1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 35 QualType ET, 36 const ObjCMethodDecl *Method, 37 RValue Result); 38 39 /// Given the address of a variable of pointer type, find the correct 40 /// null to store into it. 41 static llvm::Constant *getNullForVariable(llvm::Value *addr) { 42 llvm::Type *type = 43 cast<llvm::PointerType>(addr->getType())->getElementType(); 44 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 45 } 46 47 /// Emits an instance of NSConstantString representing the object. 48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 49 { 50 llvm::Constant *C = 51 CGM.getObjCRuntime().GenerateConstantString(E->getString()); 52 // FIXME: This bitcast should just be made an invariant on the Runtime. 53 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 54 } 55 56 /// EmitObjCBoxedExpr - This routine generates code to call 57 /// the appropriate expression boxing method. This will either be 58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:]. 59 /// 60 llvm::Value * 61 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 62 // Generate the correct selector for this literal's concrete type. 63 const Expr *SubExpr = E->getSubExpr(); 64 // Get the method. 65 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 66 assert(BoxingMethod && "BoxingMethod is null"); 67 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 68 Selector Sel = BoxingMethod->getSelector(); 69 70 // Generate a reference to the class pointer, which will be the receiver. 71 // Assumes that the method was introduced in the class that should be 72 // messaged (avoids pulling it out of the result type). 73 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 74 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 75 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 76 77 const ParmVarDecl *argDecl = *BoxingMethod->param_begin(); 78 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 79 RValue RV = EmitAnyExpr(SubExpr); 80 CallArgList Args; 81 Args.add(RV, ArgQT); 82 83 RValue result = Runtime.GenerateMessageSend( 84 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 85 Args, ClassDecl, BoxingMethod); 86 return Builder.CreateBitCast(result.getScalarVal(), 87 ConvertType(E->getType())); 88 } 89 90 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 91 const ObjCMethodDecl *MethodWithObjects, 92 const ObjCMethodDecl *AllocMethod) { 93 ASTContext &Context = CGM.getContext(); 94 const ObjCDictionaryLiteral *DLE = nullptr; 95 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 96 if (!ALE) 97 DLE = cast<ObjCDictionaryLiteral>(E); 98 99 // Compute the type of the array we're initializing. 100 uint64_t NumElements = 101 ALE ? ALE->getNumElements() : DLE->getNumElements(); 102 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 103 NumElements); 104 QualType ElementType = Context.getObjCIdType().withConst(); 105 QualType ElementArrayType 106 = Context.getConstantArrayType(ElementType, APNumElements, 107 ArrayType::Normal, /*IndexTypeQuals=*/0); 108 109 // Allocate the temporary array(s). 110 llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects"); 111 llvm::Value *Keys = nullptr; 112 if (DLE) 113 Keys = CreateMemTemp(ElementArrayType, "keys"); 114 115 // In ARC, we may need to do extra work to keep all the keys and 116 // values alive until after the call. 117 SmallVector<llvm::Value *, 16> NeededObjects; 118 bool TrackNeededObjects = 119 (getLangOpts().ObjCAutoRefCount && 120 CGM.getCodeGenOpts().OptimizationLevel != 0); 121 122 // Perform the actual initialialization of the array(s). 123 for (uint64_t i = 0; i < NumElements; i++) { 124 if (ALE) { 125 // Emit the element and store it to the appropriate array slot. 126 const Expr *Rhs = ALE->getElement(i); 127 LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i), 128 ElementType, 129 Context.getTypeAlignInChars(Rhs->getType()), 130 Context); 131 132 llvm::Value *value = EmitScalarExpr(Rhs); 133 EmitStoreThroughLValue(RValue::get(value), LV, true); 134 if (TrackNeededObjects) { 135 NeededObjects.push_back(value); 136 } 137 } else { 138 // Emit the key and store it to the appropriate array slot. 139 const Expr *Key = DLE->getKeyValueElement(i).Key; 140 LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i), 141 ElementType, 142 Context.getTypeAlignInChars(Key->getType()), 143 Context); 144 llvm::Value *keyValue = EmitScalarExpr(Key); 145 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 146 147 // Emit the value and store it to the appropriate array slot. 148 const Expr *Value = DLE->getKeyValueElement(i).Value; 149 LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i), 150 ElementType, 151 Context.getTypeAlignInChars(Value->getType()), 152 Context); 153 llvm::Value *valueValue = EmitScalarExpr(Value); 154 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 155 if (TrackNeededObjects) { 156 NeededObjects.push_back(keyValue); 157 NeededObjects.push_back(valueValue); 158 } 159 } 160 } 161 162 // Generate the argument list. 163 CallArgList Args; 164 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 165 const ParmVarDecl *argDecl = *PI++; 166 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 167 Args.add(RValue::get(Objects), ArgQT); 168 if (DLE) { 169 argDecl = *PI++; 170 ArgQT = argDecl->getType().getUnqualifiedType(); 171 Args.add(RValue::get(Keys), ArgQT); 172 } 173 argDecl = *PI; 174 ArgQT = argDecl->getType().getUnqualifiedType(); 175 llvm::Value *Count = 176 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 177 Args.add(RValue::get(Count), ArgQT); 178 179 // Generate a reference to the class pointer, which will be the receiver. 180 Selector Sel = MethodWithObjects->getSelector(); 181 QualType ResultType = E->getType(); 182 const ObjCObjectPointerType *InterfacePointerType 183 = ResultType->getAsObjCInterfacePointerType(); 184 ObjCInterfaceDecl *Class 185 = InterfacePointerType->getObjectType()->getInterface(); 186 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 187 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 188 if (AllocMethod) { 189 // Generate the "alloc" message send. 190 CallArgList Args; 191 Selector AllocMethodSel = AllocMethod->getSelector(); 192 RValue result = Runtime.GenerateMessageSend( 193 *this, ReturnValueSlot(), AllocMethod->getReturnType(), AllocMethodSel, 194 Receiver, Args, Class, AllocMethod); 195 Receiver = result.getScalarVal(); 196 } 197 198 // Generate the message send. 199 RValue result = Runtime.GenerateMessageSend( 200 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 201 Receiver, Args, Class, MethodWithObjects); 202 203 // The above message send needs these objects, but in ARC they are 204 // passed in a buffer that is essentially __unsafe_unretained. 205 // Therefore we must prevent the optimizer from releasing them until 206 // after the call. 207 if (TrackNeededObjects) { 208 EmitARCIntrinsicUse(NeededObjects); 209 } 210 211 return Builder.CreateBitCast(result.getScalarVal(), 212 ConvertType(E->getType())); 213 } 214 215 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 216 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod(), 217 E->getArrayAllocMethod()); 218 } 219 220 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 221 const ObjCDictionaryLiteral *E) { 222 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod(), 223 E->getDictAllocMethod()); 224 } 225 226 /// Emit a selector. 227 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 228 // Untyped selector. 229 // Note that this implementation allows for non-constant strings to be passed 230 // as arguments to @selector(). Currently, the only thing preventing this 231 // behaviour is the type checking in the front end. 232 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 233 } 234 235 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 236 // FIXME: This should pass the Decl not the name. 237 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 238 } 239 240 /// \brief Adjust the type of the result of an Objective-C message send 241 /// expression when the method has a related result type. 242 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 243 QualType ExpT, 244 const ObjCMethodDecl *Method, 245 RValue Result) { 246 if (!Method) 247 return Result; 248 249 if (!Method->hasRelatedResultType() || 250 CGF.getContext().hasSameType(ExpT, Method->getReturnType()) || 251 !Result.isScalar()) 252 return Result; 253 254 // We have applied a related result type. Cast the rvalue appropriately. 255 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 256 CGF.ConvertType(ExpT))); 257 } 258 259 /// Decide whether to extend the lifetime of the receiver of a 260 /// returns-inner-pointer message. 261 static bool 262 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 263 switch (message->getReceiverKind()) { 264 265 // For a normal instance message, we should extend unless the 266 // receiver is loaded from a variable with precise lifetime. 267 case ObjCMessageExpr::Instance: { 268 const Expr *receiver = message->getInstanceReceiver(); 269 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 270 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 271 receiver = ice->getSubExpr()->IgnoreParens(); 272 273 // Only __strong variables. 274 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 275 return true; 276 277 // All ivars and fields have precise lifetime. 278 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 279 return false; 280 281 // Otherwise, check for variables. 282 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 283 if (!declRef) return true; 284 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 285 if (!var) return true; 286 287 // All variables have precise lifetime except local variables with 288 // automatic storage duration that aren't specially marked. 289 return (var->hasLocalStorage() && 290 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 291 } 292 293 case ObjCMessageExpr::Class: 294 case ObjCMessageExpr::SuperClass: 295 // It's never necessary for class objects. 296 return false; 297 298 case ObjCMessageExpr::SuperInstance: 299 // We generally assume that 'self' lives throughout a method call. 300 return false; 301 } 302 303 llvm_unreachable("invalid receiver kind"); 304 } 305 306 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 307 ReturnValueSlot Return) { 308 // Only the lookup mechanism and first two arguments of the method 309 // implementation vary between runtimes. We can get the receiver and 310 // arguments in generic code. 311 312 bool isDelegateInit = E->isDelegateInitCall(); 313 314 const ObjCMethodDecl *method = E->getMethodDecl(); 315 316 // We don't retain the receiver in delegate init calls, and this is 317 // safe because the receiver value is always loaded from 'self', 318 // which we zero out. We don't want to Block_copy block receivers, 319 // though. 320 bool retainSelf = 321 (!isDelegateInit && 322 CGM.getLangOpts().ObjCAutoRefCount && 323 method && 324 method->hasAttr<NSConsumesSelfAttr>()); 325 326 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 327 bool isSuperMessage = false; 328 bool isClassMessage = false; 329 ObjCInterfaceDecl *OID = nullptr; 330 // Find the receiver 331 QualType ReceiverType; 332 llvm::Value *Receiver = nullptr; 333 switch (E->getReceiverKind()) { 334 case ObjCMessageExpr::Instance: 335 ReceiverType = E->getInstanceReceiver()->getType(); 336 if (retainSelf) { 337 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 338 E->getInstanceReceiver()); 339 Receiver = ter.getPointer(); 340 if (ter.getInt()) retainSelf = false; 341 } else 342 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 343 break; 344 345 case ObjCMessageExpr::Class: { 346 ReceiverType = E->getClassReceiver(); 347 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 348 assert(ObjTy && "Invalid Objective-C class message send"); 349 OID = ObjTy->getInterface(); 350 assert(OID && "Invalid Objective-C class message send"); 351 Receiver = Runtime.GetClass(*this, OID); 352 isClassMessage = true; 353 break; 354 } 355 356 case ObjCMessageExpr::SuperInstance: 357 ReceiverType = E->getSuperType(); 358 Receiver = LoadObjCSelf(); 359 isSuperMessage = true; 360 break; 361 362 case ObjCMessageExpr::SuperClass: 363 ReceiverType = E->getSuperType(); 364 Receiver = LoadObjCSelf(); 365 isSuperMessage = true; 366 isClassMessage = true; 367 break; 368 } 369 370 if (retainSelf) 371 Receiver = EmitARCRetainNonBlock(Receiver); 372 373 // In ARC, we sometimes want to "extend the lifetime" 374 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 375 // messages. 376 if (getLangOpts().ObjCAutoRefCount && method && 377 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 378 shouldExtendReceiverForInnerPointerMessage(E)) 379 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 380 381 QualType ResultType = method ? method->getReturnType() : E->getType(); 382 383 CallArgList Args; 384 EmitCallArgs(Args, method, E->arg_begin(), E->arg_end()); 385 386 // For delegate init calls in ARC, do an unsafe store of null into 387 // self. This represents the call taking direct ownership of that 388 // value. We have to do this after emitting the other call 389 // arguments because they might also reference self, but we don't 390 // have to worry about any of them modifying self because that would 391 // be an undefined read and write of an object in unordered 392 // expressions. 393 if (isDelegateInit) { 394 assert(getLangOpts().ObjCAutoRefCount && 395 "delegate init calls should only be marked in ARC"); 396 397 // Do an unsafe store of null into self. 398 llvm::Value *selfAddr = 399 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 400 assert(selfAddr && "no self entry for a delegate init call?"); 401 402 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 403 } 404 405 RValue result; 406 if (isSuperMessage) { 407 // super is only valid in an Objective-C method 408 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 409 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 410 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 411 E->getSelector(), 412 OMD->getClassInterface(), 413 isCategoryImpl, 414 Receiver, 415 isClassMessage, 416 Args, 417 method); 418 } else { 419 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 420 E->getSelector(), 421 Receiver, Args, OID, 422 method); 423 } 424 425 // For delegate init calls in ARC, implicitly store the result of 426 // the call back into self. This takes ownership of the value. 427 if (isDelegateInit) { 428 llvm::Value *selfAddr = 429 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 430 llvm::Value *newSelf = result.getScalarVal(); 431 432 // The delegate return type isn't necessarily a matching type; in 433 // fact, it's quite likely to be 'id'. 434 llvm::Type *selfTy = 435 cast<llvm::PointerType>(selfAddr->getType())->getElementType(); 436 newSelf = Builder.CreateBitCast(newSelf, selfTy); 437 438 Builder.CreateStore(newSelf, selfAddr); 439 } 440 441 return AdjustRelatedResultType(*this, E->getType(), method, result); 442 } 443 444 namespace { 445 struct FinishARCDealloc : EHScopeStack::Cleanup { 446 void Emit(CodeGenFunction &CGF, Flags flags) override { 447 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 448 449 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 450 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 451 if (!iface->getSuperClass()) return; 452 453 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 454 455 // Call [super dealloc] if we have a superclass. 456 llvm::Value *self = CGF.LoadObjCSelf(); 457 458 CallArgList args; 459 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 460 CGF.getContext().VoidTy, 461 method->getSelector(), 462 iface, 463 isCategory, 464 self, 465 /*is class msg*/ false, 466 args, 467 method); 468 } 469 }; 470 } 471 472 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 473 /// the LLVM function and sets the other context used by 474 /// CodeGenFunction. 475 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 476 const ObjCContainerDecl *CD, 477 SourceLocation StartLoc) { 478 FunctionArgList args; 479 // Check if we should generate debug info for this method. 480 if (OMD->hasAttr<NoDebugAttr>()) 481 DebugInfo = nullptr; // disable debug info indefinitely for this function 482 483 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 484 485 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 486 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 487 488 args.push_back(OMD->getSelfDecl()); 489 args.push_back(OMD->getCmdDecl()); 490 491 for (const auto *PI : OMD->params()) 492 args.push_back(PI); 493 494 CurGD = OMD; 495 496 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 497 OMD->getLocation(), StartLoc); 498 499 // In ARC, certain methods get an extra cleanup. 500 if (CGM.getLangOpts().ObjCAutoRefCount && 501 OMD->isInstanceMethod() && 502 OMD->getSelector().isUnarySelector()) { 503 const IdentifierInfo *ident = 504 OMD->getSelector().getIdentifierInfoForSlot(0); 505 if (ident->isStr("dealloc")) 506 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 507 } 508 } 509 510 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 511 LValue lvalue, QualType type); 512 513 /// Generate an Objective-C method. An Objective-C method is a C function with 514 /// its pointer, name, and types registered in the class struture. 515 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 516 StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart()); 517 PGO.assignRegionCounters(OMD, CurFn); 518 assert(isa<CompoundStmt>(OMD->getBody())); 519 RegionCounter Cnt = getPGORegionCounter(OMD->getBody()); 520 Cnt.beginRegion(Builder); 521 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 522 FinishFunction(OMD->getBodyRBrace()); 523 PGO.emitInstrumentationData(); 524 PGO.destroyRegionCounters(); 525 } 526 527 /// emitStructGetterCall - Call the runtime function to load a property 528 /// into the return value slot. 529 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 530 bool isAtomic, bool hasStrong) { 531 ASTContext &Context = CGF.getContext(); 532 533 llvm::Value *src = 534 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), 535 ivar, 0).getAddress(); 536 537 // objc_copyStruct (ReturnValue, &structIvar, 538 // sizeof (Type of Ivar), isAtomic, false); 539 CallArgList args; 540 541 llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 542 args.add(RValue::get(dest), Context.VoidPtrTy); 543 544 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 545 args.add(RValue::get(src), Context.VoidPtrTy); 546 547 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 548 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 549 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 550 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 551 552 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 553 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args, 554 FunctionType::ExtInfo(), 555 RequiredArgs::All), 556 fn, ReturnValueSlot(), args); 557 } 558 559 /// Determine whether the given architecture supports unaligned atomic 560 /// accesses. They don't have to be fast, just faster than a function 561 /// call and a mutex. 562 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 563 // FIXME: Allow unaligned atomic load/store on x86. (It is not 564 // currently supported by the backend.) 565 return 0; 566 } 567 568 /// Return the maximum size that permits atomic accesses for the given 569 /// architecture. 570 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 571 llvm::Triple::ArchType arch) { 572 // ARM has 8-byte atomic accesses, but it's not clear whether we 573 // want to rely on them here. 574 575 // In the default case, just assume that any size up to a pointer is 576 // fine given adequate alignment. 577 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 578 } 579 580 namespace { 581 class PropertyImplStrategy { 582 public: 583 enum StrategyKind { 584 /// The 'native' strategy is to use the architecture's provided 585 /// reads and writes. 586 Native, 587 588 /// Use objc_setProperty and objc_getProperty. 589 GetSetProperty, 590 591 /// Use objc_setProperty for the setter, but use expression 592 /// evaluation for the getter. 593 SetPropertyAndExpressionGet, 594 595 /// Use objc_copyStruct. 596 CopyStruct, 597 598 /// The 'expression' strategy is to emit normal assignment or 599 /// lvalue-to-rvalue expressions. 600 Expression 601 }; 602 603 StrategyKind getKind() const { return StrategyKind(Kind); } 604 605 bool hasStrongMember() const { return HasStrong; } 606 bool isAtomic() const { return IsAtomic; } 607 bool isCopy() const { return IsCopy; } 608 609 CharUnits getIvarSize() const { return IvarSize; } 610 CharUnits getIvarAlignment() const { return IvarAlignment; } 611 612 PropertyImplStrategy(CodeGenModule &CGM, 613 const ObjCPropertyImplDecl *propImpl); 614 615 private: 616 unsigned Kind : 8; 617 unsigned IsAtomic : 1; 618 unsigned IsCopy : 1; 619 unsigned HasStrong : 1; 620 621 CharUnits IvarSize; 622 CharUnits IvarAlignment; 623 }; 624 } 625 626 /// Pick an implementation strategy for the given property synthesis. 627 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 628 const ObjCPropertyImplDecl *propImpl) { 629 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 630 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 631 632 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 633 IsAtomic = prop->isAtomic(); 634 HasStrong = false; // doesn't matter here. 635 636 // Evaluate the ivar's size and alignment. 637 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 638 QualType ivarType = ivar->getType(); 639 std::tie(IvarSize, IvarAlignment) = 640 CGM.getContext().getTypeInfoInChars(ivarType); 641 642 // If we have a copy property, we always have to use getProperty/setProperty. 643 // TODO: we could actually use setProperty and an expression for non-atomics. 644 if (IsCopy) { 645 Kind = GetSetProperty; 646 return; 647 } 648 649 // Handle retain. 650 if (setterKind == ObjCPropertyDecl::Retain) { 651 // In GC-only, there's nothing special that needs to be done. 652 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 653 // fallthrough 654 655 // In ARC, if the property is non-atomic, use expression emission, 656 // which translates to objc_storeStrong. This isn't required, but 657 // it's slightly nicer. 658 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 659 // Using standard expression emission for the setter is only 660 // acceptable if the ivar is __strong, which won't be true if 661 // the property is annotated with __attribute__((NSObject)). 662 // TODO: falling all the way back to objc_setProperty here is 663 // just laziness, though; we could still use objc_storeStrong 664 // if we hacked it right. 665 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 666 Kind = Expression; 667 else 668 Kind = SetPropertyAndExpressionGet; 669 return; 670 671 // Otherwise, we need to at least use setProperty. However, if 672 // the property isn't atomic, we can use normal expression 673 // emission for the getter. 674 } else if (!IsAtomic) { 675 Kind = SetPropertyAndExpressionGet; 676 return; 677 678 // Otherwise, we have to use both setProperty and getProperty. 679 } else { 680 Kind = GetSetProperty; 681 return; 682 } 683 } 684 685 // If we're not atomic, just use expression accesses. 686 if (!IsAtomic) { 687 Kind = Expression; 688 return; 689 } 690 691 // Properties on bitfield ivars need to be emitted using expression 692 // accesses even if they're nominally atomic. 693 if (ivar->isBitField()) { 694 Kind = Expression; 695 return; 696 } 697 698 // GC-qualified or ARC-qualified ivars need to be emitted as 699 // expressions. This actually works out to being atomic anyway, 700 // except for ARC __strong, but that should trigger the above code. 701 if (ivarType.hasNonTrivialObjCLifetime() || 702 (CGM.getLangOpts().getGC() && 703 CGM.getContext().getObjCGCAttrKind(ivarType))) { 704 Kind = Expression; 705 return; 706 } 707 708 // Compute whether the ivar has strong members. 709 if (CGM.getLangOpts().getGC()) 710 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 711 HasStrong = recordType->getDecl()->hasObjectMember(); 712 713 // We can never access structs with object members with a native 714 // access, because we need to use write barriers. This is what 715 // objc_copyStruct is for. 716 if (HasStrong) { 717 Kind = CopyStruct; 718 return; 719 } 720 721 // Otherwise, this is target-dependent and based on the size and 722 // alignment of the ivar. 723 724 // If the size of the ivar is not a power of two, give up. We don't 725 // want to get into the business of doing compare-and-swaps. 726 if (!IvarSize.isPowerOfTwo()) { 727 Kind = CopyStruct; 728 return; 729 } 730 731 llvm::Triple::ArchType arch = 732 CGM.getTarget().getTriple().getArch(); 733 734 // Most architectures require memory to fit within a single cache 735 // line, so the alignment has to be at least the size of the access. 736 // Otherwise we have to grab a lock. 737 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 738 Kind = CopyStruct; 739 return; 740 } 741 742 // If the ivar's size exceeds the architecture's maximum atomic 743 // access size, we have to use CopyStruct. 744 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 745 Kind = CopyStruct; 746 return; 747 } 748 749 // Otherwise, we can use native loads and stores. 750 Kind = Native; 751 } 752 753 /// \brief Generate an Objective-C property getter function. 754 /// 755 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 756 /// is illegal within a category. 757 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 758 const ObjCPropertyImplDecl *PID) { 759 llvm::Constant *AtomicHelperFn = 760 GenerateObjCAtomicGetterCopyHelperFunction(PID); 761 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 762 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 763 assert(OMD && "Invalid call to generate getter (empty method)"); 764 StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart()); 765 766 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 767 768 FinishFunction(); 769 } 770 771 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 772 const Expr *getter = propImpl->getGetterCXXConstructor(); 773 if (!getter) return true; 774 775 // Sema only makes only of these when the ivar has a C++ class type, 776 // so the form is pretty constrained. 777 778 // If the property has a reference type, we might just be binding a 779 // reference, in which case the result will be a gl-value. We should 780 // treat this as a non-trivial operation. 781 if (getter->isGLValue()) 782 return false; 783 784 // If we selected a trivial copy-constructor, we're okay. 785 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 786 return (construct->getConstructor()->isTrivial()); 787 788 // The constructor might require cleanups (in which case it's never 789 // trivial). 790 assert(isa<ExprWithCleanups>(getter)); 791 return false; 792 } 793 794 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 795 /// copy the ivar into the resturn slot. 796 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 797 llvm::Value *returnAddr, 798 ObjCIvarDecl *ivar, 799 llvm::Constant *AtomicHelperFn) { 800 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 801 // AtomicHelperFn); 802 CallArgList args; 803 804 // The 1st argument is the return Slot. 805 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 806 807 // The 2nd argument is the address of the ivar. 808 llvm::Value *ivarAddr = 809 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 810 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 811 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 812 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 813 814 // Third argument is the helper function. 815 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 816 817 llvm::Value *copyCppAtomicObjectFn = 818 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 819 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 820 args, 821 FunctionType::ExtInfo(), 822 RequiredArgs::All), 823 copyCppAtomicObjectFn, ReturnValueSlot(), args); 824 } 825 826 void 827 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 828 const ObjCPropertyImplDecl *propImpl, 829 const ObjCMethodDecl *GetterMethodDecl, 830 llvm::Constant *AtomicHelperFn) { 831 // If there's a non-trivial 'get' expression, we just have to emit that. 832 if (!hasTrivialGetExpr(propImpl)) { 833 if (!AtomicHelperFn) { 834 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 835 /*nrvo*/ nullptr); 836 EmitReturnStmt(ret); 837 } 838 else { 839 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 840 emitCPPObjectAtomicGetterCall(*this, ReturnValue, 841 ivar, AtomicHelperFn); 842 } 843 return; 844 } 845 846 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 847 QualType propType = prop->getType(); 848 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 849 850 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 851 852 // Pick an implementation strategy. 853 PropertyImplStrategy strategy(CGM, propImpl); 854 switch (strategy.getKind()) { 855 case PropertyImplStrategy::Native: { 856 // We don't need to do anything for a zero-size struct. 857 if (strategy.getIvarSize().isZero()) 858 return; 859 860 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 861 862 // Currently, all atomic accesses have to be through integer 863 // types, so there's no point in trying to pick a prettier type. 864 llvm::Type *bitcastType = 865 llvm::Type::getIntNTy(getLLVMContext(), 866 getContext().toBits(strategy.getIvarSize())); 867 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 868 869 // Perform an atomic load. This does not impose ordering constraints. 870 llvm::Value *ivarAddr = LV.getAddress(); 871 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 872 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 873 load->setAlignment(strategy.getIvarAlignment().getQuantity()); 874 load->setAtomic(llvm::Unordered); 875 876 // Store that value into the return address. Doing this with a 877 // bitcast is likely to produce some pretty ugly IR, but it's not 878 // the *most* terrible thing in the world. 879 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType)); 880 881 // Make sure we don't do an autorelease. 882 AutoreleaseResult = false; 883 return; 884 } 885 886 case PropertyImplStrategy::GetSetProperty: { 887 llvm::Value *getPropertyFn = 888 CGM.getObjCRuntime().GetPropertyGetFunction(); 889 if (!getPropertyFn) { 890 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 891 return; 892 } 893 894 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 895 // FIXME: Can't this be simpler? This might even be worse than the 896 // corresponding gcc code. 897 llvm::Value *cmd = 898 Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd"); 899 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 900 llvm::Value *ivarOffset = 901 EmitIvarOffset(classImpl->getClassInterface(), ivar); 902 903 CallArgList args; 904 args.add(RValue::get(self), getContext().getObjCIdType()); 905 args.add(RValue::get(cmd), getContext().getObjCSelType()); 906 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 907 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 908 getContext().BoolTy); 909 910 // FIXME: We shouldn't need to get the function info here, the 911 // runtime already should have computed it to build the function. 912 llvm::Instruction *CallInstruction; 913 RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args, 914 FunctionType::ExtInfo(), 915 RequiredArgs::All), 916 getPropertyFn, ReturnValueSlot(), args, nullptr, 917 &CallInstruction); 918 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 919 call->setTailCall(); 920 921 // We need to fix the type here. Ivars with copy & retain are 922 // always objects so we don't need to worry about complex or 923 // aggregates. 924 RV = RValue::get(Builder.CreateBitCast( 925 RV.getScalarVal(), 926 getTypes().ConvertType(getterMethod->getReturnType()))); 927 928 EmitReturnOfRValue(RV, propType); 929 930 // objc_getProperty does an autorelease, so we should suppress ours. 931 AutoreleaseResult = false; 932 933 return; 934 } 935 936 case PropertyImplStrategy::CopyStruct: 937 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 938 strategy.hasStrongMember()); 939 return; 940 941 case PropertyImplStrategy::Expression: 942 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 943 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 944 945 QualType ivarType = ivar->getType(); 946 switch (getEvaluationKind(ivarType)) { 947 case TEK_Complex: { 948 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 949 EmitStoreOfComplex(pair, 950 MakeNaturalAlignAddrLValue(ReturnValue, ivarType), 951 /*init*/ true); 952 return; 953 } 954 case TEK_Aggregate: 955 // The return value slot is guaranteed to not be aliased, but 956 // that's not necessarily the same as "on the stack", so 957 // we still potentially need objc_memmove_collectable. 958 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 959 return; 960 case TEK_Scalar: { 961 llvm::Value *value; 962 if (propType->isReferenceType()) { 963 value = LV.getAddress(); 964 } else { 965 // We want to load and autoreleaseReturnValue ARC __weak ivars. 966 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 967 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 968 969 // Otherwise we want to do a simple load, suppressing the 970 // final autorelease. 971 } else { 972 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 973 AutoreleaseResult = false; 974 } 975 976 value = Builder.CreateBitCast(value, ConvertType(propType)); 977 value = Builder.CreateBitCast( 978 value, ConvertType(GetterMethodDecl->getReturnType())); 979 } 980 981 EmitReturnOfRValue(RValue::get(value), propType); 982 return; 983 } 984 } 985 llvm_unreachable("bad evaluation kind"); 986 } 987 988 } 989 llvm_unreachable("bad @property implementation strategy!"); 990 } 991 992 /// emitStructSetterCall - Call the runtime function to store the value 993 /// from the first formal parameter into the given ivar. 994 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 995 ObjCIvarDecl *ivar) { 996 // objc_copyStruct (&structIvar, &Arg, 997 // sizeof (struct something), true, false); 998 CallArgList args; 999 1000 // The first argument is the address of the ivar. 1001 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1002 CGF.LoadObjCSelf(), ivar, 0) 1003 .getAddress(); 1004 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1005 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1006 1007 // The second argument is the address of the parameter variable. 1008 ParmVarDecl *argVar = *OMD->param_begin(); 1009 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1010 VK_LValue, SourceLocation()); 1011 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 1012 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1013 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1014 1015 // The third argument is the sizeof the type. 1016 llvm::Value *size = 1017 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1018 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1019 1020 // The fourth argument is the 'isAtomic' flag. 1021 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1022 1023 // The fifth argument is the 'hasStrong' flag. 1024 // FIXME: should this really always be false? 1025 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1026 1027 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1028 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1029 args, 1030 FunctionType::ExtInfo(), 1031 RequiredArgs::All), 1032 copyStructFn, ReturnValueSlot(), args); 1033 } 1034 1035 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1036 /// the value from the first formal parameter into the given ivar, using 1037 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1038 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1039 ObjCMethodDecl *OMD, 1040 ObjCIvarDecl *ivar, 1041 llvm::Constant *AtomicHelperFn) { 1042 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1043 // AtomicHelperFn); 1044 CallArgList args; 1045 1046 // The first argument is the address of the ivar. 1047 llvm::Value *ivarAddr = 1048 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1049 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 1050 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1051 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1052 1053 // The second argument is the address of the parameter variable. 1054 ParmVarDecl *argVar = *OMD->param_begin(); 1055 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1056 VK_LValue, SourceLocation()); 1057 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 1058 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1059 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1060 1061 // Third argument is the helper function. 1062 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1063 1064 llvm::Value *copyCppAtomicObjectFn = 1065 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1066 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1067 args, 1068 FunctionType::ExtInfo(), 1069 RequiredArgs::All), 1070 copyCppAtomicObjectFn, ReturnValueSlot(), args); 1071 } 1072 1073 1074 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1075 Expr *setter = PID->getSetterCXXAssignment(); 1076 if (!setter) return true; 1077 1078 // Sema only makes only of these when the ivar has a C++ class type, 1079 // so the form is pretty constrained. 1080 1081 // An operator call is trivial if the function it calls is trivial. 1082 // This also implies that there's nothing non-trivial going on with 1083 // the arguments, because operator= can only be trivial if it's a 1084 // synthesized assignment operator and therefore both parameters are 1085 // references. 1086 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1087 if (const FunctionDecl *callee 1088 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1089 if (callee->isTrivial()) 1090 return true; 1091 return false; 1092 } 1093 1094 assert(isa<ExprWithCleanups>(setter)); 1095 return false; 1096 } 1097 1098 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1099 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1100 return false; 1101 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1102 } 1103 1104 void 1105 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1106 const ObjCPropertyImplDecl *propImpl, 1107 llvm::Constant *AtomicHelperFn) { 1108 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1109 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1110 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1111 1112 // Just use the setter expression if Sema gave us one and it's 1113 // non-trivial. 1114 if (!hasTrivialSetExpr(propImpl)) { 1115 if (!AtomicHelperFn) 1116 // If non-atomic, assignment is called directly. 1117 EmitStmt(propImpl->getSetterCXXAssignment()); 1118 else 1119 // If atomic, assignment is called via a locking api. 1120 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1121 AtomicHelperFn); 1122 return; 1123 } 1124 1125 PropertyImplStrategy strategy(CGM, propImpl); 1126 switch (strategy.getKind()) { 1127 case PropertyImplStrategy::Native: { 1128 // We don't need to do anything for a zero-size struct. 1129 if (strategy.getIvarSize().isZero()) 1130 return; 1131 1132 llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()]; 1133 1134 LValue ivarLValue = 1135 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1136 llvm::Value *ivarAddr = ivarLValue.getAddress(); 1137 1138 // Currently, all atomic accesses have to be through integer 1139 // types, so there's no point in trying to pick a prettier type. 1140 llvm::Type *bitcastType = 1141 llvm::Type::getIntNTy(getLLVMContext(), 1142 getContext().toBits(strategy.getIvarSize())); 1143 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1144 1145 // Cast both arguments to the chosen operation type. 1146 argAddr = Builder.CreateBitCast(argAddr, bitcastType); 1147 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1148 1149 // This bitcast load is likely to cause some nasty IR. 1150 llvm::Value *load = Builder.CreateLoad(argAddr); 1151 1152 // Perform an atomic store. There are no memory ordering requirements. 1153 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1154 store->setAlignment(strategy.getIvarAlignment().getQuantity()); 1155 store->setAtomic(llvm::Unordered); 1156 return; 1157 } 1158 1159 case PropertyImplStrategy::GetSetProperty: 1160 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1161 1162 llvm::Value *setOptimizedPropertyFn = nullptr; 1163 llvm::Value *setPropertyFn = nullptr; 1164 if (UseOptimizedSetter(CGM)) { 1165 // 10.8 and iOS 6.0 code and GC is off 1166 setOptimizedPropertyFn = 1167 CGM.getObjCRuntime() 1168 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1169 strategy.isCopy()); 1170 if (!setOptimizedPropertyFn) { 1171 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1172 return; 1173 } 1174 } 1175 else { 1176 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1177 if (!setPropertyFn) { 1178 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1179 return; 1180 } 1181 } 1182 1183 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1184 // <is-atomic>, <is-copy>). 1185 llvm::Value *cmd = 1186 Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]); 1187 llvm::Value *self = 1188 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1189 llvm::Value *ivarOffset = 1190 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1191 llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()]; 1192 arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy); 1193 1194 CallArgList args; 1195 args.add(RValue::get(self), getContext().getObjCIdType()); 1196 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1197 if (setOptimizedPropertyFn) { 1198 args.add(RValue::get(arg), getContext().getObjCIdType()); 1199 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1200 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1201 FunctionType::ExtInfo(), 1202 RequiredArgs::All), 1203 setOptimizedPropertyFn, ReturnValueSlot(), args); 1204 } else { 1205 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1206 args.add(RValue::get(arg), getContext().getObjCIdType()); 1207 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1208 getContext().BoolTy); 1209 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1210 getContext().BoolTy); 1211 // FIXME: We shouldn't need to get the function info here, the runtime 1212 // already should have computed it to build the function. 1213 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1214 FunctionType::ExtInfo(), 1215 RequiredArgs::All), 1216 setPropertyFn, ReturnValueSlot(), args); 1217 } 1218 1219 return; 1220 } 1221 1222 case PropertyImplStrategy::CopyStruct: 1223 emitStructSetterCall(*this, setterMethod, ivar); 1224 return; 1225 1226 case PropertyImplStrategy::Expression: 1227 break; 1228 } 1229 1230 // Otherwise, fake up some ASTs and emit a normal assignment. 1231 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1232 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1233 VK_LValue, SourceLocation()); 1234 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1235 selfDecl->getType(), CK_LValueToRValue, &self, 1236 VK_RValue); 1237 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1238 SourceLocation(), SourceLocation(), 1239 &selfLoad, true, true); 1240 1241 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1242 QualType argType = argDecl->getType().getNonReferenceType(); 1243 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1244 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1245 argType.getUnqualifiedType(), CK_LValueToRValue, 1246 &arg, VK_RValue); 1247 1248 // The property type can differ from the ivar type in some situations with 1249 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1250 // The following absurdity is just to ensure well-formed IR. 1251 CastKind argCK = CK_NoOp; 1252 if (ivarRef.getType()->isObjCObjectPointerType()) { 1253 if (argLoad.getType()->isObjCObjectPointerType()) 1254 argCK = CK_BitCast; 1255 else if (argLoad.getType()->isBlockPointerType()) 1256 argCK = CK_BlockPointerToObjCPointerCast; 1257 else 1258 argCK = CK_CPointerToObjCPointerCast; 1259 } else if (ivarRef.getType()->isBlockPointerType()) { 1260 if (argLoad.getType()->isBlockPointerType()) 1261 argCK = CK_BitCast; 1262 else 1263 argCK = CK_AnyPointerToBlockPointerCast; 1264 } else if (ivarRef.getType()->isPointerType()) { 1265 argCK = CK_BitCast; 1266 } 1267 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1268 ivarRef.getType(), argCK, &argLoad, 1269 VK_RValue); 1270 Expr *finalArg = &argLoad; 1271 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1272 argLoad.getType())) 1273 finalArg = &argCast; 1274 1275 1276 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1277 ivarRef.getType(), VK_RValue, OK_Ordinary, 1278 SourceLocation(), false); 1279 EmitStmt(&assign); 1280 } 1281 1282 /// \brief Generate an Objective-C property setter function. 1283 /// 1284 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1285 /// is illegal within a category. 1286 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1287 const ObjCPropertyImplDecl *PID) { 1288 llvm::Constant *AtomicHelperFn = 1289 GenerateObjCAtomicSetterCopyHelperFunction(PID); 1290 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1291 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1292 assert(OMD && "Invalid call to generate setter (empty method)"); 1293 StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart()); 1294 1295 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1296 1297 FinishFunction(); 1298 } 1299 1300 namespace { 1301 struct DestroyIvar : EHScopeStack::Cleanup { 1302 private: 1303 llvm::Value *addr; 1304 const ObjCIvarDecl *ivar; 1305 CodeGenFunction::Destroyer *destroyer; 1306 bool useEHCleanupForArray; 1307 public: 1308 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1309 CodeGenFunction::Destroyer *destroyer, 1310 bool useEHCleanupForArray) 1311 : addr(addr), ivar(ivar), destroyer(destroyer), 1312 useEHCleanupForArray(useEHCleanupForArray) {} 1313 1314 void Emit(CodeGenFunction &CGF, Flags flags) override { 1315 LValue lvalue 1316 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1317 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1318 flags.isForNormalCleanup() && useEHCleanupForArray); 1319 } 1320 }; 1321 } 1322 1323 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1324 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1325 llvm::Value *addr, 1326 QualType type) { 1327 llvm::Value *null = getNullForVariable(addr); 1328 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1329 } 1330 1331 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1332 ObjCImplementationDecl *impl) { 1333 CodeGenFunction::RunCleanupsScope scope(CGF); 1334 1335 llvm::Value *self = CGF.LoadObjCSelf(); 1336 1337 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1338 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1339 ivar; ivar = ivar->getNextIvar()) { 1340 QualType type = ivar->getType(); 1341 1342 // Check whether the ivar is a destructible type. 1343 QualType::DestructionKind dtorKind = type.isDestructedType(); 1344 if (!dtorKind) continue; 1345 1346 CodeGenFunction::Destroyer *destroyer = nullptr; 1347 1348 // Use a call to objc_storeStrong to destroy strong ivars, for the 1349 // general benefit of the tools. 1350 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1351 destroyer = destroyARCStrongWithStore; 1352 1353 // Otherwise use the default for the destruction kind. 1354 } else { 1355 destroyer = CGF.getDestroyer(dtorKind); 1356 } 1357 1358 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1359 1360 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1361 cleanupKind & EHCleanup); 1362 } 1363 1364 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1365 } 1366 1367 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1368 ObjCMethodDecl *MD, 1369 bool ctor) { 1370 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1371 StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart()); 1372 1373 // Emit .cxx_construct. 1374 if (ctor) { 1375 // Suppress the final autorelease in ARC. 1376 AutoreleaseResult = false; 1377 1378 for (const auto *IvarInit : IMP->inits()) { 1379 FieldDecl *Field = IvarInit->getAnyMember(); 1380 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1381 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1382 LoadObjCSelf(), Ivar, 0); 1383 EmitAggExpr(IvarInit->getInit(), 1384 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1385 AggValueSlot::DoesNotNeedGCBarriers, 1386 AggValueSlot::IsNotAliased)); 1387 } 1388 // constructor returns 'self'. 1389 CodeGenTypes &Types = CGM.getTypes(); 1390 QualType IdTy(CGM.getContext().getObjCIdType()); 1391 llvm::Value *SelfAsId = 1392 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1393 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1394 1395 // Emit .cxx_destruct. 1396 } else { 1397 emitCXXDestructMethod(*this, IMP); 1398 } 1399 FinishFunction(); 1400 } 1401 1402 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) { 1403 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(); 1404 it++; it++; 1405 const ABIArgInfo &AI = it->info; 1406 // FIXME. Is this sufficient check? 1407 return (AI.getKind() == ABIArgInfo::Indirect); 1408 } 1409 1410 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) { 1411 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 1412 return false; 1413 if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>()) 1414 return FDTTy->getDecl()->hasObjectMember(); 1415 return false; 1416 } 1417 1418 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1419 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1420 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1421 Self->getType(), VK_LValue, SourceLocation()); 1422 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1423 } 1424 1425 QualType CodeGenFunction::TypeOfSelfObject() { 1426 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1427 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1428 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1429 getContext().getCanonicalType(selfDecl->getType())); 1430 return PTy->getPointeeType(); 1431 } 1432 1433 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1434 llvm::Constant *EnumerationMutationFn = 1435 CGM.getObjCRuntime().EnumerationMutationFunction(); 1436 1437 if (!EnumerationMutationFn) { 1438 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1439 return; 1440 } 1441 1442 CGDebugInfo *DI = getDebugInfo(); 1443 if (DI) 1444 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1445 1446 // The local variable comes into scope immediately. 1447 AutoVarEmission variable = AutoVarEmission::invalid(); 1448 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1449 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1450 1451 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1452 1453 // Fast enumeration state. 1454 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1455 llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1456 EmitNullInitialization(StatePtr, StateTy); 1457 1458 // Number of elements in the items array. 1459 static const unsigned NumItems = 16; 1460 1461 // Fetch the countByEnumeratingWithState:objects:count: selector. 1462 IdentifierInfo *II[] = { 1463 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1464 &CGM.getContext().Idents.get("objects"), 1465 &CGM.getContext().Idents.get("count") 1466 }; 1467 Selector FastEnumSel = 1468 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1469 1470 QualType ItemsTy = 1471 getContext().getConstantArrayType(getContext().getObjCIdType(), 1472 llvm::APInt(32, NumItems), 1473 ArrayType::Normal, 0); 1474 llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1475 1476 // Emit the collection pointer. In ARC, we do a retain. 1477 llvm::Value *Collection; 1478 if (getLangOpts().ObjCAutoRefCount) { 1479 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1480 1481 // Enter a cleanup to do the release. 1482 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1483 } else { 1484 Collection = EmitScalarExpr(S.getCollection()); 1485 } 1486 1487 // The 'continue' label needs to appear within the cleanup for the 1488 // collection object. 1489 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1490 1491 // Send it our message: 1492 CallArgList Args; 1493 1494 // The first argument is a temporary of the enumeration-state type. 1495 Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy)); 1496 1497 // The second argument is a temporary array with space for NumItems 1498 // pointers. We'll actually be loading elements from the array 1499 // pointer written into the control state; this buffer is so that 1500 // collections that *aren't* backed by arrays can still queue up 1501 // batches of elements. 1502 Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy)); 1503 1504 // The third argument is the capacity of that temporary array. 1505 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1506 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1507 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1508 1509 // Start the enumeration. 1510 RValue CountRV = 1511 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1512 getContext().UnsignedLongTy, 1513 FastEnumSel, 1514 Collection, Args); 1515 1516 // The initial number of objects that were returned in the buffer. 1517 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1518 1519 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1520 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1521 1522 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1523 1524 // If the limit pointer was zero to begin with, the collection is 1525 // empty; skip all this. Set the branch weight assuming this has the same 1526 // probability of exiting the loop as any other loop exit. 1527 uint64_t EntryCount = PGO.getCurrentRegionCount(); 1528 RegionCounter Cnt = getPGORegionCounter(&S); 1529 Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), 1530 EmptyBB, LoopInitBB, 1531 PGO.createBranchWeights(EntryCount, Cnt.getCount())); 1532 1533 // Otherwise, initialize the loop. 1534 EmitBlock(LoopInitBB); 1535 1536 // Save the initial mutations value. This is the value at an 1537 // address that was written into the state object by 1538 // countByEnumeratingWithState:objects:count:. 1539 llvm::Value *StateMutationsPtrPtr = 1540 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1541 llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, 1542 "mutationsptr"); 1543 1544 llvm::Value *initialMutations = 1545 Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations"); 1546 1547 // Start looping. This is the point we return to whenever we have a 1548 // fresh, non-empty batch of objects. 1549 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1550 EmitBlock(LoopBodyBB); 1551 1552 // The current index into the buffer. 1553 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1554 index->addIncoming(zero, LoopInitBB); 1555 1556 // The current buffer size. 1557 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1558 count->addIncoming(initialBufferLimit, LoopInitBB); 1559 1560 Cnt.beginRegion(Builder); 1561 1562 // Check whether the mutations value has changed from where it was 1563 // at start. StateMutationsPtr should actually be invariant between 1564 // refreshes. 1565 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1566 llvm::Value *currentMutations 1567 = Builder.CreateLoad(StateMutationsPtr, "statemutations"); 1568 1569 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1570 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1571 1572 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1573 WasNotMutatedBB, WasMutatedBB); 1574 1575 // If so, call the enumeration-mutation function. 1576 EmitBlock(WasMutatedBB); 1577 llvm::Value *V = 1578 Builder.CreateBitCast(Collection, 1579 ConvertType(getContext().getObjCIdType())); 1580 CallArgList Args2; 1581 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1582 // FIXME: We shouldn't need to get the function info here, the runtime already 1583 // should have computed it to build the function. 1584 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2, 1585 FunctionType::ExtInfo(), 1586 RequiredArgs::All), 1587 EnumerationMutationFn, ReturnValueSlot(), Args2); 1588 1589 // Otherwise, or if the mutation function returns, just continue. 1590 EmitBlock(WasNotMutatedBB); 1591 1592 // Initialize the element variable. 1593 RunCleanupsScope elementVariableScope(*this); 1594 bool elementIsVariable; 1595 LValue elementLValue; 1596 QualType elementType; 1597 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1598 // Initialize the variable, in case it's a __block variable or something. 1599 EmitAutoVarInit(variable); 1600 1601 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1602 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1603 VK_LValue, SourceLocation()); 1604 elementLValue = EmitLValue(&tempDRE); 1605 elementType = D->getType(); 1606 elementIsVariable = true; 1607 1608 if (D->isARCPseudoStrong()) 1609 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1610 } else { 1611 elementLValue = LValue(); // suppress warning 1612 elementType = cast<Expr>(S.getElement())->getType(); 1613 elementIsVariable = false; 1614 } 1615 llvm::Type *convertedElementType = ConvertType(elementType); 1616 1617 // Fetch the buffer out of the enumeration state. 1618 // TODO: this pointer should actually be invariant between 1619 // refreshes, which would help us do certain loop optimizations. 1620 llvm::Value *StateItemsPtr = 1621 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1622 llvm::Value *EnumStateItems = 1623 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1624 1625 // Fetch the value at the current index from the buffer. 1626 llvm::Value *CurrentItemPtr = 1627 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1628 llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr); 1629 1630 // Cast that value to the right type. 1631 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1632 "currentitem"); 1633 1634 // Make sure we have an l-value. Yes, this gets evaluated every 1635 // time through the loop. 1636 if (!elementIsVariable) { 1637 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1638 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1639 } else { 1640 EmitScalarInit(CurrentItem, elementLValue); 1641 } 1642 1643 // If we do have an element variable, this assignment is the end of 1644 // its initialization. 1645 if (elementIsVariable) 1646 EmitAutoVarCleanups(variable); 1647 1648 // Perform the loop body, setting up break and continue labels. 1649 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1650 { 1651 RunCleanupsScope Scope(*this); 1652 EmitStmt(S.getBody()); 1653 } 1654 BreakContinueStack.pop_back(); 1655 1656 // Destroy the element variable now. 1657 elementVariableScope.ForceCleanup(); 1658 1659 // Check whether there are more elements. 1660 EmitBlock(AfterBody.getBlock()); 1661 1662 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1663 1664 // First we check in the local buffer. 1665 llvm::Value *indexPlusOne 1666 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1667 1668 // If we haven't overrun the buffer yet, we can continue. 1669 // Set the branch weights based on the simplifying assumption that this is 1670 // like a while-loop, i.e., ignoring that the false branch fetches more 1671 // elements and then returns to the loop. 1672 Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count), 1673 LoopBodyBB, FetchMoreBB, 1674 PGO.createBranchWeights(Cnt.getCount(), EntryCount)); 1675 1676 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1677 count->addIncoming(count, AfterBody.getBlock()); 1678 1679 // Otherwise, we have to fetch more elements. 1680 EmitBlock(FetchMoreBB); 1681 1682 CountRV = 1683 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1684 getContext().UnsignedLongTy, 1685 FastEnumSel, 1686 Collection, Args); 1687 1688 // If we got a zero count, we're done. 1689 llvm::Value *refetchCount = CountRV.getScalarVal(); 1690 1691 // (note that the message send might split FetchMoreBB) 1692 index->addIncoming(zero, Builder.GetInsertBlock()); 1693 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1694 1695 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1696 EmptyBB, LoopBodyBB); 1697 1698 // No more elements. 1699 EmitBlock(EmptyBB); 1700 1701 if (!elementIsVariable) { 1702 // If the element was not a declaration, set it to be null. 1703 1704 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1705 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1706 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1707 } 1708 1709 if (DI) 1710 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1711 1712 // Leave the cleanup we entered in ARC. 1713 if (getLangOpts().ObjCAutoRefCount) 1714 PopCleanupBlock(); 1715 1716 EmitBlock(LoopEnd.getBlock()); 1717 } 1718 1719 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1720 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1721 } 1722 1723 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1724 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1725 } 1726 1727 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1728 const ObjCAtSynchronizedStmt &S) { 1729 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1730 } 1731 1732 /// Produce the code for a CK_ARCProduceObject. Just does a 1733 /// primitive retain. 1734 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type, 1735 llvm::Value *value) { 1736 return EmitARCRetain(type, value); 1737 } 1738 1739 namespace { 1740 struct CallObjCRelease : EHScopeStack::Cleanup { 1741 CallObjCRelease(llvm::Value *object) : object(object) {} 1742 llvm::Value *object; 1743 1744 void Emit(CodeGenFunction &CGF, Flags flags) override { 1745 // Releases at the end of the full-expression are imprecise. 1746 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1747 } 1748 }; 1749 } 1750 1751 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1752 /// release at the end of the full-expression. 1753 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1754 llvm::Value *object) { 1755 // If we're in a conditional branch, we need to make the cleanup 1756 // conditional. 1757 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1758 return object; 1759 } 1760 1761 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1762 llvm::Value *value) { 1763 return EmitARCRetainAutorelease(type, value); 1764 } 1765 1766 /// Given a number of pointers, inform the optimizer that they're 1767 /// being intrinsically used up until this point in the program. 1768 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1769 llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use; 1770 if (!fn) { 1771 llvm::FunctionType *fnType = 1772 llvm::FunctionType::get(CGM.VoidTy, ArrayRef<llvm::Type*>(), true); 1773 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use"); 1774 } 1775 1776 // This isn't really a "runtime" function, but as an intrinsic it 1777 // doesn't really matter as long as we align things up. 1778 EmitNounwindRuntimeCall(fn, values); 1779 } 1780 1781 1782 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1783 llvm::FunctionType *type, 1784 StringRef fnName) { 1785 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1786 1787 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) { 1788 // If the target runtime doesn't naturally support ARC, emit weak 1789 // references to the runtime support library. We don't really 1790 // permit this to fail, but we need a particular relocation style. 1791 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 1792 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1793 } else if (fnName == "objc_retain" || fnName == "objc_release") { 1794 // If we have Native ARC, set nonlazybind attribute for these APIs for 1795 // performance. 1796 f->addFnAttr(llvm::Attribute::NonLazyBind); 1797 } 1798 } 1799 1800 return fn; 1801 } 1802 1803 /// Perform an operation having the signature 1804 /// i8* (i8*) 1805 /// where a null input causes a no-op and returns null. 1806 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1807 llvm::Value *value, 1808 llvm::Constant *&fn, 1809 StringRef fnName, 1810 bool isTailCall = false) { 1811 if (isa<llvm::ConstantPointerNull>(value)) return value; 1812 1813 if (!fn) { 1814 llvm::FunctionType *fnType = 1815 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 1816 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1817 } 1818 1819 // Cast the argument to 'id'. 1820 llvm::Type *origType = value->getType(); 1821 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1822 1823 // Call the function. 1824 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1825 if (isTailCall) 1826 call->setTailCall(); 1827 1828 // Cast the result back to the original type. 1829 return CGF.Builder.CreateBitCast(call, origType); 1830 } 1831 1832 /// Perform an operation having the following signature: 1833 /// i8* (i8**) 1834 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1835 llvm::Value *addr, 1836 llvm::Constant *&fn, 1837 StringRef fnName) { 1838 if (!fn) { 1839 llvm::FunctionType *fnType = 1840 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false); 1841 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1842 } 1843 1844 // Cast the argument to 'id*'. 1845 llvm::Type *origType = addr->getType(); 1846 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1847 1848 // Call the function. 1849 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr); 1850 1851 // Cast the result back to a dereference of the original type. 1852 if (origType != CGF.Int8PtrPtrTy) 1853 result = CGF.Builder.CreateBitCast(result, 1854 cast<llvm::PointerType>(origType)->getElementType()); 1855 1856 return result; 1857 } 1858 1859 /// Perform an operation having the following signature: 1860 /// i8* (i8**, i8*) 1861 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1862 llvm::Value *addr, 1863 llvm::Value *value, 1864 llvm::Constant *&fn, 1865 StringRef fnName, 1866 bool ignored) { 1867 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 1868 == value->getType()); 1869 1870 if (!fn) { 1871 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1872 1873 llvm::FunctionType *fnType 1874 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1875 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1876 } 1877 1878 llvm::Type *origType = value->getType(); 1879 1880 llvm::Value *args[] = { 1881 CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy), 1882 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 1883 }; 1884 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 1885 1886 if (ignored) return nullptr; 1887 1888 return CGF.Builder.CreateBitCast(result, origType); 1889 } 1890 1891 /// Perform an operation having the following signature: 1892 /// void (i8**, i8**) 1893 static void emitARCCopyOperation(CodeGenFunction &CGF, 1894 llvm::Value *dst, 1895 llvm::Value *src, 1896 llvm::Constant *&fn, 1897 StringRef fnName) { 1898 assert(dst->getType() == src->getType()); 1899 1900 if (!fn) { 1901 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy }; 1902 1903 llvm::FunctionType *fnType 1904 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1905 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1906 } 1907 1908 llvm::Value *args[] = { 1909 CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy), 1910 CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy) 1911 }; 1912 CGF.EmitNounwindRuntimeCall(fn, args); 1913 } 1914 1915 /// Produce the code to do a retain. Based on the type, calls one of: 1916 /// call i8* \@objc_retain(i8* %value) 1917 /// call i8* \@objc_retainBlock(i8* %value) 1918 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1919 if (type->isBlockPointerType()) 1920 return EmitARCRetainBlock(value, /*mandatory*/ false); 1921 else 1922 return EmitARCRetainNonBlock(value); 1923 } 1924 1925 /// Retain the given object, with normal retain semantics. 1926 /// call i8* \@objc_retain(i8* %value) 1927 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1928 return emitARCValueOperation(*this, value, 1929 CGM.getARCEntrypoints().objc_retain, 1930 "objc_retain"); 1931 } 1932 1933 /// Retain the given block, with _Block_copy semantics. 1934 /// call i8* \@objc_retainBlock(i8* %value) 1935 /// 1936 /// \param mandatory - If false, emit the call with metadata 1937 /// indicating that it's okay for the optimizer to eliminate this call 1938 /// if it can prove that the block never escapes except down the stack. 1939 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1940 bool mandatory) { 1941 llvm::Value *result 1942 = emitARCValueOperation(*this, value, 1943 CGM.getARCEntrypoints().objc_retainBlock, 1944 "objc_retainBlock"); 1945 1946 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1947 // tell the optimizer that it doesn't need to do this copy if the 1948 // block doesn't escape, where being passed as an argument doesn't 1949 // count as escaping. 1950 if (!mandatory && isa<llvm::Instruction>(result)) { 1951 llvm::CallInst *call 1952 = cast<llvm::CallInst>(result->stripPointerCasts()); 1953 assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock); 1954 1955 SmallVector<llvm::Value*,1> args; 1956 call->setMetadata("clang.arc.copy_on_escape", 1957 llvm::MDNode::get(Builder.getContext(), args)); 1958 } 1959 1960 return result; 1961 } 1962 1963 /// Retain the given object which is the result of a function call. 1964 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 1965 /// 1966 /// Yes, this function name is one character away from a different 1967 /// call with completely different semantics. 1968 llvm::Value * 1969 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 1970 // Fetch the void(void) inline asm which marks that we're going to 1971 // retain the autoreleased return value. 1972 llvm::InlineAsm *&marker 1973 = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker; 1974 if (!marker) { 1975 StringRef assembly 1976 = CGM.getTargetCodeGenInfo() 1977 .getARCRetainAutoreleasedReturnValueMarker(); 1978 1979 // If we have an empty assembly string, there's nothing to do. 1980 if (assembly.empty()) { 1981 1982 // Otherwise, at -O0, build an inline asm that we're going to call 1983 // in a moment. 1984 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1985 llvm::FunctionType *type = 1986 llvm::FunctionType::get(VoidTy, /*variadic*/false); 1987 1988 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 1989 1990 // If we're at -O1 and above, we don't want to litter the code 1991 // with this marker yet, so leave a breadcrumb for the ARC 1992 // optimizer to pick up. 1993 } else { 1994 llvm::NamedMDNode *metadata = 1995 CGM.getModule().getOrInsertNamedMetadata( 1996 "clang.arc.retainAutoreleasedReturnValueMarker"); 1997 assert(metadata->getNumOperands() <= 1); 1998 if (metadata->getNumOperands() == 0) { 1999 llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly); 2000 metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string)); 2001 } 2002 } 2003 } 2004 2005 // Call the marker asm if we made one, which we do only at -O0. 2006 if (marker) Builder.CreateCall(marker); 2007 2008 return emitARCValueOperation(*this, value, 2009 CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue, 2010 "objc_retainAutoreleasedReturnValue"); 2011 } 2012 2013 /// Release the given object. 2014 /// call void \@objc_release(i8* %value) 2015 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2016 ARCPreciseLifetime_t precise) { 2017 if (isa<llvm::ConstantPointerNull>(value)) return; 2018 2019 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release; 2020 if (!fn) { 2021 llvm::FunctionType *fnType = 2022 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2023 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 2024 } 2025 2026 // Cast the argument to 'id'. 2027 value = Builder.CreateBitCast(value, Int8PtrTy); 2028 2029 // Call objc_release. 2030 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2031 2032 if (precise == ARCImpreciseLifetime) { 2033 SmallVector<llvm::Value*,1> args; 2034 call->setMetadata("clang.imprecise_release", 2035 llvm::MDNode::get(Builder.getContext(), args)); 2036 } 2037 } 2038 2039 /// Destroy a __strong variable. 2040 /// 2041 /// At -O0, emit a call to store 'null' into the address; 2042 /// instrumenting tools prefer this because the address is exposed, 2043 /// but it's relatively cumbersome to optimize. 2044 /// 2045 /// At -O1 and above, just load and call objc_release. 2046 /// 2047 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2048 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr, 2049 ARCPreciseLifetime_t precise) { 2050 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2051 llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType()); 2052 llvm::Value *null = llvm::ConstantPointerNull::get( 2053 cast<llvm::PointerType>(addrTy->getElementType())); 2054 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2055 return; 2056 } 2057 2058 llvm::Value *value = Builder.CreateLoad(addr); 2059 EmitARCRelease(value, precise); 2060 } 2061 2062 /// Store into a strong object. Always calls this: 2063 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2064 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr, 2065 llvm::Value *value, 2066 bool ignored) { 2067 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 2068 == value->getType()); 2069 2070 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong; 2071 if (!fn) { 2072 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 2073 llvm::FunctionType *fnType 2074 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 2075 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 2076 } 2077 2078 llvm::Value *args[] = { 2079 Builder.CreateBitCast(addr, Int8PtrPtrTy), 2080 Builder.CreateBitCast(value, Int8PtrTy) 2081 }; 2082 EmitNounwindRuntimeCall(fn, args); 2083 2084 if (ignored) return nullptr; 2085 return value; 2086 } 2087 2088 /// Store into a strong object. Sometimes calls this: 2089 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2090 /// Other times, breaks it down into components. 2091 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2092 llvm::Value *newValue, 2093 bool ignored) { 2094 QualType type = dst.getType(); 2095 bool isBlock = type->isBlockPointerType(); 2096 2097 // Use a store barrier at -O0 unless this is a block type or the 2098 // lvalue is inadequately aligned. 2099 if (shouldUseFusedARCCalls() && 2100 !isBlock && 2101 (dst.getAlignment().isZero() || 2102 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2103 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2104 } 2105 2106 // Otherwise, split it out. 2107 2108 // Retain the new value. 2109 newValue = EmitARCRetain(type, newValue); 2110 2111 // Read the old value. 2112 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2113 2114 // Store. We do this before the release so that any deallocs won't 2115 // see the old value. 2116 EmitStoreOfScalar(newValue, dst); 2117 2118 // Finally, release the old value. 2119 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2120 2121 return newValue; 2122 } 2123 2124 /// Autorelease the given object. 2125 /// call i8* \@objc_autorelease(i8* %value) 2126 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2127 return emitARCValueOperation(*this, value, 2128 CGM.getARCEntrypoints().objc_autorelease, 2129 "objc_autorelease"); 2130 } 2131 2132 /// Autorelease the given object. 2133 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2134 llvm::Value * 2135 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2136 return emitARCValueOperation(*this, value, 2137 CGM.getARCEntrypoints().objc_autoreleaseReturnValue, 2138 "objc_autoreleaseReturnValue", 2139 /*isTailCall*/ true); 2140 } 2141 2142 /// Do a fused retain/autorelease of the given object. 2143 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2144 llvm::Value * 2145 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2146 return emitARCValueOperation(*this, value, 2147 CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue, 2148 "objc_retainAutoreleaseReturnValue", 2149 /*isTailCall*/ true); 2150 } 2151 2152 /// Do a fused retain/autorelease of the given object. 2153 /// call i8* \@objc_retainAutorelease(i8* %value) 2154 /// or 2155 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2156 /// call i8* \@objc_autorelease(i8* %retain) 2157 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2158 llvm::Value *value) { 2159 if (!type->isBlockPointerType()) 2160 return EmitARCRetainAutoreleaseNonBlock(value); 2161 2162 if (isa<llvm::ConstantPointerNull>(value)) return value; 2163 2164 llvm::Type *origType = value->getType(); 2165 value = Builder.CreateBitCast(value, Int8PtrTy); 2166 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2167 value = EmitARCAutorelease(value); 2168 return Builder.CreateBitCast(value, origType); 2169 } 2170 2171 /// Do a fused retain/autorelease of the given object. 2172 /// call i8* \@objc_retainAutorelease(i8* %value) 2173 llvm::Value * 2174 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2175 return emitARCValueOperation(*this, value, 2176 CGM.getARCEntrypoints().objc_retainAutorelease, 2177 "objc_retainAutorelease"); 2178 } 2179 2180 /// i8* \@objc_loadWeak(i8** %addr) 2181 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2182 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) { 2183 return emitARCLoadOperation(*this, addr, 2184 CGM.getARCEntrypoints().objc_loadWeak, 2185 "objc_loadWeak"); 2186 } 2187 2188 /// i8* \@objc_loadWeakRetained(i8** %addr) 2189 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) { 2190 return emitARCLoadOperation(*this, addr, 2191 CGM.getARCEntrypoints().objc_loadWeakRetained, 2192 "objc_loadWeakRetained"); 2193 } 2194 2195 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2196 /// Returns %value. 2197 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr, 2198 llvm::Value *value, 2199 bool ignored) { 2200 return emitARCStoreOperation(*this, addr, value, 2201 CGM.getARCEntrypoints().objc_storeWeak, 2202 "objc_storeWeak", ignored); 2203 } 2204 2205 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2206 /// Returns %value. %addr is known to not have a current weak entry. 2207 /// Essentially equivalent to: 2208 /// *addr = nil; objc_storeWeak(addr, value); 2209 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) { 2210 // If we're initializing to null, just write null to memory; no need 2211 // to get the runtime involved. But don't do this if optimization 2212 // is enabled, because accounting for this would make the optimizer 2213 // much more complicated. 2214 if (isa<llvm::ConstantPointerNull>(value) && 2215 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2216 Builder.CreateStore(value, addr); 2217 return; 2218 } 2219 2220 emitARCStoreOperation(*this, addr, value, 2221 CGM.getARCEntrypoints().objc_initWeak, 2222 "objc_initWeak", /*ignored*/ true); 2223 } 2224 2225 /// void \@objc_destroyWeak(i8** %addr) 2226 /// Essentially objc_storeWeak(addr, nil). 2227 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) { 2228 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak; 2229 if (!fn) { 2230 llvm::FunctionType *fnType = 2231 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false); 2232 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 2233 } 2234 2235 // Cast the argument to 'id*'. 2236 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2237 2238 EmitNounwindRuntimeCall(fn, addr); 2239 } 2240 2241 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2242 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2243 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2244 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) { 2245 emitARCCopyOperation(*this, dst, src, 2246 CGM.getARCEntrypoints().objc_moveWeak, 2247 "objc_moveWeak"); 2248 } 2249 2250 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2251 /// Disregards the current value in %dest. Essentially 2252 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2253 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) { 2254 emitARCCopyOperation(*this, dst, src, 2255 CGM.getARCEntrypoints().objc_copyWeak, 2256 "objc_copyWeak"); 2257 } 2258 2259 /// Produce the code to do a objc_autoreleasepool_push. 2260 /// call i8* \@objc_autoreleasePoolPush(void) 2261 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2262 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush; 2263 if (!fn) { 2264 llvm::FunctionType *fnType = 2265 llvm::FunctionType::get(Int8PtrTy, false); 2266 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 2267 } 2268 2269 return EmitNounwindRuntimeCall(fn); 2270 } 2271 2272 /// Produce the code to do a primitive release. 2273 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2274 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2275 assert(value->getType() == Int8PtrTy); 2276 2277 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop; 2278 if (!fn) { 2279 llvm::FunctionType *fnType = 2280 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2281 2282 // We don't want to use a weak import here; instead we should not 2283 // fall into this path. 2284 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 2285 } 2286 2287 // objc_autoreleasePoolPop can throw. 2288 EmitRuntimeCallOrInvoke(fn, value); 2289 } 2290 2291 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2292 /// Which is: [[NSAutoreleasePool alloc] init]; 2293 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2294 /// init is declared as: - (id) init; in its NSObject super class. 2295 /// 2296 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2297 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2298 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2299 // [NSAutoreleasePool alloc] 2300 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2301 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2302 CallArgList Args; 2303 RValue AllocRV = 2304 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2305 getContext().getObjCIdType(), 2306 AllocSel, Receiver, Args); 2307 2308 // [Receiver init] 2309 Receiver = AllocRV.getScalarVal(); 2310 II = &CGM.getContext().Idents.get("init"); 2311 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2312 RValue InitRV = 2313 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2314 getContext().getObjCIdType(), 2315 InitSel, Receiver, Args); 2316 return InitRV.getScalarVal(); 2317 } 2318 2319 /// Produce the code to do a primitive release. 2320 /// [tmp drain]; 2321 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2322 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2323 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2324 CallArgList Args; 2325 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2326 getContext().VoidTy, DrainSel, Arg, Args); 2327 } 2328 2329 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2330 llvm::Value *addr, 2331 QualType type) { 2332 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2333 } 2334 2335 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2336 llvm::Value *addr, 2337 QualType type) { 2338 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2339 } 2340 2341 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2342 llvm::Value *addr, 2343 QualType type) { 2344 CGF.EmitARCDestroyWeak(addr); 2345 } 2346 2347 namespace { 2348 struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup { 2349 llvm::Value *Token; 2350 2351 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2352 2353 void Emit(CodeGenFunction &CGF, Flags flags) override { 2354 CGF.EmitObjCAutoreleasePoolPop(Token); 2355 } 2356 }; 2357 struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup { 2358 llvm::Value *Token; 2359 2360 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2361 2362 void Emit(CodeGenFunction &CGF, Flags flags) override { 2363 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2364 } 2365 }; 2366 } 2367 2368 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2369 if (CGM.getLangOpts().ObjCAutoRefCount) 2370 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2371 else 2372 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2373 } 2374 2375 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2376 LValue lvalue, 2377 QualType type) { 2378 switch (type.getObjCLifetime()) { 2379 case Qualifiers::OCL_None: 2380 case Qualifiers::OCL_ExplicitNone: 2381 case Qualifiers::OCL_Strong: 2382 case Qualifiers::OCL_Autoreleasing: 2383 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue, 2384 SourceLocation()).getScalarVal(), 2385 false); 2386 2387 case Qualifiers::OCL_Weak: 2388 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2389 true); 2390 } 2391 2392 llvm_unreachable("impossible lifetime!"); 2393 } 2394 2395 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2396 const Expr *e) { 2397 e = e->IgnoreParens(); 2398 QualType type = e->getType(); 2399 2400 // If we're loading retained from a __strong xvalue, we can avoid 2401 // an extra retain/release pair by zeroing out the source of this 2402 // "move" operation. 2403 if (e->isXValue() && 2404 !type.isConstQualified() && 2405 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2406 // Emit the lvalue. 2407 LValue lv = CGF.EmitLValue(e); 2408 2409 // Load the object pointer. 2410 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2411 SourceLocation()).getScalarVal(); 2412 2413 // Set the source pointer to NULL. 2414 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2415 2416 return TryEmitResult(result, true); 2417 } 2418 2419 // As a very special optimization, in ARC++, if the l-value is the 2420 // result of a non-volatile assignment, do a simple retain of the 2421 // result of the call to objc_storeWeak instead of reloading. 2422 if (CGF.getLangOpts().CPlusPlus && 2423 !type.isVolatileQualified() && 2424 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2425 isa<BinaryOperator>(e) && 2426 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2427 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2428 2429 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2430 } 2431 2432 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2433 llvm::Value *value); 2434 2435 /// Given that the given expression is some sort of call (which does 2436 /// not return retained), emit a retain following it. 2437 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) { 2438 llvm::Value *value = CGF.EmitScalarExpr(e); 2439 return emitARCRetainAfterCall(CGF, value); 2440 } 2441 2442 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2443 llvm::Value *value) { 2444 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2445 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2446 2447 // Place the retain immediately following the call. 2448 CGF.Builder.SetInsertPoint(call->getParent(), 2449 ++llvm::BasicBlock::iterator(call)); 2450 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2451 2452 CGF.Builder.restoreIP(ip); 2453 return value; 2454 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2455 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2456 2457 // Place the retain at the beginning of the normal destination block. 2458 llvm::BasicBlock *BB = invoke->getNormalDest(); 2459 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2460 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2461 2462 CGF.Builder.restoreIP(ip); 2463 return value; 2464 2465 // Bitcasts can arise because of related-result returns. Rewrite 2466 // the operand. 2467 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2468 llvm::Value *operand = bitcast->getOperand(0); 2469 operand = emitARCRetainAfterCall(CGF, operand); 2470 bitcast->setOperand(0, operand); 2471 return bitcast; 2472 2473 // Generic fall-back case. 2474 } else { 2475 // Retain using the non-block variant: we never need to do a copy 2476 // of a block that's been returned to us. 2477 return CGF.EmitARCRetainNonBlock(value); 2478 } 2479 } 2480 2481 /// Determine whether it might be important to emit a separate 2482 /// objc_retain_block on the result of the given expression, or 2483 /// whether it's okay to just emit it in a +1 context. 2484 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2485 assert(e->getType()->isBlockPointerType()); 2486 e = e->IgnoreParens(); 2487 2488 // For future goodness, emit block expressions directly in +1 2489 // contexts if we can. 2490 if (isa<BlockExpr>(e)) 2491 return false; 2492 2493 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2494 switch (cast->getCastKind()) { 2495 // Emitting these operations in +1 contexts is goodness. 2496 case CK_LValueToRValue: 2497 case CK_ARCReclaimReturnedObject: 2498 case CK_ARCConsumeObject: 2499 case CK_ARCProduceObject: 2500 return false; 2501 2502 // These operations preserve a block type. 2503 case CK_NoOp: 2504 case CK_BitCast: 2505 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2506 2507 // These operations are known to be bad (or haven't been considered). 2508 case CK_AnyPointerToBlockPointerCast: 2509 default: 2510 return true; 2511 } 2512 } 2513 2514 return true; 2515 } 2516 2517 /// Try to emit a PseudoObjectExpr at +1. 2518 /// 2519 /// This massively duplicates emitPseudoObjectRValue. 2520 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF, 2521 const PseudoObjectExpr *E) { 2522 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2523 2524 // Find the result expression. 2525 const Expr *resultExpr = E->getResultExpr(); 2526 assert(resultExpr); 2527 TryEmitResult result; 2528 2529 for (PseudoObjectExpr::const_semantics_iterator 2530 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2531 const Expr *semantic = *i; 2532 2533 // If this semantic expression is an opaque value, bind it 2534 // to the result of its source expression. 2535 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2536 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2537 OVMA opaqueData; 2538 2539 // If this semantic is the result of the pseudo-object 2540 // expression, try to evaluate the source as +1. 2541 if (ov == resultExpr) { 2542 assert(!OVMA::shouldBindAsLValue(ov)); 2543 result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr()); 2544 opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer())); 2545 2546 // Otherwise, just bind it. 2547 } else { 2548 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2549 } 2550 opaques.push_back(opaqueData); 2551 2552 // Otherwise, if the expression is the result, evaluate it 2553 // and remember the result. 2554 } else if (semantic == resultExpr) { 2555 result = tryEmitARCRetainScalarExpr(CGF, semantic); 2556 2557 // Otherwise, evaluate the expression in an ignored context. 2558 } else { 2559 CGF.EmitIgnoredExpr(semantic); 2560 } 2561 } 2562 2563 // Unbind all the opaques now. 2564 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2565 opaques[i].unbind(CGF); 2566 2567 return result; 2568 } 2569 2570 static TryEmitResult 2571 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2572 // We should *never* see a nested full-expression here, because if 2573 // we fail to emit at +1, our caller must not retain after we close 2574 // out the full-expression. 2575 assert(!isa<ExprWithCleanups>(e)); 2576 2577 // The desired result type, if it differs from the type of the 2578 // ultimate opaque expression. 2579 llvm::Type *resultType = nullptr; 2580 2581 while (true) { 2582 e = e->IgnoreParens(); 2583 2584 // There's a break at the end of this if-chain; anything 2585 // that wants to keep looping has to explicitly continue. 2586 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2587 switch (ce->getCastKind()) { 2588 // No-op casts don't change the type, so we just ignore them. 2589 case CK_NoOp: 2590 e = ce->getSubExpr(); 2591 continue; 2592 2593 case CK_LValueToRValue: { 2594 TryEmitResult loadResult 2595 = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr()); 2596 if (resultType) { 2597 llvm::Value *value = loadResult.getPointer(); 2598 value = CGF.Builder.CreateBitCast(value, resultType); 2599 loadResult.setPointer(value); 2600 } 2601 return loadResult; 2602 } 2603 2604 // These casts can change the type, so remember that and 2605 // soldier on. We only need to remember the outermost such 2606 // cast, though. 2607 case CK_CPointerToObjCPointerCast: 2608 case CK_BlockPointerToObjCPointerCast: 2609 case CK_AnyPointerToBlockPointerCast: 2610 case CK_BitCast: 2611 if (!resultType) 2612 resultType = CGF.ConvertType(ce->getType()); 2613 e = ce->getSubExpr(); 2614 assert(e->getType()->hasPointerRepresentation()); 2615 continue; 2616 2617 // For consumptions, just emit the subexpression and thus elide 2618 // the retain/release pair. 2619 case CK_ARCConsumeObject: { 2620 llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr()); 2621 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2622 return TryEmitResult(result, true); 2623 } 2624 2625 // Block extends are net +0. Naively, we could just recurse on 2626 // the subexpression, but actually we need to ensure that the 2627 // value is copied as a block, so there's a little filter here. 2628 case CK_ARCExtendBlockObject: { 2629 llvm::Value *result; // will be a +0 value 2630 2631 // If we can't safely assume the sub-expression will produce a 2632 // block-copied value, emit the sub-expression at +0. 2633 if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) { 2634 result = CGF.EmitScalarExpr(ce->getSubExpr()); 2635 2636 // Otherwise, try to emit the sub-expression at +1 recursively. 2637 } else { 2638 TryEmitResult subresult 2639 = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr()); 2640 result = subresult.getPointer(); 2641 2642 // If that produced a retained value, just use that, 2643 // possibly casting down. 2644 if (subresult.getInt()) { 2645 if (resultType) 2646 result = CGF.Builder.CreateBitCast(result, resultType); 2647 return TryEmitResult(result, true); 2648 } 2649 2650 // Otherwise it's +0. 2651 } 2652 2653 // Retain the object as a block, then cast down. 2654 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2655 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2656 return TryEmitResult(result, true); 2657 } 2658 2659 // For reclaims, emit the subexpression as a retained call and 2660 // skip the consumption. 2661 case CK_ARCReclaimReturnedObject: { 2662 llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr()); 2663 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2664 return TryEmitResult(result, true); 2665 } 2666 2667 default: 2668 break; 2669 } 2670 2671 // Skip __extension__. 2672 } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 2673 if (op->getOpcode() == UO_Extension) { 2674 e = op->getSubExpr(); 2675 continue; 2676 } 2677 2678 // For calls and message sends, use the retained-call logic. 2679 // Delegate inits are a special case in that they're the only 2680 // returns-retained expression that *isn't* surrounded by 2681 // a consume. 2682 } else if (isa<CallExpr>(e) || 2683 (isa<ObjCMessageExpr>(e) && 2684 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2685 llvm::Value *result = emitARCRetainCall(CGF, e); 2686 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2687 return TryEmitResult(result, true); 2688 2689 // Look through pseudo-object expressions. 2690 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2691 TryEmitResult result 2692 = tryEmitARCRetainPseudoObject(CGF, pseudo); 2693 if (resultType) { 2694 llvm::Value *value = result.getPointer(); 2695 value = CGF.Builder.CreateBitCast(value, resultType); 2696 result.setPointer(value); 2697 } 2698 return result; 2699 } 2700 2701 // Conservatively halt the search at any other expression kind. 2702 break; 2703 } 2704 2705 // We didn't find an obvious production, so emit what we've got and 2706 // tell the caller that we didn't manage to retain. 2707 llvm::Value *result = CGF.EmitScalarExpr(e); 2708 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2709 return TryEmitResult(result, false); 2710 } 2711 2712 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2713 LValue lvalue, 2714 QualType type) { 2715 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2716 llvm::Value *value = result.getPointer(); 2717 if (!result.getInt()) 2718 value = CGF.EmitARCRetain(type, value); 2719 return value; 2720 } 2721 2722 /// EmitARCRetainScalarExpr - Semantically equivalent to 2723 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2724 /// best-effort attempt to peephole expressions that naturally produce 2725 /// retained objects. 2726 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2727 // The retain needs to happen within the full-expression. 2728 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2729 enterFullExpression(cleanups); 2730 RunCleanupsScope scope(*this); 2731 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 2732 } 2733 2734 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2735 llvm::Value *value = result.getPointer(); 2736 if (!result.getInt()) 2737 value = EmitARCRetain(e->getType(), value); 2738 return value; 2739 } 2740 2741 llvm::Value * 2742 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2743 // The retain needs to happen within the full-expression. 2744 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2745 enterFullExpression(cleanups); 2746 RunCleanupsScope scope(*this); 2747 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 2748 } 2749 2750 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2751 llvm::Value *value = result.getPointer(); 2752 if (result.getInt()) 2753 value = EmitARCAutorelease(value); 2754 else 2755 value = EmitARCRetainAutorelease(e->getType(), value); 2756 return value; 2757 } 2758 2759 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2760 llvm::Value *result; 2761 bool doRetain; 2762 2763 if (shouldEmitSeparateBlockRetain(e)) { 2764 result = EmitScalarExpr(e); 2765 doRetain = true; 2766 } else { 2767 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2768 result = subresult.getPointer(); 2769 doRetain = !subresult.getInt(); 2770 } 2771 2772 if (doRetain) 2773 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2774 return EmitObjCConsumeObject(e->getType(), result); 2775 } 2776 2777 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2778 // In ARC, retain and autorelease the expression. 2779 if (getLangOpts().ObjCAutoRefCount) { 2780 // Do so before running any cleanups for the full-expression. 2781 // EmitARCRetainAutoreleaseScalarExpr does this for us. 2782 return EmitARCRetainAutoreleaseScalarExpr(expr); 2783 } 2784 2785 // Otherwise, use the normal scalar-expression emission. The 2786 // exception machinery doesn't do anything special with the 2787 // exception like retaining it, so there's no safety associated with 2788 // only running cleanups after the throw has started, and when it 2789 // matters it tends to be substantially inferior code. 2790 return EmitScalarExpr(expr); 2791 } 2792 2793 std::pair<LValue,llvm::Value*> 2794 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 2795 bool ignored) { 2796 // Evaluate the RHS first. 2797 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 2798 llvm::Value *value = result.getPointer(); 2799 2800 bool hasImmediateRetain = result.getInt(); 2801 2802 // If we didn't emit a retained object, and the l-value is of block 2803 // type, then we need to emit the block-retain immediately in case 2804 // it invalidates the l-value. 2805 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 2806 value = EmitARCRetainBlock(value, /*mandatory*/ false); 2807 hasImmediateRetain = true; 2808 } 2809 2810 LValue lvalue = EmitLValue(e->getLHS()); 2811 2812 // If the RHS was emitted retained, expand this. 2813 if (hasImmediateRetain) { 2814 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 2815 EmitStoreOfScalar(value, lvalue); 2816 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 2817 } else { 2818 value = EmitARCStoreStrong(lvalue, value, ignored); 2819 } 2820 2821 return std::pair<LValue,llvm::Value*>(lvalue, value); 2822 } 2823 2824 std::pair<LValue,llvm::Value*> 2825 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 2826 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 2827 LValue lvalue = EmitLValue(e->getLHS()); 2828 2829 EmitStoreOfScalar(value, lvalue); 2830 2831 return std::pair<LValue,llvm::Value*>(lvalue, value); 2832 } 2833 2834 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 2835 const ObjCAutoreleasePoolStmt &ARPS) { 2836 const Stmt *subStmt = ARPS.getSubStmt(); 2837 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 2838 2839 CGDebugInfo *DI = getDebugInfo(); 2840 if (DI) 2841 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 2842 2843 // Keep track of the current cleanup stack depth. 2844 RunCleanupsScope Scope(*this); 2845 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 2846 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 2847 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 2848 } else { 2849 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 2850 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 2851 } 2852 2853 for (const auto *I : S.body()) 2854 EmitStmt(I); 2855 2856 if (DI) 2857 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 2858 } 2859 2860 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2861 /// make sure it survives garbage collection until this point. 2862 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 2863 // We just use an inline assembly. 2864 llvm::FunctionType *extenderType 2865 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 2866 llvm::Value *extender 2867 = llvm::InlineAsm::get(extenderType, 2868 /* assembly */ "", 2869 /* constraints */ "r", 2870 /* side effects */ true); 2871 2872 object = Builder.CreateBitCast(object, VoidPtrTy); 2873 EmitNounwindRuntimeCall(extender, object); 2874 } 2875 2876 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 2877 /// non-trivial copy assignment function, produce following helper function. 2878 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 2879 /// 2880 llvm::Constant * 2881 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 2882 const ObjCPropertyImplDecl *PID) { 2883 if (!getLangOpts().CPlusPlus || 2884 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2885 return nullptr; 2886 QualType Ty = PID->getPropertyIvarDecl()->getType(); 2887 if (!Ty->isRecordType()) 2888 return nullptr; 2889 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2890 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2891 return nullptr; 2892 llvm::Constant *HelperFn = nullptr; 2893 if (hasTrivialSetExpr(PID)) 2894 return nullptr; 2895 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 2896 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 2897 return HelperFn; 2898 2899 ASTContext &C = getContext(); 2900 IdentifierInfo *II 2901 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 2902 FunctionDecl *FD = FunctionDecl::Create(C, 2903 C.getTranslationUnitDecl(), 2904 SourceLocation(), 2905 SourceLocation(), II, C.VoidTy, 2906 nullptr, SC_Static, 2907 false, 2908 false); 2909 2910 QualType DestTy = C.getPointerType(Ty); 2911 QualType SrcTy = Ty; 2912 SrcTy.addConst(); 2913 SrcTy = C.getPointerType(SrcTy); 2914 2915 FunctionArgList args; 2916 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 2917 args.push_back(&dstDecl); 2918 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 2919 args.push_back(&srcDecl); 2920 2921 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 2922 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All); 2923 2924 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2925 2926 llvm::Function *Fn = 2927 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2928 "__assign_helper_atomic_property_", 2929 &CGM.getModule()); 2930 2931 StartFunction(FD, C.VoidTy, Fn, FI, args); 2932 2933 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 2934 VK_RValue, SourceLocation()); 2935 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 2936 VK_LValue, OK_Ordinary, SourceLocation()); 2937 2938 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2939 VK_RValue, SourceLocation()); 2940 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2941 VK_LValue, OK_Ordinary, SourceLocation()); 2942 2943 Expr *Args[2] = { &DST, &SRC }; 2944 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 2945 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 2946 Args, DestTy->getPointeeType(), 2947 VK_LValue, SourceLocation(), false); 2948 2949 EmitStmt(&TheCall); 2950 2951 FinishFunction(); 2952 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 2953 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 2954 return HelperFn; 2955 } 2956 2957 llvm::Constant * 2958 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 2959 const ObjCPropertyImplDecl *PID) { 2960 if (!getLangOpts().CPlusPlus || 2961 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2962 return nullptr; 2963 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2964 QualType Ty = PD->getType(); 2965 if (!Ty->isRecordType()) 2966 return nullptr; 2967 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2968 return nullptr; 2969 llvm::Constant *HelperFn = nullptr; 2970 2971 if (hasTrivialGetExpr(PID)) 2972 return nullptr; 2973 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 2974 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 2975 return HelperFn; 2976 2977 2978 ASTContext &C = getContext(); 2979 IdentifierInfo *II 2980 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 2981 FunctionDecl *FD = FunctionDecl::Create(C, 2982 C.getTranslationUnitDecl(), 2983 SourceLocation(), 2984 SourceLocation(), II, C.VoidTy, 2985 nullptr, SC_Static, 2986 false, 2987 false); 2988 2989 QualType DestTy = C.getPointerType(Ty); 2990 QualType SrcTy = Ty; 2991 SrcTy.addConst(); 2992 SrcTy = C.getPointerType(SrcTy); 2993 2994 FunctionArgList args; 2995 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 2996 args.push_back(&dstDecl); 2997 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 2998 args.push_back(&srcDecl); 2999 3000 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 3001 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All); 3002 3003 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3004 3005 llvm::Function *Fn = 3006 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3007 "__copy_helper_atomic_property_", &CGM.getModule()); 3008 3009 StartFunction(FD, C.VoidTy, Fn, FI, args); 3010 3011 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 3012 VK_RValue, SourceLocation()); 3013 3014 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3015 VK_LValue, OK_Ordinary, SourceLocation()); 3016 3017 CXXConstructExpr *CXXConstExpr = 3018 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3019 3020 SmallVector<Expr*, 4> ConstructorArgs; 3021 ConstructorArgs.push_back(&SRC); 3022 CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin(); 3023 ++A; 3024 3025 for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end(); 3026 A != AEnd; ++A) 3027 ConstructorArgs.push_back(*A); 3028 3029 CXXConstructExpr *TheCXXConstructExpr = 3030 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3031 CXXConstExpr->getConstructor(), 3032 CXXConstExpr->isElidable(), 3033 ConstructorArgs, 3034 CXXConstExpr->hadMultipleCandidates(), 3035 CXXConstExpr->isListInitialization(), 3036 CXXConstExpr->isStdInitListInitialization(), 3037 CXXConstExpr->requiresZeroInitialization(), 3038 CXXConstExpr->getConstructionKind(), 3039 SourceRange()); 3040 3041 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 3042 VK_RValue, SourceLocation()); 3043 3044 RValue DV = EmitAnyExpr(&DstExpr); 3045 CharUnits Alignment 3046 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3047 EmitAggExpr(TheCXXConstructExpr, 3048 AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(), 3049 AggValueSlot::IsDestructed, 3050 AggValueSlot::DoesNotNeedGCBarriers, 3051 AggValueSlot::IsNotAliased)); 3052 3053 FinishFunction(); 3054 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3055 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3056 return HelperFn; 3057 } 3058 3059 llvm::Value * 3060 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3061 // Get selectors for retain/autorelease. 3062 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3063 Selector CopySelector = 3064 getContext().Selectors.getNullarySelector(CopyID); 3065 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3066 Selector AutoreleaseSelector = 3067 getContext().Selectors.getNullarySelector(AutoreleaseID); 3068 3069 // Emit calls to retain/autorelease. 3070 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3071 llvm::Value *Val = Block; 3072 RValue Result; 3073 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3074 Ty, CopySelector, 3075 Val, CallArgList(), nullptr, nullptr); 3076 Val = Result.getScalarVal(); 3077 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3078 Ty, AutoreleaseSelector, 3079 Val, CallArgList(), nullptr, nullptr); 3080 Val = Result.getScalarVal(); 3081 return Val; 3082 } 3083 3084 3085 CGObjCRuntime::~CGObjCRuntime() {} 3086