1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Objective-C code as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/StmtObjC.h" 23 #include "clang/Basic/Diagnostic.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/Analysis/ObjCARCUtil.h" 27 #include "llvm/BinaryFormat/MachO.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/InlineAsm.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 34 static TryEmitResult 35 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 36 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 37 QualType ET, 38 RValue Result); 39 40 /// Given the address of a variable of pointer type, find the correct 41 /// null to store into it. 42 static llvm::Constant *getNullForVariable(Address addr) { 43 llvm::Type *type = addr.getElementType(); 44 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 45 } 46 47 /// Emits an instance of NSConstantString representing the object. 48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 49 { 50 llvm::Constant *C = 51 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 52 // FIXME: This bitcast should just be made an invariant on the Runtime. 53 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 54 } 55 56 /// EmitObjCBoxedExpr - This routine generates code to call 57 /// the appropriate expression boxing method. This will either be 58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 59 /// or [NSValue valueWithBytes:objCType:]. 60 /// 61 llvm::Value * 62 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 63 // Generate the correct selector for this literal's concrete type. 64 // Get the method. 65 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 66 const Expr *SubExpr = E->getSubExpr(); 67 68 if (E->isExpressibleAsConstantInitializer()) { 69 ConstantEmitter ConstEmitter(CGM); 70 return ConstEmitter.tryEmitAbstract(E, E->getType()); 71 } 72 73 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 74 Selector Sel = BoxingMethod->getSelector(); 75 76 // Generate a reference to the class pointer, which will be the receiver. 77 // Assumes that the method was introduced in the class that should be 78 // messaged (avoids pulling it out of the result type). 79 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 80 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 81 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 82 83 CallArgList Args; 84 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 85 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 86 87 // ObjCBoxedExpr supports boxing of structs and unions 88 // via [NSValue valueWithBytes:objCType:] 89 const QualType ValueType(SubExpr->getType().getCanonicalType()); 90 if (ValueType->isObjCBoxableRecordType()) { 91 // Emit CodeGen for first parameter 92 // and cast value to correct type 93 Address Temporary = CreateMemTemp(SubExpr->getType()); 94 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 95 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 96 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 97 98 // Create char array to store type encoding 99 std::string Str; 100 getContext().getObjCEncodingForType(ValueType, Str); 101 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 102 103 // Cast type encoding to correct type 104 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 105 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 106 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 107 108 Args.add(RValue::get(Cast), EncodingQT); 109 } else { 110 Args.add(EmitAnyExpr(SubExpr), ArgQT); 111 } 112 113 RValue result = Runtime.GenerateMessageSend( 114 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 115 Args, ClassDecl, BoxingMethod); 116 return Builder.CreateBitCast(result.getScalarVal(), 117 ConvertType(E->getType())); 118 } 119 120 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 121 const ObjCMethodDecl *MethodWithObjects) { 122 ASTContext &Context = CGM.getContext(); 123 const ObjCDictionaryLiteral *DLE = nullptr; 124 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 125 if (!ALE) 126 DLE = cast<ObjCDictionaryLiteral>(E); 127 128 // Optimize empty collections by referencing constants, when available. 129 uint64_t NumElements = 130 ALE ? ALE->getNumElements() : DLE->getNumElements(); 131 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 132 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 133 QualType IdTy(CGM.getContext().getObjCIdType()); 134 llvm::Constant *Constant = 135 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 136 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 137 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); 138 cast<llvm::LoadInst>(Ptr)->setMetadata( 139 CGM.getModule().getMDKindID("invariant.load"), 140 llvm::MDNode::get(getLLVMContext(), None)); 141 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 142 } 143 144 // Compute the type of the array we're initializing. 145 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 146 NumElements); 147 QualType ElementType = Context.getObjCIdType().withConst(); 148 QualType ElementArrayType 149 = Context.getConstantArrayType(ElementType, APNumElements, nullptr, 150 ArrayType::Normal, /*IndexTypeQuals=*/0); 151 152 // Allocate the temporary array(s). 153 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 154 Address Keys = Address::invalid(); 155 if (DLE) 156 Keys = CreateMemTemp(ElementArrayType, "keys"); 157 158 // In ARC, we may need to do extra work to keep all the keys and 159 // values alive until after the call. 160 SmallVector<llvm::Value *, 16> NeededObjects; 161 bool TrackNeededObjects = 162 (getLangOpts().ObjCAutoRefCount && 163 CGM.getCodeGenOpts().OptimizationLevel != 0); 164 165 // Perform the actual initialialization of the array(s). 166 for (uint64_t i = 0; i < NumElements; i++) { 167 if (ALE) { 168 // Emit the element and store it to the appropriate array slot. 169 const Expr *Rhs = ALE->getElement(i); 170 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 171 ElementType, AlignmentSource::Decl); 172 173 llvm::Value *value = EmitScalarExpr(Rhs); 174 EmitStoreThroughLValue(RValue::get(value), LV, true); 175 if (TrackNeededObjects) { 176 NeededObjects.push_back(value); 177 } 178 } else { 179 // Emit the key and store it to the appropriate array slot. 180 const Expr *Key = DLE->getKeyValueElement(i).Key; 181 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i), 182 ElementType, AlignmentSource::Decl); 183 llvm::Value *keyValue = EmitScalarExpr(Key); 184 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 185 186 // Emit the value and store it to the appropriate array slot. 187 const Expr *Value = DLE->getKeyValueElement(i).Value; 188 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 189 ElementType, AlignmentSource::Decl); 190 llvm::Value *valueValue = EmitScalarExpr(Value); 191 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 192 if (TrackNeededObjects) { 193 NeededObjects.push_back(keyValue); 194 NeededObjects.push_back(valueValue); 195 } 196 } 197 } 198 199 // Generate the argument list. 200 CallArgList Args; 201 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 202 const ParmVarDecl *argDecl = *PI++; 203 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 204 Args.add(RValue::get(Objects.getPointer()), ArgQT); 205 if (DLE) { 206 argDecl = *PI++; 207 ArgQT = argDecl->getType().getUnqualifiedType(); 208 Args.add(RValue::get(Keys.getPointer()), ArgQT); 209 } 210 argDecl = *PI; 211 ArgQT = argDecl->getType().getUnqualifiedType(); 212 llvm::Value *Count = 213 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 214 Args.add(RValue::get(Count), ArgQT); 215 216 // Generate a reference to the class pointer, which will be the receiver. 217 Selector Sel = MethodWithObjects->getSelector(); 218 QualType ResultType = E->getType(); 219 const ObjCObjectPointerType *InterfacePointerType 220 = ResultType->getAsObjCInterfacePointerType(); 221 ObjCInterfaceDecl *Class 222 = InterfacePointerType->getObjectType()->getInterface(); 223 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 224 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 225 226 // Generate the message send. 227 RValue result = Runtime.GenerateMessageSend( 228 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 229 Receiver, Args, Class, MethodWithObjects); 230 231 // The above message send needs these objects, but in ARC they are 232 // passed in a buffer that is essentially __unsafe_unretained. 233 // Therefore we must prevent the optimizer from releasing them until 234 // after the call. 235 if (TrackNeededObjects) { 236 EmitARCIntrinsicUse(NeededObjects); 237 } 238 239 return Builder.CreateBitCast(result.getScalarVal(), 240 ConvertType(E->getType())); 241 } 242 243 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 244 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 245 } 246 247 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 248 const ObjCDictionaryLiteral *E) { 249 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 250 } 251 252 /// Emit a selector. 253 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 254 // Untyped selector. 255 // Note that this implementation allows for non-constant strings to be passed 256 // as arguments to @selector(). Currently, the only thing preventing this 257 // behaviour is the type checking in the front end. 258 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 259 } 260 261 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 262 // FIXME: This should pass the Decl not the name. 263 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 264 } 265 266 /// Adjust the type of an Objective-C object that doesn't match up due 267 /// to type erasure at various points, e.g., related result types or the use 268 /// of parameterized classes. 269 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 270 RValue Result) { 271 if (!ExpT->isObjCRetainableType()) 272 return Result; 273 274 // If the converted types are the same, we're done. 275 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 276 if (ExpLLVMTy == Result.getScalarVal()->getType()) 277 return Result; 278 279 // We have applied a substitution. Cast the rvalue appropriately. 280 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 281 ExpLLVMTy)); 282 } 283 284 /// Decide whether to extend the lifetime of the receiver of a 285 /// returns-inner-pointer message. 286 static bool 287 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 288 switch (message->getReceiverKind()) { 289 290 // For a normal instance message, we should extend unless the 291 // receiver is loaded from a variable with precise lifetime. 292 case ObjCMessageExpr::Instance: { 293 const Expr *receiver = message->getInstanceReceiver(); 294 295 // Look through OVEs. 296 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 297 if (opaque->getSourceExpr()) 298 receiver = opaque->getSourceExpr()->IgnoreParens(); 299 } 300 301 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 302 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 303 receiver = ice->getSubExpr()->IgnoreParens(); 304 305 // Look through OVEs. 306 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 307 if (opaque->getSourceExpr()) 308 receiver = opaque->getSourceExpr()->IgnoreParens(); 309 } 310 311 // Only __strong variables. 312 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 313 return true; 314 315 // All ivars and fields have precise lifetime. 316 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 317 return false; 318 319 // Otherwise, check for variables. 320 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 321 if (!declRef) return true; 322 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 323 if (!var) return true; 324 325 // All variables have precise lifetime except local variables with 326 // automatic storage duration that aren't specially marked. 327 return (var->hasLocalStorage() && 328 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 329 } 330 331 case ObjCMessageExpr::Class: 332 case ObjCMessageExpr::SuperClass: 333 // It's never necessary for class objects. 334 return false; 335 336 case ObjCMessageExpr::SuperInstance: 337 // We generally assume that 'self' lives throughout a method call. 338 return false; 339 } 340 341 llvm_unreachable("invalid receiver kind"); 342 } 343 344 /// Given an expression of ObjC pointer type, check whether it was 345 /// immediately loaded from an ARC __weak l-value. 346 static const Expr *findWeakLValue(const Expr *E) { 347 assert(E->getType()->isObjCRetainableType()); 348 E = E->IgnoreParens(); 349 if (auto CE = dyn_cast<CastExpr>(E)) { 350 if (CE->getCastKind() == CK_LValueToRValue) { 351 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 352 return CE->getSubExpr(); 353 } 354 } 355 356 return nullptr; 357 } 358 359 /// The ObjC runtime may provide entrypoints that are likely to be faster 360 /// than an ordinary message send of the appropriate selector. 361 /// 362 /// The entrypoints are guaranteed to be equivalent to just sending the 363 /// corresponding message. If the entrypoint is implemented naively as just a 364 /// message send, using it is a trade-off: it sacrifices a few cycles of 365 /// overhead to save a small amount of code. However, it's possible for 366 /// runtimes to detect and special-case classes that use "standard" 367 /// behavior; if that's dynamically a large proportion of all objects, using 368 /// the entrypoint will also be faster than using a message send. 369 /// 370 /// If the runtime does support a required entrypoint, then this method will 371 /// generate a call and return the resulting value. Otherwise it will return 372 /// None and the caller can generate a msgSend instead. 373 static Optional<llvm::Value *> 374 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType, 375 llvm::Value *Receiver, 376 const CallArgList& Args, Selector Sel, 377 const ObjCMethodDecl *method, 378 bool isClassMessage) { 379 auto &CGM = CGF.CGM; 380 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) 381 return None; 382 383 auto &Runtime = CGM.getLangOpts().ObjCRuntime; 384 switch (Sel.getMethodFamily()) { 385 case OMF_alloc: 386 if (isClassMessage && 387 Runtime.shouldUseRuntimeFunctionsForAlloc() && 388 ResultType->isObjCObjectPointerType()) { 389 // [Foo alloc] -> objc_alloc(Foo) or 390 // [self alloc] -> objc_alloc(self) 391 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc") 392 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType)); 393 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or 394 // [self allocWithZone:nil] -> objc_allocWithZone(self) 395 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && 396 Args.size() == 1 && Args.front().getType()->isPointerType() && 397 Sel.getNameForSlot(0) == "allocWithZone") { 398 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); 399 if (isa<llvm::ConstantPointerNull>(arg)) 400 return CGF.EmitObjCAllocWithZone(Receiver, 401 CGF.ConvertType(ResultType)); 402 return None; 403 } 404 } 405 break; 406 407 case OMF_autorelease: 408 if (ResultType->isObjCObjectPointerType() && 409 CGM.getLangOpts().getGC() == LangOptions::NonGC && 410 Runtime.shouldUseARCFunctionsForRetainRelease()) 411 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType)); 412 break; 413 414 case OMF_retain: 415 if (ResultType->isObjCObjectPointerType() && 416 CGM.getLangOpts().getGC() == LangOptions::NonGC && 417 Runtime.shouldUseARCFunctionsForRetainRelease()) 418 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType)); 419 break; 420 421 case OMF_release: 422 if (ResultType->isVoidType() && 423 CGM.getLangOpts().getGC() == LangOptions::NonGC && 424 Runtime.shouldUseARCFunctionsForRetainRelease()) { 425 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime); 426 return nullptr; 427 } 428 break; 429 430 default: 431 break; 432 } 433 return None; 434 } 435 436 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend( 437 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, 438 Selector Sel, llvm::Value *Receiver, const CallArgList &Args, 439 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method, 440 bool isClassMessage) { 441 if (Optional<llvm::Value *> SpecializedResult = 442 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args, 443 Sel, Method, isClassMessage)) { 444 return RValue::get(SpecializedResult.getValue()); 445 } 446 return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID, 447 Method); 448 } 449 450 static void AppendFirstImpliedRuntimeProtocols( 451 const ObjCProtocolDecl *PD, 452 llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) { 453 if (!PD->isNonRuntimeProtocol()) { 454 const auto *Can = PD->getCanonicalDecl(); 455 PDs.insert(Can); 456 return; 457 } 458 459 for (const auto *ParentPD : PD->protocols()) 460 AppendFirstImpliedRuntimeProtocols(ParentPD, PDs); 461 } 462 463 std::vector<const ObjCProtocolDecl *> 464 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin, 465 ObjCProtocolDecl::protocol_iterator end) { 466 std::vector<const ObjCProtocolDecl *> RuntimePds; 467 llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs; 468 469 for (; begin != end; ++begin) { 470 const auto *It = *begin; 471 const auto *Can = It->getCanonicalDecl(); 472 if (Can->isNonRuntimeProtocol()) 473 NonRuntimePDs.insert(Can); 474 else 475 RuntimePds.push_back(Can); 476 } 477 478 // If there are no non-runtime protocols then we can just stop now. 479 if (NonRuntimePDs.empty()) 480 return RuntimePds; 481 482 // Else we have to search through the non-runtime protocol's inheritancy 483 // hierarchy DAG stopping whenever a branch either finds a runtime protocol or 484 // a non-runtime protocol without any parents. These are the "first-implied" 485 // protocols from a non-runtime protocol. 486 llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos; 487 for (const auto *PD : NonRuntimePDs) 488 AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos); 489 490 // Walk the Runtime list to get all protocols implied via the inclusion of 491 // this protocol, e.g. all protocols it inherits from including itself. 492 llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols; 493 for (const auto *PD : RuntimePds) { 494 const auto *Can = PD->getCanonicalDecl(); 495 AllImpliedProtocols.insert(Can); 496 Can->getImpliedProtocols(AllImpliedProtocols); 497 } 498 499 // Similar to above, walk the list of first-implied protocols to find the set 500 // all the protocols implied excluding the listed protocols themselves since 501 // they are not yet a part of the `RuntimePds` list. 502 for (const auto *PD : FirstImpliedProtos) { 503 PD->getImpliedProtocols(AllImpliedProtocols); 504 } 505 506 // From the first-implied list we have to finish building the final protocol 507 // list. If a protocol in the first-implied list was already implied via some 508 // inheritance path through some other protocols then it would be redundant to 509 // add it here and so we skip over it. 510 for (const auto *PD : FirstImpliedProtos) { 511 if (!AllImpliedProtocols.contains(PD)) { 512 RuntimePds.push_back(PD); 513 } 514 } 515 516 return RuntimePds; 517 } 518 519 /// Instead of '[[MyClass alloc] init]', try to generate 520 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the 521 /// caller side, as well as the optimized objc_alloc. 522 static Optional<llvm::Value *> 523 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) { 524 auto &Runtime = CGF.getLangOpts().ObjCRuntime; 525 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit()) 526 return None; 527 528 // Match the exact pattern '[[MyClass alloc] init]'. 529 Selector Sel = OME->getSelector(); 530 if (OME->getReceiverKind() != ObjCMessageExpr::Instance || 531 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() || 532 Sel.getNameForSlot(0) != "init") 533 return None; 534 535 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' 536 // with 'cls' a Class. 537 auto *SubOME = 538 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts()); 539 if (!SubOME) 540 return None; 541 Selector SubSel = SubOME->getSelector(); 542 543 if (!SubOME->getType()->isObjCObjectPointerType() || 544 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc") 545 return None; 546 547 llvm::Value *Receiver = nullptr; 548 switch (SubOME->getReceiverKind()) { 549 case ObjCMessageExpr::Instance: 550 if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType()) 551 return None; 552 Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver()); 553 break; 554 555 case ObjCMessageExpr::Class: { 556 QualType ReceiverType = SubOME->getClassReceiver(); 557 const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>(); 558 const ObjCInterfaceDecl *ID = ObjTy->getInterface(); 559 assert(ID && "null interface should be impossible here"); 560 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID); 561 break; 562 } 563 case ObjCMessageExpr::SuperInstance: 564 case ObjCMessageExpr::SuperClass: 565 return None; 566 } 567 568 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType())); 569 } 570 571 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 572 ReturnValueSlot Return) { 573 // Only the lookup mechanism and first two arguments of the method 574 // implementation vary between runtimes. We can get the receiver and 575 // arguments in generic code. 576 577 bool isDelegateInit = E->isDelegateInitCall(); 578 579 const ObjCMethodDecl *method = E->getMethodDecl(); 580 581 // If the method is -retain, and the receiver's being loaded from 582 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 583 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 584 method->getMethodFamily() == OMF_retain) { 585 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 586 LValue lvalue = EmitLValue(lvalueExpr); 587 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this)); 588 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 589 } 590 } 591 592 if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E)) 593 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val)); 594 595 // We don't retain the receiver in delegate init calls, and this is 596 // safe because the receiver value is always loaded from 'self', 597 // which we zero out. We don't want to Block_copy block receivers, 598 // though. 599 bool retainSelf = 600 (!isDelegateInit && 601 CGM.getLangOpts().ObjCAutoRefCount && 602 method && 603 method->hasAttr<NSConsumesSelfAttr>()); 604 605 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 606 bool isSuperMessage = false; 607 bool isClassMessage = false; 608 ObjCInterfaceDecl *OID = nullptr; 609 // Find the receiver 610 QualType ReceiverType; 611 llvm::Value *Receiver = nullptr; 612 switch (E->getReceiverKind()) { 613 case ObjCMessageExpr::Instance: 614 ReceiverType = E->getInstanceReceiver()->getType(); 615 isClassMessage = ReceiverType->isObjCClassType(); 616 if (retainSelf) { 617 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 618 E->getInstanceReceiver()); 619 Receiver = ter.getPointer(); 620 if (ter.getInt()) retainSelf = false; 621 } else 622 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 623 break; 624 625 case ObjCMessageExpr::Class: { 626 ReceiverType = E->getClassReceiver(); 627 OID = ReceiverType->castAs<ObjCObjectType>()->getInterface(); 628 assert(OID && "Invalid Objective-C class message send"); 629 Receiver = Runtime.GetClass(*this, OID); 630 isClassMessage = true; 631 break; 632 } 633 634 case ObjCMessageExpr::SuperInstance: 635 ReceiverType = E->getSuperType(); 636 Receiver = LoadObjCSelf(); 637 isSuperMessage = true; 638 break; 639 640 case ObjCMessageExpr::SuperClass: 641 ReceiverType = E->getSuperType(); 642 Receiver = LoadObjCSelf(); 643 isSuperMessage = true; 644 isClassMessage = true; 645 break; 646 } 647 648 if (retainSelf) 649 Receiver = EmitARCRetainNonBlock(Receiver); 650 651 // In ARC, we sometimes want to "extend the lifetime" 652 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 653 // messages. 654 if (getLangOpts().ObjCAutoRefCount && method && 655 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 656 shouldExtendReceiverForInnerPointerMessage(E)) 657 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 658 659 QualType ResultType = method ? method->getReturnType() : E->getType(); 660 661 CallArgList Args; 662 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 663 664 // For delegate init calls in ARC, do an unsafe store of null into 665 // self. This represents the call taking direct ownership of that 666 // value. We have to do this after emitting the other call 667 // arguments because they might also reference self, but we don't 668 // have to worry about any of them modifying self because that would 669 // be an undefined read and write of an object in unordered 670 // expressions. 671 if (isDelegateInit) { 672 assert(getLangOpts().ObjCAutoRefCount && 673 "delegate init calls should only be marked in ARC"); 674 675 // Do an unsafe store of null into self. 676 Address selfAddr = 677 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 678 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 679 } 680 681 RValue result; 682 if (isSuperMessage) { 683 // super is only valid in an Objective-C method 684 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 685 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 686 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 687 E->getSelector(), 688 OMD->getClassInterface(), 689 isCategoryImpl, 690 Receiver, 691 isClassMessage, 692 Args, 693 method); 694 } else { 695 // Call runtime methods directly if we can. 696 result = Runtime.GeneratePossiblySpecializedMessageSend( 697 *this, Return, ResultType, E->getSelector(), Receiver, Args, OID, 698 method, isClassMessage); 699 } 700 701 // For delegate init calls in ARC, implicitly store the result of 702 // the call back into self. This takes ownership of the value. 703 if (isDelegateInit) { 704 Address selfAddr = 705 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 706 llvm::Value *newSelf = result.getScalarVal(); 707 708 // The delegate return type isn't necessarily a matching type; in 709 // fact, it's quite likely to be 'id'. 710 llvm::Type *selfTy = selfAddr.getElementType(); 711 newSelf = Builder.CreateBitCast(newSelf, selfTy); 712 713 Builder.CreateStore(newSelf, selfAddr); 714 } 715 716 return AdjustObjCObjectType(*this, E->getType(), result); 717 } 718 719 namespace { 720 struct FinishARCDealloc final : EHScopeStack::Cleanup { 721 void Emit(CodeGenFunction &CGF, Flags flags) override { 722 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 723 724 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 725 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 726 if (!iface->getSuperClass()) return; 727 728 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 729 730 // Call [super dealloc] if we have a superclass. 731 llvm::Value *self = CGF.LoadObjCSelf(); 732 733 CallArgList args; 734 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 735 CGF.getContext().VoidTy, 736 method->getSelector(), 737 iface, 738 isCategory, 739 self, 740 /*is class msg*/ false, 741 args, 742 method); 743 } 744 }; 745 } 746 747 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 748 /// the LLVM function and sets the other context used by 749 /// CodeGenFunction. 750 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 751 const ObjCContainerDecl *CD) { 752 SourceLocation StartLoc = OMD->getBeginLoc(); 753 FunctionArgList args; 754 // Check if we should generate debug info for this method. 755 if (OMD->hasAttr<NoDebugAttr>()) 756 DebugInfo = nullptr; // disable debug info indefinitely for this function 757 758 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 759 760 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 761 if (OMD->isDirectMethod()) { 762 Fn->setVisibility(llvm::Function::HiddenVisibility); 763 CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false); 764 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn); 765 } else { 766 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 767 } 768 769 args.push_back(OMD->getSelfDecl()); 770 args.push_back(OMD->getCmdDecl()); 771 772 args.append(OMD->param_begin(), OMD->param_end()); 773 774 CurGD = OMD; 775 CurEHLocation = OMD->getEndLoc(); 776 777 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 778 OMD->getLocation(), StartLoc); 779 780 if (OMD->isDirectMethod()) { 781 // This function is a direct call, it has to implement a nil check 782 // on entry. 783 // 784 // TODO: possibly have several entry points to elide the check 785 CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD); 786 } 787 788 // In ARC, certain methods get an extra cleanup. 789 if (CGM.getLangOpts().ObjCAutoRefCount && 790 OMD->isInstanceMethod() && 791 OMD->getSelector().isUnarySelector()) { 792 const IdentifierInfo *ident = 793 OMD->getSelector().getIdentifierInfoForSlot(0); 794 if (ident->isStr("dealloc")) 795 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 796 } 797 } 798 799 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 800 LValue lvalue, QualType type); 801 802 /// Generate an Objective-C method. An Objective-C method is a C function with 803 /// its pointer, name, and types registered in the class structure. 804 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 805 StartObjCMethod(OMD, OMD->getClassInterface()); 806 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 807 assert(isa<CompoundStmt>(OMD->getBody())); 808 incrementProfileCounter(OMD->getBody()); 809 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 810 FinishFunction(OMD->getBodyRBrace()); 811 } 812 813 /// emitStructGetterCall - Call the runtime function to load a property 814 /// into the return value slot. 815 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 816 bool isAtomic, bool hasStrong) { 817 ASTContext &Context = CGF.getContext(); 818 819 Address src = 820 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 821 .getAddress(CGF); 822 823 // objc_copyStruct (ReturnValue, &structIvar, 824 // sizeof (Type of Ivar), isAtomic, false); 825 CallArgList args; 826 827 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 828 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 829 830 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 831 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 832 833 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 834 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 835 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 836 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 837 838 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 839 CGCallee callee = CGCallee::forDirect(fn); 840 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 841 callee, ReturnValueSlot(), args); 842 } 843 844 /// Determine whether the given architecture supports unaligned atomic 845 /// accesses. They don't have to be fast, just faster than a function 846 /// call and a mutex. 847 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 848 // FIXME: Allow unaligned atomic load/store on x86. (It is not 849 // currently supported by the backend.) 850 return 0; 851 } 852 853 /// Return the maximum size that permits atomic accesses for the given 854 /// architecture. 855 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 856 llvm::Triple::ArchType arch) { 857 // ARM has 8-byte atomic accesses, but it's not clear whether we 858 // want to rely on them here. 859 860 // In the default case, just assume that any size up to a pointer is 861 // fine given adequate alignment. 862 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 863 } 864 865 namespace { 866 class PropertyImplStrategy { 867 public: 868 enum StrategyKind { 869 /// The 'native' strategy is to use the architecture's provided 870 /// reads and writes. 871 Native, 872 873 /// Use objc_setProperty and objc_getProperty. 874 GetSetProperty, 875 876 /// Use objc_setProperty for the setter, but use expression 877 /// evaluation for the getter. 878 SetPropertyAndExpressionGet, 879 880 /// Use objc_copyStruct. 881 CopyStruct, 882 883 /// The 'expression' strategy is to emit normal assignment or 884 /// lvalue-to-rvalue expressions. 885 Expression 886 }; 887 888 StrategyKind getKind() const { return StrategyKind(Kind); } 889 890 bool hasStrongMember() const { return HasStrong; } 891 bool isAtomic() const { return IsAtomic; } 892 bool isCopy() const { return IsCopy; } 893 894 CharUnits getIvarSize() const { return IvarSize; } 895 CharUnits getIvarAlignment() const { return IvarAlignment; } 896 897 PropertyImplStrategy(CodeGenModule &CGM, 898 const ObjCPropertyImplDecl *propImpl); 899 900 private: 901 unsigned Kind : 8; 902 unsigned IsAtomic : 1; 903 unsigned IsCopy : 1; 904 unsigned HasStrong : 1; 905 906 CharUnits IvarSize; 907 CharUnits IvarAlignment; 908 }; 909 } 910 911 /// Pick an implementation strategy for the given property synthesis. 912 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 913 const ObjCPropertyImplDecl *propImpl) { 914 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 915 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 916 917 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 918 IsAtomic = prop->isAtomic(); 919 HasStrong = false; // doesn't matter here. 920 921 // Evaluate the ivar's size and alignment. 922 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 923 QualType ivarType = ivar->getType(); 924 auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType); 925 IvarSize = TInfo.Width; 926 IvarAlignment = TInfo.Align; 927 928 // If we have a copy property, we always have to use setProperty. 929 // If the property is atomic we need to use getProperty, but in 930 // the nonatomic case we can just use expression. 931 if (IsCopy) { 932 Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet; 933 return; 934 } 935 936 // Handle retain. 937 if (setterKind == ObjCPropertyDecl::Retain) { 938 // In GC-only, there's nothing special that needs to be done. 939 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 940 // fallthrough 941 942 // In ARC, if the property is non-atomic, use expression emission, 943 // which translates to objc_storeStrong. This isn't required, but 944 // it's slightly nicer. 945 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 946 // Using standard expression emission for the setter is only 947 // acceptable if the ivar is __strong, which won't be true if 948 // the property is annotated with __attribute__((NSObject)). 949 // TODO: falling all the way back to objc_setProperty here is 950 // just laziness, though; we could still use objc_storeStrong 951 // if we hacked it right. 952 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 953 Kind = Expression; 954 else 955 Kind = SetPropertyAndExpressionGet; 956 return; 957 958 // Otherwise, we need to at least use setProperty. However, if 959 // the property isn't atomic, we can use normal expression 960 // emission for the getter. 961 } else if (!IsAtomic) { 962 Kind = SetPropertyAndExpressionGet; 963 return; 964 965 // Otherwise, we have to use both setProperty and getProperty. 966 } else { 967 Kind = GetSetProperty; 968 return; 969 } 970 } 971 972 // If we're not atomic, just use expression accesses. 973 if (!IsAtomic) { 974 Kind = Expression; 975 return; 976 } 977 978 // Properties on bitfield ivars need to be emitted using expression 979 // accesses even if they're nominally atomic. 980 if (ivar->isBitField()) { 981 Kind = Expression; 982 return; 983 } 984 985 // GC-qualified or ARC-qualified ivars need to be emitted as 986 // expressions. This actually works out to being atomic anyway, 987 // except for ARC __strong, but that should trigger the above code. 988 if (ivarType.hasNonTrivialObjCLifetime() || 989 (CGM.getLangOpts().getGC() && 990 CGM.getContext().getObjCGCAttrKind(ivarType))) { 991 Kind = Expression; 992 return; 993 } 994 995 // Compute whether the ivar has strong members. 996 if (CGM.getLangOpts().getGC()) 997 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 998 HasStrong = recordType->getDecl()->hasObjectMember(); 999 1000 // We can never access structs with object members with a native 1001 // access, because we need to use write barriers. This is what 1002 // objc_copyStruct is for. 1003 if (HasStrong) { 1004 Kind = CopyStruct; 1005 return; 1006 } 1007 1008 // Otherwise, this is target-dependent and based on the size and 1009 // alignment of the ivar. 1010 1011 // If the size of the ivar is not a power of two, give up. We don't 1012 // want to get into the business of doing compare-and-swaps. 1013 if (!IvarSize.isPowerOfTwo()) { 1014 Kind = CopyStruct; 1015 return; 1016 } 1017 1018 llvm::Triple::ArchType arch = 1019 CGM.getTarget().getTriple().getArch(); 1020 1021 // Most architectures require memory to fit within a single cache 1022 // line, so the alignment has to be at least the size of the access. 1023 // Otherwise we have to grab a lock. 1024 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 1025 Kind = CopyStruct; 1026 return; 1027 } 1028 1029 // If the ivar's size exceeds the architecture's maximum atomic 1030 // access size, we have to use CopyStruct. 1031 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 1032 Kind = CopyStruct; 1033 return; 1034 } 1035 1036 // Otherwise, we can use native loads and stores. 1037 Kind = Native; 1038 } 1039 1040 /// Generate an Objective-C property getter function. 1041 /// 1042 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1043 /// is illegal within a category. 1044 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 1045 const ObjCPropertyImplDecl *PID) { 1046 llvm::Constant *AtomicHelperFn = 1047 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 1048 ObjCMethodDecl *OMD = PID->getGetterMethodDecl(); 1049 assert(OMD && "Invalid call to generate getter (empty method)"); 1050 StartObjCMethod(OMD, IMP->getClassInterface()); 1051 1052 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 1053 1054 FinishFunction(OMD->getEndLoc()); 1055 } 1056 1057 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 1058 const Expr *getter = propImpl->getGetterCXXConstructor(); 1059 if (!getter) return true; 1060 1061 // Sema only makes only of these when the ivar has a C++ class type, 1062 // so the form is pretty constrained. 1063 1064 // If the property has a reference type, we might just be binding a 1065 // reference, in which case the result will be a gl-value. We should 1066 // treat this as a non-trivial operation. 1067 if (getter->isGLValue()) 1068 return false; 1069 1070 // If we selected a trivial copy-constructor, we're okay. 1071 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 1072 return (construct->getConstructor()->isTrivial()); 1073 1074 // The constructor might require cleanups (in which case it's never 1075 // trivial). 1076 assert(isa<ExprWithCleanups>(getter)); 1077 return false; 1078 } 1079 1080 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 1081 /// copy the ivar into the resturn slot. 1082 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 1083 llvm::Value *returnAddr, 1084 ObjCIvarDecl *ivar, 1085 llvm::Constant *AtomicHelperFn) { 1086 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 1087 // AtomicHelperFn); 1088 CallArgList args; 1089 1090 // The 1st argument is the return Slot. 1091 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 1092 1093 // The 2nd argument is the address of the ivar. 1094 llvm::Value *ivarAddr = 1095 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1096 .getPointer(CGF); 1097 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1098 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1099 1100 // Third argument is the helper function. 1101 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1102 1103 llvm::FunctionCallee copyCppAtomicObjectFn = 1104 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 1105 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 1106 CGF.EmitCall( 1107 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1108 callee, ReturnValueSlot(), args); 1109 } 1110 1111 void 1112 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1113 const ObjCPropertyImplDecl *propImpl, 1114 const ObjCMethodDecl *GetterMethodDecl, 1115 llvm::Constant *AtomicHelperFn) { 1116 // If there's a non-trivial 'get' expression, we just have to emit that. 1117 if (!hasTrivialGetExpr(propImpl)) { 1118 if (!AtomicHelperFn) { 1119 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(), 1120 propImpl->getGetterCXXConstructor(), 1121 /* NRVOCandidate=*/nullptr); 1122 EmitReturnStmt(*ret); 1123 } 1124 else { 1125 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1126 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 1127 ivar, AtomicHelperFn); 1128 } 1129 return; 1130 } 1131 1132 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1133 QualType propType = prop->getType(); 1134 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl(); 1135 1136 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1137 1138 // Pick an implementation strategy. 1139 PropertyImplStrategy strategy(CGM, propImpl); 1140 switch (strategy.getKind()) { 1141 case PropertyImplStrategy::Native: { 1142 // We don't need to do anything for a zero-size struct. 1143 if (strategy.getIvarSize().isZero()) 1144 return; 1145 1146 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1147 1148 // Currently, all atomic accesses have to be through integer 1149 // types, so there's no point in trying to pick a prettier type. 1150 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 1151 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 1152 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1153 1154 // Perform an atomic load. This does not impose ordering constraints. 1155 Address ivarAddr = LV.getAddress(*this); 1156 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1157 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 1158 load->setAtomic(llvm::AtomicOrdering::Unordered); 1159 1160 // Store that value into the return address. Doing this with a 1161 // bitcast is likely to produce some pretty ugly IR, but it's not 1162 // the *most* terrible thing in the world. 1163 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 1164 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 1165 llvm::Value *ivarVal = load; 1166 if (ivarSize > retTySize) { 1167 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 1168 ivarVal = Builder.CreateTrunc(load, newTy); 1169 bitcastType = newTy->getPointerTo(); 1170 } 1171 Builder.CreateStore(ivarVal, 1172 Builder.CreateBitCast(ReturnValue, bitcastType)); 1173 1174 // Make sure we don't do an autorelease. 1175 AutoreleaseResult = false; 1176 return; 1177 } 1178 1179 case PropertyImplStrategy::GetSetProperty: { 1180 llvm::FunctionCallee getPropertyFn = 1181 CGM.getObjCRuntime().GetPropertyGetFunction(); 1182 if (!getPropertyFn) { 1183 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 1184 return; 1185 } 1186 CGCallee callee = CGCallee::forDirect(getPropertyFn); 1187 1188 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 1189 // FIXME: Can't this be simpler? This might even be worse than the 1190 // corresponding gcc code. 1191 llvm::Value *cmd = 1192 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 1193 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1194 llvm::Value *ivarOffset = 1195 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1196 1197 CallArgList args; 1198 args.add(RValue::get(self), getContext().getObjCIdType()); 1199 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1200 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1201 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1202 getContext().BoolTy); 1203 1204 // FIXME: We shouldn't need to get the function info here, the 1205 // runtime already should have computed it to build the function. 1206 llvm::CallBase *CallInstruction; 1207 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall( 1208 getContext().getObjCIdType(), args), 1209 callee, ReturnValueSlot(), args, &CallInstruction); 1210 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 1211 call->setTailCall(); 1212 1213 // We need to fix the type here. Ivars with copy & retain are 1214 // always objects so we don't need to worry about complex or 1215 // aggregates. 1216 RV = RValue::get(Builder.CreateBitCast( 1217 RV.getScalarVal(), 1218 getTypes().ConvertType(getterMethod->getReturnType()))); 1219 1220 EmitReturnOfRValue(RV, propType); 1221 1222 // objc_getProperty does an autorelease, so we should suppress ours. 1223 AutoreleaseResult = false; 1224 1225 return; 1226 } 1227 1228 case PropertyImplStrategy::CopyStruct: 1229 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 1230 strategy.hasStrongMember()); 1231 return; 1232 1233 case PropertyImplStrategy::Expression: 1234 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1235 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1236 1237 QualType ivarType = ivar->getType(); 1238 switch (getEvaluationKind(ivarType)) { 1239 case TEK_Complex: { 1240 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1241 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1242 /*init*/ true); 1243 return; 1244 } 1245 case TEK_Aggregate: { 1246 // The return value slot is guaranteed to not be aliased, but 1247 // that's not necessarily the same as "on the stack", so 1248 // we still potentially need objc_memmove_collectable. 1249 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1250 /* Src= */ LV, ivarType, getOverlapForReturnValue()); 1251 return; 1252 } 1253 case TEK_Scalar: { 1254 llvm::Value *value; 1255 if (propType->isReferenceType()) { 1256 value = LV.getAddress(*this).getPointer(); 1257 } else { 1258 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1259 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1260 if (getLangOpts().ObjCAutoRefCount) { 1261 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1262 } else { 1263 value = EmitARCLoadWeak(LV.getAddress(*this)); 1264 } 1265 1266 // Otherwise we want to do a simple load, suppressing the 1267 // final autorelease. 1268 } else { 1269 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1270 AutoreleaseResult = false; 1271 } 1272 1273 value = Builder.CreateBitCast( 1274 value, ConvertType(GetterMethodDecl->getReturnType())); 1275 } 1276 1277 EmitReturnOfRValue(RValue::get(value), propType); 1278 return; 1279 } 1280 } 1281 llvm_unreachable("bad evaluation kind"); 1282 } 1283 1284 } 1285 llvm_unreachable("bad @property implementation strategy!"); 1286 } 1287 1288 /// emitStructSetterCall - Call the runtime function to store the value 1289 /// from the first formal parameter into the given ivar. 1290 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1291 ObjCIvarDecl *ivar) { 1292 // objc_copyStruct (&structIvar, &Arg, 1293 // sizeof (struct something), true, false); 1294 CallArgList args; 1295 1296 // The first argument is the address of the ivar. 1297 llvm::Value *ivarAddr = 1298 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1299 .getPointer(CGF); 1300 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1301 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1302 1303 // The second argument is the address of the parameter variable. 1304 ParmVarDecl *argVar = *OMD->param_begin(); 1305 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1306 argVar->getType().getNonReferenceType(), VK_LValue, 1307 SourceLocation()); 1308 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1309 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1310 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1311 1312 // The third argument is the sizeof the type. 1313 llvm::Value *size = 1314 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1315 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1316 1317 // The fourth argument is the 'isAtomic' flag. 1318 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1319 1320 // The fifth argument is the 'hasStrong' flag. 1321 // FIXME: should this really always be false? 1322 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1323 1324 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1325 CGCallee callee = CGCallee::forDirect(fn); 1326 CGF.EmitCall( 1327 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1328 callee, ReturnValueSlot(), args); 1329 } 1330 1331 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1332 /// the value from the first formal parameter into the given ivar, using 1333 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1334 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1335 ObjCMethodDecl *OMD, 1336 ObjCIvarDecl *ivar, 1337 llvm::Constant *AtomicHelperFn) { 1338 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1339 // AtomicHelperFn); 1340 CallArgList args; 1341 1342 // The first argument is the address of the ivar. 1343 llvm::Value *ivarAddr = 1344 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1345 .getPointer(CGF); 1346 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1347 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1348 1349 // The second argument is the address of the parameter variable. 1350 ParmVarDecl *argVar = *OMD->param_begin(); 1351 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1352 argVar->getType().getNonReferenceType(), VK_LValue, 1353 SourceLocation()); 1354 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1355 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1356 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1357 1358 // Third argument is the helper function. 1359 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1360 1361 llvm::FunctionCallee fn = 1362 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1363 CGCallee callee = CGCallee::forDirect(fn); 1364 CGF.EmitCall( 1365 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1366 callee, ReturnValueSlot(), args); 1367 } 1368 1369 1370 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1371 Expr *setter = PID->getSetterCXXAssignment(); 1372 if (!setter) return true; 1373 1374 // Sema only makes only of these when the ivar has a C++ class type, 1375 // so the form is pretty constrained. 1376 1377 // An operator call is trivial if the function it calls is trivial. 1378 // This also implies that there's nothing non-trivial going on with 1379 // the arguments, because operator= can only be trivial if it's a 1380 // synthesized assignment operator and therefore both parameters are 1381 // references. 1382 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1383 if (const FunctionDecl *callee 1384 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1385 if (callee->isTrivial()) 1386 return true; 1387 return false; 1388 } 1389 1390 assert(isa<ExprWithCleanups>(setter)); 1391 return false; 1392 } 1393 1394 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1395 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1396 return false; 1397 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1398 } 1399 1400 void 1401 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1402 const ObjCPropertyImplDecl *propImpl, 1403 llvm::Constant *AtomicHelperFn) { 1404 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1405 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl(); 1406 1407 // Just use the setter expression if Sema gave us one and it's 1408 // non-trivial. 1409 if (!hasTrivialSetExpr(propImpl)) { 1410 if (!AtomicHelperFn) 1411 // If non-atomic, assignment is called directly. 1412 EmitStmt(propImpl->getSetterCXXAssignment()); 1413 else 1414 // If atomic, assignment is called via a locking api. 1415 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1416 AtomicHelperFn); 1417 return; 1418 } 1419 1420 PropertyImplStrategy strategy(CGM, propImpl); 1421 switch (strategy.getKind()) { 1422 case PropertyImplStrategy::Native: { 1423 // We don't need to do anything for a zero-size struct. 1424 if (strategy.getIvarSize().isZero()) 1425 return; 1426 1427 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1428 1429 LValue ivarLValue = 1430 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1431 Address ivarAddr = ivarLValue.getAddress(*this); 1432 1433 // Currently, all atomic accesses have to be through integer 1434 // types, so there's no point in trying to pick a prettier type. 1435 llvm::Type *bitcastType = 1436 llvm::Type::getIntNTy(getLLVMContext(), 1437 getContext().toBits(strategy.getIvarSize())); 1438 1439 // Cast both arguments to the chosen operation type. 1440 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1441 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1442 1443 // This bitcast load is likely to cause some nasty IR. 1444 llvm::Value *load = Builder.CreateLoad(argAddr); 1445 1446 // Perform an atomic store. There are no memory ordering requirements. 1447 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1448 store->setAtomic(llvm::AtomicOrdering::Unordered); 1449 return; 1450 } 1451 1452 case PropertyImplStrategy::GetSetProperty: 1453 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1454 1455 llvm::FunctionCallee setOptimizedPropertyFn = nullptr; 1456 llvm::FunctionCallee setPropertyFn = nullptr; 1457 if (UseOptimizedSetter(CGM)) { 1458 // 10.8 and iOS 6.0 code and GC is off 1459 setOptimizedPropertyFn = 1460 CGM.getObjCRuntime().GetOptimizedPropertySetFunction( 1461 strategy.isAtomic(), strategy.isCopy()); 1462 if (!setOptimizedPropertyFn) { 1463 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1464 return; 1465 } 1466 } 1467 else { 1468 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1469 if (!setPropertyFn) { 1470 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1471 return; 1472 } 1473 } 1474 1475 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1476 // <is-atomic>, <is-copy>). 1477 llvm::Value *cmd = 1478 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1479 llvm::Value *self = 1480 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1481 llvm::Value *ivarOffset = 1482 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1483 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1484 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1485 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1486 1487 CallArgList args; 1488 args.add(RValue::get(self), getContext().getObjCIdType()); 1489 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1490 if (setOptimizedPropertyFn) { 1491 args.add(RValue::get(arg), getContext().getObjCIdType()); 1492 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1493 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1494 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1495 callee, ReturnValueSlot(), args); 1496 } else { 1497 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1498 args.add(RValue::get(arg), getContext().getObjCIdType()); 1499 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1500 getContext().BoolTy); 1501 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1502 getContext().BoolTy); 1503 // FIXME: We shouldn't need to get the function info here, the runtime 1504 // already should have computed it to build the function. 1505 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1506 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1507 callee, ReturnValueSlot(), args); 1508 } 1509 1510 return; 1511 } 1512 1513 case PropertyImplStrategy::CopyStruct: 1514 emitStructSetterCall(*this, setterMethod, ivar); 1515 return; 1516 1517 case PropertyImplStrategy::Expression: 1518 break; 1519 } 1520 1521 // Otherwise, fake up some ASTs and emit a normal assignment. 1522 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1523 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(), 1524 VK_LValue, SourceLocation()); 1525 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(), 1526 CK_LValueToRValue, &self, VK_PRValue, 1527 FPOptionsOverride()); 1528 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1529 SourceLocation(), SourceLocation(), 1530 &selfLoad, true, true); 1531 1532 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1533 QualType argType = argDecl->getType().getNonReferenceType(); 1534 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue, 1535 SourceLocation()); 1536 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1537 argType.getUnqualifiedType(), CK_LValueToRValue, 1538 &arg, VK_PRValue, FPOptionsOverride()); 1539 1540 // The property type can differ from the ivar type in some situations with 1541 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1542 // The following absurdity is just to ensure well-formed IR. 1543 CastKind argCK = CK_NoOp; 1544 if (ivarRef.getType()->isObjCObjectPointerType()) { 1545 if (argLoad.getType()->isObjCObjectPointerType()) 1546 argCK = CK_BitCast; 1547 else if (argLoad.getType()->isBlockPointerType()) 1548 argCK = CK_BlockPointerToObjCPointerCast; 1549 else 1550 argCK = CK_CPointerToObjCPointerCast; 1551 } else if (ivarRef.getType()->isBlockPointerType()) { 1552 if (argLoad.getType()->isBlockPointerType()) 1553 argCK = CK_BitCast; 1554 else 1555 argCK = CK_AnyPointerToBlockPointerCast; 1556 } else if (ivarRef.getType()->isPointerType()) { 1557 argCK = CK_BitCast; 1558 } 1559 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK, 1560 &argLoad, VK_PRValue, FPOptionsOverride()); 1561 Expr *finalArg = &argLoad; 1562 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1563 argLoad.getType())) 1564 finalArg = &argCast; 1565 1566 BinaryOperator *assign = BinaryOperator::Create( 1567 getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), 1568 VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride()); 1569 EmitStmt(assign); 1570 } 1571 1572 /// Generate an Objective-C property setter function. 1573 /// 1574 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1575 /// is illegal within a category. 1576 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1577 const ObjCPropertyImplDecl *PID) { 1578 llvm::Constant *AtomicHelperFn = 1579 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1580 ObjCMethodDecl *OMD = PID->getSetterMethodDecl(); 1581 assert(OMD && "Invalid call to generate setter (empty method)"); 1582 StartObjCMethod(OMD, IMP->getClassInterface()); 1583 1584 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1585 1586 FinishFunction(OMD->getEndLoc()); 1587 } 1588 1589 namespace { 1590 struct DestroyIvar final : EHScopeStack::Cleanup { 1591 private: 1592 llvm::Value *addr; 1593 const ObjCIvarDecl *ivar; 1594 CodeGenFunction::Destroyer *destroyer; 1595 bool useEHCleanupForArray; 1596 public: 1597 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1598 CodeGenFunction::Destroyer *destroyer, 1599 bool useEHCleanupForArray) 1600 : addr(addr), ivar(ivar), destroyer(destroyer), 1601 useEHCleanupForArray(useEHCleanupForArray) {} 1602 1603 void Emit(CodeGenFunction &CGF, Flags flags) override { 1604 LValue lvalue 1605 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1606 CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer, 1607 flags.isForNormalCleanup() && useEHCleanupForArray); 1608 } 1609 }; 1610 } 1611 1612 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1613 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1614 Address addr, 1615 QualType type) { 1616 llvm::Value *null = getNullForVariable(addr); 1617 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1618 } 1619 1620 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1621 ObjCImplementationDecl *impl) { 1622 CodeGenFunction::RunCleanupsScope scope(CGF); 1623 1624 llvm::Value *self = CGF.LoadObjCSelf(); 1625 1626 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1627 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1628 ivar; ivar = ivar->getNextIvar()) { 1629 QualType type = ivar->getType(); 1630 1631 // Check whether the ivar is a destructible type. 1632 QualType::DestructionKind dtorKind = type.isDestructedType(); 1633 if (!dtorKind) continue; 1634 1635 CodeGenFunction::Destroyer *destroyer = nullptr; 1636 1637 // Use a call to objc_storeStrong to destroy strong ivars, for the 1638 // general benefit of the tools. 1639 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1640 destroyer = destroyARCStrongWithStore; 1641 1642 // Otherwise use the default for the destruction kind. 1643 } else { 1644 destroyer = CGF.getDestroyer(dtorKind); 1645 } 1646 1647 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1648 1649 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1650 cleanupKind & EHCleanup); 1651 } 1652 1653 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1654 } 1655 1656 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1657 ObjCMethodDecl *MD, 1658 bool ctor) { 1659 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1660 StartObjCMethod(MD, IMP->getClassInterface()); 1661 1662 // Emit .cxx_construct. 1663 if (ctor) { 1664 // Suppress the final autorelease in ARC. 1665 AutoreleaseResult = false; 1666 1667 for (const auto *IvarInit : IMP->inits()) { 1668 FieldDecl *Field = IvarInit->getAnyMember(); 1669 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1670 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1671 LoadObjCSelf(), Ivar, 0); 1672 EmitAggExpr(IvarInit->getInit(), 1673 AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed, 1674 AggValueSlot::DoesNotNeedGCBarriers, 1675 AggValueSlot::IsNotAliased, 1676 AggValueSlot::DoesNotOverlap)); 1677 } 1678 // constructor returns 'self'. 1679 CodeGenTypes &Types = CGM.getTypes(); 1680 QualType IdTy(CGM.getContext().getObjCIdType()); 1681 llvm::Value *SelfAsId = 1682 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1683 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1684 1685 // Emit .cxx_destruct. 1686 } else { 1687 emitCXXDestructMethod(*this, IMP); 1688 } 1689 FinishFunction(); 1690 } 1691 1692 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1693 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1694 DeclRefExpr DRE(getContext(), Self, 1695 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1696 Self->getType(), VK_LValue, SourceLocation()); 1697 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1698 } 1699 1700 QualType CodeGenFunction::TypeOfSelfObject() { 1701 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1702 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1703 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1704 getContext().getCanonicalType(selfDecl->getType())); 1705 return PTy->getPointeeType(); 1706 } 1707 1708 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1709 llvm::FunctionCallee EnumerationMutationFnPtr = 1710 CGM.getObjCRuntime().EnumerationMutationFunction(); 1711 if (!EnumerationMutationFnPtr) { 1712 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1713 return; 1714 } 1715 CGCallee EnumerationMutationFn = 1716 CGCallee::forDirect(EnumerationMutationFnPtr); 1717 1718 CGDebugInfo *DI = getDebugInfo(); 1719 if (DI) 1720 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1721 1722 RunCleanupsScope ForScope(*this); 1723 1724 // The local variable comes into scope immediately. 1725 AutoVarEmission variable = AutoVarEmission::invalid(); 1726 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1727 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1728 1729 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1730 1731 // Fast enumeration state. 1732 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1733 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1734 EmitNullInitialization(StatePtr, StateTy); 1735 1736 // Number of elements in the items array. 1737 static const unsigned NumItems = 16; 1738 1739 // Fetch the countByEnumeratingWithState:objects:count: selector. 1740 IdentifierInfo *II[] = { 1741 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1742 &CGM.getContext().Idents.get("objects"), 1743 &CGM.getContext().Idents.get("count") 1744 }; 1745 Selector FastEnumSel = 1746 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1747 1748 QualType ItemsTy = 1749 getContext().getConstantArrayType(getContext().getObjCIdType(), 1750 llvm::APInt(32, NumItems), nullptr, 1751 ArrayType::Normal, 0); 1752 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1753 1754 // Emit the collection pointer. In ARC, we do a retain. 1755 llvm::Value *Collection; 1756 if (getLangOpts().ObjCAutoRefCount) { 1757 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1758 1759 // Enter a cleanup to do the release. 1760 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1761 } else { 1762 Collection = EmitScalarExpr(S.getCollection()); 1763 } 1764 1765 // The 'continue' label needs to appear within the cleanup for the 1766 // collection object. 1767 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1768 1769 // Send it our message: 1770 CallArgList Args; 1771 1772 // The first argument is a temporary of the enumeration-state type. 1773 Args.add(RValue::get(StatePtr.getPointer()), 1774 getContext().getPointerType(StateTy)); 1775 1776 // The second argument is a temporary array with space for NumItems 1777 // pointers. We'll actually be loading elements from the array 1778 // pointer written into the control state; this buffer is so that 1779 // collections that *aren't* backed by arrays can still queue up 1780 // batches of elements. 1781 Args.add(RValue::get(ItemsPtr.getPointer()), 1782 getContext().getPointerType(ItemsTy)); 1783 1784 // The third argument is the capacity of that temporary array. 1785 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1786 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1787 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1788 1789 // Start the enumeration. 1790 RValue CountRV = 1791 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1792 getContext().getNSUIntegerType(), 1793 FastEnumSel, Collection, Args); 1794 1795 // The initial number of objects that were returned in the buffer. 1796 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1797 1798 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1799 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1800 1801 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1802 1803 // If the limit pointer was zero to begin with, the collection is 1804 // empty; skip all this. Set the branch weight assuming this has the same 1805 // probability of exiting the loop as any other loop exit. 1806 uint64_t EntryCount = getCurrentProfileCount(); 1807 Builder.CreateCondBr( 1808 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1809 LoopInitBB, 1810 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1811 1812 // Otherwise, initialize the loop. 1813 EmitBlock(LoopInitBB); 1814 1815 // Save the initial mutations value. This is the value at an 1816 // address that was written into the state object by 1817 // countByEnumeratingWithState:objects:count:. 1818 Address StateMutationsPtrPtr = 1819 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1820 llvm::Value *StateMutationsPtr 1821 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1822 1823 llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy); 1824 llvm::Value *initialMutations = 1825 Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr, 1826 getPointerAlign(), "forcoll.initial-mutations"); 1827 1828 // Start looping. This is the point we return to whenever we have a 1829 // fresh, non-empty batch of objects. 1830 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1831 EmitBlock(LoopBodyBB); 1832 1833 // The current index into the buffer. 1834 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1835 index->addIncoming(zero, LoopInitBB); 1836 1837 // The current buffer size. 1838 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1839 count->addIncoming(initialBufferLimit, LoopInitBB); 1840 1841 incrementProfileCounter(&S); 1842 1843 // Check whether the mutations value has changed from where it was 1844 // at start. StateMutationsPtr should actually be invariant between 1845 // refreshes. 1846 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1847 llvm::Value *currentMutations 1848 = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr, 1849 getPointerAlign(), "statemutations"); 1850 1851 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1852 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1853 1854 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1855 WasNotMutatedBB, WasMutatedBB); 1856 1857 // If so, call the enumeration-mutation function. 1858 EmitBlock(WasMutatedBB); 1859 llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType()); 1860 llvm::Value *V = 1861 Builder.CreateBitCast(Collection, ObjCIdType); 1862 CallArgList Args2; 1863 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1864 // FIXME: We shouldn't need to get the function info here, the runtime already 1865 // should have computed it to build the function. 1866 EmitCall( 1867 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1868 EnumerationMutationFn, ReturnValueSlot(), Args2); 1869 1870 // Otherwise, or if the mutation function returns, just continue. 1871 EmitBlock(WasNotMutatedBB); 1872 1873 // Initialize the element variable. 1874 RunCleanupsScope elementVariableScope(*this); 1875 bool elementIsVariable; 1876 LValue elementLValue; 1877 QualType elementType; 1878 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1879 // Initialize the variable, in case it's a __block variable or something. 1880 EmitAutoVarInit(variable); 1881 1882 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl()); 1883 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false, 1884 D->getType(), VK_LValue, SourceLocation()); 1885 elementLValue = EmitLValue(&tempDRE); 1886 elementType = D->getType(); 1887 elementIsVariable = true; 1888 1889 if (D->isARCPseudoStrong()) 1890 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1891 } else { 1892 elementLValue = LValue(); // suppress warning 1893 elementType = cast<Expr>(S.getElement())->getType(); 1894 elementIsVariable = false; 1895 } 1896 llvm::Type *convertedElementType = ConvertType(elementType); 1897 1898 // Fetch the buffer out of the enumeration state. 1899 // TODO: this pointer should actually be invariant between 1900 // refreshes, which would help us do certain loop optimizations. 1901 Address StateItemsPtr = 1902 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1903 llvm::Value *EnumStateItems = 1904 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1905 1906 // Fetch the value at the current index from the buffer. 1907 llvm::Value *CurrentItemPtr = Builder.CreateGEP( 1908 EnumStateItems->getType()->getPointerElementType(), EnumStateItems, index, 1909 "currentitem.ptr"); 1910 llvm::Value *CurrentItem = 1911 Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign()); 1912 1913 if (SanOpts.has(SanitizerKind::ObjCCast)) { 1914 // Before using an item from the collection, check that the implicit cast 1915 // from id to the element type is valid. This is done with instrumentation 1916 // roughly corresponding to: 1917 // 1918 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ } 1919 const ObjCObjectPointerType *ObjPtrTy = 1920 elementType->getAsObjCInterfacePointerType(); 1921 const ObjCInterfaceType *InterfaceTy = 1922 ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr; 1923 if (InterfaceTy) { 1924 SanitizerScope SanScope(this); 1925 auto &C = CGM.getContext(); 1926 assert(InterfaceTy->getDecl() && "No decl for ObjC interface type"); 1927 Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C); 1928 CallArgList IsKindOfClassArgs; 1929 llvm::Value *Cls = 1930 CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl()); 1931 IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType()); 1932 llvm::Value *IsClass = 1933 CGM.getObjCRuntime() 1934 .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy, 1935 IsKindOfClassSel, CurrentItem, 1936 IsKindOfClassArgs) 1937 .getScalarVal(); 1938 llvm::Constant *StaticData[] = { 1939 EmitCheckSourceLocation(S.getBeginLoc()), 1940 EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))}; 1941 EmitCheck({{IsClass, SanitizerKind::ObjCCast}}, 1942 SanitizerHandler::InvalidObjCCast, 1943 ArrayRef<llvm::Constant *>(StaticData), CurrentItem); 1944 } 1945 } 1946 1947 // Cast that value to the right type. 1948 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1949 "currentitem"); 1950 1951 // Make sure we have an l-value. Yes, this gets evaluated every 1952 // time through the loop. 1953 if (!elementIsVariable) { 1954 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1955 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1956 } else { 1957 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1958 /*isInit*/ true); 1959 } 1960 1961 // If we do have an element variable, this assignment is the end of 1962 // its initialization. 1963 if (elementIsVariable) 1964 EmitAutoVarCleanups(variable); 1965 1966 // Perform the loop body, setting up break and continue labels. 1967 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1968 { 1969 RunCleanupsScope Scope(*this); 1970 EmitStmt(S.getBody()); 1971 } 1972 BreakContinueStack.pop_back(); 1973 1974 // Destroy the element variable now. 1975 elementVariableScope.ForceCleanup(); 1976 1977 // Check whether there are more elements. 1978 EmitBlock(AfterBody.getBlock()); 1979 1980 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1981 1982 // First we check in the local buffer. 1983 llvm::Value *indexPlusOne = 1984 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 1985 1986 // If we haven't overrun the buffer yet, we can continue. 1987 // Set the branch weights based on the simplifying assumption that this is 1988 // like a while-loop, i.e., ignoring that the false branch fetches more 1989 // elements and then returns to the loop. 1990 Builder.CreateCondBr( 1991 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1992 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1993 1994 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1995 count->addIncoming(count, AfterBody.getBlock()); 1996 1997 // Otherwise, we have to fetch more elements. 1998 EmitBlock(FetchMoreBB); 1999 2000 CountRV = 2001 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2002 getContext().getNSUIntegerType(), 2003 FastEnumSel, Collection, Args); 2004 2005 // If we got a zero count, we're done. 2006 llvm::Value *refetchCount = CountRV.getScalarVal(); 2007 2008 // (note that the message send might split FetchMoreBB) 2009 index->addIncoming(zero, Builder.GetInsertBlock()); 2010 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 2011 2012 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 2013 EmptyBB, LoopBodyBB); 2014 2015 // No more elements. 2016 EmitBlock(EmptyBB); 2017 2018 if (!elementIsVariable) { 2019 // If the element was not a declaration, set it to be null. 2020 2021 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 2022 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 2023 EmitStoreThroughLValue(RValue::get(null), elementLValue); 2024 } 2025 2026 if (DI) 2027 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 2028 2029 ForScope.ForceCleanup(); 2030 EmitBlock(LoopEnd.getBlock()); 2031 } 2032 2033 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 2034 CGM.getObjCRuntime().EmitTryStmt(*this, S); 2035 } 2036 2037 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 2038 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 2039 } 2040 2041 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 2042 const ObjCAtSynchronizedStmt &S) { 2043 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 2044 } 2045 2046 namespace { 2047 struct CallObjCRelease final : EHScopeStack::Cleanup { 2048 CallObjCRelease(llvm::Value *object) : object(object) {} 2049 llvm::Value *object; 2050 2051 void Emit(CodeGenFunction &CGF, Flags flags) override { 2052 // Releases at the end of the full-expression are imprecise. 2053 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 2054 } 2055 }; 2056 } 2057 2058 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 2059 /// release at the end of the full-expression. 2060 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 2061 llvm::Value *object) { 2062 // If we're in a conditional branch, we need to make the cleanup 2063 // conditional. 2064 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 2065 return object; 2066 } 2067 2068 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 2069 llvm::Value *value) { 2070 return EmitARCRetainAutorelease(type, value); 2071 } 2072 2073 /// Given a number of pointers, inform the optimizer that they're 2074 /// being intrinsically used up until this point in the program. 2075 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 2076 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use; 2077 if (!fn) 2078 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use); 2079 2080 // This isn't really a "runtime" function, but as an intrinsic it 2081 // doesn't really matter as long as we align things up. 2082 EmitNounwindRuntimeCall(fn, values); 2083 } 2084 2085 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call 2086 /// that has operand bundle "clang.arc.attachedcall". 2087 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) { 2088 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use; 2089 if (!fn) 2090 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use); 2091 EmitNounwindRuntimeCall(fn, values); 2092 } 2093 2094 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) { 2095 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 2096 // If the target runtime doesn't naturally support ARC, emit weak 2097 // references to the runtime support library. We don't really 2098 // permit this to fail, but we need a particular relocation style. 2099 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 2100 !CGM.getTriple().isOSBinFormatCOFF()) { 2101 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2102 } 2103 } 2104 } 2105 2106 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, 2107 llvm::FunctionCallee RTF) { 2108 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee()); 2109 } 2110 2111 static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID, 2112 CodeGenModule &CGM) { 2113 llvm::Function *fn = CGM.getIntrinsic(IntID); 2114 setARCRuntimeFunctionLinkage(CGM, fn); 2115 return fn; 2116 } 2117 2118 /// Perform an operation having the signature 2119 /// i8* (i8*) 2120 /// where a null input causes a no-op and returns null. 2121 static llvm::Value *emitARCValueOperation( 2122 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, 2123 llvm::Function *&fn, llvm::Intrinsic::ID IntID, 2124 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) { 2125 if (isa<llvm::ConstantPointerNull>(value)) 2126 return value; 2127 2128 if (!fn) 2129 fn = getARCIntrinsic(IntID, CGF.CGM); 2130 2131 // Cast the argument to 'id'. 2132 llvm::Type *origType = returnType ? returnType : value->getType(); 2133 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2134 2135 // Call the function. 2136 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 2137 call->setTailCallKind(tailKind); 2138 2139 // Cast the result back to the original type. 2140 return CGF.Builder.CreateBitCast(call, origType); 2141 } 2142 2143 /// Perform an operation having the following signature: 2144 /// i8* (i8**) 2145 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr, 2146 llvm::Function *&fn, 2147 llvm::Intrinsic::ID IntID) { 2148 if (!fn) 2149 fn = getARCIntrinsic(IntID, CGF.CGM); 2150 2151 // Cast the argument to 'id*'. 2152 llvm::Type *origType = addr.getElementType(); 2153 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 2154 2155 // Call the function. 2156 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 2157 2158 // Cast the result back to a dereference of the original type. 2159 if (origType != CGF.Int8PtrTy) 2160 result = CGF.Builder.CreateBitCast(result, origType); 2161 2162 return result; 2163 } 2164 2165 /// Perform an operation having the following signature: 2166 /// i8* (i8**, i8*) 2167 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr, 2168 llvm::Value *value, 2169 llvm::Function *&fn, 2170 llvm::Intrinsic::ID IntID, 2171 bool ignored) { 2172 assert(addr.getElementType() == value->getType()); 2173 2174 if (!fn) 2175 fn = getARCIntrinsic(IntID, CGF.CGM); 2176 2177 llvm::Type *origType = value->getType(); 2178 2179 llvm::Value *args[] = { 2180 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 2181 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 2182 }; 2183 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 2184 2185 if (ignored) return nullptr; 2186 2187 return CGF.Builder.CreateBitCast(result, origType); 2188 } 2189 2190 /// Perform an operation having the following signature: 2191 /// void (i8**, i8**) 2192 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, 2193 llvm::Function *&fn, 2194 llvm::Intrinsic::ID IntID) { 2195 assert(dst.getType() == src.getType()); 2196 2197 if (!fn) 2198 fn = getARCIntrinsic(IntID, CGF.CGM); 2199 2200 llvm::Value *args[] = { 2201 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 2202 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 2203 }; 2204 CGF.EmitNounwindRuntimeCall(fn, args); 2205 } 2206 2207 /// Perform an operation having the signature 2208 /// i8* (i8*) 2209 /// where a null input causes a no-op and returns null. 2210 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, 2211 llvm::Value *value, 2212 llvm::Type *returnType, 2213 llvm::FunctionCallee &fn, 2214 StringRef fnName) { 2215 if (isa<llvm::ConstantPointerNull>(value)) 2216 return value; 2217 2218 if (!fn) { 2219 llvm::FunctionType *fnType = 2220 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 2221 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName); 2222 2223 // We have Native ARC, so set nonlazybind attribute for performance 2224 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2225 if (fnName == "objc_retain") 2226 f->addFnAttr(llvm::Attribute::NonLazyBind); 2227 } 2228 2229 // Cast the argument to 'id'. 2230 llvm::Type *origType = returnType ? returnType : value->getType(); 2231 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2232 2233 // Call the function. 2234 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value); 2235 2236 // Mark calls to objc_autorelease as tail on the assumption that methods 2237 // overriding autorelease do not touch anything on the stack. 2238 if (fnName == "objc_autorelease") 2239 if (auto *Call = dyn_cast<llvm::CallInst>(Inst)) 2240 Call->setTailCall(); 2241 2242 // Cast the result back to the original type. 2243 return CGF.Builder.CreateBitCast(Inst, origType); 2244 } 2245 2246 /// Produce the code to do a retain. Based on the type, calls one of: 2247 /// call i8* \@objc_retain(i8* %value) 2248 /// call i8* \@objc_retainBlock(i8* %value) 2249 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 2250 if (type->isBlockPointerType()) 2251 return EmitARCRetainBlock(value, /*mandatory*/ false); 2252 else 2253 return EmitARCRetainNonBlock(value); 2254 } 2255 2256 /// Retain the given object, with normal retain semantics. 2257 /// call i8* \@objc_retain(i8* %value) 2258 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 2259 return emitARCValueOperation(*this, value, nullptr, 2260 CGM.getObjCEntrypoints().objc_retain, 2261 llvm::Intrinsic::objc_retain); 2262 } 2263 2264 /// Retain the given block, with _Block_copy semantics. 2265 /// call i8* \@objc_retainBlock(i8* %value) 2266 /// 2267 /// \param mandatory - If false, emit the call with metadata 2268 /// indicating that it's okay for the optimizer to eliminate this call 2269 /// if it can prove that the block never escapes except down the stack. 2270 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 2271 bool mandatory) { 2272 llvm::Value *result 2273 = emitARCValueOperation(*this, value, nullptr, 2274 CGM.getObjCEntrypoints().objc_retainBlock, 2275 llvm::Intrinsic::objc_retainBlock); 2276 2277 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 2278 // tell the optimizer that it doesn't need to do this copy if the 2279 // block doesn't escape, where being passed as an argument doesn't 2280 // count as escaping. 2281 if (!mandatory && isa<llvm::Instruction>(result)) { 2282 llvm::CallInst *call 2283 = cast<llvm::CallInst>(result->stripPointerCasts()); 2284 assert(call->getCalledOperand() == 2285 CGM.getObjCEntrypoints().objc_retainBlock); 2286 2287 call->setMetadata("clang.arc.copy_on_escape", 2288 llvm::MDNode::get(Builder.getContext(), None)); 2289 } 2290 2291 return result; 2292 } 2293 2294 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 2295 // Fetch the void(void) inline asm which marks that we're going to 2296 // do something with the autoreleased return value. 2297 llvm::InlineAsm *&marker 2298 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2299 if (!marker) { 2300 StringRef assembly 2301 = CGF.CGM.getTargetCodeGenInfo() 2302 .getARCRetainAutoreleasedReturnValueMarker(); 2303 2304 // If we have an empty assembly string, there's nothing to do. 2305 if (assembly.empty()) { 2306 2307 // Otherwise, at -O0, build an inline asm that we're going to call 2308 // in a moment. 2309 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2310 llvm::FunctionType *type = 2311 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2312 2313 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2314 2315 // If we're at -O1 and above, we don't want to litter the code 2316 // with this marker yet, so leave a breadcrumb for the ARC 2317 // optimizer to pick up. 2318 } else { 2319 const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr(); 2320 if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) { 2321 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly); 2322 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, 2323 retainRVMarkerKey, str); 2324 } 2325 } 2326 } 2327 2328 // Call the marker asm if we made one, which we do only at -O0. 2329 if (marker) 2330 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker)); 2331 } 2332 2333 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value, 2334 bool IsRetainRV, 2335 CodeGenFunction &CGF) { 2336 emitAutoreleasedReturnValueMarker(CGF); 2337 2338 // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting 2339 // retainRV or claimRV calls in the IR. We currently do this only when the 2340 // optimization level isn't -O0 since global-isel, which is currently run at 2341 // -O0, doesn't know about the operand bundle. 2342 ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints(); 2343 llvm::Function *&EP = IsRetainRV 2344 ? EPs.objc_retainAutoreleasedReturnValue 2345 : EPs.objc_unsafeClaimAutoreleasedReturnValue; 2346 llvm::Intrinsic::ID IID = 2347 IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue 2348 : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue; 2349 EP = getARCIntrinsic(IID, CGF.CGM); 2350 2351 // FIXME: Do this when the target isn't aarch64. 2352 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 && 2353 CGF.CGM.getTarget().getTriple().isAArch64()) { 2354 llvm::Value *bundleArgs[] = {EP}; 2355 llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs); 2356 auto *oldCall = cast<llvm::CallBase>(value); 2357 llvm::CallBase *newCall = llvm::CallBase::addOperandBundle( 2358 oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall); 2359 newCall->copyMetadata(*oldCall); 2360 oldCall->replaceAllUsesWith(newCall); 2361 oldCall->eraseFromParent(); 2362 CGF.EmitARCNoopIntrinsicUse(newCall); 2363 return newCall; 2364 } 2365 2366 bool isNoTail = 2367 CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail(); 2368 llvm::CallInst::TailCallKind tailKind = 2369 isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None; 2370 return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind); 2371 } 2372 2373 /// Retain the given object which is the result of a function call. 2374 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2375 /// 2376 /// Yes, this function name is one character away from a different 2377 /// call with completely different semantics. 2378 llvm::Value * 2379 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2380 return emitOptimizedARCReturnCall(value, true, *this); 2381 } 2382 2383 /// Claim a possibly-autoreleased return value at +0. This is only 2384 /// valid to do in contexts which do not rely on the retain to keep 2385 /// the object valid for all of its uses; for example, when 2386 /// the value is ignored, or when it is being assigned to an 2387 /// __unsafe_unretained variable. 2388 /// 2389 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2390 llvm::Value * 2391 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2392 return emitOptimizedARCReturnCall(value, false, *this); 2393 } 2394 2395 /// Release the given object. 2396 /// call void \@objc_release(i8* %value) 2397 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2398 ARCPreciseLifetime_t precise) { 2399 if (isa<llvm::ConstantPointerNull>(value)) return; 2400 2401 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release; 2402 if (!fn) 2403 fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM); 2404 2405 // Cast the argument to 'id'. 2406 value = Builder.CreateBitCast(value, Int8PtrTy); 2407 2408 // Call objc_release. 2409 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2410 2411 if (precise == ARCImpreciseLifetime) { 2412 call->setMetadata("clang.imprecise_release", 2413 llvm::MDNode::get(Builder.getContext(), None)); 2414 } 2415 } 2416 2417 /// Destroy a __strong variable. 2418 /// 2419 /// At -O0, emit a call to store 'null' into the address; 2420 /// instrumenting tools prefer this because the address is exposed, 2421 /// but it's relatively cumbersome to optimize. 2422 /// 2423 /// At -O1 and above, just load and call objc_release. 2424 /// 2425 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2426 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2427 ARCPreciseLifetime_t precise) { 2428 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2429 llvm::Value *null = getNullForVariable(addr); 2430 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2431 return; 2432 } 2433 2434 llvm::Value *value = Builder.CreateLoad(addr); 2435 EmitARCRelease(value, precise); 2436 } 2437 2438 /// Store into a strong object. Always calls this: 2439 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2440 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2441 llvm::Value *value, 2442 bool ignored) { 2443 assert(addr.getElementType() == value->getType()); 2444 2445 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2446 if (!fn) 2447 fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM); 2448 2449 llvm::Value *args[] = { 2450 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2451 Builder.CreateBitCast(value, Int8PtrTy) 2452 }; 2453 EmitNounwindRuntimeCall(fn, args); 2454 2455 if (ignored) return nullptr; 2456 return value; 2457 } 2458 2459 /// Store into a strong object. Sometimes calls this: 2460 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2461 /// Other times, breaks it down into components. 2462 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2463 llvm::Value *newValue, 2464 bool ignored) { 2465 QualType type = dst.getType(); 2466 bool isBlock = type->isBlockPointerType(); 2467 2468 // Use a store barrier at -O0 unless this is a block type or the 2469 // lvalue is inadequately aligned. 2470 if (shouldUseFusedARCCalls() && 2471 !isBlock && 2472 (dst.getAlignment().isZero() || 2473 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2474 return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored); 2475 } 2476 2477 // Otherwise, split it out. 2478 2479 // Retain the new value. 2480 newValue = EmitARCRetain(type, newValue); 2481 2482 // Read the old value. 2483 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2484 2485 // Store. We do this before the release so that any deallocs won't 2486 // see the old value. 2487 EmitStoreOfScalar(newValue, dst); 2488 2489 // Finally, release the old value. 2490 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2491 2492 return newValue; 2493 } 2494 2495 /// Autorelease the given object. 2496 /// call i8* \@objc_autorelease(i8* %value) 2497 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2498 return emitARCValueOperation(*this, value, nullptr, 2499 CGM.getObjCEntrypoints().objc_autorelease, 2500 llvm::Intrinsic::objc_autorelease); 2501 } 2502 2503 /// Autorelease the given object. 2504 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2505 llvm::Value * 2506 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2507 return emitARCValueOperation(*this, value, nullptr, 2508 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2509 llvm::Intrinsic::objc_autoreleaseReturnValue, 2510 llvm::CallInst::TCK_Tail); 2511 } 2512 2513 /// Do a fused retain/autorelease of the given object. 2514 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2515 llvm::Value * 2516 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2517 return emitARCValueOperation(*this, value, nullptr, 2518 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2519 llvm::Intrinsic::objc_retainAutoreleaseReturnValue, 2520 llvm::CallInst::TCK_Tail); 2521 } 2522 2523 /// Do a fused retain/autorelease of the given object. 2524 /// call i8* \@objc_retainAutorelease(i8* %value) 2525 /// or 2526 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2527 /// call i8* \@objc_autorelease(i8* %retain) 2528 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2529 llvm::Value *value) { 2530 if (!type->isBlockPointerType()) 2531 return EmitARCRetainAutoreleaseNonBlock(value); 2532 2533 if (isa<llvm::ConstantPointerNull>(value)) return value; 2534 2535 llvm::Type *origType = value->getType(); 2536 value = Builder.CreateBitCast(value, Int8PtrTy); 2537 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2538 value = EmitARCAutorelease(value); 2539 return Builder.CreateBitCast(value, origType); 2540 } 2541 2542 /// Do a fused retain/autorelease of the given object. 2543 /// call i8* \@objc_retainAutorelease(i8* %value) 2544 llvm::Value * 2545 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2546 return emitARCValueOperation(*this, value, nullptr, 2547 CGM.getObjCEntrypoints().objc_retainAutorelease, 2548 llvm::Intrinsic::objc_retainAutorelease); 2549 } 2550 2551 /// i8* \@objc_loadWeak(i8** %addr) 2552 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2553 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2554 return emitARCLoadOperation(*this, addr, 2555 CGM.getObjCEntrypoints().objc_loadWeak, 2556 llvm::Intrinsic::objc_loadWeak); 2557 } 2558 2559 /// i8* \@objc_loadWeakRetained(i8** %addr) 2560 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2561 return emitARCLoadOperation(*this, addr, 2562 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2563 llvm::Intrinsic::objc_loadWeakRetained); 2564 } 2565 2566 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2567 /// Returns %value. 2568 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2569 llvm::Value *value, 2570 bool ignored) { 2571 return emitARCStoreOperation(*this, addr, value, 2572 CGM.getObjCEntrypoints().objc_storeWeak, 2573 llvm::Intrinsic::objc_storeWeak, ignored); 2574 } 2575 2576 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2577 /// Returns %value. %addr is known to not have a current weak entry. 2578 /// Essentially equivalent to: 2579 /// *addr = nil; objc_storeWeak(addr, value); 2580 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2581 // If we're initializing to null, just write null to memory; no need 2582 // to get the runtime involved. But don't do this if optimization 2583 // is enabled, because accounting for this would make the optimizer 2584 // much more complicated. 2585 if (isa<llvm::ConstantPointerNull>(value) && 2586 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2587 Builder.CreateStore(value, addr); 2588 return; 2589 } 2590 2591 emitARCStoreOperation(*this, addr, value, 2592 CGM.getObjCEntrypoints().objc_initWeak, 2593 llvm::Intrinsic::objc_initWeak, /*ignored*/ true); 2594 } 2595 2596 /// void \@objc_destroyWeak(i8** %addr) 2597 /// Essentially objc_storeWeak(addr, nil). 2598 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2599 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2600 if (!fn) 2601 fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM); 2602 2603 // Cast the argument to 'id*'. 2604 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2605 2606 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2607 } 2608 2609 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2610 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2611 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2612 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2613 emitARCCopyOperation(*this, dst, src, 2614 CGM.getObjCEntrypoints().objc_moveWeak, 2615 llvm::Intrinsic::objc_moveWeak); 2616 } 2617 2618 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2619 /// Disregards the current value in %dest. Essentially 2620 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2621 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2622 emitARCCopyOperation(*this, dst, src, 2623 CGM.getObjCEntrypoints().objc_copyWeak, 2624 llvm::Intrinsic::objc_copyWeak); 2625 } 2626 2627 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, 2628 Address SrcAddr) { 2629 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2630 Object = EmitObjCConsumeObject(Ty, Object); 2631 EmitARCStoreWeak(DstAddr, Object, false); 2632 } 2633 2634 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, 2635 Address SrcAddr) { 2636 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2637 Object = EmitObjCConsumeObject(Ty, Object); 2638 EmitARCStoreWeak(DstAddr, Object, false); 2639 EmitARCDestroyWeak(SrcAddr); 2640 } 2641 2642 /// Produce the code to do a objc_autoreleasepool_push. 2643 /// call i8* \@objc_autoreleasePoolPush(void) 2644 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2645 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2646 if (!fn) 2647 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM); 2648 2649 return EmitNounwindRuntimeCall(fn); 2650 } 2651 2652 /// Produce the code to do a primitive release. 2653 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2654 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2655 assert(value->getType() == Int8PtrTy); 2656 2657 if (getInvokeDest()) { 2658 // Call the runtime method not the intrinsic if we are handling exceptions 2659 llvm::FunctionCallee &fn = 2660 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; 2661 if (!fn) { 2662 llvm::FunctionType *fnType = 2663 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2664 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop"); 2665 setARCRuntimeFunctionLinkage(CGM, fn); 2666 } 2667 2668 // objc_autoreleasePoolPop can throw. 2669 EmitRuntimeCallOrInvoke(fn, value); 2670 } else { 2671 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2672 if (!fn) 2673 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM); 2674 2675 EmitRuntimeCall(fn, value); 2676 } 2677 } 2678 2679 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2680 /// Which is: [[NSAutoreleasePool alloc] init]; 2681 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2682 /// init is declared as: - (id) init; in its NSObject super class. 2683 /// 2684 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2685 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2686 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2687 // [NSAutoreleasePool alloc] 2688 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2689 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2690 CallArgList Args; 2691 RValue AllocRV = 2692 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2693 getContext().getObjCIdType(), 2694 AllocSel, Receiver, Args); 2695 2696 // [Receiver init] 2697 Receiver = AllocRV.getScalarVal(); 2698 II = &CGM.getContext().Idents.get("init"); 2699 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2700 RValue InitRV = 2701 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2702 getContext().getObjCIdType(), 2703 InitSel, Receiver, Args); 2704 return InitRV.getScalarVal(); 2705 } 2706 2707 /// Allocate the given objc object. 2708 /// call i8* \@objc_alloc(i8* %value) 2709 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, 2710 llvm::Type *resultType) { 2711 return emitObjCValueOperation(*this, value, resultType, 2712 CGM.getObjCEntrypoints().objc_alloc, 2713 "objc_alloc"); 2714 } 2715 2716 /// Allocate the given objc object. 2717 /// call i8* \@objc_allocWithZone(i8* %value) 2718 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, 2719 llvm::Type *resultType) { 2720 return emitObjCValueOperation(*this, value, resultType, 2721 CGM.getObjCEntrypoints().objc_allocWithZone, 2722 "objc_allocWithZone"); 2723 } 2724 2725 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value, 2726 llvm::Type *resultType) { 2727 return emitObjCValueOperation(*this, value, resultType, 2728 CGM.getObjCEntrypoints().objc_alloc_init, 2729 "objc_alloc_init"); 2730 } 2731 2732 /// Produce the code to do a primitive release. 2733 /// [tmp drain]; 2734 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2735 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2736 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2737 CallArgList Args; 2738 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2739 getContext().VoidTy, DrainSel, Arg, Args); 2740 } 2741 2742 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2743 Address addr, 2744 QualType type) { 2745 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2746 } 2747 2748 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2749 Address addr, 2750 QualType type) { 2751 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2752 } 2753 2754 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2755 Address addr, 2756 QualType type) { 2757 CGF.EmitARCDestroyWeak(addr); 2758 } 2759 2760 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2761 QualType type) { 2762 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2763 CGF.EmitARCIntrinsicUse(value); 2764 } 2765 2766 /// Autorelease the given object. 2767 /// call i8* \@objc_autorelease(i8* %value) 2768 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value, 2769 llvm::Type *returnType) { 2770 return emitObjCValueOperation( 2771 *this, value, returnType, 2772 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction, 2773 "objc_autorelease"); 2774 } 2775 2776 /// Retain the given object, with normal retain semantics. 2777 /// call i8* \@objc_retain(i8* %value) 2778 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value, 2779 llvm::Type *returnType) { 2780 return emitObjCValueOperation( 2781 *this, value, returnType, 2782 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain"); 2783 } 2784 2785 /// Release the given object. 2786 /// call void \@objc_release(i8* %value) 2787 void CodeGenFunction::EmitObjCRelease(llvm::Value *value, 2788 ARCPreciseLifetime_t precise) { 2789 if (isa<llvm::ConstantPointerNull>(value)) return; 2790 2791 llvm::FunctionCallee &fn = 2792 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction; 2793 if (!fn) { 2794 llvm::FunctionType *fnType = 2795 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2796 fn = CGM.CreateRuntimeFunction(fnType, "objc_release"); 2797 setARCRuntimeFunctionLinkage(CGM, fn); 2798 // We have Native ARC, so set nonlazybind attribute for performance 2799 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2800 f->addFnAttr(llvm::Attribute::NonLazyBind); 2801 } 2802 2803 // Cast the argument to 'id'. 2804 value = Builder.CreateBitCast(value, Int8PtrTy); 2805 2806 // Call objc_release. 2807 llvm::CallBase *call = EmitCallOrInvoke(fn, value); 2808 2809 if (precise == ARCImpreciseLifetime) { 2810 call->setMetadata("clang.imprecise_release", 2811 llvm::MDNode::get(Builder.getContext(), None)); 2812 } 2813 } 2814 2815 namespace { 2816 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2817 llvm::Value *Token; 2818 2819 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2820 2821 void Emit(CodeGenFunction &CGF, Flags flags) override { 2822 CGF.EmitObjCAutoreleasePoolPop(Token); 2823 } 2824 }; 2825 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2826 llvm::Value *Token; 2827 2828 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2829 2830 void Emit(CodeGenFunction &CGF, Flags flags) override { 2831 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2832 } 2833 }; 2834 } 2835 2836 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2837 if (CGM.getLangOpts().ObjCAutoRefCount) 2838 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2839 else 2840 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2841 } 2842 2843 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { 2844 switch (lifetime) { 2845 case Qualifiers::OCL_None: 2846 case Qualifiers::OCL_ExplicitNone: 2847 case Qualifiers::OCL_Strong: 2848 case Qualifiers::OCL_Autoreleasing: 2849 return true; 2850 2851 case Qualifiers::OCL_Weak: 2852 return false; 2853 } 2854 2855 llvm_unreachable("impossible lifetime!"); 2856 } 2857 2858 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2859 LValue lvalue, 2860 QualType type) { 2861 llvm::Value *result; 2862 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime()); 2863 if (shouldRetain) { 2864 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal(); 2865 } else { 2866 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); 2867 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF)); 2868 } 2869 return TryEmitResult(result, !shouldRetain); 2870 } 2871 2872 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2873 const Expr *e) { 2874 e = e->IgnoreParens(); 2875 QualType type = e->getType(); 2876 2877 // If we're loading retained from a __strong xvalue, we can avoid 2878 // an extra retain/release pair by zeroing out the source of this 2879 // "move" operation. 2880 if (e->isXValue() && 2881 !type.isConstQualified() && 2882 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2883 // Emit the lvalue. 2884 LValue lv = CGF.EmitLValue(e); 2885 2886 // Load the object pointer. 2887 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2888 SourceLocation()).getScalarVal(); 2889 2890 // Set the source pointer to NULL. 2891 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv); 2892 2893 return TryEmitResult(result, true); 2894 } 2895 2896 // As a very special optimization, in ARC++, if the l-value is the 2897 // result of a non-volatile assignment, do a simple retain of the 2898 // result of the call to objc_storeWeak instead of reloading. 2899 if (CGF.getLangOpts().CPlusPlus && 2900 !type.isVolatileQualified() && 2901 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2902 isa<BinaryOperator>(e) && 2903 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2904 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2905 2906 // Try to emit code for scalar constant instead of emitting LValue and 2907 // loading it because we are not guaranteed to have an l-value. One of such 2908 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. 2909 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) { 2910 auto *DRE = const_cast<DeclRefExpr *>(decl_expr); 2911 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE)) 2912 return TryEmitResult(CGF.emitScalarConstant(constant, DRE), 2913 !shouldRetainObjCLifetime(type.getObjCLifetime())); 2914 } 2915 2916 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2917 } 2918 2919 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2920 llvm::Value *value)> 2921 ValueTransform; 2922 2923 /// Insert code immediately after a call. 2924 2925 // FIXME: We should find a way to emit the runtime call immediately 2926 // after the call is emitted to eliminate the need for this function. 2927 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2928 llvm::Value *value, 2929 ValueTransform doAfterCall, 2930 ValueTransform doFallback) { 2931 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2932 auto *callBase = dyn_cast<llvm::CallBase>(value); 2933 2934 if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) { 2935 // Fall back if the call base has operand bundle "clang.arc.attachedcall". 2936 value = doFallback(CGF, value); 2937 } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2938 // Place the retain immediately following the call. 2939 CGF.Builder.SetInsertPoint(call->getParent(), 2940 ++llvm::BasicBlock::iterator(call)); 2941 value = doAfterCall(CGF, value); 2942 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2943 // Place the retain at the beginning of the normal destination block. 2944 llvm::BasicBlock *BB = invoke->getNormalDest(); 2945 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2946 value = doAfterCall(CGF, value); 2947 2948 // Bitcasts can arise because of related-result returns. Rewrite 2949 // the operand. 2950 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2951 // Change the insert point to avoid emitting the fall-back call after the 2952 // bitcast. 2953 CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator()); 2954 llvm::Value *operand = bitcast->getOperand(0); 2955 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2956 bitcast->setOperand(0, operand); 2957 value = bitcast; 2958 } else { 2959 auto *phi = dyn_cast<llvm::PHINode>(value); 2960 if (phi && phi->getNumIncomingValues() == 2 && 2961 isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) && 2962 isa<llvm::CallBase>(phi->getIncomingValue(0))) { 2963 // Handle phi instructions that are generated when it's necessary to check 2964 // whether the receiver of a message is null. 2965 llvm::Value *inVal = phi->getIncomingValue(0); 2966 inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback); 2967 phi->setIncomingValue(0, inVal); 2968 value = phi; 2969 } else { 2970 // Generic fall-back case. 2971 // Retain using the non-block variant: we never need to do a copy 2972 // of a block that's been returned to us. 2973 value = doFallback(CGF, value); 2974 } 2975 } 2976 2977 CGF.Builder.restoreIP(ip); 2978 return value; 2979 } 2980 2981 /// Given that the given expression is some sort of call (which does 2982 /// not return retained), emit a retain following it. 2983 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2984 const Expr *e) { 2985 llvm::Value *value = CGF.EmitScalarExpr(e); 2986 return emitARCOperationAfterCall(CGF, value, 2987 [](CodeGenFunction &CGF, llvm::Value *value) { 2988 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2989 }, 2990 [](CodeGenFunction &CGF, llvm::Value *value) { 2991 return CGF.EmitARCRetainNonBlock(value); 2992 }); 2993 } 2994 2995 /// Given that the given expression is some sort of call (which does 2996 /// not return retained), perform an unsafeClaim following it. 2997 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 2998 const Expr *e) { 2999 llvm::Value *value = CGF.EmitScalarExpr(e); 3000 return emitARCOperationAfterCall(CGF, value, 3001 [](CodeGenFunction &CGF, llvm::Value *value) { 3002 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 3003 }, 3004 [](CodeGenFunction &CGF, llvm::Value *value) { 3005 return value; 3006 }); 3007 } 3008 3009 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 3010 bool allowUnsafeClaim) { 3011 if (allowUnsafeClaim && 3012 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 3013 return emitARCUnsafeClaimCallResult(*this, E); 3014 } else { 3015 llvm::Value *value = emitARCRetainCallResult(*this, E); 3016 return EmitObjCConsumeObject(E->getType(), value); 3017 } 3018 } 3019 3020 /// Determine whether it might be important to emit a separate 3021 /// objc_retain_block on the result of the given expression, or 3022 /// whether it's okay to just emit it in a +1 context. 3023 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 3024 assert(e->getType()->isBlockPointerType()); 3025 e = e->IgnoreParens(); 3026 3027 // For future goodness, emit block expressions directly in +1 3028 // contexts if we can. 3029 if (isa<BlockExpr>(e)) 3030 return false; 3031 3032 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 3033 switch (cast->getCastKind()) { 3034 // Emitting these operations in +1 contexts is goodness. 3035 case CK_LValueToRValue: 3036 case CK_ARCReclaimReturnedObject: 3037 case CK_ARCConsumeObject: 3038 case CK_ARCProduceObject: 3039 return false; 3040 3041 // These operations preserve a block type. 3042 case CK_NoOp: 3043 case CK_BitCast: 3044 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 3045 3046 // These operations are known to be bad (or haven't been considered). 3047 case CK_AnyPointerToBlockPointerCast: 3048 default: 3049 return true; 3050 } 3051 } 3052 3053 return true; 3054 } 3055 3056 namespace { 3057 /// A CRTP base class for emitting expressions of retainable object 3058 /// pointer type in ARC. 3059 template <typename Impl, typename Result> class ARCExprEmitter { 3060 protected: 3061 CodeGenFunction &CGF; 3062 Impl &asImpl() { return *static_cast<Impl*>(this); } 3063 3064 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 3065 3066 public: 3067 Result visit(const Expr *e); 3068 Result visitCastExpr(const CastExpr *e); 3069 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 3070 Result visitBlockExpr(const BlockExpr *e); 3071 Result visitBinaryOperator(const BinaryOperator *e); 3072 Result visitBinAssign(const BinaryOperator *e); 3073 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 3074 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 3075 Result visitBinAssignWeak(const BinaryOperator *e); 3076 Result visitBinAssignStrong(const BinaryOperator *e); 3077 3078 // Minimal implementation: 3079 // Result visitLValueToRValue(const Expr *e) 3080 // Result visitConsumeObject(const Expr *e) 3081 // Result visitExtendBlockObject(const Expr *e) 3082 // Result visitReclaimReturnedObject(const Expr *e) 3083 // Result visitCall(const Expr *e) 3084 // Result visitExpr(const Expr *e) 3085 // 3086 // Result emitBitCast(Result result, llvm::Type *resultType) 3087 // llvm::Value *getValueOfResult(Result result) 3088 }; 3089 } 3090 3091 /// Try to emit a PseudoObjectExpr under special ARC rules. 3092 /// 3093 /// This massively duplicates emitPseudoObjectRValue. 3094 template <typename Impl, typename Result> 3095 Result 3096 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 3097 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3098 3099 // Find the result expression. 3100 const Expr *resultExpr = E->getResultExpr(); 3101 assert(resultExpr); 3102 Result result; 3103 3104 for (PseudoObjectExpr::const_semantics_iterator 3105 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3106 const Expr *semantic = *i; 3107 3108 // If this semantic expression is an opaque value, bind it 3109 // to the result of its source expression. 3110 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3111 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3112 OVMA opaqueData; 3113 3114 // If this semantic is the result of the pseudo-object 3115 // expression, try to evaluate the source as +1. 3116 if (ov == resultExpr) { 3117 assert(!OVMA::shouldBindAsLValue(ov)); 3118 result = asImpl().visit(ov->getSourceExpr()); 3119 opaqueData = OVMA::bind(CGF, ov, 3120 RValue::get(asImpl().getValueOfResult(result))); 3121 3122 // Otherwise, just bind it. 3123 } else { 3124 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3125 } 3126 opaques.push_back(opaqueData); 3127 3128 // Otherwise, if the expression is the result, evaluate it 3129 // and remember the result. 3130 } else if (semantic == resultExpr) { 3131 result = asImpl().visit(semantic); 3132 3133 // Otherwise, evaluate the expression in an ignored context. 3134 } else { 3135 CGF.EmitIgnoredExpr(semantic); 3136 } 3137 } 3138 3139 // Unbind all the opaques now. 3140 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3141 opaques[i].unbind(CGF); 3142 3143 return result; 3144 } 3145 3146 template <typename Impl, typename Result> 3147 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) { 3148 // The default implementation just forwards the expression to visitExpr. 3149 return asImpl().visitExpr(e); 3150 } 3151 3152 template <typename Impl, typename Result> 3153 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 3154 switch (e->getCastKind()) { 3155 3156 // No-op casts don't change the type, so we just ignore them. 3157 case CK_NoOp: 3158 return asImpl().visit(e->getSubExpr()); 3159 3160 // These casts can change the type. 3161 case CK_CPointerToObjCPointerCast: 3162 case CK_BlockPointerToObjCPointerCast: 3163 case CK_AnyPointerToBlockPointerCast: 3164 case CK_BitCast: { 3165 llvm::Type *resultType = CGF.ConvertType(e->getType()); 3166 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 3167 Result result = asImpl().visit(e->getSubExpr()); 3168 return asImpl().emitBitCast(result, resultType); 3169 } 3170 3171 // Handle some casts specially. 3172 case CK_LValueToRValue: 3173 return asImpl().visitLValueToRValue(e->getSubExpr()); 3174 case CK_ARCConsumeObject: 3175 return asImpl().visitConsumeObject(e->getSubExpr()); 3176 case CK_ARCExtendBlockObject: 3177 return asImpl().visitExtendBlockObject(e->getSubExpr()); 3178 case CK_ARCReclaimReturnedObject: 3179 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 3180 3181 // Otherwise, use the default logic. 3182 default: 3183 return asImpl().visitExpr(e); 3184 } 3185 } 3186 3187 template <typename Impl, typename Result> 3188 Result 3189 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 3190 switch (e->getOpcode()) { 3191 case BO_Comma: 3192 CGF.EmitIgnoredExpr(e->getLHS()); 3193 CGF.EnsureInsertPoint(); 3194 return asImpl().visit(e->getRHS()); 3195 3196 case BO_Assign: 3197 return asImpl().visitBinAssign(e); 3198 3199 default: 3200 return asImpl().visitExpr(e); 3201 } 3202 } 3203 3204 template <typename Impl, typename Result> 3205 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 3206 switch (e->getLHS()->getType().getObjCLifetime()) { 3207 case Qualifiers::OCL_ExplicitNone: 3208 return asImpl().visitBinAssignUnsafeUnretained(e); 3209 3210 case Qualifiers::OCL_Weak: 3211 return asImpl().visitBinAssignWeak(e); 3212 3213 case Qualifiers::OCL_Autoreleasing: 3214 return asImpl().visitBinAssignAutoreleasing(e); 3215 3216 case Qualifiers::OCL_Strong: 3217 return asImpl().visitBinAssignStrong(e); 3218 3219 case Qualifiers::OCL_None: 3220 return asImpl().visitExpr(e); 3221 } 3222 llvm_unreachable("bad ObjC ownership qualifier"); 3223 } 3224 3225 /// The default rule for __unsafe_unretained emits the RHS recursively, 3226 /// stores into the unsafe variable, and propagates the result outward. 3227 template <typename Impl, typename Result> 3228 Result ARCExprEmitter<Impl,Result>:: 3229 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 3230 // Recursively emit the RHS. 3231 // For __block safety, do this before emitting the LHS. 3232 Result result = asImpl().visit(e->getRHS()); 3233 3234 // Perform the store. 3235 LValue lvalue = 3236 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 3237 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 3238 lvalue); 3239 3240 return result; 3241 } 3242 3243 template <typename Impl, typename Result> 3244 Result 3245 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 3246 return asImpl().visitExpr(e); 3247 } 3248 3249 template <typename Impl, typename Result> 3250 Result 3251 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 3252 return asImpl().visitExpr(e); 3253 } 3254 3255 template <typename Impl, typename Result> 3256 Result 3257 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 3258 return asImpl().visitExpr(e); 3259 } 3260 3261 /// The general expression-emission logic. 3262 template <typename Impl, typename Result> 3263 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 3264 // We should *never* see a nested full-expression here, because if 3265 // we fail to emit at +1, our caller must not retain after we close 3266 // out the full-expression. This isn't as important in the unsafe 3267 // emitter. 3268 assert(!isa<ExprWithCleanups>(e)); 3269 3270 // Look through parens, __extension__, generic selection, etc. 3271 e = e->IgnoreParens(); 3272 3273 // Handle certain kinds of casts. 3274 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 3275 return asImpl().visitCastExpr(ce); 3276 3277 // Handle the comma operator. 3278 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 3279 return asImpl().visitBinaryOperator(op); 3280 3281 // TODO: handle conditional operators here 3282 3283 // For calls and message sends, use the retained-call logic. 3284 // Delegate inits are a special case in that they're the only 3285 // returns-retained expression that *isn't* surrounded by 3286 // a consume. 3287 } else if (isa<CallExpr>(e) || 3288 (isa<ObjCMessageExpr>(e) && 3289 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 3290 return asImpl().visitCall(e); 3291 3292 // Look through pseudo-object expressions. 3293 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 3294 return asImpl().visitPseudoObjectExpr(pseudo); 3295 } else if (auto *be = dyn_cast<BlockExpr>(e)) 3296 return asImpl().visitBlockExpr(be); 3297 3298 return asImpl().visitExpr(e); 3299 } 3300 3301 namespace { 3302 3303 /// An emitter for +1 results. 3304 struct ARCRetainExprEmitter : 3305 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 3306 3307 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3308 3309 llvm::Value *getValueOfResult(TryEmitResult result) { 3310 return result.getPointer(); 3311 } 3312 3313 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 3314 llvm::Value *value = result.getPointer(); 3315 value = CGF.Builder.CreateBitCast(value, resultType); 3316 result.setPointer(value); 3317 return result; 3318 } 3319 3320 TryEmitResult visitLValueToRValue(const Expr *e) { 3321 return tryEmitARCRetainLoadOfScalar(CGF, e); 3322 } 3323 3324 /// For consumptions, just emit the subexpression and thus elide 3325 /// the retain/release pair. 3326 TryEmitResult visitConsumeObject(const Expr *e) { 3327 llvm::Value *result = CGF.EmitScalarExpr(e); 3328 return TryEmitResult(result, true); 3329 } 3330 3331 TryEmitResult visitBlockExpr(const BlockExpr *e) { 3332 TryEmitResult result = visitExpr(e); 3333 // Avoid the block-retain if this is a block literal that doesn't need to be 3334 // copied to the heap. 3335 if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks && 3336 e->getBlockDecl()->canAvoidCopyToHeap()) 3337 result.setInt(true); 3338 return result; 3339 } 3340 3341 /// Block extends are net +0. Naively, we could just recurse on 3342 /// the subexpression, but actually we need to ensure that the 3343 /// value is copied as a block, so there's a little filter here. 3344 TryEmitResult visitExtendBlockObject(const Expr *e) { 3345 llvm::Value *result; // will be a +0 value 3346 3347 // If we can't safely assume the sub-expression will produce a 3348 // block-copied value, emit the sub-expression at +0. 3349 if (shouldEmitSeparateBlockRetain(e)) { 3350 result = CGF.EmitScalarExpr(e); 3351 3352 // Otherwise, try to emit the sub-expression at +1 recursively. 3353 } else { 3354 TryEmitResult subresult = asImpl().visit(e); 3355 3356 // If that produced a retained value, just use that. 3357 if (subresult.getInt()) { 3358 return subresult; 3359 } 3360 3361 // Otherwise it's +0. 3362 result = subresult.getPointer(); 3363 } 3364 3365 // Retain the object as a block. 3366 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 3367 return TryEmitResult(result, true); 3368 } 3369 3370 /// For reclaims, emit the subexpression as a retained call and 3371 /// skip the consumption. 3372 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 3373 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3374 return TryEmitResult(result, true); 3375 } 3376 3377 /// When we have an undecorated call, retroactively do a claim. 3378 TryEmitResult visitCall(const Expr *e) { 3379 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3380 return TryEmitResult(result, true); 3381 } 3382 3383 // TODO: maybe special-case visitBinAssignWeak? 3384 3385 TryEmitResult visitExpr(const Expr *e) { 3386 // We didn't find an obvious production, so emit what we've got and 3387 // tell the caller that we didn't manage to retain. 3388 llvm::Value *result = CGF.EmitScalarExpr(e); 3389 return TryEmitResult(result, false); 3390 } 3391 }; 3392 } 3393 3394 static TryEmitResult 3395 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 3396 return ARCRetainExprEmitter(CGF).visit(e); 3397 } 3398 3399 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 3400 LValue lvalue, 3401 QualType type) { 3402 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 3403 llvm::Value *value = result.getPointer(); 3404 if (!result.getInt()) 3405 value = CGF.EmitARCRetain(type, value); 3406 return value; 3407 } 3408 3409 /// EmitARCRetainScalarExpr - Semantically equivalent to 3410 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 3411 /// best-effort attempt to peephole expressions that naturally produce 3412 /// retained objects. 3413 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 3414 // The retain needs to happen within the full-expression. 3415 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3416 RunCleanupsScope scope(*this); 3417 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 3418 } 3419 3420 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3421 llvm::Value *value = result.getPointer(); 3422 if (!result.getInt()) 3423 value = EmitARCRetain(e->getType(), value); 3424 return value; 3425 } 3426 3427 llvm::Value * 3428 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 3429 // The retain needs to happen within the full-expression. 3430 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3431 RunCleanupsScope scope(*this); 3432 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 3433 } 3434 3435 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3436 llvm::Value *value = result.getPointer(); 3437 if (result.getInt()) 3438 value = EmitARCAutorelease(value); 3439 else 3440 value = EmitARCRetainAutorelease(e->getType(), value); 3441 return value; 3442 } 3443 3444 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 3445 llvm::Value *result; 3446 bool doRetain; 3447 3448 if (shouldEmitSeparateBlockRetain(e)) { 3449 result = EmitScalarExpr(e); 3450 doRetain = true; 3451 } else { 3452 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 3453 result = subresult.getPointer(); 3454 doRetain = !subresult.getInt(); 3455 } 3456 3457 if (doRetain) 3458 result = EmitARCRetainBlock(result, /*mandatory*/ true); 3459 return EmitObjCConsumeObject(e->getType(), result); 3460 } 3461 3462 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3463 // In ARC, retain and autorelease the expression. 3464 if (getLangOpts().ObjCAutoRefCount) { 3465 // Do so before running any cleanups for the full-expression. 3466 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3467 return EmitARCRetainAutoreleaseScalarExpr(expr); 3468 } 3469 3470 // Otherwise, use the normal scalar-expression emission. The 3471 // exception machinery doesn't do anything special with the 3472 // exception like retaining it, so there's no safety associated with 3473 // only running cleanups after the throw has started, and when it 3474 // matters it tends to be substantially inferior code. 3475 return EmitScalarExpr(expr); 3476 } 3477 3478 namespace { 3479 3480 /// An emitter for assigning into an __unsafe_unretained context. 3481 struct ARCUnsafeUnretainedExprEmitter : 3482 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3483 3484 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3485 3486 llvm::Value *getValueOfResult(llvm::Value *value) { 3487 return value; 3488 } 3489 3490 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3491 return CGF.Builder.CreateBitCast(value, resultType); 3492 } 3493 3494 llvm::Value *visitLValueToRValue(const Expr *e) { 3495 return CGF.EmitScalarExpr(e); 3496 } 3497 3498 /// For consumptions, just emit the subexpression and perform the 3499 /// consumption like normal. 3500 llvm::Value *visitConsumeObject(const Expr *e) { 3501 llvm::Value *value = CGF.EmitScalarExpr(e); 3502 return CGF.EmitObjCConsumeObject(e->getType(), value); 3503 } 3504 3505 /// No special logic for block extensions. (This probably can't 3506 /// actually happen in this emitter, though.) 3507 llvm::Value *visitExtendBlockObject(const Expr *e) { 3508 return CGF.EmitARCExtendBlockObject(e); 3509 } 3510 3511 /// For reclaims, perform an unsafeClaim if that's enabled. 3512 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3513 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3514 } 3515 3516 /// When we have an undecorated call, just emit it without adding 3517 /// the unsafeClaim. 3518 llvm::Value *visitCall(const Expr *e) { 3519 return CGF.EmitScalarExpr(e); 3520 } 3521 3522 /// Just do normal scalar emission in the default case. 3523 llvm::Value *visitExpr(const Expr *e) { 3524 return CGF.EmitScalarExpr(e); 3525 } 3526 }; 3527 } 3528 3529 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3530 const Expr *e) { 3531 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3532 } 3533 3534 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3535 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3536 /// avoiding any spurious retains, including by performing reclaims 3537 /// with objc_unsafeClaimAutoreleasedReturnValue. 3538 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3539 // Look through full-expressions. 3540 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3541 RunCleanupsScope scope(*this); 3542 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3543 } 3544 3545 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3546 } 3547 3548 std::pair<LValue,llvm::Value*> 3549 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3550 bool ignored) { 3551 // Evaluate the RHS first. If we're ignoring the result, assume 3552 // that we can emit at an unsafe +0. 3553 llvm::Value *value; 3554 if (ignored) { 3555 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3556 } else { 3557 value = EmitScalarExpr(e->getRHS()); 3558 } 3559 3560 // Emit the LHS and perform the store. 3561 LValue lvalue = EmitLValue(e->getLHS()); 3562 EmitStoreOfScalar(value, lvalue); 3563 3564 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3565 } 3566 3567 std::pair<LValue,llvm::Value*> 3568 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3569 bool ignored) { 3570 // Evaluate the RHS first. 3571 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3572 llvm::Value *value = result.getPointer(); 3573 3574 bool hasImmediateRetain = result.getInt(); 3575 3576 // If we didn't emit a retained object, and the l-value is of block 3577 // type, then we need to emit the block-retain immediately in case 3578 // it invalidates the l-value. 3579 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3580 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3581 hasImmediateRetain = true; 3582 } 3583 3584 LValue lvalue = EmitLValue(e->getLHS()); 3585 3586 // If the RHS was emitted retained, expand this. 3587 if (hasImmediateRetain) { 3588 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3589 EmitStoreOfScalar(value, lvalue); 3590 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3591 } else { 3592 value = EmitARCStoreStrong(lvalue, value, ignored); 3593 } 3594 3595 return std::pair<LValue,llvm::Value*>(lvalue, value); 3596 } 3597 3598 std::pair<LValue,llvm::Value*> 3599 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3600 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3601 LValue lvalue = EmitLValue(e->getLHS()); 3602 3603 EmitStoreOfScalar(value, lvalue); 3604 3605 return std::pair<LValue,llvm::Value*>(lvalue, value); 3606 } 3607 3608 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3609 const ObjCAutoreleasePoolStmt &ARPS) { 3610 const Stmt *subStmt = ARPS.getSubStmt(); 3611 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3612 3613 CGDebugInfo *DI = getDebugInfo(); 3614 if (DI) 3615 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3616 3617 // Keep track of the current cleanup stack depth. 3618 RunCleanupsScope Scope(*this); 3619 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3620 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3621 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3622 } else { 3623 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3624 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3625 } 3626 3627 for (const auto *I : S.body()) 3628 EmitStmt(I); 3629 3630 if (DI) 3631 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3632 } 3633 3634 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3635 /// make sure it survives garbage collection until this point. 3636 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3637 // We just use an inline assembly. 3638 llvm::FunctionType *extenderType 3639 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3640 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType, 3641 /* assembly */ "", 3642 /* constraints */ "r", 3643 /* side effects */ true); 3644 3645 object = Builder.CreateBitCast(object, VoidPtrTy); 3646 EmitNounwindRuntimeCall(extender, object); 3647 } 3648 3649 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3650 /// non-trivial copy assignment function, produce following helper function. 3651 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3652 /// 3653 llvm::Constant * 3654 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3655 const ObjCPropertyImplDecl *PID) { 3656 if (!getLangOpts().CPlusPlus || 3657 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3658 return nullptr; 3659 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3660 if (!Ty->isRecordType()) 3661 return nullptr; 3662 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3663 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3664 return nullptr; 3665 llvm::Constant *HelperFn = nullptr; 3666 if (hasTrivialSetExpr(PID)) 3667 return nullptr; 3668 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3669 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3670 return HelperFn; 3671 3672 ASTContext &C = getContext(); 3673 IdentifierInfo *II 3674 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3675 3676 QualType ReturnTy = C.VoidTy; 3677 QualType DestTy = C.getPointerType(Ty); 3678 QualType SrcTy = Ty; 3679 SrcTy.addConst(); 3680 SrcTy = C.getPointerType(SrcTy); 3681 3682 SmallVector<QualType, 2> ArgTys; 3683 ArgTys.push_back(DestTy); 3684 ArgTys.push_back(SrcTy); 3685 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3686 3687 FunctionDecl *FD = FunctionDecl::Create( 3688 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3689 FunctionTy, nullptr, SC_Static, false, false, false); 3690 3691 FunctionArgList args; 3692 ParmVarDecl *Params[2]; 3693 ParmVarDecl *DstDecl = ParmVarDecl::Create( 3694 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy, 3695 C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None, 3696 /*DefArg=*/nullptr); 3697 args.push_back(Params[0] = DstDecl); 3698 ParmVarDecl *SrcDecl = ParmVarDecl::Create( 3699 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy, 3700 C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None, 3701 /*DefArg=*/nullptr); 3702 args.push_back(Params[1] = SrcDecl); 3703 FD->setParams(Params); 3704 3705 const CGFunctionInfo &FI = 3706 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3707 3708 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3709 3710 llvm::Function *Fn = 3711 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3712 "__assign_helper_atomic_property_", 3713 &CGM.getModule()); 3714 3715 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3716 3717 StartFunction(FD, ReturnTy, Fn, FI, args); 3718 3719 DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation()); 3720 UnaryOperator *DST = UnaryOperator::Create( 3721 C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary, 3722 SourceLocation(), false, FPOptionsOverride()); 3723 3724 DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation()); 3725 UnaryOperator *SRC = UnaryOperator::Create( 3726 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3727 SourceLocation(), false, FPOptionsOverride()); 3728 3729 Expr *Args[2] = {DST, SRC}; 3730 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3731 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 3732 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(), 3733 VK_LValue, SourceLocation(), FPOptionsOverride()); 3734 3735 EmitStmt(TheCall); 3736 3737 FinishFunction(); 3738 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3739 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3740 return HelperFn; 3741 } 3742 3743 llvm::Constant * 3744 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3745 const ObjCPropertyImplDecl *PID) { 3746 if (!getLangOpts().CPlusPlus || 3747 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3748 return nullptr; 3749 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3750 QualType Ty = PD->getType(); 3751 if (!Ty->isRecordType()) 3752 return nullptr; 3753 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3754 return nullptr; 3755 llvm::Constant *HelperFn = nullptr; 3756 if (hasTrivialGetExpr(PID)) 3757 return nullptr; 3758 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3759 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3760 return HelperFn; 3761 3762 ASTContext &C = getContext(); 3763 IdentifierInfo *II = 3764 &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3765 3766 QualType ReturnTy = C.VoidTy; 3767 QualType DestTy = C.getPointerType(Ty); 3768 QualType SrcTy = Ty; 3769 SrcTy.addConst(); 3770 SrcTy = C.getPointerType(SrcTy); 3771 3772 SmallVector<QualType, 2> ArgTys; 3773 ArgTys.push_back(DestTy); 3774 ArgTys.push_back(SrcTy); 3775 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3776 3777 FunctionDecl *FD = FunctionDecl::Create( 3778 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3779 FunctionTy, nullptr, SC_Static, false, false, false); 3780 3781 FunctionArgList args; 3782 ParmVarDecl *Params[2]; 3783 ParmVarDecl *DstDecl = ParmVarDecl::Create( 3784 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy, 3785 C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None, 3786 /*DefArg=*/nullptr); 3787 args.push_back(Params[0] = DstDecl); 3788 ParmVarDecl *SrcDecl = ParmVarDecl::Create( 3789 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy, 3790 C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None, 3791 /*DefArg=*/nullptr); 3792 args.push_back(Params[1] = SrcDecl); 3793 FD->setParams(Params); 3794 3795 const CGFunctionInfo &FI = 3796 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3797 3798 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3799 3800 llvm::Function *Fn = llvm::Function::Create( 3801 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_", 3802 &CGM.getModule()); 3803 3804 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3805 3806 StartFunction(FD, ReturnTy, Fn, FI, args); 3807 3808 DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue, 3809 SourceLocation()); 3810 3811 UnaryOperator *SRC = UnaryOperator::Create( 3812 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3813 SourceLocation(), false, FPOptionsOverride()); 3814 3815 CXXConstructExpr *CXXConstExpr = 3816 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3817 3818 SmallVector<Expr*, 4> ConstructorArgs; 3819 ConstructorArgs.push_back(SRC); 3820 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3821 CXXConstExpr->arg_end()); 3822 3823 CXXConstructExpr *TheCXXConstructExpr = 3824 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3825 CXXConstExpr->getConstructor(), 3826 CXXConstExpr->isElidable(), 3827 ConstructorArgs, 3828 CXXConstExpr->hadMultipleCandidates(), 3829 CXXConstExpr->isListInitialization(), 3830 CXXConstExpr->isStdInitListInitialization(), 3831 CXXConstExpr->requiresZeroInitialization(), 3832 CXXConstExpr->getConstructionKind(), 3833 SourceRange()); 3834 3835 DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue, 3836 SourceLocation()); 3837 3838 RValue DV = EmitAnyExpr(&DstExpr); 3839 CharUnits Alignment 3840 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3841 EmitAggExpr(TheCXXConstructExpr, 3842 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3843 Qualifiers(), 3844 AggValueSlot::IsDestructed, 3845 AggValueSlot::DoesNotNeedGCBarriers, 3846 AggValueSlot::IsNotAliased, 3847 AggValueSlot::DoesNotOverlap)); 3848 3849 FinishFunction(); 3850 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3851 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3852 return HelperFn; 3853 } 3854 3855 llvm::Value * 3856 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3857 // Get selectors for retain/autorelease. 3858 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3859 Selector CopySelector = 3860 getContext().Selectors.getNullarySelector(CopyID); 3861 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3862 Selector AutoreleaseSelector = 3863 getContext().Selectors.getNullarySelector(AutoreleaseID); 3864 3865 // Emit calls to retain/autorelease. 3866 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3867 llvm::Value *Val = Block; 3868 RValue Result; 3869 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3870 Ty, CopySelector, 3871 Val, CallArgList(), nullptr, nullptr); 3872 Val = Result.getScalarVal(); 3873 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3874 Ty, AutoreleaseSelector, 3875 Val, CallArgList(), nullptr, nullptr); 3876 Val = Result.getScalarVal(); 3877 return Val; 3878 } 3879 3880 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) { 3881 switch (TT.getOS()) { 3882 case llvm::Triple::Darwin: 3883 case llvm::Triple::MacOSX: 3884 return llvm::MachO::PLATFORM_MACOS; 3885 case llvm::Triple::IOS: 3886 return llvm::MachO::PLATFORM_IOS; 3887 case llvm::Triple::TvOS: 3888 return llvm::MachO::PLATFORM_TVOS; 3889 case llvm::Triple::WatchOS: 3890 return llvm::MachO::PLATFORM_WATCHOS; 3891 default: 3892 return /*Unknown platform*/ 0; 3893 } 3894 } 3895 3896 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF, 3897 const VersionTuple &Version) { 3898 CodeGenModule &CGM = CGF.CGM; 3899 // Note: we intend to support multi-platform version checks, so reserve 3900 // the room for a dual platform checking invocation that will be 3901 // implemented in the future. 3902 llvm::SmallVector<llvm::Value *, 8> Args; 3903 3904 auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) { 3905 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 3906 Args.push_back( 3907 llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT))); 3908 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor())); 3909 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0)); 3910 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0)); 3911 }; 3912 3913 assert(!Version.empty() && "unexpected empty version"); 3914 EmitArgs(Version, CGM.getTarget().getTriple()); 3915 3916 if (!CGM.IsPlatformVersionAtLeastFn) { 3917 llvm::FunctionType *FTy = llvm::FunctionType::get( 3918 CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty}, 3919 false); 3920 CGM.IsPlatformVersionAtLeastFn = 3921 CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast"); 3922 } 3923 3924 llvm::Value *Check = 3925 CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args); 3926 return CGF.Builder.CreateICmpNE(Check, 3927 llvm::Constant::getNullValue(CGM.Int32Ty)); 3928 } 3929 3930 llvm::Value * 3931 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) { 3932 // Darwin uses the new __isPlatformVersionAtLeast family of routines. 3933 if (CGM.getTarget().getTriple().isOSDarwin()) 3934 return emitIsPlatformVersionAtLeast(*this, Version); 3935 3936 if (!CGM.IsOSVersionAtLeastFn) { 3937 llvm::FunctionType *FTy = 3938 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 3939 CGM.IsOSVersionAtLeastFn = 3940 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 3941 } 3942 3943 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 3944 llvm::Value *Args[] = { 3945 llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()), 3946 llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0), 3947 llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0), 3948 }; 3949 3950 llvm::Value *CallRes = 3951 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 3952 3953 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 3954 } 3955 3956 static bool isFoundationNeededForDarwinAvailabilityCheck( 3957 const llvm::Triple &TT, const VersionTuple &TargetVersion) { 3958 VersionTuple FoundationDroppedInVersion; 3959 switch (TT.getOS()) { 3960 case llvm::Triple::IOS: 3961 case llvm::Triple::TvOS: 3962 FoundationDroppedInVersion = VersionTuple(/*Major=*/13); 3963 break; 3964 case llvm::Triple::WatchOS: 3965 FoundationDroppedInVersion = VersionTuple(/*Major=*/6); 3966 break; 3967 case llvm::Triple::Darwin: 3968 case llvm::Triple::MacOSX: 3969 FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15); 3970 break; 3971 default: 3972 llvm_unreachable("Unexpected OS"); 3973 } 3974 return TargetVersion < FoundationDroppedInVersion; 3975 } 3976 3977 void CodeGenModule::emitAtAvailableLinkGuard() { 3978 if (!IsPlatformVersionAtLeastFn) 3979 return; 3980 // @available requires CoreFoundation only on Darwin. 3981 if (!Target.getTriple().isOSDarwin()) 3982 return; 3983 // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or 3984 // watchOS 6+. 3985 if (!isFoundationNeededForDarwinAvailabilityCheck( 3986 Target.getTriple(), Target.getPlatformMinVersion())) 3987 return; 3988 // Add -framework CoreFoundation to the linker commands. We still want to 3989 // emit the core foundation reference down below because otherwise if 3990 // CoreFoundation is not used in the code, the linker won't link the 3991 // framework. 3992 auto &Context = getLLVMContext(); 3993 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3994 llvm::MDString::get(Context, "CoreFoundation")}; 3995 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 3996 // Emit a reference to a symbol from CoreFoundation to ensure that 3997 // CoreFoundation is linked into the final binary. 3998 llvm::FunctionType *FTy = 3999 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 4000 llvm::FunctionCallee CFFunc = 4001 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 4002 4003 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 4004 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction( 4005 CheckFTy, "__clang_at_available_requires_core_foundation_framework", 4006 llvm::AttributeList(), /*Local=*/true); 4007 llvm::Function *CFLinkCheckFunc = 4008 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts()); 4009 if (CFLinkCheckFunc->empty()) { 4010 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 4011 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 4012 CodeGenFunction CGF(*this); 4013 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 4014 CGF.EmitNounwindRuntimeCall(CFFunc, 4015 llvm::Constant::getNullValue(VoidPtrTy)); 4016 CGF.Builder.CreateUnreachable(); 4017 addCompilerUsedGlobal(CFLinkCheckFunc); 4018 } 4019 } 4020 4021 CGObjCRuntime::~CGObjCRuntime() {} 4022