1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/InlineAsm.h"
27 #include "llvm/Support/CallSite.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
35                                       QualType ET,
36                                       const ObjCMethodDecl *Method,
37                                       RValue Result);
38 
39 /// Given the address of a variable of pointer type, find the correct
40 /// null to store into it.
41 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
42   llvm::Type *type =
43     cast<llvm::PointerType>(addr->getType())->getElementType();
44   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
45 }
46 
47 /// Emits an instance of NSConstantString representing the object.
48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
49 {
50   llvm::Constant *C =
51       CGM.getObjCRuntime().GenerateConstantString(E->getString());
52   // FIXME: This bitcast should just be made an invariant on the Runtime.
53   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
54 }
55 
56 /// EmitObjCBoxedExpr - This routine generates code to call
57 /// the appropriate expression boxing method. This will either be
58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
59 ///
60 llvm::Value *
61 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
62   // Generate the correct selector for this literal's concrete type.
63   const Expr *SubExpr = E->getSubExpr();
64   // Get the method.
65   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
66   assert(BoxingMethod && "BoxingMethod is null");
67   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
68   Selector Sel = BoxingMethod->getSelector();
69 
70   // Generate a reference to the class pointer, which will be the receiver.
71   // Assumes that the method was introduced in the class that should be
72   // messaged (avoids pulling it out of the result type).
73   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
74   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
75   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
76 
77   const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
78   QualType ArgQT = argDecl->getType().getUnqualifiedType();
79   RValue RV = EmitAnyExpr(SubExpr);
80   CallArgList Args;
81   Args.add(RV, ArgQT);
82 
83   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
84                                               BoxingMethod->getResultType(), Sel, Receiver, Args,
85                                               ClassDecl, BoxingMethod);
86   return Builder.CreateBitCast(result.getScalarVal(),
87                                ConvertType(E->getType()));
88 }
89 
90 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
91                                     const ObjCMethodDecl *MethodWithObjects) {
92   ASTContext &Context = CGM.getContext();
93   const ObjCDictionaryLiteral *DLE = 0;
94   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
95   if (!ALE)
96     DLE = cast<ObjCDictionaryLiteral>(E);
97 
98   // Compute the type of the array we're initializing.
99   uint64_t NumElements =
100     ALE ? ALE->getNumElements() : DLE->getNumElements();
101   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
102                             NumElements);
103   QualType ElementType = Context.getObjCIdType().withConst();
104   QualType ElementArrayType
105     = Context.getConstantArrayType(ElementType, APNumElements,
106                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
107 
108   // Allocate the temporary array(s).
109   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
110   llvm::Value *Keys = 0;
111   if (DLE)
112     Keys = CreateMemTemp(ElementArrayType, "keys");
113 
114   // In ARC, we may need to do extra work to keep all the keys and
115   // values alive until after the call.
116   SmallVector<llvm::Value *, 16> NeededObjects;
117   bool TrackNeededObjects =
118     (getLangOpts().ObjCAutoRefCount &&
119     CGM.getCodeGenOpts().OptimizationLevel != 0);
120 
121   // Perform the actual initialialization of the array(s).
122   for (uint64_t i = 0; i < NumElements; i++) {
123     if (ALE) {
124       // Emit the element and store it to the appropriate array slot.
125       const Expr *Rhs = ALE->getElement(i);
126       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
127                                    ElementType,
128                                    Context.getTypeAlignInChars(Rhs->getType()),
129                                    Context);
130 
131       llvm::Value *value = EmitScalarExpr(Rhs);
132       EmitStoreThroughLValue(RValue::get(value), LV, true);
133       if (TrackNeededObjects) {
134         NeededObjects.push_back(value);
135       }
136     } else {
137       // Emit the key and store it to the appropriate array slot.
138       const Expr *Key = DLE->getKeyValueElement(i).Key;
139       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
140                                       ElementType,
141                                     Context.getTypeAlignInChars(Key->getType()),
142                                       Context);
143       llvm::Value *keyValue = EmitScalarExpr(Key);
144       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
145 
146       // Emit the value and store it to the appropriate array slot.
147       const Expr *Value = DLE->getKeyValueElement(i).Value;
148       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
149                                         ElementType,
150                                   Context.getTypeAlignInChars(Value->getType()),
151                                         Context);
152       llvm::Value *valueValue = EmitScalarExpr(Value);
153       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
154       if (TrackNeededObjects) {
155         NeededObjects.push_back(keyValue);
156         NeededObjects.push_back(valueValue);
157       }
158     }
159   }
160 
161   // Generate the argument list.
162   CallArgList Args;
163   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
164   const ParmVarDecl *argDecl = *PI++;
165   QualType ArgQT = argDecl->getType().getUnqualifiedType();
166   Args.add(RValue::get(Objects), ArgQT);
167   if (DLE) {
168     argDecl = *PI++;
169     ArgQT = argDecl->getType().getUnqualifiedType();
170     Args.add(RValue::get(Keys), ArgQT);
171   }
172   argDecl = *PI;
173   ArgQT = argDecl->getType().getUnqualifiedType();
174   llvm::Value *Count =
175     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
176   Args.add(RValue::get(Count), ArgQT);
177 
178   // Generate a reference to the class pointer, which will be the receiver.
179   Selector Sel = MethodWithObjects->getSelector();
180   QualType ResultType = E->getType();
181   const ObjCObjectPointerType *InterfacePointerType
182     = ResultType->getAsObjCInterfacePointerType();
183   ObjCInterfaceDecl *Class
184     = InterfacePointerType->getObjectType()->getInterface();
185   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
186   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
187 
188   // Generate the message send.
189   RValue result
190     = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
191                                   MethodWithObjects->getResultType(),
192                                   Sel,
193                                   Receiver, Args, Class,
194                                   MethodWithObjects);
195 
196   // The above message send needs these objects, but in ARC they are
197   // passed in a buffer that is essentially __unsafe_unretained.
198   // Therefore we must prevent the optimizer from releasing them until
199   // after the call.
200   if (TrackNeededObjects) {
201     EmitARCIntrinsicUse(NeededObjects);
202   }
203 
204   return Builder.CreateBitCast(result.getScalarVal(),
205                                ConvertType(E->getType()));
206 }
207 
208 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
209   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
210 }
211 
212 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
213                                             const ObjCDictionaryLiteral *E) {
214   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
215 }
216 
217 /// Emit a selector.
218 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
219   // Untyped selector.
220   // Note that this implementation allows for non-constant strings to be passed
221   // as arguments to @selector().  Currently, the only thing preventing this
222   // behaviour is the type checking in the front end.
223   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
224 }
225 
226 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
227   // FIXME: This should pass the Decl not the name.
228   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
229 }
230 
231 /// \brief Adjust the type of the result of an Objective-C message send
232 /// expression when the method has a related result type.
233 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
234                                       QualType ExpT,
235                                       const ObjCMethodDecl *Method,
236                                       RValue Result) {
237   if (!Method)
238     return Result;
239 
240   if (!Method->hasRelatedResultType() ||
241       CGF.getContext().hasSameType(ExpT, Method->getResultType()) ||
242       !Result.isScalar())
243     return Result;
244 
245   // We have applied a related result type. Cast the rvalue appropriately.
246   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
247                                                CGF.ConvertType(ExpT)));
248 }
249 
250 /// Decide whether to extend the lifetime of the receiver of a
251 /// returns-inner-pointer message.
252 static bool
253 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
254   switch (message->getReceiverKind()) {
255 
256   // For a normal instance message, we should extend unless the
257   // receiver is loaded from a variable with precise lifetime.
258   case ObjCMessageExpr::Instance: {
259     const Expr *receiver = message->getInstanceReceiver();
260     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
261     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
262     receiver = ice->getSubExpr()->IgnoreParens();
263 
264     // Only __strong variables.
265     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
266       return true;
267 
268     // All ivars and fields have precise lifetime.
269     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
270       return false;
271 
272     // Otherwise, check for variables.
273     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
274     if (!declRef) return true;
275     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
276     if (!var) return true;
277 
278     // All variables have precise lifetime except local variables with
279     // automatic storage duration that aren't specially marked.
280     return (var->hasLocalStorage() &&
281             !var->hasAttr<ObjCPreciseLifetimeAttr>());
282   }
283 
284   case ObjCMessageExpr::Class:
285   case ObjCMessageExpr::SuperClass:
286     // It's never necessary for class objects.
287     return false;
288 
289   case ObjCMessageExpr::SuperInstance:
290     // We generally assume that 'self' lives throughout a method call.
291     return false;
292   }
293 
294   llvm_unreachable("invalid receiver kind");
295 }
296 
297 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
298                                             ReturnValueSlot Return) {
299   // Only the lookup mechanism and first two arguments of the method
300   // implementation vary between runtimes.  We can get the receiver and
301   // arguments in generic code.
302 
303   bool isDelegateInit = E->isDelegateInitCall();
304 
305   const ObjCMethodDecl *method = E->getMethodDecl();
306 
307   // We don't retain the receiver in delegate init calls, and this is
308   // safe because the receiver value is always loaded from 'self',
309   // which we zero out.  We don't want to Block_copy block receivers,
310   // though.
311   bool retainSelf =
312     (!isDelegateInit &&
313      CGM.getLangOpts().ObjCAutoRefCount &&
314      method &&
315      method->hasAttr<NSConsumesSelfAttr>());
316 
317   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
318   bool isSuperMessage = false;
319   bool isClassMessage = false;
320   ObjCInterfaceDecl *OID = 0;
321   // Find the receiver
322   QualType ReceiverType;
323   llvm::Value *Receiver = 0;
324   switch (E->getReceiverKind()) {
325   case ObjCMessageExpr::Instance:
326     ReceiverType = E->getInstanceReceiver()->getType();
327     if (retainSelf) {
328       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
329                                                    E->getInstanceReceiver());
330       Receiver = ter.getPointer();
331       if (ter.getInt()) retainSelf = false;
332     } else
333       Receiver = EmitScalarExpr(E->getInstanceReceiver());
334     break;
335 
336   case ObjCMessageExpr::Class: {
337     ReceiverType = E->getClassReceiver();
338     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
339     assert(ObjTy && "Invalid Objective-C class message send");
340     OID = ObjTy->getInterface();
341     assert(OID && "Invalid Objective-C class message send");
342     Receiver = Runtime.GetClass(*this, OID);
343     isClassMessage = true;
344     break;
345   }
346 
347   case ObjCMessageExpr::SuperInstance:
348     ReceiverType = E->getSuperType();
349     Receiver = LoadObjCSelf();
350     isSuperMessage = true;
351     break;
352 
353   case ObjCMessageExpr::SuperClass:
354     ReceiverType = E->getSuperType();
355     Receiver = LoadObjCSelf();
356     isSuperMessage = true;
357     isClassMessage = true;
358     break;
359   }
360 
361   if (retainSelf)
362     Receiver = EmitARCRetainNonBlock(Receiver);
363 
364   // In ARC, we sometimes want to "extend the lifetime"
365   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
366   // messages.
367   if (getLangOpts().ObjCAutoRefCount && method &&
368       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
369       shouldExtendReceiverForInnerPointerMessage(E))
370     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
371 
372   QualType ResultType =
373     method ? method->getResultType() : E->getType();
374 
375   CallArgList Args;
376   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
377 
378   // For delegate init calls in ARC, do an unsafe store of null into
379   // self.  This represents the call taking direct ownership of that
380   // value.  We have to do this after emitting the other call
381   // arguments because they might also reference self, but we don't
382   // have to worry about any of them modifying self because that would
383   // be an undefined read and write of an object in unordered
384   // expressions.
385   if (isDelegateInit) {
386     assert(getLangOpts().ObjCAutoRefCount &&
387            "delegate init calls should only be marked in ARC");
388 
389     // Do an unsafe store of null into self.
390     llvm::Value *selfAddr =
391       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
392     assert(selfAddr && "no self entry for a delegate init call?");
393 
394     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
395   }
396 
397   RValue result;
398   if (isSuperMessage) {
399     // super is only valid in an Objective-C method
400     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
401     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
402     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
403                                               E->getSelector(),
404                                               OMD->getClassInterface(),
405                                               isCategoryImpl,
406                                               Receiver,
407                                               isClassMessage,
408                                               Args,
409                                               method);
410   } else {
411     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
412                                          E->getSelector(),
413                                          Receiver, Args, OID,
414                                          method);
415   }
416 
417   // For delegate init calls in ARC, implicitly store the result of
418   // the call back into self.  This takes ownership of the value.
419   if (isDelegateInit) {
420     llvm::Value *selfAddr =
421       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
422     llvm::Value *newSelf = result.getScalarVal();
423 
424     // The delegate return type isn't necessarily a matching type; in
425     // fact, it's quite likely to be 'id'.
426     llvm::Type *selfTy =
427       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
428     newSelf = Builder.CreateBitCast(newSelf, selfTy);
429 
430     Builder.CreateStore(newSelf, selfAddr);
431   }
432 
433   return AdjustRelatedResultType(*this, E->getType(), method, result);
434 }
435 
436 namespace {
437 struct FinishARCDealloc : EHScopeStack::Cleanup {
438   void Emit(CodeGenFunction &CGF, Flags flags) {
439     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
440 
441     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
442     const ObjCInterfaceDecl *iface = impl->getClassInterface();
443     if (!iface->getSuperClass()) return;
444 
445     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
446 
447     // Call [super dealloc] if we have a superclass.
448     llvm::Value *self = CGF.LoadObjCSelf();
449 
450     CallArgList args;
451     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
452                                                       CGF.getContext().VoidTy,
453                                                       method->getSelector(),
454                                                       iface,
455                                                       isCategory,
456                                                       self,
457                                                       /*is class msg*/ false,
458                                                       args,
459                                                       method);
460   }
461 };
462 }
463 
464 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
465 /// the LLVM function and sets the other context used by
466 /// CodeGenFunction.
467 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
468                                       const ObjCContainerDecl *CD,
469                                       SourceLocation StartLoc) {
470   FunctionArgList args;
471   // Check if we should generate debug info for this method.
472   if (OMD->hasAttr<NoDebugAttr>())
473     DebugInfo = NULL; // disable debug info indefinitely for this function
474 
475   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
476 
477   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
478   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
479 
480   args.push_back(OMD->getSelfDecl());
481   args.push_back(OMD->getCmdDecl());
482 
483   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
484          E = OMD->param_end(); PI != E; ++PI)
485     args.push_back(*PI);
486 
487   CurGD = OMD;
488 
489   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
490 
491   // In ARC, certain methods get an extra cleanup.
492   if (CGM.getLangOpts().ObjCAutoRefCount &&
493       OMD->isInstanceMethod() &&
494       OMD->getSelector().isUnarySelector()) {
495     const IdentifierInfo *ident =
496       OMD->getSelector().getIdentifierInfoForSlot(0);
497     if (ident->isStr("dealloc"))
498       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
499   }
500 }
501 
502 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
503                                               LValue lvalue, QualType type);
504 
505 /// Generate an Objective-C method.  An Objective-C method is a C function with
506 /// its pointer, name, and types registered in the class struture.
507 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
508   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
509   assert(isa<CompoundStmt>(OMD->getBody()));
510   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
511   FinishFunction(OMD->getBodyRBrace());
512 }
513 
514 /// emitStructGetterCall - Call the runtime function to load a property
515 /// into the return value slot.
516 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
517                                  bool isAtomic, bool hasStrong) {
518   ASTContext &Context = CGF.getContext();
519 
520   llvm::Value *src =
521     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
522                           ivar, 0).getAddress();
523 
524   // objc_copyStruct (ReturnValue, &structIvar,
525   //                  sizeof (Type of Ivar), isAtomic, false);
526   CallArgList args;
527 
528   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
529   args.add(RValue::get(dest), Context.VoidPtrTy);
530 
531   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
532   args.add(RValue::get(src), Context.VoidPtrTy);
533 
534   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
535   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
536   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
537   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
538 
539   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
540   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
541                                                       FunctionType::ExtInfo(),
542                                                       RequiredArgs::All),
543                fn, ReturnValueSlot(), args);
544 }
545 
546 /// Determine whether the given architecture supports unaligned atomic
547 /// accesses.  They don't have to be fast, just faster than a function
548 /// call and a mutex.
549 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
550   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
551   // currently supported by the backend.)
552   return 0;
553 }
554 
555 /// Return the maximum size that permits atomic accesses for the given
556 /// architecture.
557 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
558                                         llvm::Triple::ArchType arch) {
559   // ARM has 8-byte atomic accesses, but it's not clear whether we
560   // want to rely on them here.
561 
562   // In the default case, just assume that any size up to a pointer is
563   // fine given adequate alignment.
564   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
565 }
566 
567 namespace {
568   class PropertyImplStrategy {
569   public:
570     enum StrategyKind {
571       /// The 'native' strategy is to use the architecture's provided
572       /// reads and writes.
573       Native,
574 
575       /// Use objc_setProperty and objc_getProperty.
576       GetSetProperty,
577 
578       /// Use objc_setProperty for the setter, but use expression
579       /// evaluation for the getter.
580       SetPropertyAndExpressionGet,
581 
582       /// Use objc_copyStruct.
583       CopyStruct,
584 
585       /// The 'expression' strategy is to emit normal assignment or
586       /// lvalue-to-rvalue expressions.
587       Expression
588     };
589 
590     StrategyKind getKind() const { return StrategyKind(Kind); }
591 
592     bool hasStrongMember() const { return HasStrong; }
593     bool isAtomic() const { return IsAtomic; }
594     bool isCopy() const { return IsCopy; }
595 
596     CharUnits getIvarSize() const { return IvarSize; }
597     CharUnits getIvarAlignment() const { return IvarAlignment; }
598 
599     PropertyImplStrategy(CodeGenModule &CGM,
600                          const ObjCPropertyImplDecl *propImpl);
601 
602   private:
603     unsigned Kind : 8;
604     unsigned IsAtomic : 1;
605     unsigned IsCopy : 1;
606     unsigned HasStrong : 1;
607 
608     CharUnits IvarSize;
609     CharUnits IvarAlignment;
610   };
611 }
612 
613 /// Pick an implementation strategy for the given property synthesis.
614 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
615                                      const ObjCPropertyImplDecl *propImpl) {
616   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
617   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
618 
619   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
620   IsAtomic = prop->isAtomic();
621   HasStrong = false; // doesn't matter here.
622 
623   // Evaluate the ivar's size and alignment.
624   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
625   QualType ivarType = ivar->getType();
626   llvm::tie(IvarSize, IvarAlignment)
627     = CGM.getContext().getTypeInfoInChars(ivarType);
628 
629   // If we have a copy property, we always have to use getProperty/setProperty.
630   // TODO: we could actually use setProperty and an expression for non-atomics.
631   if (IsCopy) {
632     Kind = GetSetProperty;
633     return;
634   }
635 
636   // Handle retain.
637   if (setterKind == ObjCPropertyDecl::Retain) {
638     // In GC-only, there's nothing special that needs to be done.
639     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
640       // fallthrough
641 
642     // In ARC, if the property is non-atomic, use expression emission,
643     // which translates to objc_storeStrong.  This isn't required, but
644     // it's slightly nicer.
645     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
646       // Using standard expression emission for the setter is only
647       // acceptable if the ivar is __strong, which won't be true if
648       // the property is annotated with __attribute__((NSObject)).
649       // TODO: falling all the way back to objc_setProperty here is
650       // just laziness, though;  we could still use objc_storeStrong
651       // if we hacked it right.
652       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
653         Kind = Expression;
654       else
655         Kind = SetPropertyAndExpressionGet;
656       return;
657 
658     // Otherwise, we need to at least use setProperty.  However, if
659     // the property isn't atomic, we can use normal expression
660     // emission for the getter.
661     } else if (!IsAtomic) {
662       Kind = SetPropertyAndExpressionGet;
663       return;
664 
665     // Otherwise, we have to use both setProperty and getProperty.
666     } else {
667       Kind = GetSetProperty;
668       return;
669     }
670   }
671 
672   // If we're not atomic, just use expression accesses.
673   if (!IsAtomic) {
674     Kind = Expression;
675     return;
676   }
677 
678   // Properties on bitfield ivars need to be emitted using expression
679   // accesses even if they're nominally atomic.
680   if (ivar->isBitField()) {
681     Kind = Expression;
682     return;
683   }
684 
685   // GC-qualified or ARC-qualified ivars need to be emitted as
686   // expressions.  This actually works out to being atomic anyway,
687   // except for ARC __strong, but that should trigger the above code.
688   if (ivarType.hasNonTrivialObjCLifetime() ||
689       (CGM.getLangOpts().getGC() &&
690        CGM.getContext().getObjCGCAttrKind(ivarType))) {
691     Kind = Expression;
692     return;
693   }
694 
695   // Compute whether the ivar has strong members.
696   if (CGM.getLangOpts().getGC())
697     if (const RecordType *recordType = ivarType->getAs<RecordType>())
698       HasStrong = recordType->getDecl()->hasObjectMember();
699 
700   // We can never access structs with object members with a native
701   // access, because we need to use write barriers.  This is what
702   // objc_copyStruct is for.
703   if (HasStrong) {
704     Kind = CopyStruct;
705     return;
706   }
707 
708   // Otherwise, this is target-dependent and based on the size and
709   // alignment of the ivar.
710 
711   // If the size of the ivar is not a power of two, give up.  We don't
712   // want to get into the business of doing compare-and-swaps.
713   if (!IvarSize.isPowerOfTwo()) {
714     Kind = CopyStruct;
715     return;
716   }
717 
718   llvm::Triple::ArchType arch =
719     CGM.getTarget().getTriple().getArch();
720 
721   // Most architectures require memory to fit within a single cache
722   // line, so the alignment has to be at least the size of the access.
723   // Otherwise we have to grab a lock.
724   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
725     Kind = CopyStruct;
726     return;
727   }
728 
729   // If the ivar's size exceeds the architecture's maximum atomic
730   // access size, we have to use CopyStruct.
731   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
732     Kind = CopyStruct;
733     return;
734   }
735 
736   // Otherwise, we can use native loads and stores.
737   Kind = Native;
738 }
739 
740 /// \brief Generate an Objective-C property getter function.
741 ///
742 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
743 /// is illegal within a category.
744 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
745                                          const ObjCPropertyImplDecl *PID) {
746   llvm::Constant *AtomicHelperFn =
747     GenerateObjCAtomicGetterCopyHelperFunction(PID);
748   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
749   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
750   assert(OMD && "Invalid call to generate getter (empty method)");
751   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
752 
753   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
754 
755   FinishFunction();
756 }
757 
758 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
759   const Expr *getter = propImpl->getGetterCXXConstructor();
760   if (!getter) return true;
761 
762   // Sema only makes only of these when the ivar has a C++ class type,
763   // so the form is pretty constrained.
764 
765   // If the property has a reference type, we might just be binding a
766   // reference, in which case the result will be a gl-value.  We should
767   // treat this as a non-trivial operation.
768   if (getter->isGLValue())
769     return false;
770 
771   // If we selected a trivial copy-constructor, we're okay.
772   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
773     return (construct->getConstructor()->isTrivial());
774 
775   // The constructor might require cleanups (in which case it's never
776   // trivial).
777   assert(isa<ExprWithCleanups>(getter));
778   return false;
779 }
780 
781 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
782 /// copy the ivar into the resturn slot.
783 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
784                                           llvm::Value *returnAddr,
785                                           ObjCIvarDecl *ivar,
786                                           llvm::Constant *AtomicHelperFn) {
787   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
788   //                           AtomicHelperFn);
789   CallArgList args;
790 
791   // The 1st argument is the return Slot.
792   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
793 
794   // The 2nd argument is the address of the ivar.
795   llvm::Value *ivarAddr =
796   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
797                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
798   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
799   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
800 
801   // Third argument is the helper function.
802   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
803 
804   llvm::Value *copyCppAtomicObjectFn =
805     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
806   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
807                                                       args,
808                                                       FunctionType::ExtInfo(),
809                                                       RequiredArgs::All),
810                copyCppAtomicObjectFn, ReturnValueSlot(), args);
811 }
812 
813 void
814 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
815                                         const ObjCPropertyImplDecl *propImpl,
816                                         const ObjCMethodDecl *GetterMethodDecl,
817                                         llvm::Constant *AtomicHelperFn) {
818   // If there's a non-trivial 'get' expression, we just have to emit that.
819   if (!hasTrivialGetExpr(propImpl)) {
820     if (!AtomicHelperFn) {
821       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
822                      /*nrvo*/ 0);
823       EmitReturnStmt(ret);
824     }
825     else {
826       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
827       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
828                                     ivar, AtomicHelperFn);
829     }
830     return;
831   }
832 
833   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
834   QualType propType = prop->getType();
835   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
836 
837   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
838 
839   // Pick an implementation strategy.
840   PropertyImplStrategy strategy(CGM, propImpl);
841   switch (strategy.getKind()) {
842   case PropertyImplStrategy::Native: {
843     // We don't need to do anything for a zero-size struct.
844     if (strategy.getIvarSize().isZero())
845       return;
846 
847     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
848 
849     // Currently, all atomic accesses have to be through integer
850     // types, so there's no point in trying to pick a prettier type.
851     llvm::Type *bitcastType =
852       llvm::Type::getIntNTy(getLLVMContext(),
853                             getContext().toBits(strategy.getIvarSize()));
854     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
855 
856     // Perform an atomic load.  This does not impose ordering constraints.
857     llvm::Value *ivarAddr = LV.getAddress();
858     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
859     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
860     load->setAlignment(strategy.getIvarAlignment().getQuantity());
861     load->setAtomic(llvm::Unordered);
862 
863     // Store that value into the return address.  Doing this with a
864     // bitcast is likely to produce some pretty ugly IR, but it's not
865     // the *most* terrible thing in the world.
866     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
867 
868     // Make sure we don't do an autorelease.
869     AutoreleaseResult = false;
870     return;
871   }
872 
873   case PropertyImplStrategy::GetSetProperty: {
874     llvm::Value *getPropertyFn =
875       CGM.getObjCRuntime().GetPropertyGetFunction();
876     if (!getPropertyFn) {
877       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
878       return;
879     }
880 
881     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
882     // FIXME: Can't this be simpler? This might even be worse than the
883     // corresponding gcc code.
884     llvm::Value *cmd =
885       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
886     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
887     llvm::Value *ivarOffset =
888       EmitIvarOffset(classImpl->getClassInterface(), ivar);
889 
890     CallArgList args;
891     args.add(RValue::get(self), getContext().getObjCIdType());
892     args.add(RValue::get(cmd), getContext().getObjCSelType());
893     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
894     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
895              getContext().BoolTy);
896 
897     // FIXME: We shouldn't need to get the function info here, the
898     // runtime already should have computed it to build the function.
899     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
900                                                        FunctionType::ExtInfo(),
901                                                             RequiredArgs::All),
902                          getPropertyFn, ReturnValueSlot(), args);
903 
904     // We need to fix the type here. Ivars with copy & retain are
905     // always objects so we don't need to worry about complex or
906     // aggregates.
907     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
908            getTypes().ConvertType(getterMethod->getResultType())));
909 
910     EmitReturnOfRValue(RV, propType);
911 
912     // objc_getProperty does an autorelease, so we should suppress ours.
913     AutoreleaseResult = false;
914 
915     return;
916   }
917 
918   case PropertyImplStrategy::CopyStruct:
919     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
920                          strategy.hasStrongMember());
921     return;
922 
923   case PropertyImplStrategy::Expression:
924   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
925     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
926 
927     QualType ivarType = ivar->getType();
928     switch (getEvaluationKind(ivarType)) {
929     case TEK_Complex: {
930       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
931       EmitStoreOfComplex(pair,
932                          MakeNaturalAlignAddrLValue(ReturnValue, ivarType),
933                          /*init*/ true);
934       return;
935     }
936     case TEK_Aggregate:
937       // The return value slot is guaranteed to not be aliased, but
938       // that's not necessarily the same as "on the stack", so
939       // we still potentially need objc_memmove_collectable.
940       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
941       return;
942     case TEK_Scalar: {
943       llvm::Value *value;
944       if (propType->isReferenceType()) {
945         value = LV.getAddress();
946       } else {
947         // We want to load and autoreleaseReturnValue ARC __weak ivars.
948         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
949           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
950 
951         // Otherwise we want to do a simple load, suppressing the
952         // final autorelease.
953         } else {
954           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
955           AutoreleaseResult = false;
956         }
957 
958         value = Builder.CreateBitCast(value, ConvertType(propType));
959         value = Builder.CreateBitCast(value,
960                   ConvertType(GetterMethodDecl->getResultType()));
961       }
962 
963       EmitReturnOfRValue(RValue::get(value), propType);
964       return;
965     }
966     }
967     llvm_unreachable("bad evaluation kind");
968   }
969 
970   }
971   llvm_unreachable("bad @property implementation strategy!");
972 }
973 
974 /// emitStructSetterCall - Call the runtime function to store the value
975 /// from the first formal parameter into the given ivar.
976 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
977                                  ObjCIvarDecl *ivar) {
978   // objc_copyStruct (&structIvar, &Arg,
979   //                  sizeof (struct something), true, false);
980   CallArgList args;
981 
982   // The first argument is the address of the ivar.
983   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
984                                                 CGF.LoadObjCSelf(), ivar, 0)
985     .getAddress();
986   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
987   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
988 
989   // The second argument is the address of the parameter variable.
990   ParmVarDecl *argVar = *OMD->param_begin();
991   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
992                      VK_LValue, SourceLocation());
993   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
994   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
995   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
996 
997   // The third argument is the sizeof the type.
998   llvm::Value *size =
999     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1000   args.add(RValue::get(size), CGF.getContext().getSizeType());
1001 
1002   // The fourth argument is the 'isAtomic' flag.
1003   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1004 
1005   // The fifth argument is the 'hasStrong' flag.
1006   // FIXME: should this really always be false?
1007   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1008 
1009   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1010   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1011                                                       args,
1012                                                       FunctionType::ExtInfo(),
1013                                                       RequiredArgs::All),
1014                copyStructFn, ReturnValueSlot(), args);
1015 }
1016 
1017 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1018 /// the value from the first formal parameter into the given ivar, using
1019 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1020 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1021                                           ObjCMethodDecl *OMD,
1022                                           ObjCIvarDecl *ivar,
1023                                           llvm::Constant *AtomicHelperFn) {
1024   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1025   //                           AtomicHelperFn);
1026   CallArgList args;
1027 
1028   // The first argument is the address of the ivar.
1029   llvm::Value *ivarAddr =
1030     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1031                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
1032   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1033   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1034 
1035   // The second argument is the address of the parameter variable.
1036   ParmVarDecl *argVar = *OMD->param_begin();
1037   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1038                      VK_LValue, SourceLocation());
1039   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1040   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1041   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1042 
1043   // Third argument is the helper function.
1044   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1045 
1046   llvm::Value *copyCppAtomicObjectFn =
1047     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1048   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1049                                                       args,
1050                                                       FunctionType::ExtInfo(),
1051                                                       RequiredArgs::All),
1052                copyCppAtomicObjectFn, ReturnValueSlot(), args);
1053 }
1054 
1055 
1056 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1057   Expr *setter = PID->getSetterCXXAssignment();
1058   if (!setter) return true;
1059 
1060   // Sema only makes only of these when the ivar has a C++ class type,
1061   // so the form is pretty constrained.
1062 
1063   // An operator call is trivial if the function it calls is trivial.
1064   // This also implies that there's nothing non-trivial going on with
1065   // the arguments, because operator= can only be trivial if it's a
1066   // synthesized assignment operator and therefore both parameters are
1067   // references.
1068   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1069     if (const FunctionDecl *callee
1070           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1071       if (callee->isTrivial())
1072         return true;
1073     return false;
1074   }
1075 
1076   assert(isa<ExprWithCleanups>(setter));
1077   return false;
1078 }
1079 
1080 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1081   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1082     return false;
1083   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1084 }
1085 
1086 void
1087 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1088                                         const ObjCPropertyImplDecl *propImpl,
1089                                         llvm::Constant *AtomicHelperFn) {
1090   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1091   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1092   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1093 
1094   // Just use the setter expression if Sema gave us one and it's
1095   // non-trivial.
1096   if (!hasTrivialSetExpr(propImpl)) {
1097     if (!AtomicHelperFn)
1098       // If non-atomic, assignment is called directly.
1099       EmitStmt(propImpl->getSetterCXXAssignment());
1100     else
1101       // If atomic, assignment is called via a locking api.
1102       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1103                                     AtomicHelperFn);
1104     return;
1105   }
1106 
1107   PropertyImplStrategy strategy(CGM, propImpl);
1108   switch (strategy.getKind()) {
1109   case PropertyImplStrategy::Native: {
1110     // We don't need to do anything for a zero-size struct.
1111     if (strategy.getIvarSize().isZero())
1112       return;
1113 
1114     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1115 
1116     LValue ivarLValue =
1117       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1118     llvm::Value *ivarAddr = ivarLValue.getAddress();
1119 
1120     // Currently, all atomic accesses have to be through integer
1121     // types, so there's no point in trying to pick a prettier type.
1122     llvm::Type *bitcastType =
1123       llvm::Type::getIntNTy(getLLVMContext(),
1124                             getContext().toBits(strategy.getIvarSize()));
1125     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1126 
1127     // Cast both arguments to the chosen operation type.
1128     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1129     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1130 
1131     // This bitcast load is likely to cause some nasty IR.
1132     llvm::Value *load = Builder.CreateLoad(argAddr);
1133 
1134     // Perform an atomic store.  There are no memory ordering requirements.
1135     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1136     store->setAlignment(strategy.getIvarAlignment().getQuantity());
1137     store->setAtomic(llvm::Unordered);
1138     return;
1139   }
1140 
1141   case PropertyImplStrategy::GetSetProperty:
1142   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1143 
1144     llvm::Value *setOptimizedPropertyFn = 0;
1145     llvm::Value *setPropertyFn = 0;
1146     if (UseOptimizedSetter(CGM)) {
1147       // 10.8 and iOS 6.0 code and GC is off
1148       setOptimizedPropertyFn =
1149         CGM.getObjCRuntime()
1150            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1151                                             strategy.isCopy());
1152       if (!setOptimizedPropertyFn) {
1153         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1154         return;
1155       }
1156     }
1157     else {
1158       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1159       if (!setPropertyFn) {
1160         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1161         return;
1162       }
1163     }
1164 
1165     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1166     //                       <is-atomic>, <is-copy>).
1167     llvm::Value *cmd =
1168       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1169     llvm::Value *self =
1170       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1171     llvm::Value *ivarOffset =
1172       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1173     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1174     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1175 
1176     CallArgList args;
1177     args.add(RValue::get(self), getContext().getObjCIdType());
1178     args.add(RValue::get(cmd), getContext().getObjCSelType());
1179     if (setOptimizedPropertyFn) {
1180       args.add(RValue::get(arg), getContext().getObjCIdType());
1181       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1182       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1183                                                   FunctionType::ExtInfo(),
1184                                                   RequiredArgs::All),
1185                setOptimizedPropertyFn, ReturnValueSlot(), args);
1186     } else {
1187       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1188       args.add(RValue::get(arg), getContext().getObjCIdType());
1189       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1190                getContext().BoolTy);
1191       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1192                getContext().BoolTy);
1193       // FIXME: We shouldn't need to get the function info here, the runtime
1194       // already should have computed it to build the function.
1195       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1196                                                   FunctionType::ExtInfo(),
1197                                                   RequiredArgs::All),
1198                setPropertyFn, ReturnValueSlot(), args);
1199     }
1200 
1201     return;
1202   }
1203 
1204   case PropertyImplStrategy::CopyStruct:
1205     emitStructSetterCall(*this, setterMethod, ivar);
1206     return;
1207 
1208   case PropertyImplStrategy::Expression:
1209     break;
1210   }
1211 
1212   // Otherwise, fake up some ASTs and emit a normal assignment.
1213   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1214   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1215                    VK_LValue, SourceLocation());
1216   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1217                             selfDecl->getType(), CK_LValueToRValue, &self,
1218                             VK_RValue);
1219   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1220                           SourceLocation(), SourceLocation(),
1221                           &selfLoad, true, true);
1222 
1223   ParmVarDecl *argDecl = *setterMethod->param_begin();
1224   QualType argType = argDecl->getType().getNonReferenceType();
1225   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1226   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1227                            argType.getUnqualifiedType(), CK_LValueToRValue,
1228                            &arg, VK_RValue);
1229 
1230   // The property type can differ from the ivar type in some situations with
1231   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1232   // The following absurdity is just to ensure well-formed IR.
1233   CastKind argCK = CK_NoOp;
1234   if (ivarRef.getType()->isObjCObjectPointerType()) {
1235     if (argLoad.getType()->isObjCObjectPointerType())
1236       argCK = CK_BitCast;
1237     else if (argLoad.getType()->isBlockPointerType())
1238       argCK = CK_BlockPointerToObjCPointerCast;
1239     else
1240       argCK = CK_CPointerToObjCPointerCast;
1241   } else if (ivarRef.getType()->isBlockPointerType()) {
1242      if (argLoad.getType()->isBlockPointerType())
1243       argCK = CK_BitCast;
1244     else
1245       argCK = CK_AnyPointerToBlockPointerCast;
1246   } else if (ivarRef.getType()->isPointerType()) {
1247     argCK = CK_BitCast;
1248   }
1249   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1250                            ivarRef.getType(), argCK, &argLoad,
1251                            VK_RValue);
1252   Expr *finalArg = &argLoad;
1253   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1254                                            argLoad.getType()))
1255     finalArg = &argCast;
1256 
1257 
1258   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1259                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1260                         SourceLocation(), false);
1261   EmitStmt(&assign);
1262 }
1263 
1264 /// \brief Generate an Objective-C property setter function.
1265 ///
1266 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1267 /// is illegal within a category.
1268 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1269                                          const ObjCPropertyImplDecl *PID) {
1270   llvm::Constant *AtomicHelperFn =
1271     GenerateObjCAtomicSetterCopyHelperFunction(PID);
1272   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1273   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1274   assert(OMD && "Invalid call to generate setter (empty method)");
1275   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
1276 
1277   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1278 
1279   FinishFunction();
1280 }
1281 
1282 namespace {
1283   struct DestroyIvar : EHScopeStack::Cleanup {
1284   private:
1285     llvm::Value *addr;
1286     const ObjCIvarDecl *ivar;
1287     CodeGenFunction::Destroyer *destroyer;
1288     bool useEHCleanupForArray;
1289   public:
1290     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1291                 CodeGenFunction::Destroyer *destroyer,
1292                 bool useEHCleanupForArray)
1293       : addr(addr), ivar(ivar), destroyer(destroyer),
1294         useEHCleanupForArray(useEHCleanupForArray) {}
1295 
1296     void Emit(CodeGenFunction &CGF, Flags flags) {
1297       LValue lvalue
1298         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1299       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1300                       flags.isForNormalCleanup() && useEHCleanupForArray);
1301     }
1302   };
1303 }
1304 
1305 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1306 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1307                                       llvm::Value *addr,
1308                                       QualType type) {
1309   llvm::Value *null = getNullForVariable(addr);
1310   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1311 }
1312 
1313 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1314                                   ObjCImplementationDecl *impl) {
1315   CodeGenFunction::RunCleanupsScope scope(CGF);
1316 
1317   llvm::Value *self = CGF.LoadObjCSelf();
1318 
1319   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1320   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1321        ivar; ivar = ivar->getNextIvar()) {
1322     QualType type = ivar->getType();
1323 
1324     // Check whether the ivar is a destructible type.
1325     QualType::DestructionKind dtorKind = type.isDestructedType();
1326     if (!dtorKind) continue;
1327 
1328     CodeGenFunction::Destroyer *destroyer = 0;
1329 
1330     // Use a call to objc_storeStrong to destroy strong ivars, for the
1331     // general benefit of the tools.
1332     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1333       destroyer = destroyARCStrongWithStore;
1334 
1335     // Otherwise use the default for the destruction kind.
1336     } else {
1337       destroyer = CGF.getDestroyer(dtorKind);
1338     }
1339 
1340     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1341 
1342     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1343                                          cleanupKind & EHCleanup);
1344   }
1345 
1346   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1347 }
1348 
1349 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1350                                                  ObjCMethodDecl *MD,
1351                                                  bool ctor) {
1352   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1353   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1354 
1355   // Emit .cxx_construct.
1356   if (ctor) {
1357     // Suppress the final autorelease in ARC.
1358     AutoreleaseResult = false;
1359 
1360     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1361            E = IMP->init_end(); B != E; ++B) {
1362       CXXCtorInitializer *IvarInit = (*B);
1363       FieldDecl *Field = IvarInit->getAnyMember();
1364       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
1365       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1366                                     LoadObjCSelf(), Ivar, 0);
1367       EmitAggExpr(IvarInit->getInit(),
1368                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1369                                           AggValueSlot::DoesNotNeedGCBarriers,
1370                                           AggValueSlot::IsNotAliased));
1371     }
1372     // constructor returns 'self'.
1373     CodeGenTypes &Types = CGM.getTypes();
1374     QualType IdTy(CGM.getContext().getObjCIdType());
1375     llvm::Value *SelfAsId =
1376       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1377     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1378 
1379   // Emit .cxx_destruct.
1380   } else {
1381     emitCXXDestructMethod(*this, IMP);
1382   }
1383   FinishFunction();
1384 }
1385 
1386 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1387   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1388   it++; it++;
1389   const ABIArgInfo &AI = it->info;
1390   // FIXME. Is this sufficient check?
1391   return (AI.getKind() == ABIArgInfo::Indirect);
1392 }
1393 
1394 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1395   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1396     return false;
1397   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1398     return FDTTy->getDecl()->hasObjectMember();
1399   return false;
1400 }
1401 
1402 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1403   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1404   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1405                   Self->getType(), VK_LValue, SourceLocation());
1406   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1407 }
1408 
1409 QualType CodeGenFunction::TypeOfSelfObject() {
1410   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1411   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1412   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1413     getContext().getCanonicalType(selfDecl->getType()));
1414   return PTy->getPointeeType();
1415 }
1416 
1417 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1418   llvm::Constant *EnumerationMutationFn =
1419     CGM.getObjCRuntime().EnumerationMutationFunction();
1420 
1421   if (!EnumerationMutationFn) {
1422     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1423     return;
1424   }
1425 
1426   CGDebugInfo *DI = getDebugInfo();
1427   if (DI)
1428     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1429 
1430   // The local variable comes into scope immediately.
1431   AutoVarEmission variable = AutoVarEmission::invalid();
1432   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1433     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1434 
1435   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1436 
1437   // Fast enumeration state.
1438   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1439   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1440   EmitNullInitialization(StatePtr, StateTy);
1441 
1442   // Number of elements in the items array.
1443   static const unsigned NumItems = 16;
1444 
1445   // Fetch the countByEnumeratingWithState:objects:count: selector.
1446   IdentifierInfo *II[] = {
1447     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1448     &CGM.getContext().Idents.get("objects"),
1449     &CGM.getContext().Idents.get("count")
1450   };
1451   Selector FastEnumSel =
1452     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1453 
1454   QualType ItemsTy =
1455     getContext().getConstantArrayType(getContext().getObjCIdType(),
1456                                       llvm::APInt(32, NumItems),
1457                                       ArrayType::Normal, 0);
1458   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1459 
1460   // Emit the collection pointer.  In ARC, we do a retain.
1461   llvm::Value *Collection;
1462   if (getLangOpts().ObjCAutoRefCount) {
1463     Collection = EmitARCRetainScalarExpr(S.getCollection());
1464 
1465     // Enter a cleanup to do the release.
1466     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1467   } else {
1468     Collection = EmitScalarExpr(S.getCollection());
1469   }
1470 
1471   // The 'continue' label needs to appear within the cleanup for the
1472   // collection object.
1473   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1474 
1475   // Send it our message:
1476   CallArgList Args;
1477 
1478   // The first argument is a temporary of the enumeration-state type.
1479   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1480 
1481   // The second argument is a temporary array with space for NumItems
1482   // pointers.  We'll actually be loading elements from the array
1483   // pointer written into the control state; this buffer is so that
1484   // collections that *aren't* backed by arrays can still queue up
1485   // batches of elements.
1486   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1487 
1488   // The third argument is the capacity of that temporary array.
1489   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1490   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1491   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1492 
1493   // Start the enumeration.
1494   RValue CountRV =
1495     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1496                                              getContext().UnsignedLongTy,
1497                                              FastEnumSel,
1498                                              Collection, Args);
1499 
1500   // The initial number of objects that were returned in the buffer.
1501   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1502 
1503   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1504   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1505 
1506   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1507 
1508   // If the limit pointer was zero to begin with, the collection is
1509   // empty; skip all this.
1510   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1511                        EmptyBB, LoopInitBB);
1512 
1513   // Otherwise, initialize the loop.
1514   EmitBlock(LoopInitBB);
1515 
1516   // Save the initial mutations value.  This is the value at an
1517   // address that was written into the state object by
1518   // countByEnumeratingWithState:objects:count:.
1519   llvm::Value *StateMutationsPtrPtr =
1520     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1521   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1522                                                       "mutationsptr");
1523 
1524   llvm::Value *initialMutations =
1525     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1526 
1527   RegionCounter Cnt = getPGORegionCounter(&S);
1528 
1529   // Start looping.  This is the point we return to whenever we have a
1530   // fresh, non-empty batch of objects.
1531   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1532   EmitBlock(LoopBodyBB);
1533   Cnt.beginRegion(Builder);
1534 
1535   // The current index into the buffer.
1536   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1537   index->addIncoming(zero, LoopInitBB);
1538 
1539   // The current buffer size.
1540   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1541   count->addIncoming(initialBufferLimit, LoopInitBB);
1542 
1543   // Check whether the mutations value has changed from where it was
1544   // at start.  StateMutationsPtr should actually be invariant between
1545   // refreshes.
1546   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1547   llvm::Value *currentMutations
1548     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1549 
1550   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1551   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1552 
1553   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1554                        WasNotMutatedBB, WasMutatedBB);
1555 
1556   // If so, call the enumeration-mutation function.
1557   EmitBlock(WasMutatedBB);
1558   llvm::Value *V =
1559     Builder.CreateBitCast(Collection,
1560                           ConvertType(getContext().getObjCIdType()));
1561   CallArgList Args2;
1562   Args2.add(RValue::get(V), getContext().getObjCIdType());
1563   // FIXME: We shouldn't need to get the function info here, the runtime already
1564   // should have computed it to build the function.
1565   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1566                                                   FunctionType::ExtInfo(),
1567                                                   RequiredArgs::All),
1568            EnumerationMutationFn, ReturnValueSlot(), Args2);
1569 
1570   // Otherwise, or if the mutation function returns, just continue.
1571   EmitBlock(WasNotMutatedBB);
1572 
1573   // Initialize the element variable.
1574   RunCleanupsScope elementVariableScope(*this);
1575   bool elementIsVariable;
1576   LValue elementLValue;
1577   QualType elementType;
1578   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1579     // Initialize the variable, in case it's a __block variable or something.
1580     EmitAutoVarInit(variable);
1581 
1582     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1583     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1584                         VK_LValue, SourceLocation());
1585     elementLValue = EmitLValue(&tempDRE);
1586     elementType = D->getType();
1587     elementIsVariable = true;
1588 
1589     if (D->isARCPseudoStrong())
1590       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1591   } else {
1592     elementLValue = LValue(); // suppress warning
1593     elementType = cast<Expr>(S.getElement())->getType();
1594     elementIsVariable = false;
1595   }
1596   llvm::Type *convertedElementType = ConvertType(elementType);
1597 
1598   // Fetch the buffer out of the enumeration state.
1599   // TODO: this pointer should actually be invariant between
1600   // refreshes, which would help us do certain loop optimizations.
1601   llvm::Value *StateItemsPtr =
1602     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1603   llvm::Value *EnumStateItems =
1604     Builder.CreateLoad(StateItemsPtr, "stateitems");
1605 
1606   // Fetch the value at the current index from the buffer.
1607   llvm::Value *CurrentItemPtr =
1608     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1609   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1610 
1611   // Cast that value to the right type.
1612   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1613                                       "currentitem");
1614 
1615   // Make sure we have an l-value.  Yes, this gets evaluated every
1616   // time through the loop.
1617   if (!elementIsVariable) {
1618     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1619     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1620   } else {
1621     EmitScalarInit(CurrentItem, elementLValue);
1622   }
1623 
1624   // If we do have an element variable, this assignment is the end of
1625   // its initialization.
1626   if (elementIsVariable)
1627     EmitAutoVarCleanups(variable);
1628 
1629   // Perform the loop body, setting up break and continue labels.
1630   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody, &Cnt));
1631   {
1632     RunCleanupsScope Scope(*this);
1633     EmitStmt(S.getBody());
1634   }
1635   BreakContinueStack.pop_back();
1636 
1637   // Destroy the element variable now.
1638   elementVariableScope.ForceCleanup();
1639 
1640   // Check whether there are more elements.
1641   EmitBlock(AfterBody.getBlock());
1642 
1643   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1644 
1645   // First we check in the local buffer.
1646   llvm::Value *indexPlusOne
1647     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1648 
1649   // TODO: We should probably model this as a "continue" for PGO
1650   // If we haven't overrun the buffer yet, we can continue.
1651   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1652                        LoopBodyBB, FetchMoreBB);
1653 
1654   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1655   count->addIncoming(count, AfterBody.getBlock());
1656 
1657   // Otherwise, we have to fetch more elements.
1658   EmitBlock(FetchMoreBB);
1659 
1660   CountRV =
1661     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1662                                              getContext().UnsignedLongTy,
1663                                              FastEnumSel,
1664                                              Collection, Args);
1665 
1666   // If we got a zero count, we're done.
1667   llvm::Value *refetchCount = CountRV.getScalarVal();
1668 
1669   // (note that the message send might split FetchMoreBB)
1670   index->addIncoming(zero, Builder.GetInsertBlock());
1671   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1672 
1673   // TODO: We should be applying PGO weights here, but this needs to handle the
1674   // branch before FetchMoreBB or we risk getting the numbers wrong.
1675   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1676                        EmptyBB, LoopBodyBB);
1677 
1678   // No more elements.
1679   EmitBlock(EmptyBB);
1680 
1681   if (!elementIsVariable) {
1682     // If the element was not a declaration, set it to be null.
1683 
1684     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1685     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1686     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1687   }
1688 
1689   if (DI)
1690     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1691 
1692   // Leave the cleanup we entered in ARC.
1693   if (getLangOpts().ObjCAutoRefCount)
1694     PopCleanupBlock();
1695 
1696   EmitBlock(LoopEnd.getBlock());
1697   // TODO: Once we calculate PGO weights above, set the region count here
1698 }
1699 
1700 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1701   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1702 }
1703 
1704 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1705   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1706 }
1707 
1708 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1709                                               const ObjCAtSynchronizedStmt &S) {
1710   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1711 }
1712 
1713 /// Produce the code for a CK_ARCProduceObject.  Just does a
1714 /// primitive retain.
1715 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1716                                                     llvm::Value *value) {
1717   return EmitARCRetain(type, value);
1718 }
1719 
1720 namespace {
1721   struct CallObjCRelease : EHScopeStack::Cleanup {
1722     CallObjCRelease(llvm::Value *object) : object(object) {}
1723     llvm::Value *object;
1724 
1725     void Emit(CodeGenFunction &CGF, Flags flags) {
1726       // Releases at the end of the full-expression are imprecise.
1727       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1728     }
1729   };
1730 }
1731 
1732 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1733 /// release at the end of the full-expression.
1734 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1735                                                     llvm::Value *object) {
1736   // If we're in a conditional branch, we need to make the cleanup
1737   // conditional.
1738   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1739   return object;
1740 }
1741 
1742 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1743                                                            llvm::Value *value) {
1744   return EmitARCRetainAutorelease(type, value);
1745 }
1746 
1747 /// Given a number of pointers, inform the optimizer that they're
1748 /// being intrinsically used up until this point in the program.
1749 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1750   llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use;
1751   if (!fn) {
1752     llvm::FunctionType *fnType =
1753       llvm::FunctionType::get(CGM.VoidTy, ArrayRef<llvm::Type*>(), true);
1754     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1755   }
1756 
1757   // This isn't really a "runtime" function, but as an intrinsic it
1758   // doesn't really matter as long as we align things up.
1759   EmitNounwindRuntimeCall(fn, values);
1760 }
1761 
1762 
1763 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1764                                                 llvm::FunctionType *type,
1765                                                 StringRef fnName) {
1766   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1767 
1768   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1769     // If the target runtime doesn't naturally support ARC, emit weak
1770     // references to the runtime support library.  We don't really
1771     // permit this to fail, but we need a particular relocation style.
1772     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1773       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1774     } else if (fnName == "objc_retain" || fnName  == "objc_release") {
1775       // If we have Native ARC, set nonlazybind attribute for these APIs for
1776       // performance.
1777       f->addFnAttr(llvm::Attribute::NonLazyBind);
1778     }
1779   }
1780 
1781   return fn;
1782 }
1783 
1784 /// Perform an operation having the signature
1785 ///   i8* (i8*)
1786 /// where a null input causes a no-op and returns null.
1787 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1788                                           llvm::Value *value,
1789                                           llvm::Constant *&fn,
1790                                           StringRef fnName,
1791                                           bool isTailCall = false) {
1792   if (isa<llvm::ConstantPointerNull>(value)) return value;
1793 
1794   if (!fn) {
1795     llvm::FunctionType *fnType =
1796       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1797     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1798   }
1799 
1800   // Cast the argument to 'id'.
1801   llvm::Type *origType = value->getType();
1802   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1803 
1804   // Call the function.
1805   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1806   if (isTailCall)
1807     call->setTailCall();
1808 
1809   // Cast the result back to the original type.
1810   return CGF.Builder.CreateBitCast(call, origType);
1811 }
1812 
1813 /// Perform an operation having the following signature:
1814 ///   i8* (i8**)
1815 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1816                                          llvm::Value *addr,
1817                                          llvm::Constant *&fn,
1818                                          StringRef fnName) {
1819   if (!fn) {
1820     llvm::FunctionType *fnType =
1821       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1822     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1823   }
1824 
1825   // Cast the argument to 'id*'.
1826   llvm::Type *origType = addr->getType();
1827   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1828 
1829   // Call the function.
1830   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr);
1831 
1832   // Cast the result back to a dereference of the original type.
1833   if (origType != CGF.Int8PtrPtrTy)
1834     result = CGF.Builder.CreateBitCast(result,
1835                         cast<llvm::PointerType>(origType)->getElementType());
1836 
1837   return result;
1838 }
1839 
1840 /// Perform an operation having the following signature:
1841 ///   i8* (i8**, i8*)
1842 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1843                                           llvm::Value *addr,
1844                                           llvm::Value *value,
1845                                           llvm::Constant *&fn,
1846                                           StringRef fnName,
1847                                           bool ignored) {
1848   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1849            == value->getType());
1850 
1851   if (!fn) {
1852     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1853 
1854     llvm::FunctionType *fnType
1855       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1856     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1857   }
1858 
1859   llvm::Type *origType = value->getType();
1860 
1861   llvm::Value *args[] = {
1862     CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy),
1863     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1864   };
1865   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1866 
1867   if (ignored) return 0;
1868 
1869   return CGF.Builder.CreateBitCast(result, origType);
1870 }
1871 
1872 /// Perform an operation having the following signature:
1873 ///   void (i8**, i8**)
1874 static void emitARCCopyOperation(CodeGenFunction &CGF,
1875                                  llvm::Value *dst,
1876                                  llvm::Value *src,
1877                                  llvm::Constant *&fn,
1878                                  StringRef fnName) {
1879   assert(dst->getType() == src->getType());
1880 
1881   if (!fn) {
1882     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1883 
1884     llvm::FunctionType *fnType
1885       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1886     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1887   }
1888 
1889   llvm::Value *args[] = {
1890     CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy),
1891     CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy)
1892   };
1893   CGF.EmitNounwindRuntimeCall(fn, args);
1894 }
1895 
1896 /// Produce the code to do a retain.  Based on the type, calls one of:
1897 ///   call i8* \@objc_retain(i8* %value)
1898 ///   call i8* \@objc_retainBlock(i8* %value)
1899 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1900   if (type->isBlockPointerType())
1901     return EmitARCRetainBlock(value, /*mandatory*/ false);
1902   else
1903     return EmitARCRetainNonBlock(value);
1904 }
1905 
1906 /// Retain the given object, with normal retain semantics.
1907 ///   call i8* \@objc_retain(i8* %value)
1908 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1909   return emitARCValueOperation(*this, value,
1910                                CGM.getARCEntrypoints().objc_retain,
1911                                "objc_retain");
1912 }
1913 
1914 /// Retain the given block, with _Block_copy semantics.
1915 ///   call i8* \@objc_retainBlock(i8* %value)
1916 ///
1917 /// \param mandatory - If false, emit the call with metadata
1918 /// indicating that it's okay for the optimizer to eliminate this call
1919 /// if it can prove that the block never escapes except down the stack.
1920 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1921                                                  bool mandatory) {
1922   llvm::Value *result
1923     = emitARCValueOperation(*this, value,
1924                             CGM.getARCEntrypoints().objc_retainBlock,
1925                             "objc_retainBlock");
1926 
1927   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1928   // tell the optimizer that it doesn't need to do this copy if the
1929   // block doesn't escape, where being passed as an argument doesn't
1930   // count as escaping.
1931   if (!mandatory && isa<llvm::Instruction>(result)) {
1932     llvm::CallInst *call
1933       = cast<llvm::CallInst>(result->stripPointerCasts());
1934     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1935 
1936     SmallVector<llvm::Value*,1> args;
1937     call->setMetadata("clang.arc.copy_on_escape",
1938                       llvm::MDNode::get(Builder.getContext(), args));
1939   }
1940 
1941   return result;
1942 }
1943 
1944 /// Retain the given object which is the result of a function call.
1945 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1946 ///
1947 /// Yes, this function name is one character away from a different
1948 /// call with completely different semantics.
1949 llvm::Value *
1950 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1951   // Fetch the void(void) inline asm which marks that we're going to
1952   // retain the autoreleased return value.
1953   llvm::InlineAsm *&marker
1954     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1955   if (!marker) {
1956     StringRef assembly
1957       = CGM.getTargetCodeGenInfo()
1958            .getARCRetainAutoreleasedReturnValueMarker();
1959 
1960     // If we have an empty assembly string, there's nothing to do.
1961     if (assembly.empty()) {
1962 
1963     // Otherwise, at -O0, build an inline asm that we're going to call
1964     // in a moment.
1965     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1966       llvm::FunctionType *type =
1967         llvm::FunctionType::get(VoidTy, /*variadic*/false);
1968 
1969       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1970 
1971     // If we're at -O1 and above, we don't want to litter the code
1972     // with this marker yet, so leave a breadcrumb for the ARC
1973     // optimizer to pick up.
1974     } else {
1975       llvm::NamedMDNode *metadata =
1976         CGM.getModule().getOrInsertNamedMetadata(
1977                             "clang.arc.retainAutoreleasedReturnValueMarker");
1978       assert(metadata->getNumOperands() <= 1);
1979       if (metadata->getNumOperands() == 0) {
1980         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1981         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1982       }
1983     }
1984   }
1985 
1986   // Call the marker asm if we made one, which we do only at -O0.
1987   if (marker) Builder.CreateCall(marker);
1988 
1989   return emitARCValueOperation(*this, value,
1990                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1991                                "objc_retainAutoreleasedReturnValue");
1992 }
1993 
1994 /// Release the given object.
1995 ///   call void \@objc_release(i8* %value)
1996 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
1997                                      ARCPreciseLifetime_t precise) {
1998   if (isa<llvm::ConstantPointerNull>(value)) return;
1999 
2000   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
2001   if (!fn) {
2002     llvm::FunctionType *fnType =
2003       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2004     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
2005   }
2006 
2007   // Cast the argument to 'id'.
2008   value = Builder.CreateBitCast(value, Int8PtrTy);
2009 
2010   // Call objc_release.
2011   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2012 
2013   if (precise == ARCImpreciseLifetime) {
2014     SmallVector<llvm::Value*,1> args;
2015     call->setMetadata("clang.imprecise_release",
2016                       llvm::MDNode::get(Builder.getContext(), args));
2017   }
2018 }
2019 
2020 /// Destroy a __strong variable.
2021 ///
2022 /// At -O0, emit a call to store 'null' into the address;
2023 /// instrumenting tools prefer this because the address is exposed,
2024 /// but it's relatively cumbersome to optimize.
2025 ///
2026 /// At -O1 and above, just load and call objc_release.
2027 ///
2028 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2029 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr,
2030                                            ARCPreciseLifetime_t precise) {
2031   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2032     llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
2033     llvm::Value *null = llvm::ConstantPointerNull::get(
2034                           cast<llvm::PointerType>(addrTy->getElementType()));
2035     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2036     return;
2037   }
2038 
2039   llvm::Value *value = Builder.CreateLoad(addr);
2040   EmitARCRelease(value, precise);
2041 }
2042 
2043 /// Store into a strong object.  Always calls this:
2044 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2045 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
2046                                                      llvm::Value *value,
2047                                                      bool ignored) {
2048   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
2049            == value->getType());
2050 
2051   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
2052   if (!fn) {
2053     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2054     llvm::FunctionType *fnType
2055       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2056     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2057   }
2058 
2059   llvm::Value *args[] = {
2060     Builder.CreateBitCast(addr, Int8PtrPtrTy),
2061     Builder.CreateBitCast(value, Int8PtrTy)
2062   };
2063   EmitNounwindRuntimeCall(fn, args);
2064 
2065   if (ignored) return 0;
2066   return value;
2067 }
2068 
2069 /// Store into a strong object.  Sometimes calls this:
2070 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2071 /// Other times, breaks it down into components.
2072 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2073                                                  llvm::Value *newValue,
2074                                                  bool ignored) {
2075   QualType type = dst.getType();
2076   bool isBlock = type->isBlockPointerType();
2077 
2078   // Use a store barrier at -O0 unless this is a block type or the
2079   // lvalue is inadequately aligned.
2080   if (shouldUseFusedARCCalls() &&
2081       !isBlock &&
2082       (dst.getAlignment().isZero() ||
2083        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2084     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2085   }
2086 
2087   // Otherwise, split it out.
2088 
2089   // Retain the new value.
2090   newValue = EmitARCRetain(type, newValue);
2091 
2092   // Read the old value.
2093   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2094 
2095   // Store.  We do this before the release so that any deallocs won't
2096   // see the old value.
2097   EmitStoreOfScalar(newValue, dst);
2098 
2099   // Finally, release the old value.
2100   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2101 
2102   return newValue;
2103 }
2104 
2105 /// Autorelease the given object.
2106 ///   call i8* \@objc_autorelease(i8* %value)
2107 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2108   return emitARCValueOperation(*this, value,
2109                                CGM.getARCEntrypoints().objc_autorelease,
2110                                "objc_autorelease");
2111 }
2112 
2113 /// Autorelease the given object.
2114 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2115 llvm::Value *
2116 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2117   return emitARCValueOperation(*this, value,
2118                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2119                                "objc_autoreleaseReturnValue",
2120                                /*isTailCall*/ true);
2121 }
2122 
2123 /// Do a fused retain/autorelease of the given object.
2124 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2125 llvm::Value *
2126 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2127   return emitARCValueOperation(*this, value,
2128                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2129                                "objc_retainAutoreleaseReturnValue",
2130                                /*isTailCall*/ true);
2131 }
2132 
2133 /// Do a fused retain/autorelease of the given object.
2134 ///   call i8* \@objc_retainAutorelease(i8* %value)
2135 /// or
2136 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2137 ///   call i8* \@objc_autorelease(i8* %retain)
2138 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2139                                                        llvm::Value *value) {
2140   if (!type->isBlockPointerType())
2141     return EmitARCRetainAutoreleaseNonBlock(value);
2142 
2143   if (isa<llvm::ConstantPointerNull>(value)) return value;
2144 
2145   llvm::Type *origType = value->getType();
2146   value = Builder.CreateBitCast(value, Int8PtrTy);
2147   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2148   value = EmitARCAutorelease(value);
2149   return Builder.CreateBitCast(value, origType);
2150 }
2151 
2152 /// Do a fused retain/autorelease of the given object.
2153 ///   call i8* \@objc_retainAutorelease(i8* %value)
2154 llvm::Value *
2155 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2156   return emitARCValueOperation(*this, value,
2157                                CGM.getARCEntrypoints().objc_retainAutorelease,
2158                                "objc_retainAutorelease");
2159 }
2160 
2161 /// i8* \@objc_loadWeak(i8** %addr)
2162 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2163 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2164   return emitARCLoadOperation(*this, addr,
2165                               CGM.getARCEntrypoints().objc_loadWeak,
2166                               "objc_loadWeak");
2167 }
2168 
2169 /// i8* \@objc_loadWeakRetained(i8** %addr)
2170 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2171   return emitARCLoadOperation(*this, addr,
2172                               CGM.getARCEntrypoints().objc_loadWeakRetained,
2173                               "objc_loadWeakRetained");
2174 }
2175 
2176 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2177 /// Returns %value.
2178 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2179                                                llvm::Value *value,
2180                                                bool ignored) {
2181   return emitARCStoreOperation(*this, addr, value,
2182                                CGM.getARCEntrypoints().objc_storeWeak,
2183                                "objc_storeWeak", ignored);
2184 }
2185 
2186 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2187 /// Returns %value.  %addr is known to not have a current weak entry.
2188 /// Essentially equivalent to:
2189 ///   *addr = nil; objc_storeWeak(addr, value);
2190 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2191   // If we're initializing to null, just write null to memory; no need
2192   // to get the runtime involved.  But don't do this if optimization
2193   // is enabled, because accounting for this would make the optimizer
2194   // much more complicated.
2195   if (isa<llvm::ConstantPointerNull>(value) &&
2196       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2197     Builder.CreateStore(value, addr);
2198     return;
2199   }
2200 
2201   emitARCStoreOperation(*this, addr, value,
2202                         CGM.getARCEntrypoints().objc_initWeak,
2203                         "objc_initWeak", /*ignored*/ true);
2204 }
2205 
2206 /// void \@objc_destroyWeak(i8** %addr)
2207 /// Essentially objc_storeWeak(addr, nil).
2208 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2209   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2210   if (!fn) {
2211     llvm::FunctionType *fnType =
2212       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2213     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2214   }
2215 
2216   // Cast the argument to 'id*'.
2217   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2218 
2219   EmitNounwindRuntimeCall(fn, addr);
2220 }
2221 
2222 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2223 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2224 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2225 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2226   emitARCCopyOperation(*this, dst, src,
2227                        CGM.getARCEntrypoints().objc_moveWeak,
2228                        "objc_moveWeak");
2229 }
2230 
2231 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2232 /// Disregards the current value in %dest.  Essentially
2233 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2234 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2235   emitARCCopyOperation(*this, dst, src,
2236                        CGM.getARCEntrypoints().objc_copyWeak,
2237                        "objc_copyWeak");
2238 }
2239 
2240 /// Produce the code to do a objc_autoreleasepool_push.
2241 ///   call i8* \@objc_autoreleasePoolPush(void)
2242 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2243   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2244   if (!fn) {
2245     llvm::FunctionType *fnType =
2246       llvm::FunctionType::get(Int8PtrTy, false);
2247     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2248   }
2249 
2250   return EmitNounwindRuntimeCall(fn);
2251 }
2252 
2253 /// Produce the code to do a primitive release.
2254 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2255 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2256   assert(value->getType() == Int8PtrTy);
2257 
2258   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2259   if (!fn) {
2260     llvm::FunctionType *fnType =
2261       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2262 
2263     // We don't want to use a weak import here; instead we should not
2264     // fall into this path.
2265     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2266   }
2267 
2268   // objc_autoreleasePoolPop can throw.
2269   EmitRuntimeCallOrInvoke(fn, value);
2270 }
2271 
2272 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2273 /// Which is: [[NSAutoreleasePool alloc] init];
2274 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2275 /// init is declared as: - (id) init; in its NSObject super class.
2276 ///
2277 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2278   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2279   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2280   // [NSAutoreleasePool alloc]
2281   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2282   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2283   CallArgList Args;
2284   RValue AllocRV =
2285     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2286                                 getContext().getObjCIdType(),
2287                                 AllocSel, Receiver, Args);
2288 
2289   // [Receiver init]
2290   Receiver = AllocRV.getScalarVal();
2291   II = &CGM.getContext().Idents.get("init");
2292   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2293   RValue InitRV =
2294     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2295                                 getContext().getObjCIdType(),
2296                                 InitSel, Receiver, Args);
2297   return InitRV.getScalarVal();
2298 }
2299 
2300 /// Produce the code to do a primitive release.
2301 /// [tmp drain];
2302 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2303   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2304   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2305   CallArgList Args;
2306   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2307                               getContext().VoidTy, DrainSel, Arg, Args);
2308 }
2309 
2310 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2311                                               llvm::Value *addr,
2312                                               QualType type) {
2313   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2314 }
2315 
2316 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2317                                                 llvm::Value *addr,
2318                                                 QualType type) {
2319   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2320 }
2321 
2322 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2323                                      llvm::Value *addr,
2324                                      QualType type) {
2325   CGF.EmitARCDestroyWeak(addr);
2326 }
2327 
2328 namespace {
2329   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2330     llvm::Value *Token;
2331 
2332     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2333 
2334     void Emit(CodeGenFunction &CGF, Flags flags) {
2335       CGF.EmitObjCAutoreleasePoolPop(Token);
2336     }
2337   };
2338   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2339     llvm::Value *Token;
2340 
2341     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2342 
2343     void Emit(CodeGenFunction &CGF, Flags flags) {
2344       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2345     }
2346   };
2347 }
2348 
2349 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2350   if (CGM.getLangOpts().ObjCAutoRefCount)
2351     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2352   else
2353     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2354 }
2355 
2356 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2357                                                   LValue lvalue,
2358                                                   QualType type) {
2359   switch (type.getObjCLifetime()) {
2360   case Qualifiers::OCL_None:
2361   case Qualifiers::OCL_ExplicitNone:
2362   case Qualifiers::OCL_Strong:
2363   case Qualifiers::OCL_Autoreleasing:
2364     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2365                                               SourceLocation()).getScalarVal(),
2366                          false);
2367 
2368   case Qualifiers::OCL_Weak:
2369     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2370                          true);
2371   }
2372 
2373   llvm_unreachable("impossible lifetime!");
2374 }
2375 
2376 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2377                                                   const Expr *e) {
2378   e = e->IgnoreParens();
2379   QualType type = e->getType();
2380 
2381   // If we're loading retained from a __strong xvalue, we can avoid
2382   // an extra retain/release pair by zeroing out the source of this
2383   // "move" operation.
2384   if (e->isXValue() &&
2385       !type.isConstQualified() &&
2386       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2387     // Emit the lvalue.
2388     LValue lv = CGF.EmitLValue(e);
2389 
2390     // Load the object pointer.
2391     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2392                                                SourceLocation()).getScalarVal();
2393 
2394     // Set the source pointer to NULL.
2395     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2396 
2397     return TryEmitResult(result, true);
2398   }
2399 
2400   // As a very special optimization, in ARC++, if the l-value is the
2401   // result of a non-volatile assignment, do a simple retain of the
2402   // result of the call to objc_storeWeak instead of reloading.
2403   if (CGF.getLangOpts().CPlusPlus &&
2404       !type.isVolatileQualified() &&
2405       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2406       isa<BinaryOperator>(e) &&
2407       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2408     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2409 
2410   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2411 }
2412 
2413 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2414                                            llvm::Value *value);
2415 
2416 /// Given that the given expression is some sort of call (which does
2417 /// not return retained), emit a retain following it.
2418 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2419   llvm::Value *value = CGF.EmitScalarExpr(e);
2420   return emitARCRetainAfterCall(CGF, value);
2421 }
2422 
2423 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2424                                            llvm::Value *value) {
2425   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2426     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2427 
2428     // Place the retain immediately following the call.
2429     CGF.Builder.SetInsertPoint(call->getParent(),
2430                                ++llvm::BasicBlock::iterator(call));
2431     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2432 
2433     CGF.Builder.restoreIP(ip);
2434     return value;
2435   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2436     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2437 
2438     // Place the retain at the beginning of the normal destination block.
2439     llvm::BasicBlock *BB = invoke->getNormalDest();
2440     CGF.Builder.SetInsertPoint(BB, BB->begin());
2441     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2442 
2443     CGF.Builder.restoreIP(ip);
2444     return value;
2445 
2446   // Bitcasts can arise because of related-result returns.  Rewrite
2447   // the operand.
2448   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2449     llvm::Value *operand = bitcast->getOperand(0);
2450     operand = emitARCRetainAfterCall(CGF, operand);
2451     bitcast->setOperand(0, operand);
2452     return bitcast;
2453 
2454   // Generic fall-back case.
2455   } else {
2456     // Retain using the non-block variant: we never need to do a copy
2457     // of a block that's been returned to us.
2458     return CGF.EmitARCRetainNonBlock(value);
2459   }
2460 }
2461 
2462 /// Determine whether it might be important to emit a separate
2463 /// objc_retain_block on the result of the given expression, or
2464 /// whether it's okay to just emit it in a +1 context.
2465 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2466   assert(e->getType()->isBlockPointerType());
2467   e = e->IgnoreParens();
2468 
2469   // For future goodness, emit block expressions directly in +1
2470   // contexts if we can.
2471   if (isa<BlockExpr>(e))
2472     return false;
2473 
2474   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2475     switch (cast->getCastKind()) {
2476     // Emitting these operations in +1 contexts is goodness.
2477     case CK_LValueToRValue:
2478     case CK_ARCReclaimReturnedObject:
2479     case CK_ARCConsumeObject:
2480     case CK_ARCProduceObject:
2481       return false;
2482 
2483     // These operations preserve a block type.
2484     case CK_NoOp:
2485     case CK_BitCast:
2486       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2487 
2488     // These operations are known to be bad (or haven't been considered).
2489     case CK_AnyPointerToBlockPointerCast:
2490     default:
2491       return true;
2492     }
2493   }
2494 
2495   return true;
2496 }
2497 
2498 /// Try to emit a PseudoObjectExpr at +1.
2499 ///
2500 /// This massively duplicates emitPseudoObjectRValue.
2501 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2502                                                   const PseudoObjectExpr *E) {
2503   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2504 
2505   // Find the result expression.
2506   const Expr *resultExpr = E->getResultExpr();
2507   assert(resultExpr);
2508   TryEmitResult result;
2509 
2510   for (PseudoObjectExpr::const_semantics_iterator
2511          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2512     const Expr *semantic = *i;
2513 
2514     // If this semantic expression is an opaque value, bind it
2515     // to the result of its source expression.
2516     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2517       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2518       OVMA opaqueData;
2519 
2520       // If this semantic is the result of the pseudo-object
2521       // expression, try to evaluate the source as +1.
2522       if (ov == resultExpr) {
2523         assert(!OVMA::shouldBindAsLValue(ov));
2524         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2525         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2526 
2527       // Otherwise, just bind it.
2528       } else {
2529         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2530       }
2531       opaques.push_back(opaqueData);
2532 
2533     // Otherwise, if the expression is the result, evaluate it
2534     // and remember the result.
2535     } else if (semantic == resultExpr) {
2536       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2537 
2538     // Otherwise, evaluate the expression in an ignored context.
2539     } else {
2540       CGF.EmitIgnoredExpr(semantic);
2541     }
2542   }
2543 
2544   // Unbind all the opaques now.
2545   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2546     opaques[i].unbind(CGF);
2547 
2548   return result;
2549 }
2550 
2551 static TryEmitResult
2552 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2553   // We should *never* see a nested full-expression here, because if
2554   // we fail to emit at +1, our caller must not retain after we close
2555   // out the full-expression.
2556   assert(!isa<ExprWithCleanups>(e));
2557 
2558   // The desired result type, if it differs from the type of the
2559   // ultimate opaque expression.
2560   llvm::Type *resultType = 0;
2561 
2562   while (true) {
2563     e = e->IgnoreParens();
2564 
2565     // There's a break at the end of this if-chain;  anything
2566     // that wants to keep looping has to explicitly continue.
2567     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2568       switch (ce->getCastKind()) {
2569       // No-op casts don't change the type, so we just ignore them.
2570       case CK_NoOp:
2571         e = ce->getSubExpr();
2572         continue;
2573 
2574       case CK_LValueToRValue: {
2575         TryEmitResult loadResult
2576           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2577         if (resultType) {
2578           llvm::Value *value = loadResult.getPointer();
2579           value = CGF.Builder.CreateBitCast(value, resultType);
2580           loadResult.setPointer(value);
2581         }
2582         return loadResult;
2583       }
2584 
2585       // These casts can change the type, so remember that and
2586       // soldier on.  We only need to remember the outermost such
2587       // cast, though.
2588       case CK_CPointerToObjCPointerCast:
2589       case CK_BlockPointerToObjCPointerCast:
2590       case CK_AnyPointerToBlockPointerCast:
2591       case CK_BitCast:
2592         if (!resultType)
2593           resultType = CGF.ConvertType(ce->getType());
2594         e = ce->getSubExpr();
2595         assert(e->getType()->hasPointerRepresentation());
2596         continue;
2597 
2598       // For consumptions, just emit the subexpression and thus elide
2599       // the retain/release pair.
2600       case CK_ARCConsumeObject: {
2601         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2602         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2603         return TryEmitResult(result, true);
2604       }
2605 
2606       // Block extends are net +0.  Naively, we could just recurse on
2607       // the subexpression, but actually we need to ensure that the
2608       // value is copied as a block, so there's a little filter here.
2609       case CK_ARCExtendBlockObject: {
2610         llvm::Value *result; // will be a +0 value
2611 
2612         // If we can't safely assume the sub-expression will produce a
2613         // block-copied value, emit the sub-expression at +0.
2614         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2615           result = CGF.EmitScalarExpr(ce->getSubExpr());
2616 
2617         // Otherwise, try to emit the sub-expression at +1 recursively.
2618         } else {
2619           TryEmitResult subresult
2620             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2621           result = subresult.getPointer();
2622 
2623           // If that produced a retained value, just use that,
2624           // possibly casting down.
2625           if (subresult.getInt()) {
2626             if (resultType)
2627               result = CGF.Builder.CreateBitCast(result, resultType);
2628             return TryEmitResult(result, true);
2629           }
2630 
2631           // Otherwise it's +0.
2632         }
2633 
2634         // Retain the object as a block, then cast down.
2635         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2636         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2637         return TryEmitResult(result, true);
2638       }
2639 
2640       // For reclaims, emit the subexpression as a retained call and
2641       // skip the consumption.
2642       case CK_ARCReclaimReturnedObject: {
2643         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2644         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2645         return TryEmitResult(result, true);
2646       }
2647 
2648       default:
2649         break;
2650       }
2651 
2652     // Skip __extension__.
2653     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2654       if (op->getOpcode() == UO_Extension) {
2655         e = op->getSubExpr();
2656         continue;
2657       }
2658 
2659     // For calls and message sends, use the retained-call logic.
2660     // Delegate inits are a special case in that they're the only
2661     // returns-retained expression that *isn't* surrounded by
2662     // a consume.
2663     } else if (isa<CallExpr>(e) ||
2664                (isa<ObjCMessageExpr>(e) &&
2665                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2666       llvm::Value *result = emitARCRetainCall(CGF, e);
2667       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2668       return TryEmitResult(result, true);
2669 
2670     // Look through pseudo-object expressions.
2671     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2672       TryEmitResult result
2673         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2674       if (resultType) {
2675         llvm::Value *value = result.getPointer();
2676         value = CGF.Builder.CreateBitCast(value, resultType);
2677         result.setPointer(value);
2678       }
2679       return result;
2680     }
2681 
2682     // Conservatively halt the search at any other expression kind.
2683     break;
2684   }
2685 
2686   // We didn't find an obvious production, so emit what we've got and
2687   // tell the caller that we didn't manage to retain.
2688   llvm::Value *result = CGF.EmitScalarExpr(e);
2689   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2690   return TryEmitResult(result, false);
2691 }
2692 
2693 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2694                                                 LValue lvalue,
2695                                                 QualType type) {
2696   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2697   llvm::Value *value = result.getPointer();
2698   if (!result.getInt())
2699     value = CGF.EmitARCRetain(type, value);
2700   return value;
2701 }
2702 
2703 /// EmitARCRetainScalarExpr - Semantically equivalent to
2704 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2705 /// best-effort attempt to peephole expressions that naturally produce
2706 /// retained objects.
2707 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2708   // The retain needs to happen within the full-expression.
2709   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2710     enterFullExpression(cleanups);
2711     RunCleanupsScope scope(*this);
2712     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2713   }
2714 
2715   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2716   llvm::Value *value = result.getPointer();
2717   if (!result.getInt())
2718     value = EmitARCRetain(e->getType(), value);
2719   return value;
2720 }
2721 
2722 llvm::Value *
2723 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2724   // The retain needs to happen within the full-expression.
2725   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2726     enterFullExpression(cleanups);
2727     RunCleanupsScope scope(*this);
2728     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2729   }
2730 
2731   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2732   llvm::Value *value = result.getPointer();
2733   if (result.getInt())
2734     value = EmitARCAutorelease(value);
2735   else
2736     value = EmitARCRetainAutorelease(e->getType(), value);
2737   return value;
2738 }
2739 
2740 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2741   llvm::Value *result;
2742   bool doRetain;
2743 
2744   if (shouldEmitSeparateBlockRetain(e)) {
2745     result = EmitScalarExpr(e);
2746     doRetain = true;
2747   } else {
2748     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2749     result = subresult.getPointer();
2750     doRetain = !subresult.getInt();
2751   }
2752 
2753   if (doRetain)
2754     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2755   return EmitObjCConsumeObject(e->getType(), result);
2756 }
2757 
2758 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2759   // In ARC, retain and autorelease the expression.
2760   if (getLangOpts().ObjCAutoRefCount) {
2761     // Do so before running any cleanups for the full-expression.
2762     // EmitARCRetainAutoreleaseScalarExpr does this for us.
2763     return EmitARCRetainAutoreleaseScalarExpr(expr);
2764   }
2765 
2766   // Otherwise, use the normal scalar-expression emission.  The
2767   // exception machinery doesn't do anything special with the
2768   // exception like retaining it, so there's no safety associated with
2769   // only running cleanups after the throw has started, and when it
2770   // matters it tends to be substantially inferior code.
2771   return EmitScalarExpr(expr);
2772 }
2773 
2774 std::pair<LValue,llvm::Value*>
2775 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2776                                     bool ignored) {
2777   // Evaluate the RHS first.
2778   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2779   llvm::Value *value = result.getPointer();
2780 
2781   bool hasImmediateRetain = result.getInt();
2782 
2783   // If we didn't emit a retained object, and the l-value is of block
2784   // type, then we need to emit the block-retain immediately in case
2785   // it invalidates the l-value.
2786   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2787     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2788     hasImmediateRetain = true;
2789   }
2790 
2791   LValue lvalue = EmitLValue(e->getLHS());
2792 
2793   // If the RHS was emitted retained, expand this.
2794   if (hasImmediateRetain) {
2795     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
2796     EmitStoreOfScalar(value, lvalue);
2797     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
2798   } else {
2799     value = EmitARCStoreStrong(lvalue, value, ignored);
2800   }
2801 
2802   return std::pair<LValue,llvm::Value*>(lvalue, value);
2803 }
2804 
2805 std::pair<LValue,llvm::Value*>
2806 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2807   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2808   LValue lvalue = EmitLValue(e->getLHS());
2809 
2810   EmitStoreOfScalar(value, lvalue);
2811 
2812   return std::pair<LValue,llvm::Value*>(lvalue, value);
2813 }
2814 
2815 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2816                                           const ObjCAutoreleasePoolStmt &ARPS) {
2817   const Stmt *subStmt = ARPS.getSubStmt();
2818   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2819 
2820   CGDebugInfo *DI = getDebugInfo();
2821   if (DI)
2822     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2823 
2824   // Keep track of the current cleanup stack depth.
2825   RunCleanupsScope Scope(*this);
2826   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2827     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2828     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2829   } else {
2830     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2831     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2832   }
2833 
2834   for (CompoundStmt::const_body_iterator I = S.body_begin(),
2835        E = S.body_end(); I != E; ++I)
2836     EmitStmt(*I);
2837 
2838   if (DI)
2839     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2840 }
2841 
2842 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2843 /// make sure it survives garbage collection until this point.
2844 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2845   // We just use an inline assembly.
2846   llvm::FunctionType *extenderType
2847     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2848   llvm::Value *extender
2849     = llvm::InlineAsm::get(extenderType,
2850                            /* assembly */ "",
2851                            /* constraints */ "r",
2852                            /* side effects */ true);
2853 
2854   object = Builder.CreateBitCast(object, VoidPtrTy);
2855   EmitNounwindRuntimeCall(extender, object);
2856 }
2857 
2858 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2859 /// non-trivial copy assignment function, produce following helper function.
2860 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2861 ///
2862 llvm::Constant *
2863 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2864                                         const ObjCPropertyImplDecl *PID) {
2865   if (!getLangOpts().CPlusPlus ||
2866       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2867     return 0;
2868   QualType Ty = PID->getPropertyIvarDecl()->getType();
2869   if (!Ty->isRecordType())
2870     return 0;
2871   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2872   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2873     return 0;
2874   llvm::Constant * HelperFn = 0;
2875   if (hasTrivialSetExpr(PID))
2876     return 0;
2877   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2878   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2879     return HelperFn;
2880 
2881   ASTContext &C = getContext();
2882   IdentifierInfo *II
2883     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2884   FunctionDecl *FD = FunctionDecl::Create(C,
2885                                           C.getTranslationUnitDecl(),
2886                                           SourceLocation(),
2887                                           SourceLocation(), II, C.VoidTy, 0,
2888                                           SC_Static,
2889                                           false,
2890                                           false);
2891 
2892   QualType DestTy = C.getPointerType(Ty);
2893   QualType SrcTy = Ty;
2894   SrcTy.addConst();
2895   SrcTy = C.getPointerType(SrcTy);
2896 
2897   FunctionArgList args;
2898   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2899   args.push_back(&dstDecl);
2900   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2901   args.push_back(&srcDecl);
2902 
2903   const CGFunctionInfo &FI =
2904     CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2905                                               FunctionType::ExtInfo(),
2906                                               RequiredArgs::All);
2907 
2908   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2909 
2910   llvm::Function *Fn =
2911     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2912                            "__assign_helper_atomic_property_",
2913                            &CGM.getModule());
2914 
2915   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2916 
2917   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2918                       VK_RValue, SourceLocation());
2919   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2920                     VK_LValue, OK_Ordinary, SourceLocation());
2921 
2922   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2923                       VK_RValue, SourceLocation());
2924   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2925                     VK_LValue, OK_Ordinary, SourceLocation());
2926 
2927   Expr *Args[2] = { &DST, &SRC };
2928   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2929   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2930                               Args, DestTy->getPointeeType(),
2931                               VK_LValue, SourceLocation(), false);
2932 
2933   EmitStmt(&TheCall);
2934 
2935   FinishFunction();
2936   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2937   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2938   return HelperFn;
2939 }
2940 
2941 llvm::Constant *
2942 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2943                                             const ObjCPropertyImplDecl *PID) {
2944   if (!getLangOpts().CPlusPlus ||
2945       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2946     return 0;
2947   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2948   QualType Ty = PD->getType();
2949   if (!Ty->isRecordType())
2950     return 0;
2951   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2952     return 0;
2953   llvm::Constant * HelperFn = 0;
2954 
2955   if (hasTrivialGetExpr(PID))
2956     return 0;
2957   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2958   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2959     return HelperFn;
2960 
2961 
2962   ASTContext &C = getContext();
2963   IdentifierInfo *II
2964   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2965   FunctionDecl *FD = FunctionDecl::Create(C,
2966                                           C.getTranslationUnitDecl(),
2967                                           SourceLocation(),
2968                                           SourceLocation(), II, C.VoidTy, 0,
2969                                           SC_Static,
2970                                           false,
2971                                           false);
2972 
2973   QualType DestTy = C.getPointerType(Ty);
2974   QualType SrcTy = Ty;
2975   SrcTy.addConst();
2976   SrcTy = C.getPointerType(SrcTy);
2977 
2978   FunctionArgList args;
2979   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2980   args.push_back(&dstDecl);
2981   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2982   args.push_back(&srcDecl);
2983 
2984   const CGFunctionInfo &FI =
2985   CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2986                                             FunctionType::ExtInfo(),
2987                                             RequiredArgs::All);
2988 
2989   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2990 
2991   llvm::Function *Fn =
2992   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2993                          "__copy_helper_atomic_property_", &CGM.getModule());
2994 
2995   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2996 
2997   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2998                       VK_RValue, SourceLocation());
2999 
3000   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3001                     VK_LValue, OK_Ordinary, SourceLocation());
3002 
3003   CXXConstructExpr *CXXConstExpr =
3004     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3005 
3006   SmallVector<Expr*, 4> ConstructorArgs;
3007   ConstructorArgs.push_back(&SRC);
3008   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
3009   ++A;
3010 
3011   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
3012        A != AEnd; ++A)
3013     ConstructorArgs.push_back(*A);
3014 
3015   CXXConstructExpr *TheCXXConstructExpr =
3016     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3017                              CXXConstExpr->getConstructor(),
3018                              CXXConstExpr->isElidable(),
3019                              ConstructorArgs,
3020                              CXXConstExpr->hadMultipleCandidates(),
3021                              CXXConstExpr->isListInitialization(),
3022                              CXXConstExpr->requiresZeroInitialization(),
3023                              CXXConstExpr->getConstructionKind(),
3024                              SourceRange());
3025 
3026   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3027                       VK_RValue, SourceLocation());
3028 
3029   RValue DV = EmitAnyExpr(&DstExpr);
3030   CharUnits Alignment
3031     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3032   EmitAggExpr(TheCXXConstructExpr,
3033               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
3034                                     AggValueSlot::IsDestructed,
3035                                     AggValueSlot::DoesNotNeedGCBarriers,
3036                                     AggValueSlot::IsNotAliased));
3037 
3038   FinishFunction();
3039   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3040   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3041   return HelperFn;
3042 }
3043 
3044 llvm::Value *
3045 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3046   // Get selectors for retain/autorelease.
3047   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3048   Selector CopySelector =
3049       getContext().Selectors.getNullarySelector(CopyID);
3050   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3051   Selector AutoreleaseSelector =
3052       getContext().Selectors.getNullarySelector(AutoreleaseID);
3053 
3054   // Emit calls to retain/autorelease.
3055   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3056   llvm::Value *Val = Block;
3057   RValue Result;
3058   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3059                                        Ty, CopySelector,
3060                                        Val, CallArgList(), 0, 0);
3061   Val = Result.getScalarVal();
3062   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3063                                        Ty, AutoreleaseSelector,
3064                                        Val, CallArgList(), 0, 0);
3065   Val = Result.getScalarVal();
3066   return Val;
3067 }
3068 
3069 
3070 CGObjCRuntime::~CGObjCRuntime() {}
3071