1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/InlineAsm.h" 26 using namespace clang; 27 using namespace CodeGen; 28 29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 30 static TryEmitResult 31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 32 33 /// Given the address of a variable of pointer type, find the correct 34 /// null to store into it. 35 static llvm::Constant *getNullForVariable(llvm::Value *addr) { 36 llvm::Type *type = 37 cast<llvm::PointerType>(addr->getType())->getElementType(); 38 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 39 } 40 41 /// Emits an instance of NSConstantString representing the object. 42 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 43 { 44 llvm::Constant *C = 45 CGM.getObjCRuntime().GenerateConstantString(E->getString()); 46 // FIXME: This bitcast should just be made an invariant on the Runtime. 47 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 48 } 49 50 /// Emit a selector. 51 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 52 // Untyped selector. 53 // Note that this implementation allows for non-constant strings to be passed 54 // as arguments to @selector(). Currently, the only thing preventing this 55 // behaviour is the type checking in the front end. 56 return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector()); 57 } 58 59 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 60 // FIXME: This should pass the Decl not the name. 61 return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol()); 62 } 63 64 /// \brief Adjust the type of the result of an Objective-C message send 65 /// expression when the method has a related result type. 66 static RValue AdjustRelatedResultType(CodeGenFunction &CGF, 67 const Expr *E, 68 const ObjCMethodDecl *Method, 69 RValue Result) { 70 if (!Method) 71 return Result; 72 73 if (!Method->hasRelatedResultType() || 74 CGF.getContext().hasSameType(E->getType(), Method->getResultType()) || 75 !Result.isScalar()) 76 return Result; 77 78 // We have applied a related result type. Cast the rvalue appropriately. 79 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 80 CGF.ConvertType(E->getType()))); 81 } 82 83 /// Decide whether to extend the lifetime of the receiver of a 84 /// returns-inner-pointer message. 85 static bool 86 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 87 switch (message->getReceiverKind()) { 88 89 // For a normal instance message, we should extend unless the 90 // receiver is loaded from a variable with precise lifetime. 91 case ObjCMessageExpr::Instance: { 92 const Expr *receiver = message->getInstanceReceiver(); 93 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 94 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 95 receiver = ice->getSubExpr()->IgnoreParens(); 96 97 // Only __strong variables. 98 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 99 return true; 100 101 // All ivars and fields have precise lifetime. 102 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 103 return false; 104 105 // Otherwise, check for variables. 106 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 107 if (!declRef) return true; 108 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 109 if (!var) return true; 110 111 // All variables have precise lifetime except local variables with 112 // automatic storage duration that aren't specially marked. 113 return (var->hasLocalStorage() && 114 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 115 } 116 117 case ObjCMessageExpr::Class: 118 case ObjCMessageExpr::SuperClass: 119 // It's never necessary for class objects. 120 return false; 121 122 case ObjCMessageExpr::SuperInstance: 123 // We generally assume that 'self' lives throughout a method call. 124 return false; 125 } 126 127 llvm_unreachable("invalid receiver kind"); 128 } 129 130 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 131 ReturnValueSlot Return) { 132 // Only the lookup mechanism and first two arguments of the method 133 // implementation vary between runtimes. We can get the receiver and 134 // arguments in generic code. 135 136 bool isDelegateInit = E->isDelegateInitCall(); 137 138 const ObjCMethodDecl *method = E->getMethodDecl(); 139 140 // We don't retain the receiver in delegate init calls, and this is 141 // safe because the receiver value is always loaded from 'self', 142 // which we zero out. We don't want to Block_copy block receivers, 143 // though. 144 bool retainSelf = 145 (!isDelegateInit && 146 CGM.getLangOptions().ObjCAutoRefCount && 147 method && 148 method->hasAttr<NSConsumesSelfAttr>()); 149 150 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 151 bool isSuperMessage = false; 152 bool isClassMessage = false; 153 ObjCInterfaceDecl *OID = 0; 154 // Find the receiver 155 QualType ReceiverType; 156 llvm::Value *Receiver = 0; 157 switch (E->getReceiverKind()) { 158 case ObjCMessageExpr::Instance: 159 ReceiverType = E->getInstanceReceiver()->getType(); 160 if (retainSelf) { 161 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 162 E->getInstanceReceiver()); 163 Receiver = ter.getPointer(); 164 if (ter.getInt()) retainSelf = false; 165 } else 166 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 167 break; 168 169 case ObjCMessageExpr::Class: { 170 ReceiverType = E->getClassReceiver(); 171 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 172 assert(ObjTy && "Invalid Objective-C class message send"); 173 OID = ObjTy->getInterface(); 174 assert(OID && "Invalid Objective-C class message send"); 175 Receiver = Runtime.GetClass(Builder, OID); 176 isClassMessage = true; 177 break; 178 } 179 180 case ObjCMessageExpr::SuperInstance: 181 ReceiverType = E->getSuperType(); 182 Receiver = LoadObjCSelf(); 183 isSuperMessage = true; 184 break; 185 186 case ObjCMessageExpr::SuperClass: 187 ReceiverType = E->getSuperType(); 188 Receiver = LoadObjCSelf(); 189 isSuperMessage = true; 190 isClassMessage = true; 191 break; 192 } 193 194 if (retainSelf) 195 Receiver = EmitARCRetainNonBlock(Receiver); 196 197 // In ARC, we sometimes want to "extend the lifetime" 198 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 199 // messages. 200 if (getLangOptions().ObjCAutoRefCount && method && 201 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 202 shouldExtendReceiverForInnerPointerMessage(E)) 203 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 204 205 QualType ResultType = 206 method ? method->getResultType() : E->getType(); 207 208 CallArgList Args; 209 EmitCallArgs(Args, method, E->arg_begin(), E->arg_end()); 210 211 // For delegate init calls in ARC, do an unsafe store of null into 212 // self. This represents the call taking direct ownership of that 213 // value. We have to do this after emitting the other call 214 // arguments because they might also reference self, but we don't 215 // have to worry about any of them modifying self because that would 216 // be an undefined read and write of an object in unordered 217 // expressions. 218 if (isDelegateInit) { 219 assert(getLangOptions().ObjCAutoRefCount && 220 "delegate init calls should only be marked in ARC"); 221 222 // Do an unsafe store of null into self. 223 llvm::Value *selfAddr = 224 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 225 assert(selfAddr && "no self entry for a delegate init call?"); 226 227 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 228 } 229 230 RValue result; 231 if (isSuperMessage) { 232 // super is only valid in an Objective-C method 233 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 234 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 235 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 236 E->getSelector(), 237 OMD->getClassInterface(), 238 isCategoryImpl, 239 Receiver, 240 isClassMessage, 241 Args, 242 method); 243 } else { 244 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 245 E->getSelector(), 246 Receiver, Args, OID, 247 method); 248 } 249 250 // For delegate init calls in ARC, implicitly store the result of 251 // the call back into self. This takes ownership of the value. 252 if (isDelegateInit) { 253 llvm::Value *selfAddr = 254 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 255 llvm::Value *newSelf = result.getScalarVal(); 256 257 // The delegate return type isn't necessarily a matching type; in 258 // fact, it's quite likely to be 'id'. 259 llvm::Type *selfTy = 260 cast<llvm::PointerType>(selfAddr->getType())->getElementType(); 261 newSelf = Builder.CreateBitCast(newSelf, selfTy); 262 263 Builder.CreateStore(newSelf, selfAddr); 264 } 265 266 return AdjustRelatedResultType(*this, E, method, result); 267 } 268 269 namespace { 270 struct FinishARCDealloc : EHScopeStack::Cleanup { 271 void Emit(CodeGenFunction &CGF, Flags flags) { 272 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 273 274 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 275 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 276 if (!iface->getSuperClass()) return; 277 278 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 279 280 // Call [super dealloc] if we have a superclass. 281 llvm::Value *self = CGF.LoadObjCSelf(); 282 283 CallArgList args; 284 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 285 CGF.getContext().VoidTy, 286 method->getSelector(), 287 iface, 288 isCategory, 289 self, 290 /*is class msg*/ false, 291 args, 292 method); 293 } 294 }; 295 } 296 297 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 298 /// the LLVM function and sets the other context used by 299 /// CodeGenFunction. 300 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 301 const ObjCContainerDecl *CD, 302 SourceLocation StartLoc) { 303 FunctionArgList args; 304 // Check if we should generate debug info for this method. 305 if (CGM.getModuleDebugInfo() && !OMD->hasAttr<NoDebugAttr>()) 306 DebugInfo = CGM.getModuleDebugInfo(); 307 308 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 309 310 const CGFunctionInfo &FI = CGM.getTypes().getFunctionInfo(OMD); 311 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 312 313 args.push_back(OMD->getSelfDecl()); 314 args.push_back(OMD->getCmdDecl()); 315 316 for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(), 317 E = OMD->param_end(); PI != E; ++PI) 318 args.push_back(*PI); 319 320 CurGD = OMD; 321 322 StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc); 323 324 // In ARC, certain methods get an extra cleanup. 325 if (CGM.getLangOptions().ObjCAutoRefCount && 326 OMD->isInstanceMethod() && 327 OMD->getSelector().isUnarySelector()) { 328 const IdentifierInfo *ident = 329 OMD->getSelector().getIdentifierInfoForSlot(0); 330 if (ident->isStr("dealloc")) 331 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 332 } 333 } 334 335 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 336 LValue lvalue, QualType type); 337 338 /// Generate an Objective-C method. An Objective-C method is a C function with 339 /// its pointer, name, and types registered in the class struture. 340 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 341 StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart()); 342 EmitStmt(OMD->getBody()); 343 FinishFunction(OMD->getBodyRBrace()); 344 } 345 346 /// emitStructGetterCall - Call the runtime function to load a property 347 /// into the return value slot. 348 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 349 bool isAtomic, bool hasStrong) { 350 ASTContext &Context = CGF.getContext(); 351 352 llvm::Value *src = 353 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), 354 ivar, 0).getAddress(); 355 356 // objc_copyStruct (ReturnValue, &structIvar, 357 // sizeof (Type of Ivar), isAtomic, false); 358 CallArgList args; 359 360 llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 361 args.add(RValue::get(dest), Context.VoidPtrTy); 362 363 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 364 args.add(RValue::get(src), Context.VoidPtrTy); 365 366 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 367 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 368 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 369 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 370 371 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 372 CGF.EmitCall(CGF.getTypes().getFunctionInfo(Context.VoidTy, args, 373 FunctionType::ExtInfo()), 374 fn, ReturnValueSlot(), args); 375 } 376 377 /// Determine whether the given architecture supports unaligned atomic 378 /// accesses. They don't have to be fast, just faster than a function 379 /// call and a mutex. 380 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 381 // FIXME: Allow unaligned atomic load/store on x86. (It is not 382 // currently supported by the backend.) 383 return 0; 384 } 385 386 /// Return the maximum size that permits atomic accesses for the given 387 /// architecture. 388 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 389 llvm::Triple::ArchType arch) { 390 // ARM has 8-byte atomic accesses, but it's not clear whether we 391 // want to rely on them here. 392 393 // In the default case, just assume that any size up to a pointer is 394 // fine given adequate alignment. 395 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 396 } 397 398 namespace { 399 class PropertyImplStrategy { 400 public: 401 enum StrategyKind { 402 /// The 'native' strategy is to use the architecture's provided 403 /// reads and writes. 404 Native, 405 406 /// Use objc_setProperty and objc_getProperty. 407 GetSetProperty, 408 409 /// Use objc_setProperty for the setter, but use expression 410 /// evaluation for the getter. 411 SetPropertyAndExpressionGet, 412 413 /// Use objc_copyStruct. 414 CopyStruct, 415 416 /// The 'expression' strategy is to emit normal assignment or 417 /// lvalue-to-rvalue expressions. 418 Expression 419 }; 420 421 StrategyKind getKind() const { return StrategyKind(Kind); } 422 423 bool hasStrongMember() const { return HasStrong; } 424 bool isAtomic() const { return IsAtomic; } 425 bool isCopy() const { return IsCopy; } 426 427 CharUnits getIvarSize() const { return IvarSize; } 428 CharUnits getIvarAlignment() const { return IvarAlignment; } 429 430 PropertyImplStrategy(CodeGenModule &CGM, 431 const ObjCPropertyImplDecl *propImpl); 432 433 private: 434 unsigned Kind : 8; 435 unsigned IsAtomic : 1; 436 unsigned IsCopy : 1; 437 unsigned HasStrong : 1; 438 439 CharUnits IvarSize; 440 CharUnits IvarAlignment; 441 }; 442 } 443 444 /// Pick an implementation strategy for the the given property synthesis. 445 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 446 const ObjCPropertyImplDecl *propImpl) { 447 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 448 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 449 450 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 451 IsAtomic = prop->isAtomic(); 452 HasStrong = false; // doesn't matter here. 453 454 // Evaluate the ivar's size and alignment. 455 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 456 QualType ivarType = ivar->getType(); 457 llvm::tie(IvarSize, IvarAlignment) 458 = CGM.getContext().getTypeInfoInChars(ivarType); 459 460 // If we have a copy property, we always have to use getProperty/setProperty. 461 // TODO: we could actually use setProperty and an expression for non-atomics. 462 if (IsCopy) { 463 Kind = GetSetProperty; 464 return; 465 } 466 467 // Handle retain. 468 if (setterKind == ObjCPropertyDecl::Retain) { 469 // In GC-only, there's nothing special that needs to be done. 470 if (CGM.getLangOptions().getGC() == LangOptions::GCOnly) { 471 // fallthrough 472 473 // In ARC, if the property is non-atomic, use expression emission, 474 // which translates to objc_storeStrong. This isn't required, but 475 // it's slightly nicer. 476 } else if (CGM.getLangOptions().ObjCAutoRefCount && !IsAtomic) { 477 Kind = Expression; 478 return; 479 480 // Otherwise, we need to at least use setProperty. However, if 481 // the property isn't atomic, we can use normal expression 482 // emission for the getter. 483 } else if (!IsAtomic) { 484 Kind = SetPropertyAndExpressionGet; 485 return; 486 487 // Otherwise, we have to use both setProperty and getProperty. 488 } else { 489 Kind = GetSetProperty; 490 return; 491 } 492 } 493 494 // If we're not atomic, just use expression accesses. 495 if (!IsAtomic) { 496 Kind = Expression; 497 return; 498 } 499 500 // Properties on bitfield ivars need to be emitted using expression 501 // accesses even if they're nominally atomic. 502 if (ivar->isBitField()) { 503 Kind = Expression; 504 return; 505 } 506 507 // GC-qualified or ARC-qualified ivars need to be emitted as 508 // expressions. This actually works out to being atomic anyway, 509 // except for ARC __strong, but that should trigger the above code. 510 if (ivarType.hasNonTrivialObjCLifetime() || 511 (CGM.getLangOptions().getGC() && 512 CGM.getContext().getObjCGCAttrKind(ivarType))) { 513 Kind = Expression; 514 return; 515 } 516 517 // Compute whether the ivar has strong members. 518 if (CGM.getLangOptions().getGC()) 519 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 520 HasStrong = recordType->getDecl()->hasObjectMember(); 521 522 // We can never access structs with object members with a native 523 // access, because we need to use write barriers. This is what 524 // objc_copyStruct is for. 525 if (HasStrong) { 526 Kind = CopyStruct; 527 return; 528 } 529 530 // Otherwise, this is target-dependent and based on the size and 531 // alignment of the ivar. 532 533 // If the size of the ivar is not a power of two, give up. We don't 534 // want to get into the business of doing compare-and-swaps. 535 if (!IvarSize.isPowerOfTwo()) { 536 Kind = CopyStruct; 537 return; 538 } 539 540 llvm::Triple::ArchType arch = 541 CGM.getContext().getTargetInfo().getTriple().getArch(); 542 543 // Most architectures require memory to fit within a single cache 544 // line, so the alignment has to be at least the size of the access. 545 // Otherwise we have to grab a lock. 546 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 547 Kind = CopyStruct; 548 return; 549 } 550 551 // If the ivar's size exceeds the architecture's maximum atomic 552 // access size, we have to use CopyStruct. 553 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 554 Kind = CopyStruct; 555 return; 556 } 557 558 // Otherwise, we can use native loads and stores. 559 Kind = Native; 560 } 561 562 /// GenerateObjCGetter - Generate an Objective-C property getter 563 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize 564 /// is illegal within a category. 565 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 566 const ObjCPropertyImplDecl *PID) { 567 llvm::Constant *AtomicHelperFn = 568 GenerateObjCAtomicGetterCopyHelperFunction(PID); 569 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 570 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 571 assert(OMD && "Invalid call to generate getter (empty method)"); 572 StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart()); 573 574 generateObjCGetterBody(IMP, PID, AtomicHelperFn); 575 576 FinishFunction(); 577 } 578 579 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 580 const Expr *getter = propImpl->getGetterCXXConstructor(); 581 if (!getter) return true; 582 583 // Sema only makes only of these when the ivar has a C++ class type, 584 // so the form is pretty constrained. 585 586 // If the property has a reference type, we might just be binding a 587 // reference, in which case the result will be a gl-value. We should 588 // treat this as a non-trivial operation. 589 if (getter->isGLValue()) 590 return false; 591 592 // If we selected a trivial copy-constructor, we're okay. 593 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 594 return (construct->getConstructor()->isTrivial()); 595 596 // The constructor might require cleanups (in which case it's never 597 // trivial). 598 assert(isa<ExprWithCleanups>(getter)); 599 return false; 600 } 601 602 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 603 /// copy the ivar into the resturn slot. 604 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 605 llvm::Value *returnAddr, 606 ObjCIvarDecl *ivar, 607 llvm::Constant *AtomicHelperFn) { 608 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 609 // AtomicHelperFn); 610 CallArgList args; 611 612 // The 1st argument is the return Slot. 613 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 614 615 // The 2nd argument is the address of the ivar. 616 llvm::Value *ivarAddr = 617 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 618 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 619 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 620 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 621 622 // Third argument is the helper function. 623 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 624 625 llvm::Value *copyCppAtomicObjectFn = 626 CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction(); 627 CGF.EmitCall(CGF.getTypes().getFunctionInfo(CGF.getContext().VoidTy, args, 628 FunctionType::ExtInfo()), 629 copyCppAtomicObjectFn, ReturnValueSlot(), args); 630 } 631 632 void 633 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 634 const ObjCPropertyImplDecl *propImpl, 635 llvm::Constant *AtomicHelperFn) { 636 // If there's a non-trivial 'get' expression, we just have to emit that. 637 if (!hasTrivialGetExpr(propImpl)) { 638 if (!AtomicHelperFn) { 639 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 640 /*nrvo*/ 0); 641 EmitReturnStmt(ret); 642 } 643 else { 644 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 645 emitCPPObjectAtomicGetterCall(*this, ReturnValue, 646 ivar, AtomicHelperFn); 647 } 648 return; 649 } 650 651 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 652 QualType propType = prop->getType(); 653 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 654 655 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 656 657 // Pick an implementation strategy. 658 PropertyImplStrategy strategy(CGM, propImpl); 659 switch (strategy.getKind()) { 660 case PropertyImplStrategy::Native: { 661 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 662 663 // Currently, all atomic accesses have to be through integer 664 // types, so there's no point in trying to pick a prettier type. 665 llvm::Type *bitcastType = 666 llvm::Type::getIntNTy(getLLVMContext(), 667 getContext().toBits(strategy.getIvarSize())); 668 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 669 670 // Perform an atomic load. This does not impose ordering constraints. 671 llvm::Value *ivarAddr = LV.getAddress(); 672 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 673 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 674 load->setAlignment(strategy.getIvarAlignment().getQuantity()); 675 load->setAtomic(llvm::Unordered); 676 677 // Store that value into the return address. Doing this with a 678 // bitcast is likely to produce some pretty ugly IR, but it's not 679 // the *most* terrible thing in the world. 680 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType)); 681 682 // Make sure we don't do an autorelease. 683 AutoreleaseResult = false; 684 return; 685 } 686 687 case PropertyImplStrategy::GetSetProperty: { 688 llvm::Value *getPropertyFn = 689 CGM.getObjCRuntime().GetPropertyGetFunction(); 690 if (!getPropertyFn) { 691 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 692 return; 693 } 694 695 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 696 // FIXME: Can't this be simpler? This might even be worse than the 697 // corresponding gcc code. 698 llvm::Value *cmd = 699 Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd"); 700 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 701 llvm::Value *ivarOffset = 702 EmitIvarOffset(classImpl->getClassInterface(), ivar); 703 704 CallArgList args; 705 args.add(RValue::get(self), getContext().getObjCIdType()); 706 args.add(RValue::get(cmd), getContext().getObjCSelType()); 707 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 708 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 709 getContext().BoolTy); 710 711 // FIXME: We shouldn't need to get the function info here, the 712 // runtime already should have computed it to build the function. 713 RValue RV = EmitCall(getTypes().getFunctionInfo(propType, args, 714 FunctionType::ExtInfo()), 715 getPropertyFn, ReturnValueSlot(), args); 716 717 // We need to fix the type here. Ivars with copy & retain are 718 // always objects so we don't need to worry about complex or 719 // aggregates. 720 RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(), 721 getTypes().ConvertType(propType))); 722 723 EmitReturnOfRValue(RV, propType); 724 725 // objc_getProperty does an autorelease, so we should suppress ours. 726 AutoreleaseResult = false; 727 728 return; 729 } 730 731 case PropertyImplStrategy::CopyStruct: 732 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 733 strategy.hasStrongMember()); 734 return; 735 736 case PropertyImplStrategy::Expression: 737 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 738 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 739 740 QualType ivarType = ivar->getType(); 741 if (ivarType->isAnyComplexType()) { 742 ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(), 743 LV.isVolatileQualified()); 744 StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified()); 745 } else if (hasAggregateLLVMType(ivarType)) { 746 // The return value slot is guaranteed to not be aliased, but 747 // that's not necessarily the same as "on the stack", so 748 // we still potentially need objc_memmove_collectable. 749 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 750 } else { 751 llvm::Value *value; 752 if (propType->isReferenceType()) { 753 value = LV.getAddress(); 754 } else { 755 // We want to load and autoreleaseReturnValue ARC __weak ivars. 756 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 757 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 758 759 // Otherwise we want to do a simple load, suppressing the 760 // final autorelease. 761 } else { 762 value = EmitLoadOfLValue(LV).getScalarVal(); 763 AutoreleaseResult = false; 764 } 765 766 value = Builder.CreateBitCast(value, ConvertType(propType)); 767 } 768 769 EmitReturnOfRValue(RValue::get(value), propType); 770 } 771 return; 772 } 773 774 } 775 llvm_unreachable("bad @property implementation strategy!"); 776 } 777 778 /// emitStructSetterCall - Call the runtime function to store the value 779 /// from the first formal parameter into the given ivar. 780 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 781 ObjCIvarDecl *ivar) { 782 // objc_copyStruct (&structIvar, &Arg, 783 // sizeof (struct something), true, false); 784 CallArgList args; 785 786 // The first argument is the address of the ivar. 787 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 788 CGF.LoadObjCSelf(), ivar, 0) 789 .getAddress(); 790 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 791 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 792 793 // The second argument is the address of the parameter variable. 794 ParmVarDecl *argVar = *OMD->param_begin(); 795 DeclRefExpr argRef(argVar, argVar->getType().getNonReferenceType(), 796 VK_LValue, SourceLocation()); 797 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 798 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 799 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 800 801 // The third argument is the sizeof the type. 802 llvm::Value *size = 803 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 804 args.add(RValue::get(size), CGF.getContext().getSizeType()); 805 806 // The fourth argument is the 'isAtomic' flag. 807 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 808 809 // The fifth argument is the 'hasStrong' flag. 810 // FIXME: should this really always be false? 811 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 812 813 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 814 CGF.EmitCall(CGF.getTypes().getFunctionInfo(CGF.getContext().VoidTy, args, 815 FunctionType::ExtInfo()), 816 copyStructFn, ReturnValueSlot(), args); 817 } 818 819 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 820 /// the value from the first formal parameter into the given ivar, using 821 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 822 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 823 ObjCMethodDecl *OMD, 824 ObjCIvarDecl *ivar, 825 llvm::Constant *AtomicHelperFn) { 826 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 827 // AtomicHelperFn); 828 CallArgList args; 829 830 // The first argument is the address of the ivar. 831 llvm::Value *ivarAddr = 832 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 833 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 834 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 835 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 836 837 // The second argument is the address of the parameter variable. 838 ParmVarDecl *argVar = *OMD->param_begin(); 839 DeclRefExpr argRef(argVar, argVar->getType().getNonReferenceType(), 840 VK_LValue, SourceLocation()); 841 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 842 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 843 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 844 845 // Third argument is the helper function. 846 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 847 848 llvm::Value *copyCppAtomicObjectFn = 849 CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction(); 850 CGF.EmitCall(CGF.getTypes().getFunctionInfo(CGF.getContext().VoidTy, args, 851 FunctionType::ExtInfo()), 852 copyCppAtomicObjectFn, ReturnValueSlot(), args); 853 854 855 } 856 857 858 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 859 Expr *setter = PID->getSetterCXXAssignment(); 860 if (!setter) return true; 861 862 // Sema only makes only of these when the ivar has a C++ class type, 863 // so the form is pretty constrained. 864 865 // An operator call is trivial if the function it calls is trivial. 866 // This also implies that there's nothing non-trivial going on with 867 // the arguments, because operator= can only be trivial if it's a 868 // synthesized assignment operator and therefore both parameters are 869 // references. 870 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 871 if (const FunctionDecl *callee 872 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 873 if (callee->isTrivial()) 874 return true; 875 return false; 876 } 877 878 assert(isa<ExprWithCleanups>(setter)); 879 return false; 880 } 881 882 void 883 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 884 const ObjCPropertyImplDecl *propImpl, 885 llvm::Constant *AtomicHelperFn) { 886 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 887 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 888 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 889 890 // Just use the setter expression if Sema gave us one and it's 891 // non-trivial. 892 if (!hasTrivialSetExpr(propImpl)) { 893 if (!AtomicHelperFn) 894 // If non-atomic, assignment is called directly. 895 EmitStmt(propImpl->getSetterCXXAssignment()); 896 else 897 // If atomic, assignment is called via a locking api. 898 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 899 AtomicHelperFn); 900 return; 901 } 902 903 PropertyImplStrategy strategy(CGM, propImpl); 904 switch (strategy.getKind()) { 905 case PropertyImplStrategy::Native: { 906 llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()]; 907 908 LValue ivarLValue = 909 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 910 llvm::Value *ivarAddr = ivarLValue.getAddress(); 911 912 // Currently, all atomic accesses have to be through integer 913 // types, so there's no point in trying to pick a prettier type. 914 llvm::Type *bitcastType = 915 llvm::Type::getIntNTy(getLLVMContext(), 916 getContext().toBits(strategy.getIvarSize())); 917 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 918 919 // Cast both arguments to the chosen operation type. 920 argAddr = Builder.CreateBitCast(argAddr, bitcastType); 921 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 922 923 // This bitcast load is likely to cause some nasty IR. 924 llvm::Value *load = Builder.CreateLoad(argAddr); 925 926 // Perform an atomic store. There are no memory ordering requirements. 927 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 928 store->setAlignment(strategy.getIvarAlignment().getQuantity()); 929 store->setAtomic(llvm::Unordered); 930 return; 931 } 932 933 case PropertyImplStrategy::GetSetProperty: 934 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 935 llvm::Value *setPropertyFn = 936 CGM.getObjCRuntime().GetPropertySetFunction(); 937 if (!setPropertyFn) { 938 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 939 return; 940 } 941 942 // Emit objc_setProperty((id) self, _cmd, offset, arg, 943 // <is-atomic>, <is-copy>). 944 llvm::Value *cmd = 945 Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]); 946 llvm::Value *self = 947 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 948 llvm::Value *ivarOffset = 949 EmitIvarOffset(classImpl->getClassInterface(), ivar); 950 llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()]; 951 arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy); 952 953 CallArgList args; 954 args.add(RValue::get(self), getContext().getObjCIdType()); 955 args.add(RValue::get(cmd), getContext().getObjCSelType()); 956 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 957 args.add(RValue::get(arg), getContext().getObjCIdType()); 958 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 959 getContext().BoolTy); 960 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 961 getContext().BoolTy); 962 // FIXME: We shouldn't need to get the function info here, the runtime 963 // already should have computed it to build the function. 964 EmitCall(getTypes().getFunctionInfo(getContext().VoidTy, args, 965 FunctionType::ExtInfo()), 966 setPropertyFn, ReturnValueSlot(), args); 967 return; 968 } 969 970 case PropertyImplStrategy::CopyStruct: 971 emitStructSetterCall(*this, setterMethod, ivar); 972 return; 973 974 case PropertyImplStrategy::Expression: 975 break; 976 } 977 978 // Otherwise, fake up some ASTs and emit a normal assignment. 979 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 980 DeclRefExpr self(selfDecl, selfDecl->getType(), VK_LValue, SourceLocation()); 981 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 982 selfDecl->getType(), CK_LValueToRValue, &self, 983 VK_RValue); 984 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 985 SourceLocation(), &selfLoad, true, true); 986 987 ParmVarDecl *argDecl = *setterMethod->param_begin(); 988 QualType argType = argDecl->getType().getNonReferenceType(); 989 DeclRefExpr arg(argDecl, argType, VK_LValue, SourceLocation()); 990 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 991 argType.getUnqualifiedType(), CK_LValueToRValue, 992 &arg, VK_RValue); 993 994 // The property type can differ from the ivar type in some situations with 995 // Objective-C pointer types, we can always bit cast the RHS in these cases. 996 // The following absurdity is just to ensure well-formed IR. 997 CastKind argCK = CK_NoOp; 998 if (ivarRef.getType()->isObjCObjectPointerType()) { 999 if (argLoad.getType()->isObjCObjectPointerType()) 1000 argCK = CK_BitCast; 1001 else if (argLoad.getType()->isBlockPointerType()) 1002 argCK = CK_BlockPointerToObjCPointerCast; 1003 else 1004 argCK = CK_CPointerToObjCPointerCast; 1005 } else if (ivarRef.getType()->isBlockPointerType()) { 1006 if (argLoad.getType()->isBlockPointerType()) 1007 argCK = CK_BitCast; 1008 else 1009 argCK = CK_AnyPointerToBlockPointerCast; 1010 } else if (ivarRef.getType()->isPointerType()) { 1011 argCK = CK_BitCast; 1012 } 1013 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1014 ivarRef.getType(), argCK, &argLoad, 1015 VK_RValue); 1016 Expr *finalArg = &argLoad; 1017 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1018 argLoad.getType())) 1019 finalArg = &argCast; 1020 1021 1022 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1023 ivarRef.getType(), VK_RValue, OK_Ordinary, 1024 SourceLocation()); 1025 EmitStmt(&assign); 1026 } 1027 1028 /// GenerateObjCSetter - Generate an Objective-C property setter 1029 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize 1030 /// is illegal within a category. 1031 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1032 const ObjCPropertyImplDecl *PID) { 1033 llvm::Constant *AtomicHelperFn = 1034 GenerateObjCAtomicSetterCopyHelperFunction(PID); 1035 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1036 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1037 assert(OMD && "Invalid call to generate setter (empty method)"); 1038 StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart()); 1039 1040 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1041 1042 FinishFunction(); 1043 } 1044 1045 namespace { 1046 struct DestroyIvar : EHScopeStack::Cleanup { 1047 private: 1048 llvm::Value *addr; 1049 const ObjCIvarDecl *ivar; 1050 CodeGenFunction::Destroyer *destroyer; 1051 bool useEHCleanupForArray; 1052 public: 1053 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1054 CodeGenFunction::Destroyer *destroyer, 1055 bool useEHCleanupForArray) 1056 : addr(addr), ivar(ivar), destroyer(destroyer), 1057 useEHCleanupForArray(useEHCleanupForArray) {} 1058 1059 void Emit(CodeGenFunction &CGF, Flags flags) { 1060 LValue lvalue 1061 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1062 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1063 flags.isForNormalCleanup() && useEHCleanupForArray); 1064 } 1065 }; 1066 } 1067 1068 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1069 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1070 llvm::Value *addr, 1071 QualType type) { 1072 llvm::Value *null = getNullForVariable(addr); 1073 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1074 } 1075 1076 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1077 ObjCImplementationDecl *impl) { 1078 CodeGenFunction::RunCleanupsScope scope(CGF); 1079 1080 llvm::Value *self = CGF.LoadObjCSelf(); 1081 1082 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1083 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1084 ivar; ivar = ivar->getNextIvar()) { 1085 QualType type = ivar->getType(); 1086 1087 // Check whether the ivar is a destructible type. 1088 QualType::DestructionKind dtorKind = type.isDestructedType(); 1089 if (!dtorKind) continue; 1090 1091 CodeGenFunction::Destroyer *destroyer = 0; 1092 1093 // Use a call to objc_storeStrong to destroy strong ivars, for the 1094 // general benefit of the tools. 1095 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1096 destroyer = destroyARCStrongWithStore; 1097 1098 // Otherwise use the default for the destruction kind. 1099 } else { 1100 destroyer = CGF.getDestroyer(dtorKind); 1101 } 1102 1103 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1104 1105 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1106 cleanupKind & EHCleanup); 1107 } 1108 1109 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1110 } 1111 1112 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1113 ObjCMethodDecl *MD, 1114 bool ctor) { 1115 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1116 StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart()); 1117 1118 // Emit .cxx_construct. 1119 if (ctor) { 1120 // Suppress the final autorelease in ARC. 1121 AutoreleaseResult = false; 1122 1123 SmallVector<CXXCtorInitializer *, 8> IvarInitializers; 1124 for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(), 1125 E = IMP->init_end(); B != E; ++B) { 1126 CXXCtorInitializer *IvarInit = (*B); 1127 FieldDecl *Field = IvarInit->getAnyMember(); 1128 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1129 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1130 LoadObjCSelf(), Ivar, 0); 1131 EmitAggExpr(IvarInit->getInit(), 1132 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1133 AggValueSlot::DoesNotNeedGCBarriers, 1134 AggValueSlot::IsNotAliased)); 1135 } 1136 // constructor returns 'self'. 1137 CodeGenTypes &Types = CGM.getTypes(); 1138 QualType IdTy(CGM.getContext().getObjCIdType()); 1139 llvm::Value *SelfAsId = 1140 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1141 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1142 1143 // Emit .cxx_destruct. 1144 } else { 1145 emitCXXDestructMethod(*this, IMP); 1146 } 1147 FinishFunction(); 1148 } 1149 1150 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) { 1151 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(); 1152 it++; it++; 1153 const ABIArgInfo &AI = it->info; 1154 // FIXME. Is this sufficient check? 1155 return (AI.getKind() == ABIArgInfo::Indirect); 1156 } 1157 1158 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) { 1159 if (CGM.getLangOptions().getGC() == LangOptions::NonGC) 1160 return false; 1161 if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>()) 1162 return FDTTy->getDecl()->hasObjectMember(); 1163 return false; 1164 } 1165 1166 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1167 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1168 return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self"); 1169 } 1170 1171 QualType CodeGenFunction::TypeOfSelfObject() { 1172 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1173 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1174 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1175 getContext().getCanonicalType(selfDecl->getType())); 1176 return PTy->getPointeeType(); 1177 } 1178 1179 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1180 llvm::Constant *EnumerationMutationFn = 1181 CGM.getObjCRuntime().EnumerationMutationFunction(); 1182 1183 if (!EnumerationMutationFn) { 1184 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1185 return; 1186 } 1187 1188 CGDebugInfo *DI = getDebugInfo(); 1189 if (DI) 1190 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1191 1192 // The local variable comes into scope immediately. 1193 AutoVarEmission variable = AutoVarEmission::invalid(); 1194 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1195 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1196 1197 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1198 1199 // Fast enumeration state. 1200 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1201 llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1202 EmitNullInitialization(StatePtr, StateTy); 1203 1204 // Number of elements in the items array. 1205 static const unsigned NumItems = 16; 1206 1207 // Fetch the countByEnumeratingWithState:objects:count: selector. 1208 IdentifierInfo *II[] = { 1209 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1210 &CGM.getContext().Idents.get("objects"), 1211 &CGM.getContext().Idents.get("count") 1212 }; 1213 Selector FastEnumSel = 1214 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1215 1216 QualType ItemsTy = 1217 getContext().getConstantArrayType(getContext().getObjCIdType(), 1218 llvm::APInt(32, NumItems), 1219 ArrayType::Normal, 0); 1220 llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1221 1222 // Emit the collection pointer. In ARC, we do a retain. 1223 llvm::Value *Collection; 1224 if (getLangOptions().ObjCAutoRefCount) { 1225 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1226 1227 // Enter a cleanup to do the release. 1228 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1229 } else { 1230 Collection = EmitScalarExpr(S.getCollection()); 1231 } 1232 1233 // The 'continue' label needs to appear within the cleanup for the 1234 // collection object. 1235 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1236 1237 // Send it our message: 1238 CallArgList Args; 1239 1240 // The first argument is a temporary of the enumeration-state type. 1241 Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy)); 1242 1243 // The second argument is a temporary array with space for NumItems 1244 // pointers. We'll actually be loading elements from the array 1245 // pointer written into the control state; this buffer is so that 1246 // collections that *aren't* backed by arrays can still queue up 1247 // batches of elements. 1248 Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy)); 1249 1250 // The third argument is the capacity of that temporary array. 1251 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1252 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1253 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1254 1255 // Start the enumeration. 1256 RValue CountRV = 1257 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1258 getContext().UnsignedLongTy, 1259 FastEnumSel, 1260 Collection, Args); 1261 1262 // The initial number of objects that were returned in the buffer. 1263 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1264 1265 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1266 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1267 1268 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1269 1270 // If the limit pointer was zero to begin with, the collection is 1271 // empty; skip all this. 1272 Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), 1273 EmptyBB, LoopInitBB); 1274 1275 // Otherwise, initialize the loop. 1276 EmitBlock(LoopInitBB); 1277 1278 // Save the initial mutations value. This is the value at an 1279 // address that was written into the state object by 1280 // countByEnumeratingWithState:objects:count:. 1281 llvm::Value *StateMutationsPtrPtr = 1282 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1283 llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, 1284 "mutationsptr"); 1285 1286 llvm::Value *initialMutations = 1287 Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations"); 1288 1289 // Start looping. This is the point we return to whenever we have a 1290 // fresh, non-empty batch of objects. 1291 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1292 EmitBlock(LoopBodyBB); 1293 1294 // The current index into the buffer. 1295 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1296 index->addIncoming(zero, LoopInitBB); 1297 1298 // The current buffer size. 1299 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1300 count->addIncoming(initialBufferLimit, LoopInitBB); 1301 1302 // Check whether the mutations value has changed from where it was 1303 // at start. StateMutationsPtr should actually be invariant between 1304 // refreshes. 1305 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1306 llvm::Value *currentMutations 1307 = Builder.CreateLoad(StateMutationsPtr, "statemutations"); 1308 1309 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1310 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1311 1312 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1313 WasNotMutatedBB, WasMutatedBB); 1314 1315 // If so, call the enumeration-mutation function. 1316 EmitBlock(WasMutatedBB); 1317 llvm::Value *V = 1318 Builder.CreateBitCast(Collection, 1319 ConvertType(getContext().getObjCIdType())); 1320 CallArgList Args2; 1321 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1322 // FIXME: We shouldn't need to get the function info here, the runtime already 1323 // should have computed it to build the function. 1324 EmitCall(CGM.getTypes().getFunctionInfo(getContext().VoidTy, Args2, 1325 FunctionType::ExtInfo()), 1326 EnumerationMutationFn, ReturnValueSlot(), Args2); 1327 1328 // Otherwise, or if the mutation function returns, just continue. 1329 EmitBlock(WasNotMutatedBB); 1330 1331 // Initialize the element variable. 1332 RunCleanupsScope elementVariableScope(*this); 1333 bool elementIsVariable; 1334 LValue elementLValue; 1335 QualType elementType; 1336 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1337 // Initialize the variable, in case it's a __block variable or something. 1338 EmitAutoVarInit(variable); 1339 1340 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1341 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), D->getType(), 1342 VK_LValue, SourceLocation()); 1343 elementLValue = EmitLValue(&tempDRE); 1344 elementType = D->getType(); 1345 elementIsVariable = true; 1346 1347 if (D->isARCPseudoStrong()) 1348 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1349 } else { 1350 elementLValue = LValue(); // suppress warning 1351 elementType = cast<Expr>(S.getElement())->getType(); 1352 elementIsVariable = false; 1353 } 1354 llvm::Type *convertedElementType = ConvertType(elementType); 1355 1356 // Fetch the buffer out of the enumeration state. 1357 // TODO: this pointer should actually be invariant between 1358 // refreshes, which would help us do certain loop optimizations. 1359 llvm::Value *StateItemsPtr = 1360 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1361 llvm::Value *EnumStateItems = 1362 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1363 1364 // Fetch the value at the current index from the buffer. 1365 llvm::Value *CurrentItemPtr = 1366 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1367 llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr); 1368 1369 // Cast that value to the right type. 1370 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1371 "currentitem"); 1372 1373 // Make sure we have an l-value. Yes, this gets evaluated every 1374 // time through the loop. 1375 if (!elementIsVariable) { 1376 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1377 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1378 } else { 1379 EmitScalarInit(CurrentItem, elementLValue); 1380 } 1381 1382 // If we do have an element variable, this assignment is the end of 1383 // its initialization. 1384 if (elementIsVariable) 1385 EmitAutoVarCleanups(variable); 1386 1387 // Perform the loop body, setting up break and continue labels. 1388 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1389 { 1390 RunCleanupsScope Scope(*this); 1391 EmitStmt(S.getBody()); 1392 } 1393 BreakContinueStack.pop_back(); 1394 1395 // Destroy the element variable now. 1396 elementVariableScope.ForceCleanup(); 1397 1398 // Check whether there are more elements. 1399 EmitBlock(AfterBody.getBlock()); 1400 1401 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1402 1403 // First we check in the local buffer. 1404 llvm::Value *indexPlusOne 1405 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1406 1407 // If we haven't overrun the buffer yet, we can continue. 1408 Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count), 1409 LoopBodyBB, FetchMoreBB); 1410 1411 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1412 count->addIncoming(count, AfterBody.getBlock()); 1413 1414 // Otherwise, we have to fetch more elements. 1415 EmitBlock(FetchMoreBB); 1416 1417 CountRV = 1418 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1419 getContext().UnsignedLongTy, 1420 FastEnumSel, 1421 Collection, Args); 1422 1423 // If we got a zero count, we're done. 1424 llvm::Value *refetchCount = CountRV.getScalarVal(); 1425 1426 // (note that the message send might split FetchMoreBB) 1427 index->addIncoming(zero, Builder.GetInsertBlock()); 1428 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1429 1430 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1431 EmptyBB, LoopBodyBB); 1432 1433 // No more elements. 1434 EmitBlock(EmptyBB); 1435 1436 if (!elementIsVariable) { 1437 // If the element was not a declaration, set it to be null. 1438 1439 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1440 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1441 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1442 } 1443 1444 if (DI) 1445 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1446 1447 // Leave the cleanup we entered in ARC. 1448 if (getLangOptions().ObjCAutoRefCount) 1449 PopCleanupBlock(); 1450 1451 EmitBlock(LoopEnd.getBlock()); 1452 } 1453 1454 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1455 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1456 } 1457 1458 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1459 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1460 } 1461 1462 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1463 const ObjCAtSynchronizedStmt &S) { 1464 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1465 } 1466 1467 /// Produce the code for a CK_ARCProduceObject. Just does a 1468 /// primitive retain. 1469 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type, 1470 llvm::Value *value) { 1471 return EmitARCRetain(type, value); 1472 } 1473 1474 namespace { 1475 struct CallObjCRelease : EHScopeStack::Cleanup { 1476 CallObjCRelease(llvm::Value *object) : object(object) {} 1477 llvm::Value *object; 1478 1479 void Emit(CodeGenFunction &CGF, Flags flags) { 1480 CGF.EmitARCRelease(object, /*precise*/ true); 1481 } 1482 }; 1483 } 1484 1485 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1486 /// release at the end of the full-expression. 1487 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1488 llvm::Value *object) { 1489 // If we're in a conditional branch, we need to make the cleanup 1490 // conditional. 1491 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1492 return object; 1493 } 1494 1495 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1496 llvm::Value *value) { 1497 return EmitARCRetainAutorelease(type, value); 1498 } 1499 1500 1501 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1502 llvm::FunctionType *type, 1503 StringRef fnName) { 1504 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1505 1506 // In -fobjc-no-arc-runtime, emit weak references to the runtime 1507 // support library. 1508 if (!CGM.getCodeGenOpts().ObjCRuntimeHasARC) 1509 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) 1510 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1511 1512 return fn; 1513 } 1514 1515 /// Perform an operation having the signature 1516 /// i8* (i8*) 1517 /// where a null input causes a no-op and returns null. 1518 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1519 llvm::Value *value, 1520 llvm::Constant *&fn, 1521 StringRef fnName) { 1522 if (isa<llvm::ConstantPointerNull>(value)) return value; 1523 1524 if (!fn) { 1525 std::vector<llvm::Type*> args(1, CGF.Int8PtrTy); 1526 llvm::FunctionType *fnType = 1527 llvm::FunctionType::get(CGF.Int8PtrTy, args, false); 1528 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1529 } 1530 1531 // Cast the argument to 'id'. 1532 llvm::Type *origType = value->getType(); 1533 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1534 1535 // Call the function. 1536 llvm::CallInst *call = CGF.Builder.CreateCall(fn, value); 1537 call->setDoesNotThrow(); 1538 1539 // Cast the result back to the original type. 1540 return CGF.Builder.CreateBitCast(call, origType); 1541 } 1542 1543 /// Perform an operation having the following signature: 1544 /// i8* (i8**) 1545 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1546 llvm::Value *addr, 1547 llvm::Constant *&fn, 1548 StringRef fnName) { 1549 if (!fn) { 1550 std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy); 1551 llvm::FunctionType *fnType = 1552 llvm::FunctionType::get(CGF.Int8PtrTy, args, false); 1553 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1554 } 1555 1556 // Cast the argument to 'id*'. 1557 llvm::Type *origType = addr->getType(); 1558 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1559 1560 // Call the function. 1561 llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr); 1562 call->setDoesNotThrow(); 1563 1564 // Cast the result back to a dereference of the original type. 1565 llvm::Value *result = call; 1566 if (origType != CGF.Int8PtrPtrTy) 1567 result = CGF.Builder.CreateBitCast(result, 1568 cast<llvm::PointerType>(origType)->getElementType()); 1569 1570 return result; 1571 } 1572 1573 /// Perform an operation having the following signature: 1574 /// i8* (i8**, i8*) 1575 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1576 llvm::Value *addr, 1577 llvm::Value *value, 1578 llvm::Constant *&fn, 1579 StringRef fnName, 1580 bool ignored) { 1581 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 1582 == value->getType()); 1583 1584 if (!fn) { 1585 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1586 1587 llvm::FunctionType *fnType 1588 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1589 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1590 } 1591 1592 llvm::Type *origType = value->getType(); 1593 1594 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1595 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1596 1597 llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value); 1598 result->setDoesNotThrow(); 1599 1600 if (ignored) return 0; 1601 1602 return CGF.Builder.CreateBitCast(result, origType); 1603 } 1604 1605 /// Perform an operation having the following signature: 1606 /// void (i8**, i8**) 1607 static void emitARCCopyOperation(CodeGenFunction &CGF, 1608 llvm::Value *dst, 1609 llvm::Value *src, 1610 llvm::Constant *&fn, 1611 StringRef fnName) { 1612 assert(dst->getType() == src->getType()); 1613 1614 if (!fn) { 1615 std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy); 1616 llvm::FunctionType *fnType 1617 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1618 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1619 } 1620 1621 dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy); 1622 src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy); 1623 1624 llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src); 1625 result->setDoesNotThrow(); 1626 } 1627 1628 /// Produce the code to do a retain. Based on the type, calls one of: 1629 /// call i8* @objc_retain(i8* %value) 1630 /// call i8* @objc_retainBlock(i8* %value) 1631 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1632 if (type->isBlockPointerType()) 1633 return EmitARCRetainBlock(value, /*mandatory*/ false); 1634 else 1635 return EmitARCRetainNonBlock(value); 1636 } 1637 1638 /// Retain the given object, with normal retain semantics. 1639 /// call i8* @objc_retain(i8* %value) 1640 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1641 return emitARCValueOperation(*this, value, 1642 CGM.getARCEntrypoints().objc_retain, 1643 "objc_retain"); 1644 } 1645 1646 /// Retain the given block, with _Block_copy semantics. 1647 /// call i8* @objc_retainBlock(i8* %value) 1648 /// 1649 /// \param mandatory - If false, emit the call with metadata 1650 /// indicating that it's okay for the optimizer to eliminate this call 1651 /// if it can prove that the block never escapes except down the stack. 1652 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1653 bool mandatory) { 1654 llvm::Value *result 1655 = emitARCValueOperation(*this, value, 1656 CGM.getARCEntrypoints().objc_retainBlock, 1657 "objc_retainBlock"); 1658 1659 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1660 // tell the optimizer that it doesn't need to do this copy if the 1661 // block doesn't escape, where being passed as an argument doesn't 1662 // count as escaping. 1663 if (!mandatory && isa<llvm::Instruction>(result)) { 1664 llvm::CallInst *call 1665 = cast<llvm::CallInst>(result->stripPointerCasts()); 1666 assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock); 1667 1668 SmallVector<llvm::Value*,1> args; 1669 call->setMetadata("clang.arc.copy_on_escape", 1670 llvm::MDNode::get(Builder.getContext(), args)); 1671 } 1672 1673 return result; 1674 } 1675 1676 /// Retain the given object which is the result of a function call. 1677 /// call i8* @objc_retainAutoreleasedReturnValue(i8* %value) 1678 /// 1679 /// Yes, this function name is one character away from a different 1680 /// call with completely different semantics. 1681 llvm::Value * 1682 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 1683 // Fetch the void(void) inline asm which marks that we're going to 1684 // retain the autoreleased return value. 1685 llvm::InlineAsm *&marker 1686 = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker; 1687 if (!marker) { 1688 StringRef assembly 1689 = CGM.getTargetCodeGenInfo() 1690 .getARCRetainAutoreleasedReturnValueMarker(); 1691 1692 // If we have an empty assembly string, there's nothing to do. 1693 if (assembly.empty()) { 1694 1695 // Otherwise, at -O0, build an inline asm that we're going to call 1696 // in a moment. 1697 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1698 llvm::FunctionType *type = 1699 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), 1700 /*variadic*/ false); 1701 1702 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 1703 1704 // If we're at -O1 and above, we don't want to litter the code 1705 // with this marker yet, so leave a breadcrumb for the ARC 1706 // optimizer to pick up. 1707 } else { 1708 llvm::NamedMDNode *metadata = 1709 CGM.getModule().getOrInsertNamedMetadata( 1710 "clang.arc.retainAutoreleasedReturnValueMarker"); 1711 assert(metadata->getNumOperands() <= 1); 1712 if (metadata->getNumOperands() == 0) { 1713 llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly); 1714 metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string)); 1715 } 1716 } 1717 } 1718 1719 // Call the marker asm if we made one, which we do only at -O0. 1720 if (marker) Builder.CreateCall(marker); 1721 1722 return emitARCValueOperation(*this, value, 1723 CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue, 1724 "objc_retainAutoreleasedReturnValue"); 1725 } 1726 1727 /// Release the given object. 1728 /// call void @objc_release(i8* %value) 1729 void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) { 1730 if (isa<llvm::ConstantPointerNull>(value)) return; 1731 1732 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release; 1733 if (!fn) { 1734 std::vector<llvm::Type*> args(1, Int8PtrTy); 1735 llvm::FunctionType *fnType = 1736 llvm::FunctionType::get(Builder.getVoidTy(), args, false); 1737 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 1738 } 1739 1740 // Cast the argument to 'id'. 1741 value = Builder.CreateBitCast(value, Int8PtrTy); 1742 1743 // Call objc_release. 1744 llvm::CallInst *call = Builder.CreateCall(fn, value); 1745 call->setDoesNotThrow(); 1746 1747 if (!precise) { 1748 SmallVector<llvm::Value*,1> args; 1749 call->setMetadata("clang.imprecise_release", 1750 llvm::MDNode::get(Builder.getContext(), args)); 1751 } 1752 } 1753 1754 /// Store into a strong object. Always calls this: 1755 /// call void @objc_storeStrong(i8** %addr, i8* %value) 1756 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr, 1757 llvm::Value *value, 1758 bool ignored) { 1759 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 1760 == value->getType()); 1761 1762 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong; 1763 if (!fn) { 1764 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 1765 llvm::FunctionType *fnType 1766 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 1767 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 1768 } 1769 1770 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 1771 llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy); 1772 1773 Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow(); 1774 1775 if (ignored) return 0; 1776 return value; 1777 } 1778 1779 /// Store into a strong object. Sometimes calls this: 1780 /// call void @objc_storeStrong(i8** %addr, i8* %value) 1781 /// Other times, breaks it down into components. 1782 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 1783 llvm::Value *newValue, 1784 bool ignored) { 1785 QualType type = dst.getType(); 1786 bool isBlock = type->isBlockPointerType(); 1787 1788 // Use a store barrier at -O0 unless this is a block type or the 1789 // lvalue is inadequately aligned. 1790 if (shouldUseFusedARCCalls() && 1791 !isBlock && 1792 (dst.getAlignment().isZero() || 1793 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 1794 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 1795 } 1796 1797 // Otherwise, split it out. 1798 1799 // Retain the new value. 1800 newValue = EmitARCRetain(type, newValue); 1801 1802 // Read the old value. 1803 llvm::Value *oldValue = EmitLoadOfScalar(dst); 1804 1805 // Store. We do this before the release so that any deallocs won't 1806 // see the old value. 1807 EmitStoreOfScalar(newValue, dst); 1808 1809 // Finally, release the old value. 1810 EmitARCRelease(oldValue, /*precise*/ false); 1811 1812 return newValue; 1813 } 1814 1815 /// Autorelease the given object. 1816 /// call i8* @objc_autorelease(i8* %value) 1817 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 1818 return emitARCValueOperation(*this, value, 1819 CGM.getARCEntrypoints().objc_autorelease, 1820 "objc_autorelease"); 1821 } 1822 1823 /// Autorelease the given object. 1824 /// call i8* @objc_autoreleaseReturnValue(i8* %value) 1825 llvm::Value * 1826 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 1827 return emitARCValueOperation(*this, value, 1828 CGM.getARCEntrypoints().objc_autoreleaseReturnValue, 1829 "objc_autoreleaseReturnValue"); 1830 } 1831 1832 /// Do a fused retain/autorelease of the given object. 1833 /// call i8* @objc_retainAutoreleaseReturnValue(i8* %value) 1834 llvm::Value * 1835 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 1836 return emitARCValueOperation(*this, value, 1837 CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue, 1838 "objc_retainAutoreleaseReturnValue"); 1839 } 1840 1841 /// Do a fused retain/autorelease of the given object. 1842 /// call i8* @objc_retainAutorelease(i8* %value) 1843 /// or 1844 /// %retain = call i8* @objc_retainBlock(i8* %value) 1845 /// call i8* @objc_autorelease(i8* %retain) 1846 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 1847 llvm::Value *value) { 1848 if (!type->isBlockPointerType()) 1849 return EmitARCRetainAutoreleaseNonBlock(value); 1850 1851 if (isa<llvm::ConstantPointerNull>(value)) return value; 1852 1853 llvm::Type *origType = value->getType(); 1854 value = Builder.CreateBitCast(value, Int8PtrTy); 1855 value = EmitARCRetainBlock(value, /*mandatory*/ true); 1856 value = EmitARCAutorelease(value); 1857 return Builder.CreateBitCast(value, origType); 1858 } 1859 1860 /// Do a fused retain/autorelease of the given object. 1861 /// call i8* @objc_retainAutorelease(i8* %value) 1862 llvm::Value * 1863 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 1864 return emitARCValueOperation(*this, value, 1865 CGM.getARCEntrypoints().objc_retainAutorelease, 1866 "objc_retainAutorelease"); 1867 } 1868 1869 /// i8* @objc_loadWeak(i8** %addr) 1870 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 1871 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) { 1872 return emitARCLoadOperation(*this, addr, 1873 CGM.getARCEntrypoints().objc_loadWeak, 1874 "objc_loadWeak"); 1875 } 1876 1877 /// i8* @objc_loadWeakRetained(i8** %addr) 1878 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) { 1879 return emitARCLoadOperation(*this, addr, 1880 CGM.getARCEntrypoints().objc_loadWeakRetained, 1881 "objc_loadWeakRetained"); 1882 } 1883 1884 /// i8* @objc_storeWeak(i8** %addr, i8* %value) 1885 /// Returns %value. 1886 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr, 1887 llvm::Value *value, 1888 bool ignored) { 1889 return emitARCStoreOperation(*this, addr, value, 1890 CGM.getARCEntrypoints().objc_storeWeak, 1891 "objc_storeWeak", ignored); 1892 } 1893 1894 /// i8* @objc_initWeak(i8** %addr, i8* %value) 1895 /// Returns %value. %addr is known to not have a current weak entry. 1896 /// Essentially equivalent to: 1897 /// *addr = nil; objc_storeWeak(addr, value); 1898 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) { 1899 // If we're initializing to null, just write null to memory; no need 1900 // to get the runtime involved. But don't do this if optimization 1901 // is enabled, because accounting for this would make the optimizer 1902 // much more complicated. 1903 if (isa<llvm::ConstantPointerNull>(value) && 1904 CGM.getCodeGenOpts().OptimizationLevel == 0) { 1905 Builder.CreateStore(value, addr); 1906 return; 1907 } 1908 1909 emitARCStoreOperation(*this, addr, value, 1910 CGM.getARCEntrypoints().objc_initWeak, 1911 "objc_initWeak", /*ignored*/ true); 1912 } 1913 1914 /// void @objc_destroyWeak(i8** %addr) 1915 /// Essentially objc_storeWeak(addr, nil). 1916 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) { 1917 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak; 1918 if (!fn) { 1919 std::vector<llvm::Type*> args(1, Int8PtrPtrTy); 1920 llvm::FunctionType *fnType = 1921 llvm::FunctionType::get(Builder.getVoidTy(), args, false); 1922 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 1923 } 1924 1925 // Cast the argument to 'id*'. 1926 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 1927 1928 llvm::CallInst *call = Builder.CreateCall(fn, addr); 1929 call->setDoesNotThrow(); 1930 } 1931 1932 /// void @objc_moveWeak(i8** %dest, i8** %src) 1933 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 1934 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 1935 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) { 1936 emitARCCopyOperation(*this, dst, src, 1937 CGM.getARCEntrypoints().objc_moveWeak, 1938 "objc_moveWeak"); 1939 } 1940 1941 /// void @objc_copyWeak(i8** %dest, i8** %src) 1942 /// Disregards the current value in %dest. Essentially 1943 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 1944 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) { 1945 emitARCCopyOperation(*this, dst, src, 1946 CGM.getARCEntrypoints().objc_copyWeak, 1947 "objc_copyWeak"); 1948 } 1949 1950 /// Produce the code to do a objc_autoreleasepool_push. 1951 /// call i8* @objc_autoreleasePoolPush(void) 1952 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 1953 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush; 1954 if (!fn) { 1955 llvm::FunctionType *fnType = 1956 llvm::FunctionType::get(Int8PtrTy, false); 1957 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 1958 } 1959 1960 llvm::CallInst *call = Builder.CreateCall(fn); 1961 call->setDoesNotThrow(); 1962 1963 return call; 1964 } 1965 1966 /// Produce the code to do a primitive release. 1967 /// call void @objc_autoreleasePoolPop(i8* %ptr) 1968 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 1969 assert(value->getType() == Int8PtrTy); 1970 1971 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop; 1972 if (!fn) { 1973 std::vector<llvm::Type*> args(1, Int8PtrTy); 1974 llvm::FunctionType *fnType = 1975 llvm::FunctionType::get(Builder.getVoidTy(), args, false); 1976 1977 // We don't want to use a weak import here; instead we should not 1978 // fall into this path. 1979 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 1980 } 1981 1982 llvm::CallInst *call = Builder.CreateCall(fn, value); 1983 call->setDoesNotThrow(); 1984 } 1985 1986 /// Produce the code to do an MRR version objc_autoreleasepool_push. 1987 /// Which is: [[NSAutoreleasePool alloc] init]; 1988 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 1989 /// init is declared as: - (id) init; in its NSObject super class. 1990 /// 1991 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 1992 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 1993 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder); 1994 // [NSAutoreleasePool alloc] 1995 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 1996 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 1997 CallArgList Args; 1998 RValue AllocRV = 1999 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2000 getContext().getObjCIdType(), 2001 AllocSel, Receiver, Args); 2002 2003 // [Receiver init] 2004 Receiver = AllocRV.getScalarVal(); 2005 II = &CGM.getContext().Idents.get("init"); 2006 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2007 RValue InitRV = 2008 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2009 getContext().getObjCIdType(), 2010 InitSel, Receiver, Args); 2011 return InitRV.getScalarVal(); 2012 } 2013 2014 /// Produce the code to do a primitive release. 2015 /// [tmp drain]; 2016 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2017 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2018 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2019 CallArgList Args; 2020 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2021 getContext().VoidTy, DrainSel, Arg, Args); 2022 } 2023 2024 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2025 llvm::Value *addr, 2026 QualType type) { 2027 llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy"); 2028 CGF.EmitARCRelease(ptr, /*precise*/ true); 2029 } 2030 2031 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2032 llvm::Value *addr, 2033 QualType type) { 2034 llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy"); 2035 CGF.EmitARCRelease(ptr, /*precise*/ false); 2036 } 2037 2038 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2039 llvm::Value *addr, 2040 QualType type) { 2041 CGF.EmitARCDestroyWeak(addr); 2042 } 2043 2044 namespace { 2045 struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup { 2046 llvm::Value *Token; 2047 2048 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2049 2050 void Emit(CodeGenFunction &CGF, Flags flags) { 2051 CGF.EmitObjCAutoreleasePoolPop(Token); 2052 } 2053 }; 2054 struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup { 2055 llvm::Value *Token; 2056 2057 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2058 2059 void Emit(CodeGenFunction &CGF, Flags flags) { 2060 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2061 } 2062 }; 2063 } 2064 2065 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2066 if (CGM.getLangOptions().ObjCAutoRefCount) 2067 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2068 else 2069 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2070 } 2071 2072 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2073 LValue lvalue, 2074 QualType type) { 2075 switch (type.getObjCLifetime()) { 2076 case Qualifiers::OCL_None: 2077 case Qualifiers::OCL_ExplicitNone: 2078 case Qualifiers::OCL_Strong: 2079 case Qualifiers::OCL_Autoreleasing: 2080 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(), 2081 false); 2082 2083 case Qualifiers::OCL_Weak: 2084 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2085 true); 2086 } 2087 2088 llvm_unreachable("impossible lifetime!"); 2089 } 2090 2091 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2092 const Expr *e) { 2093 e = e->IgnoreParens(); 2094 QualType type = e->getType(); 2095 2096 // If we're loading retained from a __strong xvalue, we can avoid 2097 // an extra retain/release pair by zeroing out the source of this 2098 // "move" operation. 2099 if (e->isXValue() && 2100 !type.isConstQualified() && 2101 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2102 // Emit the lvalue. 2103 LValue lv = CGF.EmitLValue(e); 2104 2105 // Load the object pointer. 2106 llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal(); 2107 2108 // Set the source pointer to NULL. 2109 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2110 2111 return TryEmitResult(result, true); 2112 } 2113 2114 // As a very special optimization, in ARC++, if the l-value is the 2115 // result of a non-volatile assignment, do a simple retain of the 2116 // result of the call to objc_storeWeak instead of reloading. 2117 if (CGF.getLangOptions().CPlusPlus && 2118 !type.isVolatileQualified() && 2119 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2120 isa<BinaryOperator>(e) && 2121 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2122 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2123 2124 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2125 } 2126 2127 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2128 llvm::Value *value); 2129 2130 /// Given that the given expression is some sort of call (which does 2131 /// not return retained), emit a retain following it. 2132 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) { 2133 llvm::Value *value = CGF.EmitScalarExpr(e); 2134 return emitARCRetainAfterCall(CGF, value); 2135 } 2136 2137 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2138 llvm::Value *value) { 2139 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2140 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2141 2142 // Place the retain immediately following the call. 2143 CGF.Builder.SetInsertPoint(call->getParent(), 2144 ++llvm::BasicBlock::iterator(call)); 2145 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2146 2147 CGF.Builder.restoreIP(ip); 2148 return value; 2149 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2150 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2151 2152 // Place the retain at the beginning of the normal destination block. 2153 llvm::BasicBlock *BB = invoke->getNormalDest(); 2154 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2155 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2156 2157 CGF.Builder.restoreIP(ip); 2158 return value; 2159 2160 // Bitcasts can arise because of related-result returns. Rewrite 2161 // the operand. 2162 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2163 llvm::Value *operand = bitcast->getOperand(0); 2164 operand = emitARCRetainAfterCall(CGF, operand); 2165 bitcast->setOperand(0, operand); 2166 return bitcast; 2167 2168 // Generic fall-back case. 2169 } else { 2170 // Retain using the non-block variant: we never need to do a copy 2171 // of a block that's been returned to us. 2172 return CGF.EmitARCRetainNonBlock(value); 2173 } 2174 } 2175 2176 /// Determine whether it might be important to emit a separate 2177 /// objc_retain_block on the result of the given expression, or 2178 /// whether it's okay to just emit it in a +1 context. 2179 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2180 assert(e->getType()->isBlockPointerType()); 2181 e = e->IgnoreParens(); 2182 2183 // For future goodness, emit block expressions directly in +1 2184 // contexts if we can. 2185 if (isa<BlockExpr>(e)) 2186 return false; 2187 2188 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2189 switch (cast->getCastKind()) { 2190 // Emitting these operations in +1 contexts is goodness. 2191 case CK_LValueToRValue: 2192 case CK_ARCReclaimReturnedObject: 2193 case CK_ARCConsumeObject: 2194 case CK_ARCProduceObject: 2195 return false; 2196 2197 // These operations preserve a block type. 2198 case CK_NoOp: 2199 case CK_BitCast: 2200 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2201 2202 // These operations are known to be bad (or haven't been considered). 2203 case CK_AnyPointerToBlockPointerCast: 2204 default: 2205 return true; 2206 } 2207 } 2208 2209 return true; 2210 } 2211 2212 /// Try to emit a PseudoObjectExpr at +1. 2213 /// 2214 /// This massively duplicates emitPseudoObjectRValue. 2215 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF, 2216 const PseudoObjectExpr *E) { 2217 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2218 2219 // Find the result expression. 2220 const Expr *resultExpr = E->getResultExpr(); 2221 assert(resultExpr); 2222 TryEmitResult result; 2223 2224 for (PseudoObjectExpr::const_semantics_iterator 2225 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2226 const Expr *semantic = *i; 2227 2228 // If this semantic expression is an opaque value, bind it 2229 // to the result of its source expression. 2230 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2231 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2232 OVMA opaqueData; 2233 2234 // If this semantic is the result of the pseudo-object 2235 // expression, try to evaluate the source as +1. 2236 if (ov == resultExpr) { 2237 assert(!OVMA::shouldBindAsLValue(ov)); 2238 result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr()); 2239 opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer())); 2240 2241 // Otherwise, just bind it. 2242 } else { 2243 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2244 } 2245 opaques.push_back(opaqueData); 2246 2247 // Otherwise, if the expression is the result, evaluate it 2248 // and remember the result. 2249 } else if (semantic == resultExpr) { 2250 result = tryEmitARCRetainScalarExpr(CGF, semantic); 2251 2252 // Otherwise, evaluate the expression in an ignored context. 2253 } else { 2254 CGF.EmitIgnoredExpr(semantic); 2255 } 2256 } 2257 2258 // Unbind all the opaques now. 2259 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2260 opaques[i].unbind(CGF); 2261 2262 return result; 2263 } 2264 2265 static TryEmitResult 2266 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2267 // Look through cleanups. 2268 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2269 CGF.enterFullExpression(cleanups); 2270 CodeGenFunction::RunCleanupsScope scope(CGF); 2271 return tryEmitARCRetainScalarExpr(CGF, cleanups->getSubExpr()); 2272 } 2273 2274 // The desired result type, if it differs from the type of the 2275 // ultimate opaque expression. 2276 llvm::Type *resultType = 0; 2277 2278 while (true) { 2279 e = e->IgnoreParens(); 2280 2281 // There's a break at the end of this if-chain; anything 2282 // that wants to keep looping has to explicitly continue. 2283 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2284 switch (ce->getCastKind()) { 2285 // No-op casts don't change the type, so we just ignore them. 2286 case CK_NoOp: 2287 e = ce->getSubExpr(); 2288 continue; 2289 2290 case CK_LValueToRValue: { 2291 TryEmitResult loadResult 2292 = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr()); 2293 if (resultType) { 2294 llvm::Value *value = loadResult.getPointer(); 2295 value = CGF.Builder.CreateBitCast(value, resultType); 2296 loadResult.setPointer(value); 2297 } 2298 return loadResult; 2299 } 2300 2301 // These casts can change the type, so remember that and 2302 // soldier on. We only need to remember the outermost such 2303 // cast, though. 2304 case CK_CPointerToObjCPointerCast: 2305 case CK_BlockPointerToObjCPointerCast: 2306 case CK_AnyPointerToBlockPointerCast: 2307 case CK_BitCast: 2308 if (!resultType) 2309 resultType = CGF.ConvertType(ce->getType()); 2310 e = ce->getSubExpr(); 2311 assert(e->getType()->hasPointerRepresentation()); 2312 continue; 2313 2314 // For consumptions, just emit the subexpression and thus elide 2315 // the retain/release pair. 2316 case CK_ARCConsumeObject: { 2317 llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr()); 2318 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2319 return TryEmitResult(result, true); 2320 } 2321 2322 // Block extends are net +0. Naively, we could just recurse on 2323 // the subexpression, but actually we need to ensure that the 2324 // value is copied as a block, so there's a little filter here. 2325 case CK_ARCExtendBlockObject: { 2326 llvm::Value *result; // will be a +0 value 2327 2328 // If we can't safely assume the sub-expression will produce a 2329 // block-copied value, emit the sub-expression at +0. 2330 if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) { 2331 result = CGF.EmitScalarExpr(ce->getSubExpr()); 2332 2333 // Otherwise, try to emit the sub-expression at +1 recursively. 2334 } else { 2335 TryEmitResult subresult 2336 = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr()); 2337 result = subresult.getPointer(); 2338 2339 // If that produced a retained value, just use that, 2340 // possibly casting down. 2341 if (subresult.getInt()) { 2342 if (resultType) 2343 result = CGF.Builder.CreateBitCast(result, resultType); 2344 return TryEmitResult(result, true); 2345 } 2346 2347 // Otherwise it's +0. 2348 } 2349 2350 // Retain the object as a block, then cast down. 2351 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2352 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2353 return TryEmitResult(result, true); 2354 } 2355 2356 // For reclaims, emit the subexpression as a retained call and 2357 // skip the consumption. 2358 case CK_ARCReclaimReturnedObject: { 2359 llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr()); 2360 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2361 return TryEmitResult(result, true); 2362 } 2363 2364 default: 2365 break; 2366 } 2367 2368 // Skip __extension__. 2369 } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 2370 if (op->getOpcode() == UO_Extension) { 2371 e = op->getSubExpr(); 2372 continue; 2373 } 2374 2375 // For calls and message sends, use the retained-call logic. 2376 // Delegate inits are a special case in that they're the only 2377 // returns-retained expression that *isn't* surrounded by 2378 // a consume. 2379 } else if (isa<CallExpr>(e) || 2380 (isa<ObjCMessageExpr>(e) && 2381 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2382 llvm::Value *result = emitARCRetainCall(CGF, e); 2383 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2384 return TryEmitResult(result, true); 2385 2386 // Look through pseudo-object expressions. 2387 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2388 TryEmitResult result 2389 = tryEmitARCRetainPseudoObject(CGF, pseudo); 2390 if (resultType) { 2391 llvm::Value *value = result.getPointer(); 2392 value = CGF.Builder.CreateBitCast(value, resultType); 2393 result.setPointer(value); 2394 } 2395 return result; 2396 } 2397 2398 // Conservatively halt the search at any other expression kind. 2399 break; 2400 } 2401 2402 // We didn't find an obvious production, so emit what we've got and 2403 // tell the caller that we didn't manage to retain. 2404 llvm::Value *result = CGF.EmitScalarExpr(e); 2405 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2406 return TryEmitResult(result, false); 2407 } 2408 2409 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2410 LValue lvalue, 2411 QualType type) { 2412 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2413 llvm::Value *value = result.getPointer(); 2414 if (!result.getInt()) 2415 value = CGF.EmitARCRetain(type, value); 2416 return value; 2417 } 2418 2419 /// EmitARCRetainScalarExpr - Semantically equivalent to 2420 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2421 /// best-effort attempt to peephole expressions that naturally produce 2422 /// retained objects. 2423 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2424 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2425 llvm::Value *value = result.getPointer(); 2426 if (!result.getInt()) 2427 value = EmitARCRetain(e->getType(), value); 2428 return value; 2429 } 2430 2431 llvm::Value * 2432 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2433 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2434 llvm::Value *value = result.getPointer(); 2435 if (result.getInt()) 2436 value = EmitARCAutorelease(value); 2437 else 2438 value = EmitARCRetainAutorelease(e->getType(), value); 2439 return value; 2440 } 2441 2442 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2443 llvm::Value *result; 2444 bool doRetain; 2445 2446 if (shouldEmitSeparateBlockRetain(e)) { 2447 result = EmitScalarExpr(e); 2448 doRetain = true; 2449 } else { 2450 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2451 result = subresult.getPointer(); 2452 doRetain = !subresult.getInt(); 2453 } 2454 2455 if (doRetain) 2456 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2457 return EmitObjCConsumeObject(e->getType(), result); 2458 } 2459 2460 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2461 // In ARC, retain and autorelease the expression. 2462 if (getLangOptions().ObjCAutoRefCount) { 2463 // Do so before running any cleanups for the full-expression. 2464 // tryEmitARCRetainScalarExpr does make an effort to do things 2465 // inside cleanups, but there are crazy cases like 2466 // @throw A().foo; 2467 // where a full retain+autorelease is required and would 2468 // otherwise happen after the destructor for the temporary. 2469 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(expr)) { 2470 enterFullExpression(ewc); 2471 expr = ewc->getSubExpr(); 2472 } 2473 2474 CodeGenFunction::RunCleanupsScope cleanups(*this); 2475 return EmitARCRetainAutoreleaseScalarExpr(expr); 2476 } 2477 2478 // Otherwise, use the normal scalar-expression emission. The 2479 // exception machinery doesn't do anything special with the 2480 // exception like retaining it, so there's no safety associated with 2481 // only running cleanups after the throw has started, and when it 2482 // matters it tends to be substantially inferior code. 2483 return EmitScalarExpr(expr); 2484 } 2485 2486 std::pair<LValue,llvm::Value*> 2487 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 2488 bool ignored) { 2489 // Evaluate the RHS first. 2490 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 2491 llvm::Value *value = result.getPointer(); 2492 2493 bool hasImmediateRetain = result.getInt(); 2494 2495 // If we didn't emit a retained object, and the l-value is of block 2496 // type, then we need to emit the block-retain immediately in case 2497 // it invalidates the l-value. 2498 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 2499 value = EmitARCRetainBlock(value, /*mandatory*/ false); 2500 hasImmediateRetain = true; 2501 } 2502 2503 LValue lvalue = EmitLValue(e->getLHS()); 2504 2505 // If the RHS was emitted retained, expand this. 2506 if (hasImmediateRetain) { 2507 llvm::Value *oldValue = 2508 EmitLoadOfScalar(lvalue); 2509 EmitStoreOfScalar(value, lvalue); 2510 EmitARCRelease(oldValue, /*precise*/ false); 2511 } else { 2512 value = EmitARCStoreStrong(lvalue, value, ignored); 2513 } 2514 2515 return std::pair<LValue,llvm::Value*>(lvalue, value); 2516 } 2517 2518 std::pair<LValue,llvm::Value*> 2519 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 2520 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 2521 LValue lvalue = EmitLValue(e->getLHS()); 2522 2523 EmitStoreOfScalar(value, lvalue); 2524 2525 return std::pair<LValue,llvm::Value*>(lvalue, value); 2526 } 2527 2528 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 2529 const ObjCAutoreleasePoolStmt &ARPS) { 2530 const Stmt *subStmt = ARPS.getSubStmt(); 2531 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 2532 2533 CGDebugInfo *DI = getDebugInfo(); 2534 if (DI) 2535 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 2536 2537 // Keep track of the current cleanup stack depth. 2538 RunCleanupsScope Scope(*this); 2539 if (CGM.getCodeGenOpts().ObjCRuntimeHasARC) { 2540 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 2541 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 2542 } else { 2543 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 2544 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 2545 } 2546 2547 for (CompoundStmt::const_body_iterator I = S.body_begin(), 2548 E = S.body_end(); I != E; ++I) 2549 EmitStmt(*I); 2550 2551 if (DI) 2552 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 2553 } 2554 2555 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2556 /// make sure it survives garbage collection until this point. 2557 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 2558 // We just use an inline assembly. 2559 llvm::FunctionType *extenderType 2560 = llvm::FunctionType::get(VoidTy, VoidPtrTy, /*variadic*/ false); 2561 llvm::Value *extender 2562 = llvm::InlineAsm::get(extenderType, 2563 /* assembly */ "", 2564 /* constraints */ "r", 2565 /* side effects */ true); 2566 2567 object = Builder.CreateBitCast(object, VoidPtrTy); 2568 Builder.CreateCall(extender, object)->setDoesNotThrow(); 2569 } 2570 2571 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 2572 /// non-trivial copy assignment function, produce following helper function. 2573 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 2574 /// 2575 llvm::Constant * 2576 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 2577 const ObjCPropertyImplDecl *PID) { 2578 // FIXME. This api is for NeXt runtime only for now. 2579 if (!getLangOptions().CPlusPlus || !getLangOptions().NeXTRuntime) 2580 return 0; 2581 QualType Ty = PID->getPropertyIvarDecl()->getType(); 2582 if (!Ty->isRecordType()) 2583 return 0; 2584 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2585 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2586 return 0; 2587 llvm::Constant * HelperFn = 0; 2588 if (hasTrivialSetExpr(PID)) 2589 return 0; 2590 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 2591 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 2592 return HelperFn; 2593 2594 ASTContext &C = getContext(); 2595 IdentifierInfo *II 2596 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 2597 FunctionDecl *FD = FunctionDecl::Create(C, 2598 C.getTranslationUnitDecl(), 2599 SourceLocation(), 2600 SourceLocation(), II, C.VoidTy, 0, 2601 SC_Static, 2602 SC_None, 2603 false, 2604 true); 2605 2606 QualType DestTy = C.getPointerType(Ty); 2607 QualType SrcTy = Ty; 2608 SrcTy.addConst(); 2609 SrcTy = C.getPointerType(SrcTy); 2610 2611 FunctionArgList args; 2612 ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy); 2613 args.push_back(&dstDecl); 2614 ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy); 2615 args.push_back(&srcDecl); 2616 2617 const CGFunctionInfo &FI = 2618 CGM.getTypes().getFunctionInfo(C.VoidTy, args, FunctionType::ExtInfo()); 2619 2620 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI, false); 2621 2622 llvm::Function *Fn = 2623 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2624 "__assign_helper_atomic_property_", &CGM.getModule()); 2625 2626 if (CGM.getModuleDebugInfo()) 2627 DebugInfo = CGM.getModuleDebugInfo(); 2628 2629 2630 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation()); 2631 2632 DeclRefExpr *DstExpr = 2633 new (C) DeclRefExpr(&dstDecl, DestTy, 2634 VK_RValue, SourceLocation()); 2635 2636 Expr* DST = new (C) UnaryOperator(DstExpr, UO_Deref, DestTy->getPointeeType(), 2637 VK_LValue, OK_Ordinary, SourceLocation()); 2638 2639 DeclRefExpr *SrcExpr = 2640 new (C) DeclRefExpr(&srcDecl, SrcTy, 2641 VK_RValue, SourceLocation()); 2642 2643 Expr* SRC = new (C) UnaryOperator(SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2644 VK_LValue, OK_Ordinary, SourceLocation()); 2645 2646 Expr *Args[2] = { DST, SRC }; 2647 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 2648 CXXOperatorCallExpr *TheCall = 2649 new (C) CXXOperatorCallExpr(C, OO_Equal, CalleeExp->getCallee(), 2650 Args, 2, DestTy->getPointeeType(), 2651 VK_LValue, SourceLocation()); 2652 2653 EmitStmt(TheCall); 2654 2655 FinishFunction(); 2656 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 2657 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 2658 return HelperFn; 2659 } 2660 2661 llvm::Constant * 2662 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 2663 const ObjCPropertyImplDecl *PID) { 2664 // FIXME. This api is for NeXt runtime only for now. 2665 if (!getLangOptions().CPlusPlus || !getLangOptions().NeXTRuntime) 2666 return 0; 2667 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2668 QualType Ty = PD->getType(); 2669 if (!Ty->isRecordType()) 2670 return 0; 2671 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2672 return 0; 2673 llvm::Constant * HelperFn = 0; 2674 2675 if (hasTrivialGetExpr(PID)) 2676 return 0; 2677 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 2678 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 2679 return HelperFn; 2680 2681 2682 ASTContext &C = getContext(); 2683 IdentifierInfo *II 2684 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 2685 FunctionDecl *FD = FunctionDecl::Create(C, 2686 C.getTranslationUnitDecl(), 2687 SourceLocation(), 2688 SourceLocation(), II, C.VoidTy, 0, 2689 SC_Static, 2690 SC_None, 2691 false, 2692 true); 2693 2694 QualType DestTy = C.getPointerType(Ty); 2695 QualType SrcTy = Ty; 2696 SrcTy.addConst(); 2697 SrcTy = C.getPointerType(SrcTy); 2698 2699 FunctionArgList args; 2700 ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy); 2701 args.push_back(&dstDecl); 2702 ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy); 2703 args.push_back(&srcDecl); 2704 2705 const CGFunctionInfo &FI = 2706 CGM.getTypes().getFunctionInfo(C.VoidTy, args, FunctionType::ExtInfo()); 2707 2708 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI, false); 2709 2710 llvm::Function *Fn = 2711 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2712 "__copy_helper_atomic_property_", &CGM.getModule()); 2713 2714 if (CGM.getModuleDebugInfo()) 2715 DebugInfo = CGM.getModuleDebugInfo(); 2716 2717 2718 StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation()); 2719 2720 DeclRefExpr *SrcExpr = 2721 new (C) DeclRefExpr(&srcDecl, SrcTy, 2722 VK_RValue, SourceLocation()); 2723 2724 Expr* SRC = new (C) UnaryOperator(SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2725 VK_LValue, OK_Ordinary, SourceLocation()); 2726 2727 CXXConstructExpr *CXXConstExpr = 2728 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 2729 2730 SmallVector<Expr*, 4> ConstructorArgs; 2731 ConstructorArgs.push_back(SRC); 2732 CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin(); 2733 ++A; 2734 2735 for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end(); 2736 A != AEnd; ++A) 2737 ConstructorArgs.push_back(*A); 2738 2739 CXXConstructExpr *TheCXXConstructExpr = 2740 CXXConstructExpr::Create(C, Ty, SourceLocation(), 2741 CXXConstExpr->getConstructor(), 2742 CXXConstExpr->isElidable(), 2743 &ConstructorArgs[0], ConstructorArgs.size(), 2744 CXXConstExpr->hadMultipleCandidates(), 2745 CXXConstExpr->requiresZeroInitialization(), 2746 CXXConstExpr->getConstructionKind(), SourceRange()); 2747 2748 DeclRefExpr *DstExpr = 2749 new (C) DeclRefExpr(&dstDecl, DestTy, 2750 VK_RValue, SourceLocation()); 2751 2752 RValue DV = EmitAnyExpr(DstExpr); 2753 CharUnits Alignment = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 2754 EmitAggExpr(TheCXXConstructExpr, 2755 AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(), 2756 AggValueSlot::IsDestructed, 2757 AggValueSlot::DoesNotNeedGCBarriers, 2758 AggValueSlot::IsNotAliased)); 2759 2760 FinishFunction(); 2761 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 2762 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 2763 return HelperFn; 2764 } 2765 2766 2767 CGObjCRuntime::~CGObjCRuntime() {} 2768