1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/InlineAsm.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
30 static TryEmitResult
31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
32 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
33                                       QualType ET,
34                                       const ObjCMethodDecl *Method,
35                                       RValue Result);
36 
37 /// Given the address of a variable of pointer type, find the correct
38 /// null to store into it.
39 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
40   llvm::Type *type =
41     cast<llvm::PointerType>(addr->getType())->getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString());
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
57 ///
58 llvm::Value *
59 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
60   // Generate the correct selector for this literal's concrete type.
61   const Expr *SubExpr = E->getSubExpr();
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   assert(BoxingMethod && "BoxingMethod is null");
65   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
66   Selector Sel = BoxingMethod->getSelector();
67 
68   // Generate a reference to the class pointer, which will be the receiver.
69   // Assumes that the method was introduced in the class that should be
70   // messaged (avoids pulling it out of the result type).
71   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
72   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
73   llvm::Value *Receiver = Runtime.GetClass(Builder, ClassDecl);
74 
75   const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
76   QualType ArgQT = argDecl->getType().getUnqualifiedType();
77   RValue RV = EmitAnyExpr(SubExpr);
78   CallArgList Args;
79   Args.add(RV, ArgQT);
80 
81   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
82                                               BoxingMethod->getResultType(), Sel, Receiver, Args,
83                                               ClassDecl, BoxingMethod);
84   return Builder.CreateBitCast(result.getScalarVal(),
85                                ConvertType(E->getType()));
86 }
87 
88 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
89                                     const ObjCMethodDecl *MethodWithObjects) {
90   ASTContext &Context = CGM.getContext();
91   const ObjCDictionaryLiteral *DLE = 0;
92   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
93   if (!ALE)
94     DLE = cast<ObjCDictionaryLiteral>(E);
95 
96   // Compute the type of the array we're initializing.
97   uint64_t NumElements =
98     ALE ? ALE->getNumElements() : DLE->getNumElements();
99   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
100                             NumElements);
101   QualType ElementType = Context.getObjCIdType().withConst();
102   QualType ElementArrayType
103     = Context.getConstantArrayType(ElementType, APNumElements,
104                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
105 
106   // Allocate the temporary array(s).
107   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
108   llvm::Value *Keys = 0;
109   if (DLE)
110     Keys = CreateMemTemp(ElementArrayType, "keys");
111 
112   // Perform the actual initialialization of the array(s).
113   for (uint64_t i = 0; i < NumElements; i++) {
114     if (ALE) {
115       // Emit the initializer.
116       const Expr *Rhs = ALE->getElement(i);
117       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
118                                    ElementType,
119                                    Context.getTypeAlignInChars(Rhs->getType()),
120                                    Context);
121       EmitScalarInit(Rhs, /*D=*/0, LV, /*capturedByInit=*/false);
122     } else {
123       // Emit the key initializer.
124       const Expr *Key = DLE->getKeyValueElement(i).Key;
125       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
126                                       ElementType,
127                                     Context.getTypeAlignInChars(Key->getType()),
128                                       Context);
129       EmitScalarInit(Key, /*D=*/0, KeyLV, /*capturedByInit=*/false);
130 
131       // Emit the value initializer.
132       const Expr *Value = DLE->getKeyValueElement(i).Value;
133       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
134                                         ElementType,
135                                   Context.getTypeAlignInChars(Value->getType()),
136                                         Context);
137       EmitScalarInit(Value, /*D=*/0, ValueLV, /*capturedByInit=*/false);
138     }
139   }
140 
141   // Generate the argument list.
142   CallArgList Args;
143   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
144   const ParmVarDecl *argDecl = *PI++;
145   QualType ArgQT = argDecl->getType().getUnqualifiedType();
146   Args.add(RValue::get(Objects), ArgQT);
147   if (DLE) {
148     argDecl = *PI++;
149     ArgQT = argDecl->getType().getUnqualifiedType();
150     Args.add(RValue::get(Keys), ArgQT);
151   }
152   argDecl = *PI;
153   ArgQT = argDecl->getType().getUnqualifiedType();
154   llvm::Value *Count =
155     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
156   Args.add(RValue::get(Count), ArgQT);
157 
158   // Generate a reference to the class pointer, which will be the receiver.
159   Selector Sel = MethodWithObjects->getSelector();
160   QualType ResultType = E->getType();
161   const ObjCObjectPointerType *InterfacePointerType
162     = ResultType->getAsObjCInterfacePointerType();
163   ObjCInterfaceDecl *Class
164     = InterfacePointerType->getObjectType()->getInterface();
165   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
166   llvm::Value *Receiver = Runtime.GetClass(Builder, Class);
167 
168   // Generate the message send.
169   RValue result
170     = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
171                                   MethodWithObjects->getResultType(),
172                                   Sel,
173                                   Receiver, Args, Class,
174                                   MethodWithObjects);
175   return Builder.CreateBitCast(result.getScalarVal(),
176                                ConvertType(E->getType()));
177 }
178 
179 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
180   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
181 }
182 
183 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
184                                             const ObjCDictionaryLiteral *E) {
185   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
186 }
187 
188 /// Emit a selector.
189 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
190   // Untyped selector.
191   // Note that this implementation allows for non-constant strings to be passed
192   // as arguments to @selector().  Currently, the only thing preventing this
193   // behaviour is the type checking in the front end.
194   return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector());
195 }
196 
197 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
198   // FIXME: This should pass the Decl not the name.
199   return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol());
200 }
201 
202 /// \brief Adjust the type of the result of an Objective-C message send
203 /// expression when the method has a related result type.
204 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
205                                       QualType ExpT,
206                                       const ObjCMethodDecl *Method,
207                                       RValue Result) {
208   if (!Method)
209     return Result;
210 
211   if (!Method->hasRelatedResultType() ||
212       CGF.getContext().hasSameType(ExpT, Method->getResultType()) ||
213       !Result.isScalar())
214     return Result;
215 
216   // We have applied a related result type. Cast the rvalue appropriately.
217   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
218                                                CGF.ConvertType(ExpT)));
219 }
220 
221 /// Decide whether to extend the lifetime of the receiver of a
222 /// returns-inner-pointer message.
223 static bool
224 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
225   switch (message->getReceiverKind()) {
226 
227   // For a normal instance message, we should extend unless the
228   // receiver is loaded from a variable with precise lifetime.
229   case ObjCMessageExpr::Instance: {
230     const Expr *receiver = message->getInstanceReceiver();
231     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
232     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
233     receiver = ice->getSubExpr()->IgnoreParens();
234 
235     // Only __strong variables.
236     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
237       return true;
238 
239     // All ivars and fields have precise lifetime.
240     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
241       return false;
242 
243     // Otherwise, check for variables.
244     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
245     if (!declRef) return true;
246     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
247     if (!var) return true;
248 
249     // All variables have precise lifetime except local variables with
250     // automatic storage duration that aren't specially marked.
251     return (var->hasLocalStorage() &&
252             !var->hasAttr<ObjCPreciseLifetimeAttr>());
253   }
254 
255   case ObjCMessageExpr::Class:
256   case ObjCMessageExpr::SuperClass:
257     // It's never necessary for class objects.
258     return false;
259 
260   case ObjCMessageExpr::SuperInstance:
261     // We generally assume that 'self' lives throughout a method call.
262     return false;
263   }
264 
265   llvm_unreachable("invalid receiver kind");
266 }
267 
268 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
269                                             ReturnValueSlot Return) {
270   // Only the lookup mechanism and first two arguments of the method
271   // implementation vary between runtimes.  We can get the receiver and
272   // arguments in generic code.
273 
274   bool isDelegateInit = E->isDelegateInitCall();
275 
276   const ObjCMethodDecl *method = E->getMethodDecl();
277 
278   // We don't retain the receiver in delegate init calls, and this is
279   // safe because the receiver value is always loaded from 'self',
280   // which we zero out.  We don't want to Block_copy block receivers,
281   // though.
282   bool retainSelf =
283     (!isDelegateInit &&
284      CGM.getLangOpts().ObjCAutoRefCount &&
285      method &&
286      method->hasAttr<NSConsumesSelfAttr>());
287 
288   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
289   bool isSuperMessage = false;
290   bool isClassMessage = false;
291   ObjCInterfaceDecl *OID = 0;
292   // Find the receiver
293   QualType ReceiverType;
294   llvm::Value *Receiver = 0;
295   switch (E->getReceiverKind()) {
296   case ObjCMessageExpr::Instance:
297     ReceiverType = E->getInstanceReceiver()->getType();
298     if (retainSelf) {
299       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
300                                                    E->getInstanceReceiver());
301       Receiver = ter.getPointer();
302       if (ter.getInt()) retainSelf = false;
303     } else
304       Receiver = EmitScalarExpr(E->getInstanceReceiver());
305     break;
306 
307   case ObjCMessageExpr::Class: {
308     ReceiverType = E->getClassReceiver();
309     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
310     assert(ObjTy && "Invalid Objective-C class message send");
311     OID = ObjTy->getInterface();
312     assert(OID && "Invalid Objective-C class message send");
313     Receiver = Runtime.GetClass(Builder, OID);
314     isClassMessage = true;
315     break;
316   }
317 
318   case ObjCMessageExpr::SuperInstance:
319     ReceiverType = E->getSuperType();
320     Receiver = LoadObjCSelf();
321     isSuperMessage = true;
322     break;
323 
324   case ObjCMessageExpr::SuperClass:
325     ReceiverType = E->getSuperType();
326     Receiver = LoadObjCSelf();
327     isSuperMessage = true;
328     isClassMessage = true;
329     break;
330   }
331 
332   if (retainSelf)
333     Receiver = EmitARCRetainNonBlock(Receiver);
334 
335   // In ARC, we sometimes want to "extend the lifetime"
336   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
337   // messages.
338   if (getLangOpts().ObjCAutoRefCount && method &&
339       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
340       shouldExtendReceiverForInnerPointerMessage(E))
341     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
342 
343   QualType ResultType =
344     method ? method->getResultType() : E->getType();
345 
346   CallArgList Args;
347   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
348 
349   // For delegate init calls in ARC, do an unsafe store of null into
350   // self.  This represents the call taking direct ownership of that
351   // value.  We have to do this after emitting the other call
352   // arguments because they might also reference self, but we don't
353   // have to worry about any of them modifying self because that would
354   // be an undefined read and write of an object in unordered
355   // expressions.
356   if (isDelegateInit) {
357     assert(getLangOpts().ObjCAutoRefCount &&
358            "delegate init calls should only be marked in ARC");
359 
360     // Do an unsafe store of null into self.
361     llvm::Value *selfAddr =
362       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
363     assert(selfAddr && "no self entry for a delegate init call?");
364 
365     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
366   }
367 
368   RValue result;
369   if (isSuperMessage) {
370     // super is only valid in an Objective-C method
371     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
372     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
373     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
374                                               E->getSelector(),
375                                               OMD->getClassInterface(),
376                                               isCategoryImpl,
377                                               Receiver,
378                                               isClassMessage,
379                                               Args,
380                                               method);
381   } else {
382     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
383                                          E->getSelector(),
384                                          Receiver, Args, OID,
385                                          method);
386   }
387 
388   // For delegate init calls in ARC, implicitly store the result of
389   // the call back into self.  This takes ownership of the value.
390   if (isDelegateInit) {
391     llvm::Value *selfAddr =
392       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
393     llvm::Value *newSelf = result.getScalarVal();
394 
395     // The delegate return type isn't necessarily a matching type; in
396     // fact, it's quite likely to be 'id'.
397     llvm::Type *selfTy =
398       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
399     newSelf = Builder.CreateBitCast(newSelf, selfTy);
400 
401     Builder.CreateStore(newSelf, selfAddr);
402   }
403 
404   return AdjustRelatedResultType(*this, E->getType(), method, result);
405 }
406 
407 namespace {
408 struct FinishARCDealloc : EHScopeStack::Cleanup {
409   void Emit(CodeGenFunction &CGF, Flags flags) {
410     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
411 
412     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
413     const ObjCInterfaceDecl *iface = impl->getClassInterface();
414     if (!iface->getSuperClass()) return;
415 
416     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
417 
418     // Call [super dealloc] if we have a superclass.
419     llvm::Value *self = CGF.LoadObjCSelf();
420 
421     CallArgList args;
422     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
423                                                       CGF.getContext().VoidTy,
424                                                       method->getSelector(),
425                                                       iface,
426                                                       isCategory,
427                                                       self,
428                                                       /*is class msg*/ false,
429                                                       args,
430                                                       method);
431   }
432 };
433 }
434 
435 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
436 /// the LLVM function and sets the other context used by
437 /// CodeGenFunction.
438 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
439                                       const ObjCContainerDecl *CD,
440                                       SourceLocation StartLoc) {
441   FunctionArgList args;
442   // Check if we should generate debug info for this method.
443   if (CGM.getModuleDebugInfo() && !OMD->hasAttr<NoDebugAttr>())
444     DebugInfo = CGM.getModuleDebugInfo();
445 
446   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
447 
448   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
449   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
450 
451   args.push_back(OMD->getSelfDecl());
452   args.push_back(OMD->getCmdDecl());
453 
454   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
455          E = OMD->param_end(); PI != E; ++PI)
456     args.push_back(*PI);
457 
458   CurGD = OMD;
459 
460   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
461 
462   // In ARC, certain methods get an extra cleanup.
463   if (CGM.getLangOpts().ObjCAutoRefCount &&
464       OMD->isInstanceMethod() &&
465       OMD->getSelector().isUnarySelector()) {
466     const IdentifierInfo *ident =
467       OMD->getSelector().getIdentifierInfoForSlot(0);
468     if (ident->isStr("dealloc"))
469       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
470   }
471 }
472 
473 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
474                                               LValue lvalue, QualType type);
475 
476 /// Generate an Objective-C method.  An Objective-C method is a C function with
477 /// its pointer, name, and types registered in the class struture.
478 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
479   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
480   EmitStmt(OMD->getBody());
481   FinishFunction(OMD->getBodyRBrace());
482 }
483 
484 /// emitStructGetterCall - Call the runtime function to load a property
485 /// into the return value slot.
486 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
487                                  bool isAtomic, bool hasStrong) {
488   ASTContext &Context = CGF.getContext();
489 
490   llvm::Value *src =
491     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
492                           ivar, 0).getAddress();
493 
494   // objc_copyStruct (ReturnValue, &structIvar,
495   //                  sizeof (Type of Ivar), isAtomic, false);
496   CallArgList args;
497 
498   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
499   args.add(RValue::get(dest), Context.VoidPtrTy);
500 
501   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
502   args.add(RValue::get(src), Context.VoidPtrTy);
503 
504   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
505   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
506   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
507   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
508 
509   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
510   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
511                                                       FunctionType::ExtInfo(),
512                                                       RequiredArgs::All),
513                fn, ReturnValueSlot(), args);
514 }
515 
516 /// Determine whether the given architecture supports unaligned atomic
517 /// accesses.  They don't have to be fast, just faster than a function
518 /// call and a mutex.
519 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
520   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
521   // currently supported by the backend.)
522   return 0;
523 }
524 
525 /// Return the maximum size that permits atomic accesses for the given
526 /// architecture.
527 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
528                                         llvm::Triple::ArchType arch) {
529   // ARM has 8-byte atomic accesses, but it's not clear whether we
530   // want to rely on them here.
531 
532   // In the default case, just assume that any size up to a pointer is
533   // fine given adequate alignment.
534   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
535 }
536 
537 namespace {
538   class PropertyImplStrategy {
539   public:
540     enum StrategyKind {
541       /// The 'native' strategy is to use the architecture's provided
542       /// reads and writes.
543       Native,
544 
545       /// Use objc_setProperty and objc_getProperty.
546       GetSetProperty,
547 
548       /// Use objc_setProperty for the setter, but use expression
549       /// evaluation for the getter.
550       SetPropertyAndExpressionGet,
551 
552       /// Use objc_copyStruct.
553       CopyStruct,
554 
555       /// The 'expression' strategy is to emit normal assignment or
556       /// lvalue-to-rvalue expressions.
557       Expression
558     };
559 
560     StrategyKind getKind() const { return StrategyKind(Kind); }
561 
562     bool hasStrongMember() const { return HasStrong; }
563     bool isAtomic() const { return IsAtomic; }
564     bool isCopy() const { return IsCopy; }
565 
566     CharUnits getIvarSize() const { return IvarSize; }
567     CharUnits getIvarAlignment() const { return IvarAlignment; }
568 
569     PropertyImplStrategy(CodeGenModule &CGM,
570                          const ObjCPropertyImplDecl *propImpl);
571 
572   private:
573     unsigned Kind : 8;
574     unsigned IsAtomic : 1;
575     unsigned IsCopy : 1;
576     unsigned HasStrong : 1;
577 
578     CharUnits IvarSize;
579     CharUnits IvarAlignment;
580   };
581 }
582 
583 /// Pick an implementation strategy for the given property synthesis.
584 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
585                                      const ObjCPropertyImplDecl *propImpl) {
586   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
587   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
588 
589   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
590   IsAtomic = prop->isAtomic();
591   HasStrong = false; // doesn't matter here.
592 
593   // Evaluate the ivar's size and alignment.
594   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
595   QualType ivarType = ivar->getType();
596   llvm::tie(IvarSize, IvarAlignment)
597     = CGM.getContext().getTypeInfoInChars(ivarType);
598 
599   // If we have a copy property, we always have to use getProperty/setProperty.
600   // TODO: we could actually use setProperty and an expression for non-atomics.
601   if (IsCopy) {
602     Kind = GetSetProperty;
603     return;
604   }
605 
606   // Handle retain.
607   if (setterKind == ObjCPropertyDecl::Retain) {
608     // In GC-only, there's nothing special that needs to be done.
609     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
610       // fallthrough
611 
612     // In ARC, if the property is non-atomic, use expression emission,
613     // which translates to objc_storeStrong.  This isn't required, but
614     // it's slightly nicer.
615     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
616       Kind = Expression;
617       return;
618 
619     // Otherwise, we need to at least use setProperty.  However, if
620     // the property isn't atomic, we can use normal expression
621     // emission for the getter.
622     } else if (!IsAtomic) {
623       Kind = SetPropertyAndExpressionGet;
624       return;
625 
626     // Otherwise, we have to use both setProperty and getProperty.
627     } else {
628       Kind = GetSetProperty;
629       return;
630     }
631   }
632 
633   // If we're not atomic, just use expression accesses.
634   if (!IsAtomic) {
635     Kind = Expression;
636     return;
637   }
638 
639   // Properties on bitfield ivars need to be emitted using expression
640   // accesses even if they're nominally atomic.
641   if (ivar->isBitField()) {
642     Kind = Expression;
643     return;
644   }
645 
646   // GC-qualified or ARC-qualified ivars need to be emitted as
647   // expressions.  This actually works out to being atomic anyway,
648   // except for ARC __strong, but that should trigger the above code.
649   if (ivarType.hasNonTrivialObjCLifetime() ||
650       (CGM.getLangOpts().getGC() &&
651        CGM.getContext().getObjCGCAttrKind(ivarType))) {
652     Kind = Expression;
653     return;
654   }
655 
656   // Compute whether the ivar has strong members.
657   if (CGM.getLangOpts().getGC())
658     if (const RecordType *recordType = ivarType->getAs<RecordType>())
659       HasStrong = recordType->getDecl()->hasObjectMember();
660 
661   // We can never access structs with object members with a native
662   // access, because we need to use write barriers.  This is what
663   // objc_copyStruct is for.
664   if (HasStrong) {
665     Kind = CopyStruct;
666     return;
667   }
668 
669   // Otherwise, this is target-dependent and based on the size and
670   // alignment of the ivar.
671 
672   // If the size of the ivar is not a power of two, give up.  We don't
673   // want to get into the business of doing compare-and-swaps.
674   if (!IvarSize.isPowerOfTwo()) {
675     Kind = CopyStruct;
676     return;
677   }
678 
679   llvm::Triple::ArchType arch =
680     CGM.getContext().getTargetInfo().getTriple().getArch();
681 
682   // Most architectures require memory to fit within a single cache
683   // line, so the alignment has to be at least the size of the access.
684   // Otherwise we have to grab a lock.
685   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
686     Kind = CopyStruct;
687     return;
688   }
689 
690   // If the ivar's size exceeds the architecture's maximum atomic
691   // access size, we have to use CopyStruct.
692   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
693     Kind = CopyStruct;
694     return;
695   }
696 
697   // Otherwise, we can use native loads and stores.
698   Kind = Native;
699 }
700 
701 /// \brief Generate an Objective-C property getter function.
702 ///
703 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
704 /// is illegal within a category.
705 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
706                                          const ObjCPropertyImplDecl *PID) {
707   llvm::Constant *AtomicHelperFn =
708     GenerateObjCAtomicGetterCopyHelperFunction(PID);
709   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
710   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
711   assert(OMD && "Invalid call to generate getter (empty method)");
712   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
713 
714   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
715 
716   FinishFunction();
717 }
718 
719 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
720   const Expr *getter = propImpl->getGetterCXXConstructor();
721   if (!getter) return true;
722 
723   // Sema only makes only of these when the ivar has a C++ class type,
724   // so the form is pretty constrained.
725 
726   // If the property has a reference type, we might just be binding a
727   // reference, in which case the result will be a gl-value.  We should
728   // treat this as a non-trivial operation.
729   if (getter->isGLValue())
730     return false;
731 
732   // If we selected a trivial copy-constructor, we're okay.
733   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
734     return (construct->getConstructor()->isTrivial());
735 
736   // The constructor might require cleanups (in which case it's never
737   // trivial).
738   assert(isa<ExprWithCleanups>(getter));
739   return false;
740 }
741 
742 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
743 /// copy the ivar into the resturn slot.
744 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
745                                           llvm::Value *returnAddr,
746                                           ObjCIvarDecl *ivar,
747                                           llvm::Constant *AtomicHelperFn) {
748   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
749   //                           AtomicHelperFn);
750   CallArgList args;
751 
752   // The 1st argument is the return Slot.
753   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
754 
755   // The 2nd argument is the address of the ivar.
756   llvm::Value *ivarAddr =
757   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
758                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
759   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
760   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
761 
762   // Third argument is the helper function.
763   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
764 
765   llvm::Value *copyCppAtomicObjectFn =
766   CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
767   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
768                                                       args,
769                                                       FunctionType::ExtInfo(),
770                                                       RequiredArgs::All),
771                copyCppAtomicObjectFn, ReturnValueSlot(), args);
772 }
773 
774 void
775 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
776                                         const ObjCPropertyImplDecl *propImpl,
777                                         const ObjCMethodDecl *GetterMethodDecl,
778                                         llvm::Constant *AtomicHelperFn) {
779   // If there's a non-trivial 'get' expression, we just have to emit that.
780   if (!hasTrivialGetExpr(propImpl)) {
781     if (!AtomicHelperFn) {
782       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
783                      /*nrvo*/ 0);
784       EmitReturnStmt(ret);
785     }
786     else {
787       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
788       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
789                                     ivar, AtomicHelperFn);
790     }
791     return;
792   }
793 
794   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
795   QualType propType = prop->getType();
796   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
797 
798   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
799 
800   // Pick an implementation strategy.
801   PropertyImplStrategy strategy(CGM, propImpl);
802   switch (strategy.getKind()) {
803   case PropertyImplStrategy::Native: {
804     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
805 
806     // Currently, all atomic accesses have to be through integer
807     // types, so there's no point in trying to pick a prettier type.
808     llvm::Type *bitcastType =
809       llvm::Type::getIntNTy(getLLVMContext(),
810                             getContext().toBits(strategy.getIvarSize()));
811     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
812 
813     // Perform an atomic load.  This does not impose ordering constraints.
814     llvm::Value *ivarAddr = LV.getAddress();
815     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
816     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
817     load->setAlignment(strategy.getIvarAlignment().getQuantity());
818     load->setAtomic(llvm::Unordered);
819 
820     // Store that value into the return address.  Doing this with a
821     // bitcast is likely to produce some pretty ugly IR, but it's not
822     // the *most* terrible thing in the world.
823     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
824 
825     // Make sure we don't do an autorelease.
826     AutoreleaseResult = false;
827     return;
828   }
829 
830   case PropertyImplStrategy::GetSetProperty: {
831     llvm::Value *getPropertyFn =
832       CGM.getObjCRuntime().GetPropertyGetFunction();
833     if (!getPropertyFn) {
834       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
835       return;
836     }
837 
838     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
839     // FIXME: Can't this be simpler? This might even be worse than the
840     // corresponding gcc code.
841     llvm::Value *cmd =
842       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
843     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
844     llvm::Value *ivarOffset =
845       EmitIvarOffset(classImpl->getClassInterface(), ivar);
846 
847     CallArgList args;
848     args.add(RValue::get(self), getContext().getObjCIdType());
849     args.add(RValue::get(cmd), getContext().getObjCSelType());
850     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
851     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
852              getContext().BoolTy);
853 
854     // FIXME: We shouldn't need to get the function info here, the
855     // runtime already should have computed it to build the function.
856     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
857                                                        FunctionType::ExtInfo(),
858                                                             RequiredArgs::All),
859                          getPropertyFn, ReturnValueSlot(), args);
860 
861     // We need to fix the type here. Ivars with copy & retain are
862     // always objects so we don't need to worry about complex or
863     // aggregates.
864     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
865            getTypes().ConvertType(getterMethod->getResultType())));
866 
867     EmitReturnOfRValue(RV, propType);
868 
869     // objc_getProperty does an autorelease, so we should suppress ours.
870     AutoreleaseResult = false;
871 
872     return;
873   }
874 
875   case PropertyImplStrategy::CopyStruct:
876     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
877                          strategy.hasStrongMember());
878     return;
879 
880   case PropertyImplStrategy::Expression:
881   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
882     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
883 
884     QualType ivarType = ivar->getType();
885     if (ivarType->isAnyComplexType()) {
886       ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(),
887                                                LV.isVolatileQualified());
888       StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified());
889     } else if (hasAggregateLLVMType(ivarType)) {
890       // The return value slot is guaranteed to not be aliased, but
891       // that's not necessarily the same as "on the stack", so
892       // we still potentially need objc_memmove_collectable.
893       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
894     } else {
895       llvm::Value *value;
896       if (propType->isReferenceType()) {
897         value = LV.getAddress();
898       } else {
899         // We want to load and autoreleaseReturnValue ARC __weak ivars.
900         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
901           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
902 
903         // Otherwise we want to do a simple load, suppressing the
904         // final autorelease.
905         } else {
906           value = EmitLoadOfLValue(LV).getScalarVal();
907           AutoreleaseResult = false;
908         }
909 
910         value = Builder.CreateBitCast(value, ConvertType(propType));
911         value = Builder.CreateBitCast(value,
912                   ConvertType(GetterMethodDecl->getResultType()));
913       }
914 
915       EmitReturnOfRValue(RValue::get(value), propType);
916     }
917     return;
918   }
919 
920   }
921   llvm_unreachable("bad @property implementation strategy!");
922 }
923 
924 /// emitStructSetterCall - Call the runtime function to store the value
925 /// from the first formal parameter into the given ivar.
926 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
927                                  ObjCIvarDecl *ivar) {
928   // objc_copyStruct (&structIvar, &Arg,
929   //                  sizeof (struct something), true, false);
930   CallArgList args;
931 
932   // The first argument is the address of the ivar.
933   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
934                                                 CGF.LoadObjCSelf(), ivar, 0)
935     .getAddress();
936   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
937   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
938 
939   // The second argument is the address of the parameter variable.
940   ParmVarDecl *argVar = *OMD->param_begin();
941   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
942                      VK_LValue, SourceLocation());
943   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
944   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
945   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
946 
947   // The third argument is the sizeof the type.
948   llvm::Value *size =
949     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
950   args.add(RValue::get(size), CGF.getContext().getSizeType());
951 
952   // The fourth argument is the 'isAtomic' flag.
953   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
954 
955   // The fifth argument is the 'hasStrong' flag.
956   // FIXME: should this really always be false?
957   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
958 
959   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
960   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
961                                                       args,
962                                                       FunctionType::ExtInfo(),
963                                                       RequiredArgs::All),
964                copyStructFn, ReturnValueSlot(), args);
965 }
966 
967 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
968 /// the value from the first formal parameter into the given ivar, using
969 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
970 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
971                                           ObjCMethodDecl *OMD,
972                                           ObjCIvarDecl *ivar,
973                                           llvm::Constant *AtomicHelperFn) {
974   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
975   //                           AtomicHelperFn);
976   CallArgList args;
977 
978   // The first argument is the address of the ivar.
979   llvm::Value *ivarAddr =
980     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
981                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
982   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
983   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
984 
985   // The second argument is the address of the parameter variable.
986   ParmVarDecl *argVar = *OMD->param_begin();
987   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
988                      VK_LValue, SourceLocation());
989   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
990   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
991   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
992 
993   // Third argument is the helper function.
994   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
995 
996   llvm::Value *copyCppAtomicObjectFn =
997     CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
998   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
999                                                       args,
1000                                                       FunctionType::ExtInfo(),
1001                                                       RequiredArgs::All),
1002                copyCppAtomicObjectFn, ReturnValueSlot(), args);
1003 
1004 
1005 }
1006 
1007 
1008 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1009   Expr *setter = PID->getSetterCXXAssignment();
1010   if (!setter) return true;
1011 
1012   // Sema only makes only of these when the ivar has a C++ class type,
1013   // so the form is pretty constrained.
1014 
1015   // An operator call is trivial if the function it calls is trivial.
1016   // This also implies that there's nothing non-trivial going on with
1017   // the arguments, because operator= can only be trivial if it's a
1018   // synthesized assignment operator and therefore both parameters are
1019   // references.
1020   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1021     if (const FunctionDecl *callee
1022           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1023       if (callee->isTrivial())
1024         return true;
1025     return false;
1026   }
1027 
1028   assert(isa<ExprWithCleanups>(setter));
1029   return false;
1030 }
1031 
1032 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1033   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1034     return false;
1035   const TargetInfo &Target = CGM.getContext().getTargetInfo();
1036 
1037   if (Target.getPlatformName() != "macosx")
1038     return false;
1039 
1040   return Target.getPlatformMinVersion() >= VersionTuple(10, 8);
1041 }
1042 
1043 void
1044 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1045                                         const ObjCPropertyImplDecl *propImpl,
1046                                         llvm::Constant *AtomicHelperFn) {
1047   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1048   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1049   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1050 
1051   // Just use the setter expression if Sema gave us one and it's
1052   // non-trivial.
1053   if (!hasTrivialSetExpr(propImpl)) {
1054     if (!AtomicHelperFn)
1055       // If non-atomic, assignment is called directly.
1056       EmitStmt(propImpl->getSetterCXXAssignment());
1057     else
1058       // If atomic, assignment is called via a locking api.
1059       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1060                                     AtomicHelperFn);
1061     return;
1062   }
1063 
1064   PropertyImplStrategy strategy(CGM, propImpl);
1065   switch (strategy.getKind()) {
1066   case PropertyImplStrategy::Native: {
1067     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1068 
1069     LValue ivarLValue =
1070       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1071     llvm::Value *ivarAddr = ivarLValue.getAddress();
1072 
1073     // Currently, all atomic accesses have to be through integer
1074     // types, so there's no point in trying to pick a prettier type.
1075     llvm::Type *bitcastType =
1076       llvm::Type::getIntNTy(getLLVMContext(),
1077                             getContext().toBits(strategy.getIvarSize()));
1078     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1079 
1080     // Cast both arguments to the chosen operation type.
1081     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1082     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1083 
1084     // This bitcast load is likely to cause some nasty IR.
1085     llvm::Value *load = Builder.CreateLoad(argAddr);
1086 
1087     // Perform an atomic store.  There are no memory ordering requirements.
1088     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1089     store->setAlignment(strategy.getIvarAlignment().getQuantity());
1090     store->setAtomic(llvm::Unordered);
1091     return;
1092   }
1093 
1094   case PropertyImplStrategy::GetSetProperty:
1095   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1096 
1097     llvm::Value *setOptimizedPropertyFn = 0;
1098     llvm::Value *setPropertyFn = 0;
1099     if (UseOptimizedSetter(CGM)) {
1100       // 10.8 code and GC is off
1101       setOptimizedPropertyFn =
1102         CGM.getObjCRuntime()
1103            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1104                                             strategy.isCopy());
1105       if (!setOptimizedPropertyFn) {
1106         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1107         return;
1108       }
1109     }
1110     else {
1111       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1112       if (!setPropertyFn) {
1113         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1114         return;
1115       }
1116     }
1117 
1118     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1119     //                       <is-atomic>, <is-copy>).
1120     llvm::Value *cmd =
1121       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1122     llvm::Value *self =
1123       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1124     llvm::Value *ivarOffset =
1125       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1126     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1127     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1128 
1129     CallArgList args;
1130     args.add(RValue::get(self), getContext().getObjCIdType());
1131     args.add(RValue::get(cmd), getContext().getObjCSelType());
1132     if (setOptimizedPropertyFn) {
1133       args.add(RValue::get(arg), getContext().getObjCIdType());
1134       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1135       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1136                                                   FunctionType::ExtInfo(),
1137                                                   RequiredArgs::All),
1138                setOptimizedPropertyFn, ReturnValueSlot(), args);
1139     } else {
1140       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1141       args.add(RValue::get(arg), getContext().getObjCIdType());
1142       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1143                getContext().BoolTy);
1144       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1145                getContext().BoolTy);
1146       // FIXME: We shouldn't need to get the function info here, the runtime
1147       // already should have computed it to build the function.
1148       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1149                                                   FunctionType::ExtInfo(),
1150                                                   RequiredArgs::All),
1151                setPropertyFn, ReturnValueSlot(), args);
1152     }
1153 
1154     return;
1155   }
1156 
1157   case PropertyImplStrategy::CopyStruct:
1158     emitStructSetterCall(*this, setterMethod, ivar);
1159     return;
1160 
1161   case PropertyImplStrategy::Expression:
1162     break;
1163   }
1164 
1165   // Otherwise, fake up some ASTs and emit a normal assignment.
1166   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1167   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1168                    VK_LValue, SourceLocation());
1169   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1170                             selfDecl->getType(), CK_LValueToRValue, &self,
1171                             VK_RValue);
1172   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1173                           SourceLocation(), &selfLoad, true, true);
1174 
1175   ParmVarDecl *argDecl = *setterMethod->param_begin();
1176   QualType argType = argDecl->getType().getNonReferenceType();
1177   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1178   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1179                            argType.getUnqualifiedType(), CK_LValueToRValue,
1180                            &arg, VK_RValue);
1181 
1182   // The property type can differ from the ivar type in some situations with
1183   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1184   // The following absurdity is just to ensure well-formed IR.
1185   CastKind argCK = CK_NoOp;
1186   if (ivarRef.getType()->isObjCObjectPointerType()) {
1187     if (argLoad.getType()->isObjCObjectPointerType())
1188       argCK = CK_BitCast;
1189     else if (argLoad.getType()->isBlockPointerType())
1190       argCK = CK_BlockPointerToObjCPointerCast;
1191     else
1192       argCK = CK_CPointerToObjCPointerCast;
1193   } else if (ivarRef.getType()->isBlockPointerType()) {
1194      if (argLoad.getType()->isBlockPointerType())
1195       argCK = CK_BitCast;
1196     else
1197       argCK = CK_AnyPointerToBlockPointerCast;
1198   } else if (ivarRef.getType()->isPointerType()) {
1199     argCK = CK_BitCast;
1200   }
1201   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1202                            ivarRef.getType(), argCK, &argLoad,
1203                            VK_RValue);
1204   Expr *finalArg = &argLoad;
1205   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1206                                            argLoad.getType()))
1207     finalArg = &argCast;
1208 
1209 
1210   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1211                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1212                         SourceLocation());
1213   EmitStmt(&assign);
1214 }
1215 
1216 /// \brief Generate an Objective-C property setter function.
1217 ///
1218 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1219 /// is illegal within a category.
1220 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1221                                          const ObjCPropertyImplDecl *PID) {
1222   llvm::Constant *AtomicHelperFn =
1223     GenerateObjCAtomicSetterCopyHelperFunction(PID);
1224   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1225   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1226   assert(OMD && "Invalid call to generate setter (empty method)");
1227   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
1228 
1229   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1230 
1231   FinishFunction();
1232 }
1233 
1234 namespace {
1235   struct DestroyIvar : EHScopeStack::Cleanup {
1236   private:
1237     llvm::Value *addr;
1238     const ObjCIvarDecl *ivar;
1239     CodeGenFunction::Destroyer *destroyer;
1240     bool useEHCleanupForArray;
1241   public:
1242     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1243                 CodeGenFunction::Destroyer *destroyer,
1244                 bool useEHCleanupForArray)
1245       : addr(addr), ivar(ivar), destroyer(destroyer),
1246         useEHCleanupForArray(useEHCleanupForArray) {}
1247 
1248     void Emit(CodeGenFunction &CGF, Flags flags) {
1249       LValue lvalue
1250         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1251       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1252                       flags.isForNormalCleanup() && useEHCleanupForArray);
1253     }
1254   };
1255 }
1256 
1257 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1258 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1259                                       llvm::Value *addr,
1260                                       QualType type) {
1261   llvm::Value *null = getNullForVariable(addr);
1262   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1263 }
1264 
1265 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1266                                   ObjCImplementationDecl *impl) {
1267   CodeGenFunction::RunCleanupsScope scope(CGF);
1268 
1269   llvm::Value *self = CGF.LoadObjCSelf();
1270 
1271   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1272   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1273        ivar; ivar = ivar->getNextIvar()) {
1274     QualType type = ivar->getType();
1275 
1276     // Check whether the ivar is a destructible type.
1277     QualType::DestructionKind dtorKind = type.isDestructedType();
1278     if (!dtorKind) continue;
1279 
1280     CodeGenFunction::Destroyer *destroyer = 0;
1281 
1282     // Use a call to objc_storeStrong to destroy strong ivars, for the
1283     // general benefit of the tools.
1284     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1285       destroyer = destroyARCStrongWithStore;
1286 
1287     // Otherwise use the default for the destruction kind.
1288     } else {
1289       destroyer = CGF.getDestroyer(dtorKind);
1290     }
1291 
1292     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1293 
1294     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1295                                          cleanupKind & EHCleanup);
1296   }
1297 
1298   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1299 }
1300 
1301 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1302                                                  ObjCMethodDecl *MD,
1303                                                  bool ctor) {
1304   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1305   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1306 
1307   // Emit .cxx_construct.
1308   if (ctor) {
1309     // Suppress the final autorelease in ARC.
1310     AutoreleaseResult = false;
1311 
1312     SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
1313     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1314            E = IMP->init_end(); B != E; ++B) {
1315       CXXCtorInitializer *IvarInit = (*B);
1316       FieldDecl *Field = IvarInit->getAnyMember();
1317       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
1318       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1319                                     LoadObjCSelf(), Ivar, 0);
1320       EmitAggExpr(IvarInit->getInit(),
1321                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1322                                           AggValueSlot::DoesNotNeedGCBarriers,
1323                                           AggValueSlot::IsNotAliased));
1324     }
1325     // constructor returns 'self'.
1326     CodeGenTypes &Types = CGM.getTypes();
1327     QualType IdTy(CGM.getContext().getObjCIdType());
1328     llvm::Value *SelfAsId =
1329       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1330     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1331 
1332   // Emit .cxx_destruct.
1333   } else {
1334     emitCXXDestructMethod(*this, IMP);
1335   }
1336   FinishFunction();
1337 }
1338 
1339 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1340   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1341   it++; it++;
1342   const ABIArgInfo &AI = it->info;
1343   // FIXME. Is this sufficient check?
1344   return (AI.getKind() == ABIArgInfo::Indirect);
1345 }
1346 
1347 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1348   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1349     return false;
1350   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1351     return FDTTy->getDecl()->hasObjectMember();
1352   return false;
1353 }
1354 
1355 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1356   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1357   return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self");
1358 }
1359 
1360 QualType CodeGenFunction::TypeOfSelfObject() {
1361   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1362   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1363   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1364     getContext().getCanonicalType(selfDecl->getType()));
1365   return PTy->getPointeeType();
1366 }
1367 
1368 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1369   llvm::Constant *EnumerationMutationFn =
1370     CGM.getObjCRuntime().EnumerationMutationFunction();
1371 
1372   if (!EnumerationMutationFn) {
1373     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1374     return;
1375   }
1376 
1377   CGDebugInfo *DI = getDebugInfo();
1378   if (DI)
1379     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1380 
1381   // The local variable comes into scope immediately.
1382   AutoVarEmission variable = AutoVarEmission::invalid();
1383   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1384     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1385 
1386   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1387 
1388   // Fast enumeration state.
1389   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1390   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1391   EmitNullInitialization(StatePtr, StateTy);
1392 
1393   // Number of elements in the items array.
1394   static const unsigned NumItems = 16;
1395 
1396   // Fetch the countByEnumeratingWithState:objects:count: selector.
1397   IdentifierInfo *II[] = {
1398     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1399     &CGM.getContext().Idents.get("objects"),
1400     &CGM.getContext().Idents.get("count")
1401   };
1402   Selector FastEnumSel =
1403     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1404 
1405   QualType ItemsTy =
1406     getContext().getConstantArrayType(getContext().getObjCIdType(),
1407                                       llvm::APInt(32, NumItems),
1408                                       ArrayType::Normal, 0);
1409   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1410 
1411   // Emit the collection pointer.  In ARC, we do a retain.
1412   llvm::Value *Collection;
1413   if (getLangOpts().ObjCAutoRefCount) {
1414     Collection = EmitARCRetainScalarExpr(S.getCollection());
1415 
1416     // Enter a cleanup to do the release.
1417     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1418   } else {
1419     Collection = EmitScalarExpr(S.getCollection());
1420   }
1421 
1422   // The 'continue' label needs to appear within the cleanup for the
1423   // collection object.
1424   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1425 
1426   // Send it our message:
1427   CallArgList Args;
1428 
1429   // The first argument is a temporary of the enumeration-state type.
1430   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1431 
1432   // The second argument is a temporary array with space for NumItems
1433   // pointers.  We'll actually be loading elements from the array
1434   // pointer written into the control state; this buffer is so that
1435   // collections that *aren't* backed by arrays can still queue up
1436   // batches of elements.
1437   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1438 
1439   // The third argument is the capacity of that temporary array.
1440   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1441   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1442   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1443 
1444   // Start the enumeration.
1445   RValue CountRV =
1446     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1447                                              getContext().UnsignedLongTy,
1448                                              FastEnumSel,
1449                                              Collection, Args);
1450 
1451   // The initial number of objects that were returned in the buffer.
1452   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1453 
1454   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1455   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1456 
1457   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1458 
1459   // If the limit pointer was zero to begin with, the collection is
1460   // empty; skip all this.
1461   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1462                        EmptyBB, LoopInitBB);
1463 
1464   // Otherwise, initialize the loop.
1465   EmitBlock(LoopInitBB);
1466 
1467   // Save the initial mutations value.  This is the value at an
1468   // address that was written into the state object by
1469   // countByEnumeratingWithState:objects:count:.
1470   llvm::Value *StateMutationsPtrPtr =
1471     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1472   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1473                                                       "mutationsptr");
1474 
1475   llvm::Value *initialMutations =
1476     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1477 
1478   // Start looping.  This is the point we return to whenever we have a
1479   // fresh, non-empty batch of objects.
1480   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1481   EmitBlock(LoopBodyBB);
1482 
1483   // The current index into the buffer.
1484   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1485   index->addIncoming(zero, LoopInitBB);
1486 
1487   // The current buffer size.
1488   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1489   count->addIncoming(initialBufferLimit, LoopInitBB);
1490 
1491   // Check whether the mutations value has changed from where it was
1492   // at start.  StateMutationsPtr should actually be invariant between
1493   // refreshes.
1494   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1495   llvm::Value *currentMutations
1496     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1497 
1498   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1499   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1500 
1501   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1502                        WasNotMutatedBB, WasMutatedBB);
1503 
1504   // If so, call the enumeration-mutation function.
1505   EmitBlock(WasMutatedBB);
1506   llvm::Value *V =
1507     Builder.CreateBitCast(Collection,
1508                           ConvertType(getContext().getObjCIdType()));
1509   CallArgList Args2;
1510   Args2.add(RValue::get(V), getContext().getObjCIdType());
1511   // FIXME: We shouldn't need to get the function info here, the runtime already
1512   // should have computed it to build the function.
1513   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1514                                                   FunctionType::ExtInfo(),
1515                                                   RequiredArgs::All),
1516            EnumerationMutationFn, ReturnValueSlot(), Args2);
1517 
1518   // Otherwise, or if the mutation function returns, just continue.
1519   EmitBlock(WasNotMutatedBB);
1520 
1521   // Initialize the element variable.
1522   RunCleanupsScope elementVariableScope(*this);
1523   bool elementIsVariable;
1524   LValue elementLValue;
1525   QualType elementType;
1526   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1527     // Initialize the variable, in case it's a __block variable or something.
1528     EmitAutoVarInit(variable);
1529 
1530     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1531     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1532                         VK_LValue, SourceLocation());
1533     elementLValue = EmitLValue(&tempDRE);
1534     elementType = D->getType();
1535     elementIsVariable = true;
1536 
1537     if (D->isARCPseudoStrong())
1538       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1539   } else {
1540     elementLValue = LValue(); // suppress warning
1541     elementType = cast<Expr>(S.getElement())->getType();
1542     elementIsVariable = false;
1543   }
1544   llvm::Type *convertedElementType = ConvertType(elementType);
1545 
1546   // Fetch the buffer out of the enumeration state.
1547   // TODO: this pointer should actually be invariant between
1548   // refreshes, which would help us do certain loop optimizations.
1549   llvm::Value *StateItemsPtr =
1550     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1551   llvm::Value *EnumStateItems =
1552     Builder.CreateLoad(StateItemsPtr, "stateitems");
1553 
1554   // Fetch the value at the current index from the buffer.
1555   llvm::Value *CurrentItemPtr =
1556     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1557   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1558 
1559   // Cast that value to the right type.
1560   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1561                                       "currentitem");
1562 
1563   // Make sure we have an l-value.  Yes, this gets evaluated every
1564   // time through the loop.
1565   if (!elementIsVariable) {
1566     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1567     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1568   } else {
1569     EmitScalarInit(CurrentItem, elementLValue);
1570   }
1571 
1572   // If we do have an element variable, this assignment is the end of
1573   // its initialization.
1574   if (elementIsVariable)
1575     EmitAutoVarCleanups(variable);
1576 
1577   // Perform the loop body, setting up break and continue labels.
1578   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1579   {
1580     RunCleanupsScope Scope(*this);
1581     EmitStmt(S.getBody());
1582   }
1583   BreakContinueStack.pop_back();
1584 
1585   // Destroy the element variable now.
1586   elementVariableScope.ForceCleanup();
1587 
1588   // Check whether there are more elements.
1589   EmitBlock(AfterBody.getBlock());
1590 
1591   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1592 
1593   // First we check in the local buffer.
1594   llvm::Value *indexPlusOne
1595     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1596 
1597   // If we haven't overrun the buffer yet, we can continue.
1598   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1599                        LoopBodyBB, FetchMoreBB);
1600 
1601   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1602   count->addIncoming(count, AfterBody.getBlock());
1603 
1604   // Otherwise, we have to fetch more elements.
1605   EmitBlock(FetchMoreBB);
1606 
1607   CountRV =
1608     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1609                                              getContext().UnsignedLongTy,
1610                                              FastEnumSel,
1611                                              Collection, Args);
1612 
1613   // If we got a zero count, we're done.
1614   llvm::Value *refetchCount = CountRV.getScalarVal();
1615 
1616   // (note that the message send might split FetchMoreBB)
1617   index->addIncoming(zero, Builder.GetInsertBlock());
1618   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1619 
1620   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1621                        EmptyBB, LoopBodyBB);
1622 
1623   // No more elements.
1624   EmitBlock(EmptyBB);
1625 
1626   if (!elementIsVariable) {
1627     // If the element was not a declaration, set it to be null.
1628 
1629     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1630     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1631     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1632   }
1633 
1634   if (DI)
1635     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1636 
1637   // Leave the cleanup we entered in ARC.
1638   if (getLangOpts().ObjCAutoRefCount)
1639     PopCleanupBlock();
1640 
1641   EmitBlock(LoopEnd.getBlock());
1642 }
1643 
1644 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1645   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1646 }
1647 
1648 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1649   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1650 }
1651 
1652 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1653                                               const ObjCAtSynchronizedStmt &S) {
1654   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1655 }
1656 
1657 /// Produce the code for a CK_ARCProduceObject.  Just does a
1658 /// primitive retain.
1659 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1660                                                     llvm::Value *value) {
1661   return EmitARCRetain(type, value);
1662 }
1663 
1664 namespace {
1665   struct CallObjCRelease : EHScopeStack::Cleanup {
1666     CallObjCRelease(llvm::Value *object) : object(object) {}
1667     llvm::Value *object;
1668 
1669     void Emit(CodeGenFunction &CGF, Flags flags) {
1670       CGF.EmitARCRelease(object, /*precise*/ true);
1671     }
1672   };
1673 }
1674 
1675 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1676 /// release at the end of the full-expression.
1677 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1678                                                     llvm::Value *object) {
1679   // If we're in a conditional branch, we need to make the cleanup
1680   // conditional.
1681   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1682   return object;
1683 }
1684 
1685 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1686                                                            llvm::Value *value) {
1687   return EmitARCRetainAutorelease(type, value);
1688 }
1689 
1690 
1691 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1692                                                 llvm::FunctionType *type,
1693                                                 StringRef fnName) {
1694   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1695 
1696   // If the target runtime doesn't naturally support ARC, emit weak
1697   // references to the runtime support library.  We don't really
1698   // permit this to fail, but we need a particular relocation style.
1699   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1700     if (!CGM.getLangOpts().ObjCRuntime.hasARC())
1701       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1702     // set nonlazybind attribute for these APIs for performance.
1703     if (fnName == "objc_retain" || fnName  == "objc_release")
1704       f->addFnAttr(llvm::Attribute::NonLazyBind);
1705   }
1706 
1707   return fn;
1708 }
1709 
1710 /// Perform an operation having the signature
1711 ///   i8* (i8*)
1712 /// where a null input causes a no-op and returns null.
1713 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1714                                           llvm::Value *value,
1715                                           llvm::Constant *&fn,
1716                                           StringRef fnName) {
1717   if (isa<llvm::ConstantPointerNull>(value)) return value;
1718 
1719   if (!fn) {
1720     std::vector<llvm::Type*> args(1, CGF.Int8PtrTy);
1721     llvm::FunctionType *fnType =
1722       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1723     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1724   }
1725 
1726   // Cast the argument to 'id'.
1727   llvm::Type *origType = value->getType();
1728   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1729 
1730   // Call the function.
1731   llvm::CallInst *call = CGF.Builder.CreateCall(fn, value);
1732   call->setDoesNotThrow();
1733 
1734   // Cast the result back to the original type.
1735   return CGF.Builder.CreateBitCast(call, origType);
1736 }
1737 
1738 /// Perform an operation having the following signature:
1739 ///   i8* (i8**)
1740 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1741                                          llvm::Value *addr,
1742                                          llvm::Constant *&fn,
1743                                          StringRef fnName) {
1744   if (!fn) {
1745     std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy);
1746     llvm::FunctionType *fnType =
1747       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
1748     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1749   }
1750 
1751   // Cast the argument to 'id*'.
1752   llvm::Type *origType = addr->getType();
1753   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1754 
1755   // Call the function.
1756   llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr);
1757   call->setDoesNotThrow();
1758 
1759   // Cast the result back to a dereference of the original type.
1760   llvm::Value *result = call;
1761   if (origType != CGF.Int8PtrPtrTy)
1762     result = CGF.Builder.CreateBitCast(result,
1763                         cast<llvm::PointerType>(origType)->getElementType());
1764 
1765   return result;
1766 }
1767 
1768 /// Perform an operation having the following signature:
1769 ///   i8* (i8**, i8*)
1770 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1771                                           llvm::Value *addr,
1772                                           llvm::Value *value,
1773                                           llvm::Constant *&fn,
1774                                           StringRef fnName,
1775                                           bool ignored) {
1776   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1777            == value->getType());
1778 
1779   if (!fn) {
1780     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1781 
1782     llvm::FunctionType *fnType
1783       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1784     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1785   }
1786 
1787   llvm::Type *origType = value->getType();
1788 
1789   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1790   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1791 
1792   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value);
1793   result->setDoesNotThrow();
1794 
1795   if (ignored) return 0;
1796 
1797   return CGF.Builder.CreateBitCast(result, origType);
1798 }
1799 
1800 /// Perform an operation having the following signature:
1801 ///   void (i8**, i8**)
1802 static void emitARCCopyOperation(CodeGenFunction &CGF,
1803                                  llvm::Value *dst,
1804                                  llvm::Value *src,
1805                                  llvm::Constant *&fn,
1806                                  StringRef fnName) {
1807   assert(dst->getType() == src->getType());
1808 
1809   if (!fn) {
1810     std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy);
1811     llvm::FunctionType *fnType
1812       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1813     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1814   }
1815 
1816   dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy);
1817   src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy);
1818 
1819   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src);
1820   result->setDoesNotThrow();
1821 }
1822 
1823 /// Produce the code to do a retain.  Based on the type, calls one of:
1824 ///   call i8* \@objc_retain(i8* %value)
1825 ///   call i8* \@objc_retainBlock(i8* %value)
1826 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1827   if (type->isBlockPointerType())
1828     return EmitARCRetainBlock(value, /*mandatory*/ false);
1829   else
1830     return EmitARCRetainNonBlock(value);
1831 }
1832 
1833 /// Retain the given object, with normal retain semantics.
1834 ///   call i8* \@objc_retain(i8* %value)
1835 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1836   return emitARCValueOperation(*this, value,
1837                                CGM.getARCEntrypoints().objc_retain,
1838                                "objc_retain");
1839 }
1840 
1841 /// Retain the given block, with _Block_copy semantics.
1842 ///   call i8* \@objc_retainBlock(i8* %value)
1843 ///
1844 /// \param mandatory - If false, emit the call with metadata
1845 /// indicating that it's okay for the optimizer to eliminate this call
1846 /// if it can prove that the block never escapes except down the stack.
1847 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1848                                                  bool mandatory) {
1849   llvm::Value *result
1850     = emitARCValueOperation(*this, value,
1851                             CGM.getARCEntrypoints().objc_retainBlock,
1852                             "objc_retainBlock");
1853 
1854   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1855   // tell the optimizer that it doesn't need to do this copy if the
1856   // block doesn't escape, where being passed as an argument doesn't
1857   // count as escaping.
1858   if (!mandatory && isa<llvm::Instruction>(result)) {
1859     llvm::CallInst *call
1860       = cast<llvm::CallInst>(result->stripPointerCasts());
1861     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1862 
1863     SmallVector<llvm::Value*,1> args;
1864     call->setMetadata("clang.arc.copy_on_escape",
1865                       llvm::MDNode::get(Builder.getContext(), args));
1866   }
1867 
1868   return result;
1869 }
1870 
1871 /// Retain the given object which is the result of a function call.
1872 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1873 ///
1874 /// Yes, this function name is one character away from a different
1875 /// call with completely different semantics.
1876 llvm::Value *
1877 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1878   // Fetch the void(void) inline asm which marks that we're going to
1879   // retain the autoreleased return value.
1880   llvm::InlineAsm *&marker
1881     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1882   if (!marker) {
1883     StringRef assembly
1884       = CGM.getTargetCodeGenInfo()
1885            .getARCRetainAutoreleasedReturnValueMarker();
1886 
1887     // If we have an empty assembly string, there's nothing to do.
1888     if (assembly.empty()) {
1889 
1890     // Otherwise, at -O0, build an inline asm that we're going to call
1891     // in a moment.
1892     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1893       llvm::FunctionType *type =
1894         llvm::FunctionType::get(VoidTy, /*variadic*/false);
1895 
1896       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1897 
1898     // If we're at -O1 and above, we don't want to litter the code
1899     // with this marker yet, so leave a breadcrumb for the ARC
1900     // optimizer to pick up.
1901     } else {
1902       llvm::NamedMDNode *metadata =
1903         CGM.getModule().getOrInsertNamedMetadata(
1904                             "clang.arc.retainAutoreleasedReturnValueMarker");
1905       assert(metadata->getNumOperands() <= 1);
1906       if (metadata->getNumOperands() == 0) {
1907         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1908         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1909       }
1910     }
1911   }
1912 
1913   // Call the marker asm if we made one, which we do only at -O0.
1914   if (marker) Builder.CreateCall(marker);
1915 
1916   return emitARCValueOperation(*this, value,
1917                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1918                                "objc_retainAutoreleasedReturnValue");
1919 }
1920 
1921 /// Release the given object.
1922 ///   call void \@objc_release(i8* %value)
1923 void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) {
1924   if (isa<llvm::ConstantPointerNull>(value)) return;
1925 
1926   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
1927   if (!fn) {
1928     std::vector<llvm::Type*> args(1, Int8PtrTy);
1929     llvm::FunctionType *fnType =
1930       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
1931     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
1932   }
1933 
1934   // Cast the argument to 'id'.
1935   value = Builder.CreateBitCast(value, Int8PtrTy);
1936 
1937   // Call objc_release.
1938   llvm::CallInst *call = Builder.CreateCall(fn, value);
1939   call->setDoesNotThrow();
1940 
1941   if (!precise) {
1942     SmallVector<llvm::Value*,1> args;
1943     call->setMetadata("clang.imprecise_release",
1944                       llvm::MDNode::get(Builder.getContext(), args));
1945   }
1946 }
1947 
1948 /// Store into a strong object.  Always calls this:
1949 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
1950 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
1951                                                      llvm::Value *value,
1952                                                      bool ignored) {
1953   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1954            == value->getType());
1955 
1956   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
1957   if (!fn) {
1958     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
1959     llvm::FunctionType *fnType
1960       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
1961     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
1962   }
1963 
1964   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
1965   llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy);
1966 
1967   Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow();
1968 
1969   if (ignored) return 0;
1970   return value;
1971 }
1972 
1973 /// Store into a strong object.  Sometimes calls this:
1974 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
1975 /// Other times, breaks it down into components.
1976 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
1977                                                  llvm::Value *newValue,
1978                                                  bool ignored) {
1979   QualType type = dst.getType();
1980   bool isBlock = type->isBlockPointerType();
1981 
1982   // Use a store barrier at -O0 unless this is a block type or the
1983   // lvalue is inadequately aligned.
1984   if (shouldUseFusedARCCalls() &&
1985       !isBlock &&
1986       (dst.getAlignment().isZero() ||
1987        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
1988     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
1989   }
1990 
1991   // Otherwise, split it out.
1992 
1993   // Retain the new value.
1994   newValue = EmitARCRetain(type, newValue);
1995 
1996   // Read the old value.
1997   llvm::Value *oldValue = EmitLoadOfScalar(dst);
1998 
1999   // Store.  We do this before the release so that any deallocs won't
2000   // see the old value.
2001   EmitStoreOfScalar(newValue, dst);
2002 
2003   // Finally, release the old value.
2004   EmitARCRelease(oldValue, /*precise*/ false);
2005 
2006   return newValue;
2007 }
2008 
2009 /// Autorelease the given object.
2010 ///   call i8* \@objc_autorelease(i8* %value)
2011 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2012   return emitARCValueOperation(*this, value,
2013                                CGM.getARCEntrypoints().objc_autorelease,
2014                                "objc_autorelease");
2015 }
2016 
2017 /// Autorelease the given object.
2018 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2019 llvm::Value *
2020 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2021   return emitARCValueOperation(*this, value,
2022                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2023                                "objc_autoreleaseReturnValue");
2024 }
2025 
2026 /// Do a fused retain/autorelease of the given object.
2027 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2028 llvm::Value *
2029 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2030   return emitARCValueOperation(*this, value,
2031                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2032                                "objc_retainAutoreleaseReturnValue");
2033 }
2034 
2035 /// Do a fused retain/autorelease of the given object.
2036 ///   call i8* \@objc_retainAutorelease(i8* %value)
2037 /// or
2038 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2039 ///   call i8* \@objc_autorelease(i8* %retain)
2040 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2041                                                        llvm::Value *value) {
2042   if (!type->isBlockPointerType())
2043     return EmitARCRetainAutoreleaseNonBlock(value);
2044 
2045   if (isa<llvm::ConstantPointerNull>(value)) return value;
2046 
2047   llvm::Type *origType = value->getType();
2048   value = Builder.CreateBitCast(value, Int8PtrTy);
2049   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2050   value = EmitARCAutorelease(value);
2051   return Builder.CreateBitCast(value, origType);
2052 }
2053 
2054 /// Do a fused retain/autorelease of the given object.
2055 ///   call i8* \@objc_retainAutorelease(i8* %value)
2056 llvm::Value *
2057 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2058   return emitARCValueOperation(*this, value,
2059                                CGM.getARCEntrypoints().objc_retainAutorelease,
2060                                "objc_retainAutorelease");
2061 }
2062 
2063 /// i8* \@objc_loadWeak(i8** %addr)
2064 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2065 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2066   return emitARCLoadOperation(*this, addr,
2067                               CGM.getARCEntrypoints().objc_loadWeak,
2068                               "objc_loadWeak");
2069 }
2070 
2071 /// i8* \@objc_loadWeakRetained(i8** %addr)
2072 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2073   return emitARCLoadOperation(*this, addr,
2074                               CGM.getARCEntrypoints().objc_loadWeakRetained,
2075                               "objc_loadWeakRetained");
2076 }
2077 
2078 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2079 /// Returns %value.
2080 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2081                                                llvm::Value *value,
2082                                                bool ignored) {
2083   return emitARCStoreOperation(*this, addr, value,
2084                                CGM.getARCEntrypoints().objc_storeWeak,
2085                                "objc_storeWeak", ignored);
2086 }
2087 
2088 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2089 /// Returns %value.  %addr is known to not have a current weak entry.
2090 /// Essentially equivalent to:
2091 ///   *addr = nil; objc_storeWeak(addr, value);
2092 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2093   // If we're initializing to null, just write null to memory; no need
2094   // to get the runtime involved.  But don't do this if optimization
2095   // is enabled, because accounting for this would make the optimizer
2096   // much more complicated.
2097   if (isa<llvm::ConstantPointerNull>(value) &&
2098       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2099     Builder.CreateStore(value, addr);
2100     return;
2101   }
2102 
2103   emitARCStoreOperation(*this, addr, value,
2104                         CGM.getARCEntrypoints().objc_initWeak,
2105                         "objc_initWeak", /*ignored*/ true);
2106 }
2107 
2108 /// void \@objc_destroyWeak(i8** %addr)
2109 /// Essentially objc_storeWeak(addr, nil).
2110 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2111   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2112   if (!fn) {
2113     std::vector<llvm::Type*> args(1, Int8PtrPtrTy);
2114     llvm::FunctionType *fnType =
2115       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
2116     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2117   }
2118 
2119   // Cast the argument to 'id*'.
2120   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2121 
2122   llvm::CallInst *call = Builder.CreateCall(fn, addr);
2123   call->setDoesNotThrow();
2124 }
2125 
2126 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2127 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2128 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2129 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2130   emitARCCopyOperation(*this, dst, src,
2131                        CGM.getARCEntrypoints().objc_moveWeak,
2132                        "objc_moveWeak");
2133 }
2134 
2135 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2136 /// Disregards the current value in %dest.  Essentially
2137 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2138 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2139   emitARCCopyOperation(*this, dst, src,
2140                        CGM.getARCEntrypoints().objc_copyWeak,
2141                        "objc_copyWeak");
2142 }
2143 
2144 /// Produce the code to do a objc_autoreleasepool_push.
2145 ///   call i8* \@objc_autoreleasePoolPush(void)
2146 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2147   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2148   if (!fn) {
2149     llvm::FunctionType *fnType =
2150       llvm::FunctionType::get(Int8PtrTy, false);
2151     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2152   }
2153 
2154   llvm::CallInst *call = Builder.CreateCall(fn);
2155   call->setDoesNotThrow();
2156 
2157   return call;
2158 }
2159 
2160 /// Produce the code to do a primitive release.
2161 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2162 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2163   assert(value->getType() == Int8PtrTy);
2164 
2165   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2166   if (!fn) {
2167     std::vector<llvm::Type*> args(1, Int8PtrTy);
2168     llvm::FunctionType *fnType =
2169       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
2170 
2171     // We don't want to use a weak import here; instead we should not
2172     // fall into this path.
2173     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2174   }
2175 
2176   llvm::CallInst *call = Builder.CreateCall(fn, value);
2177   call->setDoesNotThrow();
2178 }
2179 
2180 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2181 /// Which is: [[NSAutoreleasePool alloc] init];
2182 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2183 /// init is declared as: - (id) init; in its NSObject super class.
2184 ///
2185 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2186   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2187   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder);
2188   // [NSAutoreleasePool alloc]
2189   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2190   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2191   CallArgList Args;
2192   RValue AllocRV =
2193     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2194                                 getContext().getObjCIdType(),
2195                                 AllocSel, Receiver, Args);
2196 
2197   // [Receiver init]
2198   Receiver = AllocRV.getScalarVal();
2199   II = &CGM.getContext().Idents.get("init");
2200   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2201   RValue InitRV =
2202     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2203                                 getContext().getObjCIdType(),
2204                                 InitSel, Receiver, Args);
2205   return InitRV.getScalarVal();
2206 }
2207 
2208 /// Produce the code to do a primitive release.
2209 /// [tmp drain];
2210 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2211   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2212   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2213   CallArgList Args;
2214   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2215                               getContext().VoidTy, DrainSel, Arg, Args);
2216 }
2217 
2218 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2219                                               llvm::Value *addr,
2220                                               QualType type) {
2221   llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
2222   CGF.EmitARCRelease(ptr, /*precise*/ true);
2223 }
2224 
2225 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2226                                                 llvm::Value *addr,
2227                                                 QualType type) {
2228   llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
2229   CGF.EmitARCRelease(ptr, /*precise*/ false);
2230 }
2231 
2232 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2233                                      llvm::Value *addr,
2234                                      QualType type) {
2235   CGF.EmitARCDestroyWeak(addr);
2236 }
2237 
2238 namespace {
2239   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2240     llvm::Value *Token;
2241 
2242     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2243 
2244     void Emit(CodeGenFunction &CGF, Flags flags) {
2245       CGF.EmitObjCAutoreleasePoolPop(Token);
2246     }
2247   };
2248   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2249     llvm::Value *Token;
2250 
2251     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2252 
2253     void Emit(CodeGenFunction &CGF, Flags flags) {
2254       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2255     }
2256   };
2257 }
2258 
2259 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2260   if (CGM.getLangOpts().ObjCAutoRefCount)
2261     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2262   else
2263     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2264 }
2265 
2266 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2267                                                   LValue lvalue,
2268                                                   QualType type) {
2269   switch (type.getObjCLifetime()) {
2270   case Qualifiers::OCL_None:
2271   case Qualifiers::OCL_ExplicitNone:
2272   case Qualifiers::OCL_Strong:
2273   case Qualifiers::OCL_Autoreleasing:
2274     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
2275                          false);
2276 
2277   case Qualifiers::OCL_Weak:
2278     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2279                          true);
2280   }
2281 
2282   llvm_unreachable("impossible lifetime!");
2283 }
2284 
2285 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2286                                                   const Expr *e) {
2287   e = e->IgnoreParens();
2288   QualType type = e->getType();
2289 
2290   // If we're loading retained from a __strong xvalue, we can avoid
2291   // an extra retain/release pair by zeroing out the source of this
2292   // "move" operation.
2293   if (e->isXValue() &&
2294       !type.isConstQualified() &&
2295       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2296     // Emit the lvalue.
2297     LValue lv = CGF.EmitLValue(e);
2298 
2299     // Load the object pointer.
2300     llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
2301 
2302     // Set the source pointer to NULL.
2303     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2304 
2305     return TryEmitResult(result, true);
2306   }
2307 
2308   // As a very special optimization, in ARC++, if the l-value is the
2309   // result of a non-volatile assignment, do a simple retain of the
2310   // result of the call to objc_storeWeak instead of reloading.
2311   if (CGF.getLangOpts().CPlusPlus &&
2312       !type.isVolatileQualified() &&
2313       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2314       isa<BinaryOperator>(e) &&
2315       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2316     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2317 
2318   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2319 }
2320 
2321 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2322                                            llvm::Value *value);
2323 
2324 /// Given that the given expression is some sort of call (which does
2325 /// not return retained), emit a retain following it.
2326 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2327   llvm::Value *value = CGF.EmitScalarExpr(e);
2328   return emitARCRetainAfterCall(CGF, value);
2329 }
2330 
2331 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2332                                            llvm::Value *value) {
2333   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2334     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2335 
2336     // Place the retain immediately following the call.
2337     CGF.Builder.SetInsertPoint(call->getParent(),
2338                                ++llvm::BasicBlock::iterator(call));
2339     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2340 
2341     CGF.Builder.restoreIP(ip);
2342     return value;
2343   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2344     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2345 
2346     // Place the retain at the beginning of the normal destination block.
2347     llvm::BasicBlock *BB = invoke->getNormalDest();
2348     CGF.Builder.SetInsertPoint(BB, BB->begin());
2349     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2350 
2351     CGF.Builder.restoreIP(ip);
2352     return value;
2353 
2354   // Bitcasts can arise because of related-result returns.  Rewrite
2355   // the operand.
2356   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2357     llvm::Value *operand = bitcast->getOperand(0);
2358     operand = emitARCRetainAfterCall(CGF, operand);
2359     bitcast->setOperand(0, operand);
2360     return bitcast;
2361 
2362   // Generic fall-back case.
2363   } else {
2364     // Retain using the non-block variant: we never need to do a copy
2365     // of a block that's been returned to us.
2366     return CGF.EmitARCRetainNonBlock(value);
2367   }
2368 }
2369 
2370 /// Determine whether it might be important to emit a separate
2371 /// objc_retain_block on the result of the given expression, or
2372 /// whether it's okay to just emit it in a +1 context.
2373 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2374   assert(e->getType()->isBlockPointerType());
2375   e = e->IgnoreParens();
2376 
2377   // For future goodness, emit block expressions directly in +1
2378   // contexts if we can.
2379   if (isa<BlockExpr>(e))
2380     return false;
2381 
2382   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2383     switch (cast->getCastKind()) {
2384     // Emitting these operations in +1 contexts is goodness.
2385     case CK_LValueToRValue:
2386     case CK_ARCReclaimReturnedObject:
2387     case CK_ARCConsumeObject:
2388     case CK_ARCProduceObject:
2389       return false;
2390 
2391     // These operations preserve a block type.
2392     case CK_NoOp:
2393     case CK_BitCast:
2394       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2395 
2396     // These operations are known to be bad (or haven't been considered).
2397     case CK_AnyPointerToBlockPointerCast:
2398     default:
2399       return true;
2400     }
2401   }
2402 
2403   return true;
2404 }
2405 
2406 /// Try to emit a PseudoObjectExpr at +1.
2407 ///
2408 /// This massively duplicates emitPseudoObjectRValue.
2409 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2410                                                   const PseudoObjectExpr *E) {
2411   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2412 
2413   // Find the result expression.
2414   const Expr *resultExpr = E->getResultExpr();
2415   assert(resultExpr);
2416   TryEmitResult result;
2417 
2418   for (PseudoObjectExpr::const_semantics_iterator
2419          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2420     const Expr *semantic = *i;
2421 
2422     // If this semantic expression is an opaque value, bind it
2423     // to the result of its source expression.
2424     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2425       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2426       OVMA opaqueData;
2427 
2428       // If this semantic is the result of the pseudo-object
2429       // expression, try to evaluate the source as +1.
2430       if (ov == resultExpr) {
2431         assert(!OVMA::shouldBindAsLValue(ov));
2432         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2433         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2434 
2435       // Otherwise, just bind it.
2436       } else {
2437         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2438       }
2439       opaques.push_back(opaqueData);
2440 
2441     // Otherwise, if the expression is the result, evaluate it
2442     // and remember the result.
2443     } else if (semantic == resultExpr) {
2444       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2445 
2446     // Otherwise, evaluate the expression in an ignored context.
2447     } else {
2448       CGF.EmitIgnoredExpr(semantic);
2449     }
2450   }
2451 
2452   // Unbind all the opaques now.
2453   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2454     opaques[i].unbind(CGF);
2455 
2456   return result;
2457 }
2458 
2459 static TryEmitResult
2460 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2461   // Look through cleanups.
2462   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2463     CGF.enterFullExpression(cleanups);
2464     CodeGenFunction::RunCleanupsScope scope(CGF);
2465     return tryEmitARCRetainScalarExpr(CGF, cleanups->getSubExpr());
2466   }
2467 
2468   // The desired result type, if it differs from the type of the
2469   // ultimate opaque expression.
2470   llvm::Type *resultType = 0;
2471 
2472   while (true) {
2473     e = e->IgnoreParens();
2474 
2475     // There's a break at the end of this if-chain;  anything
2476     // that wants to keep looping has to explicitly continue.
2477     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2478       switch (ce->getCastKind()) {
2479       // No-op casts don't change the type, so we just ignore them.
2480       case CK_NoOp:
2481         e = ce->getSubExpr();
2482         continue;
2483 
2484       case CK_LValueToRValue: {
2485         TryEmitResult loadResult
2486           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2487         if (resultType) {
2488           llvm::Value *value = loadResult.getPointer();
2489           value = CGF.Builder.CreateBitCast(value, resultType);
2490           loadResult.setPointer(value);
2491         }
2492         return loadResult;
2493       }
2494 
2495       // These casts can change the type, so remember that and
2496       // soldier on.  We only need to remember the outermost such
2497       // cast, though.
2498       case CK_CPointerToObjCPointerCast:
2499       case CK_BlockPointerToObjCPointerCast:
2500       case CK_AnyPointerToBlockPointerCast:
2501       case CK_BitCast:
2502         if (!resultType)
2503           resultType = CGF.ConvertType(ce->getType());
2504         e = ce->getSubExpr();
2505         assert(e->getType()->hasPointerRepresentation());
2506         continue;
2507 
2508       // For consumptions, just emit the subexpression and thus elide
2509       // the retain/release pair.
2510       case CK_ARCConsumeObject: {
2511         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2512         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2513         return TryEmitResult(result, true);
2514       }
2515 
2516       // Block extends are net +0.  Naively, we could just recurse on
2517       // the subexpression, but actually we need to ensure that the
2518       // value is copied as a block, so there's a little filter here.
2519       case CK_ARCExtendBlockObject: {
2520         llvm::Value *result; // will be a +0 value
2521 
2522         // If we can't safely assume the sub-expression will produce a
2523         // block-copied value, emit the sub-expression at +0.
2524         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2525           result = CGF.EmitScalarExpr(ce->getSubExpr());
2526 
2527         // Otherwise, try to emit the sub-expression at +1 recursively.
2528         } else {
2529           TryEmitResult subresult
2530             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2531           result = subresult.getPointer();
2532 
2533           // If that produced a retained value, just use that,
2534           // possibly casting down.
2535           if (subresult.getInt()) {
2536             if (resultType)
2537               result = CGF.Builder.CreateBitCast(result, resultType);
2538             return TryEmitResult(result, true);
2539           }
2540 
2541           // Otherwise it's +0.
2542         }
2543 
2544         // Retain the object as a block, then cast down.
2545         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2546         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2547         return TryEmitResult(result, true);
2548       }
2549 
2550       // For reclaims, emit the subexpression as a retained call and
2551       // skip the consumption.
2552       case CK_ARCReclaimReturnedObject: {
2553         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2554         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2555         return TryEmitResult(result, true);
2556       }
2557 
2558       default:
2559         break;
2560       }
2561 
2562     // Skip __extension__.
2563     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2564       if (op->getOpcode() == UO_Extension) {
2565         e = op->getSubExpr();
2566         continue;
2567       }
2568 
2569     // For calls and message sends, use the retained-call logic.
2570     // Delegate inits are a special case in that they're the only
2571     // returns-retained expression that *isn't* surrounded by
2572     // a consume.
2573     } else if (isa<CallExpr>(e) ||
2574                (isa<ObjCMessageExpr>(e) &&
2575                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2576       llvm::Value *result = emitARCRetainCall(CGF, e);
2577       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2578       return TryEmitResult(result, true);
2579 
2580     // Look through pseudo-object expressions.
2581     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2582       TryEmitResult result
2583         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2584       if (resultType) {
2585         llvm::Value *value = result.getPointer();
2586         value = CGF.Builder.CreateBitCast(value, resultType);
2587         result.setPointer(value);
2588       }
2589       return result;
2590     }
2591 
2592     // Conservatively halt the search at any other expression kind.
2593     break;
2594   }
2595 
2596   // We didn't find an obvious production, so emit what we've got and
2597   // tell the caller that we didn't manage to retain.
2598   llvm::Value *result = CGF.EmitScalarExpr(e);
2599   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2600   return TryEmitResult(result, false);
2601 }
2602 
2603 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2604                                                 LValue lvalue,
2605                                                 QualType type) {
2606   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2607   llvm::Value *value = result.getPointer();
2608   if (!result.getInt())
2609     value = CGF.EmitARCRetain(type, value);
2610   return value;
2611 }
2612 
2613 /// EmitARCRetainScalarExpr - Semantically equivalent to
2614 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2615 /// best-effort attempt to peephole expressions that naturally produce
2616 /// retained objects.
2617 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2618   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2619   llvm::Value *value = result.getPointer();
2620   if (!result.getInt())
2621     value = EmitARCRetain(e->getType(), value);
2622   return value;
2623 }
2624 
2625 llvm::Value *
2626 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2627   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2628   llvm::Value *value = result.getPointer();
2629   if (result.getInt())
2630     value = EmitARCAutorelease(value);
2631   else
2632     value = EmitARCRetainAutorelease(e->getType(), value);
2633   return value;
2634 }
2635 
2636 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2637   llvm::Value *result;
2638   bool doRetain;
2639 
2640   if (shouldEmitSeparateBlockRetain(e)) {
2641     result = EmitScalarExpr(e);
2642     doRetain = true;
2643   } else {
2644     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2645     result = subresult.getPointer();
2646     doRetain = !subresult.getInt();
2647   }
2648 
2649   if (doRetain)
2650     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2651   return EmitObjCConsumeObject(e->getType(), result);
2652 }
2653 
2654 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2655   // In ARC, retain and autorelease the expression.
2656   if (getLangOpts().ObjCAutoRefCount) {
2657     // Do so before running any cleanups for the full-expression.
2658     // tryEmitARCRetainScalarExpr does make an effort to do things
2659     // inside cleanups, but there are crazy cases like
2660     //   @throw A().foo;
2661     // where a full retain+autorelease is required and would
2662     // otherwise happen after the destructor for the temporary.
2663     if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(expr)) {
2664       enterFullExpression(ewc);
2665       expr = ewc->getSubExpr();
2666     }
2667 
2668     CodeGenFunction::RunCleanupsScope cleanups(*this);
2669     return EmitARCRetainAutoreleaseScalarExpr(expr);
2670   }
2671 
2672   // Otherwise, use the normal scalar-expression emission.  The
2673   // exception machinery doesn't do anything special with the
2674   // exception like retaining it, so there's no safety associated with
2675   // only running cleanups after the throw has started, and when it
2676   // matters it tends to be substantially inferior code.
2677   return EmitScalarExpr(expr);
2678 }
2679 
2680 std::pair<LValue,llvm::Value*>
2681 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2682                                     bool ignored) {
2683   // Evaluate the RHS first.
2684   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2685   llvm::Value *value = result.getPointer();
2686 
2687   bool hasImmediateRetain = result.getInt();
2688 
2689   // If we didn't emit a retained object, and the l-value is of block
2690   // type, then we need to emit the block-retain immediately in case
2691   // it invalidates the l-value.
2692   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2693     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2694     hasImmediateRetain = true;
2695   }
2696 
2697   LValue lvalue = EmitLValue(e->getLHS());
2698 
2699   // If the RHS was emitted retained, expand this.
2700   if (hasImmediateRetain) {
2701     llvm::Value *oldValue =
2702       EmitLoadOfScalar(lvalue);
2703     EmitStoreOfScalar(value, lvalue);
2704     EmitARCRelease(oldValue, /*precise*/ false);
2705   } else {
2706     value = EmitARCStoreStrong(lvalue, value, ignored);
2707   }
2708 
2709   return std::pair<LValue,llvm::Value*>(lvalue, value);
2710 }
2711 
2712 std::pair<LValue,llvm::Value*>
2713 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2714   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2715   LValue lvalue = EmitLValue(e->getLHS());
2716 
2717   EmitStoreOfScalar(value, lvalue);
2718 
2719   return std::pair<LValue,llvm::Value*>(lvalue, value);
2720 }
2721 
2722 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2723                                           const ObjCAutoreleasePoolStmt &ARPS) {
2724   const Stmt *subStmt = ARPS.getSubStmt();
2725   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2726 
2727   CGDebugInfo *DI = getDebugInfo();
2728   if (DI)
2729     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2730 
2731   // Keep track of the current cleanup stack depth.
2732   RunCleanupsScope Scope(*this);
2733   if (CGM.getLangOpts().ObjCRuntime.hasARC()) {
2734     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2735     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2736   } else {
2737     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2738     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2739   }
2740 
2741   for (CompoundStmt::const_body_iterator I = S.body_begin(),
2742        E = S.body_end(); I != E; ++I)
2743     EmitStmt(*I);
2744 
2745   if (DI)
2746     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2747 }
2748 
2749 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2750 /// make sure it survives garbage collection until this point.
2751 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2752   // We just use an inline assembly.
2753   llvm::FunctionType *extenderType
2754     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2755   llvm::Value *extender
2756     = llvm::InlineAsm::get(extenderType,
2757                            /* assembly */ "",
2758                            /* constraints */ "r",
2759                            /* side effects */ true);
2760 
2761   object = Builder.CreateBitCast(object, VoidPtrTy);
2762   Builder.CreateCall(extender, object)->setDoesNotThrow();
2763 }
2764 
2765 static bool hasAtomicCopyHelperAPI(const ObjCRuntime &runtime) {
2766   // For now, only NeXT has these APIs.
2767   return runtime.isNeXTFamily();
2768 }
2769 
2770 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2771 /// non-trivial copy assignment function, produce following helper function.
2772 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2773 ///
2774 llvm::Constant *
2775 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2776                                         const ObjCPropertyImplDecl *PID) {
2777   // FIXME. This api is for NeXt runtime only for now.
2778   if (!getLangOpts().CPlusPlus ||
2779       !hasAtomicCopyHelperAPI(getLangOpts().ObjCRuntime))
2780     return 0;
2781   QualType Ty = PID->getPropertyIvarDecl()->getType();
2782   if (!Ty->isRecordType())
2783     return 0;
2784   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2785   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2786     return 0;
2787   llvm::Constant * HelperFn = 0;
2788   if (hasTrivialSetExpr(PID))
2789     return 0;
2790   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2791   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2792     return HelperFn;
2793 
2794   ASTContext &C = getContext();
2795   IdentifierInfo *II
2796     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2797   FunctionDecl *FD = FunctionDecl::Create(C,
2798                                           C.getTranslationUnitDecl(),
2799                                           SourceLocation(),
2800                                           SourceLocation(), II, C.VoidTy, 0,
2801                                           SC_Static,
2802                                           SC_None,
2803                                           false,
2804                                           false);
2805 
2806   QualType DestTy = C.getPointerType(Ty);
2807   QualType SrcTy = Ty;
2808   SrcTy.addConst();
2809   SrcTy = C.getPointerType(SrcTy);
2810 
2811   FunctionArgList args;
2812   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2813   args.push_back(&dstDecl);
2814   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2815   args.push_back(&srcDecl);
2816 
2817   const CGFunctionInfo &FI =
2818     CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2819                                               FunctionType::ExtInfo(),
2820                                               RequiredArgs::All);
2821 
2822   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2823 
2824   llvm::Function *Fn =
2825     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2826                            "__assign_helper_atomic_property_",
2827                            &CGM.getModule());
2828 
2829   if (CGM.getModuleDebugInfo())
2830     DebugInfo = CGM.getModuleDebugInfo();
2831 
2832 
2833   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2834 
2835   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2836                       VK_RValue, SourceLocation());
2837   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2838                     VK_LValue, OK_Ordinary, SourceLocation());
2839 
2840   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2841                       VK_RValue, SourceLocation());
2842   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2843                     VK_LValue, OK_Ordinary, SourceLocation());
2844 
2845   Expr *Args[2] = { &DST, &SRC };
2846   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2847   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2848                               Args, 2, DestTy->getPointeeType(),
2849                               VK_LValue, SourceLocation());
2850 
2851   EmitStmt(&TheCall);
2852 
2853   FinishFunction();
2854   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2855   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2856   return HelperFn;
2857 }
2858 
2859 llvm::Constant *
2860 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2861                                             const ObjCPropertyImplDecl *PID) {
2862   // FIXME. This api is for NeXt runtime only for now.
2863   if (!getLangOpts().CPlusPlus ||
2864       !hasAtomicCopyHelperAPI(getLangOpts().ObjCRuntime))
2865     return 0;
2866   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2867   QualType Ty = PD->getType();
2868   if (!Ty->isRecordType())
2869     return 0;
2870   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2871     return 0;
2872   llvm::Constant * HelperFn = 0;
2873 
2874   if (hasTrivialGetExpr(PID))
2875     return 0;
2876   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2877   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2878     return HelperFn;
2879 
2880 
2881   ASTContext &C = getContext();
2882   IdentifierInfo *II
2883   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2884   FunctionDecl *FD = FunctionDecl::Create(C,
2885                                           C.getTranslationUnitDecl(),
2886                                           SourceLocation(),
2887                                           SourceLocation(), II, C.VoidTy, 0,
2888                                           SC_Static,
2889                                           SC_None,
2890                                           false,
2891                                           false);
2892 
2893   QualType DestTy = C.getPointerType(Ty);
2894   QualType SrcTy = Ty;
2895   SrcTy.addConst();
2896   SrcTy = C.getPointerType(SrcTy);
2897 
2898   FunctionArgList args;
2899   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2900   args.push_back(&dstDecl);
2901   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2902   args.push_back(&srcDecl);
2903 
2904   const CGFunctionInfo &FI =
2905   CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2906                                             FunctionType::ExtInfo(),
2907                                             RequiredArgs::All);
2908 
2909   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2910 
2911   llvm::Function *Fn =
2912   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2913                          "__copy_helper_atomic_property_", &CGM.getModule());
2914 
2915   if (CGM.getModuleDebugInfo())
2916     DebugInfo = CGM.getModuleDebugInfo();
2917 
2918 
2919   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2920 
2921   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2922                       VK_RValue, SourceLocation());
2923 
2924   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2925                     VK_LValue, OK_Ordinary, SourceLocation());
2926 
2927   CXXConstructExpr *CXXConstExpr =
2928     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
2929 
2930   SmallVector<Expr*, 4> ConstructorArgs;
2931   ConstructorArgs.push_back(&SRC);
2932   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
2933   ++A;
2934 
2935   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
2936        A != AEnd; ++A)
2937     ConstructorArgs.push_back(*A);
2938 
2939   CXXConstructExpr *TheCXXConstructExpr =
2940     CXXConstructExpr::Create(C, Ty, SourceLocation(),
2941                              CXXConstExpr->getConstructor(),
2942                              CXXConstExpr->isElidable(),
2943                              &ConstructorArgs[0], ConstructorArgs.size(),
2944                              CXXConstExpr->hadMultipleCandidates(),
2945                              CXXConstExpr->isListInitialization(),
2946                              CXXConstExpr->requiresZeroInitialization(),
2947                              CXXConstExpr->getConstructionKind(),
2948                              SourceRange());
2949 
2950   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2951                       VK_RValue, SourceLocation());
2952 
2953   RValue DV = EmitAnyExpr(&DstExpr);
2954   CharUnits Alignment
2955     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
2956   EmitAggExpr(TheCXXConstructExpr,
2957               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
2958                                     AggValueSlot::IsDestructed,
2959                                     AggValueSlot::DoesNotNeedGCBarriers,
2960                                     AggValueSlot::IsNotAliased));
2961 
2962   FinishFunction();
2963   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2964   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
2965   return HelperFn;
2966 }
2967 
2968 llvm::Value *
2969 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
2970   // Get selectors for retain/autorelease.
2971   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
2972   Selector CopySelector =
2973       getContext().Selectors.getNullarySelector(CopyID);
2974   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
2975   Selector AutoreleaseSelector =
2976       getContext().Selectors.getNullarySelector(AutoreleaseID);
2977 
2978   // Emit calls to retain/autorelease.
2979   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2980   llvm::Value *Val = Block;
2981   RValue Result;
2982   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2983                                        Ty, CopySelector,
2984                                        Val, CallArgList(), 0, 0);
2985   Val = Result.getScalarVal();
2986   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2987                                        Ty, AutoreleaseSelector,
2988                                        Val, CallArgList(), 0, 0);
2989   Val = Result.getScalarVal();
2990   return Val;
2991 }
2992 
2993 
2994 CGObjCRuntime::~CGObjCRuntime() {}
2995