques now.
2492   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2493     opaques[i].unbind(CGF);
2494 
2495   return result;
2496 }
2497 
2498 static TryEmitResult
2499 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2500   // We should *never* see a nested full-expression here, because if
2501   // we fail to emit at +1, our caller must not retain after we close
2502   // out the full-expression.
2503   assert(!isa<ExprWithCleanups>(e));
2504 
2505   // The desired result type, if it differs from the type of the
2506   // ultimate opaque expression.
2507   llvm::Type *resultType = 0;
2508 
2509   while (true) {
2510     e = e->IgnoreParens();
2511 
2512     // There's a break at the end of this if-chain;  anything
2513     // that wants to keep looping has to explicitly continue.
2514     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2515       switch (ce->getCastKind()) {
2516       // No-op casts don't change the type, so we just ignore them.
2517       case CK_NoOp:
2518         e = ce->getSubExpr();
2519         continue;
2520 
2521       case CK_LValueToRValue: {
2522         TryEmitResult loadResult
2523           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2524         if (resultType) {
2525           llvm::Value *value = loadResult.getPointer();
2526           value = CGF.Builder.CreateBitCast(value, resultType);
2527           loadResult.setPointer(value);
2528         }
2529         return loadResult;
2530       }
2531 
2532       // These casts can change the type, so remember that and
2533       // soldier on.  We only need to remember the outermost such
2534       // cast, though.
2535       case CK_CPointerToObjCPointerCast:
2536       case CK_BlockPointerToObjCPointerCast:
2537       case CK_AnyPointerToBlockPointerCast:
2538       case CK_BitCast:
2539         if (!resultType)
2540           resultType = CGF.ConvertType(ce->getType());
2541         e = ce->getSubExpr();
2542         assert(e->getType()->hasPointerRepresentation());
2543         continue;
2544 
2545       // For consumptions, just emit the subexpression and thus elide
2546       // the retain/release pair.
2547       case CK_ARCConsumeObject: {
2548         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2549         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2550         return TryEmitResult(result, true);
2551       }
2552 
2553       // Block extends are net +0.  Naively, we could just recurse on
2554       // the subexpression, but actually we need to ensure that the
2555       // value is copied as a block, so there's a little filter here.
2556       case CK_ARCExtendBlockObject: {
2557         llvm::Value *result; // will be a +0 value
2558 
2559         // If we can't safely assume the sub-expression will produce a
2560         // block-copied value, emit the sub-expression at +0.
2561         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2562           result = CGF.EmitScalarExpr(ce->getSubExpr());
2563 
2564         // Otherwise, try to emit the sub-expression at +1 recursively.
2565         } else {
2566           TryEmitResult subresult
2567             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2568           result = subresult.getPointer();
2569 
2570           // If that produced a retained value, just use that,
2571           // possibly casting down.
2572           if (subresult.getInt()) {
2573             if (resultType)
2574               result = CGF.Builder.CreateBitCast(result, resultType);
2575             return TryEmitResult(result, true);
2576           }
2577 
2578           // Otherwise it's +0.
2579         }
2580 
2581         // Retain the object as a block, then cast down.
2582         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2583         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2584         return TryEmitResult(result, true);
2585       }
2586 
2587       // For reclaims, emit the subexpression as a retained call and
2588       // skip the consumption.
2589       case CK_ARCReclaimReturnedObject: {
2590         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2591         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2592         return TryEmitResult(result, true);
2593       }
2594 
2595       default:
2596         break;
2597       }
2598 
2599     // Skip __extension__.
2600     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2601       if (op->getOpcode() == UO_Extension) {
2602         e = op->getSubExpr();
2603         continue;
2604       }
2605 
2606     // For calls and message sends, use the retained-call logic.
2607     // Delegate inits are a special case in that they're the only
2608     // returns-retained expression that *isn't* surrounded by
2609     // a consume.
2610     } else if (isa<CallExpr>(e) ||
2611                (isa<ObjCMessageExpr>(e) &&
2612                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2613       llvm::Value *result = emitARCRetainCall(CGF, e);
2614       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2615       return TryEmitResult(result, true);
2616 
2617     // Look through pseudo-object expressions.
2618     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2619       TryEmitResult result
2620         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2621       if (resultType) {
2622         llvm::Value *value = result.getPointer();
2623         value = CGF.Builder.CreateBitCast(value, resultType);
2624         result.setPointer(value);
2625       }
2626       return result;
2627     }
2628 
2629     // Conservatively halt the search at any other expression kind.
2630     break;
2631   }
2632 
2633   // We didn't find an obvious production, so emit what we've got and
2634   // tell the caller that we didn't manage to retain.
2635   llvm::Value *result = CGF.EmitScalarExpr(e);
2636   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2637   return TryEmitResult(result, false);
2638 }
2639 
2640 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2641                                                 LValue lvalue,
2642                                                 QualType type) {
2643   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2644   llvm::Value *value = result.getPointer();
2645   if (!result.getInt())
2646     value = CGF.EmitARCRetain(type, value);
2647   return value;
2648 }
2649 
2650 /// EmitARCRetainScalarExpr - Semantically equivalent to
2651 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2652 /// best-effort attempt to peephole expressions that naturally produce
2653 /// retained objects.
2654 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2655   // The retain needs to happen within the full-expression.
2656   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2657     enterFullExpression(cleanups);
2658     RunCleanupsScope scope(*this);
2659     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2660   }
2661 
2662   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2663   llvm::Value *value = result.getPointer();
2664   if (!result.getInt())
2665     value = EmitARCRetain(e->getType(), value);
2666   return value;
2667 }
2668 
2669 llvm::Value *
2670 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2671   // The retain needs to happen within the full-expression.
2672   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2673     enterFullExpression(cleanups);
2674     RunCleanupsScope scope(*this);
2675     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2676   }
2677 
2678   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2679   llvm::Value *value = result.getPointer();
2680   if (result.getInt())
2681     value = EmitARCAutorelease(value);
2682   else
2683     value = EmitARCRetainAutorelease(e->getType(), value);
2684   return value;
2685 }
2686 
2687 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2688   llvm::Value *result;
2689   bool doRetain;
2690 
2691   if (shouldEmitSeparateBlockRetain(e)) {
2692     result = EmitScalarExpr(e);
2693     doRetain = true;
2694   } else {
2695     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2696     result = subresult.getPointer();
2697     doRetain = !subresult.getInt();
2698   }
2699 
2700   if (doRetain)
2701     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2702   return EmitObjCConsumeObject(e->getType(), result);
2703 }
2704 
2705 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2706   // In ARC, retain and autorelease the expression.
2707   if (getLangOpts().ObjCAutoRefCount) {
2708     // Do so before running any cleanups for the full-expression.
2709     // EmitARCRetainAutoreleaseScalarExpr does this for us.
2710     return EmitARCRetainAutoreleaseScalarExpr(expr);
2711   }
2712 
2713   // Otherwise, use the normal scalar-expression emission.  The
2714   // exception machinery doesn't do anything special with the
2715   // exception like retaining it, so there's no safety associated with
2716   // only running cleanups after the throw has started, and when it
2717   // matters it tends to be substantially inferior code.
2718   return EmitScalarExpr(expr);
2719 }
2720 
2721 std::pair<LValue,llvm::Value*>
2722 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2723                                     bool ignored) {
2724   // Evaluate the RHS first.
2725   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2726   llvm::Value *value = result.getPointer();
2727 
2728   bool hasImmediateRetain = result.getInt();
2729 
2730   // If we didn't emit a retained object, and the l-value is of block
2731   // type, then we need to emit the block-retain immediately in case
2732   // it invalidates the l-value.
2733   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2734     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2735     hasImmediateRetain = true;
2736   }
2737 
2738   LValue lvalue = EmitLValue(e->getLHS());
2739 
2740   // If the RHS was emitted retained, expand this.
2741   if (hasImmediateRetain) {
2742     llvm::Value *oldValue =
2743       EmitLoadOfScalar(lvalue);
2744     EmitStoreOfScalar(value, lvalue);
2745     EmitARCRelease(oldValue, /*precise*/ false);
2746   } else {
2747     value = EmitARCStoreStrong(lvalue, value, ignored);
2748   }
2749 
2750   return std::pair<LValue,llvm::Value*>(lvalue, value);
2751 }
2752 
2753 std::pair<LValue,llvm::Value*>
2754 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2755   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2756   LValue lvalue = EmitLValue(e->getLHS());
2757 
2758   EmitStoreOfScalar(value, lvalue);
2759 
2760   return std::pair<LValue,llvm::Value*>(lvalue, value);
2761 }
2762 
2763 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2764                                           const ObjCAutoreleasePoolStmt &ARPS) {
2765   const Stmt *subStmt = ARPS.getSubStmt();
2766   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2767 
2768   CGDebugInfo *DI = getDebugInfo();
2769   if (DI)
2770     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2771 
2772   // Keep track of the current cleanup stack depth.
2773   RunCleanupsScope Scope(*this);
2774   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2775     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2776     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2777   } else {
2778     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2779     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2780   }
2781 
2782   for (CompoundStmt::const_body_iterator I = S.body_begin(),
2783        E = S.body_end(); I != E; ++I)
2784     EmitStmt(*I);
2785 
2786   if (DI)
2787     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2788 }
2789 
2790 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2791 /// make sure it survives garbage collection until this point.
2792 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2793   // We just use an inline assembly.
2794   llvm::FunctionType *extenderType
2795     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2796   llvm::Value *extender
2797     = llvm::InlineAsm::get(extenderType,
2798                            /* assembly */ "",
2799                            /* constraints */ "r",
2800                            /* side effects */ true);
2801 
2802   object = Builder.CreateBitCast(object, VoidPtrTy);
2803   Builder.CreateCall(extender, object)->setDoesNotThrow();
2804 }
2805 
2806 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2807 /// non-trivial copy assignment function, produce following helper function.
2808 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2809 ///
2810 llvm::Constant *
2811 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2812                                         const ObjCPropertyImplDecl *PID) {
2813   if (!getLangOpts().CPlusPlus ||
2814       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2815     return 0;
2816   QualType Ty = PID->getPropertyIvarDecl()->getType();
2817   if (!Ty->isRecordType())
2818     return 0;
2819   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2820   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2821     return 0;
2822   llvm::Constant * HelperFn = 0;
2823   if (hasTrivialSetExpr(PID))
2824     return 0;
2825   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2826   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2827     return HelperFn;
2828 
2829   ASTContext &C = getContext();
2830   IdentifierInfo *II
2831     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2832   FunctionDecl *FD = FunctionDecl::Create(C,
2833                                           C.getTranslationUnitDecl(),
2834                                           SourceLocation(),
2835                                           SourceLocation(), II, C.VoidTy, 0,
2836                                           SC_Static,
2837                                           SC_None,
2838                                           false,
2839                                           false);
2840 
2841   QualType DestTy = C.getPointerType(Ty);
2842   QualType SrcTy = Ty;
2843   SrcTy.addConst();
2844   SrcTy = C.getPointerType(SrcTy);
2845 
2846   FunctionArgList args;
2847   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2848   args.push_back(&dstDecl);
2849   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2850   args.push_back(&srcDecl);
2851 
2852   const CGFunctionInfo &FI =
2853     CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2854                                               FunctionType::ExtInfo(),
2855                                               RequiredArgs::All);
2856 
2857   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2858 
2859   llvm::Function *Fn =
2860     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2861                            "__assign_helper_atomic_property_",
2862                            &CGM.getModule());
2863 
2864   // Initialize debug info if needed.
2865   maybeInitializeDebugInfo();
2866 
2867   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2868 
2869   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2870                       VK_RValue, SourceLocation());
2871   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2872                     VK_LValue, OK_Ordinary, SourceLocation());
2873 
2874   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2875                       VK_RValue, SourceLocation());
2876   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2877                     VK_LValue, OK_Ordinary, SourceLocation());
2878 
2879   Expr *Args[2] = { &DST, &SRC };
2880   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2881   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2882                               Args, DestTy->getPointeeType(),
2883                               VK_LValue, SourceLocation(), false);
2884 
2885   EmitStmt(&TheCall);
2886 
2887   FinishFunction();
2888   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2889   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2890   return HelperFn;
2891 }
2892 
2893 llvm::Constant *
2894 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2895                                             const ObjCPropertyImplDecl *PID) {
2896   if (!getLangOpts().CPlusPlus ||
2897       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2898     return 0;
2899   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2900   QualType Ty = PD->getType();
2901   if (!Ty->isRecordType())
2902     return 0;
2903   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2904     return 0;
2905   llvm::Constant * HelperFn = 0;
2906 
2907   if (hasTrivialGetExpr(PID))
2908     return 0;
2909   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2910   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2911     return HelperFn;
2912 
2913 
2914   ASTContext &C = getContext();
2915   IdentifierInfo *II
2916   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2917   FunctionDecl *FD = FunctionDecl::Create(C,
2918                                           C.getTranslationUnitDecl(),
2919                                           SourceLocation(),
2920                                           SourceLocation(), II, C.VoidTy, 0,
2921                                           SC_Static,
2922                                           SC_None,
2923                                           false,
2924                                           false);
2925 
2926   QualType DestTy = C.getPointerType(Ty);
2927   QualType SrcTy = Ty;
2928   SrcTy.addConst();
2929   SrcTy = C.getPointerType(SrcTy);
2930 
2931   FunctionArgList args;
2932   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2933   args.push_back(&dstDecl);
2934   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2935   args.push_back(&srcDecl);
2936 
2937   const CGFunctionInfo &FI =
2938   CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2939                                             FunctionType::ExtInfo(),
2940                                             RequiredArgs::All);
2941 
2942   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2943 
2944   llvm::Function *Fn =
2945   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2946                          "__copy_helper_atomic_property_", &CGM.getModule());
2947 
2948   // Initialize debug info if needed.
2949   maybeInitializeDebugInfo();
2950 
2951   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2952 
2953   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2954                       VK_RValue, SourceLocation());
2955 
2956   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2957                     VK_LValue, OK_Ordinary, SourceLocation());
2958 
2959   CXXConstructExpr *CXXConstExpr =
2960     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
2961 
2962   SmallVector<Expr*, 4> ConstructorArgs;
2963   ConstructorArgs.push_back(&SRC);
2964   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
2965   ++A;
2966 
2967   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
2968        A != AEnd; ++A)
2969     ConstructorArgs.push_back(*A);
2970 
2971   CXXConstructExpr *TheCXXConstructExpr =
2972     CXXConstructExpr::Create(C, Ty, SourceLocation(),
2973                              CXXConstExpr->getConstructor(),
2974                              CXXConstExpr->isElidable(),
2975                              ConstructorArgs,
2976                              CXXConstExpr->hadMultipleCandidates(),
2977                              CXXConstExpr->isListInitialization(),
2978                              CXXConstExpr->requiresZeroInitialization(),
2979                              CXXConstExpr->getConstructionKind(),
2980                              SourceRange());
2981 
2982   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2983                       VK_RValue, SourceLocation());
2984 
2985   RValue DV = EmitAnyExpr(&DstExpr);
2986   CharUnits Alignment
2987     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
2988   EmitAggExpr(TheCXXConstructExpr,
2989               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
2990                                     AggValueSlot::IsDestructed,
2991                                     AggValueSlot::DoesNotNeedGCBarriers,
2992                                     AggValueSlot::IsNotAliased));
2993 
2994   FinishFunction();
2995   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2996   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
2997   return HelperFn;
2998 }
2999 
3000 llvm::Value *
3001 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3002   // Get selectors for retain/autorelease.
3003   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3004   Selector CopySelector =
3005       getContext().Selectors.getNullarySelector(CopyID);
3006   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3007   Selector AutoreleaseSelector =
3008       getContext().Selectors.getNullarySelector(AutoreleaseID);
3009 
3010   // Emit calls to retain/autorelease.
3011   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3012   llvm::Value *Val = Block;
3013   RValue Result;
3014   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3015                                        Ty, CopySelector,
3016                                        Val, CallArgList(), 0, 0);
3017   Val = Result.getScalarVal();
3018   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3019                                        Ty, AutoreleaseSelector,
3020                                        Val, CallArgList(), 0, 0);
3021   Val = Result.getScalarVal();
3022   return Val;
3023 }
3024 
3025 
3026 CGObjCRuntime::~CGObjCRuntime() {}
3027