1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/InlineAsm.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
30 static TryEmitResult
31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
32 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
33                                       const Expr *E,
34                                       const ObjCMethodDecl *Method,
35                                       RValue Result);
36 
37 /// Given the address of a variable of pointer type, find the correct
38 /// null to store into it.
39 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
40   llvm::Type *type =
41     cast<llvm::PointerType>(addr->getType())->getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString());
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCNumericLiteral - This routine generates code for
55 /// the appropriate +[NSNumber numberWith<Type>:] method.
56 ///
57 llvm::Value *CodeGenFunction::EmitObjCNumericLiteral(const ObjCNumericLiteral *E) {
58   // Generate the correct selector for this literal's concrete type.
59   const Expr *NL = E->getNumber();
60   // Get the method.
61   const ObjCMethodDecl *Method = E->getObjCNumericLiteralMethod();
62   assert(Method && "NSNumber method is null");
63   Selector Sel = Method->getSelector();
64 
65   // Generate a reference to the class pointer, which will be the receiver.
66   QualType ResultType = E->getType(); // should be NSNumber *
67   const ObjCObjectPointerType *InterfacePointerType =
68     ResultType->getAsObjCInterfacePointerType();
69   ObjCInterfaceDecl *NSNumberDecl =
70     InterfacePointerType->getObjectType()->getInterface();
71   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
72   llvm::Value *Receiver = Runtime.GetClass(Builder, NSNumberDecl);
73 
74   const ParmVarDecl *argDecl = *Method->param_begin();
75   QualType ArgQT = argDecl->getType().getUnqualifiedType();
76   RValue RV = EmitAnyExpr(NL);
77   CallArgList Args;
78   Args.add(RV, ArgQT);
79 
80   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
81                                               ResultType, Sel, Receiver, Args,
82                                               NSNumberDecl, Method);
83   return Builder.CreateBitCast(result.getScalarVal(),
84                                ConvertType(E->getType()));
85 }
86 
87 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
88                                     const ObjCMethodDecl *MethodWithObjects) {
89   ASTContext &Context = CGM.getContext();
90   const ObjCDictionaryLiteral *DLE = 0;
91   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
92   if (!ALE)
93     DLE = cast<ObjCDictionaryLiteral>(E);
94 
95   // Compute the type of the array we're initializing.
96   uint64_t NumElements =
97     ALE ? ALE->getNumElements() : DLE->getNumElements();
98   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
99                             NumElements);
100   QualType ElementType = Context.getObjCIdType().withConst();
101   QualType ElementArrayType
102     = Context.getConstantArrayType(ElementType, APNumElements,
103                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
104 
105   // Allocate the temporary array(s).
106   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
107   llvm::Value *Keys = 0;
108   if (DLE)
109     Keys = CreateMemTemp(ElementArrayType, "keys");
110 
111   // Perform the actual initialialization of the array(s).
112   for (uint64_t i = 0; i < NumElements; i++) {
113     if (ALE) {
114       // Emit the initializer.
115       const Expr *Rhs = ALE->getElement(i);
116       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
117                                    ElementType,
118                                    Context.getTypeAlignInChars(Rhs->getType()),
119                                    Context);
120       EmitScalarInit(Rhs, /*D=*/0, LV, /*capturedByInit=*/false);
121     } else {
122       // Emit the key initializer.
123       const Expr *Key = DLE->getKeyValueElement(i).Key;
124       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
125                                       ElementType,
126                                     Context.getTypeAlignInChars(Key->getType()),
127                                       Context);
128       EmitScalarInit(Key, /*D=*/0, KeyLV, /*capturedByInit=*/false);
129 
130       // Emit the value initializer.
131       const Expr *Value = DLE->getKeyValueElement(i).Value;
132       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
133                                         ElementType,
134                                   Context.getTypeAlignInChars(Value->getType()),
135                                         Context);
136       EmitScalarInit(Value, /*D=*/0, ValueLV, /*capturedByInit=*/false);
137     }
138   }
139 
140   // Generate the argument list.
141   CallArgList Args;
142   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
143   const ParmVarDecl *argDecl = *PI++;
144   QualType ArgQT = argDecl->getType().getUnqualifiedType();
145   Args.add(RValue::get(Objects), ArgQT);
146   if (DLE) {
147     argDecl = *PI++;
148     ArgQT = argDecl->getType().getUnqualifiedType();
149     Args.add(RValue::get(Keys), ArgQT);
150   }
151   argDecl = *PI;
152   ArgQT = argDecl->getType().getUnqualifiedType();
153   llvm::Value *Count =
154     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
155   Args.add(RValue::get(Count), ArgQT);
156 
157   // Generate a reference to the class pointer, which will be the receiver.
158   Selector Sel = MethodWithObjects->getSelector();
159   QualType ResultType = E->getType();
160   const ObjCObjectPointerType *InterfacePointerType
161     = ResultType->getAsObjCInterfacePointerType();
162   ObjCInterfaceDecl *Class
163     = InterfacePointerType->getObjectType()->getInterface();
164   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
165   llvm::Value *Receiver = Runtime.GetClass(Builder, Class);
166 
167   // Generate the message send.
168   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
169                                               MethodWithObjects->getResultType(),
170                                               Sel,
171                                               Receiver, Args, Class,
172                                               MethodWithObjects);
173   return Builder.CreateBitCast(result.getScalarVal(),
174                                ConvertType(E->getType()));
175 }
176 
177 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
178   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
179 }
180 
181 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
182                                             const ObjCDictionaryLiteral *E) {
183   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
184 }
185 
186 /// Emit a selector.
187 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
188   // Untyped selector.
189   // Note that this implementation allows for non-constant strings to be passed
190   // as arguments to @selector().  Currently, the only thing preventing this
191   // behaviour is the type checking in the front end.
192   return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector());
193 }
194 
195 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
196   // FIXME: This should pass the Decl not the name.
197   return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol());
198 }
199 
200 /// \brief Adjust the type of the result of an Objective-C message send
201 /// expression when the method has a related result type.
202 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
203                                       const Expr *E,
204                                       const ObjCMethodDecl *Method,
205                                       RValue Result) {
206   if (!Method)
207     return Result;
208 
209   if (!Method->hasRelatedResultType() ||
210       CGF.getContext().hasSameType(E->getType(), Method->getResultType()) ||
211       !Result.isScalar())
212     return Result;
213 
214   // We have applied a related result type. Cast the rvalue appropriately.
215   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
216                                                CGF.ConvertType(E->getType())));
217 }
218 
219 /// Decide whether to extend the lifetime of the receiver of a
220 /// returns-inner-pointer message.
221 static bool
222 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
223   switch (message->getReceiverKind()) {
224 
225   // For a normal instance message, we should extend unless the
226   // receiver is loaded from a variable with precise lifetime.
227   case ObjCMessageExpr::Instance: {
228     const Expr *receiver = message->getInstanceReceiver();
229     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
230     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
231     receiver = ice->getSubExpr()->IgnoreParens();
232 
233     // Only __strong variables.
234     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
235       return true;
236 
237     // All ivars and fields have precise lifetime.
238     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
239       return false;
240 
241     // Otherwise, check for variables.
242     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
243     if (!declRef) return true;
244     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
245     if (!var) return true;
246 
247     // All variables have precise lifetime except local variables with
248     // automatic storage duration that aren't specially marked.
249     return (var->hasLocalStorage() &&
250             !var->hasAttr<ObjCPreciseLifetimeAttr>());
251   }
252 
253   case ObjCMessageExpr::Class:
254   case ObjCMessageExpr::SuperClass:
255     // It's never necessary for class objects.
256     return false;
257 
258   case ObjCMessageExpr::SuperInstance:
259     // We generally assume that 'self' lives throughout a method call.
260     return false;
261   }
262 
263   llvm_unreachable("invalid receiver kind");
264 }
265 
266 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
267                                             ReturnValueSlot Return) {
268   // Only the lookup mechanism and first two arguments of the method
269   // implementation vary between runtimes.  We can get the receiver and
270   // arguments in generic code.
271 
272   bool isDelegateInit = E->isDelegateInitCall();
273 
274   const ObjCMethodDecl *method = E->getMethodDecl();
275 
276   // We don't retain the receiver in delegate init calls, and this is
277   // safe because the receiver value is always loaded from 'self',
278   // which we zero out.  We don't want to Block_copy block receivers,
279   // though.
280   bool retainSelf =
281     (!isDelegateInit &&
282      CGM.getLangOptions().ObjCAutoRefCount &&
283      method &&
284      method->hasAttr<NSConsumesSelfAttr>());
285 
286   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
287   bool isSuperMessage = false;
288   bool isClassMessage = false;
289   ObjCInterfaceDecl *OID = 0;
290   // Find the receiver
291   QualType ReceiverType;
292   llvm::Value *Receiver = 0;
293   switch (E->getReceiverKind()) {
294   case ObjCMessageExpr::Instance:
295     ReceiverType = E->getInstanceReceiver()->getType();
296     if (retainSelf) {
297       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
298                                                    E->getInstanceReceiver());
299       Receiver = ter.getPointer();
300       if (ter.getInt()) retainSelf = false;
301     } else
302       Receiver = EmitScalarExpr(E->getInstanceReceiver());
303     break;
304 
305   case ObjCMessageExpr::Class: {
306     ReceiverType = E->getClassReceiver();
307     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
308     assert(ObjTy && "Invalid Objective-C class message send");
309     OID = ObjTy->getInterface();
310     assert(OID && "Invalid Objective-C class message send");
311     Receiver = Runtime.GetClass(Builder, OID);
312     isClassMessage = true;
313     break;
314   }
315 
316   case ObjCMessageExpr::SuperInstance:
317     ReceiverType = E->getSuperType();
318     Receiver = LoadObjCSelf();
319     isSuperMessage = true;
320     break;
321 
322   case ObjCMessageExpr::SuperClass:
323     ReceiverType = E->getSuperType();
324     Receiver = LoadObjCSelf();
325     isSuperMessage = true;
326     isClassMessage = true;
327     break;
328   }
329 
330   if (retainSelf)
331     Receiver = EmitARCRetainNonBlock(Receiver);
332 
333   // In ARC, we sometimes want to "extend the lifetime"
334   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
335   // messages.
336   if (getLangOptions().ObjCAutoRefCount && method &&
337       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
338       shouldExtendReceiverForInnerPointerMessage(E))
339     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
340 
341   QualType ResultType =
342     method ? method->getResultType() : E->getType();
343 
344   CallArgList Args;
345   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
346 
347   // For delegate init calls in ARC, do an unsafe store of null into
348   // self.  This represents the call taking direct ownership of that
349   // value.  We have to do this after emitting the other call
350   // arguments because they might also reference self, but we don't
351   // have to worry about any of them modifying self because that would
352   // be an undefined read and write of an object in unordered
353   // expressions.
354   if (isDelegateInit) {
355     assert(getLangOptions().ObjCAutoRefCount &&
356            "delegate init calls should only be marked in ARC");
357 
358     // Do an unsafe store of null into self.
359     llvm::Value *selfAddr =
360       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
361     assert(selfAddr && "no self entry for a delegate init call?");
362 
363     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
364   }
365 
366   RValue result;
367   if (isSuperMessage) {
368     // super is only valid in an Objective-C method
369     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
370     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
371     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
372                                               E->getSelector(),
373                                               OMD->getClassInterface(),
374                                               isCategoryImpl,
375                                               Receiver,
376                                               isClassMessage,
377                                               Args,
378                                               method);
379   } else {
380     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
381                                          E->getSelector(),
382                                          Receiver, Args, OID,
383                                          method);
384   }
385 
386   // For delegate init calls in ARC, implicitly store the result of
387   // the call back into self.  This takes ownership of the value.
388   if (isDelegateInit) {
389     llvm::Value *selfAddr =
390       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
391     llvm::Value *newSelf = result.getScalarVal();
392 
393     // The delegate return type isn't necessarily a matching type; in
394     // fact, it's quite likely to be 'id'.
395     llvm::Type *selfTy =
396       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
397     newSelf = Builder.CreateBitCast(newSelf, selfTy);
398 
399     Builder.CreateStore(newSelf, selfAddr);
400   }
401 
402   return AdjustRelatedResultType(*this, E, method, result);
403 }
404 
405 namespace {
406 struct FinishARCDealloc : EHScopeStack::Cleanup {
407   void Emit(CodeGenFunction &CGF, Flags flags) {
408     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
409 
410     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
411     const ObjCInterfaceDecl *iface = impl->getClassInterface();
412     if (!iface->getSuperClass()) return;
413 
414     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
415 
416     // Call [super dealloc] if we have a superclass.
417     llvm::Value *self = CGF.LoadObjCSelf();
418 
419     CallArgList args;
420     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
421                                                       CGF.getContext().VoidTy,
422                                                       method->getSelector(),
423                                                       iface,
424                                                       isCategory,
425                                                       self,
426                                                       /*is class msg*/ false,
427                                                       args,
428                                                       method);
429   }
430 };
431 }
432 
433 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
434 /// the LLVM function and sets the other context used by
435 /// CodeGenFunction.
436 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
437                                       const ObjCContainerDecl *CD,
438                                       SourceLocation StartLoc) {
439   FunctionArgList args;
440   // Check if we should generate debug info for this method.
441   if (CGM.getModuleDebugInfo() && !OMD->hasAttr<NoDebugAttr>())
442     DebugInfo = CGM.getModuleDebugInfo();
443 
444   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
445 
446   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
447   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
448 
449   args.push_back(OMD->getSelfDecl());
450   args.push_back(OMD->getCmdDecl());
451 
452   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
453        E = OMD->param_end(); PI != E; ++PI)
454     args.push_back(*PI);
455 
456   CurGD = OMD;
457 
458   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
459 
460   // In ARC, certain methods get an extra cleanup.
461   if (CGM.getLangOptions().ObjCAutoRefCount &&
462       OMD->isInstanceMethod() &&
463       OMD->getSelector().isUnarySelector()) {
464     const IdentifierInfo *ident =
465       OMD->getSelector().getIdentifierInfoForSlot(0);
466     if (ident->isStr("dealloc"))
467       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
468   }
469 }
470 
471 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
472                                               LValue lvalue, QualType type);
473 
474 /// Generate an Objective-C method.  An Objective-C method is a C function with
475 /// its pointer, name, and types registered in the class struture.
476 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
477   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
478   EmitStmt(OMD->getBody());
479   FinishFunction(OMD->getBodyRBrace());
480 }
481 
482 /// emitStructGetterCall - Call the runtime function to load a property
483 /// into the return value slot.
484 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
485                                  bool isAtomic, bool hasStrong) {
486   ASTContext &Context = CGF.getContext();
487 
488   llvm::Value *src =
489     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
490                           ivar, 0).getAddress();
491 
492   // objc_copyStruct (ReturnValue, &structIvar,
493   //                  sizeof (Type of Ivar), isAtomic, false);
494   CallArgList args;
495 
496   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
497   args.add(RValue::get(dest), Context.VoidPtrTy);
498 
499   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
500   args.add(RValue::get(src), Context.VoidPtrTy);
501 
502   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
503   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
504   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
505   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
506 
507   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
508   CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(Context.VoidTy, args,
509                                                   FunctionType::ExtInfo(),
510                                                   RequiredArgs::All),
511                fn, ReturnValueSlot(), args);
512 }
513 
514 /// Determine whether the given architecture supports unaligned atomic
515 /// accesses.  They don't have to be fast, just faster than a function
516 /// call and a mutex.
517 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
518   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
519   // currently supported by the backend.)
520   return 0;
521 }
522 
523 /// Return the maximum size that permits atomic accesses for the given
524 /// architecture.
525 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
526                                         llvm::Triple::ArchType arch) {
527   // ARM has 8-byte atomic accesses, but it's not clear whether we
528   // want to rely on them here.
529 
530   // In the default case, just assume that any size up to a pointer is
531   // fine given adequate alignment.
532   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
533 }
534 
535 namespace {
536   class PropertyImplStrategy {
537   public:
538     enum StrategyKind {
539       /// The 'native' strategy is to use the architecture's provided
540       /// reads and writes.
541       Native,
542 
543       /// Use objc_setProperty and objc_getProperty.
544       GetSetProperty,
545 
546       /// Use objc_setProperty for the setter, but use expression
547       /// evaluation for the getter.
548       SetPropertyAndExpressionGet,
549 
550       /// Use objc_copyStruct.
551       CopyStruct,
552 
553       /// The 'expression' strategy is to emit normal assignment or
554       /// lvalue-to-rvalue expressions.
555       Expression
556     };
557 
558     StrategyKind getKind() const { return StrategyKind(Kind); }
559 
560     bool hasStrongMember() const { return HasStrong; }
561     bool isAtomic() const { return IsAtomic; }
562     bool isCopy() const { return IsCopy; }
563 
564     CharUnits getIvarSize() const { return IvarSize; }
565     CharUnits getIvarAlignment() const { return IvarAlignment; }
566 
567     PropertyImplStrategy(CodeGenModule &CGM,
568                          const ObjCPropertyImplDecl *propImpl);
569 
570   private:
571     unsigned Kind : 8;
572     unsigned IsAtomic : 1;
573     unsigned IsCopy : 1;
574     unsigned HasStrong : 1;
575 
576     CharUnits IvarSize;
577     CharUnits IvarAlignment;
578   };
579 }
580 
581 /// Pick an implementation strategy for the the given property synthesis.
582 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
583                                      const ObjCPropertyImplDecl *propImpl) {
584   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
585   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
586 
587   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
588   IsAtomic = prop->isAtomic();
589   HasStrong = false; // doesn't matter here.
590 
591   // Evaluate the ivar's size and alignment.
592   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
593   QualType ivarType = ivar->getType();
594   llvm::tie(IvarSize, IvarAlignment)
595     = CGM.getContext().getTypeInfoInChars(ivarType);
596 
597   // If we have a copy property, we always have to use getProperty/setProperty.
598   // TODO: we could actually use setProperty and an expression for non-atomics.
599   if (IsCopy) {
600     Kind = GetSetProperty;
601     return;
602   }
603 
604   // Handle retain.
605   if (setterKind == ObjCPropertyDecl::Retain) {
606     // In GC-only, there's nothing special that needs to be done.
607     if (CGM.getLangOptions().getGC() == LangOptions::GCOnly) {
608       // fallthrough
609 
610     // In ARC, if the property is non-atomic, use expression emission,
611     // which translates to objc_storeStrong.  This isn't required, but
612     // it's slightly nicer.
613     } else if (CGM.getLangOptions().ObjCAutoRefCount && !IsAtomic) {
614       Kind = Expression;
615       return;
616 
617     // Otherwise, we need to at least use setProperty.  However, if
618     // the property isn't atomic, we can use normal expression
619     // emission for the getter.
620     } else if (!IsAtomic) {
621       Kind = SetPropertyAndExpressionGet;
622       return;
623 
624     // Otherwise, we have to use both setProperty and getProperty.
625     } else {
626       Kind = GetSetProperty;
627       return;
628     }
629   }
630 
631   // If we're not atomic, just use expression accesses.
632   if (!IsAtomic) {
633     Kind = Expression;
634     return;
635   }
636 
637   // Properties on bitfield ivars need to be emitted using expression
638   // accesses even if they're nominally atomic.
639   if (ivar->isBitField()) {
640     Kind = Expression;
641     return;
642   }
643 
644   // GC-qualified or ARC-qualified ivars need to be emitted as
645   // expressions.  This actually works out to being atomic anyway,
646   // except for ARC __strong, but that should trigger the above code.
647   if (ivarType.hasNonTrivialObjCLifetime() ||
648       (CGM.getLangOptions().getGC() &&
649        CGM.getContext().getObjCGCAttrKind(ivarType))) {
650     Kind = Expression;
651     return;
652   }
653 
654   // Compute whether the ivar has strong members.
655   if (CGM.getLangOptions().getGC())
656     if (const RecordType *recordType = ivarType->getAs<RecordType>())
657       HasStrong = recordType->getDecl()->hasObjectMember();
658 
659   // We can never access structs with object members with a native
660   // access, because we need to use write barriers.  This is what
661   // objc_copyStruct is for.
662   if (HasStrong) {
663     Kind = CopyStruct;
664     return;
665   }
666 
667   // Otherwise, this is target-dependent and based on the size and
668   // alignment of the ivar.
669 
670   // If the size of the ivar is not a power of two, give up.  We don't
671   // want to get into the business of doing compare-and-swaps.
672   if (!IvarSize.isPowerOfTwo()) {
673     Kind = CopyStruct;
674     return;
675   }
676 
677   llvm::Triple::ArchType arch =
678     CGM.getContext().getTargetInfo().getTriple().getArch();
679 
680   // Most architectures require memory to fit within a single cache
681   // line, so the alignment has to be at least the size of the access.
682   // Otherwise we have to grab a lock.
683   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
684     Kind = CopyStruct;
685     return;
686   }
687 
688   // If the ivar's size exceeds the architecture's maximum atomic
689   // access size, we have to use CopyStruct.
690   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
691     Kind = CopyStruct;
692     return;
693   }
694 
695   // Otherwise, we can use native loads and stores.
696   Kind = Native;
697 }
698 
699 /// GenerateObjCGetter - Generate an Objective-C property getter
700 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize
701 /// is illegal within a category.
702 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
703                                          const ObjCPropertyImplDecl *PID) {
704   llvm::Constant *AtomicHelperFn =
705     GenerateObjCAtomicGetterCopyHelperFunction(PID);
706   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
707   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
708   assert(OMD && "Invalid call to generate getter (empty method)");
709   StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart());
710 
711   generateObjCGetterBody(IMP, PID, AtomicHelperFn);
712 
713   FinishFunction();
714 }
715 
716 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
717   const Expr *getter = propImpl->getGetterCXXConstructor();
718   if (!getter) return true;
719 
720   // Sema only makes only of these when the ivar has a C++ class type,
721   // so the form is pretty constrained.
722 
723   // If the property has a reference type, we might just be binding a
724   // reference, in which case the result will be a gl-value.  We should
725   // treat this as a non-trivial operation.
726   if (getter->isGLValue())
727     return false;
728 
729   // If we selected a trivial copy-constructor, we're okay.
730   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
731     return (construct->getConstructor()->isTrivial());
732 
733   // The constructor might require cleanups (in which case it's never
734   // trivial).
735   assert(isa<ExprWithCleanups>(getter));
736   return false;
737 }
738 
739 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
740 /// copy the ivar into the resturn slot.
741 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
742                                           llvm::Value *returnAddr,
743                                           ObjCIvarDecl *ivar,
744                                           llvm::Constant *AtomicHelperFn) {
745   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
746   //                           AtomicHelperFn);
747   CallArgList args;
748 
749   // The 1st argument is the return Slot.
750   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
751 
752   // The 2nd argument is the address of the ivar.
753   llvm::Value *ivarAddr =
754   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
755                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
756   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
757   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
758 
759   // Third argument is the helper function.
760   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
761 
762   llvm::Value *copyCppAtomicObjectFn =
763   CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
764   CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args,
765                                                   FunctionType::ExtInfo(),
766                                                   RequiredArgs::All),
767                copyCppAtomicObjectFn, ReturnValueSlot(), args);
768 }
769 
770 void
771 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
772                                         const ObjCPropertyImplDecl *propImpl,
773                                         llvm::Constant *AtomicHelperFn) {
774   // If there's a non-trivial 'get' expression, we just have to emit that.
775   if (!hasTrivialGetExpr(propImpl)) {
776     if (!AtomicHelperFn) {
777       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
778                      /*nrvo*/ 0);
779       EmitReturnStmt(ret);
780     }
781     else {
782       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
783       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
784                                     ivar, AtomicHelperFn);
785     }
786     return;
787   }
788 
789   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
790   QualType propType = prop->getType();
791   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
792 
793   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
794 
795   // Pick an implementation strategy.
796   PropertyImplStrategy strategy(CGM, propImpl);
797   switch (strategy.getKind()) {
798   case PropertyImplStrategy::Native: {
799     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
800 
801     // Currently, all atomic accesses have to be through integer
802     // types, so there's no point in trying to pick a prettier type.
803     llvm::Type *bitcastType =
804       llvm::Type::getIntNTy(getLLVMContext(),
805                             getContext().toBits(strategy.getIvarSize()));
806     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
807 
808     // Perform an atomic load.  This does not impose ordering constraints.
809     llvm::Value *ivarAddr = LV.getAddress();
810     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
811     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
812     load->setAlignment(strategy.getIvarAlignment().getQuantity());
813     load->setAtomic(llvm::Unordered);
814 
815     // Store that value into the return address.  Doing this with a
816     // bitcast is likely to produce some pretty ugly IR, but it's not
817     // the *most* terrible thing in the world.
818     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
819 
820     // Make sure we don't do an autorelease.
821     AutoreleaseResult = false;
822     return;
823   }
824 
825   case PropertyImplStrategy::GetSetProperty: {
826     llvm::Value *getPropertyFn =
827       CGM.getObjCRuntime().GetPropertyGetFunction();
828     if (!getPropertyFn) {
829       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
830       return;
831     }
832 
833     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
834     // FIXME: Can't this be simpler? This might even be worse than the
835     // corresponding gcc code.
836     llvm::Value *cmd =
837       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
838     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
839     llvm::Value *ivarOffset =
840       EmitIvarOffset(classImpl->getClassInterface(), ivar);
841 
842     CallArgList args;
843     args.add(RValue::get(self), getContext().getObjCIdType());
844     args.add(RValue::get(cmd), getContext().getObjCSelType());
845     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
846     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
847              getContext().BoolTy);
848 
849     // FIXME: We shouldn't need to get the function info here, the
850     // runtime already should have computed it to build the function.
851     RValue RV = EmitCall(getTypes().arrangeFunctionCall(propType, args,
852                                                         FunctionType::ExtInfo(),
853                                                         RequiredArgs::All),
854                          getPropertyFn, ReturnValueSlot(), args);
855 
856     // We need to fix the type here. Ivars with copy & retain are
857     // always objects so we don't need to worry about complex or
858     // aggregates.
859     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
860                                            getTypes().ConvertType(propType)));
861 
862     EmitReturnOfRValue(RV, propType);
863 
864     // objc_getProperty does an autorelease, so we should suppress ours.
865     AutoreleaseResult = false;
866 
867     return;
868   }
869 
870   case PropertyImplStrategy::CopyStruct:
871     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
872                          strategy.hasStrongMember());
873     return;
874 
875   case PropertyImplStrategy::Expression:
876   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
877     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
878 
879     QualType ivarType = ivar->getType();
880     if (ivarType->isAnyComplexType()) {
881       ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(),
882                                                LV.isVolatileQualified());
883       StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified());
884     } else if (hasAggregateLLVMType(ivarType)) {
885       // The return value slot is guaranteed to not be aliased, but
886       // that's not necessarily the same as "on the stack", so
887       // we still potentially need objc_memmove_collectable.
888       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
889     } else {
890       llvm::Value *value;
891       if (propType->isReferenceType()) {
892         value = LV.getAddress();
893       } else {
894         // We want to load and autoreleaseReturnValue ARC __weak ivars.
895         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
896           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
897 
898         // Otherwise we want to do a simple load, suppressing the
899         // final autorelease.
900         } else {
901           value = EmitLoadOfLValue(LV).getScalarVal();
902           AutoreleaseResult = false;
903         }
904 
905         value = Builder.CreateBitCast(value, ConvertType(propType));
906       }
907 
908       EmitReturnOfRValue(RValue::get(value), propType);
909     }
910     return;
911   }
912 
913   }
914   llvm_unreachable("bad @property implementation strategy!");
915 }
916 
917 /// emitStructSetterCall - Call the runtime function to store the value
918 /// from the first formal parameter into the given ivar.
919 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
920                                  ObjCIvarDecl *ivar) {
921   // objc_copyStruct (&structIvar, &Arg,
922   //                  sizeof (struct something), true, false);
923   CallArgList args;
924 
925   // The first argument is the address of the ivar.
926   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
927                                                 CGF.LoadObjCSelf(), ivar, 0)
928     .getAddress();
929   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
930   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
931 
932   // The second argument is the address of the parameter variable.
933   ParmVarDecl *argVar = *OMD->param_begin();
934   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
935                      VK_LValue, SourceLocation());
936   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
937   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
938   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
939 
940   // The third argument is the sizeof the type.
941   llvm::Value *size =
942     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
943   args.add(RValue::get(size), CGF.getContext().getSizeType());
944 
945   // The fourth argument is the 'isAtomic' flag.
946   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
947 
948   // The fifth argument is the 'hasStrong' flag.
949   // FIXME: should this really always be false?
950   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
951 
952   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
953   CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args,
954                                                   FunctionType::ExtInfo(),
955                                                   RequiredArgs::All),
956                copyStructFn, ReturnValueSlot(), args);
957 }
958 
959 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
960 /// the value from the first formal parameter into the given ivar, using
961 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
962 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
963                                           ObjCMethodDecl *OMD,
964                                           ObjCIvarDecl *ivar,
965                                           llvm::Constant *AtomicHelperFn) {
966   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
967   //                           AtomicHelperFn);
968   CallArgList args;
969 
970   // The first argument is the address of the ivar.
971   llvm::Value *ivarAddr =
972     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
973                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
974   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
975   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
976 
977   // The second argument is the address of the parameter variable.
978   ParmVarDecl *argVar = *OMD->param_begin();
979   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
980                      VK_LValue, SourceLocation());
981   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
982   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
983   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
984 
985   // Third argument is the helper function.
986   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
987 
988   llvm::Value *copyCppAtomicObjectFn =
989     CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
990   CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args,
991                                                   FunctionType::ExtInfo(),
992                                                   RequiredArgs::All),
993                copyCppAtomicObjectFn, ReturnValueSlot(), args);
994 
995 
996 }
997 
998 
999 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1000   Expr *setter = PID->getSetterCXXAssignment();
1001   if (!setter) return true;
1002 
1003   // Sema only makes only of these when the ivar has a C++ class type,
1004   // so the form is pretty constrained.
1005 
1006   // An operator call is trivial if the function it calls is trivial.
1007   // This also implies that there's nothing non-trivial going on with
1008   // the arguments, because operator= can only be trivial if it's a
1009   // synthesized assignment operator and therefore both parameters are
1010   // references.
1011   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1012     if (const FunctionDecl *callee
1013           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1014       if (callee->isTrivial())
1015         return true;
1016     return false;
1017   }
1018 
1019   assert(isa<ExprWithCleanups>(setter));
1020   return false;
1021 }
1022 
1023 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1024   if (CGM.getLangOptions().getGC() != LangOptions::NonGC)
1025     return false;
1026   const TargetInfo &Target = CGM.getContext().getTargetInfo();
1027 
1028   if (Target.getPlatformName() != "macosx")
1029     return false;
1030 
1031   return Target.getPlatformMinVersion() >= VersionTuple(10, 8);
1032 }
1033 
1034 void
1035 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1036                                         const ObjCPropertyImplDecl *propImpl,
1037                                         llvm::Constant *AtomicHelperFn) {
1038   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1039   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1040   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1041 
1042   // Just use the setter expression if Sema gave us one and it's
1043   // non-trivial.
1044   if (!hasTrivialSetExpr(propImpl)) {
1045     if (!AtomicHelperFn)
1046       // If non-atomic, assignment is called directly.
1047       EmitStmt(propImpl->getSetterCXXAssignment());
1048     else
1049       // If atomic, assignment is called via a locking api.
1050       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1051                                     AtomicHelperFn);
1052     return;
1053   }
1054 
1055   PropertyImplStrategy strategy(CGM, propImpl);
1056   switch (strategy.getKind()) {
1057   case PropertyImplStrategy::Native: {
1058     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1059 
1060     LValue ivarLValue =
1061       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1062     llvm::Value *ivarAddr = ivarLValue.getAddress();
1063 
1064     // Currently, all atomic accesses have to be through integer
1065     // types, so there's no point in trying to pick a prettier type.
1066     llvm::Type *bitcastType =
1067       llvm::Type::getIntNTy(getLLVMContext(),
1068                             getContext().toBits(strategy.getIvarSize()));
1069     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1070 
1071     // Cast both arguments to the chosen operation type.
1072     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1073     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1074 
1075     // This bitcast load is likely to cause some nasty IR.
1076     llvm::Value *load = Builder.CreateLoad(argAddr);
1077 
1078     // Perform an atomic store.  There are no memory ordering requirements.
1079     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1080     store->setAlignment(strategy.getIvarAlignment().getQuantity());
1081     store->setAtomic(llvm::Unordered);
1082     return;
1083   }
1084 
1085   case PropertyImplStrategy::GetSetProperty:
1086   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1087 
1088     llvm::Value *setOptimizedPropertyFn = 0;
1089     llvm::Value *setPropertyFn = 0;
1090     if (UseOptimizedSetter(CGM)) {
1091       // 10.8 code and GC is off
1092       setOptimizedPropertyFn =
1093         CGM.getObjCRuntime().GetOptimizedPropertySetFunction(strategy.isAtomic(),
1094                                                              strategy.isCopy());
1095       if (!setOptimizedPropertyFn) {
1096         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1097         return;
1098       }
1099     }
1100     else {
1101       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1102       if (!setPropertyFn) {
1103         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1104         return;
1105       }
1106     }
1107 
1108     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1109     //                       <is-atomic>, <is-copy>).
1110     llvm::Value *cmd =
1111       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1112     llvm::Value *self =
1113       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1114     llvm::Value *ivarOffset =
1115       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1116     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1117     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1118 
1119     CallArgList args;
1120     args.add(RValue::get(self), getContext().getObjCIdType());
1121     args.add(RValue::get(cmd), getContext().getObjCSelType());
1122     if (setOptimizedPropertyFn) {
1123       args.add(RValue::get(arg), getContext().getObjCIdType());
1124       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1125       EmitCall(getTypes().arrangeFunctionCall(getContext().VoidTy, args,
1126                                               FunctionType::ExtInfo(),
1127                                               RequiredArgs::All),
1128                setOptimizedPropertyFn, ReturnValueSlot(), args);
1129     } else {
1130       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1131       args.add(RValue::get(arg), getContext().getObjCIdType());
1132       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1133                getContext().BoolTy);
1134       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1135                getContext().BoolTy);
1136       // FIXME: We shouldn't need to get the function info here, the runtime
1137       // already should have computed it to build the function.
1138       EmitCall(getTypes().arrangeFunctionCall(getContext().VoidTy, args,
1139                                               FunctionType::ExtInfo(),
1140                                               RequiredArgs::All),
1141                setPropertyFn, ReturnValueSlot(), args);
1142     }
1143 
1144     return;
1145   }
1146 
1147   case PropertyImplStrategy::CopyStruct:
1148     emitStructSetterCall(*this, setterMethod, ivar);
1149     return;
1150 
1151   case PropertyImplStrategy::Expression:
1152     break;
1153   }
1154 
1155   // Otherwise, fake up some ASTs and emit a normal assignment.
1156   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1157   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1158                    VK_LValue, SourceLocation());
1159   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1160                             selfDecl->getType(), CK_LValueToRValue, &self,
1161                             VK_RValue);
1162   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1163                           SourceLocation(), &selfLoad, true, true);
1164 
1165   ParmVarDecl *argDecl = *setterMethod->param_begin();
1166   QualType argType = argDecl->getType().getNonReferenceType();
1167   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1168   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1169                            argType.getUnqualifiedType(), CK_LValueToRValue,
1170                            &arg, VK_RValue);
1171 
1172   // The property type can differ from the ivar type in some situations with
1173   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1174   // The following absurdity is just to ensure well-formed IR.
1175   CastKind argCK = CK_NoOp;
1176   if (ivarRef.getType()->isObjCObjectPointerType()) {
1177     if (argLoad.getType()->isObjCObjectPointerType())
1178       argCK = CK_BitCast;
1179     else if (argLoad.getType()->isBlockPointerType())
1180       argCK = CK_BlockPointerToObjCPointerCast;
1181     else
1182       argCK = CK_CPointerToObjCPointerCast;
1183   } else if (ivarRef.getType()->isBlockPointerType()) {
1184      if (argLoad.getType()->isBlockPointerType())
1185       argCK = CK_BitCast;
1186     else
1187       argCK = CK_AnyPointerToBlockPointerCast;
1188   } else if (ivarRef.getType()->isPointerType()) {
1189     argCK = CK_BitCast;
1190   }
1191   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1192                            ivarRef.getType(), argCK, &argLoad,
1193                            VK_RValue);
1194   Expr *finalArg = &argLoad;
1195   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1196                                            argLoad.getType()))
1197     finalArg = &argCast;
1198 
1199 
1200   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1201                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1202                         SourceLocation());
1203   EmitStmt(&assign);
1204 }
1205 
1206 /// GenerateObjCSetter - Generate an Objective-C property setter
1207 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize
1208 /// is illegal within a category.
1209 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1210                                          const ObjCPropertyImplDecl *PID) {
1211   llvm::Constant *AtomicHelperFn =
1212     GenerateObjCAtomicSetterCopyHelperFunction(PID);
1213   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1214   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1215   assert(OMD && "Invalid call to generate setter (empty method)");
1216   StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart());
1217 
1218   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1219 
1220   FinishFunction();
1221 }
1222 
1223 namespace {
1224   struct DestroyIvar : EHScopeStack::Cleanup {
1225   private:
1226     llvm::Value *addr;
1227     const ObjCIvarDecl *ivar;
1228     CodeGenFunction::Destroyer *destroyer;
1229     bool useEHCleanupForArray;
1230   public:
1231     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1232                 CodeGenFunction::Destroyer *destroyer,
1233                 bool useEHCleanupForArray)
1234       : addr(addr), ivar(ivar), destroyer(destroyer),
1235         useEHCleanupForArray(useEHCleanupForArray) {}
1236 
1237     void Emit(CodeGenFunction &CGF, Flags flags) {
1238       LValue lvalue
1239         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1240       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1241                       flags.isForNormalCleanup() && useEHCleanupForArray);
1242     }
1243   };
1244 }
1245 
1246 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1247 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1248                                       llvm::Value *addr,
1249                                       QualType type) {
1250   llvm::Value *null = getNullForVariable(addr);
1251   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1252 }
1253 
1254 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1255                                   ObjCImplementationDecl *impl) {
1256   CodeGenFunction::RunCleanupsScope scope(CGF);
1257 
1258   llvm::Value *self = CGF.LoadObjCSelf();
1259 
1260   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1261   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1262        ivar; ivar = ivar->getNextIvar()) {
1263     QualType type = ivar->getType();
1264 
1265     // Check whether the ivar is a destructible type.
1266     QualType::DestructionKind dtorKind = type.isDestructedType();
1267     if (!dtorKind) continue;
1268 
1269     CodeGenFunction::Destroyer *destroyer = 0;
1270 
1271     // Use a call to objc_storeStrong to destroy strong ivars, for the
1272     // general benefit of the tools.
1273     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1274       destroyer = destroyARCStrongWithStore;
1275 
1276     // Otherwise use the default for the destruction kind.
1277     } else {
1278       destroyer = CGF.getDestroyer(dtorKind);
1279     }
1280 
1281     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1282 
1283     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1284                                          cleanupKind & EHCleanup);
1285   }
1286 
1287   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1288 }
1289 
1290 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1291                                                  ObjCMethodDecl *MD,
1292                                                  bool ctor) {
1293   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1294   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1295 
1296   // Emit .cxx_construct.
1297   if (ctor) {
1298     // Suppress the final autorelease in ARC.
1299     AutoreleaseResult = false;
1300 
1301     SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
1302     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1303            E = IMP->init_end(); B != E; ++B) {
1304       CXXCtorInitializer *IvarInit = (*B);
1305       FieldDecl *Field = IvarInit->getAnyMember();
1306       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
1307       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1308                                     LoadObjCSelf(), Ivar, 0);
1309       EmitAggExpr(IvarInit->getInit(),
1310                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1311                                           AggValueSlot::DoesNotNeedGCBarriers,
1312                                           AggValueSlot::IsNotAliased));
1313     }
1314     // constructor returns 'self'.
1315     CodeGenTypes &Types = CGM.getTypes();
1316     QualType IdTy(CGM.getContext().getObjCIdType());
1317     llvm::Value *SelfAsId =
1318       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1319     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1320 
1321   // Emit .cxx_destruct.
1322   } else {
1323     emitCXXDestructMethod(*this, IMP);
1324   }
1325   FinishFunction();
1326 }
1327 
1328 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1329   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1330   it++; it++;
1331   const ABIArgInfo &AI = it->info;
1332   // FIXME. Is this sufficient check?
1333   return (AI.getKind() == ABIArgInfo::Indirect);
1334 }
1335 
1336 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1337   if (CGM.getLangOptions().getGC() == LangOptions::NonGC)
1338     return false;
1339   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1340     return FDTTy->getDecl()->hasObjectMember();
1341   return false;
1342 }
1343 
1344 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1345   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1346   return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self");
1347 }
1348 
1349 QualType CodeGenFunction::TypeOfSelfObject() {
1350   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1351   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1352   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1353     getContext().getCanonicalType(selfDecl->getType()));
1354   return PTy->getPointeeType();
1355 }
1356 
1357 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1358   llvm::Constant *EnumerationMutationFn =
1359     CGM.getObjCRuntime().EnumerationMutationFunction();
1360 
1361   if (!EnumerationMutationFn) {
1362     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1363     return;
1364   }
1365 
1366   CGDebugInfo *DI = getDebugInfo();
1367   if (DI)
1368     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1369 
1370   // The local variable comes into scope immediately.
1371   AutoVarEmission variable = AutoVarEmission::invalid();
1372   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1373     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1374 
1375   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1376 
1377   // Fast enumeration state.
1378   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1379   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1380   EmitNullInitialization(StatePtr, StateTy);
1381 
1382   // Number of elements in the items array.
1383   static const unsigned NumItems = 16;
1384 
1385   // Fetch the countByEnumeratingWithState:objects:count: selector.
1386   IdentifierInfo *II[] = {
1387     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1388     &CGM.getContext().Idents.get("objects"),
1389     &CGM.getContext().Idents.get("count")
1390   };
1391   Selector FastEnumSel =
1392     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1393 
1394   QualType ItemsTy =
1395     getContext().getConstantArrayType(getContext().getObjCIdType(),
1396                                       llvm::APInt(32, NumItems),
1397                                       ArrayType::Normal, 0);
1398   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1399 
1400   // Emit the collection pointer.  In ARC, we do a retain.
1401   llvm::Value *Collection;
1402   if (getLangOptions().ObjCAutoRefCount) {
1403     Collection = EmitARCRetainScalarExpr(S.getCollection());
1404 
1405     // Enter a cleanup to do the release.
1406     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1407   } else {
1408     Collection = EmitScalarExpr(S.getCollection());
1409   }
1410 
1411   // The 'continue' label needs to appear within the cleanup for the
1412   // collection object.
1413   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1414 
1415   // Send it our message:
1416   CallArgList Args;
1417 
1418   // The first argument is a temporary of the enumeration-state type.
1419   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1420 
1421   // The second argument is a temporary array with space for NumItems
1422   // pointers.  We'll actually be loading elements from the array
1423   // pointer written into the control state; this buffer is so that
1424   // collections that *aren't* backed by arrays can still queue up
1425   // batches of elements.
1426   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1427 
1428   // The third argument is the capacity of that temporary array.
1429   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1430   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1431   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1432 
1433   // Start the enumeration.
1434   RValue CountRV =
1435     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1436                                              getContext().UnsignedLongTy,
1437                                              FastEnumSel,
1438                                              Collection, Args);
1439 
1440   // The initial number of objects that were returned in the buffer.
1441   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1442 
1443   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1444   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1445 
1446   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1447 
1448   // If the limit pointer was zero to begin with, the collection is
1449   // empty; skip all this.
1450   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1451                        EmptyBB, LoopInitBB);
1452 
1453   // Otherwise, initialize the loop.
1454   EmitBlock(LoopInitBB);
1455 
1456   // Save the initial mutations value.  This is the value at an
1457   // address that was written into the state object by
1458   // countByEnumeratingWithState:objects:count:.
1459   llvm::Value *StateMutationsPtrPtr =
1460     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1461   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1462                                                       "mutationsptr");
1463 
1464   llvm::Value *initialMutations =
1465     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1466 
1467   // Start looping.  This is the point we return to whenever we have a
1468   // fresh, non-empty batch of objects.
1469   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1470   EmitBlock(LoopBodyBB);
1471 
1472   // The current index into the buffer.
1473   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1474   index->addIncoming(zero, LoopInitBB);
1475 
1476   // The current buffer size.
1477   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1478   count->addIncoming(initialBufferLimit, LoopInitBB);
1479 
1480   // Check whether the mutations value has changed from where it was
1481   // at start.  StateMutationsPtr should actually be invariant between
1482   // refreshes.
1483   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1484   llvm::Value *currentMutations
1485     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1486 
1487   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1488   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1489 
1490   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1491                        WasNotMutatedBB, WasMutatedBB);
1492 
1493   // If so, call the enumeration-mutation function.
1494   EmitBlock(WasMutatedBB);
1495   llvm::Value *V =
1496     Builder.CreateBitCast(Collection,
1497                           ConvertType(getContext().getObjCIdType()));
1498   CallArgList Args2;
1499   Args2.add(RValue::get(V), getContext().getObjCIdType());
1500   // FIXME: We shouldn't need to get the function info here, the runtime already
1501   // should have computed it to build the function.
1502   EmitCall(CGM.getTypes().arrangeFunctionCall(getContext().VoidTy, Args2,
1503                                               FunctionType::ExtInfo(),
1504                                               RequiredArgs::All),
1505            EnumerationMutationFn, ReturnValueSlot(), Args2);
1506 
1507   // Otherwise, or if the mutation function returns, just continue.
1508   EmitBlock(WasNotMutatedBB);
1509 
1510   // Initialize the element variable.
1511   RunCleanupsScope elementVariableScope(*this);
1512   bool elementIsVariable;
1513   LValue elementLValue;
1514   QualType elementType;
1515   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1516     // Initialize the variable, in case it's a __block variable or something.
1517     EmitAutoVarInit(variable);
1518 
1519     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1520     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1521                         VK_LValue, SourceLocation());
1522     elementLValue = EmitLValue(&tempDRE);
1523     elementType = D->getType();
1524     elementIsVariable = true;
1525 
1526     if (D->isARCPseudoStrong())
1527       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1528   } else {
1529     elementLValue = LValue(); // suppress warning
1530     elementType = cast<Expr>(S.getElement())->getType();
1531     elementIsVariable = false;
1532   }
1533   llvm::Type *convertedElementType = ConvertType(elementType);
1534 
1535   // Fetch the buffer out of the enumeration state.
1536   // TODO: this pointer should actually be invariant between
1537   // refreshes, which would help us do certain loop optimizations.
1538   llvm::Value *StateItemsPtr =
1539     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1540   llvm::Value *EnumStateItems =
1541     Builder.CreateLoad(StateItemsPtr, "stateitems");
1542 
1543   // Fetch the value at the current index from the buffer.
1544   llvm::Value *CurrentItemPtr =
1545     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1546   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1547 
1548   // Cast that value to the right type.
1549   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1550                                       "currentitem");
1551 
1552   // Make sure we have an l-value.  Yes, this gets evaluated every
1553   // time through the loop.
1554   if (!elementIsVariable) {
1555     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1556     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1557   } else {
1558     EmitScalarInit(CurrentItem, elementLValue);
1559   }
1560 
1561   // If we do have an element variable, this assignment is the end of
1562   // its initialization.
1563   if (elementIsVariable)
1564     EmitAutoVarCleanups(variable);
1565 
1566   // Perform the loop body, setting up break and continue labels.
1567   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1568   {
1569     RunCleanupsScope Scope(*this);
1570     EmitStmt(S.getBody());
1571   }
1572   BreakContinueStack.pop_back();
1573 
1574   // Destroy the element variable now.
1575   elementVariableScope.ForceCleanup();
1576 
1577   // Check whether there are more elements.
1578   EmitBlock(AfterBody.getBlock());
1579 
1580   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1581 
1582   // First we check in the local buffer.
1583   llvm::Value *indexPlusOne
1584     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1585 
1586   // If we haven't overrun the buffer yet, we can continue.
1587   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1588                        LoopBodyBB, FetchMoreBB);
1589 
1590   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1591   count->addIncoming(count, AfterBody.getBlock());
1592 
1593   // Otherwise, we have to fetch more elements.
1594   EmitBlock(FetchMoreBB);
1595 
1596   CountRV =
1597     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1598                                              getContext().UnsignedLongTy,
1599                                              FastEnumSel,
1600                                              Collection, Args);
1601 
1602   // If we got a zero count, we're done.
1603   llvm::Value *refetchCount = CountRV.getScalarVal();
1604 
1605   // (note that the message send might split FetchMoreBB)
1606   index->addIncoming(zero, Builder.GetInsertBlock());
1607   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1608 
1609   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1610                        EmptyBB, LoopBodyBB);
1611 
1612   // No more elements.
1613   EmitBlock(EmptyBB);
1614 
1615   if (!elementIsVariable) {
1616     // If the element was not a declaration, set it to be null.
1617 
1618     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1619     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1620     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1621   }
1622 
1623   if (DI)
1624     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1625 
1626   // Leave the cleanup we entered in ARC.
1627   if (getLangOptions().ObjCAutoRefCount)
1628     PopCleanupBlock();
1629 
1630   EmitBlock(LoopEnd.getBlock());
1631 }
1632 
1633 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1634   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1635 }
1636 
1637 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1638   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1639 }
1640 
1641 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1642                                               const ObjCAtSynchronizedStmt &S) {
1643   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1644 }
1645 
1646 /// Produce the code for a CK_ARCProduceObject.  Just does a
1647 /// primitive retain.
1648 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1649                                                     llvm::Value *value) {
1650   return EmitARCRetain(type, value);
1651 }
1652 
1653 namespace {
1654   struct CallObjCRelease : EHScopeStack::Cleanup {
1655     CallObjCRelease(llvm::Value *object) : object(object) {}
1656     llvm::Value *object;
1657 
1658     void Emit(CodeGenFunction &CGF, Flags flags) {
1659       CGF.EmitARCRelease(object, /*precise*/ true);
1660     }
1661   };
1662 }
1663 
1664 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1665 /// release at the end of the full-expression.
1666 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1667                                                     llvm::Value *object) {
1668   // If we're in a conditional branch, we need to make the cleanup
1669   // conditional.
1670   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1671   return object;
1672 }
1673 
1674 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1675                                                            llvm::Value *value) {
1676   return EmitARCRetainAutorelease(type, value);
1677 }
1678 
1679 
1680 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1681                                                 llvm::FunctionType *type,
1682                                                 StringRef fnName) {
1683   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1684 
1685   // In -fobjc-no-arc-runtime, emit weak references to the runtime
1686   // support library.
1687   if (!CGM.getCodeGenOpts().ObjCRuntimeHasARC)
1688     if (llvm::Function *f = dyn_cast<llvm::Function>(fn))
1689       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1690 
1691   return fn;
1692 }
1693 
1694 /// Perform an operation having the signature
1695 ///   i8* (i8*)
1696 /// where a null input causes a no-op and returns null.
1697 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1698                                           llvm::Value *value,
1699                                           llvm::Constant *&fn,
1700                                           StringRef fnName) {
1701   if (isa<llvm::ConstantPointerNull>(value)) return value;
1702 
1703   if (!fn) {
1704     std::vector<llvm::Type*> args(1, CGF.Int8PtrTy);
1705     llvm::FunctionType *fnType =
1706       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1707     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1708   }
1709 
1710   // Cast the argument to 'id'.
1711   llvm::Type *origType = value->getType();
1712   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1713 
1714   // Call the function.
1715   llvm::CallInst *call = CGF.Builder.CreateCall(fn, value);
1716   call->setDoesNotThrow();
1717 
1718   // Cast the result back to the original type.
1719   return CGF.Builder.CreateBitCast(call, origType);
1720 }
1721 
1722 /// Perform an operation having the following signature:
1723 ///   i8* (i8**)
1724 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1725                                          llvm::Value *addr,
1726                                          llvm::Constant *&fn,
1727                                          StringRef fnName) {
1728   if (!fn) {
1729     std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy);
1730     llvm::FunctionType *fnType =
1731       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1732     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1733   }
1734 
1735   // Cast the argument to 'id*'.
1736   llvm::Type *origType = addr->getType();
1737   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1738 
1739   // Call the function.
1740   llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr);
1741   call->setDoesNotThrow();
1742 
1743   // Cast the result back to a dereference of the original type.
1744   llvm::Value *result = call;
1745   if (origType != CGF.Int8PtrPtrTy)
1746     result = CGF.Builder.CreateBitCast(result,
1747                         cast<llvm::PointerType>(origType)->getElementType());
1748 
1749   return result;
1750 }
1751 
1752 /// Perform an operation having the following signature:
1753 ///   i8* (i8**, i8*)
1754 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1755                                           llvm::Value *addr,
1756                                           llvm::Value *value,
1757                                           llvm::Constant *&fn,
1758                                           StringRef fnName,
1759                                           bool ignored) {
1760   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1761            == value->getType());
1762 
1763   if (!fn) {
1764     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1765 
1766     llvm::FunctionType *fnType
1767       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1768     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1769   }
1770 
1771   llvm::Type *origType = value->getType();
1772 
1773   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1774   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1775 
1776   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value);
1777   result->setDoesNotThrow();
1778 
1779   if (ignored) return 0;
1780 
1781   return CGF.Builder.CreateBitCast(result, origType);
1782 }
1783 
1784 /// Perform an operation having the following signature:
1785 ///   void (i8**, i8**)
1786 static void emitARCCopyOperation(CodeGenFunction &CGF,
1787                                  llvm::Value *dst,
1788                                  llvm::Value *src,
1789                                  llvm::Constant *&fn,
1790                                  StringRef fnName) {
1791   assert(dst->getType() == src->getType());
1792 
1793   if (!fn) {
1794     std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy);
1795     llvm::FunctionType *fnType
1796       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1797     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1798   }
1799 
1800   dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy);
1801   src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy);
1802 
1803   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src);
1804   result->setDoesNotThrow();
1805 }
1806 
1807 /// Produce the code to do a retain.  Based on the type, calls one of:
1808 ///   call i8* @objc_retain(i8* %value)
1809 ///   call i8* @objc_retainBlock(i8* %value)
1810 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1811   if (type->isBlockPointerType())
1812     return EmitARCRetainBlock(value, /*mandatory*/ false);
1813   else
1814     return EmitARCRetainNonBlock(value);
1815 }
1816 
1817 /// Retain the given object, with normal retain semantics.
1818 ///   call i8* @objc_retain(i8* %value)
1819 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1820   return emitARCValueOperation(*this, value,
1821                                CGM.getARCEntrypoints().objc_retain,
1822                                "objc_retain");
1823 }
1824 
1825 /// Retain the given block, with _Block_copy semantics.
1826 ///   call i8* @objc_retainBlock(i8* %value)
1827 ///
1828 /// \param mandatory - If false, emit the call with metadata
1829 /// indicating that it's okay for the optimizer to eliminate this call
1830 /// if it can prove that the block never escapes except down the stack.
1831 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1832                                                  bool mandatory) {
1833   llvm::Value *result
1834     = emitARCValueOperation(*this, value,
1835                             CGM.getARCEntrypoints().objc_retainBlock,
1836                             "objc_retainBlock");
1837 
1838   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1839   // tell the optimizer that it doesn't need to do this copy if the
1840   // block doesn't escape, where being passed as an argument doesn't
1841   // count as escaping.
1842   if (!mandatory && isa<llvm::Instruction>(result)) {
1843     llvm::CallInst *call
1844       = cast<llvm::CallInst>(result->stripPointerCasts());
1845     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1846 
1847     SmallVector<llvm::Value*,1> args;
1848     call->setMetadata("clang.arc.copy_on_escape",
1849                       llvm::MDNode::get(Builder.getContext(), args));
1850   }
1851 
1852   return result;
1853 }
1854 
1855 /// Retain the given object which is the result of a function call.
1856 ///   call i8* @objc_retainAutoreleasedReturnValue(i8* %value)
1857 ///
1858 /// Yes, this function name is one character away from a different
1859 /// call with completely different semantics.
1860 llvm::Value *
1861 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1862   // Fetch the void(void) inline asm which marks that we're going to
1863   // retain the autoreleased return value.
1864   llvm::InlineAsm *&marker
1865     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1866   if (!marker) {
1867     StringRef assembly
1868       = CGM.getTargetCodeGenInfo()
1869            .getARCRetainAutoreleasedReturnValueMarker();
1870 
1871     // If we have an empty assembly string, there's nothing to do.
1872     if (assembly.empty()) {
1873 
1874     // Otherwise, at -O0, build an inline asm that we're going to call
1875     // in a moment.
1876     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1877       llvm::FunctionType *type =
1878         llvm::FunctionType::get(VoidTy, /*variadic*/false);
1879 
1880       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1881 
1882     // If we're at -O1 and above, we don't want to litter the code
1883     // with this marker yet, so leave a breadcrumb for the ARC
1884     // optimizer to pick up.
1885     } else {
1886       llvm::NamedMDNode *metadata =
1887         CGM.getModule().getOrInsertNamedMetadata(
1888                             "clang.arc.retainAutoreleasedReturnValueMarker");
1889       assert(metadata->getNumOperands() <= 1);
1890       if (metadata->getNumOperands() == 0) {
1891         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1892         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1893       }
1894     }
1895   }
1896 
1897   // Call the marker asm if we made one, which we do only at -O0.
1898   if (marker) Builder.CreateCall(marker);
1899 
1900   return emitARCValueOperation(*this, value,
1901                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1902                                "objc_retainAutoreleasedReturnValue");
1903 }
1904 
1905 /// Release the given object.
1906 ///   call void @objc_release(i8* %value)
1907 void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) {
1908   if (isa<llvm::ConstantPointerNull>(value)) return;
1909 
1910   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
1911   if (!fn) {
1912     std::vector<llvm::Type*> args(1, Int8PtrTy);
1913     llvm::FunctionType *fnType =
1914       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
1915     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
1916   }
1917 
1918   // Cast the argument to 'id'.
1919   value = Builder.CreateBitCast(value, Int8PtrTy);
1920 
1921   // Call objc_release.
1922   llvm::CallInst *call = Builder.CreateCall(fn, value);
1923   call->setDoesNotThrow();
1924 
1925   if (!precise) {
1926     SmallVector<llvm::Value*,1> args;
1927     call->setMetadata("clang.imprecise_release",
1928                       llvm::MDNode::get(Builder.getContext(), args));
1929   }
1930 }
1931 
1932 /// Store into a strong object.  Always calls this:
1933 ///   call void @objc_storeStrong(i8** %addr, i8* %value)
1934 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
1935                                                      llvm::Value *value,
1936                                                      bool ignored) {
1937   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1938            == value->getType());
1939 
1940   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
1941   if (!fn) {
1942     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
1943     llvm::FunctionType *fnType
1944       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
1945     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
1946   }
1947 
1948   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
1949   llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy);
1950 
1951   Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow();
1952 
1953   if (ignored) return 0;
1954   return value;
1955 }
1956 
1957 /// Store into a strong object.  Sometimes calls this:
1958 ///   call void @objc_storeStrong(i8** %addr, i8* %value)
1959 /// Other times, breaks it down into components.
1960 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
1961                                                  llvm::Value *newValue,
1962                                                  bool ignored) {
1963   QualType type = dst.getType();
1964   bool isBlock = type->isBlockPointerType();
1965 
1966   // Use a store barrier at -O0 unless this is a block type or the
1967   // lvalue is inadequately aligned.
1968   if (shouldUseFusedARCCalls() &&
1969       !isBlock &&
1970       (dst.getAlignment().isZero() ||
1971        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
1972     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
1973   }
1974 
1975   // Otherwise, split it out.
1976 
1977   // Retain the new value.
1978   newValue = EmitARCRetain(type, newValue);
1979 
1980   // Read the old value.
1981   llvm::Value *oldValue = EmitLoadOfScalar(dst);
1982 
1983   // Store.  We do this before the release so that any deallocs won't
1984   // see the old value.
1985   EmitStoreOfScalar(newValue, dst);
1986 
1987   // Finally, release the old value.
1988   EmitARCRelease(oldValue, /*precise*/ false);
1989 
1990   return newValue;
1991 }
1992 
1993 /// Autorelease the given object.
1994 ///   call i8* @objc_autorelease(i8* %value)
1995 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
1996   return emitARCValueOperation(*this, value,
1997                                CGM.getARCEntrypoints().objc_autorelease,
1998                                "objc_autorelease");
1999 }
2000 
2001 /// Autorelease the given object.
2002 ///   call i8* @objc_autoreleaseReturnValue(i8* %value)
2003 llvm::Value *
2004 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2005   return emitARCValueOperation(*this, value,
2006                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2007                                "objc_autoreleaseReturnValue");
2008 }
2009 
2010 /// Do a fused retain/autorelease of the given object.
2011 ///   call i8* @objc_retainAutoreleaseReturnValue(i8* %value)
2012 llvm::Value *
2013 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2014   return emitARCValueOperation(*this, value,
2015                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2016                                "objc_retainAutoreleaseReturnValue");
2017 }
2018 
2019 /// Do a fused retain/autorelease of the given object.
2020 ///   call i8* @objc_retainAutorelease(i8* %value)
2021 /// or
2022 ///   %retain = call i8* @objc_retainBlock(i8* %value)
2023 ///   call i8* @objc_autorelease(i8* %retain)
2024 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2025                                                        llvm::Value *value) {
2026   if (!type->isBlockPointerType())
2027     return EmitARCRetainAutoreleaseNonBlock(value);
2028 
2029   if (isa<llvm::ConstantPointerNull>(value)) return value;
2030 
2031   llvm::Type *origType = value->getType();
2032   value = Builder.CreateBitCast(value, Int8PtrTy);
2033   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2034   value = EmitARCAutorelease(value);
2035   return Builder.CreateBitCast(value, origType);
2036 }
2037 
2038 /// Do a fused retain/autorelease of the given object.
2039 ///   call i8* @objc_retainAutorelease(i8* %value)
2040 llvm::Value *
2041 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2042   return emitARCValueOperation(*this, value,
2043                                CGM.getARCEntrypoints().objc_retainAutorelease,
2044                                "objc_retainAutorelease");
2045 }
2046 
2047 /// i8* @objc_loadWeak(i8** %addr)
2048 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2049 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2050   return emitARCLoadOperation(*this, addr,
2051                               CGM.getARCEntrypoints().objc_loadWeak,
2052                               "objc_loadWeak");
2053 }
2054 
2055 /// i8* @objc_loadWeakRetained(i8** %addr)
2056 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2057   return emitARCLoadOperation(*this, addr,
2058                               CGM.getARCEntrypoints().objc_loadWeakRetained,
2059                               "objc_loadWeakRetained");
2060 }
2061 
2062 /// i8* @objc_storeWeak(i8** %addr, i8* %value)
2063 /// Returns %value.
2064 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2065                                                llvm::Value *value,
2066                                                bool ignored) {
2067   return emitARCStoreOperation(*this, addr, value,
2068                                CGM.getARCEntrypoints().objc_storeWeak,
2069                                "objc_storeWeak", ignored);
2070 }
2071 
2072 /// i8* @objc_initWeak(i8** %addr, i8* %value)
2073 /// Returns %value.  %addr is known to not have a current weak entry.
2074 /// Essentially equivalent to:
2075 ///   *addr = nil; objc_storeWeak(addr, value);
2076 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2077   // If we're initializing to null, just write null to memory; no need
2078   // to get the runtime involved.  But don't do this if optimization
2079   // is enabled, because accounting for this would make the optimizer
2080   // much more complicated.
2081   if (isa<llvm::ConstantPointerNull>(value) &&
2082       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2083     Builder.CreateStore(value, addr);
2084     return;
2085   }
2086 
2087   emitARCStoreOperation(*this, addr, value,
2088                         CGM.getARCEntrypoints().objc_initWeak,
2089                         "objc_initWeak", /*ignored*/ true);
2090 }
2091 
2092 /// void @objc_destroyWeak(i8** %addr)
2093 /// Essentially objc_storeWeak(addr, nil).
2094 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2095   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2096   if (!fn) {
2097     std::vector<llvm::Type*> args(1, Int8PtrPtrTy);
2098     llvm::FunctionType *fnType =
2099       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
2100     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2101   }
2102 
2103   // Cast the argument to 'id*'.
2104   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2105 
2106   llvm::CallInst *call = Builder.CreateCall(fn, addr);
2107   call->setDoesNotThrow();
2108 }
2109 
2110 /// void @objc_moveWeak(i8** %dest, i8** %src)
2111 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2112 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2113 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2114   emitARCCopyOperation(*this, dst, src,
2115                        CGM.getARCEntrypoints().objc_moveWeak,
2116                        "objc_moveWeak");
2117 }
2118 
2119 /// void @objc_copyWeak(i8** %dest, i8** %src)
2120 /// Disregards the current value in %dest.  Essentially
2121 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2122 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2123   emitARCCopyOperation(*this, dst, src,
2124                        CGM.getARCEntrypoints().objc_copyWeak,
2125                        "objc_copyWeak");
2126 }
2127 
2128 /// Produce the code to do a objc_autoreleasepool_push.
2129 ///   call i8* @objc_autoreleasePoolPush(void)
2130 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2131   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2132   if (!fn) {
2133     llvm::FunctionType *fnType =
2134       llvm::FunctionType::get(Int8PtrTy, false);
2135     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2136   }
2137 
2138   llvm::CallInst *call = Builder.CreateCall(fn);
2139   call->setDoesNotThrow();
2140 
2141   return call;
2142 }
2143 
2144 /// Produce the code to do a primitive release.
2145 ///   call void @objc_autoreleasePoolPop(i8* %ptr)
2146 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2147   assert(value->getType() == Int8PtrTy);
2148 
2149   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2150   if (!fn) {
2151     std::vector<llvm::Type*> args(1, Int8PtrTy);
2152     llvm::FunctionType *fnType =
2153       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
2154 
2155     // We don't want to use a weak import here; instead we should not
2156     // fall into this path.
2157     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2158   }
2159 
2160   llvm::CallInst *call = Builder.CreateCall(fn, value);
2161   call->setDoesNotThrow();
2162 }
2163 
2164 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2165 /// Which is: [[NSAutoreleasePool alloc] init];
2166 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2167 /// init is declared as: - (id) init; in its NSObject super class.
2168 ///
2169 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2170   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2171   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder);
2172   // [NSAutoreleasePool alloc]
2173   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2174   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2175   CallArgList Args;
2176   RValue AllocRV =
2177     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2178                                 getContext().getObjCIdType(),
2179                                 AllocSel, Receiver, Args);
2180 
2181   // [Receiver init]
2182   Receiver = AllocRV.getScalarVal();
2183   II = &CGM.getContext().Idents.get("init");
2184   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2185   RValue InitRV =
2186     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2187                                 getContext().getObjCIdType(),
2188                                 InitSel, Receiver, Args);
2189   return InitRV.getScalarVal();
2190 }
2191 
2192 /// Produce the code to do a primitive release.
2193 /// [tmp drain];
2194 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2195   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2196   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2197   CallArgList Args;
2198   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2199                               getContext().VoidTy, DrainSel, Arg, Args);
2200 }
2201 
2202 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2203                                               llvm::Value *addr,
2204                                               QualType type) {
2205   llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
2206   CGF.EmitARCRelease(ptr, /*precise*/ true);
2207 }
2208 
2209 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2210                                                 llvm::Value *addr,
2211                                                 QualType type) {
2212   llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
2213   CGF.EmitARCRelease(ptr, /*precise*/ false);
2214 }
2215 
2216 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2217                                      llvm::Value *addr,
2218                                      QualType type) {
2219   CGF.EmitARCDestroyWeak(addr);
2220 }
2221 
2222 namespace {
2223   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2224     llvm::Value *Token;
2225 
2226     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2227 
2228     void Emit(CodeGenFunction &CGF, Flags flags) {
2229       CGF.EmitObjCAutoreleasePoolPop(Token);
2230     }
2231   };
2232   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2233     llvm::Value *Token;
2234 
2235     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2236 
2237     void Emit(CodeGenFunction &CGF, Flags flags) {
2238       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2239     }
2240   };
2241 }
2242 
2243 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2244   if (CGM.getLangOptions().ObjCAutoRefCount)
2245     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2246   else
2247     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2248 }
2249 
2250 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2251                                                   LValue lvalue,
2252                                                   QualType type) {
2253   switch (type.getObjCLifetime()) {
2254   case Qualifiers::OCL_None:
2255   case Qualifiers::OCL_ExplicitNone:
2256   case Qualifiers::OCL_Strong:
2257   case Qualifiers::OCL_Autoreleasing:
2258     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
2259                          false);
2260 
2261   case Qualifiers::OCL_Weak:
2262     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2263                          true);
2264   }
2265 
2266   llvm_unreachable("impossible lifetime!");
2267 }
2268 
2269 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2270                                                   const Expr *e) {
2271   e = e->IgnoreParens();
2272   QualType type = e->getType();
2273 
2274   // If we're loading retained from a __strong xvalue, we can avoid
2275   // an extra retain/release pair by zeroing out the source of this
2276   // "move" operation.
2277   if (e->isXValue() &&
2278       !type.isConstQualified() &&
2279       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2280     // Emit the lvalue.
2281     LValue lv = CGF.EmitLValue(e);
2282 
2283     // Load the object pointer.
2284     llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
2285 
2286     // Set the source pointer to NULL.
2287     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2288 
2289     return TryEmitResult(result, true);
2290   }
2291 
2292   // As a very special optimization, in ARC++, if the l-value is the
2293   // result of a non-volatile assignment, do a simple retain of the
2294   // result of the call to objc_storeWeak instead of reloading.
2295   if (CGF.getLangOptions().CPlusPlus &&
2296       !type.isVolatileQualified() &&
2297       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2298       isa<BinaryOperator>(e) &&
2299       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2300     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2301 
2302   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2303 }
2304 
2305 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2306                                            llvm::Value *value);
2307 
2308 /// Given that the given expression is some sort of call (which does
2309 /// not return retained), emit a retain following it.
2310 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2311   llvm::Value *value = CGF.EmitScalarExpr(e);
2312   return emitARCRetainAfterCall(CGF, value);
2313 }
2314 
2315 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2316                                            llvm::Value *value) {
2317   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2318     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2319 
2320     // Place the retain immediately following the call.
2321     CGF.Builder.SetInsertPoint(call->getParent(),
2322                                ++llvm::BasicBlock::iterator(call));
2323     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2324 
2325     CGF.Builder.restoreIP(ip);
2326     return value;
2327   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2328     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2329 
2330     // Place the retain at the beginning of the normal destination block.
2331     llvm::BasicBlock *BB = invoke->getNormalDest();
2332     CGF.Builder.SetInsertPoint(BB, BB->begin());
2333     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2334 
2335     CGF.Builder.restoreIP(ip);
2336     return value;
2337 
2338   // Bitcasts can arise because of related-result returns.  Rewrite
2339   // the operand.
2340   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2341     llvm::Value *operand = bitcast->getOperand(0);
2342     operand = emitARCRetainAfterCall(CGF, operand);
2343     bitcast->setOperand(0, operand);
2344     return bitcast;
2345 
2346   // Generic fall-back case.
2347   } else {
2348     // Retain using the non-block variant: we never need to do a copy
2349     // of a block that's been returned to us.
2350     return CGF.EmitARCRetainNonBlock(value);
2351   }
2352 }
2353 
2354 /// Determine whether it might be important to emit a separate
2355 /// objc_retain_block on the result of the given expression, or
2356 /// whether it's okay to just emit it in a +1 context.
2357 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2358   assert(e->getType()->isBlockPointerType());
2359   e = e->IgnoreParens();
2360 
2361   // For future goodness, emit block expressions directly in +1
2362   // contexts if we can.
2363   if (isa<BlockExpr>(e))
2364     return false;
2365 
2366   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2367     switch (cast->getCastKind()) {
2368     // Emitting these operations in +1 contexts is goodness.
2369     case CK_LValueToRValue:
2370     case CK_ARCReclaimReturnedObject:
2371     case CK_ARCConsumeObject:
2372     case CK_ARCProduceObject:
2373       return false;
2374 
2375     // These operations preserve a block type.
2376     case CK_NoOp:
2377     case CK_BitCast:
2378       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2379 
2380     // These operations are known to be bad (or haven't been considered).
2381     case CK_AnyPointerToBlockPointerCast:
2382     default:
2383       return true;
2384     }
2385   }
2386 
2387   return true;
2388 }
2389 
2390 /// Try to emit a PseudoObjectExpr at +1.
2391 ///
2392 /// This massively duplicates emitPseudoObjectRValue.
2393 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2394                                                   const PseudoObjectExpr *E) {
2395   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2396 
2397   // Find the result expression.
2398   const Expr *resultExpr = E->getResultExpr();
2399   assert(resultExpr);
2400   TryEmitResult result;
2401 
2402   for (PseudoObjectExpr::const_semantics_iterator
2403          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2404     const Expr *semantic = *i;
2405 
2406     // If this semantic expression is an opaque value, bind it
2407     // to the result of its source expression.
2408     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2409       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2410       OVMA opaqueData;
2411 
2412       // If this semantic is the result of the pseudo-object
2413       // expression, try to evaluate the source as +1.
2414       if (ov == resultExpr) {
2415         assert(!OVMA::shouldBindAsLValue(ov));
2416         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2417         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2418 
2419       // Otherwise, just bind it.
2420       } else {
2421         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2422       }
2423       opaques.push_back(opaqueData);
2424 
2425     // Otherwise, if the expression is the result, evaluate it
2426     // and remember the result.
2427     } else if (semantic == resultExpr) {
2428       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2429 
2430     // Otherwise, evaluate the expression in an ignored context.
2431     } else {
2432       CGF.EmitIgnoredExpr(semantic);
2433     }
2434   }
2435 
2436   // Unbind all the opaques now.
2437   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2438     opaques[i].unbind(CGF);
2439 
2440   return result;
2441 }
2442 
2443 static TryEmitResult
2444 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2445   // Look through cleanups.
2446   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2447     CGF.enterFullExpression(cleanups);
2448     CodeGenFunction::RunCleanupsScope scope(CGF);
2449     return tryEmitARCRetainScalarExpr(CGF, cleanups->getSubExpr());
2450   }
2451 
2452   // The desired result type, if it differs from the type of the
2453   // ultimate opaque expression.
2454   llvm::Type *resultType = 0;
2455 
2456   while (true) {
2457     e = e->IgnoreParens();
2458 
2459     // There's a break at the end of this if-chain;  anything
2460     // that wants to keep looping has to explicitly continue.
2461     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2462       switch (ce->getCastKind()) {
2463       // No-op casts don't change the type, so we just ignore them.
2464       case CK_NoOp:
2465         e = ce->getSubExpr();
2466         continue;
2467 
2468       case CK_LValueToRValue: {
2469         TryEmitResult loadResult
2470           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2471         if (resultType) {
2472           llvm::Value *value = loadResult.getPointer();
2473           value = CGF.Builder.CreateBitCast(value, resultType);
2474           loadResult.setPointer(value);
2475         }
2476         return loadResult;
2477       }
2478 
2479       // These casts can change the type, so remember that and
2480       // soldier on.  We only need to remember the outermost such
2481       // cast, though.
2482       case CK_CPointerToObjCPointerCast:
2483       case CK_BlockPointerToObjCPointerCast:
2484       case CK_AnyPointerToBlockPointerCast:
2485       case CK_BitCast:
2486         if (!resultType)
2487           resultType = CGF.ConvertType(ce->getType());
2488         e = ce->getSubExpr();
2489         assert(e->getType()->hasPointerRepresentation());
2490         continue;
2491 
2492       // For consumptions, just emit the subexpression and thus elide
2493       // the retain/release pair.
2494       case CK_ARCConsumeObject: {
2495         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2496         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2497         return TryEmitResult(result, true);
2498       }
2499 
2500       // Block extends are net +0.  Naively, we could just recurse on
2501       // the subexpression, but actually we need to ensure that the
2502       // value is copied as a block, so there's a little filter here.
2503       case CK_ARCExtendBlockObject: {
2504         llvm::Value *result; // will be a +0 value
2505 
2506         // If we can't safely assume the sub-expression will produce a
2507         // block-copied value, emit the sub-expression at +0.
2508         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2509           result = CGF.EmitScalarExpr(ce->getSubExpr());
2510 
2511         // Otherwise, try to emit the sub-expression at +1 recursively.
2512         } else {
2513           TryEmitResult subresult
2514             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2515           result = subresult.getPointer();
2516 
2517           // If that produced a retained value, just use that,
2518           // possibly casting down.
2519           if (subresult.getInt()) {
2520             if (resultType)
2521               result = CGF.Builder.CreateBitCast(result, resultType);
2522             return TryEmitResult(result, true);
2523           }
2524 
2525           // Otherwise it's +0.
2526         }
2527 
2528         // Retain the object as a block, then cast down.
2529         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2530         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2531         return TryEmitResult(result, true);
2532       }
2533 
2534       // For reclaims, emit the subexpression as a retained call and
2535       // skip the consumption.
2536       case CK_ARCReclaimReturnedObject: {
2537         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2538         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2539         return TryEmitResult(result, true);
2540       }
2541 
2542       default:
2543         break;
2544       }
2545 
2546     // Skip __extension__.
2547     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2548       if (op->getOpcode() == UO_Extension) {
2549         e = op->getSubExpr();
2550         continue;
2551       }
2552 
2553     // For calls and message sends, use the retained-call logic.
2554     // Delegate inits are a special case in that they're the only
2555     // returns-retained expression that *isn't* surrounded by
2556     // a consume.
2557     } else if (isa<CallExpr>(e) ||
2558                (isa<ObjCMessageExpr>(e) &&
2559                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2560       llvm::Value *result = emitARCRetainCall(CGF, e);
2561       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2562       return TryEmitResult(result, true);
2563 
2564     // Look through pseudo-object expressions.
2565     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2566       TryEmitResult result
2567         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2568       if (resultType) {
2569         llvm::Value *value = result.getPointer();
2570         value = CGF.Builder.CreateBitCast(value, resultType);
2571         result.setPointer(value);
2572       }
2573       return result;
2574     }
2575 
2576     // Conservatively halt the search at any other expression kind.
2577     break;
2578   }
2579 
2580   // We didn't find an obvious production, so emit what we've got and
2581   // tell the caller that we didn't manage to retain.
2582   llvm::Value *result = CGF.EmitScalarExpr(e);
2583   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2584   return TryEmitResult(result, false);
2585 }
2586 
2587 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2588                                                 LValue lvalue,
2589                                                 QualType type) {
2590   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2591   llvm::Value *value = result.getPointer();
2592   if (!result.getInt())
2593     value = CGF.EmitARCRetain(type, value);
2594   return value;
2595 }
2596 
2597 /// EmitARCRetainScalarExpr - Semantically equivalent to
2598 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2599 /// best-effort attempt to peephole expressions that naturally produce
2600 /// retained objects.
2601 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2602   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2603   llvm::Value *value = result.getPointer();
2604   if (!result.getInt())
2605     value = EmitARCRetain(e->getType(), value);
2606   return value;
2607 }
2608 
2609 llvm::Value *
2610 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2611   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2612   llvm::Value *value = result.getPointer();
2613   if (result.getInt())
2614     value = EmitARCAutorelease(value);
2615   else
2616     value = EmitARCRetainAutorelease(e->getType(), value);
2617   return value;
2618 }
2619 
2620 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2621   llvm::Value *result;
2622   bool doRetain;
2623 
2624   if (shouldEmitSeparateBlockRetain(e)) {
2625     result = EmitScalarExpr(e);
2626     doRetain = true;
2627   } else {
2628     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2629     result = subresult.getPointer();
2630     doRetain = !subresult.getInt();
2631   }
2632 
2633   if (doRetain)
2634     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2635   return EmitObjCConsumeObject(e->getType(), result);
2636 }
2637 
2638 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2639   // In ARC, retain and autorelease the expression.
2640   if (getLangOptions().ObjCAutoRefCount) {
2641     // Do so before running any cleanups for the full-expression.
2642     // tryEmitARCRetainScalarExpr does make an effort to do things
2643     // inside cleanups, but there are crazy cases like
2644     //   @throw A().foo;
2645     // where a full retain+autorelease is required and would
2646     // otherwise happen after the destructor for the temporary.
2647     if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(expr)) {
2648       enterFullExpression(ewc);
2649       expr = ewc->getSubExpr();
2650     }
2651 
2652     CodeGenFunction::RunCleanupsScope cleanups(*this);
2653     return EmitARCRetainAutoreleaseScalarExpr(expr);
2654   }
2655 
2656   // Otherwise, use the normal scalar-expression emission.  The
2657   // exception machinery doesn't do anything special with the
2658   // exception like retaining it, so there's no safety associated with
2659   // only running cleanups after the throw has started, and when it
2660   // matters it tends to be substantially inferior code.
2661   return EmitScalarExpr(expr);
2662 }
2663 
2664 std::pair<LValue,llvm::Value*>
2665 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2666                                     bool ignored) {
2667   // Evaluate the RHS first.
2668   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2669   llvm::Value *value = result.getPointer();
2670 
2671   bool hasImmediateRetain = result.getInt();
2672 
2673   // If we didn't emit a retained object, and the l-value is of block
2674   // type, then we need to emit the block-retain immediately in case
2675   // it invalidates the l-value.
2676   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2677     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2678     hasImmediateRetain = true;
2679   }
2680 
2681   LValue lvalue = EmitLValue(e->getLHS());
2682 
2683   // If the RHS was emitted retained, expand this.
2684   if (hasImmediateRetain) {
2685     llvm::Value *oldValue =
2686       EmitLoadOfScalar(lvalue);
2687     EmitStoreOfScalar(value, lvalue);
2688     EmitARCRelease(oldValue, /*precise*/ false);
2689   } else {
2690     value = EmitARCStoreStrong(lvalue, value, ignored);
2691   }
2692 
2693   return std::pair<LValue,llvm::Value*>(lvalue, value);
2694 }
2695 
2696 std::pair<LValue,llvm::Value*>
2697 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2698   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2699   LValue lvalue = EmitLValue(e->getLHS());
2700 
2701   EmitStoreOfScalar(value, lvalue);
2702 
2703   return std::pair<LValue,llvm::Value*>(lvalue, value);
2704 }
2705 
2706 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2707                                              const ObjCAutoreleasePoolStmt &ARPS) {
2708   const Stmt *subStmt = ARPS.getSubStmt();
2709   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2710 
2711   CGDebugInfo *DI = getDebugInfo();
2712   if (DI)
2713     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2714 
2715   // Keep track of the current cleanup stack depth.
2716   RunCleanupsScope Scope(*this);
2717   if (CGM.getCodeGenOpts().ObjCRuntimeHasARC) {
2718     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2719     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2720   } else {
2721     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2722     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2723   }
2724 
2725   for (CompoundStmt::const_body_iterator I = S.body_begin(),
2726        E = S.body_end(); I != E; ++I)
2727     EmitStmt(*I);
2728 
2729   if (DI)
2730     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2731 }
2732 
2733 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2734 /// make sure it survives garbage collection until this point.
2735 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2736   // We just use an inline assembly.
2737   llvm::FunctionType *extenderType
2738     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2739   llvm::Value *extender
2740     = llvm::InlineAsm::get(extenderType,
2741                            /* assembly */ "",
2742                            /* constraints */ "r",
2743                            /* side effects */ true);
2744 
2745   object = Builder.CreateBitCast(object, VoidPtrTy);
2746   Builder.CreateCall(extender, object)->setDoesNotThrow();
2747 }
2748 
2749 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2750 /// non-trivial copy assignment function, produce following helper function.
2751 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2752 ///
2753 llvm::Constant *
2754 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2755                                         const ObjCPropertyImplDecl *PID) {
2756   // FIXME. This api is for NeXt runtime only for now.
2757   if (!getLangOptions().CPlusPlus || !getLangOptions().NeXTRuntime)
2758     return 0;
2759   QualType Ty = PID->getPropertyIvarDecl()->getType();
2760   if (!Ty->isRecordType())
2761     return 0;
2762   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2763   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2764     return 0;
2765   llvm::Constant * HelperFn = 0;
2766   if (hasTrivialSetExpr(PID))
2767     return 0;
2768   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2769   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2770     return HelperFn;
2771 
2772   ASTContext &C = getContext();
2773   IdentifierInfo *II
2774     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2775   FunctionDecl *FD = FunctionDecl::Create(C,
2776                                           C.getTranslationUnitDecl(),
2777                                           SourceLocation(),
2778                                           SourceLocation(), II, C.VoidTy, 0,
2779                                           SC_Static,
2780                                           SC_None,
2781                                           false,
2782                                           true);
2783 
2784   QualType DestTy = C.getPointerType(Ty);
2785   QualType SrcTy = Ty;
2786   SrcTy.addConst();
2787   SrcTy = C.getPointerType(SrcTy);
2788 
2789   FunctionArgList args;
2790   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2791   args.push_back(&dstDecl);
2792   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2793   args.push_back(&srcDecl);
2794 
2795   const CGFunctionInfo &FI =
2796     CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2797                                               FunctionType::ExtInfo(),
2798                                               RequiredArgs::All);
2799 
2800   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2801 
2802   llvm::Function *Fn =
2803     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2804                            "__assign_helper_atomic_property_", &CGM.getModule());
2805 
2806   if (CGM.getModuleDebugInfo())
2807     DebugInfo = CGM.getModuleDebugInfo();
2808 
2809 
2810   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2811 
2812   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2813                       VK_RValue, SourceLocation());
2814   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2815                     VK_LValue, OK_Ordinary, SourceLocation());
2816 
2817   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2818                       VK_RValue, SourceLocation());
2819   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2820                     VK_LValue, OK_Ordinary, SourceLocation());
2821 
2822   Expr *Args[2] = { &DST, &SRC };
2823   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2824   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2825                               Args, 2, DestTy->getPointeeType(),
2826                               VK_LValue, SourceLocation());
2827 
2828   EmitStmt(&TheCall);
2829 
2830   FinishFunction();
2831   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2832   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2833   return HelperFn;
2834 }
2835 
2836 llvm::Constant *
2837 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2838                                             const ObjCPropertyImplDecl *PID) {
2839   // FIXME. This api is for NeXt runtime only for now.
2840   if (!getLangOptions().CPlusPlus || !getLangOptions().NeXTRuntime)
2841     return 0;
2842   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2843   QualType Ty = PD->getType();
2844   if (!Ty->isRecordType())
2845     return 0;
2846   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2847     return 0;
2848   llvm::Constant * HelperFn = 0;
2849 
2850   if (hasTrivialGetExpr(PID))
2851     return 0;
2852   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2853   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2854     return HelperFn;
2855 
2856 
2857   ASTContext &C = getContext();
2858   IdentifierInfo *II
2859   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2860   FunctionDecl *FD = FunctionDecl::Create(C,
2861                                           C.getTranslationUnitDecl(),
2862                                           SourceLocation(),
2863                                           SourceLocation(), II, C.VoidTy, 0,
2864                                           SC_Static,
2865                                           SC_None,
2866                                           false,
2867                                           true);
2868 
2869   QualType DestTy = C.getPointerType(Ty);
2870   QualType SrcTy = Ty;
2871   SrcTy.addConst();
2872   SrcTy = C.getPointerType(SrcTy);
2873 
2874   FunctionArgList args;
2875   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2876   args.push_back(&dstDecl);
2877   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2878   args.push_back(&srcDecl);
2879 
2880   const CGFunctionInfo &FI =
2881   CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2882                                             FunctionType::ExtInfo(),
2883                                             RequiredArgs::All);
2884 
2885   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2886 
2887   llvm::Function *Fn =
2888   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2889                          "__copy_helper_atomic_property_", &CGM.getModule());
2890 
2891   if (CGM.getModuleDebugInfo())
2892     DebugInfo = CGM.getModuleDebugInfo();
2893 
2894 
2895   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2896 
2897   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2898                       VK_RValue, SourceLocation());
2899 
2900   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2901                     VK_LValue, OK_Ordinary, SourceLocation());
2902 
2903   CXXConstructExpr *CXXConstExpr =
2904     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
2905 
2906   SmallVector<Expr*, 4> ConstructorArgs;
2907   ConstructorArgs.push_back(&SRC);
2908   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
2909   ++A;
2910 
2911   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
2912        A != AEnd; ++A)
2913     ConstructorArgs.push_back(*A);
2914 
2915   CXXConstructExpr *TheCXXConstructExpr =
2916     CXXConstructExpr::Create(C, Ty, SourceLocation(),
2917                              CXXConstExpr->getConstructor(),
2918                              CXXConstExpr->isElidable(),
2919                              &ConstructorArgs[0], ConstructorArgs.size(),
2920                              CXXConstExpr->hadMultipleCandidates(),
2921                              CXXConstExpr->isListInitialization(),
2922                              CXXConstExpr->requiresZeroInitialization(),
2923                              CXXConstExpr->getConstructionKind(), SourceRange());
2924 
2925   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2926                       VK_RValue, SourceLocation());
2927 
2928   RValue DV = EmitAnyExpr(&DstExpr);
2929   CharUnits Alignment = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
2930   EmitAggExpr(TheCXXConstructExpr,
2931               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
2932                                     AggValueSlot::IsDestructed,
2933                                     AggValueSlot::DoesNotNeedGCBarriers,
2934                                     AggValueSlot::IsNotAliased));
2935 
2936   FinishFunction();
2937   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2938   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
2939   return HelperFn;
2940 }
2941 
2942 llvm::Value *
2943 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
2944   // Get selectors for retain/autorelease.
2945   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
2946   Selector CopySelector =
2947       getContext().Selectors.getNullarySelector(CopyID);
2948   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
2949   Selector AutoreleaseSelector =
2950       getContext().Selectors.getNullarySelector(AutoreleaseID);
2951 
2952   // Emit calls to retain/autorelease.
2953   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2954   llvm::Value *Val = Block;
2955   RValue Result;
2956   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2957                                        Ty, CopySelector,
2958                                        Val, CallArgList(), 0, 0);
2959   Val = Result.getScalarVal();
2960   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2961                                        Ty, AutoreleaseSelector,
2962                                        Val, CallArgList(), 0, 0);
2963   Val = Result.getScalarVal();
2964   return Val;
2965 }
2966 
2967 
2968 CGObjCRuntime::~CGObjCRuntime() {}
2969