1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 35 QualType ET, 36 const ObjCMethodDecl *Method, 37 RValue Result); 38 39 /// Given the address of a variable of pointer type, find the correct 40 /// null to store into it. 41 static llvm::Constant *getNullForVariable(llvm::Value *addr) { 42 llvm::Type *type = 43 cast<llvm::PointerType>(addr->getType())->getElementType(); 44 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 45 } 46 47 /// Emits an instance of NSConstantString representing the object. 48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 49 { 50 llvm::Constant *C = 51 CGM.getObjCRuntime().GenerateConstantString(E->getString()); 52 // FIXME: This bitcast should just be made an invariant on the Runtime. 53 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 54 } 55 56 /// EmitObjCBoxedExpr - This routine generates code to call 57 /// the appropriate expression boxing method. This will either be 58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:]. 59 /// 60 llvm::Value * 61 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 62 // Generate the correct selector for this literal's concrete type. 63 const Expr *SubExpr = E->getSubExpr(); 64 // Get the method. 65 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 66 assert(BoxingMethod && "BoxingMethod is null"); 67 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 68 Selector Sel = BoxingMethod->getSelector(); 69 70 // Generate a reference to the class pointer, which will be the receiver. 71 // Assumes that the method was introduced in the class that should be 72 // messaged (avoids pulling it out of the result type). 73 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 74 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 75 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 76 77 const ParmVarDecl *argDecl = *BoxingMethod->param_begin(); 78 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 79 RValue RV = EmitAnyExpr(SubExpr); 80 CallArgList Args; 81 Args.add(RV, ArgQT); 82 83 RValue result = Runtime.GenerateMessageSend( 84 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 85 Args, ClassDecl, BoxingMethod); 86 return Builder.CreateBitCast(result.getScalarVal(), 87 ConvertType(E->getType())); 88 } 89 90 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 91 const ObjCMethodDecl *MethodWithObjects) { 92 ASTContext &Context = CGM.getContext(); 93 const ObjCDictionaryLiteral *DLE = 0; 94 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 95 if (!ALE) 96 DLE = cast<ObjCDictionaryLiteral>(E); 97 98 // Compute the type of the array we're initializing. 99 uint64_t NumElements = 100 ALE ? ALE->getNumElements() : DLE->getNumElements(); 101 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 102 NumElements); 103 QualType ElementType = Context.getObjCIdType().withConst(); 104 QualType ElementArrayType 105 = Context.getConstantArrayType(ElementType, APNumElements, 106 ArrayType::Normal, /*IndexTypeQuals=*/0); 107 108 // Allocate the temporary array(s). 109 llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects"); 110 llvm::Value *Keys = 0; 111 if (DLE) 112 Keys = CreateMemTemp(ElementArrayType, "keys"); 113 114 // In ARC, we may need to do extra work to keep all the keys and 115 // values alive until after the call. 116 SmallVector<llvm::Value *, 16> NeededObjects; 117 bool TrackNeededObjects = 118 (getLangOpts().ObjCAutoRefCount && 119 CGM.getCodeGenOpts().OptimizationLevel != 0); 120 121 // Perform the actual initialialization of the array(s). 122 for (uint64_t i = 0; i < NumElements; i++) { 123 if (ALE) { 124 // Emit the element and store it to the appropriate array slot. 125 const Expr *Rhs = ALE->getElement(i); 126 LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i), 127 ElementType, 128 Context.getTypeAlignInChars(Rhs->getType()), 129 Context); 130 131 llvm::Value *value = EmitScalarExpr(Rhs); 132 EmitStoreThroughLValue(RValue::get(value), LV, true); 133 if (TrackNeededObjects) { 134 NeededObjects.push_back(value); 135 } 136 } else { 137 // Emit the key and store it to the appropriate array slot. 138 const Expr *Key = DLE->getKeyValueElement(i).Key; 139 LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i), 140 ElementType, 141 Context.getTypeAlignInChars(Key->getType()), 142 Context); 143 llvm::Value *keyValue = EmitScalarExpr(Key); 144 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 145 146 // Emit the value and store it to the appropriate array slot. 147 const Expr *Value = DLE->getKeyValueElement(i).Value; 148 LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i), 149 ElementType, 150 Context.getTypeAlignInChars(Value->getType()), 151 Context); 152 llvm::Value *valueValue = EmitScalarExpr(Value); 153 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 154 if (TrackNeededObjects) { 155 NeededObjects.push_back(keyValue); 156 NeededObjects.push_back(valueValue); 157 } 158 } 159 } 160 161 // Generate the argument list. 162 CallArgList Args; 163 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 164 const ParmVarDecl *argDecl = *PI++; 165 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 166 Args.add(RValue::get(Objects), ArgQT); 167 if (DLE) { 168 argDecl = *PI++; 169 ArgQT = argDecl->getType().getUnqualifiedType(); 170 Args.add(RValue::get(Keys), ArgQT); 171 } 172 argDecl = *PI; 173 ArgQT = argDecl->getType().getUnqualifiedType(); 174 llvm::Value *Count = 175 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 176 Args.add(RValue::get(Count), ArgQT); 177 178 // Generate a reference to the class pointer, which will be the receiver. 179 Selector Sel = MethodWithObjects->getSelector(); 180 QualType ResultType = E->getType(); 181 const ObjCObjectPointerType *InterfacePointerType 182 = ResultType->getAsObjCInterfacePointerType(); 183 ObjCInterfaceDecl *Class 184 = InterfacePointerType->getObjectType()->getInterface(); 185 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 186 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 187 188 // Generate the message send. 189 RValue result = Runtime.GenerateMessageSend( 190 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 191 Receiver, Args, Class, MethodWithObjects); 192 193 // The above message send needs these objects, but in ARC they are 194 // passed in a buffer that is essentially __unsafe_unretained. 195 // Therefore we must prevent the optimizer from releasing them until 196 // after the call. 197 if (TrackNeededObjects) { 198 EmitARCIntrinsicUse(NeededObjects); 199 } 200 201 return Builder.CreateBitCast(result.getScalarVal(), 202 ConvertType(E->getType())); 203 } 204 205 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 206 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 207 } 208 209 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 210 const ObjCDictionaryLiteral *E) { 211 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 212 } 213 214 /// Emit a selector. 215 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 216 // Untyped selector. 217 // Note that this implementation allows for non-constant strings to be passed 218 // as arguments to @selector(). Currently, the only thing preventing this 219 // behaviour is the type checking in the front end. 220 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 221 } 222 223 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 224 // FIXME: This should pass the Decl not the name. 225 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 226 } 227 228 /// \brief Adjust the type of the result of an Objective-C message send 229 /// expression when the method has a related result type. 230 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 231 QualType ExpT, 232 const ObjCMethodDecl *Method, 233 RValue Result) { 234 if (!Method) 235 return Result; 236 237 if (!Method->hasRelatedResultType() || 238 CGF.getContext().hasSameType(ExpT, Method->getReturnType()) || 239 !Result.isScalar()) 240 return Result; 241 242 // We have applied a related result type. Cast the rvalue appropriately. 243 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 244 CGF.ConvertType(ExpT))); 245 } 246 247 /// Decide whether to extend the lifetime of the receiver of a 248 /// returns-inner-pointer message. 249 static bool 250 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 251 switch (message->getReceiverKind()) { 252 253 // For a normal instance message, we should extend unless the 254 // receiver is loaded from a variable with precise lifetime. 255 case ObjCMessageExpr::Instance: { 256 const Expr *receiver = message->getInstanceReceiver(); 257 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 258 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 259 receiver = ice->getSubExpr()->IgnoreParens(); 260 261 // Only __strong variables. 262 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 263 return true; 264 265 // All ivars and fields have precise lifetime. 266 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 267 return false; 268 269 // Otherwise, check for variables. 270 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 271 if (!declRef) return true; 272 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 273 if (!var) return true; 274 275 // All variables have precise lifetime except local variables with 276 // automatic storage duration that aren't specially marked. 277 return (var->hasLocalStorage() && 278 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 279 } 280 281 case ObjCMessageExpr::Class: 282 case ObjCMessageExpr::SuperClass: 283 // It's never necessary for class objects. 284 return false; 285 286 case ObjCMessageExpr::SuperInstance: 287 // We generally assume that 'self' lives throughout a method call. 288 return false; 289 } 290 291 llvm_unreachable("invalid receiver kind"); 292 } 293 294 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 295 ReturnValueSlot Return) { 296 // Only the lookup mechanism and first two arguments of the method 297 // implementation vary between runtimes. We can get the receiver and 298 // arguments in generic code. 299 300 bool isDelegateInit = E->isDelegateInitCall(); 301 302 const ObjCMethodDecl *method = E->getMethodDecl(); 303 304 // We don't retain the receiver in delegate init calls, and this is 305 // safe because the receiver value is always loaded from 'self', 306 // which we zero out. We don't want to Block_copy block receivers, 307 // though. 308 bool retainSelf = 309 (!isDelegateInit && 310 CGM.getLangOpts().ObjCAutoRefCount && 311 method && 312 method->hasAttr<NSConsumesSelfAttr>()); 313 314 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 315 bool isSuperMessage = false; 316 bool isClassMessage = false; 317 ObjCInterfaceDecl *OID = 0; 318 // Find the receiver 319 QualType ReceiverType; 320 llvm::Value *Receiver = 0; 321 switch (E->getReceiverKind()) { 322 case ObjCMessageExpr::Instance: 323 ReceiverType = E->getInstanceReceiver()->getType(); 324 if (retainSelf) { 325 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 326 E->getInstanceReceiver()); 327 Receiver = ter.getPointer(); 328 if (ter.getInt()) retainSelf = false; 329 } else 330 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 331 break; 332 333 case ObjCMessageExpr::Class: { 334 ReceiverType = E->getClassReceiver(); 335 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 336 assert(ObjTy && "Invalid Objective-C class message send"); 337 OID = ObjTy->getInterface(); 338 assert(OID && "Invalid Objective-C class message send"); 339 Receiver = Runtime.GetClass(*this, OID); 340 isClassMessage = true; 341 break; 342 } 343 344 case ObjCMessageExpr::SuperInstance: 345 ReceiverType = E->getSuperType(); 346 Receiver = LoadObjCSelf(); 347 isSuperMessage = true; 348 break; 349 350 case ObjCMessageExpr::SuperClass: 351 ReceiverType = E->getSuperType(); 352 Receiver = LoadObjCSelf(); 353 isSuperMessage = true; 354 isClassMessage = true; 355 break; 356 } 357 358 if (retainSelf) 359 Receiver = EmitARCRetainNonBlock(Receiver); 360 361 // In ARC, we sometimes want to "extend the lifetime" 362 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 363 // messages. 364 if (getLangOpts().ObjCAutoRefCount && method && 365 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 366 shouldExtendReceiverForInnerPointerMessage(E)) 367 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 368 369 QualType ResultType = method ? method->getReturnType() : E->getType(); 370 371 CallArgList Args; 372 EmitCallArgs(Args, method, E->arg_begin(), E->arg_end()); 373 374 // For delegate init calls in ARC, do an unsafe store of null into 375 // self. This represents the call taking direct ownership of that 376 // value. We have to do this after emitting the other call 377 // arguments because they might also reference self, but we don't 378 // have to worry about any of them modifying self because that would 379 // be an undefined read and write of an object in unordered 380 // expressions. 381 if (isDelegateInit) { 382 assert(getLangOpts().ObjCAutoRefCount && 383 "delegate init calls should only be marked in ARC"); 384 385 // Do an unsafe store of null into self. 386 llvm::Value *selfAddr = 387 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 388 assert(selfAddr && "no self entry for a delegate init call?"); 389 390 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 391 } 392 393 RValue result; 394 if (isSuperMessage) { 395 // super is only valid in an Objective-C method 396 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 397 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 398 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 399 E->getSelector(), 400 OMD->getClassInterface(), 401 isCategoryImpl, 402 Receiver, 403 isClassMessage, 404 Args, 405 method); 406 } else { 407 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 408 E->getSelector(), 409 Receiver, Args, OID, 410 method); 411 } 412 413 // For delegate init calls in ARC, implicitly store the result of 414 // the call back into self. This takes ownership of the value. 415 if (isDelegateInit) { 416 llvm::Value *selfAddr = 417 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 418 llvm::Value *newSelf = result.getScalarVal(); 419 420 // The delegate return type isn't necessarily a matching type; in 421 // fact, it's quite likely to be 'id'. 422 llvm::Type *selfTy = 423 cast<llvm::PointerType>(selfAddr->getType())->getElementType(); 424 newSelf = Builder.CreateBitCast(newSelf, selfTy); 425 426 Builder.CreateStore(newSelf, selfAddr); 427 } 428 429 return AdjustRelatedResultType(*this, E->getType(), method, result); 430 } 431 432 namespace { 433 struct FinishARCDealloc : EHScopeStack::Cleanup { 434 void Emit(CodeGenFunction &CGF, Flags flags) override { 435 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 436 437 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 438 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 439 if (!iface->getSuperClass()) return; 440 441 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 442 443 // Call [super dealloc] if we have a superclass. 444 llvm::Value *self = CGF.LoadObjCSelf(); 445 446 CallArgList args; 447 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 448 CGF.getContext().VoidTy, 449 method->getSelector(), 450 iface, 451 isCategory, 452 self, 453 /*is class msg*/ false, 454 args, 455 method); 456 } 457 }; 458 } 459 460 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 461 /// the LLVM function and sets the other context used by 462 /// CodeGenFunction. 463 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 464 const ObjCContainerDecl *CD, 465 SourceLocation StartLoc) { 466 FunctionArgList args; 467 // Check if we should generate debug info for this method. 468 if (OMD->hasAttr<NoDebugAttr>()) 469 DebugInfo = NULL; // disable debug info indefinitely for this function 470 471 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 472 473 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 474 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 475 476 args.push_back(OMD->getSelfDecl()); 477 args.push_back(OMD->getCmdDecl()); 478 479 for (const auto *PI : OMD->params()) 480 args.push_back(PI); 481 482 CurGD = OMD; 483 484 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, StartLoc); 485 486 // In ARC, certain methods get an extra cleanup. 487 if (CGM.getLangOpts().ObjCAutoRefCount && 488 OMD->isInstanceMethod() && 489 OMD->getSelector().isUnarySelector()) { 490 const IdentifierInfo *ident = 491 OMD->getSelector().getIdentifierInfoForSlot(0); 492 if (ident->isStr("dealloc")) 493 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 494 } 495 } 496 497 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 498 LValue lvalue, QualType type); 499 500 /// Generate an Objective-C method. An Objective-C method is a C function with 501 /// its pointer, name, and types registered in the class struture. 502 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 503 StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart()); 504 PGO.assignRegionCounters(OMD, CurFn); 505 assert(isa<CompoundStmt>(OMD->getBody())); 506 RegionCounter Cnt = getPGORegionCounter(OMD->getBody()); 507 Cnt.beginRegion(Builder); 508 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 509 FinishFunction(OMD->getBodyRBrace()); 510 PGO.emitInstrumentationData(); 511 PGO.destroyRegionCounters(); 512 } 513 514 /// emitStructGetterCall - Call the runtime function to load a property 515 /// into the return value slot. 516 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 517 bool isAtomic, bool hasStrong) { 518 ASTContext &Context = CGF.getContext(); 519 520 llvm::Value *src = 521 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), 522 ivar, 0).getAddress(); 523 524 // objc_copyStruct (ReturnValue, &structIvar, 525 // sizeof (Type of Ivar), isAtomic, false); 526 CallArgList args; 527 528 llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 529 args.add(RValue::get(dest), Context.VoidPtrTy); 530 531 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 532 args.add(RValue::get(src), Context.VoidPtrTy); 533 534 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 535 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 536 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 537 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 538 539 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 540 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args, 541 FunctionType::ExtInfo(), 542 RequiredArgs::All), 543 fn, ReturnValueSlot(), args); 544 } 545 546 /// Determine whether the given architecture supports unaligned atomic 547 /// accesses. They don't have to be fast, just faster than a function 548 /// call and a mutex. 549 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 550 // FIXME: Allow unaligned atomic load/store on x86. (It is not 551 // currently supported by the backend.) 552 return 0; 553 } 554 555 /// Return the maximum size that permits atomic accesses for the given 556 /// architecture. 557 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 558 llvm::Triple::ArchType arch) { 559 // ARM has 8-byte atomic accesses, but it's not clear whether we 560 // want to rely on them here. 561 562 // In the default case, just assume that any size up to a pointer is 563 // fine given adequate alignment. 564 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 565 } 566 567 namespace { 568 class PropertyImplStrategy { 569 public: 570 enum StrategyKind { 571 /// The 'native' strategy is to use the architecture's provided 572 /// reads and writes. 573 Native, 574 575 /// Use objc_setProperty and objc_getProperty. 576 GetSetProperty, 577 578 /// Use objc_setProperty for the setter, but use expression 579 /// evaluation for the getter. 580 SetPropertyAndExpressionGet, 581 582 /// Use objc_copyStruct. 583 CopyStruct, 584 585 /// The 'expression' strategy is to emit normal assignment or 586 /// lvalue-to-rvalue expressions. 587 Expression 588 }; 589 590 StrategyKind getKind() const { return StrategyKind(Kind); } 591 592 bool hasStrongMember() const { return HasStrong; } 593 bool isAtomic() const { return IsAtomic; } 594 bool isCopy() const { return IsCopy; } 595 596 CharUnits getIvarSize() const { return IvarSize; } 597 CharUnits getIvarAlignment() const { return IvarAlignment; } 598 599 PropertyImplStrategy(CodeGenModule &CGM, 600 const ObjCPropertyImplDecl *propImpl); 601 602 private: 603 unsigned Kind : 8; 604 unsigned IsAtomic : 1; 605 unsigned IsCopy : 1; 606 unsigned HasStrong : 1; 607 608 CharUnits IvarSize; 609 CharUnits IvarAlignment; 610 }; 611 } 612 613 /// Pick an implementation strategy for the given property synthesis. 614 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 615 const ObjCPropertyImplDecl *propImpl) { 616 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 617 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 618 619 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 620 IsAtomic = prop->isAtomic(); 621 HasStrong = false; // doesn't matter here. 622 623 // Evaluate the ivar's size and alignment. 624 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 625 QualType ivarType = ivar->getType(); 626 std::tie(IvarSize, IvarAlignment) = 627 CGM.getContext().getTypeInfoInChars(ivarType); 628 629 // If we have a copy property, we always have to use getProperty/setProperty. 630 // TODO: we could actually use setProperty and an expression for non-atomics. 631 if (IsCopy) { 632 Kind = GetSetProperty; 633 return; 634 } 635 636 // Handle retain. 637 if (setterKind == ObjCPropertyDecl::Retain) { 638 // In GC-only, there's nothing special that needs to be done. 639 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 640 // fallthrough 641 642 // In ARC, if the property is non-atomic, use expression emission, 643 // which translates to objc_storeStrong. This isn't required, but 644 // it's slightly nicer. 645 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 646 // Using standard expression emission for the setter is only 647 // acceptable if the ivar is __strong, which won't be true if 648 // the property is annotated with __attribute__((NSObject)). 649 // TODO: falling all the way back to objc_setProperty here is 650 // just laziness, though; we could still use objc_storeStrong 651 // if we hacked it right. 652 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 653 Kind = Expression; 654 else 655 Kind = SetPropertyAndExpressionGet; 656 return; 657 658 // Otherwise, we need to at least use setProperty. However, if 659 // the property isn't atomic, we can use normal expression 660 // emission for the getter. 661 } else if (!IsAtomic) { 662 Kind = SetPropertyAndExpressionGet; 663 return; 664 665 // Otherwise, we have to use both setProperty and getProperty. 666 } else { 667 Kind = GetSetProperty; 668 return; 669 } 670 } 671 672 // If we're not atomic, just use expression accesses. 673 if (!IsAtomic) { 674 Kind = Expression; 675 return; 676 } 677 678 // Properties on bitfield ivars need to be emitted using expression 679 // accesses even if they're nominally atomic. 680 if (ivar->isBitField()) { 681 Kind = Expression; 682 return; 683 } 684 685 // GC-qualified or ARC-qualified ivars need to be emitted as 686 // expressions. This actually works out to being atomic anyway, 687 // except for ARC __strong, but that should trigger the above code. 688 if (ivarType.hasNonTrivialObjCLifetime() || 689 (CGM.getLangOpts().getGC() && 690 CGM.getContext().getObjCGCAttrKind(ivarType))) { 691 Kind = Expression; 692 return; 693 } 694 695 // Compute whether the ivar has strong members. 696 if (CGM.getLangOpts().getGC()) 697 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 698 HasStrong = recordType->getDecl()->hasObjectMember(); 699 700 // We can never access structs with object members with a native 701 // access, because we need to use write barriers. This is what 702 // objc_copyStruct is for. 703 if (HasStrong) { 704 Kind = CopyStruct; 705 return; 706 } 707 708 // Otherwise, this is target-dependent and based on the size and 709 // alignment of the ivar. 710 711 // If the size of the ivar is not a power of two, give up. We don't 712 // want to get into the business of doing compare-and-swaps. 713 if (!IvarSize.isPowerOfTwo()) { 714 Kind = CopyStruct; 715 return; 716 } 717 718 llvm::Triple::ArchType arch = 719 CGM.getTarget().getTriple().getArch(); 720 721 // Most architectures require memory to fit within a single cache 722 // line, so the alignment has to be at least the size of the access. 723 // Otherwise we have to grab a lock. 724 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 725 Kind = CopyStruct; 726 return; 727 } 728 729 // If the ivar's size exceeds the architecture's maximum atomic 730 // access size, we have to use CopyStruct. 731 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 732 Kind = CopyStruct; 733 return; 734 } 735 736 // Otherwise, we can use native loads and stores. 737 Kind = Native; 738 } 739 740 /// \brief Generate an Objective-C property getter function. 741 /// 742 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 743 /// is illegal within a category. 744 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 745 const ObjCPropertyImplDecl *PID) { 746 llvm::Constant *AtomicHelperFn = 747 GenerateObjCAtomicGetterCopyHelperFunction(PID); 748 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 749 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 750 assert(OMD && "Invalid call to generate getter (empty method)"); 751 StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart()); 752 753 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 754 755 FinishFunction(); 756 } 757 758 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 759 const Expr *getter = propImpl->getGetterCXXConstructor(); 760 if (!getter) return true; 761 762 // Sema only makes only of these when the ivar has a C++ class type, 763 // so the form is pretty constrained. 764 765 // If the property has a reference type, we might just be binding a 766 // reference, in which case the result will be a gl-value. We should 767 // treat this as a non-trivial operation. 768 if (getter->isGLValue()) 769 return false; 770 771 // If we selected a trivial copy-constructor, we're okay. 772 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 773 return (construct->getConstructor()->isTrivial()); 774 775 // The constructor might require cleanups (in which case it's never 776 // trivial). 777 assert(isa<ExprWithCleanups>(getter)); 778 return false; 779 } 780 781 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 782 /// copy the ivar into the resturn slot. 783 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 784 llvm::Value *returnAddr, 785 ObjCIvarDecl *ivar, 786 llvm::Constant *AtomicHelperFn) { 787 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 788 // AtomicHelperFn); 789 CallArgList args; 790 791 // The 1st argument is the return Slot. 792 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 793 794 // The 2nd argument is the address of the ivar. 795 llvm::Value *ivarAddr = 796 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 797 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 798 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 799 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 800 801 // Third argument is the helper function. 802 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 803 804 llvm::Value *copyCppAtomicObjectFn = 805 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 806 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 807 args, 808 FunctionType::ExtInfo(), 809 RequiredArgs::All), 810 copyCppAtomicObjectFn, ReturnValueSlot(), args); 811 } 812 813 void 814 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 815 const ObjCPropertyImplDecl *propImpl, 816 const ObjCMethodDecl *GetterMethodDecl, 817 llvm::Constant *AtomicHelperFn) { 818 // If there's a non-trivial 'get' expression, we just have to emit that. 819 if (!hasTrivialGetExpr(propImpl)) { 820 if (!AtomicHelperFn) { 821 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 822 /*nrvo*/ 0); 823 EmitReturnStmt(ret); 824 } 825 else { 826 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 827 emitCPPObjectAtomicGetterCall(*this, ReturnValue, 828 ivar, AtomicHelperFn); 829 } 830 return; 831 } 832 833 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 834 QualType propType = prop->getType(); 835 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 836 837 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 838 839 // Pick an implementation strategy. 840 PropertyImplStrategy strategy(CGM, propImpl); 841 switch (strategy.getKind()) { 842 case PropertyImplStrategy::Native: { 843 // We don't need to do anything for a zero-size struct. 844 if (strategy.getIvarSize().isZero()) 845 return; 846 847 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 848 849 // Currently, all atomic accesses have to be through integer 850 // types, so there's no point in trying to pick a prettier type. 851 llvm::Type *bitcastType = 852 llvm::Type::getIntNTy(getLLVMContext(), 853 getContext().toBits(strategy.getIvarSize())); 854 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 855 856 // Perform an atomic load. This does not impose ordering constraints. 857 llvm::Value *ivarAddr = LV.getAddress(); 858 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 859 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 860 load->setAlignment(strategy.getIvarAlignment().getQuantity()); 861 load->setAtomic(llvm::Unordered); 862 863 // Store that value into the return address. Doing this with a 864 // bitcast is likely to produce some pretty ugly IR, but it's not 865 // the *most* terrible thing in the world. 866 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType)); 867 868 // Make sure we don't do an autorelease. 869 AutoreleaseResult = false; 870 return; 871 } 872 873 case PropertyImplStrategy::GetSetProperty: { 874 llvm::Value *getPropertyFn = 875 CGM.getObjCRuntime().GetPropertyGetFunction(); 876 if (!getPropertyFn) { 877 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 878 return; 879 } 880 881 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 882 // FIXME: Can't this be simpler? This might even be worse than the 883 // corresponding gcc code. 884 llvm::Value *cmd = 885 Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd"); 886 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 887 llvm::Value *ivarOffset = 888 EmitIvarOffset(classImpl->getClassInterface(), ivar); 889 890 CallArgList args; 891 args.add(RValue::get(self), getContext().getObjCIdType()); 892 args.add(RValue::get(cmd), getContext().getObjCSelType()); 893 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 894 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 895 getContext().BoolTy); 896 897 // FIXME: We shouldn't need to get the function info here, the 898 // runtime already should have computed it to build the function. 899 llvm::Instruction *CallInstruction; 900 RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args, 901 FunctionType::ExtInfo(), 902 RequiredArgs::All), 903 getPropertyFn, ReturnValueSlot(), args, 0, 904 &CallInstruction); 905 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 906 call->setTailCall(); 907 908 // We need to fix the type here. Ivars with copy & retain are 909 // always objects so we don't need to worry about complex or 910 // aggregates. 911 RV = RValue::get(Builder.CreateBitCast( 912 RV.getScalarVal(), 913 getTypes().ConvertType(getterMethod->getReturnType()))); 914 915 EmitReturnOfRValue(RV, propType); 916 917 // objc_getProperty does an autorelease, so we should suppress ours. 918 AutoreleaseResult = false; 919 920 return; 921 } 922 923 case PropertyImplStrategy::CopyStruct: 924 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 925 strategy.hasStrongMember()); 926 return; 927 928 case PropertyImplStrategy::Expression: 929 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 930 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 931 932 QualType ivarType = ivar->getType(); 933 switch (getEvaluationKind(ivarType)) { 934 case TEK_Complex: { 935 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 936 EmitStoreOfComplex(pair, 937 MakeNaturalAlignAddrLValue(ReturnValue, ivarType), 938 /*init*/ true); 939 return; 940 } 941 case TEK_Aggregate: 942 // The return value slot is guaranteed to not be aliased, but 943 // that's not necessarily the same as "on the stack", so 944 // we still potentially need objc_memmove_collectable. 945 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 946 return; 947 case TEK_Scalar: { 948 llvm::Value *value; 949 if (propType->isReferenceType()) { 950 value = LV.getAddress(); 951 } else { 952 // We want to load and autoreleaseReturnValue ARC __weak ivars. 953 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 954 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 955 956 // Otherwise we want to do a simple load, suppressing the 957 // final autorelease. 958 } else { 959 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 960 AutoreleaseResult = false; 961 } 962 963 value = Builder.CreateBitCast(value, ConvertType(propType)); 964 value = Builder.CreateBitCast( 965 value, ConvertType(GetterMethodDecl->getReturnType())); 966 } 967 968 EmitReturnOfRValue(RValue::get(value), propType); 969 return; 970 } 971 } 972 llvm_unreachable("bad evaluation kind"); 973 } 974 975 } 976 llvm_unreachable("bad @property implementation strategy!"); 977 } 978 979 /// emitStructSetterCall - Call the runtime function to store the value 980 /// from the first formal parameter into the given ivar. 981 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 982 ObjCIvarDecl *ivar) { 983 // objc_copyStruct (&structIvar, &Arg, 984 // sizeof (struct something), true, false); 985 CallArgList args; 986 987 // The first argument is the address of the ivar. 988 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 989 CGF.LoadObjCSelf(), ivar, 0) 990 .getAddress(); 991 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 992 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 993 994 // The second argument is the address of the parameter variable. 995 ParmVarDecl *argVar = *OMD->param_begin(); 996 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 997 VK_LValue, SourceLocation()); 998 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 999 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1000 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1001 1002 // The third argument is the sizeof the type. 1003 llvm::Value *size = 1004 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1005 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1006 1007 // The fourth argument is the 'isAtomic' flag. 1008 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1009 1010 // The fifth argument is the 'hasStrong' flag. 1011 // FIXME: should this really always be false? 1012 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1013 1014 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1015 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1016 args, 1017 FunctionType::ExtInfo(), 1018 RequiredArgs::All), 1019 copyStructFn, ReturnValueSlot(), args); 1020 } 1021 1022 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1023 /// the value from the first formal parameter into the given ivar, using 1024 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1025 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1026 ObjCMethodDecl *OMD, 1027 ObjCIvarDecl *ivar, 1028 llvm::Constant *AtomicHelperFn) { 1029 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1030 // AtomicHelperFn); 1031 CallArgList args; 1032 1033 // The first argument is the address of the ivar. 1034 llvm::Value *ivarAddr = 1035 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1036 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 1037 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1038 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1039 1040 // The second argument is the address of the parameter variable. 1041 ParmVarDecl *argVar = *OMD->param_begin(); 1042 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1043 VK_LValue, SourceLocation()); 1044 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 1045 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1046 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1047 1048 // Third argument is the helper function. 1049 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1050 1051 llvm::Value *copyCppAtomicObjectFn = 1052 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1053 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1054 args, 1055 FunctionType::ExtInfo(), 1056 RequiredArgs::All), 1057 copyCppAtomicObjectFn, ReturnValueSlot(), args); 1058 } 1059 1060 1061 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1062 Expr *setter = PID->getSetterCXXAssignment(); 1063 if (!setter) return true; 1064 1065 // Sema only makes only of these when the ivar has a C++ class type, 1066 // so the form is pretty constrained. 1067 1068 // An operator call is trivial if the function it calls is trivial. 1069 // This also implies that there's nothing non-trivial going on with 1070 // the arguments, because operator= can only be trivial if it's a 1071 // synthesized assignment operator and therefore both parameters are 1072 // references. 1073 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1074 if (const FunctionDecl *callee 1075 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1076 if (callee->isTrivial()) 1077 return true; 1078 return false; 1079 } 1080 1081 assert(isa<ExprWithCleanups>(setter)); 1082 return false; 1083 } 1084 1085 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1086 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1087 return false; 1088 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1089 } 1090 1091 void 1092 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1093 const ObjCPropertyImplDecl *propImpl, 1094 llvm::Constant *AtomicHelperFn) { 1095 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1096 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1097 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1098 1099 // Just use the setter expression if Sema gave us one and it's 1100 // non-trivial. 1101 if (!hasTrivialSetExpr(propImpl)) { 1102 if (!AtomicHelperFn) 1103 // If non-atomic, assignment is called directly. 1104 EmitStmt(propImpl->getSetterCXXAssignment()); 1105 else 1106 // If atomic, assignment is called via a locking api. 1107 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1108 AtomicHelperFn); 1109 return; 1110 } 1111 1112 PropertyImplStrategy strategy(CGM, propImpl); 1113 switch (strategy.getKind()) { 1114 case PropertyImplStrategy::Native: { 1115 // We don't need to do anything for a zero-size struct. 1116 if (strategy.getIvarSize().isZero()) 1117 return; 1118 1119 llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()]; 1120 1121 LValue ivarLValue = 1122 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1123 llvm::Value *ivarAddr = ivarLValue.getAddress(); 1124 1125 // Currently, all atomic accesses have to be through integer 1126 // types, so there's no point in trying to pick a prettier type. 1127 llvm::Type *bitcastType = 1128 llvm::Type::getIntNTy(getLLVMContext(), 1129 getContext().toBits(strategy.getIvarSize())); 1130 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1131 1132 // Cast both arguments to the chosen operation type. 1133 argAddr = Builder.CreateBitCast(argAddr, bitcastType); 1134 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1135 1136 // This bitcast load is likely to cause some nasty IR. 1137 llvm::Value *load = Builder.CreateLoad(argAddr); 1138 1139 // Perform an atomic store. There are no memory ordering requirements. 1140 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1141 store->setAlignment(strategy.getIvarAlignment().getQuantity()); 1142 store->setAtomic(llvm::Unordered); 1143 return; 1144 } 1145 1146 case PropertyImplStrategy::GetSetProperty: 1147 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1148 1149 llvm::Value *setOptimizedPropertyFn = 0; 1150 llvm::Value *setPropertyFn = 0; 1151 if (UseOptimizedSetter(CGM)) { 1152 // 10.8 and iOS 6.0 code and GC is off 1153 setOptimizedPropertyFn = 1154 CGM.getObjCRuntime() 1155 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1156 strategy.isCopy()); 1157 if (!setOptimizedPropertyFn) { 1158 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1159 return; 1160 } 1161 } 1162 else { 1163 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1164 if (!setPropertyFn) { 1165 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1166 return; 1167 } 1168 } 1169 1170 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1171 // <is-atomic>, <is-copy>). 1172 llvm::Value *cmd = 1173 Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]); 1174 llvm::Value *self = 1175 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1176 llvm::Value *ivarOffset = 1177 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1178 llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()]; 1179 arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy); 1180 1181 CallArgList args; 1182 args.add(RValue::get(self), getContext().getObjCIdType()); 1183 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1184 if (setOptimizedPropertyFn) { 1185 args.add(RValue::get(arg), getContext().getObjCIdType()); 1186 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1187 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1188 FunctionType::ExtInfo(), 1189 RequiredArgs::All), 1190 setOptimizedPropertyFn, ReturnValueSlot(), args); 1191 } else { 1192 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1193 args.add(RValue::get(arg), getContext().getObjCIdType()); 1194 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1195 getContext().BoolTy); 1196 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1197 getContext().BoolTy); 1198 // FIXME: We shouldn't need to get the function info here, the runtime 1199 // already should have computed it to build the function. 1200 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1201 FunctionType::ExtInfo(), 1202 RequiredArgs::All), 1203 setPropertyFn, ReturnValueSlot(), args); 1204 } 1205 1206 return; 1207 } 1208 1209 case PropertyImplStrategy::CopyStruct: 1210 emitStructSetterCall(*this, setterMethod, ivar); 1211 return; 1212 1213 case PropertyImplStrategy::Expression: 1214 break; 1215 } 1216 1217 // Otherwise, fake up some ASTs and emit a normal assignment. 1218 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1219 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1220 VK_LValue, SourceLocation()); 1221 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1222 selfDecl->getType(), CK_LValueToRValue, &self, 1223 VK_RValue); 1224 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1225 SourceLocation(), SourceLocation(), 1226 &selfLoad, true, true); 1227 1228 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1229 QualType argType = argDecl->getType().getNonReferenceType(); 1230 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1231 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1232 argType.getUnqualifiedType(), CK_LValueToRValue, 1233 &arg, VK_RValue); 1234 1235 // The property type can differ from the ivar type in some situations with 1236 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1237 // The following absurdity is just to ensure well-formed IR. 1238 CastKind argCK = CK_NoOp; 1239 if (ivarRef.getType()->isObjCObjectPointerType()) { 1240 if (argLoad.getType()->isObjCObjectPointerType()) 1241 argCK = CK_BitCast; 1242 else if (argLoad.getType()->isBlockPointerType()) 1243 argCK = CK_BlockPointerToObjCPointerCast; 1244 else 1245 argCK = CK_CPointerToObjCPointerCast; 1246 } else if (ivarRef.getType()->isBlockPointerType()) { 1247 if (argLoad.getType()->isBlockPointerType()) 1248 argCK = CK_BitCast; 1249 else 1250 argCK = CK_AnyPointerToBlockPointerCast; 1251 } else if (ivarRef.getType()->isPointerType()) { 1252 argCK = CK_BitCast; 1253 } 1254 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1255 ivarRef.getType(), argCK, &argLoad, 1256 VK_RValue); 1257 Expr *finalArg = &argLoad; 1258 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1259 argLoad.getType())) 1260 finalArg = &argCast; 1261 1262 1263 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1264 ivarRef.getType(), VK_RValue, OK_Ordinary, 1265 SourceLocation(), false); 1266 EmitStmt(&assign); 1267 } 1268 1269 /// \brief Generate an Objective-C property setter function. 1270 /// 1271 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1272 /// is illegal within a category. 1273 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1274 const ObjCPropertyImplDecl *PID) { 1275 llvm::Constant *AtomicHelperFn = 1276 GenerateObjCAtomicSetterCopyHelperFunction(PID); 1277 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1278 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1279 assert(OMD && "Invalid call to generate setter (empty method)"); 1280 StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart()); 1281 1282 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1283 1284 FinishFunction(); 1285 } 1286 1287 namespace { 1288 struct DestroyIvar : EHScopeStack::Cleanup { 1289 private: 1290 llvm::Value *addr; 1291 const ObjCIvarDecl *ivar; 1292 CodeGenFunction::Destroyer *destroyer; 1293 bool useEHCleanupForArray; 1294 public: 1295 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1296 CodeGenFunction::Destroyer *destroyer, 1297 bool useEHCleanupForArray) 1298 : addr(addr), ivar(ivar), destroyer(destroyer), 1299 useEHCleanupForArray(useEHCleanupForArray) {} 1300 1301 void Emit(CodeGenFunction &CGF, Flags flags) override { 1302 LValue lvalue 1303 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1304 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1305 flags.isForNormalCleanup() && useEHCleanupForArray); 1306 } 1307 }; 1308 } 1309 1310 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1311 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1312 llvm::Value *addr, 1313 QualType type) { 1314 llvm::Value *null = getNullForVariable(addr); 1315 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1316 } 1317 1318 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1319 ObjCImplementationDecl *impl) { 1320 CodeGenFunction::RunCleanupsScope scope(CGF); 1321 1322 llvm::Value *self = CGF.LoadObjCSelf(); 1323 1324 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1325 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1326 ivar; ivar = ivar->getNextIvar()) { 1327 QualType type = ivar->getType(); 1328 1329 // Check whether the ivar is a destructible type. 1330 QualType::DestructionKind dtorKind = type.isDestructedType(); 1331 if (!dtorKind) continue; 1332 1333 CodeGenFunction::Destroyer *destroyer = 0; 1334 1335 // Use a call to objc_storeStrong to destroy strong ivars, for the 1336 // general benefit of the tools. 1337 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1338 destroyer = destroyARCStrongWithStore; 1339 1340 // Otherwise use the default for the destruction kind. 1341 } else { 1342 destroyer = CGF.getDestroyer(dtorKind); 1343 } 1344 1345 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1346 1347 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1348 cleanupKind & EHCleanup); 1349 } 1350 1351 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1352 } 1353 1354 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1355 ObjCMethodDecl *MD, 1356 bool ctor) { 1357 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1358 StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart()); 1359 1360 // Emit .cxx_construct. 1361 if (ctor) { 1362 // Suppress the final autorelease in ARC. 1363 AutoreleaseResult = false; 1364 1365 for (const auto *IvarInit : IMP->inits()) { 1366 FieldDecl *Field = IvarInit->getAnyMember(); 1367 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1368 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1369 LoadObjCSelf(), Ivar, 0); 1370 EmitAggExpr(IvarInit->getInit(), 1371 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1372 AggValueSlot::DoesNotNeedGCBarriers, 1373 AggValueSlot::IsNotAliased)); 1374 } 1375 // constructor returns 'self'. 1376 CodeGenTypes &Types = CGM.getTypes(); 1377 QualType IdTy(CGM.getContext().getObjCIdType()); 1378 llvm::Value *SelfAsId = 1379 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1380 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1381 1382 // Emit .cxx_destruct. 1383 } else { 1384 emitCXXDestructMethod(*this, IMP); 1385 } 1386 FinishFunction(); 1387 } 1388 1389 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) { 1390 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(); 1391 it++; it++; 1392 const ABIArgInfo &AI = it->info; 1393 // FIXME. Is this sufficient check? 1394 return (AI.getKind() == ABIArgInfo::Indirect); 1395 } 1396 1397 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) { 1398 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 1399 return false; 1400 if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>()) 1401 return FDTTy->getDecl()->hasObjectMember(); 1402 return false; 1403 } 1404 1405 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1406 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1407 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1408 Self->getType(), VK_LValue, SourceLocation()); 1409 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1410 } 1411 1412 QualType CodeGenFunction::TypeOfSelfObject() { 1413 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1414 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1415 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1416 getContext().getCanonicalType(selfDecl->getType())); 1417 return PTy->getPointeeType(); 1418 } 1419 1420 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1421 llvm::Constant *EnumerationMutationFn = 1422 CGM.getObjCRuntime().EnumerationMutationFunction(); 1423 1424 if (!EnumerationMutationFn) { 1425 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1426 return; 1427 } 1428 1429 CGDebugInfo *DI = getDebugInfo(); 1430 if (DI) 1431 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1432 1433 // The local variable comes into scope immediately. 1434 AutoVarEmission variable = AutoVarEmission::invalid(); 1435 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1436 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1437 1438 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1439 1440 // Fast enumeration state. 1441 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1442 llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1443 EmitNullInitialization(StatePtr, StateTy); 1444 1445 // Number of elements in the items array. 1446 static const unsigned NumItems = 16; 1447 1448 // Fetch the countByEnumeratingWithState:objects:count: selector. 1449 IdentifierInfo *II[] = { 1450 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1451 &CGM.getContext().Idents.get("objects"), 1452 &CGM.getContext().Idents.get("count") 1453 }; 1454 Selector FastEnumSel = 1455 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1456 1457 QualType ItemsTy = 1458 getContext().getConstantArrayType(getContext().getObjCIdType(), 1459 llvm::APInt(32, NumItems), 1460 ArrayType::Normal, 0); 1461 llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1462 1463 // Emit the collection pointer. In ARC, we do a retain. 1464 llvm::Value *Collection; 1465 if (getLangOpts().ObjCAutoRefCount) { 1466 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1467 1468 // Enter a cleanup to do the release. 1469 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1470 } else { 1471 Collection = EmitScalarExpr(S.getCollection()); 1472 } 1473 1474 // The 'continue' label needs to appear within the cleanup for the 1475 // collection object. 1476 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1477 1478 // Send it our message: 1479 CallArgList Args; 1480 1481 // The first argument is a temporary of the enumeration-state type. 1482 Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy)); 1483 1484 // The second argument is a temporary array with space for NumItems 1485 // pointers. We'll actually be loading elements from the array 1486 // pointer written into the control state; this buffer is so that 1487 // collections that *aren't* backed by arrays can still queue up 1488 // batches of elements. 1489 Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy)); 1490 1491 // The third argument is the capacity of that temporary array. 1492 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1493 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1494 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1495 1496 // Start the enumeration. 1497 RValue CountRV = 1498 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1499 getContext().UnsignedLongTy, 1500 FastEnumSel, 1501 Collection, Args); 1502 1503 // The initial number of objects that were returned in the buffer. 1504 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1505 1506 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1507 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1508 1509 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1510 1511 // If the limit pointer was zero to begin with, the collection is 1512 // empty; skip all this. 1513 Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), 1514 EmptyBB, LoopInitBB); 1515 1516 // Otherwise, initialize the loop. 1517 EmitBlock(LoopInitBB); 1518 1519 // Save the initial mutations value. This is the value at an 1520 // address that was written into the state object by 1521 // countByEnumeratingWithState:objects:count:. 1522 llvm::Value *StateMutationsPtrPtr = 1523 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1524 llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, 1525 "mutationsptr"); 1526 1527 llvm::Value *initialMutations = 1528 Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations"); 1529 1530 // Start looping. This is the point we return to whenever we have a 1531 // fresh, non-empty batch of objects. 1532 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1533 EmitBlock(LoopBodyBB); 1534 1535 // The current index into the buffer. 1536 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1537 index->addIncoming(zero, LoopInitBB); 1538 1539 // The current buffer size. 1540 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1541 count->addIncoming(initialBufferLimit, LoopInitBB); 1542 1543 RegionCounter Cnt = getPGORegionCounter(&S); 1544 Cnt.beginRegion(Builder); 1545 1546 // Check whether the mutations value has changed from where it was 1547 // at start. StateMutationsPtr should actually be invariant between 1548 // refreshes. 1549 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1550 llvm::Value *currentMutations 1551 = Builder.CreateLoad(StateMutationsPtr, "statemutations"); 1552 1553 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1554 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1555 1556 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1557 WasNotMutatedBB, WasMutatedBB); 1558 1559 // If so, call the enumeration-mutation function. 1560 EmitBlock(WasMutatedBB); 1561 llvm::Value *V = 1562 Builder.CreateBitCast(Collection, 1563 ConvertType(getContext().getObjCIdType())); 1564 CallArgList Args2; 1565 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1566 // FIXME: We shouldn't need to get the function info here, the runtime already 1567 // should have computed it to build the function. 1568 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2, 1569 FunctionType::ExtInfo(), 1570 RequiredArgs::All), 1571 EnumerationMutationFn, ReturnValueSlot(), Args2); 1572 1573 // Otherwise, or if the mutation function returns, just continue. 1574 EmitBlock(WasNotMutatedBB); 1575 1576 // Initialize the element variable. 1577 RunCleanupsScope elementVariableScope(*this); 1578 bool elementIsVariable; 1579 LValue elementLValue; 1580 QualType elementType; 1581 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1582 // Initialize the variable, in case it's a __block variable or something. 1583 EmitAutoVarInit(variable); 1584 1585 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1586 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1587 VK_LValue, SourceLocation()); 1588 elementLValue = EmitLValue(&tempDRE); 1589 elementType = D->getType(); 1590 elementIsVariable = true; 1591 1592 if (D->isARCPseudoStrong()) 1593 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1594 } else { 1595 elementLValue = LValue(); // suppress warning 1596 elementType = cast<Expr>(S.getElement())->getType(); 1597 elementIsVariable = false; 1598 } 1599 llvm::Type *convertedElementType = ConvertType(elementType); 1600 1601 // Fetch the buffer out of the enumeration state. 1602 // TODO: this pointer should actually be invariant between 1603 // refreshes, which would help us do certain loop optimizations. 1604 llvm::Value *StateItemsPtr = 1605 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1606 llvm::Value *EnumStateItems = 1607 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1608 1609 // Fetch the value at the current index from the buffer. 1610 llvm::Value *CurrentItemPtr = 1611 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1612 llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr); 1613 1614 // Cast that value to the right type. 1615 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1616 "currentitem"); 1617 1618 // Make sure we have an l-value. Yes, this gets evaluated every 1619 // time through the loop. 1620 if (!elementIsVariable) { 1621 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1622 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1623 } else { 1624 EmitScalarInit(CurrentItem, elementLValue); 1625 } 1626 1627 // If we do have an element variable, this assignment is the end of 1628 // its initialization. 1629 if (elementIsVariable) 1630 EmitAutoVarCleanups(variable); 1631 1632 // Perform the loop body, setting up break and continue labels. 1633 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1634 { 1635 RunCleanupsScope Scope(*this); 1636 EmitStmt(S.getBody()); 1637 } 1638 BreakContinueStack.pop_back(); 1639 1640 // Destroy the element variable now. 1641 elementVariableScope.ForceCleanup(); 1642 1643 // Check whether there are more elements. 1644 EmitBlock(AfterBody.getBlock()); 1645 1646 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1647 1648 // First we check in the local buffer. 1649 llvm::Value *indexPlusOne 1650 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1651 1652 // TODO: We should probably model this as a "continue" for PGO 1653 // If we haven't overrun the buffer yet, we can continue. 1654 Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count), 1655 LoopBodyBB, FetchMoreBB); 1656 1657 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1658 count->addIncoming(count, AfterBody.getBlock()); 1659 1660 // Otherwise, we have to fetch more elements. 1661 EmitBlock(FetchMoreBB); 1662 1663 CountRV = 1664 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1665 getContext().UnsignedLongTy, 1666 FastEnumSel, 1667 Collection, Args); 1668 1669 // If we got a zero count, we're done. 1670 llvm::Value *refetchCount = CountRV.getScalarVal(); 1671 1672 // (note that the message send might split FetchMoreBB) 1673 index->addIncoming(zero, Builder.GetInsertBlock()); 1674 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1675 1676 // TODO: We should be applying PGO weights here, but this needs to handle the 1677 // branch before FetchMoreBB or we risk getting the numbers wrong. 1678 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1679 EmptyBB, LoopBodyBB); 1680 1681 // No more elements. 1682 EmitBlock(EmptyBB); 1683 1684 if (!elementIsVariable) { 1685 // If the element was not a declaration, set it to be null. 1686 1687 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1688 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1689 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1690 } 1691 1692 if (DI) 1693 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1694 1695 // Leave the cleanup we entered in ARC. 1696 if (getLangOpts().ObjCAutoRefCount) 1697 PopCleanupBlock(); 1698 1699 EmitBlock(LoopEnd.getBlock()); 1700 // TODO: Once we calculate PGO weights above, set the region count here 1701 } 1702 1703 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1704 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1705 } 1706 1707 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1708 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1709 } 1710 1711 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1712 const ObjCAtSynchronizedStmt &S) { 1713 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1714 } 1715 1716 /// Produce the code for a CK_ARCProduceObject. Just does a 1717 /// primitive retain. 1718 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type, 1719 llvm::Value *value) { 1720 return EmitARCRetain(type, value); 1721 } 1722 1723 namespace { 1724 struct CallObjCRelease : EHScopeStack::Cleanup { 1725 CallObjCRelease(llvm::Value *object) : object(object) {} 1726 llvm::Value *object; 1727 1728 void Emit(CodeGenFunction &CGF, Flags flags) override { 1729 // Releases at the end of the full-expression are imprecise. 1730 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1731 } 1732 }; 1733 } 1734 1735 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1736 /// release at the end of the full-expression. 1737 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1738 llvm::Value *object) { 1739 // If we're in a conditional branch, we need to make the cleanup 1740 // conditional. 1741 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1742 return object; 1743 } 1744 1745 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1746 llvm::Value *value) { 1747 return EmitARCRetainAutorelease(type, value); 1748 } 1749 1750 /// Given a number of pointers, inform the optimizer that they're 1751 /// being intrinsically used up until this point in the program. 1752 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1753 llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use; 1754 if (!fn) { 1755 llvm::FunctionType *fnType = 1756 llvm::FunctionType::get(CGM.VoidTy, ArrayRef<llvm::Type*>(), true); 1757 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use"); 1758 } 1759 1760 // This isn't really a "runtime" function, but as an intrinsic it 1761 // doesn't really matter as long as we align things up. 1762 EmitNounwindRuntimeCall(fn, values); 1763 } 1764 1765 1766 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1767 llvm::FunctionType *type, 1768 StringRef fnName) { 1769 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1770 1771 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) { 1772 // If the target runtime doesn't naturally support ARC, emit weak 1773 // references to the runtime support library. We don't really 1774 // permit this to fail, but we need a particular relocation style. 1775 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 1776 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1777 } else if (fnName == "objc_retain" || fnName == "objc_release") { 1778 // If we have Native ARC, set nonlazybind attribute for these APIs for 1779 // performance. 1780 f->addFnAttr(llvm::Attribute::NonLazyBind); 1781 } 1782 } 1783 1784 return fn; 1785 } 1786 1787 /// Perform an operation having the signature 1788 /// i8* (i8*) 1789 /// where a null input causes a no-op and returns null. 1790 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1791 llvm::Value *value, 1792 llvm::Constant *&fn, 1793 StringRef fnName, 1794 bool isTailCall = false) { 1795 if (isa<llvm::ConstantPointerNull>(value)) return value; 1796 1797 if (!fn) { 1798 llvm::FunctionType *fnType = 1799 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 1800 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1801 } 1802 1803 // Cast the argument to 'id'. 1804 llvm::Type *origType = value->getType(); 1805 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1806 1807 // Call the function. 1808 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1809 if (isTailCall) 1810 call->setTailCall(); 1811 1812 // Cast the result back to the original type. 1813 return CGF.Builder.CreateBitCast(call, origType); 1814 } 1815 1816 /// Perform an operation having the following signature: 1817 /// i8* (i8**) 1818 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1819 llvm::Value *addr, 1820 llvm::Constant *&fn, 1821 StringRef fnName) { 1822 if (!fn) { 1823 llvm::FunctionType *fnType = 1824 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false); 1825 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1826 } 1827 1828 // Cast the argument to 'id*'. 1829 llvm::Type *origType = addr->getType(); 1830 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1831 1832 // Call the function. 1833 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr); 1834 1835 // Cast the result back to a dereference of the original type. 1836 if (origType != CGF.Int8PtrPtrTy) 1837 result = CGF.Builder.CreateBitCast(result, 1838 cast<llvm::PointerType>(origType)->getElementType()); 1839 1840 return result; 1841 } 1842 1843 /// Perform an operation having the following signature: 1844 /// i8* (i8**, i8*) 1845 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1846 llvm::Value *addr, 1847 llvm::Value *value, 1848 llvm::Constant *&fn, 1849 StringRef fnName, 1850 bool ignored) { 1851 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 1852 == value->getType()); 1853 1854 if (!fn) { 1855 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1856 1857 llvm::FunctionType *fnType 1858 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1859 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1860 } 1861 1862 llvm::Type *origType = value->getType(); 1863 1864 llvm::Value *args[] = { 1865 CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy), 1866 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 1867 }; 1868 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 1869 1870 if (ignored) return 0; 1871 1872 return CGF.Builder.CreateBitCast(result, origType); 1873 } 1874 1875 /// Perform an operation having the following signature: 1876 /// void (i8**, i8**) 1877 static void emitARCCopyOperation(CodeGenFunction &CGF, 1878 llvm::Value *dst, 1879 llvm::Value *src, 1880 llvm::Constant *&fn, 1881 StringRef fnName) { 1882 assert(dst->getType() == src->getType()); 1883 1884 if (!fn) { 1885 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy }; 1886 1887 llvm::FunctionType *fnType 1888 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1889 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1890 } 1891 1892 llvm::Value *args[] = { 1893 CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy), 1894 CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy) 1895 }; 1896 CGF.EmitNounwindRuntimeCall(fn, args); 1897 } 1898 1899 /// Produce the code to do a retain. Based on the type, calls one of: 1900 /// call i8* \@objc_retain(i8* %value) 1901 /// call i8* \@objc_retainBlock(i8* %value) 1902 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1903 if (type->isBlockPointerType()) 1904 return EmitARCRetainBlock(value, /*mandatory*/ false); 1905 else 1906 return EmitARCRetainNonBlock(value); 1907 } 1908 1909 /// Retain the given object, with normal retain semantics. 1910 /// call i8* \@objc_retain(i8* %value) 1911 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1912 return emitARCValueOperation(*this, value, 1913 CGM.getARCEntrypoints().objc_retain, 1914 "objc_retain"); 1915 } 1916 1917 /// Retain the given block, with _Block_copy semantics. 1918 /// call i8* \@objc_retainBlock(i8* %value) 1919 /// 1920 /// \param mandatory - If false, emit the call with metadata 1921 /// indicating that it's okay for the optimizer to eliminate this call 1922 /// if it can prove that the block never escapes except down the stack. 1923 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1924 bool mandatory) { 1925 llvm::Value *result 1926 = emitARCValueOperation(*this, value, 1927 CGM.getARCEntrypoints().objc_retainBlock, 1928 "objc_retainBlock"); 1929 1930 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1931 // tell the optimizer that it doesn't need to do this copy if the 1932 // block doesn't escape, where being passed as an argument doesn't 1933 // count as escaping. 1934 if (!mandatory && isa<llvm::Instruction>(result)) { 1935 llvm::CallInst *call 1936 = cast<llvm::CallInst>(result->stripPointerCasts()); 1937 assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock); 1938 1939 SmallVector<llvm::Value*,1> args; 1940 call->setMetadata("clang.arc.copy_on_escape", 1941 llvm::MDNode::get(Builder.getContext(), args)); 1942 } 1943 1944 return result; 1945 } 1946 1947 /// Retain the given object which is the result of a function call. 1948 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 1949 /// 1950 /// Yes, this function name is one character away from a different 1951 /// call with completely different semantics. 1952 llvm::Value * 1953 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 1954 // Fetch the void(void) inline asm which marks that we're going to 1955 // retain the autoreleased return value. 1956 llvm::InlineAsm *&marker 1957 = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker; 1958 if (!marker) { 1959 StringRef assembly 1960 = CGM.getTargetCodeGenInfo() 1961 .getARCRetainAutoreleasedReturnValueMarker(); 1962 1963 // If we have an empty assembly string, there's nothing to do. 1964 if (assembly.empty()) { 1965 1966 // Otherwise, at -O0, build an inline asm that we're going to call 1967 // in a moment. 1968 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1969 llvm::FunctionType *type = 1970 llvm::FunctionType::get(VoidTy, /*variadic*/false); 1971 1972 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 1973 1974 // If we're at -O1 and above, we don't want to litter the code 1975 // with this marker yet, so leave a breadcrumb for the ARC 1976 // optimizer to pick up. 1977 } else { 1978 llvm::NamedMDNode *metadata = 1979 CGM.getModule().getOrInsertNamedMetadata( 1980 "clang.arc.retainAutoreleasedReturnValueMarker"); 1981 assert(metadata->getNumOperands() <= 1); 1982 if (metadata->getNumOperands() == 0) { 1983 llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly); 1984 metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string)); 1985 } 1986 } 1987 } 1988 1989 // Call the marker asm if we made one, which we do only at -O0. 1990 if (marker) Builder.CreateCall(marker); 1991 1992 return emitARCValueOperation(*this, value, 1993 CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue, 1994 "objc_retainAutoreleasedReturnValue"); 1995 } 1996 1997 /// Release the given object. 1998 /// call void \@objc_release(i8* %value) 1999 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2000 ARCPreciseLifetime_t precise) { 2001 if (isa<llvm::ConstantPointerNull>(value)) return; 2002 2003 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release; 2004 if (!fn) { 2005 llvm::FunctionType *fnType = 2006 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2007 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 2008 } 2009 2010 // Cast the argument to 'id'. 2011 value = Builder.CreateBitCast(value, Int8PtrTy); 2012 2013 // Call objc_release. 2014 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2015 2016 if (precise == ARCImpreciseLifetime) { 2017 SmallVector<llvm::Value*,1> args; 2018 call->setMetadata("clang.imprecise_release", 2019 llvm::MDNode::get(Builder.getContext(), args)); 2020 } 2021 } 2022 2023 /// Destroy a __strong variable. 2024 /// 2025 /// At -O0, emit a call to store 'null' into the address; 2026 /// instrumenting tools prefer this because the address is exposed, 2027 /// but it's relatively cumbersome to optimize. 2028 /// 2029 /// At -O1 and above, just load and call objc_release. 2030 /// 2031 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2032 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr, 2033 ARCPreciseLifetime_t precise) { 2034 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2035 llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType()); 2036 llvm::Value *null = llvm::ConstantPointerNull::get( 2037 cast<llvm::PointerType>(addrTy->getElementType())); 2038 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2039 return; 2040 } 2041 2042 llvm::Value *value = Builder.CreateLoad(addr); 2043 EmitARCRelease(value, precise); 2044 } 2045 2046 /// Store into a strong object. Always calls this: 2047 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2048 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr, 2049 llvm::Value *value, 2050 bool ignored) { 2051 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 2052 == value->getType()); 2053 2054 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong; 2055 if (!fn) { 2056 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 2057 llvm::FunctionType *fnType 2058 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 2059 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 2060 } 2061 2062 llvm::Value *args[] = { 2063 Builder.CreateBitCast(addr, Int8PtrPtrTy), 2064 Builder.CreateBitCast(value, Int8PtrTy) 2065 }; 2066 EmitNounwindRuntimeCall(fn, args); 2067 2068 if (ignored) return 0; 2069 return value; 2070 } 2071 2072 /// Store into a strong object. Sometimes calls this: 2073 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2074 /// Other times, breaks it down into components. 2075 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2076 llvm::Value *newValue, 2077 bool ignored) { 2078 QualType type = dst.getType(); 2079 bool isBlock = type->isBlockPointerType(); 2080 2081 // Use a store barrier at -O0 unless this is a block type or the 2082 // lvalue is inadequately aligned. 2083 if (shouldUseFusedARCCalls() && 2084 !isBlock && 2085 (dst.getAlignment().isZero() || 2086 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2087 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2088 } 2089 2090 // Otherwise, split it out. 2091 2092 // Retain the new value. 2093 newValue = EmitARCRetain(type, newValue); 2094 2095 // Read the old value. 2096 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2097 2098 // Store. We do this before the release so that any deallocs won't 2099 // see the old value. 2100 EmitStoreOfScalar(newValue, dst); 2101 2102 // Finally, release the old value. 2103 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2104 2105 return newValue; 2106 } 2107 2108 /// Autorelease the given object. 2109 /// call i8* \@objc_autorelease(i8* %value) 2110 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2111 return emitARCValueOperation(*this, value, 2112 CGM.getARCEntrypoints().objc_autorelease, 2113 "objc_autorelease"); 2114 } 2115 2116 /// Autorelease the given object. 2117 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2118 llvm::Value * 2119 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2120 return emitARCValueOperation(*this, value, 2121 CGM.getARCEntrypoints().objc_autoreleaseReturnValue, 2122 "objc_autoreleaseReturnValue", 2123 /*isTailCall*/ true); 2124 } 2125 2126 /// Do a fused retain/autorelease of the given object. 2127 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2128 llvm::Value * 2129 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2130 return emitARCValueOperation(*this, value, 2131 CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue, 2132 "objc_retainAutoreleaseReturnValue", 2133 /*isTailCall*/ true); 2134 } 2135 2136 /// Do a fused retain/autorelease of the given object. 2137 /// call i8* \@objc_retainAutorelease(i8* %value) 2138 /// or 2139 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2140 /// call i8* \@objc_autorelease(i8* %retain) 2141 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2142 llvm::Value *value) { 2143 if (!type->isBlockPointerType()) 2144 return EmitARCRetainAutoreleaseNonBlock(value); 2145 2146 if (isa<llvm::ConstantPointerNull>(value)) return value; 2147 2148 llvm::Type *origType = value->getType(); 2149 value = Builder.CreateBitCast(value, Int8PtrTy); 2150 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2151 value = EmitARCAutorelease(value); 2152 return Builder.CreateBitCast(value, origType); 2153 } 2154 2155 /// Do a fused retain/autorelease of the given object. 2156 /// call i8* \@objc_retainAutorelease(i8* %value) 2157 llvm::Value * 2158 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2159 return emitARCValueOperation(*this, value, 2160 CGM.getARCEntrypoints().objc_retainAutorelease, 2161 "objc_retainAutorelease"); 2162 } 2163 2164 /// i8* \@objc_loadWeak(i8** %addr) 2165 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2166 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) { 2167 return emitARCLoadOperation(*this, addr, 2168 CGM.getARCEntrypoints().objc_loadWeak, 2169 "objc_loadWeak"); 2170 } 2171 2172 /// i8* \@objc_loadWeakRetained(i8** %addr) 2173 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) { 2174 return emitARCLoadOperation(*this, addr, 2175 CGM.getARCEntrypoints().objc_loadWeakRetained, 2176 "objc_loadWeakRetained"); 2177 } 2178 2179 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2180 /// Returns %value. 2181 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr, 2182 llvm::Value *value, 2183 bool ignored) { 2184 return emitARCStoreOperation(*this, addr, value, 2185 CGM.getARCEntrypoints().objc_storeWeak, 2186 "objc_storeWeak", ignored); 2187 } 2188 2189 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2190 /// Returns %value. %addr is known to not have a current weak entry. 2191 /// Essentially equivalent to: 2192 /// *addr = nil; objc_storeWeak(addr, value); 2193 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) { 2194 // If we're initializing to null, just write null to memory; no need 2195 // to get the runtime involved. But don't do this if optimization 2196 // is enabled, because accounting for this would make the optimizer 2197 // much more complicated. 2198 if (isa<llvm::ConstantPointerNull>(value) && 2199 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2200 Builder.CreateStore(value, addr); 2201 return; 2202 } 2203 2204 emitARCStoreOperation(*this, addr, value, 2205 CGM.getARCEntrypoints().objc_initWeak, 2206 "objc_initWeak", /*ignored*/ true); 2207 } 2208 2209 /// void \@objc_destroyWeak(i8** %addr) 2210 /// Essentially objc_storeWeak(addr, nil). 2211 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) { 2212 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak; 2213 if (!fn) { 2214 llvm::FunctionType *fnType = 2215 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false); 2216 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 2217 } 2218 2219 // Cast the argument to 'id*'. 2220 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2221 2222 EmitNounwindRuntimeCall(fn, addr); 2223 } 2224 2225 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2226 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2227 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2228 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) { 2229 emitARCCopyOperation(*this, dst, src, 2230 CGM.getARCEntrypoints().objc_moveWeak, 2231 "objc_moveWeak"); 2232 } 2233 2234 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2235 /// Disregards the current value in %dest. Essentially 2236 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2237 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) { 2238 emitARCCopyOperation(*this, dst, src, 2239 CGM.getARCEntrypoints().objc_copyWeak, 2240 "objc_copyWeak"); 2241 } 2242 2243 /// Produce the code to do a objc_autoreleasepool_push. 2244 /// call i8* \@objc_autoreleasePoolPush(void) 2245 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2246 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush; 2247 if (!fn) { 2248 llvm::FunctionType *fnType = 2249 llvm::FunctionType::get(Int8PtrTy, false); 2250 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 2251 } 2252 2253 return EmitNounwindRuntimeCall(fn); 2254 } 2255 2256 /// Produce the code to do a primitive release. 2257 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2258 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2259 assert(value->getType() == Int8PtrTy); 2260 2261 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop; 2262 if (!fn) { 2263 llvm::FunctionType *fnType = 2264 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2265 2266 // We don't want to use a weak import here; instead we should not 2267 // fall into this path. 2268 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 2269 } 2270 2271 // objc_autoreleasePoolPop can throw. 2272 EmitRuntimeCallOrInvoke(fn, value); 2273 } 2274 2275 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2276 /// Which is: [[NSAutoreleasePool alloc] init]; 2277 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2278 /// init is declared as: - (id) init; in its NSObject super class. 2279 /// 2280 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2281 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2282 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2283 // [NSAutoreleasePool alloc] 2284 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2285 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2286 CallArgList Args; 2287 RValue AllocRV = 2288 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2289 getContext().getObjCIdType(), 2290 AllocSel, Receiver, Args); 2291 2292 // [Receiver init] 2293 Receiver = AllocRV.getScalarVal(); 2294 II = &CGM.getContext().Idents.get("init"); 2295 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2296 RValue InitRV = 2297 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2298 getContext().getObjCIdType(), 2299 InitSel, Receiver, Args); 2300 return InitRV.getScalarVal(); 2301 } 2302 2303 /// Produce the code to do a primitive release. 2304 /// [tmp drain]; 2305 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2306 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2307 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2308 CallArgList Args; 2309 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2310 getContext().VoidTy, DrainSel, Arg, Args); 2311 } 2312 2313 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2314 llvm::Value *addr, 2315 QualType type) { 2316 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2317 } 2318 2319 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2320 llvm::Value *addr, 2321 QualType type) { 2322 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2323 } 2324 2325 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2326 llvm::Value *addr, 2327 QualType type) { 2328 CGF.EmitARCDestroyWeak(addr); 2329 } 2330 2331 namespace { 2332 struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup { 2333 llvm::Value *Token; 2334 2335 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2336 2337 void Emit(CodeGenFunction &CGF, Flags flags) override { 2338 CGF.EmitObjCAutoreleasePoolPop(Token); 2339 } 2340 }; 2341 struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup { 2342 llvm::Value *Token; 2343 2344 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2345 2346 void Emit(CodeGenFunction &CGF, Flags flags) override { 2347 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2348 } 2349 }; 2350 } 2351 2352 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2353 if (CGM.getLangOpts().ObjCAutoRefCount) 2354 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2355 else 2356 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2357 } 2358 2359 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2360 LValue lvalue, 2361 QualType type) { 2362 switch (type.getObjCLifetime()) { 2363 case Qualifiers::OCL_None: 2364 case Qualifiers::OCL_ExplicitNone: 2365 case Qualifiers::OCL_Strong: 2366 case Qualifiers::OCL_Autoreleasing: 2367 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue, 2368 SourceLocation()).getScalarVal(), 2369 false); 2370 2371 case Qualifiers::OCL_Weak: 2372 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2373 true); 2374 } 2375 2376 llvm_unreachable("impossible lifetime!"); 2377 } 2378 2379 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2380 const Expr *e) { 2381 e = e->IgnoreParens(); 2382 QualType type = e->getType(); 2383 2384 // If we're loading retained from a __strong xvalue, we can avoid 2385 // an extra retain/release pair by zeroing out the source of this 2386 // "move" operation. 2387 if (e->isXValue() && 2388 !type.isConstQualified() && 2389 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2390 // Emit the lvalue. 2391 LValue lv = CGF.EmitLValue(e); 2392 2393 // Load the object pointer. 2394 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2395 SourceLocation()).getScalarVal(); 2396 2397 // Set the source pointer to NULL. 2398 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2399 2400 return TryEmitResult(result, true); 2401 } 2402 2403 // As a very special optimization, in ARC++, if the l-value is the 2404 // result of a non-volatile assignment, do a simple retain of the 2405 // result of the call to objc_storeWeak instead of reloading. 2406 if (CGF.getLangOpts().CPlusPlus && 2407 !type.isVolatileQualified() && 2408 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2409 isa<BinaryOperator>(e) && 2410 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2411 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2412 2413 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2414 } 2415 2416 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2417 llvm::Value *value); 2418 2419 /// Given that the given expression is some sort of call (which does 2420 /// not return retained), emit a retain following it. 2421 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) { 2422 llvm::Value *value = CGF.EmitScalarExpr(e); 2423 return emitARCRetainAfterCall(CGF, value); 2424 } 2425 2426 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2427 llvm::Value *value) { 2428 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2429 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2430 2431 // Place the retain immediately following the call. 2432 CGF.Builder.SetInsertPoint(call->getParent(), 2433 ++llvm::BasicBlock::iterator(call)); 2434 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2435 2436 CGF.Builder.restoreIP(ip); 2437 return value; 2438 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2439 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2440 2441 // Place the retain at the beginning of the normal destination block. 2442 llvm::BasicBlock *BB = invoke->getNormalDest(); 2443 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2444 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2445 2446 CGF.Builder.restoreIP(ip); 2447 return value; 2448 2449 // Bitcasts can arise because of related-result returns. Rewrite 2450 // the operand. 2451 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2452 llvm::Value *operand = bitcast->getOperand(0); 2453 operand = emitARCRetainAfterCall(CGF, operand); 2454 bitcast->setOperand(0, operand); 2455 return bitcast; 2456 2457 // Generic fall-back case. 2458 } else { 2459 // Retain using the non-block variant: we never need to do a copy 2460 // of a block that's been returned to us. 2461 return CGF.EmitARCRetainNonBlock(value); 2462 } 2463 } 2464 2465 /// Determine whether it might be important to emit a separate 2466 /// objc_retain_block on the result of the given expression, or 2467 /// whether it's okay to just emit it in a +1 context. 2468 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2469 assert(e->getType()->isBlockPointerType()); 2470 e = e->IgnoreParens(); 2471 2472 // For future goodness, emit block expressions directly in +1 2473 // contexts if we can. 2474 if (isa<BlockExpr>(e)) 2475 return false; 2476 2477 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2478 switch (cast->getCastKind()) { 2479 // Emitting these operations in +1 contexts is goodness. 2480 case CK_LValueToRValue: 2481 case CK_ARCReclaimReturnedObject: 2482 case CK_ARCConsumeObject: 2483 case CK_ARCProduceObject: 2484 return false; 2485 2486 // These operations preserve a block type. 2487 case CK_NoOp: 2488 case CK_BitCast: 2489 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2490 2491 // These operations are known to be bad (or haven't been considered). 2492 case CK_AnyPointerToBlockPointerCast: 2493 default: 2494 return true; 2495 } 2496 } 2497 2498 return true; 2499 } 2500 2501 /// Try to emit a PseudoObjectExpr at +1. 2502 /// 2503 /// This massively duplicates emitPseudoObjectRValue. 2504 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF, 2505 const PseudoObjectExpr *E) { 2506 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2507 2508 // Find the result expression. 2509 const Expr *resultExpr = E->getResultExpr(); 2510 assert(resultExpr); 2511 TryEmitResult result; 2512 2513 for (PseudoObjectExpr::const_semantics_iterator 2514 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2515 const Expr *semantic = *i; 2516 2517 // If this semantic expression is an opaque value, bind it 2518 // to the result of its source expression. 2519 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2520 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2521 OVMA opaqueData; 2522 2523 // If this semantic is the result of the pseudo-object 2524 // expression, try to evaluate the source as +1. 2525 if (ov == resultExpr) { 2526 assert(!OVMA::shouldBindAsLValue(ov)); 2527 result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr()); 2528 opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer())); 2529 2530 // Otherwise, just bind it. 2531 } else { 2532 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2533 } 2534 opaques.push_back(opaqueData); 2535 2536 // Otherwise, if the expression is the result, evaluate it 2537 // and remember the result. 2538 } else if (semantic == resultExpr) { 2539 result = tryEmitARCRetainScalarExpr(CGF, semantic); 2540 2541 // Otherwise, evaluate the expression in an ignored context. 2542 } else { 2543 CGF.EmitIgnoredExpr(semantic); 2544 } 2545 } 2546 2547 // Unbind all the opaques now. 2548 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2549 opaques[i].unbind(CGF); 2550 2551 return result; 2552 } 2553 2554 static TryEmitResult 2555 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2556 // We should *never* see a nested full-expression here, because if 2557 // we fail to emit at +1, our caller must not retain after we close 2558 // out the full-expression. 2559 assert(!isa<ExprWithCleanups>(e)); 2560 2561 // The desired result type, if it differs from the type of the 2562 // ultimate opaque expression. 2563 llvm::Type *resultType = 0; 2564 2565 while (true) { 2566 e = e->IgnoreParens(); 2567 2568 // There's a break at the end of this if-chain; anything 2569 // that wants to keep looping has to explicitly continue. 2570 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2571 switch (ce->getCastKind()) { 2572 // No-op casts don't change the type, so we just ignore them. 2573 case CK_NoOp: 2574 e = ce->getSubExpr(); 2575 continue; 2576 2577 case CK_LValueToRValue: { 2578 TryEmitResult loadResult 2579 = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr()); 2580 if (resultType) { 2581 llvm::Value *value = loadResult.getPointer(); 2582 value = CGF.Builder.CreateBitCast(value, resultType); 2583 loadResult.setPointer(value); 2584 } 2585 return loadResult; 2586 } 2587 2588 // These casts can change the type, so remember that and 2589 // soldier on. We only need to remember the outermost such 2590 // cast, though. 2591 case CK_CPointerToObjCPointerCast: 2592 case CK_BlockPointerToObjCPointerCast: 2593 case CK_AnyPointerToBlockPointerCast: 2594 case CK_BitCast: 2595 if (!resultType) 2596 resultType = CGF.ConvertType(ce->getType()); 2597 e = ce->getSubExpr(); 2598 assert(e->getType()->hasPointerRepresentation()); 2599 continue; 2600 2601 // For consumptions, just emit the subexpression and thus elide 2602 // the retain/release pair. 2603 case CK_ARCConsumeObject: { 2604 llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr()); 2605 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2606 return TryEmitResult(result, true); 2607 } 2608 2609 // Block extends are net +0. Naively, we could just recurse on 2610 // the subexpression, but actually we need to ensure that the 2611 // value is copied as a block, so there's a little filter here. 2612 case CK_ARCExtendBlockObject: { 2613 llvm::Value *result; // will be a +0 value 2614 2615 // If we can't safely assume the sub-expression will produce a 2616 // block-copied value, emit the sub-expression at +0. 2617 if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) { 2618 result = CGF.EmitScalarExpr(ce->getSubExpr()); 2619 2620 // Otherwise, try to emit the sub-expression at +1 recursively. 2621 } else { 2622 TryEmitResult subresult 2623 = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr()); 2624 result = subresult.getPointer(); 2625 2626 // If that produced a retained value, just use that, 2627 // possibly casting down. 2628 if (subresult.getInt()) { 2629 if (resultType) 2630 result = CGF.Builder.CreateBitCast(result, resultType); 2631 return TryEmitResult(result, true); 2632 } 2633 2634 // Otherwise it's +0. 2635 } 2636 2637 // Retain the object as a block, then cast down. 2638 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2639 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2640 return TryEmitResult(result, true); 2641 } 2642 2643 // For reclaims, emit the subexpression as a retained call and 2644 // skip the consumption. 2645 case CK_ARCReclaimReturnedObject: { 2646 llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr()); 2647 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2648 return TryEmitResult(result, true); 2649 } 2650 2651 default: 2652 break; 2653 } 2654 2655 // Skip __extension__. 2656 } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 2657 if (op->getOpcode() == UO_Extension) { 2658 e = op->getSubExpr(); 2659 continue; 2660 } 2661 2662 // For calls and message sends, use the retained-call logic. 2663 // Delegate inits are a special case in that they're the only 2664 // returns-retained expression that *isn't* surrounded by 2665 // a consume. 2666 } else if (isa<CallExpr>(e) || 2667 (isa<ObjCMessageExpr>(e) && 2668 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2669 llvm::Value *result = emitARCRetainCall(CGF, e); 2670 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2671 return TryEmitResult(result, true); 2672 2673 // Look through pseudo-object expressions. 2674 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2675 TryEmitResult result 2676 = tryEmitARCRetainPseudoObject(CGF, pseudo); 2677 if (resultType) { 2678 llvm::Value *value = result.getPointer(); 2679 value = CGF.Builder.CreateBitCast(value, resultType); 2680 result.setPointer(value); 2681 } 2682 return result; 2683 } 2684 2685 // Conservatively halt the search at any other expression kind. 2686 break; 2687 } 2688 2689 // We didn't find an obvious production, so emit what we've got and 2690 // tell the caller that we didn't manage to retain. 2691 llvm::Value *result = CGF.EmitScalarExpr(e); 2692 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2693 return TryEmitResult(result, false); 2694 } 2695 2696 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2697 LValue lvalue, 2698 QualType type) { 2699 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2700 llvm::Value *value = result.getPointer(); 2701 if (!result.getInt()) 2702 value = CGF.EmitARCRetain(type, value); 2703 return value; 2704 } 2705 2706 /// EmitARCRetainScalarExpr - Semantically equivalent to 2707 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2708 /// best-effort attempt to peephole expressions that naturally produce 2709 /// retained objects. 2710 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2711 // The retain needs to happen within the full-expression. 2712 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2713 enterFullExpression(cleanups); 2714 RunCleanupsScope scope(*this); 2715 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 2716 } 2717 2718 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2719 llvm::Value *value = result.getPointer(); 2720 if (!result.getInt()) 2721 value = EmitARCRetain(e->getType(), value); 2722 return value; 2723 } 2724 2725 llvm::Value * 2726 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2727 // The retain needs to happen within the full-expression. 2728 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2729 enterFullExpression(cleanups); 2730 RunCleanupsScope scope(*this); 2731 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 2732 } 2733 2734 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2735 llvm::Value *value = result.getPointer(); 2736 if (result.getInt()) 2737 value = EmitARCAutorelease(value); 2738 else 2739 value = EmitARCRetainAutorelease(e->getType(), value); 2740 return value; 2741 } 2742 2743 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2744 llvm::Value *result; 2745 bool doRetain; 2746 2747 if (shouldEmitSeparateBlockRetain(e)) { 2748 result = EmitScalarExpr(e); 2749 doRetain = true; 2750 } else { 2751 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2752 result = subresult.getPointer(); 2753 doRetain = !subresult.getInt(); 2754 } 2755 2756 if (doRetain) 2757 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2758 return EmitObjCConsumeObject(e->getType(), result); 2759 } 2760 2761 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2762 // In ARC, retain and autorelease the expression. 2763 if (getLangOpts().ObjCAutoRefCount) { 2764 // Do so before running any cleanups for the full-expression. 2765 // EmitARCRetainAutoreleaseScalarExpr does this for us. 2766 return EmitARCRetainAutoreleaseScalarExpr(expr); 2767 } 2768 2769 // Otherwise, use the normal scalar-expression emission. The 2770 // exception machinery doesn't do anything special with the 2771 // exception like retaining it, so there's no safety associated with 2772 // only running cleanups after the throw has started, and when it 2773 // matters it tends to be substantially inferior code. 2774 return EmitScalarExpr(expr); 2775 } 2776 2777 std::pair<LValue,llvm::Value*> 2778 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 2779 bool ignored) { 2780 // Evaluate the RHS first. 2781 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 2782 llvm::Value *value = result.getPointer(); 2783 2784 bool hasImmediateRetain = result.getInt(); 2785 2786 // If we didn't emit a retained object, and the l-value is of block 2787 // type, then we need to emit the block-retain immediately in case 2788 // it invalidates the l-value. 2789 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 2790 value = EmitARCRetainBlock(value, /*mandatory*/ false); 2791 hasImmediateRetain = true; 2792 } 2793 2794 LValue lvalue = EmitLValue(e->getLHS()); 2795 2796 // If the RHS was emitted retained, expand this. 2797 if (hasImmediateRetain) { 2798 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 2799 EmitStoreOfScalar(value, lvalue); 2800 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 2801 } else { 2802 value = EmitARCStoreStrong(lvalue, value, ignored); 2803 } 2804 2805 return std::pair<LValue,llvm::Value*>(lvalue, value); 2806 } 2807 2808 std::pair<LValue,llvm::Value*> 2809 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 2810 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 2811 LValue lvalue = EmitLValue(e->getLHS()); 2812 2813 EmitStoreOfScalar(value, lvalue); 2814 2815 return std::pair<LValue,llvm::Value*>(lvalue, value); 2816 } 2817 2818 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 2819 const ObjCAutoreleasePoolStmt &ARPS) { 2820 const Stmt *subStmt = ARPS.getSubStmt(); 2821 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 2822 2823 CGDebugInfo *DI = getDebugInfo(); 2824 if (DI) 2825 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 2826 2827 // Keep track of the current cleanup stack depth. 2828 RunCleanupsScope Scope(*this); 2829 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 2830 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 2831 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 2832 } else { 2833 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 2834 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 2835 } 2836 2837 for (const auto *I : S.body()) 2838 EmitStmt(I); 2839 2840 if (DI) 2841 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 2842 } 2843 2844 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2845 /// make sure it survives garbage collection until this point. 2846 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 2847 // We just use an inline assembly. 2848 llvm::FunctionType *extenderType 2849 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 2850 llvm::Value *extender 2851 = llvm::InlineAsm::get(extenderType, 2852 /* assembly */ "", 2853 /* constraints */ "r", 2854 /* side effects */ true); 2855 2856 object = Builder.CreateBitCast(object, VoidPtrTy); 2857 EmitNounwindRuntimeCall(extender, object); 2858 } 2859 2860 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 2861 /// non-trivial copy assignment function, produce following helper function. 2862 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 2863 /// 2864 llvm::Constant * 2865 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 2866 const ObjCPropertyImplDecl *PID) { 2867 if (!getLangOpts().CPlusPlus || 2868 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2869 return 0; 2870 QualType Ty = PID->getPropertyIvarDecl()->getType(); 2871 if (!Ty->isRecordType()) 2872 return 0; 2873 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2874 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2875 return 0; 2876 llvm::Constant * HelperFn = 0; 2877 if (hasTrivialSetExpr(PID)) 2878 return 0; 2879 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 2880 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 2881 return HelperFn; 2882 2883 ASTContext &C = getContext(); 2884 IdentifierInfo *II 2885 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 2886 FunctionDecl *FD = FunctionDecl::Create(C, 2887 C.getTranslationUnitDecl(), 2888 SourceLocation(), 2889 SourceLocation(), II, C.VoidTy, 0, 2890 SC_Static, 2891 false, 2892 false); 2893 2894 QualType DestTy = C.getPointerType(Ty); 2895 QualType SrcTy = Ty; 2896 SrcTy.addConst(); 2897 SrcTy = C.getPointerType(SrcTy); 2898 2899 FunctionArgList args; 2900 ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy); 2901 args.push_back(&dstDecl); 2902 ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy); 2903 args.push_back(&srcDecl); 2904 2905 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 2906 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All); 2907 2908 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2909 2910 llvm::Function *Fn = 2911 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2912 "__assign_helper_atomic_property_", 2913 &CGM.getModule()); 2914 2915 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation()); 2916 2917 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 2918 VK_RValue, SourceLocation()); 2919 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 2920 VK_LValue, OK_Ordinary, SourceLocation()); 2921 2922 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2923 VK_RValue, SourceLocation()); 2924 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2925 VK_LValue, OK_Ordinary, SourceLocation()); 2926 2927 Expr *Args[2] = { &DST, &SRC }; 2928 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 2929 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 2930 Args, DestTy->getPointeeType(), 2931 VK_LValue, SourceLocation(), false); 2932 2933 EmitStmt(&TheCall); 2934 2935 FinishFunction(); 2936 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 2937 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 2938 return HelperFn; 2939 } 2940 2941 llvm::Constant * 2942 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 2943 const ObjCPropertyImplDecl *PID) { 2944 if (!getLangOpts().CPlusPlus || 2945 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2946 return 0; 2947 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2948 QualType Ty = PD->getType(); 2949 if (!Ty->isRecordType()) 2950 return 0; 2951 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2952 return 0; 2953 llvm::Constant * HelperFn = 0; 2954 2955 if (hasTrivialGetExpr(PID)) 2956 return 0; 2957 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 2958 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 2959 return HelperFn; 2960 2961 2962 ASTContext &C = getContext(); 2963 IdentifierInfo *II 2964 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 2965 FunctionDecl *FD = FunctionDecl::Create(C, 2966 C.getTranslationUnitDecl(), 2967 SourceLocation(), 2968 SourceLocation(), II, C.VoidTy, 0, 2969 SC_Static, 2970 false, 2971 false); 2972 2973 QualType DestTy = C.getPointerType(Ty); 2974 QualType SrcTy = Ty; 2975 SrcTy.addConst(); 2976 SrcTy = C.getPointerType(SrcTy); 2977 2978 FunctionArgList args; 2979 ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy); 2980 args.push_back(&dstDecl); 2981 ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy); 2982 args.push_back(&srcDecl); 2983 2984 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 2985 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All); 2986 2987 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2988 2989 llvm::Function *Fn = 2990 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2991 "__copy_helper_atomic_property_", &CGM.getModule()); 2992 2993 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation()); 2994 2995 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2996 VK_RValue, SourceLocation()); 2997 2998 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2999 VK_LValue, OK_Ordinary, SourceLocation()); 3000 3001 CXXConstructExpr *CXXConstExpr = 3002 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3003 3004 SmallVector<Expr*, 4> ConstructorArgs; 3005 ConstructorArgs.push_back(&SRC); 3006 CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin(); 3007 ++A; 3008 3009 for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end(); 3010 A != AEnd; ++A) 3011 ConstructorArgs.push_back(*A); 3012 3013 CXXConstructExpr *TheCXXConstructExpr = 3014 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3015 CXXConstExpr->getConstructor(), 3016 CXXConstExpr->isElidable(), 3017 ConstructorArgs, 3018 CXXConstExpr->hadMultipleCandidates(), 3019 CXXConstExpr->isListInitialization(), 3020 CXXConstExpr->requiresZeroInitialization(), 3021 CXXConstExpr->getConstructionKind(), 3022 SourceRange()); 3023 3024 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 3025 VK_RValue, SourceLocation()); 3026 3027 RValue DV = EmitAnyExpr(&DstExpr); 3028 CharUnits Alignment 3029 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3030 EmitAggExpr(TheCXXConstructExpr, 3031 AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(), 3032 AggValueSlot::IsDestructed, 3033 AggValueSlot::DoesNotNeedGCBarriers, 3034 AggValueSlot::IsNotAliased)); 3035 3036 FinishFunction(); 3037 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3038 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3039 return HelperFn; 3040 } 3041 3042 llvm::Value * 3043 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3044 // Get selectors for retain/autorelease. 3045 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3046 Selector CopySelector = 3047 getContext().Selectors.getNullarySelector(CopyID); 3048 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3049 Selector AutoreleaseSelector = 3050 getContext().Selectors.getNullarySelector(AutoreleaseID); 3051 3052 // Emit calls to retain/autorelease. 3053 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3054 llvm::Value *Val = Block; 3055 RValue Result; 3056 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3057 Ty, CopySelector, 3058 Val, CallArgList(), 0, 0); 3059 Val = Result.getScalarVal(); 3060 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3061 Ty, AutoreleaseSelector, 3062 Val, CallArgList(), 0, 0); 3063 Val = Result.getScalarVal(); 3064 return Val; 3065 } 3066 3067 3068 CGObjCRuntime::~CGObjCRuntime() {} 3069