1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/InlineAsm.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
30 static TryEmitResult
31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
32 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
33                                       const Expr *E,
34                                       const ObjCMethodDecl *Method,
35                                       RValue Result);
36 
37 /// Given the address of a variable of pointer type, find the correct
38 /// null to store into it.
39 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
40   llvm::Type *type =
41     cast<llvm::PointerType>(addr->getType())->getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString());
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCNumericLiteral - This routine generates code for
55 /// the appropriate +[NSNumber numberWith<Type>:] method.
56 ///
57 llvm::Value *CodeGenFunction::EmitObjCNumericLiteral(const ObjCNumericLiteral *E) {
58   // Generate the correct selector for this literal's concrete type.
59   const Expr *NL = E->getNumber();
60   // Get the method.
61   const ObjCMethodDecl *Method = E->getObjCNumericLiteralMethod();
62   assert(Method && "NSNumber method is null");
63   Selector Sel = Method->getSelector();
64 
65   // Generate a reference to the class pointer, which will be the receiver.
66   QualType ResultType = E->getType(); // should be NSNumber *
67   const ObjCObjectPointerType *InterfacePointerType =
68     ResultType->getAsObjCInterfacePointerType();
69   ObjCInterfaceDecl *NSNumberDecl =
70     InterfacePointerType->getObjectType()->getInterface();
71   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
72   llvm::Value *Receiver = Runtime.GetClass(Builder, NSNumberDecl);
73 
74   const ParmVarDecl *argDecl = *Method->param_begin();
75   QualType ArgQT = argDecl->getType().getUnqualifiedType();
76   RValue RV = EmitAnyExpr(NL);
77   CallArgList Args;
78   Args.add(RV, ArgQT);
79 
80   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
81                                               ResultType, Sel, Receiver, Args,
82                                               NSNumberDecl, Method);
83   return Builder.CreateBitCast(result.getScalarVal(),
84                                ConvertType(E->getType()));
85 }
86 
87 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
88                                     const ObjCMethodDecl *MethodWithObjects) {
89   ASTContext &Context = CGM.getContext();
90   const ObjCDictionaryLiteral *DLE = 0;
91   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
92   if (!ALE)
93     DLE = cast<ObjCDictionaryLiteral>(E);
94 
95   // Compute the type of the array we're initializing.
96   uint64_t NumElements =
97     ALE ? ALE->getNumElements() : DLE->getNumElements();
98   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
99                             NumElements);
100   QualType ElementType = Context.getObjCIdType().withConst();
101   QualType ElementArrayType
102     = Context.getConstantArrayType(ElementType, APNumElements,
103                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
104 
105   // Allocate the temporary array(s).
106   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
107   llvm::Value *Keys = 0;
108   if (DLE)
109     Keys = CreateMemTemp(ElementArrayType, "keys");
110 
111   // Perform the actual initialialization of the array(s).
112   for (uint64_t i = 0; i < NumElements; i++) {
113     if (ALE) {
114       // Emit the initializer.
115       const Expr *Rhs = ALE->getElement(i);
116       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
117                                    ElementType,
118                                    Context.getTypeAlignInChars(Rhs->getType()),
119                                    Context);
120       EmitScalarInit(Rhs, /*D=*/0, LV, /*capturedByInit=*/false);
121     } else {
122       // Emit the key initializer.
123       const Expr *Key = DLE->getKeyValueElement(i).Key;
124       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
125                                       ElementType,
126                                     Context.getTypeAlignInChars(Key->getType()),
127                                       Context);
128       EmitScalarInit(Key, /*D=*/0, KeyLV, /*capturedByInit=*/false);
129 
130       // Emit the value initializer.
131       const Expr *Value = DLE->getKeyValueElement(i).Value;
132       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
133                                         ElementType,
134                                   Context.getTypeAlignInChars(Value->getType()),
135                                         Context);
136       EmitScalarInit(Value, /*D=*/0, ValueLV, /*capturedByInit=*/false);
137     }
138   }
139 
140   // Generate the argument list.
141   CallArgList Args;
142   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
143   const ParmVarDecl *argDecl = *PI++;
144   QualType ArgQT = argDecl->getType().getUnqualifiedType();
145   Args.add(RValue::get(Objects), ArgQT);
146   if (DLE) {
147     argDecl = *PI++;
148     ArgQT = argDecl->getType().getUnqualifiedType();
149     Args.add(RValue::get(Keys), ArgQT);
150   }
151   argDecl = *PI;
152   ArgQT = argDecl->getType().getUnqualifiedType();
153   llvm::Value *Count =
154     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
155   Args.add(RValue::get(Count), ArgQT);
156 
157   // Generate a reference to the class pointer, which will be the receiver.
158   Selector Sel = MethodWithObjects->getSelector();
159   QualType ResultType = E->getType();
160   const ObjCObjectPointerType *InterfacePointerType
161     = ResultType->getAsObjCInterfacePointerType();
162   ObjCInterfaceDecl *Class
163     = InterfacePointerType->getObjectType()->getInterface();
164   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
165   llvm::Value *Receiver = Runtime.GetClass(Builder, Class);
166 
167   // Generate the message send.
168   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
169                                               MethodWithObjects->getResultType(),
170                                               Sel,
171                                               Receiver, Args, Class,
172                                               MethodWithObjects);
173   return Builder.CreateBitCast(result.getScalarVal(),
174                                ConvertType(E->getType()));
175 }
176 
177 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
178   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
179 }
180 
181 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
182                                             const ObjCDictionaryLiteral *E) {
183   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
184 }
185 
186 /// Emit a selector.
187 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
188   // Untyped selector.
189   // Note that this implementation allows for non-constant strings to be passed
190   // as arguments to @selector().  Currently, the only thing preventing this
191   // behaviour is the type checking in the front end.
192   return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector());
193 }
194 
195 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
196   // FIXME: This should pass the Decl not the name.
197   return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol());
198 }
199 
200 /// \brief Adjust the type of the result of an Objective-C message send
201 /// expression when the method has a related result type.
202 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
203                                       const Expr *E,
204                                       const ObjCMethodDecl *Method,
205                                       RValue Result) {
206   if (!Method)
207     return Result;
208 
209   if (!Method->hasRelatedResultType() ||
210       CGF.getContext().hasSameType(E->getType(), Method->getResultType()) ||
211       !Result.isScalar())
212     return Result;
213 
214   // We have applied a related result type. Cast the rvalue appropriately.
215   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
216                                                CGF.ConvertType(E->getType())));
217 }
218 
219 /// Decide whether to extend the lifetime of the receiver of a
220 /// returns-inner-pointer message.
221 static bool
222 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
223   switch (message->getReceiverKind()) {
224 
225   // For a normal instance message, we should extend unless the
226   // receiver is loaded from a variable with precise lifetime.
227   case ObjCMessageExpr::Instance: {
228     const Expr *receiver = message->getInstanceReceiver();
229     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
230     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
231     receiver = ice->getSubExpr()->IgnoreParens();
232 
233     // Only __strong variables.
234     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
235       return true;
236 
237     // All ivars and fields have precise lifetime.
238     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
239       return false;
240 
241     // Otherwise, check for variables.
242     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
243     if (!declRef) return true;
244     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
245     if (!var) return true;
246 
247     // All variables have precise lifetime except local variables with
248     // automatic storage duration that aren't specially marked.
249     return (var->hasLocalStorage() &&
250             !var->hasAttr<ObjCPreciseLifetimeAttr>());
251   }
252 
253   case ObjCMessageExpr::Class:
254   case ObjCMessageExpr::SuperClass:
255     // It's never necessary for class objects.
256     return false;
257 
258   case ObjCMessageExpr::SuperInstance:
259     // We generally assume that 'self' lives throughout a method call.
260     return false;
261   }
262 
263   llvm_unreachable("invalid receiver kind");
264 }
265 
266 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
267                                             ReturnValueSlot Return) {
268   // Only the lookup mechanism and first two arguments of the method
269   // implementation vary between runtimes.  We can get the receiver and
270   // arguments in generic code.
271 
272   bool isDelegateInit = E->isDelegateInitCall();
273 
274   const ObjCMethodDecl *method = E->getMethodDecl();
275 
276   // We don't retain the receiver in delegate init calls, and this is
277   // safe because the receiver value is always loaded from 'self',
278   // which we zero out.  We don't want to Block_copy block receivers,
279   // though.
280   bool retainSelf =
281     (!isDelegateInit &&
282      CGM.getLangOpts().ObjCAutoRefCount &&
283      method &&
284      method->hasAttr<NSConsumesSelfAttr>());
285 
286   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
287   bool isSuperMessage = false;
288   bool isClassMessage = false;
289   ObjCInterfaceDecl *OID = 0;
290   // Find the receiver
291   QualType ReceiverType;
292   llvm::Value *Receiver = 0;
293   switch (E->getReceiverKind()) {
294   case ObjCMessageExpr::Instance:
295     ReceiverType = E->getInstanceReceiver()->getType();
296     if (retainSelf) {
297       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
298                                                    E->getInstanceReceiver());
299       Receiver = ter.getPointer();
300       if (ter.getInt()) retainSelf = false;
301     } else
302       Receiver = EmitScalarExpr(E->getInstanceReceiver());
303     break;
304 
305   case ObjCMessageExpr::Class: {
306     ReceiverType = E->getClassReceiver();
307     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
308     assert(ObjTy && "Invalid Objective-C class message send");
309     OID = ObjTy->getInterface();
310     assert(OID && "Invalid Objective-C class message send");
311     Receiver = Runtime.GetClass(Builder, OID);
312     isClassMessage = true;
313     break;
314   }
315 
316   case ObjCMessageExpr::SuperInstance:
317     ReceiverType = E->getSuperType();
318     Receiver = LoadObjCSelf();
319     isSuperMessage = true;
320     break;
321 
322   case ObjCMessageExpr::SuperClass:
323     ReceiverType = E->getSuperType();
324     Receiver = LoadObjCSelf();
325     isSuperMessage = true;
326     isClassMessage = true;
327     break;
328   }
329 
330   if (retainSelf)
331     Receiver = EmitARCRetainNonBlock(Receiver);
332 
333   // In ARC, we sometimes want to "extend the lifetime"
334   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
335   // messages.
336   if (getLangOpts().ObjCAutoRefCount && method &&
337       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
338       shouldExtendReceiverForInnerPointerMessage(E))
339     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
340 
341   QualType ResultType =
342     method ? method->getResultType() : E->getType();
343 
344   CallArgList Args;
345   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
346 
347   // For delegate init calls in ARC, do an unsafe store of null into
348   // self.  This represents the call taking direct ownership of that
349   // value.  We have to do this after emitting the other call
350   // arguments because they might also reference self, but we don't
351   // have to worry about any of them modifying self because that would
352   // be an undefined read and write of an object in unordered
353   // expressions.
354   if (isDelegateInit) {
355     assert(getLangOpts().ObjCAutoRefCount &&
356            "delegate init calls should only be marked in ARC");
357 
358     // Do an unsafe store of null into self.
359     llvm::Value *selfAddr =
360       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
361     assert(selfAddr && "no self entry for a delegate init call?");
362 
363     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
364   }
365 
366   RValue result;
367   if (isSuperMessage) {
368     // super is only valid in an Objective-C method
369     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
370     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
371     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
372                                               E->getSelector(),
373                                               OMD->getClassInterface(),
374                                               isCategoryImpl,
375                                               Receiver,
376                                               isClassMessage,
377                                               Args,
378                                               method);
379   } else {
380     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
381                                          E->getSelector(),
382                                          Receiver, Args, OID,
383                                          method);
384   }
385 
386   // For delegate init calls in ARC, implicitly store the result of
387   // the call back into self.  This takes ownership of the value.
388   if (isDelegateInit) {
389     llvm::Value *selfAddr =
390       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
391     llvm::Value *newSelf = result.getScalarVal();
392 
393     // The delegate return type isn't necessarily a matching type; in
394     // fact, it's quite likely to be 'id'.
395     llvm::Type *selfTy =
396       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
397     newSelf = Builder.CreateBitCast(newSelf, selfTy);
398 
399     Builder.CreateStore(newSelf, selfAddr);
400   }
401 
402   return AdjustRelatedResultType(*this, E, method, result);
403 }
404 
405 namespace {
406 struct FinishARCDealloc : EHScopeStack::Cleanup {
407   void Emit(CodeGenFunction &CGF, Flags flags) {
408     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
409 
410     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
411     const ObjCInterfaceDecl *iface = impl->getClassInterface();
412     if (!iface->getSuperClass()) return;
413 
414     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
415 
416     // Call [super dealloc] if we have a superclass.
417     llvm::Value *self = CGF.LoadObjCSelf();
418 
419     CallArgList args;
420     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
421                                                       CGF.getContext().VoidTy,
422                                                       method->getSelector(),
423                                                       iface,
424                                                       isCategory,
425                                                       self,
426                                                       /*is class msg*/ false,
427                                                       args,
428                                                       method);
429   }
430 };
431 }
432 
433 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
434 /// the LLVM function and sets the other context used by
435 /// CodeGenFunction.
436 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
437                                       const ObjCContainerDecl *CD,
438                                       SourceLocation StartLoc) {
439   FunctionArgList args;
440   // Check if we should generate debug info for this method.
441   if (CGM.getModuleDebugInfo() && !OMD->hasAttr<NoDebugAttr>())
442     DebugInfo = CGM.getModuleDebugInfo();
443 
444   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
445 
446   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
447   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
448 
449   args.push_back(OMD->getSelfDecl());
450   args.push_back(OMD->getCmdDecl());
451 
452   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
453        E = OMD->param_end(); PI != E; ++PI)
454     args.push_back(*PI);
455 
456   CurGD = OMD;
457 
458   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
459 
460   // In ARC, certain methods get an extra cleanup.
461   if (CGM.getLangOpts().ObjCAutoRefCount &&
462       OMD->isInstanceMethod() &&
463       OMD->getSelector().isUnarySelector()) {
464     const IdentifierInfo *ident =
465       OMD->getSelector().getIdentifierInfoForSlot(0);
466     if (ident->isStr("dealloc"))
467       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
468   }
469 }
470 
471 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
472                                               LValue lvalue, QualType type);
473 
474 /// Generate an Objective-C method.  An Objective-C method is a C function with
475 /// its pointer, name, and types registered in the class struture.
476 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
477   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
478   EmitStmt(OMD->getBody());
479   FinishFunction(OMD->getBodyRBrace());
480 }
481 
482 /// emitStructGetterCall - Call the runtime function to load a property
483 /// into the return value slot.
484 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
485                                  bool isAtomic, bool hasStrong) {
486   ASTContext &Context = CGF.getContext();
487 
488   llvm::Value *src =
489     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
490                           ivar, 0).getAddress();
491 
492   // objc_copyStruct (ReturnValue, &structIvar,
493   //                  sizeof (Type of Ivar), isAtomic, false);
494   CallArgList args;
495 
496   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
497   args.add(RValue::get(dest), Context.VoidPtrTy);
498 
499   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
500   args.add(RValue::get(src), Context.VoidPtrTy);
501 
502   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
503   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
504   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
505   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
506 
507   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
508   CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(Context.VoidTy, args,
509                                                   FunctionType::ExtInfo(),
510                                                   RequiredArgs::All),
511                fn, ReturnValueSlot(), args);
512 }
513 
514 /// Determine whether the given architecture supports unaligned atomic
515 /// accesses.  They don't have to be fast, just faster than a function
516 /// call and a mutex.
517 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
518   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
519   // currently supported by the backend.)
520   return 0;
521 }
522 
523 /// Return the maximum size that permits atomic accesses for the given
524 /// architecture.
525 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
526                                         llvm::Triple::ArchType arch) {
527   // ARM has 8-byte atomic accesses, but it's not clear whether we
528   // want to rely on them here.
529 
530   // In the default case, just assume that any size up to a pointer is
531   // fine given adequate alignment.
532   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
533 }
534 
535 namespace {
536   class PropertyImplStrategy {
537   public:
538     enum StrategyKind {
539       /// The 'native' strategy is to use the architecture's provided
540       /// reads and writes.
541       Native,
542 
543       /// Use objc_setProperty and objc_getProperty.
544       GetSetProperty,
545 
546       /// Use objc_setProperty for the setter, but use expression
547       /// evaluation for the getter.
548       SetPropertyAndExpressionGet,
549 
550       /// Use objc_copyStruct.
551       CopyStruct,
552 
553       /// The 'expression' strategy is to emit normal assignment or
554       /// lvalue-to-rvalue expressions.
555       Expression
556     };
557 
558     StrategyKind getKind() const { return StrategyKind(Kind); }
559 
560     bool hasStrongMember() const { return HasStrong; }
561     bool isAtomic() const { return IsAtomic; }
562     bool isCopy() const { return IsCopy; }
563 
564     CharUnits getIvarSize() const { return IvarSize; }
565     CharUnits getIvarAlignment() const { return IvarAlignment; }
566 
567     PropertyImplStrategy(CodeGenModule &CGM,
568                          const ObjCPropertyImplDecl *propImpl);
569 
570   private:
571     unsigned Kind : 8;
572     unsigned IsAtomic : 1;
573     unsigned IsCopy : 1;
574     unsigned HasStrong : 1;
575 
576     CharUnits IvarSize;
577     CharUnits IvarAlignment;
578   };
579 }
580 
581 /// Pick an implementation strategy for the the given property synthesis.
582 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
583                                      const ObjCPropertyImplDecl *propImpl) {
584   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
585   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
586 
587   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
588   IsAtomic = prop->isAtomic();
589   HasStrong = false; // doesn't matter here.
590 
591   // Evaluate the ivar's size and alignment.
592   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
593   QualType ivarType = ivar->getType();
594   llvm::tie(IvarSize, IvarAlignment)
595     = CGM.getContext().getTypeInfoInChars(ivarType);
596 
597   // If we have a copy property, we always have to use getProperty/setProperty.
598   // TODO: we could actually use setProperty and an expression for non-atomics.
599   if (IsCopy) {
600     Kind = GetSetProperty;
601     return;
602   }
603 
604   // Handle retain.
605   if (setterKind == ObjCPropertyDecl::Retain) {
606     // In GC-only, there's nothing special that needs to be done.
607     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
608       // fallthrough
609 
610     // In ARC, if the property is non-atomic, use expression emission,
611     // which translates to objc_storeStrong.  This isn't required, but
612     // it's slightly nicer.
613     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
614       Kind = Expression;
615       return;
616 
617     // Otherwise, we need to at least use setProperty.  However, if
618     // the property isn't atomic, we can use normal expression
619     // emission for the getter.
620     } else if (!IsAtomic) {
621       Kind = SetPropertyAndExpressionGet;
622       return;
623 
624     // Otherwise, we have to use both setProperty and getProperty.
625     } else {
626       Kind = GetSetProperty;
627       return;
628     }
629   }
630 
631   // If we're not atomic, just use expression accesses.
632   if (!IsAtomic) {
633     Kind = Expression;
634     return;
635   }
636 
637   // Properties on bitfield ivars need to be emitted using expression
638   // accesses even if they're nominally atomic.
639   if (ivar->isBitField()) {
640     Kind = Expression;
641     return;
642   }
643 
644   // GC-qualified or ARC-qualified ivars need to be emitted as
645   // expressions.  This actually works out to being atomic anyway,
646   // except for ARC __strong, but that should trigger the above code.
647   if (ivarType.hasNonTrivialObjCLifetime() ||
648       (CGM.getLangOpts().getGC() &&
649        CGM.getContext().getObjCGCAttrKind(ivarType))) {
650     Kind = Expression;
651     return;
652   }
653 
654   // Compute whether the ivar has strong members.
655   if (CGM.getLangOpts().getGC())
656     if (const RecordType *recordType = ivarType->getAs<RecordType>())
657       HasStrong = recordType->getDecl()->hasObjectMember();
658 
659   // We can never access structs with object members with a native
660   // access, because we need to use write barriers.  This is what
661   // objc_copyStruct is for.
662   if (HasStrong) {
663     Kind = CopyStruct;
664     return;
665   }
666 
667   // Otherwise, this is target-dependent and based on the size and
668   // alignment of the ivar.
669 
670   // If the size of the ivar is not a power of two, give up.  We don't
671   // want to get into the business of doing compare-and-swaps.
672   if (!IvarSize.isPowerOfTwo()) {
673     Kind = CopyStruct;
674     return;
675   }
676 
677   llvm::Triple::ArchType arch =
678     CGM.getContext().getTargetInfo().getTriple().getArch();
679 
680   // Most architectures require memory to fit within a single cache
681   // line, so the alignment has to be at least the size of the access.
682   // Otherwise we have to grab a lock.
683   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
684     Kind = CopyStruct;
685     return;
686   }
687 
688   // If the ivar's size exceeds the architecture's maximum atomic
689   // access size, we have to use CopyStruct.
690   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
691     Kind = CopyStruct;
692     return;
693   }
694 
695   // Otherwise, we can use native loads and stores.
696   Kind = Native;
697 }
698 
699 /// GenerateObjCGetter - Generate an Objective-C property getter
700 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize
701 /// is illegal within a category.
702 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
703                                          const ObjCPropertyImplDecl *PID) {
704   llvm::Constant *AtomicHelperFn =
705     GenerateObjCAtomicGetterCopyHelperFunction(PID);
706   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
707   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
708   assert(OMD && "Invalid call to generate getter (empty method)");
709   StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart());
710 
711   generateObjCGetterBody(IMP, PID, AtomicHelperFn);
712 
713   FinishFunction();
714 }
715 
716 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
717   const Expr *getter = propImpl->getGetterCXXConstructor();
718   if (!getter) return true;
719 
720   // Sema only makes only of these when the ivar has a C++ class type,
721   // so the form is pretty constrained.
722 
723   // If the property has a reference type, we might just be binding a
724   // reference, in which case the result will be a gl-value.  We should
725   // treat this as a non-trivial operation.
726   if (getter->isGLValue())
727     return false;
728 
729   // If we selected a trivial copy-constructor, we're okay.
730   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
731     return (construct->getConstructor()->isTrivial());
732 
733   // The constructor might require cleanups (in which case it's never
734   // trivial).
735   assert(isa<ExprWithCleanups>(getter));
736   return false;
737 }
738 
739 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
740 /// copy the ivar into the resturn slot.
741 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
742                                           llvm::Value *returnAddr,
743                                           ObjCIvarDecl *ivar,
744                                           llvm::Constant *AtomicHelperFn) {
745   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
746   //                           AtomicHelperFn);
747   CallArgList args;
748 
749   // The 1st argument is the return Slot.
750   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
751 
752   // The 2nd argument is the address of the ivar.
753   llvm::Value *ivarAddr =
754   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
755                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
756   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
757   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
758 
759   // Third argument is the helper function.
760   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
761 
762   llvm::Value *copyCppAtomicObjectFn =
763   CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
764   CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args,
765                                                   FunctionType::ExtInfo(),
766                                                   RequiredArgs::All),
767                copyCppAtomicObjectFn, ReturnValueSlot(), args);
768 }
769 
770 void
771 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
772                                         const ObjCPropertyImplDecl *propImpl,
773                                         llvm::Constant *AtomicHelperFn) {
774   // If there's a non-trivial 'get' expression, we just have to emit that.
775   if (!hasTrivialGetExpr(propImpl)) {
776     if (!AtomicHelperFn) {
777       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
778                      /*nrvo*/ 0);
779       EmitReturnStmt(ret);
780     }
781     else {
782       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
783       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
784                                     ivar, AtomicHelperFn);
785     }
786     return;
787   }
788 
789   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
790   QualType propType = prop->getType();
791   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
792 
793   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
794 
795   // Pick an implementation strategy.
796   PropertyImplStrategy strategy(CGM, propImpl);
797   switch (strategy.getKind()) {
798   case PropertyImplStrategy::Native: {
799     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
800 
801     // Currently, all atomic accesses have to be through integer
802     // types, so there's no point in trying to pick a prettier type.
803     llvm::Type *bitcastType =
804       llvm::Type::getIntNTy(getLLVMContext(),
805                             getContext().toBits(strategy.getIvarSize()));
806     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
807 
808     // Perform an atomic load.  This does not impose ordering constraints.
809     llvm::Value *ivarAddr = LV.getAddress();
810     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
811     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
812     load->setAlignment(strategy.getIvarAlignment().getQuantity());
813     load->setAtomic(llvm::Unordered);
814 
815     // Store that value into the return address.  Doing this with a
816     // bitcast is likely to produce some pretty ugly IR, but it's not
817     // the *most* terrible thing in the world.
818     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
819 
820     // Make sure we don't do an autorelease.
821     AutoreleaseResult = false;
822     return;
823   }
824 
825   case PropertyImplStrategy::GetSetProperty: {
826     llvm::Value *getPropertyFn =
827       CGM.getObjCRuntime().GetPropertyGetFunction();
828     if (!getPropertyFn) {
829       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
830       return;
831     }
832 
833     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
834     // FIXME: Can't this be simpler? This might even be worse than the
835     // corresponding gcc code.
836     llvm::Value *cmd =
837       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
838     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
839     llvm::Value *ivarOffset =
840       EmitIvarOffset(classImpl->getClassInterface(), ivar);
841 
842     CallArgList args;
843     args.add(RValue::get(self), getContext().getObjCIdType());
844     args.add(RValue::get(cmd), getContext().getObjCSelType());
845     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
846     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
847              getContext().BoolTy);
848 
849     // FIXME: We shouldn't need to get the function info here, the
850     // runtime already should have computed it to build the function.
851     RValue RV = EmitCall(getTypes().arrangeFunctionCall(propType, args,
852                                                         FunctionType::ExtInfo(),
853                                                         RequiredArgs::All),
854                          getPropertyFn, ReturnValueSlot(), args);
855 
856     // We need to fix the type here. Ivars with copy & retain are
857     // always objects so we don't need to worry about complex or
858     // aggregates.
859     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
860                                            getTypes().ConvertType(propType)));
861 
862     EmitReturnOfRValue(RV, propType);
863 
864     // objc_getProperty does an autorelease, so we should suppress ours.
865     AutoreleaseResult = false;
866 
867     return;
868   }
869 
870   case PropertyImplStrategy::CopyStruct:
871     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
872                          strategy.hasStrongMember());
873     return;
874 
875   case PropertyImplStrategy::Expression:
876   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
877     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
878 
879     QualType ivarType = ivar->getType();
880     if (ivarType->isAnyComplexType()) {
881       ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(),
882                                                LV.isVolatileQualified());
883       StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified());
884     } else if (hasAggregateLLVMType(ivarType)) {
885       // The return value slot is guaranteed to not be aliased, but
886       // that's not necessarily the same as "on the stack", so
887       // we still potentially need objc_memmove_collectable.
888       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType,
889                         /*volatile*/ false, 0, /*destIsCompleteObject*/ true);
890     } else {
891       llvm::Value *value;
892       if (propType->isReferenceType()) {
893         value = LV.getAddress();
894       } else {
895         // We want to load and autoreleaseReturnValue ARC __weak ivars.
896         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
897           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
898 
899         // Otherwise we want to do a simple load, suppressing the
900         // final autorelease.
901         } else {
902           value = EmitLoadOfLValue(LV).getScalarVal();
903           AutoreleaseResult = false;
904         }
905 
906         value = Builder.CreateBitCast(value, ConvertType(propType));
907       }
908 
909       EmitReturnOfRValue(RValue::get(value), propType);
910     }
911     return;
912   }
913 
914   }
915   llvm_unreachable("bad @property implementation strategy!");
916 }
917 
918 /// emitStructSetterCall - Call the runtime function to store the value
919 /// from the first formal parameter into the given ivar.
920 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
921                                  ObjCIvarDecl *ivar) {
922   // objc_copyStruct (&structIvar, &Arg,
923   //                  sizeof (struct something), true, false);
924   CallArgList args;
925 
926   // The first argument is the address of the ivar.
927   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
928                                                 CGF.LoadObjCSelf(), ivar, 0)
929     .getAddress();
930   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
931   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
932 
933   // The second argument is the address of the parameter variable.
934   ParmVarDecl *argVar = *OMD->param_begin();
935   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
936                      VK_LValue, SourceLocation());
937   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
938   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
939   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
940 
941   // The third argument is the sizeof the type.
942   llvm::Value *size =
943     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
944   args.add(RValue::get(size), CGF.getContext().getSizeType());
945 
946   // The fourth argument is the 'isAtomic' flag.
947   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
948 
949   // The fifth argument is the 'hasStrong' flag.
950   // FIXME: should this really always be false?
951   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
952 
953   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
954   CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args,
955                                                   FunctionType::ExtInfo(),
956                                                   RequiredArgs::All),
957                copyStructFn, ReturnValueSlot(), args);
958 }
959 
960 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
961 /// the value from the first formal parameter into the given ivar, using
962 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
963 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
964                                           ObjCMethodDecl *OMD,
965                                           ObjCIvarDecl *ivar,
966                                           llvm::Constant *AtomicHelperFn) {
967   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
968   //                           AtomicHelperFn);
969   CallArgList args;
970 
971   // The first argument is the address of the ivar.
972   llvm::Value *ivarAddr =
973     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
974                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
975   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
976   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
977 
978   // The second argument is the address of the parameter variable.
979   ParmVarDecl *argVar = *OMD->param_begin();
980   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
981                      VK_LValue, SourceLocation());
982   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
983   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
984   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
985 
986   // Third argument is the helper function.
987   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
988 
989   llvm::Value *copyCppAtomicObjectFn =
990     CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
991   CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args,
992                                                   FunctionType::ExtInfo(),
993                                                   RequiredArgs::All),
994                copyCppAtomicObjectFn, ReturnValueSlot(), args);
995 
996 
997 }
998 
999 
1000 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1001   Expr *setter = PID->getSetterCXXAssignment();
1002   if (!setter) return true;
1003 
1004   // Sema only makes only of these when the ivar has a C++ class type,
1005   // so the form is pretty constrained.
1006 
1007   // An operator call is trivial if the function it calls is trivial.
1008   // This also implies that there's nothing non-trivial going on with
1009   // the arguments, because operator= can only be trivial if it's a
1010   // synthesized assignment operator and therefore both parameters are
1011   // references.
1012   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1013     if (const FunctionDecl *callee
1014           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1015       if (callee->isTrivial())
1016         return true;
1017     return false;
1018   }
1019 
1020   assert(isa<ExprWithCleanups>(setter));
1021   return false;
1022 }
1023 
1024 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1025   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1026     return false;
1027   const TargetInfo &Target = CGM.getContext().getTargetInfo();
1028 
1029   if (Target.getPlatformName() != "macosx")
1030     return false;
1031 
1032   return Target.getPlatformMinVersion() >= VersionTuple(10, 8);
1033 }
1034 
1035 void
1036 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1037                                         const ObjCPropertyImplDecl *propImpl,
1038                                         llvm::Constant *AtomicHelperFn) {
1039   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1040   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1041   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1042 
1043   // Just use the setter expression if Sema gave us one and it's
1044   // non-trivial.
1045   if (!hasTrivialSetExpr(propImpl)) {
1046     if (!AtomicHelperFn)
1047       // If non-atomic, assignment is called directly.
1048       EmitStmt(propImpl->getSetterCXXAssignment());
1049     else
1050       // If atomic, assignment is called via a locking api.
1051       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1052                                     AtomicHelperFn);
1053     return;
1054   }
1055 
1056   PropertyImplStrategy strategy(CGM, propImpl);
1057   switch (strategy.getKind()) {
1058   case PropertyImplStrategy::Native: {
1059     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1060 
1061     LValue ivarLValue =
1062       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1063     llvm::Value *ivarAddr = ivarLValue.getAddress();
1064 
1065     // Currently, all atomic accesses have to be through integer
1066     // types, so there's no point in trying to pick a prettier type.
1067     llvm::Type *bitcastType =
1068       llvm::Type::getIntNTy(getLLVMContext(),
1069                             getContext().toBits(strategy.getIvarSize()));
1070     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1071 
1072     // Cast both arguments to the chosen operation type.
1073     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1074     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1075 
1076     // This bitcast load is likely to cause some nasty IR.
1077     llvm::Value *load = Builder.CreateLoad(argAddr);
1078 
1079     // Perform an atomic store.  There are no memory ordering requirements.
1080     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1081     store->setAlignment(strategy.getIvarAlignment().getQuantity());
1082     store->setAtomic(llvm::Unordered);
1083     return;
1084   }
1085 
1086   case PropertyImplStrategy::GetSetProperty:
1087   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1088 
1089     llvm::Value *setOptimizedPropertyFn = 0;
1090     llvm::Value *setPropertyFn = 0;
1091     if (UseOptimizedSetter(CGM)) {
1092       // 10.8 code and GC is off
1093       setOptimizedPropertyFn =
1094         CGM.getObjCRuntime().GetOptimizedPropertySetFunction(strategy.isAtomic(),
1095                                                              strategy.isCopy());
1096       if (!setOptimizedPropertyFn) {
1097         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1098         return;
1099       }
1100     }
1101     else {
1102       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1103       if (!setPropertyFn) {
1104         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1105         return;
1106       }
1107     }
1108 
1109     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1110     //                       <is-atomic>, <is-copy>).
1111     llvm::Value *cmd =
1112       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1113     llvm::Value *self =
1114       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1115     llvm::Value *ivarOffset =
1116       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1117     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1118     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1119 
1120     CallArgList args;
1121     args.add(RValue::get(self), getContext().getObjCIdType());
1122     args.add(RValue::get(cmd), getContext().getObjCSelType());
1123     if (setOptimizedPropertyFn) {
1124       args.add(RValue::get(arg), getContext().getObjCIdType());
1125       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1126       EmitCall(getTypes().arrangeFunctionCall(getContext().VoidTy, args,
1127                                               FunctionType::ExtInfo(),
1128                                               RequiredArgs::All),
1129                setOptimizedPropertyFn, ReturnValueSlot(), args);
1130     } else {
1131       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1132       args.add(RValue::get(arg), getContext().getObjCIdType());
1133       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1134                getContext().BoolTy);
1135       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1136                getContext().BoolTy);
1137       // FIXME: We shouldn't need to get the function info here, the runtime
1138       // already should have computed it to build the function.
1139       EmitCall(getTypes().arrangeFunctionCall(getContext().VoidTy, args,
1140                                               FunctionType::ExtInfo(),
1141                                               RequiredArgs::All),
1142                setPropertyFn, ReturnValueSlot(), args);
1143     }
1144 
1145     return;
1146   }
1147 
1148   case PropertyImplStrategy::CopyStruct:
1149     emitStructSetterCall(*this, setterMethod, ivar);
1150     return;
1151 
1152   case PropertyImplStrategy::Expression:
1153     break;
1154   }
1155 
1156   // Otherwise, fake up some ASTs and emit a normal assignment.
1157   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1158   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1159                    VK_LValue, SourceLocation());
1160   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1161                             selfDecl->getType(), CK_LValueToRValue, &self,
1162                             VK_RValue);
1163   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1164                           SourceLocation(), &selfLoad, true, true);
1165 
1166   ParmVarDecl *argDecl = *setterMethod->param_begin();
1167   QualType argType = argDecl->getType().getNonReferenceType();
1168   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1169   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1170                            argType.getUnqualifiedType(), CK_LValueToRValue,
1171                            &arg, VK_RValue);
1172 
1173   // The property type can differ from the ivar type in some situations with
1174   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1175   // The following absurdity is just to ensure well-formed IR.
1176   CastKind argCK = CK_NoOp;
1177   if (ivarRef.getType()->isObjCObjectPointerType()) {
1178     if (argLoad.getType()->isObjCObjectPointerType())
1179       argCK = CK_BitCast;
1180     else if (argLoad.getType()->isBlockPointerType())
1181       argCK = CK_BlockPointerToObjCPointerCast;
1182     else
1183       argCK = CK_CPointerToObjCPointerCast;
1184   } else if (ivarRef.getType()->isBlockPointerType()) {
1185      if (argLoad.getType()->isBlockPointerType())
1186       argCK = CK_BitCast;
1187     else
1188       argCK = CK_AnyPointerToBlockPointerCast;
1189   } else if (ivarRef.getType()->isPointerType()) {
1190     argCK = CK_BitCast;
1191   }
1192   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1193                            ivarRef.getType(), argCK, &argLoad,
1194                            VK_RValue);
1195   Expr *finalArg = &argLoad;
1196   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1197                                            argLoad.getType()))
1198     finalArg = &argCast;
1199 
1200 
1201   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1202                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1203                         SourceLocation());
1204   EmitStmt(&assign);
1205 }
1206 
1207 /// GenerateObjCSetter - Generate an Objective-C property setter
1208 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize
1209 /// is illegal within a category.
1210 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1211                                          const ObjCPropertyImplDecl *PID) {
1212   llvm::Constant *AtomicHelperFn =
1213     GenerateObjCAtomicSetterCopyHelperFunction(PID);
1214   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1215   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1216   assert(OMD && "Invalid call to generate setter (empty method)");
1217   StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart());
1218 
1219   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1220 
1221   FinishFunction();
1222 }
1223 
1224 namespace {
1225   struct DestroyIvar : EHScopeStack::Cleanup {
1226   private:
1227     llvm::Value *addr;
1228     const ObjCIvarDecl *ivar;
1229     CodeGenFunction::Destroyer *destroyer;
1230     bool useEHCleanupForArray;
1231   public:
1232     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1233                 CodeGenFunction::Destroyer *destroyer,
1234                 bool useEHCleanupForArray)
1235       : addr(addr), ivar(ivar), destroyer(destroyer),
1236         useEHCleanupForArray(useEHCleanupForArray) {}
1237 
1238     void Emit(CodeGenFunction &CGF, Flags flags) {
1239       LValue lvalue
1240         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1241       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1242                       flags.isForNormalCleanup() && useEHCleanupForArray);
1243     }
1244   };
1245 }
1246 
1247 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1248 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1249                                       llvm::Value *addr,
1250                                       QualType type) {
1251   llvm::Value *null = getNullForVariable(addr);
1252   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1253 }
1254 
1255 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1256                                   ObjCImplementationDecl *impl) {
1257   CodeGenFunction::RunCleanupsScope scope(CGF);
1258 
1259   llvm::Value *self = CGF.LoadObjCSelf();
1260 
1261   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1262   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1263        ivar; ivar = ivar->getNextIvar()) {
1264     QualType type = ivar->getType();
1265 
1266     // Check whether the ivar is a destructible type.
1267     QualType::DestructionKind dtorKind = type.isDestructedType();
1268     if (!dtorKind) continue;
1269 
1270     CodeGenFunction::Destroyer *destroyer = 0;
1271 
1272     // Use a call to objc_storeStrong to destroy strong ivars, for the
1273     // general benefit of the tools.
1274     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1275       destroyer = destroyARCStrongWithStore;
1276 
1277     // Otherwise use the default for the destruction kind.
1278     } else {
1279       destroyer = CGF.getDestroyer(dtorKind);
1280     }
1281 
1282     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1283 
1284     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1285                                          cleanupKind & EHCleanup);
1286   }
1287 
1288   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1289 }
1290 
1291 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1292                                                  ObjCMethodDecl *MD,
1293                                                  bool ctor) {
1294   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1295   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1296 
1297   // Emit .cxx_construct.
1298   if (ctor) {
1299     // Suppress the final autorelease in ARC.
1300     AutoreleaseResult = false;
1301 
1302     SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
1303     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1304            E = IMP->init_end(); B != E; ++B) {
1305       CXXCtorInitializer *IvarInit = (*B);
1306       FieldDecl *Field = IvarInit->getAnyMember();
1307       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
1308       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1309                                     LoadObjCSelf(), Ivar, 0);
1310       EmitAggExpr(IvarInit->getInit(),
1311                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1312                                           AggValueSlot::DoesNotNeedGCBarriers,
1313                                           AggValueSlot::IsNotAliased,
1314                                           AggValueSlot::IsCompleteObject));
1315     }
1316     // constructor returns 'self'.
1317     CodeGenTypes &Types = CGM.getTypes();
1318     QualType IdTy(CGM.getContext().getObjCIdType());
1319     llvm::Value *SelfAsId =
1320       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1321     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1322 
1323   // Emit .cxx_destruct.
1324   } else {
1325     emitCXXDestructMethod(*this, IMP);
1326   }
1327   FinishFunction();
1328 }
1329 
1330 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1331   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1332   it++; it++;
1333   const ABIArgInfo &AI = it->info;
1334   // FIXME. Is this sufficient check?
1335   return (AI.getKind() == ABIArgInfo::Indirect);
1336 }
1337 
1338 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1339   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1340     return false;
1341   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1342     return FDTTy->getDecl()->hasObjectMember();
1343   return false;
1344 }
1345 
1346 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1347   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1348   return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self");
1349 }
1350 
1351 QualType CodeGenFunction::TypeOfSelfObject() {
1352   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1353   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1354   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1355     getContext().getCanonicalType(selfDecl->getType()));
1356   return PTy->getPointeeType();
1357 }
1358 
1359 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1360   llvm::Constant *EnumerationMutationFn =
1361     CGM.getObjCRuntime().EnumerationMutationFunction();
1362 
1363   if (!EnumerationMutationFn) {
1364     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1365     return;
1366   }
1367 
1368   CGDebugInfo *DI = getDebugInfo();
1369   if (DI)
1370     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1371 
1372   // The local variable comes into scope immediately.
1373   AutoVarEmission variable = AutoVarEmission::invalid();
1374   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1375     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1376 
1377   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1378 
1379   // Fast enumeration state.
1380   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1381   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1382   EmitNullInitialization(StatePtr, StateTy);
1383 
1384   // Number of elements in the items array.
1385   static const unsigned NumItems = 16;
1386 
1387   // Fetch the countByEnumeratingWithState:objects:count: selector.
1388   IdentifierInfo *II[] = {
1389     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1390     &CGM.getContext().Idents.get("objects"),
1391     &CGM.getContext().Idents.get("count")
1392   };
1393   Selector FastEnumSel =
1394     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1395 
1396   QualType ItemsTy =
1397     getContext().getConstantArrayType(getContext().getObjCIdType(),
1398                                       llvm::APInt(32, NumItems),
1399                                       ArrayType::Normal, 0);
1400   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1401 
1402   // Emit the collection pointer.  In ARC, we do a retain.
1403   llvm::Value *Collection;
1404   if (getLangOpts().ObjCAutoRefCount) {
1405     Collection = EmitARCRetainScalarExpr(S.getCollection());
1406 
1407     // Enter a cleanup to do the release.
1408     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1409   } else {
1410     Collection = EmitScalarExpr(S.getCollection());
1411   }
1412 
1413   // The 'continue' label needs to appear within the cleanup for the
1414   // collection object.
1415   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1416 
1417   // Send it our message:
1418   CallArgList Args;
1419 
1420   // The first argument is a temporary of the enumeration-state type.
1421   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1422 
1423   // The second argument is a temporary array with space for NumItems
1424   // pointers.  We'll actually be loading elements from the array
1425   // pointer written into the control state; this buffer is so that
1426   // collections that *aren't* backed by arrays can still queue up
1427   // batches of elements.
1428   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1429 
1430   // The third argument is the capacity of that temporary array.
1431   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1432   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1433   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1434 
1435   // Start the enumeration.
1436   RValue CountRV =
1437     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1438                                              getContext().UnsignedLongTy,
1439                                              FastEnumSel,
1440                                              Collection, Args);
1441 
1442   // The initial number of objects that were returned in the buffer.
1443   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1444 
1445   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1446   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1447 
1448   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1449 
1450   // If the limit pointer was zero to begin with, the collection is
1451   // empty; skip all this.
1452   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1453                        EmptyBB, LoopInitBB);
1454 
1455   // Otherwise, initialize the loop.
1456   EmitBlock(LoopInitBB);
1457 
1458   // Save the initial mutations value.  This is the value at an
1459   // address that was written into the state object by
1460   // countByEnumeratingWithState:objects:count:.
1461   llvm::Value *StateMutationsPtrPtr =
1462     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1463   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1464                                                       "mutationsptr");
1465 
1466   llvm::Value *initialMutations =
1467     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1468 
1469   // Start looping.  This is the point we return to whenever we have a
1470   // fresh, non-empty batch of objects.
1471   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1472   EmitBlock(LoopBodyBB);
1473 
1474   // The current index into the buffer.
1475   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1476   index->addIncoming(zero, LoopInitBB);
1477 
1478   // The current buffer size.
1479   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1480   count->addIncoming(initialBufferLimit, LoopInitBB);
1481 
1482   // Check whether the mutations value has changed from where it was
1483   // at start.  StateMutationsPtr should actually be invariant between
1484   // refreshes.
1485   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1486   llvm::Value *currentMutations
1487     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1488 
1489   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1490   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1491 
1492   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1493                        WasNotMutatedBB, WasMutatedBB);
1494 
1495   // If so, call the enumeration-mutation function.
1496   EmitBlock(WasMutatedBB);
1497   llvm::Value *V =
1498     Builder.CreateBitCast(Collection,
1499                           ConvertType(getContext().getObjCIdType()));
1500   CallArgList Args2;
1501   Args2.add(RValue::get(V), getContext().getObjCIdType());
1502   // FIXME: We shouldn't need to get the function info here, the runtime already
1503   // should have computed it to build the function.
1504   EmitCall(CGM.getTypes().arrangeFunctionCall(getContext().VoidTy, Args2,
1505                                               FunctionType::ExtInfo(),
1506                                               RequiredArgs::All),
1507            EnumerationMutationFn, ReturnValueSlot(), Args2);
1508 
1509   // Otherwise, or if the mutation function returns, just continue.
1510   EmitBlock(WasNotMutatedBB);
1511 
1512   // Initialize the element variable.
1513   RunCleanupsScope elementVariableScope(*this);
1514   bool elementIsVariable;
1515   LValue elementLValue;
1516   QualType elementType;
1517   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1518     // Initialize the variable, in case it's a __block variable or something.
1519     EmitAutoVarInit(variable);
1520 
1521     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1522     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1523                         VK_LValue, SourceLocation());
1524     elementLValue = EmitLValue(&tempDRE);
1525     elementType = D->getType();
1526     elementIsVariable = true;
1527 
1528     if (D->isARCPseudoStrong())
1529       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1530   } else {
1531     elementLValue = LValue(); // suppress warning
1532     elementType = cast<Expr>(S.getElement())->getType();
1533     elementIsVariable = false;
1534   }
1535   llvm::Type *convertedElementType = ConvertType(elementType);
1536 
1537   // Fetch the buffer out of the enumeration state.
1538   // TODO: this pointer should actually be invariant between
1539   // refreshes, which would help us do certain loop optimizations.
1540   llvm::Value *StateItemsPtr =
1541     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1542   llvm::Value *EnumStateItems =
1543     Builder.CreateLoad(StateItemsPtr, "stateitems");
1544 
1545   // Fetch the value at the current index from the buffer.
1546   llvm::Value *CurrentItemPtr =
1547     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1548   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1549 
1550   // Cast that value to the right type.
1551   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1552                                       "currentitem");
1553 
1554   // Make sure we have an l-value.  Yes, this gets evaluated every
1555   // time through the loop.
1556   if (!elementIsVariable) {
1557     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1558     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1559   } else {
1560     EmitScalarInit(CurrentItem, elementLValue);
1561   }
1562 
1563   // If we do have an element variable, this assignment is the end of
1564   // its initialization.
1565   if (elementIsVariable)
1566     EmitAutoVarCleanups(variable);
1567 
1568   // Perform the loop body, setting up break and continue labels.
1569   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1570   {
1571     RunCleanupsScope Scope(*this);
1572     EmitStmt(S.getBody());
1573   }
1574   BreakContinueStack.pop_back();
1575 
1576   // Destroy the element variable now.
1577   elementVariableScope.ForceCleanup();
1578 
1579   // Check whether there are more elements.
1580   EmitBlock(AfterBody.getBlock());
1581 
1582   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1583 
1584   // First we check in the local buffer.
1585   llvm::Value *indexPlusOne
1586     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1587 
1588   // If we haven't overrun the buffer yet, we can continue.
1589   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1590                        LoopBodyBB, FetchMoreBB);
1591 
1592   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1593   count->addIncoming(count, AfterBody.getBlock());
1594 
1595   // Otherwise, we have to fetch more elements.
1596   EmitBlock(FetchMoreBB);
1597 
1598   CountRV =
1599     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1600                                              getContext().UnsignedLongTy,
1601                                              FastEnumSel,
1602                                              Collection, Args);
1603 
1604   // If we got a zero count, we're done.
1605   llvm::Value *refetchCount = CountRV.getScalarVal();
1606 
1607   // (note that the message send might split FetchMoreBB)
1608   index->addIncoming(zero, Builder.GetInsertBlock());
1609   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1610 
1611   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1612                        EmptyBB, LoopBodyBB);
1613 
1614   // No more elements.
1615   EmitBlock(EmptyBB);
1616 
1617   if (!elementIsVariable) {
1618     // If the element was not a declaration, set it to be null.
1619 
1620     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1621     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1622     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1623   }
1624 
1625   if (DI)
1626     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1627 
1628   // Leave the cleanup we entered in ARC.
1629   if (getLangOpts().ObjCAutoRefCount)
1630     PopCleanupBlock();
1631 
1632   EmitBlock(LoopEnd.getBlock());
1633 }
1634 
1635 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1636   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1637 }
1638 
1639 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1640   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1641 }
1642 
1643 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1644                                               const ObjCAtSynchronizedStmt &S) {
1645   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1646 }
1647 
1648 /// Produce the code for a CK_ARCProduceObject.  Just does a
1649 /// primitive retain.
1650 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1651                                                     llvm::Value *value) {
1652   return EmitARCRetain(type, value);
1653 }
1654 
1655 namespace {
1656   struct CallObjCRelease : EHScopeStack::Cleanup {
1657     CallObjCRelease(llvm::Value *object) : object(object) {}
1658     llvm::Value *object;
1659 
1660     void Emit(CodeGenFunction &CGF, Flags flags) {
1661       CGF.EmitARCRelease(object, /*precise*/ true);
1662     }
1663   };
1664 }
1665 
1666 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1667 /// release at the end of the full-expression.
1668 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1669                                                     llvm::Value *object) {
1670   // If we're in a conditional branch, we need to make the cleanup
1671   // conditional.
1672   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1673   return object;
1674 }
1675 
1676 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1677                                                            llvm::Value *value) {
1678   return EmitARCRetainAutorelease(type, value);
1679 }
1680 
1681 
1682 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1683                                                 llvm::FunctionType *type,
1684                                                 StringRef fnName) {
1685   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1686 
1687   // In -fobjc-no-arc-runtime, emit weak references to the runtime
1688   // support library.
1689   if (!CGM.getCodeGenOpts().ObjCRuntimeHasARC)
1690     if (llvm::Function *f = dyn_cast<llvm::Function>(fn))
1691       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1692 
1693   return fn;
1694 }
1695 
1696 /// Perform an operation having the signature
1697 ///   i8* (i8*)
1698 /// where a null input causes a no-op and returns null.
1699 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1700                                           llvm::Value *value,
1701                                           llvm::Constant *&fn,
1702                                           StringRef fnName) {
1703   if (isa<llvm::ConstantPointerNull>(value)) return value;
1704 
1705   if (!fn) {
1706     std::vector<llvm::Type*> args(1, CGF.Int8PtrTy);
1707     llvm::FunctionType *fnType =
1708       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1709     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1710   }
1711 
1712   // Cast the argument to 'id'.
1713   llvm::Type *origType = value->getType();
1714   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1715 
1716   // Call the function.
1717   llvm::CallInst *call = CGF.Builder.CreateCall(fn, value);
1718   call->setDoesNotThrow();
1719 
1720   // Cast the result back to the original type.
1721   return CGF.Builder.CreateBitCast(call, origType);
1722 }
1723 
1724 /// Perform an operation having the following signature:
1725 ///   i8* (i8**)
1726 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1727                                          llvm::Value *addr,
1728                                          llvm::Constant *&fn,
1729                                          StringRef fnName) {
1730   if (!fn) {
1731     std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy);
1732     llvm::FunctionType *fnType =
1733       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1734     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1735   }
1736 
1737   // Cast the argument to 'id*'.
1738   llvm::Type *origType = addr->getType();
1739   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1740 
1741   // Call the function.
1742   llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr);
1743   call->setDoesNotThrow();
1744 
1745   // Cast the result back to a dereference of the original type.
1746   llvm::Value *result = call;
1747   if (origType != CGF.Int8PtrPtrTy)
1748     result = CGF.Builder.CreateBitCast(result,
1749                         cast<llvm::PointerType>(origType)->getElementType());
1750 
1751   return result;
1752 }
1753 
1754 /// Perform an operation having the following signature:
1755 ///   i8* (i8**, i8*)
1756 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1757                                           llvm::Value *addr,
1758                                           llvm::Value *value,
1759                                           llvm::Constant *&fn,
1760                                           StringRef fnName,
1761                                           bool ignored) {
1762   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1763            == value->getType());
1764 
1765   if (!fn) {
1766     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1767 
1768     llvm::FunctionType *fnType
1769       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1770     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1771   }
1772 
1773   llvm::Type *origType = value->getType();
1774 
1775   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1776   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1777 
1778   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value);
1779   result->setDoesNotThrow();
1780 
1781   if (ignored) return 0;
1782 
1783   return CGF.Builder.CreateBitCast(result, origType);
1784 }
1785 
1786 /// Perform an operation having the following signature:
1787 ///   void (i8**, i8**)
1788 static void emitARCCopyOperation(CodeGenFunction &CGF,
1789                                  llvm::Value *dst,
1790                                  llvm::Value *src,
1791                                  llvm::Constant *&fn,
1792                                  StringRef fnName) {
1793   assert(dst->getType() == src->getType());
1794 
1795   if (!fn) {
1796     std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy);
1797     llvm::FunctionType *fnType
1798       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1799     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1800   }
1801 
1802   dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy);
1803   src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy);
1804 
1805   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src);
1806   result->setDoesNotThrow();
1807 }
1808 
1809 /// Produce the code to do a retain.  Based on the type, calls one of:
1810 ///   call i8* @objc_retain(i8* %value)
1811 ///   call i8* @objc_retainBlock(i8* %value)
1812 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1813   if (type->isBlockPointerType())
1814     return EmitARCRetainBlock(value, /*mandatory*/ false);
1815   else
1816     return EmitARCRetainNonBlock(value);
1817 }
1818 
1819 /// Retain the given object, with normal retain semantics.
1820 ///   call i8* @objc_retain(i8* %value)
1821 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1822   return emitARCValueOperation(*this, value,
1823                                CGM.getARCEntrypoints().objc_retain,
1824                                "objc_retain");
1825 }
1826 
1827 /// Retain the given block, with _Block_copy semantics.
1828 ///   call i8* @objc_retainBlock(i8* %value)
1829 ///
1830 /// \param mandatory - If false, emit the call with metadata
1831 /// indicating that it's okay for the optimizer to eliminate this call
1832 /// if it can prove that the block never escapes except down the stack.
1833 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1834                                                  bool mandatory) {
1835   llvm::Value *result
1836     = emitARCValueOperation(*this, value,
1837                             CGM.getARCEntrypoints().objc_retainBlock,
1838                             "objc_retainBlock");
1839 
1840   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1841   // tell the optimizer that it doesn't need to do this copy if the
1842   // block doesn't escape, where being passed as an argument doesn't
1843   // count as escaping.
1844   if (!mandatory && isa<llvm::Instruction>(result)) {
1845     llvm::CallInst *call
1846       = cast<llvm::CallInst>(result->stripPointerCasts());
1847     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1848 
1849     SmallVector<llvm::Value*,1> args;
1850     call->setMetadata("clang.arc.copy_on_escape",
1851                       llvm::MDNode::get(Builder.getContext(), args));
1852   }
1853 
1854   return result;
1855 }
1856 
1857 /// Retain the given object which is the result of a function call.
1858 ///   call i8* @objc_retainAutoreleasedReturnValue(i8* %value)
1859 ///
1860 /// Yes, this function name is one character away from a different
1861 /// call with completely different semantics.
1862 llvm::Value *
1863 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1864   // Fetch the void(void) inline asm which marks that we're going to
1865   // retain the autoreleased return value.
1866   llvm::InlineAsm *&marker
1867     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1868   if (!marker) {
1869     StringRef assembly
1870       = CGM.getTargetCodeGenInfo()
1871            .getARCRetainAutoreleasedReturnValueMarker();
1872 
1873     // If we have an empty assembly string, there's nothing to do.
1874     if (assembly.empty()) {
1875 
1876     // Otherwise, at -O0, build an inline asm that we're going to call
1877     // in a moment.
1878     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1879       llvm::FunctionType *type =
1880         llvm::FunctionType::get(VoidTy, /*variadic*/false);
1881 
1882       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1883 
1884     // If we're at -O1 and above, we don't want to litter the code
1885     // with this marker yet, so leave a breadcrumb for the ARC
1886     // optimizer to pick up.
1887     } else {
1888       llvm::NamedMDNode *metadata =
1889         CGM.getModule().getOrInsertNamedMetadata(
1890                             "clang.arc.retainAutoreleasedReturnValueMarker");
1891       assert(metadata->getNumOperands() <= 1);
1892       if (metadata->getNumOperands() == 0) {
1893         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1894         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1895       }
1896     }
1897   }
1898 
1899   // Call the marker asm if we made one, which we do only at -O0.
1900   if (marker) Builder.CreateCall(marker);
1901 
1902   return emitARCValueOperation(*this, value,
1903                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1904                                "objc_retainAutoreleasedReturnValue");
1905 }
1906 
1907 /// Release the given object.
1908 ///   call void @objc_release(i8* %value)
1909 void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) {
1910   if (isa<llvm::ConstantPointerNull>(value)) return;
1911 
1912   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
1913   if (!fn) {
1914     std::vector<llvm::Type*> args(1, Int8PtrTy);
1915     llvm::FunctionType *fnType =
1916       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
1917     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
1918   }
1919 
1920   // Cast the argument to 'id'.
1921   value = Builder.CreateBitCast(value, Int8PtrTy);
1922 
1923   // Call objc_release.
1924   llvm::CallInst *call = Builder.CreateCall(fn, value);
1925   call->setDoesNotThrow();
1926 
1927   if (!precise) {
1928     SmallVector<llvm::Value*,1> args;
1929     call->setMetadata("clang.imprecise_release",
1930                       llvm::MDNode::get(Builder.getContext(), args));
1931   }
1932 }
1933 
1934 /// Store into a strong object.  Always calls this:
1935 ///   call void @objc_storeStrong(i8** %addr, i8* %value)
1936 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
1937                                                      llvm::Value *value,
1938                                                      bool ignored) {
1939   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1940            == value->getType());
1941 
1942   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
1943   if (!fn) {
1944     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
1945     llvm::FunctionType *fnType
1946       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
1947     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
1948   }
1949 
1950   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
1951   llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy);
1952 
1953   Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow();
1954 
1955   if (ignored) return 0;
1956   return value;
1957 }
1958 
1959 /// Store into a strong object.  Sometimes calls this:
1960 ///   call void @objc_storeStrong(i8** %addr, i8* %value)
1961 /// Other times, breaks it down into components.
1962 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
1963                                                  llvm::Value *newValue,
1964                                                  bool ignored) {
1965   QualType type = dst.getType();
1966   bool isBlock = type->isBlockPointerType();
1967 
1968   // Use a store barrier at -O0 unless this is a block type or the
1969   // lvalue is inadequately aligned.
1970   if (shouldUseFusedARCCalls() &&
1971       !isBlock &&
1972       (dst.getAlignment().isZero() ||
1973        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
1974     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
1975   }
1976 
1977   // Otherwise, split it out.
1978 
1979   // Retain the new value.
1980   newValue = EmitARCRetain(type, newValue);
1981 
1982   // Read the old value.
1983   llvm::Value *oldValue = EmitLoadOfScalar(dst);
1984 
1985   // Store.  We do this before the release so that any deallocs won't
1986   // see the old value.
1987   EmitStoreOfScalar(newValue, dst);
1988 
1989   // Finally, release the old value.
1990   EmitARCRelease(oldValue, /*precise*/ false);
1991 
1992   return newValue;
1993 }
1994 
1995 /// Autorelease the given object.
1996 ///   call i8* @objc_autorelease(i8* %value)
1997 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
1998   return emitARCValueOperation(*this, value,
1999                                CGM.getARCEntrypoints().objc_autorelease,
2000                                "objc_autorelease");
2001 }
2002 
2003 /// Autorelease the given object.
2004 ///   call i8* @objc_autoreleaseReturnValue(i8* %value)
2005 llvm::Value *
2006 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2007   return emitARCValueOperation(*this, value,
2008                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2009                                "objc_autoreleaseReturnValue");
2010 }
2011 
2012 /// Do a fused retain/autorelease of the given object.
2013 ///   call i8* @objc_retainAutoreleaseReturnValue(i8* %value)
2014 llvm::Value *
2015 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2016   return emitARCValueOperation(*this, value,
2017                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2018                                "objc_retainAutoreleaseReturnValue");
2019 }
2020 
2021 /// Do a fused retain/autorelease of the given object.
2022 ///   call i8* @objc_retainAutorelease(i8* %value)
2023 /// or
2024 ///   %retain = call i8* @objc_retainBlock(i8* %value)
2025 ///   call i8* @objc_autorelease(i8* %retain)
2026 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2027                                                        llvm::Value *value) {
2028   if (!type->isBlockPointerType())
2029     return EmitARCRetainAutoreleaseNonBlock(value);
2030 
2031   if (isa<llvm::ConstantPointerNull>(value)) return value;
2032 
2033   llvm::Type *origType = value->getType();
2034   value = Builder.CreateBitCast(value, Int8PtrTy);
2035   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2036   value = EmitARCAutorelease(value);
2037   return Builder.CreateBitCast(value, origType);
2038 }
2039 
2040 /// Do a fused retain/autorelease of the given object.
2041 ///   call i8* @objc_retainAutorelease(i8* %value)
2042 llvm::Value *
2043 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2044   return emitARCValueOperation(*this, value,
2045                                CGM.getARCEntrypoints().objc_retainAutorelease,
2046                                "objc_retainAutorelease");
2047 }
2048 
2049 /// i8* @objc_loadWeak(i8** %addr)
2050 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2051 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2052   return emitARCLoadOperation(*this, addr,
2053                               CGM.getARCEntrypoints().objc_loadWeak,
2054                               "objc_loadWeak");
2055 }
2056 
2057 /// i8* @objc_loadWeakRetained(i8** %addr)
2058 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2059   return emitARCLoadOperation(*this, addr,
2060                               CGM.getARCEntrypoints().objc_loadWeakRetained,
2061                               "objc_loadWeakRetained");
2062 }
2063 
2064 /// i8* @objc_storeWeak(i8** %addr, i8* %value)
2065 /// Returns %value.
2066 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2067                                                llvm::Value *value,
2068                                                bool ignored) {
2069   return emitARCStoreOperation(*this, addr, value,
2070                                CGM.getARCEntrypoints().objc_storeWeak,
2071                                "objc_storeWeak", ignored);
2072 }
2073 
2074 /// i8* @objc_initWeak(i8** %addr, i8* %value)
2075 /// Returns %value.  %addr is known to not have a current weak entry.
2076 /// Essentially equivalent to:
2077 ///   *addr = nil; objc_storeWeak(addr, value);
2078 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2079   // If we're initializing to null, just write null to memory; no need
2080   // to get the runtime involved.  But don't do this if optimization
2081   // is enabled, because accounting for this would make the optimizer
2082   // much more complicated.
2083   if (isa<llvm::ConstantPointerNull>(value) &&
2084       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2085     Builder.CreateStore(value, addr);
2086     return;
2087   }
2088 
2089   emitARCStoreOperation(*this, addr, value,
2090                         CGM.getARCEntrypoints().objc_initWeak,
2091                         "objc_initWeak", /*ignored*/ true);
2092 }
2093 
2094 /// void @objc_destroyWeak(i8** %addr)
2095 /// Essentially objc_storeWeak(addr, nil).
2096 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2097   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2098   if (!fn) {
2099     std::vector<llvm::Type*> args(1, Int8PtrPtrTy);
2100     llvm::FunctionType *fnType =
2101       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
2102     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2103   }
2104 
2105   // Cast the argument to 'id*'.
2106   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2107 
2108   llvm::CallInst *call = Builder.CreateCall(fn, addr);
2109   call->setDoesNotThrow();
2110 }
2111 
2112 /// void @objc_moveWeak(i8** %dest, i8** %src)
2113 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2114 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2115 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2116   emitARCCopyOperation(*this, dst, src,
2117                        CGM.getARCEntrypoints().objc_moveWeak,
2118                        "objc_moveWeak");
2119 }
2120 
2121 /// void @objc_copyWeak(i8** %dest, i8** %src)
2122 /// Disregards the current value in %dest.  Essentially
2123 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2124 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2125   emitARCCopyOperation(*this, dst, src,
2126                        CGM.getARCEntrypoints().objc_copyWeak,
2127                        "objc_copyWeak");
2128 }
2129 
2130 /// Produce the code to do a objc_autoreleasepool_push.
2131 ///   call i8* @objc_autoreleasePoolPush(void)
2132 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2133   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2134   if (!fn) {
2135     llvm::FunctionType *fnType =
2136       llvm::FunctionType::get(Int8PtrTy, false);
2137     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2138   }
2139 
2140   llvm::CallInst *call = Builder.CreateCall(fn);
2141   call->setDoesNotThrow();
2142 
2143   return call;
2144 }
2145 
2146 /// Produce the code to do a primitive release.
2147 ///   call void @objc_autoreleasePoolPop(i8* %ptr)
2148 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2149   assert(value->getType() == Int8PtrTy);
2150 
2151   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2152   if (!fn) {
2153     std::vector<llvm::Type*> args(1, Int8PtrTy);
2154     llvm::FunctionType *fnType =
2155       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
2156 
2157     // We don't want to use a weak import here; instead we should not
2158     // fall into this path.
2159     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2160   }
2161 
2162   llvm::CallInst *call = Builder.CreateCall(fn, value);
2163   call->setDoesNotThrow();
2164 }
2165 
2166 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2167 /// Which is: [[NSAutoreleasePool alloc] init];
2168 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2169 /// init is declared as: - (id) init; in its NSObject super class.
2170 ///
2171 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2172   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2173   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder);
2174   // [NSAutoreleasePool alloc]
2175   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2176   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2177   CallArgList Args;
2178   RValue AllocRV =
2179     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2180                                 getContext().getObjCIdType(),
2181                                 AllocSel, Receiver, Args);
2182 
2183   // [Receiver init]
2184   Receiver = AllocRV.getScalarVal();
2185   II = &CGM.getContext().Idents.get("init");
2186   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2187   RValue InitRV =
2188     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2189                                 getContext().getObjCIdType(),
2190                                 InitSel, Receiver, Args);
2191   return InitRV.getScalarVal();
2192 }
2193 
2194 /// Produce the code to do a primitive release.
2195 /// [tmp drain];
2196 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2197   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2198   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2199   CallArgList Args;
2200   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2201                               getContext().VoidTy, DrainSel, Arg, Args);
2202 }
2203 
2204 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2205                                               llvm::Value *addr,
2206                                               QualType type) {
2207   llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
2208   CGF.EmitARCRelease(ptr, /*precise*/ true);
2209 }
2210 
2211 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2212                                                 llvm::Value *addr,
2213                                                 QualType type) {
2214   llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
2215   CGF.EmitARCRelease(ptr, /*precise*/ false);
2216 }
2217 
2218 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2219                                      llvm::Value *addr,
2220                                      QualType type) {
2221   CGF.EmitARCDestroyWeak(addr);
2222 }
2223 
2224 namespace {
2225   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2226     llvm::Value *Token;
2227 
2228     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2229 
2230     void Emit(CodeGenFunction &CGF, Flags flags) {
2231       CGF.EmitObjCAutoreleasePoolPop(Token);
2232     }
2233   };
2234   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2235     llvm::Value *Token;
2236 
2237     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2238 
2239     void Emit(CodeGenFunction &CGF, Flags flags) {
2240       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2241     }
2242   };
2243 }
2244 
2245 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2246   if (CGM.getLangOpts().ObjCAutoRefCount)
2247     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2248   else
2249     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2250 }
2251 
2252 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2253                                                   LValue lvalue,
2254                                                   QualType type) {
2255   switch (type.getObjCLifetime()) {
2256   case Qualifiers::OCL_None:
2257   case Qualifiers::OCL_ExplicitNone:
2258   case Qualifiers::OCL_Strong:
2259   case Qualifiers::OCL_Autoreleasing:
2260     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
2261                          false);
2262 
2263   case Qualifiers::OCL_Weak:
2264     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2265                          true);
2266   }
2267 
2268   llvm_unreachable("impossible lifetime!");
2269 }
2270 
2271 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2272                                                   const Expr *e) {
2273   e = e->IgnoreParens();
2274   QualType type = e->getType();
2275 
2276   // If we're loading retained from a __strong xvalue, we can avoid
2277   // an extra retain/release pair by zeroing out the source of this
2278   // "move" operation.
2279   if (e->isXValue() &&
2280       !type.isConstQualified() &&
2281       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2282     // Emit the lvalue.
2283     LValue lv = CGF.EmitLValue(e);
2284 
2285     // Load the object pointer.
2286     llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
2287 
2288     // Set the source pointer to NULL.
2289     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2290 
2291     return TryEmitResult(result, true);
2292   }
2293 
2294   // As a very special optimization, in ARC++, if the l-value is the
2295   // result of a non-volatile assignment, do a simple retain of the
2296   // result of the call to objc_storeWeak instead of reloading.
2297   if (CGF.getLangOpts().CPlusPlus &&
2298       !type.isVolatileQualified() &&
2299       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2300       isa<BinaryOperator>(e) &&
2301       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2302     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2303 
2304   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2305 }
2306 
2307 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2308                                            llvm::Value *value);
2309 
2310 /// Given that the given expression is some sort of call (which does
2311 /// not return retained), emit a retain following it.
2312 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2313   llvm::Value *value = CGF.EmitScalarExpr(e);
2314   return emitARCRetainAfterCall(CGF, value);
2315 }
2316 
2317 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2318                                            llvm::Value *value) {
2319   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2320     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2321 
2322     // Place the retain immediately following the call.
2323     CGF.Builder.SetInsertPoint(call->getParent(),
2324                                ++llvm::BasicBlock::iterator(call));
2325     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2326 
2327     CGF.Builder.restoreIP(ip);
2328     return value;
2329   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2330     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2331 
2332     // Place the retain at the beginning of the normal destination block.
2333     llvm::BasicBlock *BB = invoke->getNormalDest();
2334     CGF.Builder.SetInsertPoint(BB, BB->begin());
2335     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2336 
2337     CGF.Builder.restoreIP(ip);
2338     return value;
2339 
2340   // Bitcasts can arise because of related-result returns.  Rewrite
2341   // the operand.
2342   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2343     llvm::Value *operand = bitcast->getOperand(0);
2344     operand = emitARCRetainAfterCall(CGF, operand);
2345     bitcast->setOperand(0, operand);
2346     return bitcast;
2347 
2348   // Generic fall-back case.
2349   } else {
2350     // Retain using the non-block variant: we never need to do a copy
2351     // of a block that's been returned to us.
2352     return CGF.EmitARCRetainNonBlock(value);
2353   }
2354 }
2355 
2356 /// Determine whether it might be important to emit a separate
2357 /// objc_retain_block on the result of the given expression, or
2358 /// whether it's okay to just emit it in a +1 context.
2359 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2360   assert(e->getType()->isBlockPointerType());
2361   e = e->IgnoreParens();
2362 
2363   // For future goodness, emit block expressions directly in +1
2364   // contexts if we can.
2365   if (isa<BlockExpr>(e))
2366     return false;
2367 
2368   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2369     switch (cast->getCastKind()) {
2370     // Emitting these operations in +1 contexts is goodness.
2371     case CK_LValueToRValue:
2372     case CK_ARCReclaimReturnedObject:
2373     case CK_ARCConsumeObject:
2374     case CK_ARCProduceObject:
2375       return false;
2376 
2377     // These operations preserve a block type.
2378     case CK_NoOp:
2379     case CK_BitCast:
2380       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2381 
2382     // These operations are known to be bad (or haven't been considered).
2383     case CK_AnyPointerToBlockPointerCast:
2384     default:
2385       return true;
2386     }
2387   }
2388 
2389   return true;
2390 }
2391 
2392 /// Try to emit a PseudoObjectExpr at +1.
2393 ///
2394 /// This massively duplicates emitPseudoObjectRValue.
2395 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2396                                                   const PseudoObjectExpr *E) {
2397   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2398 
2399   // Find the result expression.
2400   const Expr *resultExpr = E->getResultExpr();
2401   assert(resultExpr);
2402   TryEmitResult result;
2403 
2404   for (PseudoObjectExpr::const_semantics_iterator
2405          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2406     const Expr *semantic = *i;
2407 
2408     // If this semantic expression is an opaque value, bind it
2409     // to the result of its source expression.
2410     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2411       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2412       OVMA opaqueData;
2413 
2414       // If this semantic is the result of the pseudo-object
2415       // expression, try to evaluate the source as +1.
2416       if (ov == resultExpr) {
2417         assert(!OVMA::shouldBindAsLValue(ov));
2418         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2419         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2420 
2421       // Otherwise, just bind it.
2422       } else {
2423         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2424       }
2425       opaques.push_back(opaqueData);
2426 
2427     // Otherwise, if the expression is the result, evaluate it
2428     // and remember the result.
2429     } else if (semantic == resultExpr) {
2430       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2431 
2432     // Otherwise, evaluate the expression in an ignored context.
2433     } else {
2434       CGF.EmitIgnoredExpr(semantic);
2435     }
2436   }
2437 
2438   // Unbind all the opaques now.
2439   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2440     opaques[i].unbind(CGF);
2441 
2442   return result;
2443 }
2444 
2445 static TryEmitResult
2446 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2447   // Look through cleanups.
2448   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2449     CGF.enterFullExpression(cleanups);
2450     CodeGenFunction::RunCleanupsScope scope(CGF);
2451     return tryEmitARCRetainScalarExpr(CGF, cleanups->getSubExpr());
2452   }
2453 
2454   // The desired result type, if it differs from the type of the
2455   // ultimate opaque expression.
2456   llvm::Type *resultType = 0;
2457 
2458   while (true) {
2459     e = e->IgnoreParens();
2460 
2461     // There's a break at the end of this if-chain;  anything
2462     // that wants to keep looping has to explicitly continue.
2463     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2464       switch (ce->getCastKind()) {
2465       // No-op casts don't change the type, so we just ignore them.
2466       case CK_NoOp:
2467         e = ce->getSubExpr();
2468         continue;
2469 
2470       case CK_LValueToRValue: {
2471         TryEmitResult loadResult
2472           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2473         if (resultType) {
2474           llvm::Value *value = loadResult.getPointer();
2475           value = CGF.Builder.CreateBitCast(value, resultType);
2476           loadResult.setPointer(value);
2477         }
2478         return loadResult;
2479       }
2480 
2481       // These casts can change the type, so remember that and
2482       // soldier on.  We only need to remember the outermost such
2483       // cast, though.
2484       case CK_CPointerToObjCPointerCast:
2485       case CK_BlockPointerToObjCPointerCast:
2486       case CK_AnyPointerToBlockPointerCast:
2487       case CK_BitCast:
2488         if (!resultType)
2489           resultType = CGF.ConvertType(ce->getType());
2490         e = ce->getSubExpr();
2491         assert(e->getType()->hasPointerRepresentation());
2492         continue;
2493 
2494       // For consumptions, just emit the subexpression and thus elide
2495       // the retain/release pair.
2496       case CK_ARCConsumeObject: {
2497         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2498         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2499         return TryEmitResult(result, true);
2500       }
2501 
2502       // Block extends are net +0.  Naively, we could just recurse on
2503       // the subexpression, but actually we need to ensure that the
2504       // value is copied as a block, so there's a little filter here.
2505       case CK_ARCExtendBlockObject: {
2506         llvm::Value *result; // will be a +0 value
2507 
2508         // If we can't safely assume the sub-expression will produce a
2509         // block-copied value, emit the sub-expression at +0.
2510         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2511           result = CGF.EmitScalarExpr(ce->getSubExpr());
2512 
2513         // Otherwise, try to emit the sub-expression at +1 recursively.
2514         } else {
2515           TryEmitResult subresult
2516             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2517           result = subresult.getPointer();
2518 
2519           // If that produced a retained value, just use that,
2520           // possibly casting down.
2521           if (subresult.getInt()) {
2522             if (resultType)
2523               result = CGF.Builder.CreateBitCast(result, resultType);
2524             return TryEmitResult(result, true);
2525           }
2526 
2527           // Otherwise it's +0.
2528         }
2529 
2530         // Retain the object as a block, then cast down.
2531         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2532         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2533         return TryEmitResult(result, true);
2534       }
2535 
2536       // For reclaims, emit the subexpression as a retained call and
2537       // skip the consumption.
2538       case CK_ARCReclaimReturnedObject: {
2539         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2540         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2541         return TryEmitResult(result, true);
2542       }
2543 
2544       default:
2545         break;
2546       }
2547 
2548     // Skip __extension__.
2549     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2550       if (op->getOpcode() == UO_Extension) {
2551         e = op->getSubExpr();
2552         continue;
2553       }
2554 
2555     // For calls and message sends, use the retained-call logic.
2556     // Delegate inits are a special case in that they're the only
2557     // returns-retained expression that *isn't* surrounded by
2558     // a consume.
2559     } else if (isa<CallExpr>(e) ||
2560                (isa<ObjCMessageExpr>(e) &&
2561                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2562       llvm::Value *result = emitARCRetainCall(CGF, e);
2563       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2564       return TryEmitResult(result, true);
2565 
2566     // Look through pseudo-object expressions.
2567     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2568       TryEmitResult result
2569         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2570       if (resultType) {
2571         llvm::Value *value = result.getPointer();
2572         value = CGF.Builder.CreateBitCast(value, resultType);
2573         result.setPointer(value);
2574       }
2575       return result;
2576     }
2577 
2578     // Conservatively halt the search at any other expression kind.
2579     break;
2580   }
2581 
2582   // We didn't find an obvious production, so emit what we've got and
2583   // tell the caller that we didn't manage to retain.
2584   llvm::Value *result = CGF.EmitScalarExpr(e);
2585   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2586   return TryEmitResult(result, false);
2587 }
2588 
2589 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2590                                                 LValue lvalue,
2591                                                 QualType type) {
2592   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2593   llvm::Value *value = result.getPointer();
2594   if (!result.getInt())
2595     value = CGF.EmitARCRetain(type, value);
2596   return value;
2597 }
2598 
2599 /// EmitARCRetainScalarExpr - Semantically equivalent to
2600 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2601 /// best-effort attempt to peephole expressions that naturally produce
2602 /// retained objects.
2603 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2604   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2605   llvm::Value *value = result.getPointer();
2606   if (!result.getInt())
2607     value = EmitARCRetain(e->getType(), value);
2608   return value;
2609 }
2610 
2611 llvm::Value *
2612 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2613   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2614   llvm::Value *value = result.getPointer();
2615   if (result.getInt())
2616     value = EmitARCAutorelease(value);
2617   else
2618     value = EmitARCRetainAutorelease(e->getType(), value);
2619   return value;
2620 }
2621 
2622 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2623   llvm::Value *result;
2624   bool doRetain;
2625 
2626   if (shouldEmitSeparateBlockRetain(e)) {
2627     result = EmitScalarExpr(e);
2628     doRetain = true;
2629   } else {
2630     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2631     result = subresult.getPointer();
2632     doRetain = !subresult.getInt();
2633   }
2634 
2635   if (doRetain)
2636     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2637   return EmitObjCConsumeObject(e->getType(), result);
2638 }
2639 
2640 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2641   // In ARC, retain and autorelease the expression.
2642   if (getLangOpts().ObjCAutoRefCount) {
2643     // Do so before running any cleanups for the full-expression.
2644     // tryEmitARCRetainScalarExpr does make an effort to do things
2645     // inside cleanups, but there are crazy cases like
2646     //   @throw A().foo;
2647     // where a full retain+autorelease is required and would
2648     // otherwise happen after the destructor for the temporary.
2649     if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(expr)) {
2650       enterFullExpression(ewc);
2651       expr = ewc->getSubExpr();
2652     }
2653 
2654     CodeGenFunction::RunCleanupsScope cleanups(*this);
2655     return EmitARCRetainAutoreleaseScalarExpr(expr);
2656   }
2657 
2658   // Otherwise, use the normal scalar-expression emission.  The
2659   // exception machinery doesn't do anything special with the
2660   // exception like retaining it, so there's no safety associated with
2661   // only running cleanups after the throw has started, and when it
2662   // matters it tends to be substantially inferior code.
2663   return EmitScalarExpr(expr);
2664 }
2665 
2666 std::pair<LValue,llvm::Value*>
2667 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2668                                     bool ignored) {
2669   // Evaluate the RHS first.
2670   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2671   llvm::Value *value = result.getPointer();
2672 
2673   bool hasImmediateRetain = result.getInt();
2674 
2675   // If we didn't emit a retained object, and the l-value is of block
2676   // type, then we need to emit the block-retain immediately in case
2677   // it invalidates the l-value.
2678   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2679     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2680     hasImmediateRetain = true;
2681   }
2682 
2683   LValue lvalue = EmitLValue(e->getLHS());
2684 
2685   // If the RHS was emitted retained, expand this.
2686   if (hasImmediateRetain) {
2687     llvm::Value *oldValue =
2688       EmitLoadOfScalar(lvalue);
2689     EmitStoreOfScalar(value, lvalue);
2690     EmitARCRelease(oldValue, /*precise*/ false);
2691   } else {
2692     value = EmitARCStoreStrong(lvalue, value, ignored);
2693   }
2694 
2695   return std::pair<LValue,llvm::Value*>(lvalue, value);
2696 }
2697 
2698 std::pair<LValue,llvm::Value*>
2699 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2700   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2701   LValue lvalue = EmitLValue(e->getLHS());
2702 
2703   EmitStoreOfScalar(value, lvalue);
2704 
2705   return std::pair<LValue,llvm::Value*>(lvalue, value);
2706 }
2707 
2708 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2709                                              const ObjCAutoreleasePoolStmt &ARPS) {
2710   const Stmt *subStmt = ARPS.getSubStmt();
2711   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2712 
2713   CGDebugInfo *DI = getDebugInfo();
2714   if (DI)
2715     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2716 
2717   // Keep track of the current cleanup stack depth.
2718   RunCleanupsScope Scope(*this);
2719   if (CGM.getCodeGenOpts().ObjCRuntimeHasARC) {
2720     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2721     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2722   } else {
2723     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2724     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2725   }
2726 
2727   for (CompoundStmt::const_body_iterator I = S.body_begin(),
2728        E = S.body_end(); I != E; ++I)
2729     EmitStmt(*I);
2730 
2731   if (DI)
2732     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2733 }
2734 
2735 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2736 /// make sure it survives garbage collection until this point.
2737 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2738   // We just use an inline assembly.
2739   llvm::FunctionType *extenderType
2740     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2741   llvm::Value *extender
2742     = llvm::InlineAsm::get(extenderType,
2743                            /* assembly */ "",
2744                            /* constraints */ "r",
2745                            /* side effects */ true);
2746 
2747   object = Builder.CreateBitCast(object, VoidPtrTy);
2748   Builder.CreateCall(extender, object)->setDoesNotThrow();
2749 }
2750 
2751 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2752 /// non-trivial copy assignment function, produce following helper function.
2753 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2754 ///
2755 llvm::Constant *
2756 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2757                                         const ObjCPropertyImplDecl *PID) {
2758   // FIXME. This api is for NeXt runtime only for now.
2759   if (!getLangOpts().CPlusPlus || !getLangOpts().NeXTRuntime)
2760     return 0;
2761   QualType Ty = PID->getPropertyIvarDecl()->getType();
2762   if (!Ty->isRecordType())
2763     return 0;
2764   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2765   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2766     return 0;
2767   llvm::Constant * HelperFn = 0;
2768   if (hasTrivialSetExpr(PID))
2769     return 0;
2770   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2771   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2772     return HelperFn;
2773 
2774   ASTContext &C = getContext();
2775   IdentifierInfo *II
2776     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2777   FunctionDecl *FD = FunctionDecl::Create(C,
2778                                           C.getTranslationUnitDecl(),
2779                                           SourceLocation(),
2780                                           SourceLocation(), II, C.VoidTy, 0,
2781                                           SC_Static,
2782                                           SC_None,
2783                                           false,
2784                                           true);
2785 
2786   QualType DestTy = C.getPointerType(Ty);
2787   QualType SrcTy = Ty;
2788   SrcTy.addConst();
2789   SrcTy = C.getPointerType(SrcTy);
2790 
2791   FunctionArgList args;
2792   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2793   args.push_back(&dstDecl);
2794   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2795   args.push_back(&srcDecl);
2796 
2797   const CGFunctionInfo &FI =
2798     CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2799                                               FunctionType::ExtInfo(),
2800                                               RequiredArgs::All);
2801 
2802   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2803 
2804   llvm::Function *Fn =
2805     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2806                            "__assign_helper_atomic_property_", &CGM.getModule());
2807 
2808   if (CGM.getModuleDebugInfo())
2809     DebugInfo = CGM.getModuleDebugInfo();
2810 
2811 
2812   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2813 
2814   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2815                       VK_RValue, SourceLocation());
2816   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2817                     VK_LValue, OK_Ordinary, SourceLocation());
2818 
2819   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2820                       VK_RValue, SourceLocation());
2821   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2822                     VK_LValue, OK_Ordinary, SourceLocation());
2823 
2824   Expr *Args[2] = { &DST, &SRC };
2825   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2826   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2827                               Args, 2, DestTy->getPointeeType(),
2828                               VK_LValue, SourceLocation());
2829 
2830   EmitStmt(&TheCall);
2831 
2832   FinishFunction();
2833   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2834   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2835   return HelperFn;
2836 }
2837 
2838 llvm::Constant *
2839 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2840                                             const ObjCPropertyImplDecl *PID) {
2841   // FIXME. This api is for NeXt runtime only for now.
2842   if (!getLangOpts().CPlusPlus || !getLangOpts().NeXTRuntime)
2843     return 0;
2844   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2845   QualType Ty = PD->getType();
2846   if (!Ty->isRecordType())
2847     return 0;
2848   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2849     return 0;
2850   llvm::Constant * HelperFn = 0;
2851 
2852   if (hasTrivialGetExpr(PID))
2853     return 0;
2854   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2855   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2856     return HelperFn;
2857 
2858 
2859   ASTContext &C = getContext();
2860   IdentifierInfo *II
2861   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2862   FunctionDecl *FD = FunctionDecl::Create(C,
2863                                           C.getTranslationUnitDecl(),
2864                                           SourceLocation(),
2865                                           SourceLocation(), II, C.VoidTy, 0,
2866                                           SC_Static,
2867                                           SC_None,
2868                                           false,
2869                                           true);
2870 
2871   QualType DestTy = C.getPointerType(Ty);
2872   QualType SrcTy = Ty;
2873   SrcTy.addConst();
2874   SrcTy = C.getPointerType(SrcTy);
2875 
2876   FunctionArgList args;
2877   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2878   args.push_back(&dstDecl);
2879   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2880   args.push_back(&srcDecl);
2881 
2882   const CGFunctionInfo &FI =
2883   CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2884                                             FunctionType::ExtInfo(),
2885                                             RequiredArgs::All);
2886 
2887   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2888 
2889   llvm::Function *Fn =
2890   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2891                          "__copy_helper_atomic_property_", &CGM.getModule());
2892 
2893   if (CGM.getModuleDebugInfo())
2894     DebugInfo = CGM.getModuleDebugInfo();
2895 
2896 
2897   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2898 
2899   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2900                       VK_RValue, SourceLocation());
2901 
2902   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2903                     VK_LValue, OK_Ordinary, SourceLocation());
2904 
2905   CXXConstructExpr *CXXConstExpr =
2906     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
2907 
2908   SmallVector<Expr*, 4> ConstructorArgs;
2909   ConstructorArgs.push_back(&SRC);
2910   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
2911   ++A;
2912 
2913   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
2914        A != AEnd; ++A)
2915     ConstructorArgs.push_back(*A);
2916 
2917   CXXConstructExpr *TheCXXConstructExpr =
2918     CXXConstructExpr::Create(C, Ty, SourceLocation(),
2919                              CXXConstExpr->getConstructor(),
2920                              CXXConstExpr->isElidable(),
2921                              &ConstructorArgs[0], ConstructorArgs.size(),
2922                              CXXConstExpr->hadMultipleCandidates(),
2923                              CXXConstExpr->isListInitialization(),
2924                              CXXConstExpr->requiresZeroInitialization(),
2925                              CXXConstExpr->getConstructionKind(), SourceRange());
2926 
2927   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2928                       VK_RValue, SourceLocation());
2929 
2930   RValue DV = EmitAnyExpr(&DstExpr);
2931   CharUnits Alignment = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
2932   EmitAggExpr(TheCXXConstructExpr,
2933               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
2934                                     AggValueSlot::IsDestructed,
2935                                     AggValueSlot::DoesNotNeedGCBarriers,
2936                                     AggValueSlot::IsNotAliased,
2937                                     AggValueSlot::IsCompleteObject));
2938 
2939   FinishFunction();
2940   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2941   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
2942   return HelperFn;
2943 }
2944 
2945 llvm::Value *
2946 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
2947   // Get selectors for retain/autorelease.
2948   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
2949   Selector CopySelector =
2950       getContext().Selectors.getNullarySelector(CopyID);
2951   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
2952   Selector AutoreleaseSelector =
2953       getContext().Selectors.getNullarySelector(AutoreleaseID);
2954 
2955   // Emit calls to retain/autorelease.
2956   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2957   llvm::Value *Val = Block;
2958   RValue Result;
2959   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2960                                        Ty, CopySelector,
2961                                        Val, CallArgList(), 0, 0);
2962   Val = Result.getScalarVal();
2963   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2964                                        Ty, AutoreleaseSelector,
2965                                        Val, CallArgList(), 0, 0);
2966   Val = Result.getScalarVal();
2967   return Val;
2968 }
2969 
2970 
2971 CGObjCRuntime::~CGObjCRuntime() {}
2972