1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
35                                    QualType ET,
36                                    RValue Result);
37 
38 /// Given the address of a variable of pointer type, find the correct
39 /// null to store into it.
40 static llvm::Constant *getNullForVariable(Address addr) {
41   llvm::Type *type = addr.getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57 /// or [NSValue valueWithBytes:objCType:].
58 ///
59 llvm::Value *
60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61   // Generate the correct selector for this literal's concrete type.
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   const Expr *SubExpr = E->getSubExpr();
65   assert(BoxingMethod && "BoxingMethod is null");
66   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
67   Selector Sel = BoxingMethod->getSelector();
68 
69   // Generate a reference to the class pointer, which will be the receiver.
70   // Assumes that the method was introduced in the class that should be
71   // messaged (avoids pulling it out of the result type).
72   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
73   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
74   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
75 
76   CallArgList Args;
77   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
78   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
79 
80   // ObjCBoxedExpr supports boxing of structs and unions
81   // via [NSValue valueWithBytes:objCType:]
82   const QualType ValueType(SubExpr->getType().getCanonicalType());
83   if (ValueType->isObjCBoxableRecordType()) {
84     // Emit CodeGen for first parameter
85     // and cast value to correct type
86     Address Temporary = CreateMemTemp(SubExpr->getType());
87     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
88     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
89     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
90 
91     // Create char array to store type encoding
92     std::string Str;
93     getContext().getObjCEncodingForType(ValueType, Str);
94     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
95 
96     // Cast type encoding to correct type
97     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
98     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
99     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
100 
101     Args.add(RValue::get(Cast), EncodingQT);
102   } else {
103     Args.add(EmitAnyExpr(SubExpr), ArgQT);
104   }
105 
106   RValue result = Runtime.GenerateMessageSend(
107       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
108       Args, ClassDecl, BoxingMethod);
109   return Builder.CreateBitCast(result.getScalarVal(),
110                                ConvertType(E->getType()));
111 }
112 
113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
114                                     const ObjCMethodDecl *MethodWithObjects) {
115   ASTContext &Context = CGM.getContext();
116   const ObjCDictionaryLiteral *DLE = nullptr;
117   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
118   if (!ALE)
119     DLE = cast<ObjCDictionaryLiteral>(E);
120 
121   // Optimize empty collections by referencing constants, when available.
122   uint64_t NumElements =
123     ALE ? ALE->getNumElements() : DLE->getNumElements();
124   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
125     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
126     QualType IdTy(CGM.getContext().getObjCIdType());
127     llvm::Constant *Constant =
128         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
129     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
130     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
131     cast<llvm::LoadInst>(Ptr)->setMetadata(
132         CGM.getModule().getMDKindID("invariant.load"),
133         llvm::MDNode::get(getLLVMContext(), None));
134     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
135   }
136 
137   // Compute the type of the array we're initializing.
138   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
139                             NumElements);
140   QualType ElementType = Context.getObjCIdType().withConst();
141   QualType ElementArrayType
142     = Context.getConstantArrayType(ElementType, APNumElements,
143                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
144 
145   // Allocate the temporary array(s).
146   Address Objects = CreateMemTemp(ElementArrayType, "objects");
147   Address Keys = Address::invalid();
148   if (DLE)
149     Keys = CreateMemTemp(ElementArrayType, "keys");
150 
151   // In ARC, we may need to do extra work to keep all the keys and
152   // values alive until after the call.
153   SmallVector<llvm::Value *, 16> NeededObjects;
154   bool TrackNeededObjects =
155     (getLangOpts().ObjCAutoRefCount &&
156     CGM.getCodeGenOpts().OptimizationLevel != 0);
157 
158   // Perform the actual initialialization of the array(s).
159   for (uint64_t i = 0; i < NumElements; i++) {
160     if (ALE) {
161       // Emit the element and store it to the appropriate array slot.
162       const Expr *Rhs = ALE->getElement(i);
163       LValue LV = MakeAddrLValue(
164           Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
165           ElementType, AlignmentSource::Decl);
166 
167       llvm::Value *value = EmitScalarExpr(Rhs);
168       EmitStoreThroughLValue(RValue::get(value), LV, true);
169       if (TrackNeededObjects) {
170         NeededObjects.push_back(value);
171       }
172     } else {
173       // Emit the key and store it to the appropriate array slot.
174       const Expr *Key = DLE->getKeyValueElement(i).Key;
175       LValue KeyLV = MakeAddrLValue(
176           Builder.CreateConstArrayGEP(Keys, i, getPointerSize()),
177           ElementType, AlignmentSource::Decl);
178       llvm::Value *keyValue = EmitScalarExpr(Key);
179       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
180 
181       // Emit the value and store it to the appropriate array slot.
182       const Expr *Value = DLE->getKeyValueElement(i).Value;
183       LValue ValueLV = MakeAddrLValue(
184           Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
185           ElementType, AlignmentSource::Decl);
186       llvm::Value *valueValue = EmitScalarExpr(Value);
187       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
188       if (TrackNeededObjects) {
189         NeededObjects.push_back(keyValue);
190         NeededObjects.push_back(valueValue);
191       }
192     }
193   }
194 
195   // Generate the argument list.
196   CallArgList Args;
197   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
198   const ParmVarDecl *argDecl = *PI++;
199   QualType ArgQT = argDecl->getType().getUnqualifiedType();
200   Args.add(RValue::get(Objects.getPointer()), ArgQT);
201   if (DLE) {
202     argDecl = *PI++;
203     ArgQT = argDecl->getType().getUnqualifiedType();
204     Args.add(RValue::get(Keys.getPointer()), ArgQT);
205   }
206   argDecl = *PI;
207   ArgQT = argDecl->getType().getUnqualifiedType();
208   llvm::Value *Count =
209     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
210   Args.add(RValue::get(Count), ArgQT);
211 
212   // Generate a reference to the class pointer, which will be the receiver.
213   Selector Sel = MethodWithObjects->getSelector();
214   QualType ResultType = E->getType();
215   const ObjCObjectPointerType *InterfacePointerType
216     = ResultType->getAsObjCInterfacePointerType();
217   ObjCInterfaceDecl *Class
218     = InterfacePointerType->getObjectType()->getInterface();
219   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
220   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
221 
222   // Generate the message send.
223   RValue result = Runtime.GenerateMessageSend(
224       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
225       Receiver, Args, Class, MethodWithObjects);
226 
227   // The above message send needs these objects, but in ARC they are
228   // passed in a buffer that is essentially __unsafe_unretained.
229   // Therefore we must prevent the optimizer from releasing them until
230   // after the call.
231   if (TrackNeededObjects) {
232     EmitARCIntrinsicUse(NeededObjects);
233   }
234 
235   return Builder.CreateBitCast(result.getScalarVal(),
236                                ConvertType(E->getType()));
237 }
238 
239 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
240   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
241 }
242 
243 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
244                                             const ObjCDictionaryLiteral *E) {
245   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
246 }
247 
248 /// Emit a selector.
249 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
250   // Untyped selector.
251   // Note that this implementation allows for non-constant strings to be passed
252   // as arguments to @selector().  Currently, the only thing preventing this
253   // behaviour is the type checking in the front end.
254   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
255 }
256 
257 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
258   // FIXME: This should pass the Decl not the name.
259   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
260 }
261 
262 /// Adjust the type of an Objective-C object that doesn't match up due
263 /// to type erasure at various points, e.g., related result types or the use
264 /// of parameterized classes.
265 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
266                                    RValue Result) {
267   if (!ExpT->isObjCRetainableType())
268     return Result;
269 
270   // If the converted types are the same, we're done.
271   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
272   if (ExpLLVMTy == Result.getScalarVal()->getType())
273     return Result;
274 
275   // We have applied a substitution. Cast the rvalue appropriately.
276   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
277                                                ExpLLVMTy));
278 }
279 
280 /// Decide whether to extend the lifetime of the receiver of a
281 /// returns-inner-pointer message.
282 static bool
283 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
284   switch (message->getReceiverKind()) {
285 
286   // For a normal instance message, we should extend unless the
287   // receiver is loaded from a variable with precise lifetime.
288   case ObjCMessageExpr::Instance: {
289     const Expr *receiver = message->getInstanceReceiver();
290 
291     // Look through OVEs.
292     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
293       if (opaque->getSourceExpr())
294         receiver = opaque->getSourceExpr()->IgnoreParens();
295     }
296 
297     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
298     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
299     receiver = ice->getSubExpr()->IgnoreParens();
300 
301     // Look through OVEs.
302     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
303       if (opaque->getSourceExpr())
304         receiver = opaque->getSourceExpr()->IgnoreParens();
305     }
306 
307     // Only __strong variables.
308     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
309       return true;
310 
311     // All ivars and fields have precise lifetime.
312     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
313       return false;
314 
315     // Otherwise, check for variables.
316     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
317     if (!declRef) return true;
318     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
319     if (!var) return true;
320 
321     // All variables have precise lifetime except local variables with
322     // automatic storage duration that aren't specially marked.
323     return (var->hasLocalStorage() &&
324             !var->hasAttr<ObjCPreciseLifetimeAttr>());
325   }
326 
327   case ObjCMessageExpr::Class:
328   case ObjCMessageExpr::SuperClass:
329     // It's never necessary for class objects.
330     return false;
331 
332   case ObjCMessageExpr::SuperInstance:
333     // We generally assume that 'self' lives throughout a method call.
334     return false;
335   }
336 
337   llvm_unreachable("invalid receiver kind");
338 }
339 
340 /// Given an expression of ObjC pointer type, check whether it was
341 /// immediately loaded from an ARC __weak l-value.
342 static const Expr *findWeakLValue(const Expr *E) {
343   assert(E->getType()->isObjCRetainableType());
344   E = E->IgnoreParens();
345   if (auto CE = dyn_cast<CastExpr>(E)) {
346     if (CE->getCastKind() == CK_LValueToRValue) {
347       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
348         return CE->getSubExpr();
349     }
350   }
351 
352   return nullptr;
353 }
354 
355 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
356                                             ReturnValueSlot Return) {
357   // Only the lookup mechanism and first two arguments of the method
358   // implementation vary between runtimes.  We can get the receiver and
359   // arguments in generic code.
360 
361   bool isDelegateInit = E->isDelegateInitCall();
362 
363   const ObjCMethodDecl *method = E->getMethodDecl();
364 
365   // If the method is -retain, and the receiver's being loaded from
366   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
367   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
368       method->getMethodFamily() == OMF_retain) {
369     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
370       LValue lvalue = EmitLValue(lvalueExpr);
371       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
372       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
373     }
374   }
375 
376   // We don't retain the receiver in delegate init calls, and this is
377   // safe because the receiver value is always loaded from 'self',
378   // which we zero out.  We don't want to Block_copy block receivers,
379   // though.
380   bool retainSelf =
381     (!isDelegateInit &&
382      CGM.getLangOpts().ObjCAutoRefCount &&
383      method &&
384      method->hasAttr<NSConsumesSelfAttr>());
385 
386   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
387   bool isSuperMessage = false;
388   bool isClassMessage = false;
389   ObjCInterfaceDecl *OID = nullptr;
390   // Find the receiver
391   QualType ReceiverType;
392   llvm::Value *Receiver = nullptr;
393   switch (E->getReceiverKind()) {
394   case ObjCMessageExpr::Instance:
395     ReceiverType = E->getInstanceReceiver()->getType();
396     if (retainSelf) {
397       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
398                                                    E->getInstanceReceiver());
399       Receiver = ter.getPointer();
400       if (ter.getInt()) retainSelf = false;
401     } else
402       Receiver = EmitScalarExpr(E->getInstanceReceiver());
403     break;
404 
405   case ObjCMessageExpr::Class: {
406     ReceiverType = E->getClassReceiver();
407     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
408     assert(ObjTy && "Invalid Objective-C class message send");
409     OID = ObjTy->getInterface();
410     assert(OID && "Invalid Objective-C class message send");
411     Receiver = Runtime.GetClass(*this, OID);
412     isClassMessage = true;
413     break;
414   }
415 
416   case ObjCMessageExpr::SuperInstance:
417     ReceiverType = E->getSuperType();
418     Receiver = LoadObjCSelf();
419     isSuperMessage = true;
420     break;
421 
422   case ObjCMessageExpr::SuperClass:
423     ReceiverType = E->getSuperType();
424     Receiver = LoadObjCSelf();
425     isSuperMessage = true;
426     isClassMessage = true;
427     break;
428   }
429 
430   if (retainSelf)
431     Receiver = EmitARCRetainNonBlock(Receiver);
432 
433   // In ARC, we sometimes want to "extend the lifetime"
434   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
435   // messages.
436   if (getLangOpts().ObjCAutoRefCount && method &&
437       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
438       shouldExtendReceiverForInnerPointerMessage(E))
439     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
440 
441   QualType ResultType = method ? method->getReturnType() : E->getType();
442 
443   CallArgList Args;
444   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
445 
446   // For delegate init calls in ARC, do an unsafe store of null into
447   // self.  This represents the call taking direct ownership of that
448   // value.  We have to do this after emitting the other call
449   // arguments because they might also reference self, but we don't
450   // have to worry about any of them modifying self because that would
451   // be an undefined read and write of an object in unordered
452   // expressions.
453   if (isDelegateInit) {
454     assert(getLangOpts().ObjCAutoRefCount &&
455            "delegate init calls should only be marked in ARC");
456 
457     // Do an unsafe store of null into self.
458     Address selfAddr =
459       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
460     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
461   }
462 
463   RValue result;
464   if (isSuperMessage) {
465     // super is only valid in an Objective-C method
466     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
467     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
468     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
469                                               E->getSelector(),
470                                               OMD->getClassInterface(),
471                                               isCategoryImpl,
472                                               Receiver,
473                                               isClassMessage,
474                                               Args,
475                                               method);
476   } else {
477     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
478                                          E->getSelector(),
479                                          Receiver, Args, OID,
480                                          method);
481   }
482 
483   // For delegate init calls in ARC, implicitly store the result of
484   // the call back into self.  This takes ownership of the value.
485   if (isDelegateInit) {
486     Address selfAddr =
487       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
488     llvm::Value *newSelf = result.getScalarVal();
489 
490     // The delegate return type isn't necessarily a matching type; in
491     // fact, it's quite likely to be 'id'.
492     llvm::Type *selfTy = selfAddr.getElementType();
493     newSelf = Builder.CreateBitCast(newSelf, selfTy);
494 
495     Builder.CreateStore(newSelf, selfAddr);
496   }
497 
498   return AdjustObjCObjectType(*this, E->getType(), result);
499 }
500 
501 namespace {
502 struct FinishARCDealloc final : EHScopeStack::Cleanup {
503   void Emit(CodeGenFunction &CGF, Flags flags) override {
504     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
505 
506     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
507     const ObjCInterfaceDecl *iface = impl->getClassInterface();
508     if (!iface->getSuperClass()) return;
509 
510     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
511 
512     // Call [super dealloc] if we have a superclass.
513     llvm::Value *self = CGF.LoadObjCSelf();
514 
515     CallArgList args;
516     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
517                                                       CGF.getContext().VoidTy,
518                                                       method->getSelector(),
519                                                       iface,
520                                                       isCategory,
521                                                       self,
522                                                       /*is class msg*/ false,
523                                                       args,
524                                                       method);
525   }
526 };
527 }
528 
529 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
530 /// the LLVM function and sets the other context used by
531 /// CodeGenFunction.
532 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
533                                       const ObjCContainerDecl *CD) {
534   SourceLocation StartLoc = OMD->getBeginLoc();
535   FunctionArgList args;
536   // Check if we should generate debug info for this method.
537   if (OMD->hasAttr<NoDebugAttr>())
538     DebugInfo = nullptr; // disable debug info indefinitely for this function
539 
540   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
541 
542   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
543   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
544 
545   args.push_back(OMD->getSelfDecl());
546   args.push_back(OMD->getCmdDecl());
547 
548   args.append(OMD->param_begin(), OMD->param_end());
549 
550   CurGD = OMD;
551   CurEHLocation = OMD->getEndLoc();
552 
553   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
554                 OMD->getLocation(), StartLoc);
555 
556   // In ARC, certain methods get an extra cleanup.
557   if (CGM.getLangOpts().ObjCAutoRefCount &&
558       OMD->isInstanceMethod() &&
559       OMD->getSelector().isUnarySelector()) {
560     const IdentifierInfo *ident =
561       OMD->getSelector().getIdentifierInfoForSlot(0);
562     if (ident->isStr("dealloc"))
563       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
564   }
565 }
566 
567 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
568                                               LValue lvalue, QualType type);
569 
570 /// Generate an Objective-C method.  An Objective-C method is a C function with
571 /// its pointer, name, and types registered in the class struture.
572 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
573   StartObjCMethod(OMD, OMD->getClassInterface());
574   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
575   assert(isa<CompoundStmt>(OMD->getBody()));
576   incrementProfileCounter(OMD->getBody());
577   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
578   FinishFunction(OMD->getBodyRBrace());
579 }
580 
581 /// emitStructGetterCall - Call the runtime function to load a property
582 /// into the return value slot.
583 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
584                                  bool isAtomic, bool hasStrong) {
585   ASTContext &Context = CGF.getContext();
586 
587   Address src =
588     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
589        .getAddress();
590 
591   // objc_copyStruct (ReturnValue, &structIvar,
592   //                  sizeof (Type of Ivar), isAtomic, false);
593   CallArgList args;
594 
595   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
596   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
597 
598   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
599   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
600 
601   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
602   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
603   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
604   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
605 
606   llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
607   CGCallee callee = CGCallee::forDirect(fn);
608   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
609                callee, ReturnValueSlot(), args);
610 }
611 
612 /// Determine whether the given architecture supports unaligned atomic
613 /// accesses.  They don't have to be fast, just faster than a function
614 /// call and a mutex.
615 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
616   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
617   // currently supported by the backend.)
618   return 0;
619 }
620 
621 /// Return the maximum size that permits atomic accesses for the given
622 /// architecture.
623 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
624                                         llvm::Triple::ArchType arch) {
625   // ARM has 8-byte atomic accesses, but it's not clear whether we
626   // want to rely on them here.
627 
628   // In the default case, just assume that any size up to a pointer is
629   // fine given adequate alignment.
630   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
631 }
632 
633 namespace {
634   class PropertyImplStrategy {
635   public:
636     enum StrategyKind {
637       /// The 'native' strategy is to use the architecture's provided
638       /// reads and writes.
639       Native,
640 
641       /// Use objc_setProperty and objc_getProperty.
642       GetSetProperty,
643 
644       /// Use objc_setProperty for the setter, but use expression
645       /// evaluation for the getter.
646       SetPropertyAndExpressionGet,
647 
648       /// Use objc_copyStruct.
649       CopyStruct,
650 
651       /// The 'expression' strategy is to emit normal assignment or
652       /// lvalue-to-rvalue expressions.
653       Expression
654     };
655 
656     StrategyKind getKind() const { return StrategyKind(Kind); }
657 
658     bool hasStrongMember() const { return HasStrong; }
659     bool isAtomic() const { return IsAtomic; }
660     bool isCopy() const { return IsCopy; }
661 
662     CharUnits getIvarSize() const { return IvarSize; }
663     CharUnits getIvarAlignment() const { return IvarAlignment; }
664 
665     PropertyImplStrategy(CodeGenModule &CGM,
666                          const ObjCPropertyImplDecl *propImpl);
667 
668   private:
669     unsigned Kind : 8;
670     unsigned IsAtomic : 1;
671     unsigned IsCopy : 1;
672     unsigned HasStrong : 1;
673 
674     CharUnits IvarSize;
675     CharUnits IvarAlignment;
676   };
677 }
678 
679 /// Pick an implementation strategy for the given property synthesis.
680 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
681                                      const ObjCPropertyImplDecl *propImpl) {
682   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
683   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
684 
685   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
686   IsAtomic = prop->isAtomic();
687   HasStrong = false; // doesn't matter here.
688 
689   // Evaluate the ivar's size and alignment.
690   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
691   QualType ivarType = ivar->getType();
692   std::tie(IvarSize, IvarAlignment) =
693       CGM.getContext().getTypeInfoInChars(ivarType);
694 
695   // If we have a copy property, we always have to use getProperty/setProperty.
696   // TODO: we could actually use setProperty and an expression for non-atomics.
697   if (IsCopy) {
698     Kind = GetSetProperty;
699     return;
700   }
701 
702   // Handle retain.
703   if (setterKind == ObjCPropertyDecl::Retain) {
704     // In GC-only, there's nothing special that needs to be done.
705     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
706       // fallthrough
707 
708     // In ARC, if the property is non-atomic, use expression emission,
709     // which translates to objc_storeStrong.  This isn't required, but
710     // it's slightly nicer.
711     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
712       // Using standard expression emission for the setter is only
713       // acceptable if the ivar is __strong, which won't be true if
714       // the property is annotated with __attribute__((NSObject)).
715       // TODO: falling all the way back to objc_setProperty here is
716       // just laziness, though;  we could still use objc_storeStrong
717       // if we hacked it right.
718       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
719         Kind = Expression;
720       else
721         Kind = SetPropertyAndExpressionGet;
722       return;
723 
724     // Otherwise, we need to at least use setProperty.  However, if
725     // the property isn't atomic, we can use normal expression
726     // emission for the getter.
727     } else if (!IsAtomic) {
728       Kind = SetPropertyAndExpressionGet;
729       return;
730 
731     // Otherwise, we have to use both setProperty and getProperty.
732     } else {
733       Kind = GetSetProperty;
734       return;
735     }
736   }
737 
738   // If we're not atomic, just use expression accesses.
739   if (!IsAtomic) {
740     Kind = Expression;
741     return;
742   }
743 
744   // Properties on bitfield ivars need to be emitted using expression
745   // accesses even if they're nominally atomic.
746   if (ivar->isBitField()) {
747     Kind = Expression;
748     return;
749   }
750 
751   // GC-qualified or ARC-qualified ivars need to be emitted as
752   // expressions.  This actually works out to being atomic anyway,
753   // except for ARC __strong, but that should trigger the above code.
754   if (ivarType.hasNonTrivialObjCLifetime() ||
755       (CGM.getLangOpts().getGC() &&
756        CGM.getContext().getObjCGCAttrKind(ivarType))) {
757     Kind = Expression;
758     return;
759   }
760 
761   // Compute whether the ivar has strong members.
762   if (CGM.getLangOpts().getGC())
763     if (const RecordType *recordType = ivarType->getAs<RecordType>())
764       HasStrong = recordType->getDecl()->hasObjectMember();
765 
766   // We can never access structs with object members with a native
767   // access, because we need to use write barriers.  This is what
768   // objc_copyStruct is for.
769   if (HasStrong) {
770     Kind = CopyStruct;
771     return;
772   }
773 
774   // Otherwise, this is target-dependent and based on the size and
775   // alignment of the ivar.
776 
777   // If the size of the ivar is not a power of two, give up.  We don't
778   // want to get into the business of doing compare-and-swaps.
779   if (!IvarSize.isPowerOfTwo()) {
780     Kind = CopyStruct;
781     return;
782   }
783 
784   llvm::Triple::ArchType arch =
785     CGM.getTarget().getTriple().getArch();
786 
787   // Most architectures require memory to fit within a single cache
788   // line, so the alignment has to be at least the size of the access.
789   // Otherwise we have to grab a lock.
790   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
791     Kind = CopyStruct;
792     return;
793   }
794 
795   // If the ivar's size exceeds the architecture's maximum atomic
796   // access size, we have to use CopyStruct.
797   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
798     Kind = CopyStruct;
799     return;
800   }
801 
802   // Otherwise, we can use native loads and stores.
803   Kind = Native;
804 }
805 
806 /// Generate an Objective-C property getter function.
807 ///
808 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
809 /// is illegal within a category.
810 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
811                                          const ObjCPropertyImplDecl *PID) {
812   llvm::Constant *AtomicHelperFn =
813       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
814   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
815   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
816   assert(OMD && "Invalid call to generate getter (empty method)");
817   StartObjCMethod(OMD, IMP->getClassInterface());
818 
819   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
820 
821   FinishFunction();
822 }
823 
824 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
825   const Expr *getter = propImpl->getGetterCXXConstructor();
826   if (!getter) return true;
827 
828   // Sema only makes only of these when the ivar has a C++ class type,
829   // so the form is pretty constrained.
830 
831   // If the property has a reference type, we might just be binding a
832   // reference, in which case the result will be a gl-value.  We should
833   // treat this as a non-trivial operation.
834   if (getter->isGLValue())
835     return false;
836 
837   // If we selected a trivial copy-constructor, we're okay.
838   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
839     return (construct->getConstructor()->isTrivial());
840 
841   // The constructor might require cleanups (in which case it's never
842   // trivial).
843   assert(isa<ExprWithCleanups>(getter));
844   return false;
845 }
846 
847 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
848 /// copy the ivar into the resturn slot.
849 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
850                                           llvm::Value *returnAddr,
851                                           ObjCIvarDecl *ivar,
852                                           llvm::Constant *AtomicHelperFn) {
853   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
854   //                           AtomicHelperFn);
855   CallArgList args;
856 
857   // The 1st argument is the return Slot.
858   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
859 
860   // The 2nd argument is the address of the ivar.
861   llvm::Value *ivarAddr =
862     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
863                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
864   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
865   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
866 
867   // Third argument is the helper function.
868   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
869 
870   llvm::Constant *copyCppAtomicObjectFn =
871     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
872   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
873   CGF.EmitCall(
874       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
875                callee, ReturnValueSlot(), args);
876 }
877 
878 void
879 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
880                                         const ObjCPropertyImplDecl *propImpl,
881                                         const ObjCMethodDecl *GetterMethodDecl,
882                                         llvm::Constant *AtomicHelperFn) {
883   // If there's a non-trivial 'get' expression, we just have to emit that.
884   if (!hasTrivialGetExpr(propImpl)) {
885     if (!AtomicHelperFn) {
886       auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
887                                      propImpl->getGetterCXXConstructor(),
888                                      /* NRVOCandidate=*/nullptr);
889       EmitReturnStmt(*ret);
890     }
891     else {
892       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
893       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
894                                     ivar, AtomicHelperFn);
895     }
896     return;
897   }
898 
899   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
900   QualType propType = prop->getType();
901   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
902 
903   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
904 
905   // Pick an implementation strategy.
906   PropertyImplStrategy strategy(CGM, propImpl);
907   switch (strategy.getKind()) {
908   case PropertyImplStrategy::Native: {
909     // We don't need to do anything for a zero-size struct.
910     if (strategy.getIvarSize().isZero())
911       return;
912 
913     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
914 
915     // Currently, all atomic accesses have to be through integer
916     // types, so there's no point in trying to pick a prettier type.
917     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
918     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
919     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
920 
921     // Perform an atomic load.  This does not impose ordering constraints.
922     Address ivarAddr = LV.getAddress();
923     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
924     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
925     load->setAtomic(llvm::AtomicOrdering::Unordered);
926 
927     // Store that value into the return address.  Doing this with a
928     // bitcast is likely to produce some pretty ugly IR, but it's not
929     // the *most* terrible thing in the world.
930     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
931     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
932     llvm::Value *ivarVal = load;
933     if (ivarSize > retTySize) {
934       llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
935       ivarVal = Builder.CreateTrunc(load, newTy);
936       bitcastType = newTy->getPointerTo();
937     }
938     Builder.CreateStore(ivarVal,
939                         Builder.CreateBitCast(ReturnValue, bitcastType));
940 
941     // Make sure we don't do an autorelease.
942     AutoreleaseResult = false;
943     return;
944   }
945 
946   case PropertyImplStrategy::GetSetProperty: {
947     llvm::Constant *getPropertyFn =
948       CGM.getObjCRuntime().GetPropertyGetFunction();
949     if (!getPropertyFn) {
950       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
951       return;
952     }
953     CGCallee callee = CGCallee::forDirect(getPropertyFn);
954 
955     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
956     // FIXME: Can't this be simpler? This might even be worse than the
957     // corresponding gcc code.
958     llvm::Value *cmd =
959       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
960     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
961     llvm::Value *ivarOffset =
962       EmitIvarOffset(classImpl->getClassInterface(), ivar);
963 
964     CallArgList args;
965     args.add(RValue::get(self), getContext().getObjCIdType());
966     args.add(RValue::get(cmd), getContext().getObjCSelType());
967     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
968     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
969              getContext().BoolTy);
970 
971     // FIXME: We shouldn't need to get the function info here, the
972     // runtime already should have computed it to build the function.
973     llvm::Instruction *CallInstruction;
974     RValue RV = EmitCall(
975         getTypes().arrangeBuiltinFunctionCall(propType, args),
976         callee, ReturnValueSlot(), args, &CallInstruction);
977     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
978       call->setTailCall();
979 
980     // We need to fix the type here. Ivars with copy & retain are
981     // always objects so we don't need to worry about complex or
982     // aggregates.
983     RV = RValue::get(Builder.CreateBitCast(
984         RV.getScalarVal(),
985         getTypes().ConvertType(getterMethod->getReturnType())));
986 
987     EmitReturnOfRValue(RV, propType);
988 
989     // objc_getProperty does an autorelease, so we should suppress ours.
990     AutoreleaseResult = false;
991 
992     return;
993   }
994 
995   case PropertyImplStrategy::CopyStruct:
996     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
997                          strategy.hasStrongMember());
998     return;
999 
1000   case PropertyImplStrategy::Expression:
1001   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1002     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1003 
1004     QualType ivarType = ivar->getType();
1005     switch (getEvaluationKind(ivarType)) {
1006     case TEK_Complex: {
1007       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1008       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1009                          /*init*/ true);
1010       return;
1011     }
1012     case TEK_Aggregate: {
1013       // The return value slot is guaranteed to not be aliased, but
1014       // that's not necessarily the same as "on the stack", so
1015       // we still potentially need objc_memmove_collectable.
1016       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1017                         /* Src= */ LV, ivarType, overlapForReturnValue());
1018       return;
1019     }
1020     case TEK_Scalar: {
1021       llvm::Value *value;
1022       if (propType->isReferenceType()) {
1023         value = LV.getAddress().getPointer();
1024       } else {
1025         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1026         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1027           if (getLangOpts().ObjCAutoRefCount) {
1028             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1029           } else {
1030             value = EmitARCLoadWeak(LV.getAddress());
1031           }
1032 
1033         // Otherwise we want to do a simple load, suppressing the
1034         // final autorelease.
1035         } else {
1036           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1037           AutoreleaseResult = false;
1038         }
1039 
1040         value = Builder.CreateBitCast(
1041             value, ConvertType(GetterMethodDecl->getReturnType()));
1042       }
1043 
1044       EmitReturnOfRValue(RValue::get(value), propType);
1045       return;
1046     }
1047     }
1048     llvm_unreachable("bad evaluation kind");
1049   }
1050 
1051   }
1052   llvm_unreachable("bad @property implementation strategy!");
1053 }
1054 
1055 /// emitStructSetterCall - Call the runtime function to store the value
1056 /// from the first formal parameter into the given ivar.
1057 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1058                                  ObjCIvarDecl *ivar) {
1059   // objc_copyStruct (&structIvar, &Arg,
1060   //                  sizeof (struct something), true, false);
1061   CallArgList args;
1062 
1063   // The first argument is the address of the ivar.
1064   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1065                                                 CGF.LoadObjCSelf(), ivar, 0)
1066     .getPointer();
1067   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1068   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1069 
1070   // The second argument is the address of the parameter variable.
1071   ParmVarDecl *argVar = *OMD->param_begin();
1072   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1073                      VK_LValue, SourceLocation());
1074   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1075   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1076   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1077 
1078   // The third argument is the sizeof the type.
1079   llvm::Value *size =
1080     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1081   args.add(RValue::get(size), CGF.getContext().getSizeType());
1082 
1083   // The fourth argument is the 'isAtomic' flag.
1084   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1085 
1086   // The fifth argument is the 'hasStrong' flag.
1087   // FIXME: should this really always be false?
1088   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1089 
1090   llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1091   CGCallee callee = CGCallee::forDirect(fn);
1092   CGF.EmitCall(
1093       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1094                callee, ReturnValueSlot(), args);
1095 }
1096 
1097 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1098 /// the value from the first formal parameter into the given ivar, using
1099 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1100 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1101                                           ObjCMethodDecl *OMD,
1102                                           ObjCIvarDecl *ivar,
1103                                           llvm::Constant *AtomicHelperFn) {
1104   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1105   //                           AtomicHelperFn);
1106   CallArgList args;
1107 
1108   // The first argument is the address of the ivar.
1109   llvm::Value *ivarAddr =
1110     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1111                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
1112   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1113   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1114 
1115   // The second argument is the address of the parameter variable.
1116   ParmVarDecl *argVar = *OMD->param_begin();
1117   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1118                      VK_LValue, SourceLocation());
1119   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1120   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1121   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1122 
1123   // Third argument is the helper function.
1124   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1125 
1126   llvm::Constant *fn =
1127     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1128   CGCallee callee = CGCallee::forDirect(fn);
1129   CGF.EmitCall(
1130       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1131                callee, ReturnValueSlot(), args);
1132 }
1133 
1134 
1135 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1136   Expr *setter = PID->getSetterCXXAssignment();
1137   if (!setter) return true;
1138 
1139   // Sema only makes only of these when the ivar has a C++ class type,
1140   // so the form is pretty constrained.
1141 
1142   // An operator call is trivial if the function it calls is trivial.
1143   // This also implies that there's nothing non-trivial going on with
1144   // the arguments, because operator= can only be trivial if it's a
1145   // synthesized assignment operator and therefore both parameters are
1146   // references.
1147   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1148     if (const FunctionDecl *callee
1149           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1150       if (callee->isTrivial())
1151         return true;
1152     return false;
1153   }
1154 
1155   assert(isa<ExprWithCleanups>(setter));
1156   return false;
1157 }
1158 
1159 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1160   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1161     return false;
1162   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1163 }
1164 
1165 void
1166 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1167                                         const ObjCPropertyImplDecl *propImpl,
1168                                         llvm::Constant *AtomicHelperFn) {
1169   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1170   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1171   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1172 
1173   // Just use the setter expression if Sema gave us one and it's
1174   // non-trivial.
1175   if (!hasTrivialSetExpr(propImpl)) {
1176     if (!AtomicHelperFn)
1177       // If non-atomic, assignment is called directly.
1178       EmitStmt(propImpl->getSetterCXXAssignment());
1179     else
1180       // If atomic, assignment is called via a locking api.
1181       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1182                                     AtomicHelperFn);
1183     return;
1184   }
1185 
1186   PropertyImplStrategy strategy(CGM, propImpl);
1187   switch (strategy.getKind()) {
1188   case PropertyImplStrategy::Native: {
1189     // We don't need to do anything for a zero-size struct.
1190     if (strategy.getIvarSize().isZero())
1191       return;
1192 
1193     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1194 
1195     LValue ivarLValue =
1196       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1197     Address ivarAddr = ivarLValue.getAddress();
1198 
1199     // Currently, all atomic accesses have to be through integer
1200     // types, so there's no point in trying to pick a prettier type.
1201     llvm::Type *bitcastType =
1202       llvm::Type::getIntNTy(getLLVMContext(),
1203                             getContext().toBits(strategy.getIvarSize()));
1204 
1205     // Cast both arguments to the chosen operation type.
1206     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1207     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1208 
1209     // This bitcast load is likely to cause some nasty IR.
1210     llvm::Value *load = Builder.CreateLoad(argAddr);
1211 
1212     // Perform an atomic store.  There are no memory ordering requirements.
1213     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1214     store->setAtomic(llvm::AtomicOrdering::Unordered);
1215     return;
1216   }
1217 
1218   case PropertyImplStrategy::GetSetProperty:
1219   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1220 
1221     llvm::Constant *setOptimizedPropertyFn = nullptr;
1222     llvm::Constant *setPropertyFn = nullptr;
1223     if (UseOptimizedSetter(CGM)) {
1224       // 10.8 and iOS 6.0 code and GC is off
1225       setOptimizedPropertyFn =
1226         CGM.getObjCRuntime()
1227            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1228                                             strategy.isCopy());
1229       if (!setOptimizedPropertyFn) {
1230         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1231         return;
1232       }
1233     }
1234     else {
1235       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1236       if (!setPropertyFn) {
1237         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1238         return;
1239       }
1240     }
1241 
1242     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1243     //                       <is-atomic>, <is-copy>).
1244     llvm::Value *cmd =
1245       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1246     llvm::Value *self =
1247       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1248     llvm::Value *ivarOffset =
1249       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1250     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1251     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1252     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1253 
1254     CallArgList args;
1255     args.add(RValue::get(self), getContext().getObjCIdType());
1256     args.add(RValue::get(cmd), getContext().getObjCSelType());
1257     if (setOptimizedPropertyFn) {
1258       args.add(RValue::get(arg), getContext().getObjCIdType());
1259       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1260       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1261       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1262                callee, ReturnValueSlot(), args);
1263     } else {
1264       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1265       args.add(RValue::get(arg), getContext().getObjCIdType());
1266       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1267                getContext().BoolTy);
1268       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1269                getContext().BoolTy);
1270       // FIXME: We shouldn't need to get the function info here, the runtime
1271       // already should have computed it to build the function.
1272       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1273       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1274                callee, ReturnValueSlot(), args);
1275     }
1276 
1277     return;
1278   }
1279 
1280   case PropertyImplStrategy::CopyStruct:
1281     emitStructSetterCall(*this, setterMethod, ivar);
1282     return;
1283 
1284   case PropertyImplStrategy::Expression:
1285     break;
1286   }
1287 
1288   // Otherwise, fake up some ASTs and emit a normal assignment.
1289   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1290   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1291                    VK_LValue, SourceLocation());
1292   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1293                             selfDecl->getType(), CK_LValueToRValue, &self,
1294                             VK_RValue);
1295   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1296                           SourceLocation(), SourceLocation(),
1297                           &selfLoad, true, true);
1298 
1299   ParmVarDecl *argDecl = *setterMethod->param_begin();
1300   QualType argType = argDecl->getType().getNonReferenceType();
1301   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1302   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1303                            argType.getUnqualifiedType(), CK_LValueToRValue,
1304                            &arg, VK_RValue);
1305 
1306   // The property type can differ from the ivar type in some situations with
1307   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1308   // The following absurdity is just to ensure well-formed IR.
1309   CastKind argCK = CK_NoOp;
1310   if (ivarRef.getType()->isObjCObjectPointerType()) {
1311     if (argLoad.getType()->isObjCObjectPointerType())
1312       argCK = CK_BitCast;
1313     else if (argLoad.getType()->isBlockPointerType())
1314       argCK = CK_BlockPointerToObjCPointerCast;
1315     else
1316       argCK = CK_CPointerToObjCPointerCast;
1317   } else if (ivarRef.getType()->isBlockPointerType()) {
1318      if (argLoad.getType()->isBlockPointerType())
1319       argCK = CK_BitCast;
1320     else
1321       argCK = CK_AnyPointerToBlockPointerCast;
1322   } else if (ivarRef.getType()->isPointerType()) {
1323     argCK = CK_BitCast;
1324   }
1325   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1326                            ivarRef.getType(), argCK, &argLoad,
1327                            VK_RValue);
1328   Expr *finalArg = &argLoad;
1329   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1330                                            argLoad.getType()))
1331     finalArg = &argCast;
1332 
1333 
1334   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1335                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1336                         SourceLocation(), FPOptions());
1337   EmitStmt(&assign);
1338 }
1339 
1340 /// Generate an Objective-C property setter function.
1341 ///
1342 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1343 /// is illegal within a category.
1344 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1345                                          const ObjCPropertyImplDecl *PID) {
1346   llvm::Constant *AtomicHelperFn =
1347       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1348   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1349   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1350   assert(OMD && "Invalid call to generate setter (empty method)");
1351   StartObjCMethod(OMD, IMP->getClassInterface());
1352 
1353   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1354 
1355   FinishFunction();
1356 }
1357 
1358 namespace {
1359   struct DestroyIvar final : EHScopeStack::Cleanup {
1360   private:
1361     llvm::Value *addr;
1362     const ObjCIvarDecl *ivar;
1363     CodeGenFunction::Destroyer *destroyer;
1364     bool useEHCleanupForArray;
1365   public:
1366     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1367                 CodeGenFunction::Destroyer *destroyer,
1368                 bool useEHCleanupForArray)
1369       : addr(addr), ivar(ivar), destroyer(destroyer),
1370         useEHCleanupForArray(useEHCleanupForArray) {}
1371 
1372     void Emit(CodeGenFunction &CGF, Flags flags) override {
1373       LValue lvalue
1374         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1375       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1376                       flags.isForNormalCleanup() && useEHCleanupForArray);
1377     }
1378   };
1379 }
1380 
1381 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1382 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1383                                       Address addr,
1384                                       QualType type) {
1385   llvm::Value *null = getNullForVariable(addr);
1386   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1387 }
1388 
1389 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1390                                   ObjCImplementationDecl *impl) {
1391   CodeGenFunction::RunCleanupsScope scope(CGF);
1392 
1393   llvm::Value *self = CGF.LoadObjCSelf();
1394 
1395   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1396   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1397        ivar; ivar = ivar->getNextIvar()) {
1398     QualType type = ivar->getType();
1399 
1400     // Check whether the ivar is a destructible type.
1401     QualType::DestructionKind dtorKind = type.isDestructedType();
1402     if (!dtorKind) continue;
1403 
1404     CodeGenFunction::Destroyer *destroyer = nullptr;
1405 
1406     // Use a call to objc_storeStrong to destroy strong ivars, for the
1407     // general benefit of the tools.
1408     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1409       destroyer = destroyARCStrongWithStore;
1410 
1411     // Otherwise use the default for the destruction kind.
1412     } else {
1413       destroyer = CGF.getDestroyer(dtorKind);
1414     }
1415 
1416     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1417 
1418     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1419                                          cleanupKind & EHCleanup);
1420   }
1421 
1422   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1423 }
1424 
1425 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1426                                                  ObjCMethodDecl *MD,
1427                                                  bool ctor) {
1428   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1429   StartObjCMethod(MD, IMP->getClassInterface());
1430 
1431   // Emit .cxx_construct.
1432   if (ctor) {
1433     // Suppress the final autorelease in ARC.
1434     AutoreleaseResult = false;
1435 
1436     for (const auto *IvarInit : IMP->inits()) {
1437       FieldDecl *Field = IvarInit->getAnyMember();
1438       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1439       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1440                                     LoadObjCSelf(), Ivar, 0);
1441       EmitAggExpr(IvarInit->getInit(),
1442                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1443                                           AggValueSlot::DoesNotNeedGCBarriers,
1444                                           AggValueSlot::IsNotAliased,
1445                                           AggValueSlot::DoesNotOverlap));
1446     }
1447     // constructor returns 'self'.
1448     CodeGenTypes &Types = CGM.getTypes();
1449     QualType IdTy(CGM.getContext().getObjCIdType());
1450     llvm::Value *SelfAsId =
1451       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1452     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1453 
1454   // Emit .cxx_destruct.
1455   } else {
1456     emitCXXDestructMethod(*this, IMP);
1457   }
1458   FinishFunction();
1459 }
1460 
1461 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1462   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1463   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1464                   Self->getType(), VK_LValue, SourceLocation());
1465   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1466 }
1467 
1468 QualType CodeGenFunction::TypeOfSelfObject() {
1469   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1470   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1471   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1472     getContext().getCanonicalType(selfDecl->getType()));
1473   return PTy->getPointeeType();
1474 }
1475 
1476 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1477   llvm::Constant *EnumerationMutationFnPtr =
1478     CGM.getObjCRuntime().EnumerationMutationFunction();
1479   if (!EnumerationMutationFnPtr) {
1480     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1481     return;
1482   }
1483   CGCallee EnumerationMutationFn =
1484     CGCallee::forDirect(EnumerationMutationFnPtr);
1485 
1486   CGDebugInfo *DI = getDebugInfo();
1487   if (DI)
1488     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1489 
1490   RunCleanupsScope ForScope(*this);
1491 
1492   // The local variable comes into scope immediately.
1493   AutoVarEmission variable = AutoVarEmission::invalid();
1494   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1495     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1496 
1497   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1498 
1499   // Fast enumeration state.
1500   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1501   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1502   EmitNullInitialization(StatePtr, StateTy);
1503 
1504   // Number of elements in the items array.
1505   static const unsigned NumItems = 16;
1506 
1507   // Fetch the countByEnumeratingWithState:objects:count: selector.
1508   IdentifierInfo *II[] = {
1509     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1510     &CGM.getContext().Idents.get("objects"),
1511     &CGM.getContext().Idents.get("count")
1512   };
1513   Selector FastEnumSel =
1514     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1515 
1516   QualType ItemsTy =
1517     getContext().getConstantArrayType(getContext().getObjCIdType(),
1518                                       llvm::APInt(32, NumItems),
1519                                       ArrayType::Normal, 0);
1520   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1521 
1522   // Emit the collection pointer.  In ARC, we do a retain.
1523   llvm::Value *Collection;
1524   if (getLangOpts().ObjCAutoRefCount) {
1525     Collection = EmitARCRetainScalarExpr(S.getCollection());
1526 
1527     // Enter a cleanup to do the release.
1528     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1529   } else {
1530     Collection = EmitScalarExpr(S.getCollection());
1531   }
1532 
1533   // The 'continue' label needs to appear within the cleanup for the
1534   // collection object.
1535   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1536 
1537   // Send it our message:
1538   CallArgList Args;
1539 
1540   // The first argument is a temporary of the enumeration-state type.
1541   Args.add(RValue::get(StatePtr.getPointer()),
1542            getContext().getPointerType(StateTy));
1543 
1544   // The second argument is a temporary array with space for NumItems
1545   // pointers.  We'll actually be loading elements from the array
1546   // pointer written into the control state; this buffer is so that
1547   // collections that *aren't* backed by arrays can still queue up
1548   // batches of elements.
1549   Args.add(RValue::get(ItemsPtr.getPointer()),
1550            getContext().getPointerType(ItemsTy));
1551 
1552   // The third argument is the capacity of that temporary array.
1553   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1554   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1555   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1556 
1557   // Start the enumeration.
1558   RValue CountRV =
1559       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1560                                                getContext().getNSUIntegerType(),
1561                                                FastEnumSel, Collection, Args);
1562 
1563   // The initial number of objects that were returned in the buffer.
1564   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1565 
1566   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1567   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1568 
1569   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1570 
1571   // If the limit pointer was zero to begin with, the collection is
1572   // empty; skip all this. Set the branch weight assuming this has the same
1573   // probability of exiting the loop as any other loop exit.
1574   uint64_t EntryCount = getCurrentProfileCount();
1575   Builder.CreateCondBr(
1576       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1577       LoopInitBB,
1578       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1579 
1580   // Otherwise, initialize the loop.
1581   EmitBlock(LoopInitBB);
1582 
1583   // Save the initial mutations value.  This is the value at an
1584   // address that was written into the state object by
1585   // countByEnumeratingWithState:objects:count:.
1586   Address StateMutationsPtrPtr = Builder.CreateStructGEP(
1587       StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr");
1588   llvm::Value *StateMutationsPtr
1589     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1590 
1591   llvm::Value *initialMutations =
1592     Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1593                               "forcoll.initial-mutations");
1594 
1595   // Start looping.  This is the point we return to whenever we have a
1596   // fresh, non-empty batch of objects.
1597   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1598   EmitBlock(LoopBodyBB);
1599 
1600   // The current index into the buffer.
1601   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1602   index->addIncoming(zero, LoopInitBB);
1603 
1604   // The current buffer size.
1605   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1606   count->addIncoming(initialBufferLimit, LoopInitBB);
1607 
1608   incrementProfileCounter(&S);
1609 
1610   // Check whether the mutations value has changed from where it was
1611   // at start.  StateMutationsPtr should actually be invariant between
1612   // refreshes.
1613   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1614   llvm::Value *currentMutations
1615     = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1616                                 "statemutations");
1617 
1618   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1619   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1620 
1621   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1622                        WasNotMutatedBB, WasMutatedBB);
1623 
1624   // If so, call the enumeration-mutation function.
1625   EmitBlock(WasMutatedBB);
1626   llvm::Value *V =
1627     Builder.CreateBitCast(Collection,
1628                           ConvertType(getContext().getObjCIdType()));
1629   CallArgList Args2;
1630   Args2.add(RValue::get(V), getContext().getObjCIdType());
1631   // FIXME: We shouldn't need to get the function info here, the runtime already
1632   // should have computed it to build the function.
1633   EmitCall(
1634           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1635            EnumerationMutationFn, ReturnValueSlot(), Args2);
1636 
1637   // Otherwise, or if the mutation function returns, just continue.
1638   EmitBlock(WasNotMutatedBB);
1639 
1640   // Initialize the element variable.
1641   RunCleanupsScope elementVariableScope(*this);
1642   bool elementIsVariable;
1643   LValue elementLValue;
1644   QualType elementType;
1645   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1646     // Initialize the variable, in case it's a __block variable or something.
1647     EmitAutoVarInit(variable);
1648 
1649     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1650     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1651                         VK_LValue, SourceLocation());
1652     elementLValue = EmitLValue(&tempDRE);
1653     elementType = D->getType();
1654     elementIsVariable = true;
1655 
1656     if (D->isARCPseudoStrong())
1657       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1658   } else {
1659     elementLValue = LValue(); // suppress warning
1660     elementType = cast<Expr>(S.getElement())->getType();
1661     elementIsVariable = false;
1662   }
1663   llvm::Type *convertedElementType = ConvertType(elementType);
1664 
1665   // Fetch the buffer out of the enumeration state.
1666   // TODO: this pointer should actually be invariant between
1667   // refreshes, which would help us do certain loop optimizations.
1668   Address StateItemsPtr = Builder.CreateStructGEP(
1669       StatePtr, 1, getPointerSize(), "stateitems.ptr");
1670   llvm::Value *EnumStateItems =
1671     Builder.CreateLoad(StateItemsPtr, "stateitems");
1672 
1673   // Fetch the value at the current index from the buffer.
1674   llvm::Value *CurrentItemPtr =
1675     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1676   llvm::Value *CurrentItem =
1677     Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1678 
1679   // Cast that value to the right type.
1680   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1681                                       "currentitem");
1682 
1683   // Make sure we have an l-value.  Yes, this gets evaluated every
1684   // time through the loop.
1685   if (!elementIsVariable) {
1686     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1687     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1688   } else {
1689     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1690                            /*isInit*/ true);
1691   }
1692 
1693   // If we do have an element variable, this assignment is the end of
1694   // its initialization.
1695   if (elementIsVariable)
1696     EmitAutoVarCleanups(variable);
1697 
1698   // Perform the loop body, setting up break and continue labels.
1699   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1700   {
1701     RunCleanupsScope Scope(*this);
1702     EmitStmt(S.getBody());
1703   }
1704   BreakContinueStack.pop_back();
1705 
1706   // Destroy the element variable now.
1707   elementVariableScope.ForceCleanup();
1708 
1709   // Check whether there are more elements.
1710   EmitBlock(AfterBody.getBlock());
1711 
1712   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1713 
1714   // First we check in the local buffer.
1715   llvm::Value *indexPlusOne =
1716       Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1717 
1718   // If we haven't overrun the buffer yet, we can continue.
1719   // Set the branch weights based on the simplifying assumption that this is
1720   // like a while-loop, i.e., ignoring that the false branch fetches more
1721   // elements and then returns to the loop.
1722   Builder.CreateCondBr(
1723       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1724       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1725 
1726   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1727   count->addIncoming(count, AfterBody.getBlock());
1728 
1729   // Otherwise, we have to fetch more elements.
1730   EmitBlock(FetchMoreBB);
1731 
1732   CountRV =
1733       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1734                                                getContext().getNSUIntegerType(),
1735                                                FastEnumSel, Collection, Args);
1736 
1737   // If we got a zero count, we're done.
1738   llvm::Value *refetchCount = CountRV.getScalarVal();
1739 
1740   // (note that the message send might split FetchMoreBB)
1741   index->addIncoming(zero, Builder.GetInsertBlock());
1742   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1743 
1744   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1745                        EmptyBB, LoopBodyBB);
1746 
1747   // No more elements.
1748   EmitBlock(EmptyBB);
1749 
1750   if (!elementIsVariable) {
1751     // If the element was not a declaration, set it to be null.
1752 
1753     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1754     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1755     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1756   }
1757 
1758   if (DI)
1759     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1760 
1761   ForScope.ForceCleanup();
1762   EmitBlock(LoopEnd.getBlock());
1763 }
1764 
1765 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1766   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1767 }
1768 
1769 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1770   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1771 }
1772 
1773 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1774                                               const ObjCAtSynchronizedStmt &S) {
1775   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1776 }
1777 
1778 namespace {
1779   struct CallObjCRelease final : EHScopeStack::Cleanup {
1780     CallObjCRelease(llvm::Value *object) : object(object) {}
1781     llvm::Value *object;
1782 
1783     void Emit(CodeGenFunction &CGF, Flags flags) override {
1784       // Releases at the end of the full-expression are imprecise.
1785       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1786     }
1787   };
1788 }
1789 
1790 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1791 /// release at the end of the full-expression.
1792 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1793                                                     llvm::Value *object) {
1794   // If we're in a conditional branch, we need to make the cleanup
1795   // conditional.
1796   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1797   return object;
1798 }
1799 
1800 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1801                                                            llvm::Value *value) {
1802   return EmitARCRetainAutorelease(type, value);
1803 }
1804 
1805 /// Given a number of pointers, inform the optimizer that they're
1806 /// being intrinsically used up until this point in the program.
1807 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1808   llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1809   if (!fn) {
1810     llvm::FunctionType *fnType =
1811       llvm::FunctionType::get(CGM.VoidTy, None, true);
1812     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1813   }
1814 
1815   // This isn't really a "runtime" function, but as an intrinsic it
1816   // doesn't really matter as long as we align things up.
1817   EmitNounwindRuntimeCall(fn, values);
1818 }
1819 
1820 
1821 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1822                                                 llvm::FunctionType *FTy,
1823                                                 StringRef Name) {
1824   llvm::Constant *RTF = CGM.CreateRuntimeFunction(FTy, Name);
1825 
1826   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
1827     // If the target runtime doesn't naturally support ARC, emit weak
1828     // references to the runtime support library.  We don't really
1829     // permit this to fail, but we need a particular relocation style.
1830     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
1831         !CGM.getTriple().isOSBinFormatCOFF()) {
1832       F->setLinkage(llvm::Function::ExternalWeakLinkage);
1833     } else if (Name == "objc_retain" || Name  == "objc_release") {
1834       // If we have Native ARC, set nonlazybind attribute for these APIs for
1835       // performance.
1836       F->addFnAttr(llvm::Attribute::NonLazyBind);
1837     }
1838   }
1839 
1840   return RTF;
1841 }
1842 
1843 /// Perform an operation having the signature
1844 ///   i8* (i8*)
1845 /// where a null input causes a no-op and returns null.
1846 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1847                                           llvm::Value *value,
1848                                           llvm::Constant *&fn,
1849                                           StringRef fnName,
1850                                           bool isTailCall = false) {
1851   if (isa<llvm::ConstantPointerNull>(value))
1852     return value;
1853 
1854   if (!fn) {
1855     llvm::FunctionType *fnType =
1856       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1857     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1858   }
1859 
1860   // Cast the argument to 'id'.
1861   llvm::Type *origType = value->getType();
1862   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1863 
1864   // Call the function.
1865   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1866   if (isTailCall)
1867     call->setTailCall();
1868 
1869   // Cast the result back to the original type.
1870   return CGF.Builder.CreateBitCast(call, origType);
1871 }
1872 
1873 /// Perform an operation having the following signature:
1874 ///   i8* (i8**)
1875 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1876                                          Address addr,
1877                                          llvm::Constant *&fn,
1878                                          StringRef fnName) {
1879   if (!fn) {
1880     llvm::FunctionType *fnType =
1881       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1882     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1883   }
1884 
1885   // Cast the argument to 'id*'.
1886   llvm::Type *origType = addr.getElementType();
1887   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1888 
1889   // Call the function.
1890   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
1891 
1892   // Cast the result back to a dereference of the original type.
1893   if (origType != CGF.Int8PtrTy)
1894     result = CGF.Builder.CreateBitCast(result, origType);
1895 
1896   return result;
1897 }
1898 
1899 /// Perform an operation having the following signature:
1900 ///   i8* (i8**, i8*)
1901 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1902                                           Address addr,
1903                                           llvm::Value *value,
1904                                           llvm::Constant *&fn,
1905                                           StringRef fnName,
1906                                           bool ignored) {
1907   assert(addr.getElementType() == value->getType());
1908 
1909   if (!fn) {
1910     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1911 
1912     llvm::FunctionType *fnType
1913       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1914     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1915   }
1916 
1917   llvm::Type *origType = value->getType();
1918 
1919   llvm::Value *args[] = {
1920     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
1921     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1922   };
1923   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1924 
1925   if (ignored) return nullptr;
1926 
1927   return CGF.Builder.CreateBitCast(result, origType);
1928 }
1929 
1930 /// Perform an operation having the following signature:
1931 ///   void (i8**, i8**)
1932 static void emitARCCopyOperation(CodeGenFunction &CGF,
1933                                  Address dst,
1934                                  Address src,
1935                                  llvm::Constant *&fn,
1936                                  StringRef fnName) {
1937   assert(dst.getType() == src.getType());
1938 
1939   if (!fn) {
1940     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1941 
1942     llvm::FunctionType *fnType
1943       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1944     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1945   }
1946 
1947   llvm::Value *args[] = {
1948     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
1949     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
1950   };
1951   CGF.EmitNounwindRuntimeCall(fn, args);
1952 }
1953 
1954 /// Produce the code to do a retain.  Based on the type, calls one of:
1955 ///   call i8* \@objc_retain(i8* %value)
1956 ///   call i8* \@objc_retainBlock(i8* %value)
1957 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1958   if (type->isBlockPointerType())
1959     return EmitARCRetainBlock(value, /*mandatory*/ false);
1960   else
1961     return EmitARCRetainNonBlock(value);
1962 }
1963 
1964 /// Retain the given object, with normal retain semantics.
1965 ///   call i8* \@objc_retain(i8* %value)
1966 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1967   return emitARCValueOperation(*this, value,
1968                                CGM.getObjCEntrypoints().objc_retain,
1969                                "objc_retain");
1970 }
1971 
1972 /// Retain the given block, with _Block_copy semantics.
1973 ///   call i8* \@objc_retainBlock(i8* %value)
1974 ///
1975 /// \param mandatory - If false, emit the call with metadata
1976 /// indicating that it's okay for the optimizer to eliminate this call
1977 /// if it can prove that the block never escapes except down the stack.
1978 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1979                                                  bool mandatory) {
1980   llvm::Value *result
1981     = emitARCValueOperation(*this, value,
1982                             CGM.getObjCEntrypoints().objc_retainBlock,
1983                             "objc_retainBlock");
1984 
1985   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1986   // tell the optimizer that it doesn't need to do this copy if the
1987   // block doesn't escape, where being passed as an argument doesn't
1988   // count as escaping.
1989   if (!mandatory && isa<llvm::Instruction>(result)) {
1990     llvm::CallInst *call
1991       = cast<llvm::CallInst>(result->stripPointerCasts());
1992     assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock);
1993 
1994     call->setMetadata("clang.arc.copy_on_escape",
1995                       llvm::MDNode::get(Builder.getContext(), None));
1996   }
1997 
1998   return result;
1999 }
2000 
2001 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2002   // Fetch the void(void) inline asm which marks that we're going to
2003   // do something with the autoreleased return value.
2004   llvm::InlineAsm *&marker
2005     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2006   if (!marker) {
2007     StringRef assembly
2008       = CGF.CGM.getTargetCodeGenInfo()
2009            .getARCRetainAutoreleasedReturnValueMarker();
2010 
2011     // If we have an empty assembly string, there's nothing to do.
2012     if (assembly.empty()) {
2013 
2014     // Otherwise, at -O0, build an inline asm that we're going to call
2015     // in a moment.
2016     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2017       llvm::FunctionType *type =
2018         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2019 
2020       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2021 
2022     // If we're at -O1 and above, we don't want to litter the code
2023     // with this marker yet, so leave a breadcrumb for the ARC
2024     // optimizer to pick up.
2025     } else {
2026       llvm::NamedMDNode *metadata =
2027         CGF.CGM.getModule().getOrInsertNamedMetadata(
2028                             "clang.arc.retainAutoreleasedReturnValueMarker");
2029       assert(metadata->getNumOperands() <= 1);
2030       if (metadata->getNumOperands() == 0) {
2031         auto &ctx = CGF.getLLVMContext();
2032         metadata->addOperand(llvm::MDNode::get(ctx,
2033                                      llvm::MDString::get(ctx, assembly)));
2034       }
2035     }
2036   }
2037 
2038   // Call the marker asm if we made one, which we do only at -O0.
2039   if (marker)
2040     CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2041 }
2042 
2043 /// Retain the given object which is the result of a function call.
2044 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2045 ///
2046 /// Yes, this function name is one character away from a different
2047 /// call with completely different semantics.
2048 llvm::Value *
2049 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2050   emitAutoreleasedReturnValueMarker(*this);
2051   return emitARCValueOperation(*this, value,
2052               CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2053                                "objc_retainAutoreleasedReturnValue");
2054 }
2055 
2056 /// Claim a possibly-autoreleased return value at +0.  This is only
2057 /// valid to do in contexts which do not rely on the retain to keep
2058 /// the object valid for all of its uses; for example, when
2059 /// the value is ignored, or when it is being assigned to an
2060 /// __unsafe_unretained variable.
2061 ///
2062 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2063 llvm::Value *
2064 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2065   emitAutoreleasedReturnValueMarker(*this);
2066   return emitARCValueOperation(*this, value,
2067               CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2068                                "objc_unsafeClaimAutoreleasedReturnValue");
2069 }
2070 
2071 /// Release the given object.
2072 ///   call void \@objc_release(i8* %value)
2073 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2074                                      ARCPreciseLifetime_t precise) {
2075   if (isa<llvm::ConstantPointerNull>(value)) return;
2076 
2077   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release;
2078   if (!fn) {
2079     llvm::FunctionType *fnType =
2080       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2081     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
2082   }
2083 
2084   // Cast the argument to 'id'.
2085   value = Builder.CreateBitCast(value, Int8PtrTy);
2086 
2087   // Call objc_release.
2088   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2089 
2090   if (precise == ARCImpreciseLifetime) {
2091     call->setMetadata("clang.imprecise_release",
2092                       llvm::MDNode::get(Builder.getContext(), None));
2093   }
2094 }
2095 
2096 /// Destroy a __strong variable.
2097 ///
2098 /// At -O0, emit a call to store 'null' into the address;
2099 /// instrumenting tools prefer this because the address is exposed,
2100 /// but it's relatively cumbersome to optimize.
2101 ///
2102 /// At -O1 and above, just load and call objc_release.
2103 ///
2104 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2105 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2106                                            ARCPreciseLifetime_t precise) {
2107   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2108     llvm::Value *null = getNullForVariable(addr);
2109     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2110     return;
2111   }
2112 
2113   llvm::Value *value = Builder.CreateLoad(addr);
2114   EmitARCRelease(value, precise);
2115 }
2116 
2117 /// Store into a strong object.  Always calls this:
2118 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2119 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2120                                                      llvm::Value *value,
2121                                                      bool ignored) {
2122   assert(addr.getElementType() == value->getType());
2123 
2124   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2125   if (!fn) {
2126     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2127     llvm::FunctionType *fnType
2128       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2129     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2130   }
2131 
2132   llvm::Value *args[] = {
2133     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2134     Builder.CreateBitCast(value, Int8PtrTy)
2135   };
2136   EmitNounwindRuntimeCall(fn, args);
2137 
2138   if (ignored) return nullptr;
2139   return value;
2140 }
2141 
2142 /// Store into a strong object.  Sometimes calls this:
2143 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2144 /// Other times, breaks it down into components.
2145 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2146                                                  llvm::Value *newValue,
2147                                                  bool ignored) {
2148   QualType type = dst.getType();
2149   bool isBlock = type->isBlockPointerType();
2150 
2151   // Use a store barrier at -O0 unless this is a block type or the
2152   // lvalue is inadequately aligned.
2153   if (shouldUseFusedARCCalls() &&
2154       !isBlock &&
2155       (dst.getAlignment().isZero() ||
2156        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2157     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2158   }
2159 
2160   // Otherwise, split it out.
2161 
2162   // Retain the new value.
2163   newValue = EmitARCRetain(type, newValue);
2164 
2165   // Read the old value.
2166   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2167 
2168   // Store.  We do this before the release so that any deallocs won't
2169   // see the old value.
2170   EmitStoreOfScalar(newValue, dst);
2171 
2172   // Finally, release the old value.
2173   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2174 
2175   return newValue;
2176 }
2177 
2178 /// Autorelease the given object.
2179 ///   call i8* \@objc_autorelease(i8* %value)
2180 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2181   return emitARCValueOperation(*this, value,
2182                                CGM.getObjCEntrypoints().objc_autorelease,
2183                                "objc_autorelease");
2184 }
2185 
2186 /// Autorelease the given object.
2187 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2188 llvm::Value *
2189 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2190   return emitARCValueOperation(*this, value,
2191                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2192                                "objc_autoreleaseReturnValue",
2193                                /*isTailCall*/ true);
2194 }
2195 
2196 /// Do a fused retain/autorelease of the given object.
2197 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2198 llvm::Value *
2199 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2200   return emitARCValueOperation(*this, value,
2201                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2202                                "objc_retainAutoreleaseReturnValue",
2203                                /*isTailCall*/ true);
2204 }
2205 
2206 /// Do a fused retain/autorelease of the given object.
2207 ///   call i8* \@objc_retainAutorelease(i8* %value)
2208 /// or
2209 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2210 ///   call i8* \@objc_autorelease(i8* %retain)
2211 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2212                                                        llvm::Value *value) {
2213   if (!type->isBlockPointerType())
2214     return EmitARCRetainAutoreleaseNonBlock(value);
2215 
2216   if (isa<llvm::ConstantPointerNull>(value)) return value;
2217 
2218   llvm::Type *origType = value->getType();
2219   value = Builder.CreateBitCast(value, Int8PtrTy);
2220   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2221   value = EmitARCAutorelease(value);
2222   return Builder.CreateBitCast(value, origType);
2223 }
2224 
2225 /// Do a fused retain/autorelease of the given object.
2226 ///   call i8* \@objc_retainAutorelease(i8* %value)
2227 llvm::Value *
2228 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2229   return emitARCValueOperation(*this, value,
2230                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2231                                "objc_retainAutorelease");
2232 }
2233 
2234 /// i8* \@objc_loadWeak(i8** %addr)
2235 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2236 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2237   return emitARCLoadOperation(*this, addr,
2238                               CGM.getObjCEntrypoints().objc_loadWeak,
2239                               "objc_loadWeak");
2240 }
2241 
2242 /// i8* \@objc_loadWeakRetained(i8** %addr)
2243 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2244   return emitARCLoadOperation(*this, addr,
2245                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2246                               "objc_loadWeakRetained");
2247 }
2248 
2249 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2250 /// Returns %value.
2251 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2252                                                llvm::Value *value,
2253                                                bool ignored) {
2254   return emitARCStoreOperation(*this, addr, value,
2255                                CGM.getObjCEntrypoints().objc_storeWeak,
2256                                "objc_storeWeak", ignored);
2257 }
2258 
2259 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2260 /// Returns %value.  %addr is known to not have a current weak entry.
2261 /// Essentially equivalent to:
2262 ///   *addr = nil; objc_storeWeak(addr, value);
2263 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2264   // If we're initializing to null, just write null to memory; no need
2265   // to get the runtime involved.  But don't do this if optimization
2266   // is enabled, because accounting for this would make the optimizer
2267   // much more complicated.
2268   if (isa<llvm::ConstantPointerNull>(value) &&
2269       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2270     Builder.CreateStore(value, addr);
2271     return;
2272   }
2273 
2274   emitARCStoreOperation(*this, addr, value,
2275                         CGM.getObjCEntrypoints().objc_initWeak,
2276                         "objc_initWeak", /*ignored*/ true);
2277 }
2278 
2279 /// void \@objc_destroyWeak(i8** %addr)
2280 /// Essentially objc_storeWeak(addr, nil).
2281 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2282   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2283   if (!fn) {
2284     llvm::FunctionType *fnType =
2285       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2286     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2287   }
2288 
2289   // Cast the argument to 'id*'.
2290   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2291 
2292   EmitNounwindRuntimeCall(fn, addr.getPointer());
2293 }
2294 
2295 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2296 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2297 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2298 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2299   emitARCCopyOperation(*this, dst, src,
2300                        CGM.getObjCEntrypoints().objc_moveWeak,
2301                        "objc_moveWeak");
2302 }
2303 
2304 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2305 /// Disregards the current value in %dest.  Essentially
2306 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2307 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2308   emitARCCopyOperation(*this, dst, src,
2309                        CGM.getObjCEntrypoints().objc_copyWeak,
2310                        "objc_copyWeak");
2311 }
2312 
2313 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2314                                             Address SrcAddr) {
2315   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2316   Object = EmitObjCConsumeObject(Ty, Object);
2317   EmitARCStoreWeak(DstAddr, Object, false);
2318 }
2319 
2320 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2321                                             Address SrcAddr) {
2322   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2323   Object = EmitObjCConsumeObject(Ty, Object);
2324   EmitARCStoreWeak(DstAddr, Object, false);
2325   EmitARCDestroyWeak(SrcAddr);
2326 }
2327 
2328 /// Produce the code to do a objc_autoreleasepool_push.
2329 ///   call i8* \@objc_autoreleasePoolPush(void)
2330 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2331   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2332   if (!fn) {
2333     llvm::FunctionType *fnType =
2334       llvm::FunctionType::get(Int8PtrTy, false);
2335     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2336   }
2337 
2338   return EmitNounwindRuntimeCall(fn);
2339 }
2340 
2341 /// Produce the code to do a primitive release.
2342 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2343 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2344   assert(value->getType() == Int8PtrTy);
2345 
2346   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2347   if (!fn) {
2348     llvm::FunctionType *fnType =
2349       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2350 
2351     // We don't want to use a weak import here; instead we should not
2352     // fall into this path.
2353     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2354   }
2355 
2356   // objc_autoreleasePoolPop can throw.
2357   EmitRuntimeCallOrInvoke(fn, value);
2358 }
2359 
2360 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2361 /// Which is: [[NSAutoreleasePool alloc] init];
2362 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2363 /// init is declared as: - (id) init; in its NSObject super class.
2364 ///
2365 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2366   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2367   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2368   // [NSAutoreleasePool alloc]
2369   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2370   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2371   CallArgList Args;
2372   RValue AllocRV =
2373     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2374                                 getContext().getObjCIdType(),
2375                                 AllocSel, Receiver, Args);
2376 
2377   // [Receiver init]
2378   Receiver = AllocRV.getScalarVal();
2379   II = &CGM.getContext().Idents.get("init");
2380   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2381   RValue InitRV =
2382     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2383                                 getContext().getObjCIdType(),
2384                                 InitSel, Receiver, Args);
2385   return InitRV.getScalarVal();
2386 }
2387 
2388 /// Produce the code to do a primitive release.
2389 /// [tmp drain];
2390 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2391   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2392   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2393   CallArgList Args;
2394   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2395                               getContext().VoidTy, DrainSel, Arg, Args);
2396 }
2397 
2398 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2399                                               Address addr,
2400                                               QualType type) {
2401   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2402 }
2403 
2404 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2405                                                 Address addr,
2406                                                 QualType type) {
2407   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2408 }
2409 
2410 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2411                                      Address addr,
2412                                      QualType type) {
2413   CGF.EmitARCDestroyWeak(addr);
2414 }
2415 
2416 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2417                                           QualType type) {
2418   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2419   CGF.EmitARCIntrinsicUse(value);
2420 }
2421 
2422 namespace {
2423   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2424     llvm::Value *Token;
2425 
2426     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2427 
2428     void Emit(CodeGenFunction &CGF, Flags flags) override {
2429       CGF.EmitObjCAutoreleasePoolPop(Token);
2430     }
2431   };
2432   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2433     llvm::Value *Token;
2434 
2435     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2436 
2437     void Emit(CodeGenFunction &CGF, Flags flags) override {
2438       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2439     }
2440   };
2441 }
2442 
2443 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2444   if (CGM.getLangOpts().ObjCAutoRefCount)
2445     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2446   else
2447     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2448 }
2449 
2450 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2451   switch (lifetime) {
2452   case Qualifiers::OCL_None:
2453   case Qualifiers::OCL_ExplicitNone:
2454   case Qualifiers::OCL_Strong:
2455   case Qualifiers::OCL_Autoreleasing:
2456     return true;
2457 
2458   case Qualifiers::OCL_Weak:
2459     return false;
2460   }
2461 
2462   llvm_unreachable("impossible lifetime!");
2463 }
2464 
2465 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2466                                                   LValue lvalue,
2467                                                   QualType type) {
2468   llvm::Value *result;
2469   bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2470   if (shouldRetain) {
2471     result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2472   } else {
2473     assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2474     result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress());
2475   }
2476   return TryEmitResult(result, !shouldRetain);
2477 }
2478 
2479 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2480                                                   const Expr *e) {
2481   e = e->IgnoreParens();
2482   QualType type = e->getType();
2483 
2484   // If we're loading retained from a __strong xvalue, we can avoid
2485   // an extra retain/release pair by zeroing out the source of this
2486   // "move" operation.
2487   if (e->isXValue() &&
2488       !type.isConstQualified() &&
2489       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2490     // Emit the lvalue.
2491     LValue lv = CGF.EmitLValue(e);
2492 
2493     // Load the object pointer.
2494     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2495                                                SourceLocation()).getScalarVal();
2496 
2497     // Set the source pointer to NULL.
2498     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2499 
2500     return TryEmitResult(result, true);
2501   }
2502 
2503   // As a very special optimization, in ARC++, if the l-value is the
2504   // result of a non-volatile assignment, do a simple retain of the
2505   // result of the call to objc_storeWeak instead of reloading.
2506   if (CGF.getLangOpts().CPlusPlus &&
2507       !type.isVolatileQualified() &&
2508       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2509       isa<BinaryOperator>(e) &&
2510       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2511     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2512 
2513   // Try to emit code for scalar constant instead of emitting LValue and
2514   // loading it because we are not guaranteed to have an l-value. One of such
2515   // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2516   if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2517     auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2518     if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2519       return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2520                            !shouldRetainObjCLifetime(type.getObjCLifetime()));
2521   }
2522 
2523   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2524 }
2525 
2526 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2527                                          llvm::Value *value)>
2528   ValueTransform;
2529 
2530 /// Insert code immediately after a call.
2531 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2532                                               llvm::Value *value,
2533                                               ValueTransform doAfterCall,
2534                                               ValueTransform doFallback) {
2535   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2536     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2537 
2538     // Place the retain immediately following the call.
2539     CGF.Builder.SetInsertPoint(call->getParent(),
2540                                ++llvm::BasicBlock::iterator(call));
2541     value = doAfterCall(CGF, value);
2542 
2543     CGF.Builder.restoreIP(ip);
2544     return value;
2545   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2546     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2547 
2548     // Place the retain at the beginning of the normal destination block.
2549     llvm::BasicBlock *BB = invoke->getNormalDest();
2550     CGF.Builder.SetInsertPoint(BB, BB->begin());
2551     value = doAfterCall(CGF, value);
2552 
2553     CGF.Builder.restoreIP(ip);
2554     return value;
2555 
2556   // Bitcasts can arise because of related-result returns.  Rewrite
2557   // the operand.
2558   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2559     llvm::Value *operand = bitcast->getOperand(0);
2560     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2561     bitcast->setOperand(0, operand);
2562     return bitcast;
2563 
2564   // Generic fall-back case.
2565   } else {
2566     // Retain using the non-block variant: we never need to do a copy
2567     // of a block that's been returned to us.
2568     return doFallback(CGF, value);
2569   }
2570 }
2571 
2572 /// Given that the given expression is some sort of call (which does
2573 /// not return retained), emit a retain following it.
2574 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2575                                             const Expr *e) {
2576   llvm::Value *value = CGF.EmitScalarExpr(e);
2577   return emitARCOperationAfterCall(CGF, value,
2578            [](CodeGenFunction &CGF, llvm::Value *value) {
2579              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2580            },
2581            [](CodeGenFunction &CGF, llvm::Value *value) {
2582              return CGF.EmitARCRetainNonBlock(value);
2583            });
2584 }
2585 
2586 /// Given that the given expression is some sort of call (which does
2587 /// not return retained), perform an unsafeClaim following it.
2588 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2589                                                  const Expr *e) {
2590   llvm::Value *value = CGF.EmitScalarExpr(e);
2591   return emitARCOperationAfterCall(CGF, value,
2592            [](CodeGenFunction &CGF, llvm::Value *value) {
2593              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2594            },
2595            [](CodeGenFunction &CGF, llvm::Value *value) {
2596              return value;
2597            });
2598 }
2599 
2600 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2601                                                       bool allowUnsafeClaim) {
2602   if (allowUnsafeClaim &&
2603       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2604     return emitARCUnsafeClaimCallResult(*this, E);
2605   } else {
2606     llvm::Value *value = emitARCRetainCallResult(*this, E);
2607     return EmitObjCConsumeObject(E->getType(), value);
2608   }
2609 }
2610 
2611 /// Determine whether it might be important to emit a separate
2612 /// objc_retain_block on the result of the given expression, or
2613 /// whether it's okay to just emit it in a +1 context.
2614 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2615   assert(e->getType()->isBlockPointerType());
2616   e = e->IgnoreParens();
2617 
2618   // For future goodness, emit block expressions directly in +1
2619   // contexts if we can.
2620   if (isa<BlockExpr>(e))
2621     return false;
2622 
2623   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2624     switch (cast->getCastKind()) {
2625     // Emitting these operations in +1 contexts is goodness.
2626     case CK_LValueToRValue:
2627     case CK_ARCReclaimReturnedObject:
2628     case CK_ARCConsumeObject:
2629     case CK_ARCProduceObject:
2630       return false;
2631 
2632     // These operations preserve a block type.
2633     case CK_NoOp:
2634     case CK_BitCast:
2635       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2636 
2637     // These operations are known to be bad (or haven't been considered).
2638     case CK_AnyPointerToBlockPointerCast:
2639     default:
2640       return true;
2641     }
2642   }
2643 
2644   return true;
2645 }
2646 
2647 namespace {
2648 /// A CRTP base class for emitting expressions of retainable object
2649 /// pointer type in ARC.
2650 template <typename Impl, typename Result> class ARCExprEmitter {
2651 protected:
2652   CodeGenFunction &CGF;
2653   Impl &asImpl() { return *static_cast<Impl*>(this); }
2654 
2655   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2656 
2657 public:
2658   Result visit(const Expr *e);
2659   Result visitCastExpr(const CastExpr *e);
2660   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2661   Result visitBinaryOperator(const BinaryOperator *e);
2662   Result visitBinAssign(const BinaryOperator *e);
2663   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2664   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2665   Result visitBinAssignWeak(const BinaryOperator *e);
2666   Result visitBinAssignStrong(const BinaryOperator *e);
2667 
2668   // Minimal implementation:
2669   //   Result visitLValueToRValue(const Expr *e)
2670   //   Result visitConsumeObject(const Expr *e)
2671   //   Result visitExtendBlockObject(const Expr *e)
2672   //   Result visitReclaimReturnedObject(const Expr *e)
2673   //   Result visitCall(const Expr *e)
2674   //   Result visitExpr(const Expr *e)
2675   //
2676   //   Result emitBitCast(Result result, llvm::Type *resultType)
2677   //   llvm::Value *getValueOfResult(Result result)
2678 };
2679 }
2680 
2681 /// Try to emit a PseudoObjectExpr under special ARC rules.
2682 ///
2683 /// This massively duplicates emitPseudoObjectRValue.
2684 template <typename Impl, typename Result>
2685 Result
2686 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2687   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2688 
2689   // Find the result expression.
2690   const Expr *resultExpr = E->getResultExpr();
2691   assert(resultExpr);
2692   Result result;
2693 
2694   for (PseudoObjectExpr::const_semantics_iterator
2695          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2696     const Expr *semantic = *i;
2697 
2698     // If this semantic expression is an opaque value, bind it
2699     // to the result of its source expression.
2700     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2701       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2702       OVMA opaqueData;
2703 
2704       // If this semantic is the result of the pseudo-object
2705       // expression, try to evaluate the source as +1.
2706       if (ov == resultExpr) {
2707         assert(!OVMA::shouldBindAsLValue(ov));
2708         result = asImpl().visit(ov->getSourceExpr());
2709         opaqueData = OVMA::bind(CGF, ov,
2710                             RValue::get(asImpl().getValueOfResult(result)));
2711 
2712       // Otherwise, just bind it.
2713       } else {
2714         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2715       }
2716       opaques.push_back(opaqueData);
2717 
2718     // Otherwise, if the expression is the result, evaluate it
2719     // and remember the result.
2720     } else if (semantic == resultExpr) {
2721       result = asImpl().visit(semantic);
2722 
2723     // Otherwise, evaluate the expression in an ignored context.
2724     } else {
2725       CGF.EmitIgnoredExpr(semantic);
2726     }
2727   }
2728 
2729   // Unbind all the opaques now.
2730   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2731     opaques[i].unbind(CGF);
2732 
2733   return result;
2734 }
2735 
2736 template <typename Impl, typename Result>
2737 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
2738   switch (e->getCastKind()) {
2739 
2740   // No-op casts don't change the type, so we just ignore them.
2741   case CK_NoOp:
2742     return asImpl().visit(e->getSubExpr());
2743 
2744   // These casts can change the type.
2745   case CK_CPointerToObjCPointerCast:
2746   case CK_BlockPointerToObjCPointerCast:
2747   case CK_AnyPointerToBlockPointerCast:
2748   case CK_BitCast: {
2749     llvm::Type *resultType = CGF.ConvertType(e->getType());
2750     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
2751     Result result = asImpl().visit(e->getSubExpr());
2752     return asImpl().emitBitCast(result, resultType);
2753   }
2754 
2755   // Handle some casts specially.
2756   case CK_LValueToRValue:
2757     return asImpl().visitLValueToRValue(e->getSubExpr());
2758   case CK_ARCConsumeObject:
2759     return asImpl().visitConsumeObject(e->getSubExpr());
2760   case CK_ARCExtendBlockObject:
2761     return asImpl().visitExtendBlockObject(e->getSubExpr());
2762   case CK_ARCReclaimReturnedObject:
2763     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
2764 
2765   // Otherwise, use the default logic.
2766   default:
2767     return asImpl().visitExpr(e);
2768   }
2769 }
2770 
2771 template <typename Impl, typename Result>
2772 Result
2773 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
2774   switch (e->getOpcode()) {
2775   case BO_Comma:
2776     CGF.EmitIgnoredExpr(e->getLHS());
2777     CGF.EnsureInsertPoint();
2778     return asImpl().visit(e->getRHS());
2779 
2780   case BO_Assign:
2781     return asImpl().visitBinAssign(e);
2782 
2783   default:
2784     return asImpl().visitExpr(e);
2785   }
2786 }
2787 
2788 template <typename Impl, typename Result>
2789 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
2790   switch (e->getLHS()->getType().getObjCLifetime()) {
2791   case Qualifiers::OCL_ExplicitNone:
2792     return asImpl().visitBinAssignUnsafeUnretained(e);
2793 
2794   case Qualifiers::OCL_Weak:
2795     return asImpl().visitBinAssignWeak(e);
2796 
2797   case Qualifiers::OCL_Autoreleasing:
2798     return asImpl().visitBinAssignAutoreleasing(e);
2799 
2800   case Qualifiers::OCL_Strong:
2801     return asImpl().visitBinAssignStrong(e);
2802 
2803   case Qualifiers::OCL_None:
2804     return asImpl().visitExpr(e);
2805   }
2806   llvm_unreachable("bad ObjC ownership qualifier");
2807 }
2808 
2809 /// The default rule for __unsafe_unretained emits the RHS recursively,
2810 /// stores into the unsafe variable, and propagates the result outward.
2811 template <typename Impl, typename Result>
2812 Result ARCExprEmitter<Impl,Result>::
2813                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
2814   // Recursively emit the RHS.
2815   // For __block safety, do this before emitting the LHS.
2816   Result result = asImpl().visit(e->getRHS());
2817 
2818   // Perform the store.
2819   LValue lvalue =
2820     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
2821   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
2822                              lvalue);
2823 
2824   return result;
2825 }
2826 
2827 template <typename Impl, typename Result>
2828 Result
2829 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
2830   return asImpl().visitExpr(e);
2831 }
2832 
2833 template <typename Impl, typename Result>
2834 Result
2835 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
2836   return asImpl().visitExpr(e);
2837 }
2838 
2839 template <typename Impl, typename Result>
2840 Result
2841 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
2842   return asImpl().visitExpr(e);
2843 }
2844 
2845 /// The general expression-emission logic.
2846 template <typename Impl, typename Result>
2847 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
2848   // We should *never* see a nested full-expression here, because if
2849   // we fail to emit at +1, our caller must not retain after we close
2850   // out the full-expression.  This isn't as important in the unsafe
2851   // emitter.
2852   assert(!isa<ExprWithCleanups>(e));
2853 
2854   // Look through parens, __extension__, generic selection, etc.
2855   e = e->IgnoreParens();
2856 
2857   // Handle certain kinds of casts.
2858   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2859     return asImpl().visitCastExpr(ce);
2860 
2861   // Handle the comma operator.
2862   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
2863     return asImpl().visitBinaryOperator(op);
2864 
2865   // TODO: handle conditional operators here
2866 
2867   // For calls and message sends, use the retained-call logic.
2868   // Delegate inits are a special case in that they're the only
2869   // returns-retained expression that *isn't* surrounded by
2870   // a consume.
2871   } else if (isa<CallExpr>(e) ||
2872              (isa<ObjCMessageExpr>(e) &&
2873               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2874     return asImpl().visitCall(e);
2875 
2876   // Look through pseudo-object expressions.
2877   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2878     return asImpl().visitPseudoObjectExpr(pseudo);
2879   }
2880 
2881   return asImpl().visitExpr(e);
2882 }
2883 
2884 namespace {
2885 
2886 /// An emitter for +1 results.
2887 struct ARCRetainExprEmitter :
2888   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
2889 
2890   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
2891 
2892   llvm::Value *getValueOfResult(TryEmitResult result) {
2893     return result.getPointer();
2894   }
2895 
2896   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
2897     llvm::Value *value = result.getPointer();
2898     value = CGF.Builder.CreateBitCast(value, resultType);
2899     result.setPointer(value);
2900     return result;
2901   }
2902 
2903   TryEmitResult visitLValueToRValue(const Expr *e) {
2904     return tryEmitARCRetainLoadOfScalar(CGF, e);
2905   }
2906 
2907   /// For consumptions, just emit the subexpression and thus elide
2908   /// the retain/release pair.
2909   TryEmitResult visitConsumeObject(const Expr *e) {
2910     llvm::Value *result = CGF.EmitScalarExpr(e);
2911     return TryEmitResult(result, true);
2912   }
2913 
2914   /// Block extends are net +0.  Naively, we could just recurse on
2915   /// the subexpression, but actually we need to ensure that the
2916   /// value is copied as a block, so there's a little filter here.
2917   TryEmitResult visitExtendBlockObject(const Expr *e) {
2918     llvm::Value *result; // will be a +0 value
2919 
2920     // If we can't safely assume the sub-expression will produce a
2921     // block-copied value, emit the sub-expression at +0.
2922     if (shouldEmitSeparateBlockRetain(e)) {
2923       result = CGF.EmitScalarExpr(e);
2924 
2925     // Otherwise, try to emit the sub-expression at +1 recursively.
2926     } else {
2927       TryEmitResult subresult = asImpl().visit(e);
2928 
2929       // If that produced a retained value, just use that.
2930       if (subresult.getInt()) {
2931         return subresult;
2932       }
2933 
2934       // Otherwise it's +0.
2935       result = subresult.getPointer();
2936     }
2937 
2938     // Retain the object as a block.
2939     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2940     return TryEmitResult(result, true);
2941   }
2942 
2943   /// For reclaims, emit the subexpression as a retained call and
2944   /// skip the consumption.
2945   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
2946     llvm::Value *result = emitARCRetainCallResult(CGF, e);
2947     return TryEmitResult(result, true);
2948   }
2949 
2950   /// When we have an undecorated call, retroactively do a claim.
2951   TryEmitResult visitCall(const Expr *e) {
2952     llvm::Value *result = emitARCRetainCallResult(CGF, e);
2953     return TryEmitResult(result, true);
2954   }
2955 
2956   // TODO: maybe special-case visitBinAssignWeak?
2957 
2958   TryEmitResult visitExpr(const Expr *e) {
2959     // We didn't find an obvious production, so emit what we've got and
2960     // tell the caller that we didn't manage to retain.
2961     llvm::Value *result = CGF.EmitScalarExpr(e);
2962     return TryEmitResult(result, false);
2963   }
2964 };
2965 }
2966 
2967 static TryEmitResult
2968 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2969   return ARCRetainExprEmitter(CGF).visit(e);
2970 }
2971 
2972 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2973                                                 LValue lvalue,
2974                                                 QualType type) {
2975   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2976   llvm::Value *value = result.getPointer();
2977   if (!result.getInt())
2978     value = CGF.EmitARCRetain(type, value);
2979   return value;
2980 }
2981 
2982 /// EmitARCRetainScalarExpr - Semantically equivalent to
2983 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2984 /// best-effort attempt to peephole expressions that naturally produce
2985 /// retained objects.
2986 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2987   // The retain needs to happen within the full-expression.
2988   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2989     enterFullExpression(cleanups);
2990     RunCleanupsScope scope(*this);
2991     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2992   }
2993 
2994   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2995   llvm::Value *value = result.getPointer();
2996   if (!result.getInt())
2997     value = EmitARCRetain(e->getType(), value);
2998   return value;
2999 }
3000 
3001 llvm::Value *
3002 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3003   // The retain needs to happen within the full-expression.
3004   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3005     enterFullExpression(cleanups);
3006     RunCleanupsScope scope(*this);
3007     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3008   }
3009 
3010   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3011   llvm::Value *value = result.getPointer();
3012   if (result.getInt())
3013     value = EmitARCAutorelease(value);
3014   else
3015     value = EmitARCRetainAutorelease(e->getType(), value);
3016   return value;
3017 }
3018 
3019 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3020   llvm::Value *result;
3021   bool doRetain;
3022 
3023   if (shouldEmitSeparateBlockRetain(e)) {
3024     result = EmitScalarExpr(e);
3025     doRetain = true;
3026   } else {
3027     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3028     result = subresult.getPointer();
3029     doRetain = !subresult.getInt();
3030   }
3031 
3032   if (doRetain)
3033     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3034   return EmitObjCConsumeObject(e->getType(), result);
3035 }
3036 
3037 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3038   // In ARC, retain and autorelease the expression.
3039   if (getLangOpts().ObjCAutoRefCount) {
3040     // Do so before running any cleanups for the full-expression.
3041     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3042     return EmitARCRetainAutoreleaseScalarExpr(expr);
3043   }
3044 
3045   // Otherwise, use the normal scalar-expression emission.  The
3046   // exception machinery doesn't do anything special with the
3047   // exception like retaining it, so there's no safety associated with
3048   // only running cleanups after the throw has started, and when it
3049   // matters it tends to be substantially inferior code.
3050   return EmitScalarExpr(expr);
3051 }
3052 
3053 namespace {
3054 
3055 /// An emitter for assigning into an __unsafe_unretained context.
3056 struct ARCUnsafeUnretainedExprEmitter :
3057   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3058 
3059   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3060 
3061   llvm::Value *getValueOfResult(llvm::Value *value) {
3062     return value;
3063   }
3064 
3065   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3066     return CGF.Builder.CreateBitCast(value, resultType);
3067   }
3068 
3069   llvm::Value *visitLValueToRValue(const Expr *e) {
3070     return CGF.EmitScalarExpr(e);
3071   }
3072 
3073   /// For consumptions, just emit the subexpression and perform the
3074   /// consumption like normal.
3075   llvm::Value *visitConsumeObject(const Expr *e) {
3076     llvm::Value *value = CGF.EmitScalarExpr(e);
3077     return CGF.EmitObjCConsumeObject(e->getType(), value);
3078   }
3079 
3080   /// No special logic for block extensions.  (This probably can't
3081   /// actually happen in this emitter, though.)
3082   llvm::Value *visitExtendBlockObject(const Expr *e) {
3083     return CGF.EmitARCExtendBlockObject(e);
3084   }
3085 
3086   /// For reclaims, perform an unsafeClaim if that's enabled.
3087   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3088     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3089   }
3090 
3091   /// When we have an undecorated call, just emit it without adding
3092   /// the unsafeClaim.
3093   llvm::Value *visitCall(const Expr *e) {
3094     return CGF.EmitScalarExpr(e);
3095   }
3096 
3097   /// Just do normal scalar emission in the default case.
3098   llvm::Value *visitExpr(const Expr *e) {
3099     return CGF.EmitScalarExpr(e);
3100   }
3101 };
3102 }
3103 
3104 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3105                                                       const Expr *e) {
3106   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3107 }
3108 
3109 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3110 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3111 /// avoiding any spurious retains, including by performing reclaims
3112 /// with objc_unsafeClaimAutoreleasedReturnValue.
3113 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3114   // Look through full-expressions.
3115   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3116     enterFullExpression(cleanups);
3117     RunCleanupsScope scope(*this);
3118     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3119   }
3120 
3121   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3122 }
3123 
3124 std::pair<LValue,llvm::Value*>
3125 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3126                                               bool ignored) {
3127   // Evaluate the RHS first.  If we're ignoring the result, assume
3128   // that we can emit at an unsafe +0.
3129   llvm::Value *value;
3130   if (ignored) {
3131     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3132   } else {
3133     value = EmitScalarExpr(e->getRHS());
3134   }
3135 
3136   // Emit the LHS and perform the store.
3137   LValue lvalue = EmitLValue(e->getLHS());
3138   EmitStoreOfScalar(value, lvalue);
3139 
3140   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3141 }
3142 
3143 std::pair<LValue,llvm::Value*>
3144 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3145                                     bool ignored) {
3146   // Evaluate the RHS first.
3147   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3148   llvm::Value *value = result.getPointer();
3149 
3150   bool hasImmediateRetain = result.getInt();
3151 
3152   // If we didn't emit a retained object, and the l-value is of block
3153   // type, then we need to emit the block-retain immediately in case
3154   // it invalidates the l-value.
3155   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3156     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3157     hasImmediateRetain = true;
3158   }
3159 
3160   LValue lvalue = EmitLValue(e->getLHS());
3161 
3162   // If the RHS was emitted retained, expand this.
3163   if (hasImmediateRetain) {
3164     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3165     EmitStoreOfScalar(value, lvalue);
3166     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3167   } else {
3168     value = EmitARCStoreStrong(lvalue, value, ignored);
3169   }
3170 
3171   return std::pair<LValue,llvm::Value*>(lvalue, value);
3172 }
3173 
3174 std::pair<LValue,llvm::Value*>
3175 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3176   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3177   LValue lvalue = EmitLValue(e->getLHS());
3178 
3179   EmitStoreOfScalar(value, lvalue);
3180 
3181   return std::pair<LValue,llvm::Value*>(lvalue, value);
3182 }
3183 
3184 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3185                                           const ObjCAutoreleasePoolStmt &ARPS) {
3186   const Stmt *subStmt = ARPS.getSubStmt();
3187   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3188 
3189   CGDebugInfo *DI = getDebugInfo();
3190   if (DI)
3191     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3192 
3193   // Keep track of the current cleanup stack depth.
3194   RunCleanupsScope Scope(*this);
3195   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3196     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3197     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3198   } else {
3199     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3200     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3201   }
3202 
3203   for (const auto *I : S.body())
3204     EmitStmt(I);
3205 
3206   if (DI)
3207     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3208 }
3209 
3210 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3211 /// make sure it survives garbage collection until this point.
3212 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3213   // We just use an inline assembly.
3214   llvm::FunctionType *extenderType
3215     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3216   llvm::Value *extender
3217     = llvm::InlineAsm::get(extenderType,
3218                            /* assembly */ "",
3219                            /* constraints */ "r",
3220                            /* side effects */ true);
3221 
3222   object = Builder.CreateBitCast(object, VoidPtrTy);
3223   EmitNounwindRuntimeCall(extender, object);
3224 }
3225 
3226 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3227 /// non-trivial copy assignment function, produce following helper function.
3228 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3229 ///
3230 llvm::Constant *
3231 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3232                                         const ObjCPropertyImplDecl *PID) {
3233   if (!getLangOpts().CPlusPlus ||
3234       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3235     return nullptr;
3236   QualType Ty = PID->getPropertyIvarDecl()->getType();
3237   if (!Ty->isRecordType())
3238     return nullptr;
3239   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3240   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3241     return nullptr;
3242   llvm::Constant *HelperFn = nullptr;
3243   if (hasTrivialSetExpr(PID))
3244     return nullptr;
3245   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3246   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3247     return HelperFn;
3248 
3249   ASTContext &C = getContext();
3250   IdentifierInfo *II
3251     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3252 
3253   QualType ReturnTy = C.VoidTy;
3254   QualType DestTy = C.getPointerType(Ty);
3255   QualType SrcTy = Ty;
3256   SrcTy.addConst();
3257   SrcTy = C.getPointerType(SrcTy);
3258 
3259   SmallVector<QualType, 2> ArgTys;
3260   ArgTys.push_back(DestTy);
3261   ArgTys.push_back(SrcTy);
3262   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3263 
3264   FunctionDecl *FD = FunctionDecl::Create(
3265       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3266       FunctionTy, nullptr, SC_Static, false, false);
3267 
3268   FunctionArgList args;
3269   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3270                             ImplicitParamDecl::Other);
3271   args.push_back(&DstDecl);
3272   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3273                             ImplicitParamDecl::Other);
3274   args.push_back(&SrcDecl);
3275 
3276   const CGFunctionInfo &FI =
3277       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3278 
3279   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3280 
3281   llvm::Function *Fn =
3282     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3283                            "__assign_helper_atomic_property_",
3284                            &CGM.getModule());
3285 
3286   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3287 
3288   StartFunction(FD, ReturnTy, Fn, FI, args);
3289 
3290   DeclRefExpr DstExpr(&DstDecl, false, DestTy,
3291                       VK_RValue, SourceLocation());
3292   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
3293                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3294 
3295   DeclRefExpr SrcExpr(&SrcDecl, false, SrcTy,
3296                       VK_RValue, SourceLocation());
3297   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3298                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3299 
3300   Expr *Args[2] = { &DST, &SRC };
3301   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3302   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
3303                               Args, DestTy->getPointeeType(),
3304                               VK_LValue, SourceLocation(), FPOptions());
3305 
3306   EmitStmt(&TheCall);
3307 
3308   FinishFunction();
3309   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3310   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3311   return HelperFn;
3312 }
3313 
3314 llvm::Constant *
3315 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3316                                             const ObjCPropertyImplDecl *PID) {
3317   if (!getLangOpts().CPlusPlus ||
3318       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3319     return nullptr;
3320   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3321   QualType Ty = PD->getType();
3322   if (!Ty->isRecordType())
3323     return nullptr;
3324   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3325     return nullptr;
3326   llvm::Constant *HelperFn = nullptr;
3327   if (hasTrivialGetExpr(PID))
3328     return nullptr;
3329   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3330   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3331     return HelperFn;
3332 
3333   ASTContext &C = getContext();
3334   IdentifierInfo *II =
3335       &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3336 
3337   QualType ReturnTy = C.VoidTy;
3338   QualType DestTy = C.getPointerType(Ty);
3339   QualType SrcTy = Ty;
3340   SrcTy.addConst();
3341   SrcTy = C.getPointerType(SrcTy);
3342 
3343   SmallVector<QualType, 2> ArgTys;
3344   ArgTys.push_back(DestTy);
3345   ArgTys.push_back(SrcTy);
3346   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3347 
3348   FunctionDecl *FD = FunctionDecl::Create(
3349       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3350       FunctionTy, nullptr, SC_Static, false, false);
3351 
3352   FunctionArgList args;
3353   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3354                             ImplicitParamDecl::Other);
3355   args.push_back(&DstDecl);
3356   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3357                             ImplicitParamDecl::Other);
3358   args.push_back(&SrcDecl);
3359 
3360   const CGFunctionInfo &FI =
3361       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3362 
3363   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3364 
3365   llvm::Function *Fn = llvm::Function::Create(
3366       LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3367       &CGM.getModule());
3368 
3369   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3370 
3371   StartFunction(FD, ReturnTy, Fn, FI, args);
3372 
3373   DeclRefExpr SrcExpr(&SrcDecl, false, SrcTy,
3374                       VK_RValue, SourceLocation());
3375 
3376   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3377                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3378 
3379   CXXConstructExpr *CXXConstExpr =
3380     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3381 
3382   SmallVector<Expr*, 4> ConstructorArgs;
3383   ConstructorArgs.push_back(&SRC);
3384   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3385                          CXXConstExpr->arg_end());
3386 
3387   CXXConstructExpr *TheCXXConstructExpr =
3388     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3389                              CXXConstExpr->getConstructor(),
3390                              CXXConstExpr->isElidable(),
3391                              ConstructorArgs,
3392                              CXXConstExpr->hadMultipleCandidates(),
3393                              CXXConstExpr->isListInitialization(),
3394                              CXXConstExpr->isStdInitListInitialization(),
3395                              CXXConstExpr->requiresZeroInitialization(),
3396                              CXXConstExpr->getConstructionKind(),
3397                              SourceRange());
3398 
3399   DeclRefExpr DstExpr(&DstDecl, false, DestTy,
3400                       VK_RValue, SourceLocation());
3401 
3402   RValue DV = EmitAnyExpr(&DstExpr);
3403   CharUnits Alignment
3404     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3405   EmitAggExpr(TheCXXConstructExpr,
3406               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3407                                     Qualifiers(),
3408                                     AggValueSlot::IsDestructed,
3409                                     AggValueSlot::DoesNotNeedGCBarriers,
3410                                     AggValueSlot::IsNotAliased,
3411                                     AggValueSlot::DoesNotOverlap));
3412 
3413   FinishFunction();
3414   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3415   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3416   return HelperFn;
3417 }
3418 
3419 llvm::Value *
3420 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3421   // Get selectors for retain/autorelease.
3422   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3423   Selector CopySelector =
3424       getContext().Selectors.getNullarySelector(CopyID);
3425   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3426   Selector AutoreleaseSelector =
3427       getContext().Selectors.getNullarySelector(AutoreleaseID);
3428 
3429   // Emit calls to retain/autorelease.
3430   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3431   llvm::Value *Val = Block;
3432   RValue Result;
3433   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3434                                        Ty, CopySelector,
3435                                        Val, CallArgList(), nullptr, nullptr);
3436   Val = Result.getScalarVal();
3437   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3438                                        Ty, AutoreleaseSelector,
3439                                        Val, CallArgList(), nullptr, nullptr);
3440   Val = Result.getScalarVal();
3441   return Val;
3442 }
3443 
3444 llvm::Value *
3445 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) {
3446   assert(Args.size() == 3 && "Expected 3 argument here!");
3447 
3448   if (!CGM.IsOSVersionAtLeastFn) {
3449     llvm::FunctionType *FTy =
3450         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3451     CGM.IsOSVersionAtLeastFn =
3452         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3453   }
3454 
3455   llvm::Value *CallRes =
3456       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3457 
3458   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3459 }
3460 
3461 void CodeGenModule::emitAtAvailableLinkGuard() {
3462   if (!IsOSVersionAtLeastFn)
3463     return;
3464   // @available requires CoreFoundation only on Darwin.
3465   if (!Target.getTriple().isOSDarwin())
3466     return;
3467   // Add -framework CoreFoundation to the linker commands. We still want to
3468   // emit the core foundation reference down below because otherwise if
3469   // CoreFoundation is not used in the code, the linker won't link the
3470   // framework.
3471   auto &Context = getLLVMContext();
3472   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3473                              llvm::MDString::get(Context, "CoreFoundation")};
3474   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3475   // Emit a reference to a symbol from CoreFoundation to ensure that
3476   // CoreFoundation is linked into the final binary.
3477   llvm::FunctionType *FTy =
3478       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3479   llvm::Constant *CFFunc =
3480       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3481 
3482   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3483   llvm::Function *CFLinkCheckFunc = cast<llvm::Function>(CreateBuiltinFunction(
3484       CheckFTy, "__clang_at_available_requires_core_foundation_framework"));
3485   CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3486   CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3487   CodeGenFunction CGF(*this);
3488   CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3489   CGF.EmitNounwindRuntimeCall(CFFunc, llvm::Constant::getNullValue(VoidPtrTy));
3490   CGF.Builder.CreateUnreachable();
3491   addCompilerUsedGlobal(CFLinkCheckFunc);
3492 }
3493 
3494 CGObjCRuntime::~CGObjCRuntime() {}
3495