1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Objective-C code as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/StmtObjC.h" 23 #include "clang/Basic/Diagnostic.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/Analysis/ObjCARCUtil.h" 27 #include "llvm/BinaryFormat/MachO.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/InlineAsm.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 34 static TryEmitResult 35 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 36 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 37 QualType ET, 38 RValue Result); 39 40 /// Given the address of a variable of pointer type, find the correct 41 /// null to store into it. 42 static llvm::Constant *getNullForVariable(Address addr) { 43 llvm::Type *type = addr.getElementType(); 44 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 45 } 46 47 /// Emits an instance of NSConstantString representing the object. 48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 49 { 50 llvm::Constant *C = 51 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 52 // FIXME: This bitcast should just be made an invariant on the Runtime. 53 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 54 } 55 56 /// EmitObjCBoxedExpr - This routine generates code to call 57 /// the appropriate expression boxing method. This will either be 58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 59 /// or [NSValue valueWithBytes:objCType:]. 60 /// 61 llvm::Value * 62 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 63 // Generate the correct selector for this literal's concrete type. 64 // Get the method. 65 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 66 const Expr *SubExpr = E->getSubExpr(); 67 68 if (E->isExpressibleAsConstantInitializer()) { 69 ConstantEmitter ConstEmitter(CGM); 70 return ConstEmitter.tryEmitAbstract(E, E->getType()); 71 } 72 73 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 74 Selector Sel = BoxingMethod->getSelector(); 75 76 // Generate a reference to the class pointer, which will be the receiver. 77 // Assumes that the method was introduced in the class that should be 78 // messaged (avoids pulling it out of the result type). 79 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 80 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 81 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 82 83 CallArgList Args; 84 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 85 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 86 87 // ObjCBoxedExpr supports boxing of structs and unions 88 // via [NSValue valueWithBytes:objCType:] 89 const QualType ValueType(SubExpr->getType().getCanonicalType()); 90 if (ValueType->isObjCBoxableRecordType()) { 91 // Emit CodeGen for first parameter 92 // and cast value to correct type 93 Address Temporary = CreateMemTemp(SubExpr->getType()); 94 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 95 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 96 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 97 98 // Create char array to store type encoding 99 std::string Str; 100 getContext().getObjCEncodingForType(ValueType, Str); 101 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 102 103 // Cast type encoding to correct type 104 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 105 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 106 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 107 108 Args.add(RValue::get(Cast), EncodingQT); 109 } else { 110 Args.add(EmitAnyExpr(SubExpr), ArgQT); 111 } 112 113 RValue result = Runtime.GenerateMessageSend( 114 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 115 Args, ClassDecl, BoxingMethod); 116 return Builder.CreateBitCast(result.getScalarVal(), 117 ConvertType(E->getType())); 118 } 119 120 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 121 const ObjCMethodDecl *MethodWithObjects) { 122 ASTContext &Context = CGM.getContext(); 123 const ObjCDictionaryLiteral *DLE = nullptr; 124 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 125 if (!ALE) 126 DLE = cast<ObjCDictionaryLiteral>(E); 127 128 // Optimize empty collections by referencing constants, when available. 129 uint64_t NumElements = 130 ALE ? ALE->getNumElements() : DLE->getNumElements(); 131 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 132 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 133 QualType IdTy(CGM.getContext().getObjCIdType()); 134 llvm::Constant *Constant = 135 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 136 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 137 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); 138 cast<llvm::LoadInst>(Ptr)->setMetadata( 139 CGM.getModule().getMDKindID("invariant.load"), 140 llvm::MDNode::get(getLLVMContext(), None)); 141 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 142 } 143 144 // Compute the type of the array we're initializing. 145 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 146 NumElements); 147 QualType ElementType = Context.getObjCIdType().withConst(); 148 QualType ElementArrayType 149 = Context.getConstantArrayType(ElementType, APNumElements, nullptr, 150 ArrayType::Normal, /*IndexTypeQuals=*/0); 151 152 // Allocate the temporary array(s). 153 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 154 Address Keys = Address::invalid(); 155 if (DLE) 156 Keys = CreateMemTemp(ElementArrayType, "keys"); 157 158 // In ARC, we may need to do extra work to keep all the keys and 159 // values alive until after the call. 160 SmallVector<llvm::Value *, 16> NeededObjects; 161 bool TrackNeededObjects = 162 (getLangOpts().ObjCAutoRefCount && 163 CGM.getCodeGenOpts().OptimizationLevel != 0); 164 165 // Perform the actual initialialization of the array(s). 166 for (uint64_t i = 0; i < NumElements; i++) { 167 if (ALE) { 168 // Emit the element and store it to the appropriate array slot. 169 const Expr *Rhs = ALE->getElement(i); 170 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 171 ElementType, AlignmentSource::Decl); 172 173 llvm::Value *value = EmitScalarExpr(Rhs); 174 EmitStoreThroughLValue(RValue::get(value), LV, true); 175 if (TrackNeededObjects) { 176 NeededObjects.push_back(value); 177 } 178 } else { 179 // Emit the key and store it to the appropriate array slot. 180 const Expr *Key = DLE->getKeyValueElement(i).Key; 181 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i), 182 ElementType, AlignmentSource::Decl); 183 llvm::Value *keyValue = EmitScalarExpr(Key); 184 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 185 186 // Emit the value and store it to the appropriate array slot. 187 const Expr *Value = DLE->getKeyValueElement(i).Value; 188 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 189 ElementType, AlignmentSource::Decl); 190 llvm::Value *valueValue = EmitScalarExpr(Value); 191 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 192 if (TrackNeededObjects) { 193 NeededObjects.push_back(keyValue); 194 NeededObjects.push_back(valueValue); 195 } 196 } 197 } 198 199 // Generate the argument list. 200 CallArgList Args; 201 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 202 const ParmVarDecl *argDecl = *PI++; 203 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 204 Args.add(RValue::get(Objects.getPointer()), ArgQT); 205 if (DLE) { 206 argDecl = *PI++; 207 ArgQT = argDecl->getType().getUnqualifiedType(); 208 Args.add(RValue::get(Keys.getPointer()), ArgQT); 209 } 210 argDecl = *PI; 211 ArgQT = argDecl->getType().getUnqualifiedType(); 212 llvm::Value *Count = 213 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 214 Args.add(RValue::get(Count), ArgQT); 215 216 // Generate a reference to the class pointer, which will be the receiver. 217 Selector Sel = MethodWithObjects->getSelector(); 218 QualType ResultType = E->getType(); 219 const ObjCObjectPointerType *InterfacePointerType 220 = ResultType->getAsObjCInterfacePointerType(); 221 ObjCInterfaceDecl *Class 222 = InterfacePointerType->getObjectType()->getInterface(); 223 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 224 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 225 226 // Generate the message send. 227 RValue result = Runtime.GenerateMessageSend( 228 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 229 Receiver, Args, Class, MethodWithObjects); 230 231 // The above message send needs these objects, but in ARC they are 232 // passed in a buffer that is essentially __unsafe_unretained. 233 // Therefore we must prevent the optimizer from releasing them until 234 // after the call. 235 if (TrackNeededObjects) { 236 EmitARCIntrinsicUse(NeededObjects); 237 } 238 239 return Builder.CreateBitCast(result.getScalarVal(), 240 ConvertType(E->getType())); 241 } 242 243 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 244 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 245 } 246 247 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 248 const ObjCDictionaryLiteral *E) { 249 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 250 } 251 252 /// Emit a selector. 253 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 254 // Untyped selector. 255 // Note that this implementation allows for non-constant strings to be passed 256 // as arguments to @selector(). Currently, the only thing preventing this 257 // behaviour is the type checking in the front end. 258 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 259 } 260 261 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 262 // FIXME: This should pass the Decl not the name. 263 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 264 } 265 266 /// Adjust the type of an Objective-C object that doesn't match up due 267 /// to type erasure at various points, e.g., related result types or the use 268 /// of parameterized classes. 269 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 270 RValue Result) { 271 if (!ExpT->isObjCRetainableType()) 272 return Result; 273 274 // If the converted types are the same, we're done. 275 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 276 if (ExpLLVMTy == Result.getScalarVal()->getType()) 277 return Result; 278 279 // We have applied a substitution. Cast the rvalue appropriately. 280 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 281 ExpLLVMTy)); 282 } 283 284 /// Decide whether to extend the lifetime of the receiver of a 285 /// returns-inner-pointer message. 286 static bool 287 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 288 switch (message->getReceiverKind()) { 289 290 // For a normal instance message, we should extend unless the 291 // receiver is loaded from a variable with precise lifetime. 292 case ObjCMessageExpr::Instance: { 293 const Expr *receiver = message->getInstanceReceiver(); 294 295 // Look through OVEs. 296 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 297 if (opaque->getSourceExpr()) 298 receiver = opaque->getSourceExpr()->IgnoreParens(); 299 } 300 301 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 302 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 303 receiver = ice->getSubExpr()->IgnoreParens(); 304 305 // Look through OVEs. 306 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 307 if (opaque->getSourceExpr()) 308 receiver = opaque->getSourceExpr()->IgnoreParens(); 309 } 310 311 // Only __strong variables. 312 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 313 return true; 314 315 // All ivars and fields have precise lifetime. 316 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 317 return false; 318 319 // Otherwise, check for variables. 320 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 321 if (!declRef) return true; 322 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 323 if (!var) return true; 324 325 // All variables have precise lifetime except local variables with 326 // automatic storage duration that aren't specially marked. 327 return (var->hasLocalStorage() && 328 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 329 } 330 331 case ObjCMessageExpr::Class: 332 case ObjCMessageExpr::SuperClass: 333 // It's never necessary for class objects. 334 return false; 335 336 case ObjCMessageExpr::SuperInstance: 337 // We generally assume that 'self' lives throughout a method call. 338 return false; 339 } 340 341 llvm_unreachable("invalid receiver kind"); 342 } 343 344 /// Given an expression of ObjC pointer type, check whether it was 345 /// immediately loaded from an ARC __weak l-value. 346 static const Expr *findWeakLValue(const Expr *E) { 347 assert(E->getType()->isObjCRetainableType()); 348 E = E->IgnoreParens(); 349 if (auto CE = dyn_cast<CastExpr>(E)) { 350 if (CE->getCastKind() == CK_LValueToRValue) { 351 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 352 return CE->getSubExpr(); 353 } 354 } 355 356 return nullptr; 357 } 358 359 /// The ObjC runtime may provide entrypoints that are likely to be faster 360 /// than an ordinary message send of the appropriate selector. 361 /// 362 /// The entrypoints are guaranteed to be equivalent to just sending the 363 /// corresponding message. If the entrypoint is implemented naively as just a 364 /// message send, using it is a trade-off: it sacrifices a few cycles of 365 /// overhead to save a small amount of code. However, it's possible for 366 /// runtimes to detect and special-case classes that use "standard" 367 /// behavior; if that's dynamically a large proportion of all objects, using 368 /// the entrypoint will also be faster than using a message send. 369 /// 370 /// If the runtime does support a required entrypoint, then this method will 371 /// generate a call and return the resulting value. Otherwise it will return 372 /// None and the caller can generate a msgSend instead. 373 static Optional<llvm::Value *> 374 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType, 375 llvm::Value *Receiver, 376 const CallArgList& Args, Selector Sel, 377 const ObjCMethodDecl *method, 378 bool isClassMessage) { 379 auto &CGM = CGF.CGM; 380 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) 381 return None; 382 383 auto &Runtime = CGM.getLangOpts().ObjCRuntime; 384 switch (Sel.getMethodFamily()) { 385 case OMF_alloc: 386 if (isClassMessage && 387 Runtime.shouldUseRuntimeFunctionsForAlloc() && 388 ResultType->isObjCObjectPointerType()) { 389 // [Foo alloc] -> objc_alloc(Foo) or 390 // [self alloc] -> objc_alloc(self) 391 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc") 392 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType)); 393 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or 394 // [self allocWithZone:nil] -> objc_allocWithZone(self) 395 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && 396 Args.size() == 1 && Args.front().getType()->isPointerType() && 397 Sel.getNameForSlot(0) == "allocWithZone") { 398 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); 399 if (isa<llvm::ConstantPointerNull>(arg)) 400 return CGF.EmitObjCAllocWithZone(Receiver, 401 CGF.ConvertType(ResultType)); 402 return None; 403 } 404 } 405 break; 406 407 case OMF_autorelease: 408 if (ResultType->isObjCObjectPointerType() && 409 CGM.getLangOpts().getGC() == LangOptions::NonGC && 410 Runtime.shouldUseARCFunctionsForRetainRelease()) 411 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType)); 412 break; 413 414 case OMF_retain: 415 if (ResultType->isObjCObjectPointerType() && 416 CGM.getLangOpts().getGC() == LangOptions::NonGC && 417 Runtime.shouldUseARCFunctionsForRetainRelease()) 418 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType)); 419 break; 420 421 case OMF_release: 422 if (ResultType->isVoidType() && 423 CGM.getLangOpts().getGC() == LangOptions::NonGC && 424 Runtime.shouldUseARCFunctionsForRetainRelease()) { 425 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime); 426 return nullptr; 427 } 428 break; 429 430 default: 431 break; 432 } 433 return None; 434 } 435 436 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend( 437 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, 438 Selector Sel, llvm::Value *Receiver, const CallArgList &Args, 439 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method, 440 bool isClassMessage) { 441 if (Optional<llvm::Value *> SpecializedResult = 442 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args, 443 Sel, Method, isClassMessage)) { 444 return RValue::get(SpecializedResult.getValue()); 445 } 446 return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID, 447 Method); 448 } 449 450 static void AppendFirstImpliedRuntimeProtocols( 451 const ObjCProtocolDecl *PD, 452 llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) { 453 if (!PD->isNonRuntimeProtocol()) { 454 const auto *Can = PD->getCanonicalDecl(); 455 PDs.insert(Can); 456 return; 457 } 458 459 for (const auto *ParentPD : PD->protocols()) 460 AppendFirstImpliedRuntimeProtocols(ParentPD, PDs); 461 } 462 463 std::vector<const ObjCProtocolDecl *> 464 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin, 465 ObjCProtocolDecl::protocol_iterator end) { 466 std::vector<const ObjCProtocolDecl *> RuntimePds; 467 llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs; 468 469 for (; begin != end; ++begin) { 470 const auto *It = *begin; 471 const auto *Can = It->getCanonicalDecl(); 472 if (Can->isNonRuntimeProtocol()) 473 NonRuntimePDs.insert(Can); 474 else 475 RuntimePds.push_back(Can); 476 } 477 478 // If there are no non-runtime protocols then we can just stop now. 479 if (NonRuntimePDs.empty()) 480 return RuntimePds; 481 482 // Else we have to search through the non-runtime protocol's inheritancy 483 // hierarchy DAG stopping whenever a branch either finds a runtime protocol or 484 // a non-runtime protocol without any parents. These are the "first-implied" 485 // protocols from a non-runtime protocol. 486 llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos; 487 for (const auto *PD : NonRuntimePDs) 488 AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos); 489 490 // Walk the Runtime list to get all protocols implied via the inclusion of 491 // this protocol, e.g. all protocols it inherits from including itself. 492 llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols; 493 for (const auto *PD : RuntimePds) { 494 const auto *Can = PD->getCanonicalDecl(); 495 AllImpliedProtocols.insert(Can); 496 Can->getImpliedProtocols(AllImpliedProtocols); 497 } 498 499 // Similar to above, walk the list of first-implied protocols to find the set 500 // all the protocols implied excluding the listed protocols themselves since 501 // they are not yet a part of the `RuntimePds` list. 502 for (const auto *PD : FirstImpliedProtos) { 503 PD->getImpliedProtocols(AllImpliedProtocols); 504 } 505 506 // From the first-implied list we have to finish building the final protocol 507 // list. If a protocol in the first-implied list was already implied via some 508 // inheritance path through some other protocols then it would be redundant to 509 // add it here and so we skip over it. 510 for (const auto *PD : FirstImpliedProtos) { 511 if (!AllImpliedProtocols.contains(PD)) { 512 RuntimePds.push_back(PD); 513 } 514 } 515 516 return RuntimePds; 517 } 518 519 /// Instead of '[[MyClass alloc] init]', try to generate 520 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the 521 /// caller side, as well as the optimized objc_alloc. 522 static Optional<llvm::Value *> 523 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) { 524 auto &Runtime = CGF.getLangOpts().ObjCRuntime; 525 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit()) 526 return None; 527 528 // Match the exact pattern '[[MyClass alloc] init]'. 529 Selector Sel = OME->getSelector(); 530 if (OME->getReceiverKind() != ObjCMessageExpr::Instance || 531 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() || 532 Sel.getNameForSlot(0) != "init") 533 return None; 534 535 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' 536 // with 'cls' a Class. 537 auto *SubOME = 538 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts()); 539 if (!SubOME) 540 return None; 541 Selector SubSel = SubOME->getSelector(); 542 543 if (!SubOME->getType()->isObjCObjectPointerType() || 544 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc") 545 return None; 546 547 llvm::Value *Receiver = nullptr; 548 switch (SubOME->getReceiverKind()) { 549 case ObjCMessageExpr::Instance: 550 if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType()) 551 return None; 552 Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver()); 553 break; 554 555 case ObjCMessageExpr::Class: { 556 QualType ReceiverType = SubOME->getClassReceiver(); 557 const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>(); 558 const ObjCInterfaceDecl *ID = ObjTy->getInterface(); 559 assert(ID && "null interface should be impossible here"); 560 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID); 561 break; 562 } 563 case ObjCMessageExpr::SuperInstance: 564 case ObjCMessageExpr::SuperClass: 565 return None; 566 } 567 568 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType())); 569 } 570 571 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 572 ReturnValueSlot Return) { 573 // Only the lookup mechanism and first two arguments of the method 574 // implementation vary between runtimes. We can get the receiver and 575 // arguments in generic code. 576 577 bool isDelegateInit = E->isDelegateInitCall(); 578 579 const ObjCMethodDecl *method = E->getMethodDecl(); 580 581 // If the method is -retain, and the receiver's being loaded from 582 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 583 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 584 method->getMethodFamily() == OMF_retain) { 585 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 586 LValue lvalue = EmitLValue(lvalueExpr); 587 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this)); 588 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 589 } 590 } 591 592 if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E)) 593 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val)); 594 595 // We don't retain the receiver in delegate init calls, and this is 596 // safe because the receiver value is always loaded from 'self', 597 // which we zero out. We don't want to Block_copy block receivers, 598 // though. 599 bool retainSelf = 600 (!isDelegateInit && 601 CGM.getLangOpts().ObjCAutoRefCount && 602 method && 603 method->hasAttr<NSConsumesSelfAttr>()); 604 605 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 606 bool isSuperMessage = false; 607 bool isClassMessage = false; 608 ObjCInterfaceDecl *OID = nullptr; 609 // Find the receiver 610 QualType ReceiverType; 611 llvm::Value *Receiver = nullptr; 612 switch (E->getReceiverKind()) { 613 case ObjCMessageExpr::Instance: 614 ReceiverType = E->getInstanceReceiver()->getType(); 615 isClassMessage = ReceiverType->isObjCClassType(); 616 if (retainSelf) { 617 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 618 E->getInstanceReceiver()); 619 Receiver = ter.getPointer(); 620 if (ter.getInt()) retainSelf = false; 621 } else 622 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 623 break; 624 625 case ObjCMessageExpr::Class: { 626 ReceiverType = E->getClassReceiver(); 627 OID = ReceiverType->castAs<ObjCObjectType>()->getInterface(); 628 assert(OID && "Invalid Objective-C class message send"); 629 Receiver = Runtime.GetClass(*this, OID); 630 isClassMessage = true; 631 break; 632 } 633 634 case ObjCMessageExpr::SuperInstance: 635 ReceiverType = E->getSuperType(); 636 Receiver = LoadObjCSelf(); 637 isSuperMessage = true; 638 break; 639 640 case ObjCMessageExpr::SuperClass: 641 ReceiverType = E->getSuperType(); 642 Receiver = LoadObjCSelf(); 643 isSuperMessage = true; 644 isClassMessage = true; 645 break; 646 } 647 648 if (retainSelf) 649 Receiver = EmitARCRetainNonBlock(Receiver); 650 651 // In ARC, we sometimes want to "extend the lifetime" 652 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 653 // messages. 654 if (getLangOpts().ObjCAutoRefCount && method && 655 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 656 shouldExtendReceiverForInnerPointerMessage(E)) 657 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 658 659 QualType ResultType = method ? method->getReturnType() : E->getType(); 660 661 CallArgList Args; 662 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 663 664 // For delegate init calls in ARC, do an unsafe store of null into 665 // self. This represents the call taking direct ownership of that 666 // value. We have to do this after emitting the other call 667 // arguments because they might also reference self, but we don't 668 // have to worry about any of them modifying self because that would 669 // be an undefined read and write of an object in unordered 670 // expressions. 671 if (isDelegateInit) { 672 assert(getLangOpts().ObjCAutoRefCount && 673 "delegate init calls should only be marked in ARC"); 674 675 // Do an unsafe store of null into self. 676 Address selfAddr = 677 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 678 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 679 } 680 681 RValue result; 682 if (isSuperMessage) { 683 // super is only valid in an Objective-C method 684 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 685 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 686 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 687 E->getSelector(), 688 OMD->getClassInterface(), 689 isCategoryImpl, 690 Receiver, 691 isClassMessage, 692 Args, 693 method); 694 } else { 695 // Call runtime methods directly if we can. 696 result = Runtime.GeneratePossiblySpecializedMessageSend( 697 *this, Return, ResultType, E->getSelector(), Receiver, Args, OID, 698 method, isClassMessage); 699 } 700 701 // For delegate init calls in ARC, implicitly store the result of 702 // the call back into self. This takes ownership of the value. 703 if (isDelegateInit) { 704 Address selfAddr = 705 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 706 llvm::Value *newSelf = result.getScalarVal(); 707 708 // The delegate return type isn't necessarily a matching type; in 709 // fact, it's quite likely to be 'id'. 710 llvm::Type *selfTy = selfAddr.getElementType(); 711 newSelf = Builder.CreateBitCast(newSelf, selfTy); 712 713 Builder.CreateStore(newSelf, selfAddr); 714 } 715 716 return AdjustObjCObjectType(*this, E->getType(), result); 717 } 718 719 namespace { 720 struct FinishARCDealloc final : EHScopeStack::Cleanup { 721 void Emit(CodeGenFunction &CGF, Flags flags) override { 722 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 723 724 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 725 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 726 if (!iface->getSuperClass()) return; 727 728 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 729 730 // Call [super dealloc] if we have a superclass. 731 llvm::Value *self = CGF.LoadObjCSelf(); 732 733 CallArgList args; 734 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 735 CGF.getContext().VoidTy, 736 method->getSelector(), 737 iface, 738 isCategory, 739 self, 740 /*is class msg*/ false, 741 args, 742 method); 743 } 744 }; 745 } 746 747 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 748 /// the LLVM function and sets the other context used by 749 /// CodeGenFunction. 750 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 751 const ObjCContainerDecl *CD) { 752 SourceLocation StartLoc = OMD->getBeginLoc(); 753 FunctionArgList args; 754 // Check if we should generate debug info for this method. 755 if (OMD->hasAttr<NoDebugAttr>()) 756 DebugInfo = nullptr; // disable debug info indefinitely for this function 757 758 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 759 760 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 761 if (OMD->isDirectMethod()) { 762 Fn->setVisibility(llvm::Function::HiddenVisibility); 763 CGM.SetLLVMFunctionAttributes(OMD, FI, Fn); 764 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn); 765 } else { 766 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 767 } 768 769 args.push_back(OMD->getSelfDecl()); 770 args.push_back(OMD->getCmdDecl()); 771 772 args.append(OMD->param_begin(), OMD->param_end()); 773 774 CurGD = OMD; 775 CurEHLocation = OMD->getEndLoc(); 776 777 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 778 OMD->getLocation(), StartLoc); 779 780 if (OMD->isDirectMethod()) { 781 // This function is a direct call, it has to implement a nil check 782 // on entry. 783 // 784 // TODO: possibly have several entry points to elide the check 785 CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD); 786 } 787 788 // In ARC, certain methods get an extra cleanup. 789 if (CGM.getLangOpts().ObjCAutoRefCount && 790 OMD->isInstanceMethod() && 791 OMD->getSelector().isUnarySelector()) { 792 const IdentifierInfo *ident = 793 OMD->getSelector().getIdentifierInfoForSlot(0); 794 if (ident->isStr("dealloc")) 795 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 796 } 797 } 798 799 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 800 LValue lvalue, QualType type); 801 802 /// Generate an Objective-C method. An Objective-C method is a C function with 803 /// its pointer, name, and types registered in the class structure. 804 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 805 StartObjCMethod(OMD, OMD->getClassInterface()); 806 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 807 assert(isa<CompoundStmt>(OMD->getBody())); 808 incrementProfileCounter(OMD->getBody()); 809 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 810 FinishFunction(OMD->getBodyRBrace()); 811 } 812 813 /// emitStructGetterCall - Call the runtime function to load a property 814 /// into the return value slot. 815 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 816 bool isAtomic, bool hasStrong) { 817 ASTContext &Context = CGF.getContext(); 818 819 Address src = 820 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 821 .getAddress(CGF); 822 823 // objc_copyStruct (ReturnValue, &structIvar, 824 // sizeof (Type of Ivar), isAtomic, false); 825 CallArgList args; 826 827 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 828 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 829 830 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 831 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 832 833 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 834 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 835 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 836 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 837 838 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 839 CGCallee callee = CGCallee::forDirect(fn); 840 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 841 callee, ReturnValueSlot(), args); 842 } 843 844 /// Determine whether the given architecture supports unaligned atomic 845 /// accesses. They don't have to be fast, just faster than a function 846 /// call and a mutex. 847 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 848 // FIXME: Allow unaligned atomic load/store on x86. (It is not 849 // currently supported by the backend.) 850 return 0; 851 } 852 853 /// Return the maximum size that permits atomic accesses for the given 854 /// architecture. 855 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 856 llvm::Triple::ArchType arch) { 857 // ARM has 8-byte atomic accesses, but it's not clear whether we 858 // want to rely on them here. 859 860 // In the default case, just assume that any size up to a pointer is 861 // fine given adequate alignment. 862 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 863 } 864 865 namespace { 866 class PropertyImplStrategy { 867 public: 868 enum StrategyKind { 869 /// The 'native' strategy is to use the architecture's provided 870 /// reads and writes. 871 Native, 872 873 /// Use objc_setProperty and objc_getProperty. 874 GetSetProperty, 875 876 /// Use objc_setProperty for the setter, but use expression 877 /// evaluation for the getter. 878 SetPropertyAndExpressionGet, 879 880 /// Use objc_copyStruct. 881 CopyStruct, 882 883 /// The 'expression' strategy is to emit normal assignment or 884 /// lvalue-to-rvalue expressions. 885 Expression 886 }; 887 888 StrategyKind getKind() const { return StrategyKind(Kind); } 889 890 bool hasStrongMember() const { return HasStrong; } 891 bool isAtomic() const { return IsAtomic; } 892 bool isCopy() const { return IsCopy; } 893 894 CharUnits getIvarSize() const { return IvarSize; } 895 CharUnits getIvarAlignment() const { return IvarAlignment; } 896 897 PropertyImplStrategy(CodeGenModule &CGM, 898 const ObjCPropertyImplDecl *propImpl); 899 900 private: 901 unsigned Kind : 8; 902 unsigned IsAtomic : 1; 903 unsigned IsCopy : 1; 904 unsigned HasStrong : 1; 905 906 CharUnits IvarSize; 907 CharUnits IvarAlignment; 908 }; 909 } 910 911 /// Pick an implementation strategy for the given property synthesis. 912 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 913 const ObjCPropertyImplDecl *propImpl) { 914 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 915 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 916 917 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 918 IsAtomic = prop->isAtomic(); 919 HasStrong = false; // doesn't matter here. 920 921 // Evaluate the ivar's size and alignment. 922 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 923 QualType ivarType = ivar->getType(); 924 auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType); 925 IvarSize = TInfo.Width; 926 IvarAlignment = TInfo.Align; 927 928 // If we have a copy property, we always have to use getProperty/setProperty. 929 // TODO: we could actually use setProperty and an expression for non-atomics. 930 if (IsCopy) { 931 Kind = GetSetProperty; 932 return; 933 } 934 935 // Handle retain. 936 if (setterKind == ObjCPropertyDecl::Retain) { 937 // In GC-only, there's nothing special that needs to be done. 938 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 939 // fallthrough 940 941 // In ARC, if the property is non-atomic, use expression emission, 942 // which translates to objc_storeStrong. This isn't required, but 943 // it's slightly nicer. 944 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 945 // Using standard expression emission for the setter is only 946 // acceptable if the ivar is __strong, which won't be true if 947 // the property is annotated with __attribute__((NSObject)). 948 // TODO: falling all the way back to objc_setProperty here is 949 // just laziness, though; we could still use objc_storeStrong 950 // if we hacked it right. 951 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 952 Kind = Expression; 953 else 954 Kind = SetPropertyAndExpressionGet; 955 return; 956 957 // Otherwise, we need to at least use setProperty. However, if 958 // the property isn't atomic, we can use normal expression 959 // emission for the getter. 960 } else if (!IsAtomic) { 961 Kind = SetPropertyAndExpressionGet; 962 return; 963 964 // Otherwise, we have to use both setProperty and getProperty. 965 } else { 966 Kind = GetSetProperty; 967 return; 968 } 969 } 970 971 // If we're not atomic, just use expression accesses. 972 if (!IsAtomic) { 973 Kind = Expression; 974 return; 975 } 976 977 // Properties on bitfield ivars need to be emitted using expression 978 // accesses even if they're nominally atomic. 979 if (ivar->isBitField()) { 980 Kind = Expression; 981 return; 982 } 983 984 // GC-qualified or ARC-qualified ivars need to be emitted as 985 // expressions. This actually works out to being atomic anyway, 986 // except for ARC __strong, but that should trigger the above code. 987 if (ivarType.hasNonTrivialObjCLifetime() || 988 (CGM.getLangOpts().getGC() && 989 CGM.getContext().getObjCGCAttrKind(ivarType))) { 990 Kind = Expression; 991 return; 992 } 993 994 // Compute whether the ivar has strong members. 995 if (CGM.getLangOpts().getGC()) 996 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 997 HasStrong = recordType->getDecl()->hasObjectMember(); 998 999 // We can never access structs with object members with a native 1000 // access, because we need to use write barriers. This is what 1001 // objc_copyStruct is for. 1002 if (HasStrong) { 1003 Kind = CopyStruct; 1004 return; 1005 } 1006 1007 // Otherwise, this is target-dependent and based on the size and 1008 // alignment of the ivar. 1009 1010 // If the size of the ivar is not a power of two, give up. We don't 1011 // want to get into the business of doing compare-and-swaps. 1012 if (!IvarSize.isPowerOfTwo()) { 1013 Kind = CopyStruct; 1014 return; 1015 } 1016 1017 llvm::Triple::ArchType arch = 1018 CGM.getTarget().getTriple().getArch(); 1019 1020 // Most architectures require memory to fit within a single cache 1021 // line, so the alignment has to be at least the size of the access. 1022 // Otherwise we have to grab a lock. 1023 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 1024 Kind = CopyStruct; 1025 return; 1026 } 1027 1028 // If the ivar's size exceeds the architecture's maximum atomic 1029 // access size, we have to use CopyStruct. 1030 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 1031 Kind = CopyStruct; 1032 return; 1033 } 1034 1035 // Otherwise, we can use native loads and stores. 1036 Kind = Native; 1037 } 1038 1039 /// Generate an Objective-C property getter function. 1040 /// 1041 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1042 /// is illegal within a category. 1043 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 1044 const ObjCPropertyImplDecl *PID) { 1045 llvm::Constant *AtomicHelperFn = 1046 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 1047 ObjCMethodDecl *OMD = PID->getGetterMethodDecl(); 1048 assert(OMD && "Invalid call to generate getter (empty method)"); 1049 StartObjCMethod(OMD, IMP->getClassInterface()); 1050 1051 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 1052 1053 FinishFunction(OMD->getEndLoc()); 1054 } 1055 1056 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 1057 const Expr *getter = propImpl->getGetterCXXConstructor(); 1058 if (!getter) return true; 1059 1060 // Sema only makes only of these when the ivar has a C++ class type, 1061 // so the form is pretty constrained. 1062 1063 // If the property has a reference type, we might just be binding a 1064 // reference, in which case the result will be a gl-value. We should 1065 // treat this as a non-trivial operation. 1066 if (getter->isGLValue()) 1067 return false; 1068 1069 // If we selected a trivial copy-constructor, we're okay. 1070 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 1071 return (construct->getConstructor()->isTrivial()); 1072 1073 // The constructor might require cleanups (in which case it's never 1074 // trivial). 1075 assert(isa<ExprWithCleanups>(getter)); 1076 return false; 1077 } 1078 1079 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 1080 /// copy the ivar into the resturn slot. 1081 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 1082 llvm::Value *returnAddr, 1083 ObjCIvarDecl *ivar, 1084 llvm::Constant *AtomicHelperFn) { 1085 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 1086 // AtomicHelperFn); 1087 CallArgList args; 1088 1089 // The 1st argument is the return Slot. 1090 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 1091 1092 // The 2nd argument is the address of the ivar. 1093 llvm::Value *ivarAddr = 1094 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1095 .getPointer(CGF); 1096 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1097 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1098 1099 // Third argument is the helper function. 1100 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1101 1102 llvm::FunctionCallee copyCppAtomicObjectFn = 1103 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 1104 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 1105 CGF.EmitCall( 1106 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1107 callee, ReturnValueSlot(), args); 1108 } 1109 1110 void 1111 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1112 const ObjCPropertyImplDecl *propImpl, 1113 const ObjCMethodDecl *GetterMethodDecl, 1114 llvm::Constant *AtomicHelperFn) { 1115 // If there's a non-trivial 'get' expression, we just have to emit that. 1116 if (!hasTrivialGetExpr(propImpl)) { 1117 if (!AtomicHelperFn) { 1118 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(), 1119 propImpl->getGetterCXXConstructor(), 1120 /* NRVOCandidate=*/nullptr); 1121 EmitReturnStmt(*ret); 1122 } 1123 else { 1124 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1125 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 1126 ivar, AtomicHelperFn); 1127 } 1128 return; 1129 } 1130 1131 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1132 QualType propType = prop->getType(); 1133 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl(); 1134 1135 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1136 1137 // Pick an implementation strategy. 1138 PropertyImplStrategy strategy(CGM, propImpl); 1139 switch (strategy.getKind()) { 1140 case PropertyImplStrategy::Native: { 1141 // We don't need to do anything for a zero-size struct. 1142 if (strategy.getIvarSize().isZero()) 1143 return; 1144 1145 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1146 1147 // Currently, all atomic accesses have to be through integer 1148 // types, so there's no point in trying to pick a prettier type. 1149 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 1150 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 1151 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1152 1153 // Perform an atomic load. This does not impose ordering constraints. 1154 Address ivarAddr = LV.getAddress(*this); 1155 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1156 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 1157 load->setAtomic(llvm::AtomicOrdering::Unordered); 1158 1159 // Store that value into the return address. Doing this with a 1160 // bitcast is likely to produce some pretty ugly IR, but it's not 1161 // the *most* terrible thing in the world. 1162 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 1163 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 1164 llvm::Value *ivarVal = load; 1165 if (ivarSize > retTySize) { 1166 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 1167 ivarVal = Builder.CreateTrunc(load, newTy); 1168 bitcastType = newTy->getPointerTo(); 1169 } 1170 Builder.CreateStore(ivarVal, 1171 Builder.CreateBitCast(ReturnValue, bitcastType)); 1172 1173 // Make sure we don't do an autorelease. 1174 AutoreleaseResult = false; 1175 return; 1176 } 1177 1178 case PropertyImplStrategy::GetSetProperty: { 1179 llvm::FunctionCallee getPropertyFn = 1180 CGM.getObjCRuntime().GetPropertyGetFunction(); 1181 if (!getPropertyFn) { 1182 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 1183 return; 1184 } 1185 CGCallee callee = CGCallee::forDirect(getPropertyFn); 1186 1187 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 1188 // FIXME: Can't this be simpler? This might even be worse than the 1189 // corresponding gcc code. 1190 llvm::Value *cmd = 1191 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 1192 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1193 llvm::Value *ivarOffset = 1194 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1195 1196 CallArgList args; 1197 args.add(RValue::get(self), getContext().getObjCIdType()); 1198 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1199 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1200 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1201 getContext().BoolTy); 1202 1203 // FIXME: We shouldn't need to get the function info here, the 1204 // runtime already should have computed it to build the function. 1205 llvm::CallBase *CallInstruction; 1206 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall( 1207 getContext().getObjCIdType(), args), 1208 callee, ReturnValueSlot(), args, &CallInstruction); 1209 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 1210 call->setTailCall(); 1211 1212 // We need to fix the type here. Ivars with copy & retain are 1213 // always objects so we don't need to worry about complex or 1214 // aggregates. 1215 RV = RValue::get(Builder.CreateBitCast( 1216 RV.getScalarVal(), 1217 getTypes().ConvertType(getterMethod->getReturnType()))); 1218 1219 EmitReturnOfRValue(RV, propType); 1220 1221 // objc_getProperty does an autorelease, so we should suppress ours. 1222 AutoreleaseResult = false; 1223 1224 return; 1225 } 1226 1227 case PropertyImplStrategy::CopyStruct: 1228 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 1229 strategy.hasStrongMember()); 1230 return; 1231 1232 case PropertyImplStrategy::Expression: 1233 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1234 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1235 1236 QualType ivarType = ivar->getType(); 1237 switch (getEvaluationKind(ivarType)) { 1238 case TEK_Complex: { 1239 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1240 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1241 /*init*/ true); 1242 return; 1243 } 1244 case TEK_Aggregate: { 1245 // The return value slot is guaranteed to not be aliased, but 1246 // that's not necessarily the same as "on the stack", so 1247 // we still potentially need objc_memmove_collectable. 1248 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1249 /* Src= */ LV, ivarType, getOverlapForReturnValue()); 1250 return; 1251 } 1252 case TEK_Scalar: { 1253 llvm::Value *value; 1254 if (propType->isReferenceType()) { 1255 value = LV.getAddress(*this).getPointer(); 1256 } else { 1257 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1258 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1259 if (getLangOpts().ObjCAutoRefCount) { 1260 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1261 } else { 1262 value = EmitARCLoadWeak(LV.getAddress(*this)); 1263 } 1264 1265 // Otherwise we want to do a simple load, suppressing the 1266 // final autorelease. 1267 } else { 1268 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1269 AutoreleaseResult = false; 1270 } 1271 1272 value = Builder.CreateBitCast( 1273 value, ConvertType(GetterMethodDecl->getReturnType())); 1274 } 1275 1276 EmitReturnOfRValue(RValue::get(value), propType); 1277 return; 1278 } 1279 } 1280 llvm_unreachable("bad evaluation kind"); 1281 } 1282 1283 } 1284 llvm_unreachable("bad @property implementation strategy!"); 1285 } 1286 1287 /// emitStructSetterCall - Call the runtime function to store the value 1288 /// from the first formal parameter into the given ivar. 1289 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1290 ObjCIvarDecl *ivar) { 1291 // objc_copyStruct (&structIvar, &Arg, 1292 // sizeof (struct something), true, false); 1293 CallArgList args; 1294 1295 // The first argument is the address of the ivar. 1296 llvm::Value *ivarAddr = 1297 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1298 .getPointer(CGF); 1299 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1300 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1301 1302 // The second argument is the address of the parameter variable. 1303 ParmVarDecl *argVar = *OMD->param_begin(); 1304 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1305 argVar->getType().getNonReferenceType(), VK_LValue, 1306 SourceLocation()); 1307 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1308 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1309 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1310 1311 // The third argument is the sizeof the type. 1312 llvm::Value *size = 1313 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1314 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1315 1316 // The fourth argument is the 'isAtomic' flag. 1317 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1318 1319 // The fifth argument is the 'hasStrong' flag. 1320 // FIXME: should this really always be false? 1321 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1322 1323 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1324 CGCallee callee = CGCallee::forDirect(fn); 1325 CGF.EmitCall( 1326 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1327 callee, ReturnValueSlot(), args); 1328 } 1329 1330 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1331 /// the value from the first formal parameter into the given ivar, using 1332 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1333 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1334 ObjCMethodDecl *OMD, 1335 ObjCIvarDecl *ivar, 1336 llvm::Constant *AtomicHelperFn) { 1337 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1338 // AtomicHelperFn); 1339 CallArgList args; 1340 1341 // The first argument is the address of the ivar. 1342 llvm::Value *ivarAddr = 1343 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1344 .getPointer(CGF); 1345 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1346 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1347 1348 // The second argument is the address of the parameter variable. 1349 ParmVarDecl *argVar = *OMD->param_begin(); 1350 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1351 argVar->getType().getNonReferenceType(), VK_LValue, 1352 SourceLocation()); 1353 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1354 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1355 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1356 1357 // Third argument is the helper function. 1358 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1359 1360 llvm::FunctionCallee fn = 1361 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1362 CGCallee callee = CGCallee::forDirect(fn); 1363 CGF.EmitCall( 1364 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1365 callee, ReturnValueSlot(), args); 1366 } 1367 1368 1369 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1370 Expr *setter = PID->getSetterCXXAssignment(); 1371 if (!setter) return true; 1372 1373 // Sema only makes only of these when the ivar has a C++ class type, 1374 // so the form is pretty constrained. 1375 1376 // An operator call is trivial if the function it calls is trivial. 1377 // This also implies that there's nothing non-trivial going on with 1378 // the arguments, because operator= can only be trivial if it's a 1379 // synthesized assignment operator and therefore both parameters are 1380 // references. 1381 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1382 if (const FunctionDecl *callee 1383 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1384 if (callee->isTrivial()) 1385 return true; 1386 return false; 1387 } 1388 1389 assert(isa<ExprWithCleanups>(setter)); 1390 return false; 1391 } 1392 1393 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1394 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1395 return false; 1396 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1397 } 1398 1399 void 1400 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1401 const ObjCPropertyImplDecl *propImpl, 1402 llvm::Constant *AtomicHelperFn) { 1403 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1404 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl(); 1405 1406 // Just use the setter expression if Sema gave us one and it's 1407 // non-trivial. 1408 if (!hasTrivialSetExpr(propImpl)) { 1409 if (!AtomicHelperFn) 1410 // If non-atomic, assignment is called directly. 1411 EmitStmt(propImpl->getSetterCXXAssignment()); 1412 else 1413 // If atomic, assignment is called via a locking api. 1414 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1415 AtomicHelperFn); 1416 return; 1417 } 1418 1419 PropertyImplStrategy strategy(CGM, propImpl); 1420 switch (strategy.getKind()) { 1421 case PropertyImplStrategy::Native: { 1422 // We don't need to do anything for a zero-size struct. 1423 if (strategy.getIvarSize().isZero()) 1424 return; 1425 1426 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1427 1428 LValue ivarLValue = 1429 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1430 Address ivarAddr = ivarLValue.getAddress(*this); 1431 1432 // Currently, all atomic accesses have to be through integer 1433 // types, so there's no point in trying to pick a prettier type. 1434 llvm::Type *bitcastType = 1435 llvm::Type::getIntNTy(getLLVMContext(), 1436 getContext().toBits(strategy.getIvarSize())); 1437 1438 // Cast both arguments to the chosen operation type. 1439 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1440 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1441 1442 // This bitcast load is likely to cause some nasty IR. 1443 llvm::Value *load = Builder.CreateLoad(argAddr); 1444 1445 // Perform an atomic store. There are no memory ordering requirements. 1446 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1447 store->setAtomic(llvm::AtomicOrdering::Unordered); 1448 return; 1449 } 1450 1451 case PropertyImplStrategy::GetSetProperty: 1452 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1453 1454 llvm::FunctionCallee setOptimizedPropertyFn = nullptr; 1455 llvm::FunctionCallee setPropertyFn = nullptr; 1456 if (UseOptimizedSetter(CGM)) { 1457 // 10.8 and iOS 6.0 code and GC is off 1458 setOptimizedPropertyFn = 1459 CGM.getObjCRuntime().GetOptimizedPropertySetFunction( 1460 strategy.isAtomic(), strategy.isCopy()); 1461 if (!setOptimizedPropertyFn) { 1462 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1463 return; 1464 } 1465 } 1466 else { 1467 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1468 if (!setPropertyFn) { 1469 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1470 return; 1471 } 1472 } 1473 1474 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1475 // <is-atomic>, <is-copy>). 1476 llvm::Value *cmd = 1477 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1478 llvm::Value *self = 1479 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1480 llvm::Value *ivarOffset = 1481 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1482 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1483 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1484 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1485 1486 CallArgList args; 1487 args.add(RValue::get(self), getContext().getObjCIdType()); 1488 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1489 if (setOptimizedPropertyFn) { 1490 args.add(RValue::get(arg), getContext().getObjCIdType()); 1491 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1492 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1493 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1494 callee, ReturnValueSlot(), args); 1495 } else { 1496 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1497 args.add(RValue::get(arg), getContext().getObjCIdType()); 1498 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1499 getContext().BoolTy); 1500 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1501 getContext().BoolTy); 1502 // FIXME: We shouldn't need to get the function info here, the runtime 1503 // already should have computed it to build the function. 1504 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1505 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1506 callee, ReturnValueSlot(), args); 1507 } 1508 1509 return; 1510 } 1511 1512 case PropertyImplStrategy::CopyStruct: 1513 emitStructSetterCall(*this, setterMethod, ivar); 1514 return; 1515 1516 case PropertyImplStrategy::Expression: 1517 break; 1518 } 1519 1520 // Otherwise, fake up some ASTs and emit a normal assignment. 1521 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1522 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(), 1523 VK_LValue, SourceLocation()); 1524 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(), 1525 CK_LValueToRValue, &self, VK_RValue, 1526 FPOptionsOverride()); 1527 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1528 SourceLocation(), SourceLocation(), 1529 &selfLoad, true, true); 1530 1531 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1532 QualType argType = argDecl->getType().getNonReferenceType(); 1533 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue, 1534 SourceLocation()); 1535 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1536 argType.getUnqualifiedType(), CK_LValueToRValue, 1537 &arg, VK_RValue, FPOptionsOverride()); 1538 1539 // The property type can differ from the ivar type in some situations with 1540 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1541 // The following absurdity is just to ensure well-formed IR. 1542 CastKind argCK = CK_NoOp; 1543 if (ivarRef.getType()->isObjCObjectPointerType()) { 1544 if (argLoad.getType()->isObjCObjectPointerType()) 1545 argCK = CK_BitCast; 1546 else if (argLoad.getType()->isBlockPointerType()) 1547 argCK = CK_BlockPointerToObjCPointerCast; 1548 else 1549 argCK = CK_CPointerToObjCPointerCast; 1550 } else if (ivarRef.getType()->isBlockPointerType()) { 1551 if (argLoad.getType()->isBlockPointerType()) 1552 argCK = CK_BitCast; 1553 else 1554 argCK = CK_AnyPointerToBlockPointerCast; 1555 } else if (ivarRef.getType()->isPointerType()) { 1556 argCK = CK_BitCast; 1557 } 1558 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK, 1559 &argLoad, VK_RValue, FPOptionsOverride()); 1560 Expr *finalArg = &argLoad; 1561 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1562 argLoad.getType())) 1563 finalArg = &argCast; 1564 1565 BinaryOperator *assign = BinaryOperator::Create( 1566 getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), VK_RValue, 1567 OK_Ordinary, SourceLocation(), FPOptionsOverride()); 1568 EmitStmt(assign); 1569 } 1570 1571 /// Generate an Objective-C property setter function. 1572 /// 1573 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1574 /// is illegal within a category. 1575 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1576 const ObjCPropertyImplDecl *PID) { 1577 llvm::Constant *AtomicHelperFn = 1578 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1579 ObjCMethodDecl *OMD = PID->getSetterMethodDecl(); 1580 assert(OMD && "Invalid call to generate setter (empty method)"); 1581 StartObjCMethod(OMD, IMP->getClassInterface()); 1582 1583 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1584 1585 FinishFunction(OMD->getEndLoc()); 1586 } 1587 1588 namespace { 1589 struct DestroyIvar final : EHScopeStack::Cleanup { 1590 private: 1591 llvm::Value *addr; 1592 const ObjCIvarDecl *ivar; 1593 CodeGenFunction::Destroyer *destroyer; 1594 bool useEHCleanupForArray; 1595 public: 1596 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1597 CodeGenFunction::Destroyer *destroyer, 1598 bool useEHCleanupForArray) 1599 : addr(addr), ivar(ivar), destroyer(destroyer), 1600 useEHCleanupForArray(useEHCleanupForArray) {} 1601 1602 void Emit(CodeGenFunction &CGF, Flags flags) override { 1603 LValue lvalue 1604 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1605 CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer, 1606 flags.isForNormalCleanup() && useEHCleanupForArray); 1607 } 1608 }; 1609 } 1610 1611 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1612 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1613 Address addr, 1614 QualType type) { 1615 llvm::Value *null = getNullForVariable(addr); 1616 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1617 } 1618 1619 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1620 ObjCImplementationDecl *impl) { 1621 CodeGenFunction::RunCleanupsScope scope(CGF); 1622 1623 llvm::Value *self = CGF.LoadObjCSelf(); 1624 1625 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1626 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1627 ivar; ivar = ivar->getNextIvar()) { 1628 QualType type = ivar->getType(); 1629 1630 // Check whether the ivar is a destructible type. 1631 QualType::DestructionKind dtorKind = type.isDestructedType(); 1632 if (!dtorKind) continue; 1633 1634 CodeGenFunction::Destroyer *destroyer = nullptr; 1635 1636 // Use a call to objc_storeStrong to destroy strong ivars, for the 1637 // general benefit of the tools. 1638 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1639 destroyer = destroyARCStrongWithStore; 1640 1641 // Otherwise use the default for the destruction kind. 1642 } else { 1643 destroyer = CGF.getDestroyer(dtorKind); 1644 } 1645 1646 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1647 1648 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1649 cleanupKind & EHCleanup); 1650 } 1651 1652 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1653 } 1654 1655 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1656 ObjCMethodDecl *MD, 1657 bool ctor) { 1658 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1659 StartObjCMethod(MD, IMP->getClassInterface()); 1660 1661 // Emit .cxx_construct. 1662 if (ctor) { 1663 // Suppress the final autorelease in ARC. 1664 AutoreleaseResult = false; 1665 1666 for (const auto *IvarInit : IMP->inits()) { 1667 FieldDecl *Field = IvarInit->getAnyMember(); 1668 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1669 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1670 LoadObjCSelf(), Ivar, 0); 1671 EmitAggExpr(IvarInit->getInit(), 1672 AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed, 1673 AggValueSlot::DoesNotNeedGCBarriers, 1674 AggValueSlot::IsNotAliased, 1675 AggValueSlot::DoesNotOverlap)); 1676 } 1677 // constructor returns 'self'. 1678 CodeGenTypes &Types = CGM.getTypes(); 1679 QualType IdTy(CGM.getContext().getObjCIdType()); 1680 llvm::Value *SelfAsId = 1681 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1682 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1683 1684 // Emit .cxx_destruct. 1685 } else { 1686 emitCXXDestructMethod(*this, IMP); 1687 } 1688 FinishFunction(); 1689 } 1690 1691 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1692 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1693 DeclRefExpr DRE(getContext(), Self, 1694 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1695 Self->getType(), VK_LValue, SourceLocation()); 1696 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1697 } 1698 1699 QualType CodeGenFunction::TypeOfSelfObject() { 1700 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1701 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1702 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1703 getContext().getCanonicalType(selfDecl->getType())); 1704 return PTy->getPointeeType(); 1705 } 1706 1707 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1708 llvm::FunctionCallee EnumerationMutationFnPtr = 1709 CGM.getObjCRuntime().EnumerationMutationFunction(); 1710 if (!EnumerationMutationFnPtr) { 1711 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1712 return; 1713 } 1714 CGCallee EnumerationMutationFn = 1715 CGCallee::forDirect(EnumerationMutationFnPtr); 1716 1717 CGDebugInfo *DI = getDebugInfo(); 1718 if (DI) 1719 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1720 1721 RunCleanupsScope ForScope(*this); 1722 1723 // The local variable comes into scope immediately. 1724 AutoVarEmission variable = AutoVarEmission::invalid(); 1725 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1726 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1727 1728 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1729 1730 // Fast enumeration state. 1731 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1732 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1733 EmitNullInitialization(StatePtr, StateTy); 1734 1735 // Number of elements in the items array. 1736 static const unsigned NumItems = 16; 1737 1738 // Fetch the countByEnumeratingWithState:objects:count: selector. 1739 IdentifierInfo *II[] = { 1740 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1741 &CGM.getContext().Idents.get("objects"), 1742 &CGM.getContext().Idents.get("count") 1743 }; 1744 Selector FastEnumSel = 1745 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1746 1747 QualType ItemsTy = 1748 getContext().getConstantArrayType(getContext().getObjCIdType(), 1749 llvm::APInt(32, NumItems), nullptr, 1750 ArrayType::Normal, 0); 1751 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1752 1753 // Emit the collection pointer. In ARC, we do a retain. 1754 llvm::Value *Collection; 1755 if (getLangOpts().ObjCAutoRefCount) { 1756 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1757 1758 // Enter a cleanup to do the release. 1759 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1760 } else { 1761 Collection = EmitScalarExpr(S.getCollection()); 1762 } 1763 1764 // The 'continue' label needs to appear within the cleanup for the 1765 // collection object. 1766 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1767 1768 // Send it our message: 1769 CallArgList Args; 1770 1771 // The first argument is a temporary of the enumeration-state type. 1772 Args.add(RValue::get(StatePtr.getPointer()), 1773 getContext().getPointerType(StateTy)); 1774 1775 // The second argument is a temporary array with space for NumItems 1776 // pointers. We'll actually be loading elements from the array 1777 // pointer written into the control state; this buffer is so that 1778 // collections that *aren't* backed by arrays can still queue up 1779 // batches of elements. 1780 Args.add(RValue::get(ItemsPtr.getPointer()), 1781 getContext().getPointerType(ItemsTy)); 1782 1783 // The third argument is the capacity of that temporary array. 1784 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1785 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1786 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1787 1788 // Start the enumeration. 1789 RValue CountRV = 1790 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1791 getContext().getNSUIntegerType(), 1792 FastEnumSel, Collection, Args); 1793 1794 // The initial number of objects that were returned in the buffer. 1795 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1796 1797 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1798 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1799 1800 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1801 1802 // If the limit pointer was zero to begin with, the collection is 1803 // empty; skip all this. Set the branch weight assuming this has the same 1804 // probability of exiting the loop as any other loop exit. 1805 uint64_t EntryCount = getCurrentProfileCount(); 1806 Builder.CreateCondBr( 1807 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1808 LoopInitBB, 1809 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1810 1811 // Otherwise, initialize the loop. 1812 EmitBlock(LoopInitBB); 1813 1814 // Save the initial mutations value. This is the value at an 1815 // address that was written into the state object by 1816 // countByEnumeratingWithState:objects:count:. 1817 Address StateMutationsPtrPtr = 1818 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1819 llvm::Value *StateMutationsPtr 1820 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1821 1822 llvm::Value *initialMutations = 1823 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1824 "forcoll.initial-mutations"); 1825 1826 // Start looping. This is the point we return to whenever we have a 1827 // fresh, non-empty batch of objects. 1828 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1829 EmitBlock(LoopBodyBB); 1830 1831 // The current index into the buffer. 1832 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1833 index->addIncoming(zero, LoopInitBB); 1834 1835 // The current buffer size. 1836 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1837 count->addIncoming(initialBufferLimit, LoopInitBB); 1838 1839 incrementProfileCounter(&S); 1840 1841 // Check whether the mutations value has changed from where it was 1842 // at start. StateMutationsPtr should actually be invariant between 1843 // refreshes. 1844 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1845 llvm::Value *currentMutations 1846 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1847 "statemutations"); 1848 1849 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1850 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1851 1852 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1853 WasNotMutatedBB, WasMutatedBB); 1854 1855 // If so, call the enumeration-mutation function. 1856 EmitBlock(WasMutatedBB); 1857 llvm::Value *V = 1858 Builder.CreateBitCast(Collection, 1859 ConvertType(getContext().getObjCIdType())); 1860 CallArgList Args2; 1861 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1862 // FIXME: We shouldn't need to get the function info here, the runtime already 1863 // should have computed it to build the function. 1864 EmitCall( 1865 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1866 EnumerationMutationFn, ReturnValueSlot(), Args2); 1867 1868 // Otherwise, or if the mutation function returns, just continue. 1869 EmitBlock(WasNotMutatedBB); 1870 1871 // Initialize the element variable. 1872 RunCleanupsScope elementVariableScope(*this); 1873 bool elementIsVariable; 1874 LValue elementLValue; 1875 QualType elementType; 1876 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1877 // Initialize the variable, in case it's a __block variable or something. 1878 EmitAutoVarInit(variable); 1879 1880 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl()); 1881 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false, 1882 D->getType(), VK_LValue, SourceLocation()); 1883 elementLValue = EmitLValue(&tempDRE); 1884 elementType = D->getType(); 1885 elementIsVariable = true; 1886 1887 if (D->isARCPseudoStrong()) 1888 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1889 } else { 1890 elementLValue = LValue(); // suppress warning 1891 elementType = cast<Expr>(S.getElement())->getType(); 1892 elementIsVariable = false; 1893 } 1894 llvm::Type *convertedElementType = ConvertType(elementType); 1895 1896 // Fetch the buffer out of the enumeration state. 1897 // TODO: this pointer should actually be invariant between 1898 // refreshes, which would help us do certain loop optimizations. 1899 Address StateItemsPtr = 1900 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1901 llvm::Value *EnumStateItems = 1902 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1903 1904 // Fetch the value at the current index from the buffer. 1905 llvm::Value *CurrentItemPtr = 1906 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1907 llvm::Value *CurrentItem = 1908 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1909 1910 if (SanOpts.has(SanitizerKind::ObjCCast)) { 1911 // Before using an item from the collection, check that the implicit cast 1912 // from id to the element type is valid. This is done with instrumentation 1913 // roughly corresponding to: 1914 // 1915 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ } 1916 const ObjCObjectPointerType *ObjPtrTy = 1917 elementType->getAsObjCInterfacePointerType(); 1918 const ObjCInterfaceType *InterfaceTy = 1919 ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr; 1920 if (InterfaceTy) { 1921 SanitizerScope SanScope(this); 1922 auto &C = CGM.getContext(); 1923 assert(InterfaceTy->getDecl() && "No decl for ObjC interface type"); 1924 Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C); 1925 CallArgList IsKindOfClassArgs; 1926 llvm::Value *Cls = 1927 CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl()); 1928 IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType()); 1929 llvm::Value *IsClass = 1930 CGM.getObjCRuntime() 1931 .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy, 1932 IsKindOfClassSel, CurrentItem, 1933 IsKindOfClassArgs) 1934 .getScalarVal(); 1935 llvm::Constant *StaticData[] = { 1936 EmitCheckSourceLocation(S.getBeginLoc()), 1937 EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))}; 1938 EmitCheck({{IsClass, SanitizerKind::ObjCCast}}, 1939 SanitizerHandler::InvalidObjCCast, 1940 ArrayRef<llvm::Constant *>(StaticData), CurrentItem); 1941 } 1942 } 1943 1944 // Cast that value to the right type. 1945 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1946 "currentitem"); 1947 1948 // Make sure we have an l-value. Yes, this gets evaluated every 1949 // time through the loop. 1950 if (!elementIsVariable) { 1951 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1952 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1953 } else { 1954 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1955 /*isInit*/ true); 1956 } 1957 1958 // If we do have an element variable, this assignment is the end of 1959 // its initialization. 1960 if (elementIsVariable) 1961 EmitAutoVarCleanups(variable); 1962 1963 // Perform the loop body, setting up break and continue labels. 1964 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1965 { 1966 RunCleanupsScope Scope(*this); 1967 EmitStmt(S.getBody()); 1968 } 1969 BreakContinueStack.pop_back(); 1970 1971 // Destroy the element variable now. 1972 elementVariableScope.ForceCleanup(); 1973 1974 // Check whether there are more elements. 1975 EmitBlock(AfterBody.getBlock()); 1976 1977 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1978 1979 // First we check in the local buffer. 1980 llvm::Value *indexPlusOne = 1981 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 1982 1983 // If we haven't overrun the buffer yet, we can continue. 1984 // Set the branch weights based on the simplifying assumption that this is 1985 // like a while-loop, i.e., ignoring that the false branch fetches more 1986 // elements and then returns to the loop. 1987 Builder.CreateCondBr( 1988 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1989 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1990 1991 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1992 count->addIncoming(count, AfterBody.getBlock()); 1993 1994 // Otherwise, we have to fetch more elements. 1995 EmitBlock(FetchMoreBB); 1996 1997 CountRV = 1998 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1999 getContext().getNSUIntegerType(), 2000 FastEnumSel, Collection, Args); 2001 2002 // If we got a zero count, we're done. 2003 llvm::Value *refetchCount = CountRV.getScalarVal(); 2004 2005 // (note that the message send might split FetchMoreBB) 2006 index->addIncoming(zero, Builder.GetInsertBlock()); 2007 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 2008 2009 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 2010 EmptyBB, LoopBodyBB); 2011 2012 // No more elements. 2013 EmitBlock(EmptyBB); 2014 2015 if (!elementIsVariable) { 2016 // If the element was not a declaration, set it to be null. 2017 2018 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 2019 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 2020 EmitStoreThroughLValue(RValue::get(null), elementLValue); 2021 } 2022 2023 if (DI) 2024 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 2025 2026 ForScope.ForceCleanup(); 2027 EmitBlock(LoopEnd.getBlock()); 2028 } 2029 2030 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 2031 CGM.getObjCRuntime().EmitTryStmt(*this, S); 2032 } 2033 2034 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 2035 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 2036 } 2037 2038 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 2039 const ObjCAtSynchronizedStmt &S) { 2040 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 2041 } 2042 2043 namespace { 2044 struct CallObjCRelease final : EHScopeStack::Cleanup { 2045 CallObjCRelease(llvm::Value *object) : object(object) {} 2046 llvm::Value *object; 2047 2048 void Emit(CodeGenFunction &CGF, Flags flags) override { 2049 // Releases at the end of the full-expression are imprecise. 2050 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 2051 } 2052 }; 2053 } 2054 2055 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 2056 /// release at the end of the full-expression. 2057 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 2058 llvm::Value *object) { 2059 // If we're in a conditional branch, we need to make the cleanup 2060 // conditional. 2061 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 2062 return object; 2063 } 2064 2065 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 2066 llvm::Value *value) { 2067 return EmitARCRetainAutorelease(type, value); 2068 } 2069 2070 /// Given a number of pointers, inform the optimizer that they're 2071 /// being intrinsically used up until this point in the program. 2072 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 2073 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use; 2074 if (!fn) 2075 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use); 2076 2077 // This isn't really a "runtime" function, but as an intrinsic it 2078 // doesn't really matter as long as we align things up. 2079 EmitNounwindRuntimeCall(fn, values); 2080 } 2081 2082 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call 2083 /// that has operand bundle "clang.arc.attachedcall". 2084 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) { 2085 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use; 2086 if (!fn) 2087 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use); 2088 EmitNounwindRuntimeCall(fn, values); 2089 } 2090 2091 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) { 2092 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 2093 // If the target runtime doesn't naturally support ARC, emit weak 2094 // references to the runtime support library. We don't really 2095 // permit this to fail, but we need a particular relocation style. 2096 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 2097 !CGM.getTriple().isOSBinFormatCOFF()) { 2098 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2099 } 2100 } 2101 } 2102 2103 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, 2104 llvm::FunctionCallee RTF) { 2105 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee()); 2106 } 2107 2108 /// Perform an operation having the signature 2109 /// i8* (i8*) 2110 /// where a null input causes a no-op and returns null. 2111 static llvm::Value *emitARCValueOperation( 2112 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, 2113 llvm::Function *&fn, llvm::Intrinsic::ID IntID, 2114 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) { 2115 if (isa<llvm::ConstantPointerNull>(value)) 2116 return value; 2117 2118 if (!fn) { 2119 fn = CGF.CGM.getIntrinsic(IntID); 2120 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2121 } 2122 2123 // Cast the argument to 'id'. 2124 llvm::Type *origType = returnType ? returnType : value->getType(); 2125 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2126 2127 // Call the function. 2128 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 2129 call->setTailCallKind(tailKind); 2130 2131 // Cast the result back to the original type. 2132 return CGF.Builder.CreateBitCast(call, origType); 2133 } 2134 2135 /// Perform an operation having the following signature: 2136 /// i8* (i8**) 2137 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr, 2138 llvm::Function *&fn, 2139 llvm::Intrinsic::ID IntID) { 2140 if (!fn) { 2141 fn = CGF.CGM.getIntrinsic(IntID); 2142 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2143 } 2144 2145 // Cast the argument to 'id*'. 2146 llvm::Type *origType = addr.getElementType(); 2147 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 2148 2149 // Call the function. 2150 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 2151 2152 // Cast the result back to a dereference of the original type. 2153 if (origType != CGF.Int8PtrTy) 2154 result = CGF.Builder.CreateBitCast(result, origType); 2155 2156 return result; 2157 } 2158 2159 /// Perform an operation having the following signature: 2160 /// i8* (i8**, i8*) 2161 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr, 2162 llvm::Value *value, 2163 llvm::Function *&fn, 2164 llvm::Intrinsic::ID IntID, 2165 bool ignored) { 2166 assert(addr.getElementType() == value->getType()); 2167 2168 if (!fn) { 2169 fn = CGF.CGM.getIntrinsic(IntID); 2170 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2171 } 2172 2173 llvm::Type *origType = value->getType(); 2174 2175 llvm::Value *args[] = { 2176 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 2177 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 2178 }; 2179 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 2180 2181 if (ignored) return nullptr; 2182 2183 return CGF.Builder.CreateBitCast(result, origType); 2184 } 2185 2186 /// Perform an operation having the following signature: 2187 /// void (i8**, i8**) 2188 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, 2189 llvm::Function *&fn, 2190 llvm::Intrinsic::ID IntID) { 2191 assert(dst.getType() == src.getType()); 2192 2193 if (!fn) { 2194 fn = CGF.CGM.getIntrinsic(IntID); 2195 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2196 } 2197 2198 llvm::Value *args[] = { 2199 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 2200 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 2201 }; 2202 CGF.EmitNounwindRuntimeCall(fn, args); 2203 } 2204 2205 /// Perform an operation having the signature 2206 /// i8* (i8*) 2207 /// where a null input causes a no-op and returns null. 2208 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, 2209 llvm::Value *value, 2210 llvm::Type *returnType, 2211 llvm::FunctionCallee &fn, 2212 StringRef fnName) { 2213 if (isa<llvm::ConstantPointerNull>(value)) 2214 return value; 2215 2216 if (!fn) { 2217 llvm::FunctionType *fnType = 2218 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 2219 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName); 2220 2221 // We have Native ARC, so set nonlazybind attribute for performance 2222 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2223 if (fnName == "objc_retain") 2224 f->addFnAttr(llvm::Attribute::NonLazyBind); 2225 } 2226 2227 // Cast the argument to 'id'. 2228 llvm::Type *origType = returnType ? returnType : value->getType(); 2229 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2230 2231 // Call the function. 2232 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value); 2233 2234 // Mark calls to objc_autorelease as tail on the assumption that methods 2235 // overriding autorelease do not touch anything on the stack. 2236 if (fnName == "objc_autorelease") 2237 if (auto *Call = dyn_cast<llvm::CallInst>(Inst)) 2238 Call->setTailCall(); 2239 2240 // Cast the result back to the original type. 2241 return CGF.Builder.CreateBitCast(Inst, origType); 2242 } 2243 2244 /// Produce the code to do a retain. Based on the type, calls one of: 2245 /// call i8* \@objc_retain(i8* %value) 2246 /// call i8* \@objc_retainBlock(i8* %value) 2247 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 2248 if (type->isBlockPointerType()) 2249 return EmitARCRetainBlock(value, /*mandatory*/ false); 2250 else 2251 return EmitARCRetainNonBlock(value); 2252 } 2253 2254 /// Retain the given object, with normal retain semantics. 2255 /// call i8* \@objc_retain(i8* %value) 2256 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 2257 return emitARCValueOperation(*this, value, nullptr, 2258 CGM.getObjCEntrypoints().objc_retain, 2259 llvm::Intrinsic::objc_retain); 2260 } 2261 2262 /// Retain the given block, with _Block_copy semantics. 2263 /// call i8* \@objc_retainBlock(i8* %value) 2264 /// 2265 /// \param mandatory - If false, emit the call with metadata 2266 /// indicating that it's okay for the optimizer to eliminate this call 2267 /// if it can prove that the block never escapes except down the stack. 2268 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 2269 bool mandatory) { 2270 llvm::Value *result 2271 = emitARCValueOperation(*this, value, nullptr, 2272 CGM.getObjCEntrypoints().objc_retainBlock, 2273 llvm::Intrinsic::objc_retainBlock); 2274 2275 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 2276 // tell the optimizer that it doesn't need to do this copy if the 2277 // block doesn't escape, where being passed as an argument doesn't 2278 // count as escaping. 2279 if (!mandatory && isa<llvm::Instruction>(result)) { 2280 llvm::CallInst *call 2281 = cast<llvm::CallInst>(result->stripPointerCasts()); 2282 assert(call->getCalledOperand() == 2283 CGM.getObjCEntrypoints().objc_retainBlock); 2284 2285 call->setMetadata("clang.arc.copy_on_escape", 2286 llvm::MDNode::get(Builder.getContext(), None)); 2287 } 2288 2289 return result; 2290 } 2291 2292 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 2293 // Fetch the void(void) inline asm which marks that we're going to 2294 // do something with the autoreleased return value. 2295 llvm::InlineAsm *&marker 2296 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2297 if (!marker) { 2298 StringRef assembly 2299 = CGF.CGM.getTargetCodeGenInfo() 2300 .getARCRetainAutoreleasedReturnValueMarker(); 2301 2302 // If we have an empty assembly string, there's nothing to do. 2303 if (assembly.empty()) { 2304 2305 // Otherwise, at -O0, build an inline asm that we're going to call 2306 // in a moment. 2307 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2308 llvm::FunctionType *type = 2309 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2310 2311 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2312 2313 // If we're at -O1 and above, we don't want to litter the code 2314 // with this marker yet, so leave a breadcrumb for the ARC 2315 // optimizer to pick up. 2316 } else { 2317 const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr(); 2318 if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) { 2319 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly); 2320 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, 2321 retainRVMarkerKey, str); 2322 } 2323 } 2324 } 2325 2326 // Call the marker asm if we made one, which we do only at -O0. 2327 if (marker) 2328 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker)); 2329 } 2330 2331 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value, 2332 bool IsRetainRV, 2333 CodeGenFunction &CGF) { 2334 emitAutoreleasedReturnValueMarker(CGF); 2335 2336 // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting 2337 // retainRV or claimRV calls in the IR. We currently do this only when the 2338 // optimization level isn't -O0 since global-isel, which is currently run at 2339 // -O0, doesn't know about the operand bundle. 2340 2341 // FIXME: Do this when the target isn't aarch64. 2342 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 && 2343 CGF.CGM.getTarget().getTriple().isAArch64()) { 2344 llvm::Value *bundleArgs[] = {llvm::ConstantInt::get( 2345 CGF.Int64Ty, 2346 llvm::objcarc::getAttachedCallOperandBundleEnum(IsRetainRV))}; 2347 llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs); 2348 auto *oldCall = cast<llvm::CallBase>(value); 2349 llvm::CallBase *newCall = llvm::CallBase::addOperandBundle( 2350 oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall); 2351 newCall->copyMetadata(*oldCall); 2352 oldCall->replaceAllUsesWith(newCall); 2353 oldCall->eraseFromParent(); 2354 CGF.EmitARCNoopIntrinsicUse(newCall); 2355 return newCall; 2356 } 2357 2358 bool isNoTail = 2359 CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail(); 2360 llvm::CallInst::TailCallKind tailKind = 2361 isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None; 2362 ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints(); 2363 llvm::Function *&EP = IsRetainRV 2364 ? EPs.objc_retainAutoreleasedReturnValue 2365 : EPs.objc_unsafeClaimAutoreleasedReturnValue; 2366 llvm::Intrinsic::ID IID = 2367 IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue 2368 : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue; 2369 return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind); 2370 } 2371 2372 /// Retain the given object which is the result of a function call. 2373 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2374 /// 2375 /// Yes, this function name is one character away from a different 2376 /// call with completely different semantics. 2377 llvm::Value * 2378 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2379 return emitOptimizedARCReturnCall(value, true, *this); 2380 } 2381 2382 /// Claim a possibly-autoreleased return value at +0. This is only 2383 /// valid to do in contexts which do not rely on the retain to keep 2384 /// the object valid for all of its uses; for example, when 2385 /// the value is ignored, or when it is being assigned to an 2386 /// __unsafe_unretained variable. 2387 /// 2388 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2389 llvm::Value * 2390 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2391 return emitOptimizedARCReturnCall(value, false, *this); 2392 } 2393 2394 /// Release the given object. 2395 /// call void \@objc_release(i8* %value) 2396 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2397 ARCPreciseLifetime_t precise) { 2398 if (isa<llvm::ConstantPointerNull>(value)) return; 2399 2400 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release; 2401 if (!fn) { 2402 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release); 2403 setARCRuntimeFunctionLinkage(CGM, fn); 2404 } 2405 2406 // Cast the argument to 'id'. 2407 value = Builder.CreateBitCast(value, Int8PtrTy); 2408 2409 // Call objc_release. 2410 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2411 2412 if (precise == ARCImpreciseLifetime) { 2413 call->setMetadata("clang.imprecise_release", 2414 llvm::MDNode::get(Builder.getContext(), None)); 2415 } 2416 } 2417 2418 /// Destroy a __strong variable. 2419 /// 2420 /// At -O0, emit a call to store 'null' into the address; 2421 /// instrumenting tools prefer this because the address is exposed, 2422 /// but it's relatively cumbersome to optimize. 2423 /// 2424 /// At -O1 and above, just load and call objc_release. 2425 /// 2426 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2427 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2428 ARCPreciseLifetime_t precise) { 2429 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2430 llvm::Value *null = getNullForVariable(addr); 2431 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2432 return; 2433 } 2434 2435 llvm::Value *value = Builder.CreateLoad(addr); 2436 EmitARCRelease(value, precise); 2437 } 2438 2439 /// Store into a strong object. Always calls this: 2440 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2441 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2442 llvm::Value *value, 2443 bool ignored) { 2444 assert(addr.getElementType() == value->getType()); 2445 2446 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2447 if (!fn) { 2448 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong); 2449 setARCRuntimeFunctionLinkage(CGM, fn); 2450 } 2451 2452 llvm::Value *args[] = { 2453 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2454 Builder.CreateBitCast(value, Int8PtrTy) 2455 }; 2456 EmitNounwindRuntimeCall(fn, args); 2457 2458 if (ignored) return nullptr; 2459 return value; 2460 } 2461 2462 /// Store into a strong object. Sometimes calls this: 2463 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2464 /// Other times, breaks it down into components. 2465 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2466 llvm::Value *newValue, 2467 bool ignored) { 2468 QualType type = dst.getType(); 2469 bool isBlock = type->isBlockPointerType(); 2470 2471 // Use a store barrier at -O0 unless this is a block type or the 2472 // lvalue is inadequately aligned. 2473 if (shouldUseFusedARCCalls() && 2474 !isBlock && 2475 (dst.getAlignment().isZero() || 2476 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2477 return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored); 2478 } 2479 2480 // Otherwise, split it out. 2481 2482 // Retain the new value. 2483 newValue = EmitARCRetain(type, newValue); 2484 2485 // Read the old value. 2486 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2487 2488 // Store. We do this before the release so that any deallocs won't 2489 // see the old value. 2490 EmitStoreOfScalar(newValue, dst); 2491 2492 // Finally, release the old value. 2493 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2494 2495 return newValue; 2496 } 2497 2498 /// Autorelease the given object. 2499 /// call i8* \@objc_autorelease(i8* %value) 2500 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2501 return emitARCValueOperation(*this, value, nullptr, 2502 CGM.getObjCEntrypoints().objc_autorelease, 2503 llvm::Intrinsic::objc_autorelease); 2504 } 2505 2506 /// Autorelease the given object. 2507 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2508 llvm::Value * 2509 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2510 return emitARCValueOperation(*this, value, nullptr, 2511 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2512 llvm::Intrinsic::objc_autoreleaseReturnValue, 2513 llvm::CallInst::TCK_Tail); 2514 } 2515 2516 /// Do a fused retain/autorelease of the given object. 2517 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2518 llvm::Value * 2519 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2520 return emitARCValueOperation(*this, value, nullptr, 2521 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2522 llvm::Intrinsic::objc_retainAutoreleaseReturnValue, 2523 llvm::CallInst::TCK_Tail); 2524 } 2525 2526 /// Do a fused retain/autorelease of the given object. 2527 /// call i8* \@objc_retainAutorelease(i8* %value) 2528 /// or 2529 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2530 /// call i8* \@objc_autorelease(i8* %retain) 2531 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2532 llvm::Value *value) { 2533 if (!type->isBlockPointerType()) 2534 return EmitARCRetainAutoreleaseNonBlock(value); 2535 2536 if (isa<llvm::ConstantPointerNull>(value)) return value; 2537 2538 llvm::Type *origType = value->getType(); 2539 value = Builder.CreateBitCast(value, Int8PtrTy); 2540 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2541 value = EmitARCAutorelease(value); 2542 return Builder.CreateBitCast(value, origType); 2543 } 2544 2545 /// Do a fused retain/autorelease of the given object. 2546 /// call i8* \@objc_retainAutorelease(i8* %value) 2547 llvm::Value * 2548 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2549 return emitARCValueOperation(*this, value, nullptr, 2550 CGM.getObjCEntrypoints().objc_retainAutorelease, 2551 llvm::Intrinsic::objc_retainAutorelease); 2552 } 2553 2554 /// i8* \@objc_loadWeak(i8** %addr) 2555 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2556 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2557 return emitARCLoadOperation(*this, addr, 2558 CGM.getObjCEntrypoints().objc_loadWeak, 2559 llvm::Intrinsic::objc_loadWeak); 2560 } 2561 2562 /// i8* \@objc_loadWeakRetained(i8** %addr) 2563 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2564 return emitARCLoadOperation(*this, addr, 2565 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2566 llvm::Intrinsic::objc_loadWeakRetained); 2567 } 2568 2569 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2570 /// Returns %value. 2571 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2572 llvm::Value *value, 2573 bool ignored) { 2574 return emitARCStoreOperation(*this, addr, value, 2575 CGM.getObjCEntrypoints().objc_storeWeak, 2576 llvm::Intrinsic::objc_storeWeak, ignored); 2577 } 2578 2579 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2580 /// Returns %value. %addr is known to not have a current weak entry. 2581 /// Essentially equivalent to: 2582 /// *addr = nil; objc_storeWeak(addr, value); 2583 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2584 // If we're initializing to null, just write null to memory; no need 2585 // to get the runtime involved. But don't do this if optimization 2586 // is enabled, because accounting for this would make the optimizer 2587 // much more complicated. 2588 if (isa<llvm::ConstantPointerNull>(value) && 2589 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2590 Builder.CreateStore(value, addr); 2591 return; 2592 } 2593 2594 emitARCStoreOperation(*this, addr, value, 2595 CGM.getObjCEntrypoints().objc_initWeak, 2596 llvm::Intrinsic::objc_initWeak, /*ignored*/ true); 2597 } 2598 2599 /// void \@objc_destroyWeak(i8** %addr) 2600 /// Essentially objc_storeWeak(addr, nil). 2601 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2602 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2603 if (!fn) { 2604 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak); 2605 setARCRuntimeFunctionLinkage(CGM, fn); 2606 } 2607 2608 // Cast the argument to 'id*'. 2609 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2610 2611 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2612 } 2613 2614 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2615 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2616 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2617 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2618 emitARCCopyOperation(*this, dst, src, 2619 CGM.getObjCEntrypoints().objc_moveWeak, 2620 llvm::Intrinsic::objc_moveWeak); 2621 } 2622 2623 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2624 /// Disregards the current value in %dest. Essentially 2625 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2626 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2627 emitARCCopyOperation(*this, dst, src, 2628 CGM.getObjCEntrypoints().objc_copyWeak, 2629 llvm::Intrinsic::objc_copyWeak); 2630 } 2631 2632 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, 2633 Address SrcAddr) { 2634 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2635 Object = EmitObjCConsumeObject(Ty, Object); 2636 EmitARCStoreWeak(DstAddr, Object, false); 2637 } 2638 2639 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, 2640 Address SrcAddr) { 2641 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2642 Object = EmitObjCConsumeObject(Ty, Object); 2643 EmitARCStoreWeak(DstAddr, Object, false); 2644 EmitARCDestroyWeak(SrcAddr); 2645 } 2646 2647 /// Produce the code to do a objc_autoreleasepool_push. 2648 /// call i8* \@objc_autoreleasePoolPush(void) 2649 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2650 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2651 if (!fn) { 2652 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush); 2653 setARCRuntimeFunctionLinkage(CGM, fn); 2654 } 2655 2656 return EmitNounwindRuntimeCall(fn); 2657 } 2658 2659 /// Produce the code to do a primitive release. 2660 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2661 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2662 assert(value->getType() == Int8PtrTy); 2663 2664 if (getInvokeDest()) { 2665 // Call the runtime method not the intrinsic if we are handling exceptions 2666 llvm::FunctionCallee &fn = 2667 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; 2668 if (!fn) { 2669 llvm::FunctionType *fnType = 2670 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2671 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop"); 2672 setARCRuntimeFunctionLinkage(CGM, fn); 2673 } 2674 2675 // objc_autoreleasePoolPop can throw. 2676 EmitRuntimeCallOrInvoke(fn, value); 2677 } else { 2678 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2679 if (!fn) { 2680 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop); 2681 setARCRuntimeFunctionLinkage(CGM, fn); 2682 } 2683 2684 EmitRuntimeCall(fn, value); 2685 } 2686 } 2687 2688 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2689 /// Which is: [[NSAutoreleasePool alloc] init]; 2690 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2691 /// init is declared as: - (id) init; in its NSObject super class. 2692 /// 2693 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2694 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2695 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2696 // [NSAutoreleasePool alloc] 2697 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2698 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2699 CallArgList Args; 2700 RValue AllocRV = 2701 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2702 getContext().getObjCIdType(), 2703 AllocSel, Receiver, Args); 2704 2705 // [Receiver init] 2706 Receiver = AllocRV.getScalarVal(); 2707 II = &CGM.getContext().Idents.get("init"); 2708 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2709 RValue InitRV = 2710 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2711 getContext().getObjCIdType(), 2712 InitSel, Receiver, Args); 2713 return InitRV.getScalarVal(); 2714 } 2715 2716 /// Allocate the given objc object. 2717 /// call i8* \@objc_alloc(i8* %value) 2718 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, 2719 llvm::Type *resultType) { 2720 return emitObjCValueOperation(*this, value, resultType, 2721 CGM.getObjCEntrypoints().objc_alloc, 2722 "objc_alloc"); 2723 } 2724 2725 /// Allocate the given objc object. 2726 /// call i8* \@objc_allocWithZone(i8* %value) 2727 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, 2728 llvm::Type *resultType) { 2729 return emitObjCValueOperation(*this, value, resultType, 2730 CGM.getObjCEntrypoints().objc_allocWithZone, 2731 "objc_allocWithZone"); 2732 } 2733 2734 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value, 2735 llvm::Type *resultType) { 2736 return emitObjCValueOperation(*this, value, resultType, 2737 CGM.getObjCEntrypoints().objc_alloc_init, 2738 "objc_alloc_init"); 2739 } 2740 2741 /// Produce the code to do a primitive release. 2742 /// [tmp drain]; 2743 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2744 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2745 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2746 CallArgList Args; 2747 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2748 getContext().VoidTy, DrainSel, Arg, Args); 2749 } 2750 2751 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2752 Address addr, 2753 QualType type) { 2754 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2755 } 2756 2757 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2758 Address addr, 2759 QualType type) { 2760 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2761 } 2762 2763 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2764 Address addr, 2765 QualType type) { 2766 CGF.EmitARCDestroyWeak(addr); 2767 } 2768 2769 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2770 QualType type) { 2771 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2772 CGF.EmitARCIntrinsicUse(value); 2773 } 2774 2775 /// Autorelease the given object. 2776 /// call i8* \@objc_autorelease(i8* %value) 2777 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value, 2778 llvm::Type *returnType) { 2779 return emitObjCValueOperation( 2780 *this, value, returnType, 2781 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction, 2782 "objc_autorelease"); 2783 } 2784 2785 /// Retain the given object, with normal retain semantics. 2786 /// call i8* \@objc_retain(i8* %value) 2787 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value, 2788 llvm::Type *returnType) { 2789 return emitObjCValueOperation( 2790 *this, value, returnType, 2791 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain"); 2792 } 2793 2794 /// Release the given object. 2795 /// call void \@objc_release(i8* %value) 2796 void CodeGenFunction::EmitObjCRelease(llvm::Value *value, 2797 ARCPreciseLifetime_t precise) { 2798 if (isa<llvm::ConstantPointerNull>(value)) return; 2799 2800 llvm::FunctionCallee &fn = 2801 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction; 2802 if (!fn) { 2803 llvm::FunctionType *fnType = 2804 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2805 fn = CGM.CreateRuntimeFunction(fnType, "objc_release"); 2806 setARCRuntimeFunctionLinkage(CGM, fn); 2807 // We have Native ARC, so set nonlazybind attribute for performance 2808 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2809 f->addFnAttr(llvm::Attribute::NonLazyBind); 2810 } 2811 2812 // Cast the argument to 'id'. 2813 value = Builder.CreateBitCast(value, Int8PtrTy); 2814 2815 // Call objc_release. 2816 llvm::CallBase *call = EmitCallOrInvoke(fn, value); 2817 2818 if (precise == ARCImpreciseLifetime) { 2819 call->setMetadata("clang.imprecise_release", 2820 llvm::MDNode::get(Builder.getContext(), None)); 2821 } 2822 } 2823 2824 namespace { 2825 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2826 llvm::Value *Token; 2827 2828 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2829 2830 void Emit(CodeGenFunction &CGF, Flags flags) override { 2831 CGF.EmitObjCAutoreleasePoolPop(Token); 2832 } 2833 }; 2834 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2835 llvm::Value *Token; 2836 2837 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2838 2839 void Emit(CodeGenFunction &CGF, Flags flags) override { 2840 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2841 } 2842 }; 2843 } 2844 2845 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2846 if (CGM.getLangOpts().ObjCAutoRefCount) 2847 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2848 else 2849 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2850 } 2851 2852 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { 2853 switch (lifetime) { 2854 case Qualifiers::OCL_None: 2855 case Qualifiers::OCL_ExplicitNone: 2856 case Qualifiers::OCL_Strong: 2857 case Qualifiers::OCL_Autoreleasing: 2858 return true; 2859 2860 case Qualifiers::OCL_Weak: 2861 return false; 2862 } 2863 2864 llvm_unreachable("impossible lifetime!"); 2865 } 2866 2867 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2868 LValue lvalue, 2869 QualType type) { 2870 llvm::Value *result; 2871 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime()); 2872 if (shouldRetain) { 2873 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal(); 2874 } else { 2875 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); 2876 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF)); 2877 } 2878 return TryEmitResult(result, !shouldRetain); 2879 } 2880 2881 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2882 const Expr *e) { 2883 e = e->IgnoreParens(); 2884 QualType type = e->getType(); 2885 2886 // If we're loading retained from a __strong xvalue, we can avoid 2887 // an extra retain/release pair by zeroing out the source of this 2888 // "move" operation. 2889 if (e->isXValue() && 2890 !type.isConstQualified() && 2891 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2892 // Emit the lvalue. 2893 LValue lv = CGF.EmitLValue(e); 2894 2895 // Load the object pointer. 2896 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2897 SourceLocation()).getScalarVal(); 2898 2899 // Set the source pointer to NULL. 2900 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv); 2901 2902 return TryEmitResult(result, true); 2903 } 2904 2905 // As a very special optimization, in ARC++, if the l-value is the 2906 // result of a non-volatile assignment, do a simple retain of the 2907 // result of the call to objc_storeWeak instead of reloading. 2908 if (CGF.getLangOpts().CPlusPlus && 2909 !type.isVolatileQualified() && 2910 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2911 isa<BinaryOperator>(e) && 2912 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2913 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2914 2915 // Try to emit code for scalar constant instead of emitting LValue and 2916 // loading it because we are not guaranteed to have an l-value. One of such 2917 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. 2918 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) { 2919 auto *DRE = const_cast<DeclRefExpr *>(decl_expr); 2920 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE)) 2921 return TryEmitResult(CGF.emitScalarConstant(constant, DRE), 2922 !shouldRetainObjCLifetime(type.getObjCLifetime())); 2923 } 2924 2925 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2926 } 2927 2928 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2929 llvm::Value *value)> 2930 ValueTransform; 2931 2932 /// Insert code immediately after a call. 2933 2934 // FIXME: We should find a way to emit the runtime call immediately 2935 // after the call is emitted to eliminate the need for this function. 2936 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2937 llvm::Value *value, 2938 ValueTransform doAfterCall, 2939 ValueTransform doFallback) { 2940 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2941 2942 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2943 // Place the retain immediately following the call. 2944 CGF.Builder.SetInsertPoint(call->getParent(), 2945 ++llvm::BasicBlock::iterator(call)); 2946 value = doAfterCall(CGF, value); 2947 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2948 // Place the retain at the beginning of the normal destination block. 2949 llvm::BasicBlock *BB = invoke->getNormalDest(); 2950 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2951 value = doAfterCall(CGF, value); 2952 2953 // Bitcasts can arise because of related-result returns. Rewrite 2954 // the operand. 2955 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2956 // Change the insert point to avoid emitting the fall-back call after the 2957 // bitcast. 2958 CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator()); 2959 llvm::Value *operand = bitcast->getOperand(0); 2960 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2961 bitcast->setOperand(0, operand); 2962 value = bitcast; 2963 } else { 2964 auto *phi = dyn_cast<llvm::PHINode>(value); 2965 if (phi && phi->getNumIncomingValues() == 2 && 2966 isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) && 2967 isa<llvm::CallBase>(phi->getIncomingValue(0))) { 2968 // Handle phi instructions that are generated when it's necessary to check 2969 // whether the receiver of a message is null. 2970 llvm::Value *inVal = phi->getIncomingValue(0); 2971 inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback); 2972 phi->setIncomingValue(0, inVal); 2973 value = phi; 2974 } else { 2975 // Generic fall-back case. 2976 // Retain using the non-block variant: we never need to do a copy 2977 // of a block that's been returned to us. 2978 value = doFallback(CGF, value); 2979 } 2980 } 2981 2982 CGF.Builder.restoreIP(ip); 2983 return value; 2984 } 2985 2986 /// Given that the given expression is some sort of call (which does 2987 /// not return retained), emit a retain following it. 2988 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2989 const Expr *e) { 2990 llvm::Value *value = CGF.EmitScalarExpr(e); 2991 return emitARCOperationAfterCall(CGF, value, 2992 [](CodeGenFunction &CGF, llvm::Value *value) { 2993 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2994 }, 2995 [](CodeGenFunction &CGF, llvm::Value *value) { 2996 return CGF.EmitARCRetainNonBlock(value); 2997 }); 2998 } 2999 3000 /// Given that the given expression is some sort of call (which does 3001 /// not return retained), perform an unsafeClaim following it. 3002 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 3003 const Expr *e) { 3004 llvm::Value *value = CGF.EmitScalarExpr(e); 3005 return emitARCOperationAfterCall(CGF, value, 3006 [](CodeGenFunction &CGF, llvm::Value *value) { 3007 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 3008 }, 3009 [](CodeGenFunction &CGF, llvm::Value *value) { 3010 return value; 3011 }); 3012 } 3013 3014 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 3015 bool allowUnsafeClaim) { 3016 if (allowUnsafeClaim && 3017 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 3018 return emitARCUnsafeClaimCallResult(*this, E); 3019 } else { 3020 llvm::Value *value = emitARCRetainCallResult(*this, E); 3021 return EmitObjCConsumeObject(E->getType(), value); 3022 } 3023 } 3024 3025 /// Determine whether it might be important to emit a separate 3026 /// objc_retain_block on the result of the given expression, or 3027 /// whether it's okay to just emit it in a +1 context. 3028 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 3029 assert(e->getType()->isBlockPointerType()); 3030 e = e->IgnoreParens(); 3031 3032 // For future goodness, emit block expressions directly in +1 3033 // contexts if we can. 3034 if (isa<BlockExpr>(e)) 3035 return false; 3036 3037 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 3038 switch (cast->getCastKind()) { 3039 // Emitting these operations in +1 contexts is goodness. 3040 case CK_LValueToRValue: 3041 case CK_ARCReclaimReturnedObject: 3042 case CK_ARCConsumeObject: 3043 case CK_ARCProduceObject: 3044 return false; 3045 3046 // These operations preserve a block type. 3047 case CK_NoOp: 3048 case CK_BitCast: 3049 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 3050 3051 // These operations are known to be bad (or haven't been considered). 3052 case CK_AnyPointerToBlockPointerCast: 3053 default: 3054 return true; 3055 } 3056 } 3057 3058 return true; 3059 } 3060 3061 namespace { 3062 /// A CRTP base class for emitting expressions of retainable object 3063 /// pointer type in ARC. 3064 template <typename Impl, typename Result> class ARCExprEmitter { 3065 protected: 3066 CodeGenFunction &CGF; 3067 Impl &asImpl() { return *static_cast<Impl*>(this); } 3068 3069 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 3070 3071 public: 3072 Result visit(const Expr *e); 3073 Result visitCastExpr(const CastExpr *e); 3074 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 3075 Result visitBlockExpr(const BlockExpr *e); 3076 Result visitBinaryOperator(const BinaryOperator *e); 3077 Result visitBinAssign(const BinaryOperator *e); 3078 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 3079 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 3080 Result visitBinAssignWeak(const BinaryOperator *e); 3081 Result visitBinAssignStrong(const BinaryOperator *e); 3082 3083 // Minimal implementation: 3084 // Result visitLValueToRValue(const Expr *e) 3085 // Result visitConsumeObject(const Expr *e) 3086 // Result visitExtendBlockObject(const Expr *e) 3087 // Result visitReclaimReturnedObject(const Expr *e) 3088 // Result visitCall(const Expr *e) 3089 // Result visitExpr(const Expr *e) 3090 // 3091 // Result emitBitCast(Result result, llvm::Type *resultType) 3092 // llvm::Value *getValueOfResult(Result result) 3093 }; 3094 } 3095 3096 /// Try to emit a PseudoObjectExpr under special ARC rules. 3097 /// 3098 /// This massively duplicates emitPseudoObjectRValue. 3099 template <typename Impl, typename Result> 3100 Result 3101 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 3102 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3103 3104 // Find the result expression. 3105 const Expr *resultExpr = E->getResultExpr(); 3106 assert(resultExpr); 3107 Result result; 3108 3109 for (PseudoObjectExpr::const_semantics_iterator 3110 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3111 const Expr *semantic = *i; 3112 3113 // If this semantic expression is an opaque value, bind it 3114 // to the result of its source expression. 3115 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3116 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3117 OVMA opaqueData; 3118 3119 // If this semantic is the result of the pseudo-object 3120 // expression, try to evaluate the source as +1. 3121 if (ov == resultExpr) { 3122 assert(!OVMA::shouldBindAsLValue(ov)); 3123 result = asImpl().visit(ov->getSourceExpr()); 3124 opaqueData = OVMA::bind(CGF, ov, 3125 RValue::get(asImpl().getValueOfResult(result))); 3126 3127 // Otherwise, just bind it. 3128 } else { 3129 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3130 } 3131 opaques.push_back(opaqueData); 3132 3133 // Otherwise, if the expression is the result, evaluate it 3134 // and remember the result. 3135 } else if (semantic == resultExpr) { 3136 result = asImpl().visit(semantic); 3137 3138 // Otherwise, evaluate the expression in an ignored context. 3139 } else { 3140 CGF.EmitIgnoredExpr(semantic); 3141 } 3142 } 3143 3144 // Unbind all the opaques now. 3145 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3146 opaques[i].unbind(CGF); 3147 3148 return result; 3149 } 3150 3151 template <typename Impl, typename Result> 3152 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) { 3153 // The default implementation just forwards the expression to visitExpr. 3154 return asImpl().visitExpr(e); 3155 } 3156 3157 template <typename Impl, typename Result> 3158 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 3159 switch (e->getCastKind()) { 3160 3161 // No-op casts don't change the type, so we just ignore them. 3162 case CK_NoOp: 3163 return asImpl().visit(e->getSubExpr()); 3164 3165 // These casts can change the type. 3166 case CK_CPointerToObjCPointerCast: 3167 case CK_BlockPointerToObjCPointerCast: 3168 case CK_AnyPointerToBlockPointerCast: 3169 case CK_BitCast: { 3170 llvm::Type *resultType = CGF.ConvertType(e->getType()); 3171 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 3172 Result result = asImpl().visit(e->getSubExpr()); 3173 return asImpl().emitBitCast(result, resultType); 3174 } 3175 3176 // Handle some casts specially. 3177 case CK_LValueToRValue: 3178 return asImpl().visitLValueToRValue(e->getSubExpr()); 3179 case CK_ARCConsumeObject: 3180 return asImpl().visitConsumeObject(e->getSubExpr()); 3181 case CK_ARCExtendBlockObject: 3182 return asImpl().visitExtendBlockObject(e->getSubExpr()); 3183 case CK_ARCReclaimReturnedObject: 3184 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 3185 3186 // Otherwise, use the default logic. 3187 default: 3188 return asImpl().visitExpr(e); 3189 } 3190 } 3191 3192 template <typename Impl, typename Result> 3193 Result 3194 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 3195 switch (e->getOpcode()) { 3196 case BO_Comma: 3197 CGF.EmitIgnoredExpr(e->getLHS()); 3198 CGF.EnsureInsertPoint(); 3199 return asImpl().visit(e->getRHS()); 3200 3201 case BO_Assign: 3202 return asImpl().visitBinAssign(e); 3203 3204 default: 3205 return asImpl().visitExpr(e); 3206 } 3207 } 3208 3209 template <typename Impl, typename Result> 3210 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 3211 switch (e->getLHS()->getType().getObjCLifetime()) { 3212 case Qualifiers::OCL_ExplicitNone: 3213 return asImpl().visitBinAssignUnsafeUnretained(e); 3214 3215 case Qualifiers::OCL_Weak: 3216 return asImpl().visitBinAssignWeak(e); 3217 3218 case Qualifiers::OCL_Autoreleasing: 3219 return asImpl().visitBinAssignAutoreleasing(e); 3220 3221 case Qualifiers::OCL_Strong: 3222 return asImpl().visitBinAssignStrong(e); 3223 3224 case Qualifiers::OCL_None: 3225 return asImpl().visitExpr(e); 3226 } 3227 llvm_unreachable("bad ObjC ownership qualifier"); 3228 } 3229 3230 /// The default rule for __unsafe_unretained emits the RHS recursively, 3231 /// stores into the unsafe variable, and propagates the result outward. 3232 template <typename Impl, typename Result> 3233 Result ARCExprEmitter<Impl,Result>:: 3234 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 3235 // Recursively emit the RHS. 3236 // For __block safety, do this before emitting the LHS. 3237 Result result = asImpl().visit(e->getRHS()); 3238 3239 // Perform the store. 3240 LValue lvalue = 3241 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 3242 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 3243 lvalue); 3244 3245 return result; 3246 } 3247 3248 template <typename Impl, typename Result> 3249 Result 3250 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 3251 return asImpl().visitExpr(e); 3252 } 3253 3254 template <typename Impl, typename Result> 3255 Result 3256 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 3257 return asImpl().visitExpr(e); 3258 } 3259 3260 template <typename Impl, typename Result> 3261 Result 3262 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 3263 return asImpl().visitExpr(e); 3264 } 3265 3266 /// The general expression-emission logic. 3267 template <typename Impl, typename Result> 3268 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 3269 // We should *never* see a nested full-expression here, because if 3270 // we fail to emit at +1, our caller must not retain after we close 3271 // out the full-expression. This isn't as important in the unsafe 3272 // emitter. 3273 assert(!isa<ExprWithCleanups>(e)); 3274 3275 // Look through parens, __extension__, generic selection, etc. 3276 e = e->IgnoreParens(); 3277 3278 // Handle certain kinds of casts. 3279 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 3280 return asImpl().visitCastExpr(ce); 3281 3282 // Handle the comma operator. 3283 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 3284 return asImpl().visitBinaryOperator(op); 3285 3286 // TODO: handle conditional operators here 3287 3288 // For calls and message sends, use the retained-call logic. 3289 // Delegate inits are a special case in that they're the only 3290 // returns-retained expression that *isn't* surrounded by 3291 // a consume. 3292 } else if (isa<CallExpr>(e) || 3293 (isa<ObjCMessageExpr>(e) && 3294 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 3295 return asImpl().visitCall(e); 3296 3297 // Look through pseudo-object expressions. 3298 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 3299 return asImpl().visitPseudoObjectExpr(pseudo); 3300 } else if (auto *be = dyn_cast<BlockExpr>(e)) 3301 return asImpl().visitBlockExpr(be); 3302 3303 return asImpl().visitExpr(e); 3304 } 3305 3306 namespace { 3307 3308 /// An emitter for +1 results. 3309 struct ARCRetainExprEmitter : 3310 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 3311 3312 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3313 3314 llvm::Value *getValueOfResult(TryEmitResult result) { 3315 return result.getPointer(); 3316 } 3317 3318 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 3319 llvm::Value *value = result.getPointer(); 3320 value = CGF.Builder.CreateBitCast(value, resultType); 3321 result.setPointer(value); 3322 return result; 3323 } 3324 3325 TryEmitResult visitLValueToRValue(const Expr *e) { 3326 return tryEmitARCRetainLoadOfScalar(CGF, e); 3327 } 3328 3329 /// For consumptions, just emit the subexpression and thus elide 3330 /// the retain/release pair. 3331 TryEmitResult visitConsumeObject(const Expr *e) { 3332 llvm::Value *result = CGF.EmitScalarExpr(e); 3333 return TryEmitResult(result, true); 3334 } 3335 3336 TryEmitResult visitBlockExpr(const BlockExpr *e) { 3337 TryEmitResult result = visitExpr(e); 3338 // Avoid the block-retain if this is a block literal that doesn't need to be 3339 // copied to the heap. 3340 if (e->getBlockDecl()->canAvoidCopyToHeap()) 3341 result.setInt(true); 3342 return result; 3343 } 3344 3345 /// Block extends are net +0. Naively, we could just recurse on 3346 /// the subexpression, but actually we need to ensure that the 3347 /// value is copied as a block, so there's a little filter here. 3348 TryEmitResult visitExtendBlockObject(const Expr *e) { 3349 llvm::Value *result; // will be a +0 value 3350 3351 // If we can't safely assume the sub-expression will produce a 3352 // block-copied value, emit the sub-expression at +0. 3353 if (shouldEmitSeparateBlockRetain(e)) { 3354 result = CGF.EmitScalarExpr(e); 3355 3356 // Otherwise, try to emit the sub-expression at +1 recursively. 3357 } else { 3358 TryEmitResult subresult = asImpl().visit(e); 3359 3360 // If that produced a retained value, just use that. 3361 if (subresult.getInt()) { 3362 return subresult; 3363 } 3364 3365 // Otherwise it's +0. 3366 result = subresult.getPointer(); 3367 } 3368 3369 // Retain the object as a block. 3370 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 3371 return TryEmitResult(result, true); 3372 } 3373 3374 /// For reclaims, emit the subexpression as a retained call and 3375 /// skip the consumption. 3376 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 3377 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3378 return TryEmitResult(result, true); 3379 } 3380 3381 /// When we have an undecorated call, retroactively do a claim. 3382 TryEmitResult visitCall(const Expr *e) { 3383 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3384 return TryEmitResult(result, true); 3385 } 3386 3387 // TODO: maybe special-case visitBinAssignWeak? 3388 3389 TryEmitResult visitExpr(const Expr *e) { 3390 // We didn't find an obvious production, so emit what we've got and 3391 // tell the caller that we didn't manage to retain. 3392 llvm::Value *result = CGF.EmitScalarExpr(e); 3393 return TryEmitResult(result, false); 3394 } 3395 }; 3396 } 3397 3398 static TryEmitResult 3399 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 3400 return ARCRetainExprEmitter(CGF).visit(e); 3401 } 3402 3403 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 3404 LValue lvalue, 3405 QualType type) { 3406 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 3407 llvm::Value *value = result.getPointer(); 3408 if (!result.getInt()) 3409 value = CGF.EmitARCRetain(type, value); 3410 return value; 3411 } 3412 3413 /// EmitARCRetainScalarExpr - Semantically equivalent to 3414 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 3415 /// best-effort attempt to peephole expressions that naturally produce 3416 /// retained objects. 3417 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 3418 // The retain needs to happen within the full-expression. 3419 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3420 RunCleanupsScope scope(*this); 3421 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 3422 } 3423 3424 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3425 llvm::Value *value = result.getPointer(); 3426 if (!result.getInt()) 3427 value = EmitARCRetain(e->getType(), value); 3428 return value; 3429 } 3430 3431 llvm::Value * 3432 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 3433 // The retain needs to happen within the full-expression. 3434 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3435 RunCleanupsScope scope(*this); 3436 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 3437 } 3438 3439 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3440 llvm::Value *value = result.getPointer(); 3441 if (result.getInt()) 3442 value = EmitARCAutorelease(value); 3443 else 3444 value = EmitARCRetainAutorelease(e->getType(), value); 3445 return value; 3446 } 3447 3448 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 3449 llvm::Value *result; 3450 bool doRetain; 3451 3452 if (shouldEmitSeparateBlockRetain(e)) { 3453 result = EmitScalarExpr(e); 3454 doRetain = true; 3455 } else { 3456 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 3457 result = subresult.getPointer(); 3458 doRetain = !subresult.getInt(); 3459 } 3460 3461 if (doRetain) 3462 result = EmitARCRetainBlock(result, /*mandatory*/ true); 3463 return EmitObjCConsumeObject(e->getType(), result); 3464 } 3465 3466 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3467 // In ARC, retain and autorelease the expression. 3468 if (getLangOpts().ObjCAutoRefCount) { 3469 // Do so before running any cleanups for the full-expression. 3470 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3471 return EmitARCRetainAutoreleaseScalarExpr(expr); 3472 } 3473 3474 // Otherwise, use the normal scalar-expression emission. The 3475 // exception machinery doesn't do anything special with the 3476 // exception like retaining it, so there's no safety associated with 3477 // only running cleanups after the throw has started, and when it 3478 // matters it tends to be substantially inferior code. 3479 return EmitScalarExpr(expr); 3480 } 3481 3482 namespace { 3483 3484 /// An emitter for assigning into an __unsafe_unretained context. 3485 struct ARCUnsafeUnretainedExprEmitter : 3486 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3487 3488 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3489 3490 llvm::Value *getValueOfResult(llvm::Value *value) { 3491 return value; 3492 } 3493 3494 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3495 return CGF.Builder.CreateBitCast(value, resultType); 3496 } 3497 3498 llvm::Value *visitLValueToRValue(const Expr *e) { 3499 return CGF.EmitScalarExpr(e); 3500 } 3501 3502 /// For consumptions, just emit the subexpression and perform the 3503 /// consumption like normal. 3504 llvm::Value *visitConsumeObject(const Expr *e) { 3505 llvm::Value *value = CGF.EmitScalarExpr(e); 3506 return CGF.EmitObjCConsumeObject(e->getType(), value); 3507 } 3508 3509 /// No special logic for block extensions. (This probably can't 3510 /// actually happen in this emitter, though.) 3511 llvm::Value *visitExtendBlockObject(const Expr *e) { 3512 return CGF.EmitARCExtendBlockObject(e); 3513 } 3514 3515 /// For reclaims, perform an unsafeClaim if that's enabled. 3516 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3517 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3518 } 3519 3520 /// When we have an undecorated call, just emit it without adding 3521 /// the unsafeClaim. 3522 llvm::Value *visitCall(const Expr *e) { 3523 return CGF.EmitScalarExpr(e); 3524 } 3525 3526 /// Just do normal scalar emission in the default case. 3527 llvm::Value *visitExpr(const Expr *e) { 3528 return CGF.EmitScalarExpr(e); 3529 } 3530 }; 3531 } 3532 3533 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3534 const Expr *e) { 3535 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3536 } 3537 3538 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3539 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3540 /// avoiding any spurious retains, including by performing reclaims 3541 /// with objc_unsafeClaimAutoreleasedReturnValue. 3542 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3543 // Look through full-expressions. 3544 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3545 RunCleanupsScope scope(*this); 3546 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3547 } 3548 3549 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3550 } 3551 3552 std::pair<LValue,llvm::Value*> 3553 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3554 bool ignored) { 3555 // Evaluate the RHS first. If we're ignoring the result, assume 3556 // that we can emit at an unsafe +0. 3557 llvm::Value *value; 3558 if (ignored) { 3559 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3560 } else { 3561 value = EmitScalarExpr(e->getRHS()); 3562 } 3563 3564 // Emit the LHS and perform the store. 3565 LValue lvalue = EmitLValue(e->getLHS()); 3566 EmitStoreOfScalar(value, lvalue); 3567 3568 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3569 } 3570 3571 std::pair<LValue,llvm::Value*> 3572 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3573 bool ignored) { 3574 // Evaluate the RHS first. 3575 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3576 llvm::Value *value = result.getPointer(); 3577 3578 bool hasImmediateRetain = result.getInt(); 3579 3580 // If we didn't emit a retained object, and the l-value is of block 3581 // type, then we need to emit the block-retain immediately in case 3582 // it invalidates the l-value. 3583 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3584 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3585 hasImmediateRetain = true; 3586 } 3587 3588 LValue lvalue = EmitLValue(e->getLHS()); 3589 3590 // If the RHS was emitted retained, expand this. 3591 if (hasImmediateRetain) { 3592 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3593 EmitStoreOfScalar(value, lvalue); 3594 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3595 } else { 3596 value = EmitARCStoreStrong(lvalue, value, ignored); 3597 } 3598 3599 return std::pair<LValue,llvm::Value*>(lvalue, value); 3600 } 3601 3602 std::pair<LValue,llvm::Value*> 3603 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3604 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3605 LValue lvalue = EmitLValue(e->getLHS()); 3606 3607 EmitStoreOfScalar(value, lvalue); 3608 3609 return std::pair<LValue,llvm::Value*>(lvalue, value); 3610 } 3611 3612 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3613 const ObjCAutoreleasePoolStmt &ARPS) { 3614 const Stmt *subStmt = ARPS.getSubStmt(); 3615 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3616 3617 CGDebugInfo *DI = getDebugInfo(); 3618 if (DI) 3619 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3620 3621 // Keep track of the current cleanup stack depth. 3622 RunCleanupsScope Scope(*this); 3623 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3624 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3625 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3626 } else { 3627 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3628 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3629 } 3630 3631 for (const auto *I : S.body()) 3632 EmitStmt(I); 3633 3634 if (DI) 3635 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3636 } 3637 3638 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3639 /// make sure it survives garbage collection until this point. 3640 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3641 // We just use an inline assembly. 3642 llvm::FunctionType *extenderType 3643 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3644 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType, 3645 /* assembly */ "", 3646 /* constraints */ "r", 3647 /* side effects */ true); 3648 3649 object = Builder.CreateBitCast(object, VoidPtrTy); 3650 EmitNounwindRuntimeCall(extender, object); 3651 } 3652 3653 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3654 /// non-trivial copy assignment function, produce following helper function. 3655 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3656 /// 3657 llvm::Constant * 3658 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3659 const ObjCPropertyImplDecl *PID) { 3660 if (!getLangOpts().CPlusPlus || 3661 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3662 return nullptr; 3663 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3664 if (!Ty->isRecordType()) 3665 return nullptr; 3666 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3667 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3668 return nullptr; 3669 llvm::Constant *HelperFn = nullptr; 3670 if (hasTrivialSetExpr(PID)) 3671 return nullptr; 3672 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3673 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3674 return HelperFn; 3675 3676 ASTContext &C = getContext(); 3677 IdentifierInfo *II 3678 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3679 3680 QualType ReturnTy = C.VoidTy; 3681 QualType DestTy = C.getPointerType(Ty); 3682 QualType SrcTy = Ty; 3683 SrcTy.addConst(); 3684 SrcTy = C.getPointerType(SrcTy); 3685 3686 SmallVector<QualType, 2> ArgTys; 3687 ArgTys.push_back(DestTy); 3688 ArgTys.push_back(SrcTy); 3689 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3690 3691 FunctionDecl *FD = FunctionDecl::Create( 3692 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3693 FunctionTy, nullptr, SC_Static, false, false); 3694 3695 FunctionArgList args; 3696 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3697 ImplicitParamDecl::Other); 3698 args.push_back(&DstDecl); 3699 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3700 ImplicitParamDecl::Other); 3701 args.push_back(&SrcDecl); 3702 3703 const CGFunctionInfo &FI = 3704 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3705 3706 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3707 3708 llvm::Function *Fn = 3709 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3710 "__assign_helper_atomic_property_", 3711 &CGM.getModule()); 3712 3713 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3714 3715 StartFunction(FD, ReturnTy, Fn, FI, args); 3716 3717 DeclRefExpr DstExpr(C, &DstDecl, false, DestTy, VK_RValue, SourceLocation()); 3718 UnaryOperator *DST = UnaryOperator::Create( 3719 C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary, 3720 SourceLocation(), false, FPOptionsOverride()); 3721 3722 DeclRefExpr SrcExpr(C, &SrcDecl, false, SrcTy, VK_RValue, SourceLocation()); 3723 UnaryOperator *SRC = UnaryOperator::Create( 3724 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3725 SourceLocation(), false, FPOptionsOverride()); 3726 3727 Expr *Args[2] = {DST, SRC}; 3728 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3729 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 3730 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(), 3731 VK_LValue, SourceLocation(), FPOptionsOverride()); 3732 3733 EmitStmt(TheCall); 3734 3735 FinishFunction(); 3736 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3737 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3738 return HelperFn; 3739 } 3740 3741 llvm::Constant * 3742 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3743 const ObjCPropertyImplDecl *PID) { 3744 if (!getLangOpts().CPlusPlus || 3745 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3746 return nullptr; 3747 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3748 QualType Ty = PD->getType(); 3749 if (!Ty->isRecordType()) 3750 return nullptr; 3751 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3752 return nullptr; 3753 llvm::Constant *HelperFn = nullptr; 3754 if (hasTrivialGetExpr(PID)) 3755 return nullptr; 3756 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3757 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3758 return HelperFn; 3759 3760 ASTContext &C = getContext(); 3761 IdentifierInfo *II = 3762 &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3763 3764 QualType ReturnTy = C.VoidTy; 3765 QualType DestTy = C.getPointerType(Ty); 3766 QualType SrcTy = Ty; 3767 SrcTy.addConst(); 3768 SrcTy = C.getPointerType(SrcTy); 3769 3770 SmallVector<QualType, 2> ArgTys; 3771 ArgTys.push_back(DestTy); 3772 ArgTys.push_back(SrcTy); 3773 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3774 3775 FunctionDecl *FD = FunctionDecl::Create( 3776 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3777 FunctionTy, nullptr, SC_Static, false, false); 3778 3779 FunctionArgList args; 3780 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3781 ImplicitParamDecl::Other); 3782 args.push_back(&DstDecl); 3783 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3784 ImplicitParamDecl::Other); 3785 args.push_back(&SrcDecl); 3786 3787 const CGFunctionInfo &FI = 3788 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3789 3790 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3791 3792 llvm::Function *Fn = llvm::Function::Create( 3793 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_", 3794 &CGM.getModule()); 3795 3796 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3797 3798 StartFunction(FD, ReturnTy, Fn, FI, args); 3799 3800 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue, 3801 SourceLocation()); 3802 3803 UnaryOperator *SRC = UnaryOperator::Create( 3804 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3805 SourceLocation(), false, FPOptionsOverride()); 3806 3807 CXXConstructExpr *CXXConstExpr = 3808 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3809 3810 SmallVector<Expr*, 4> ConstructorArgs; 3811 ConstructorArgs.push_back(SRC); 3812 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3813 CXXConstExpr->arg_end()); 3814 3815 CXXConstructExpr *TheCXXConstructExpr = 3816 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3817 CXXConstExpr->getConstructor(), 3818 CXXConstExpr->isElidable(), 3819 ConstructorArgs, 3820 CXXConstExpr->hadMultipleCandidates(), 3821 CXXConstExpr->isListInitialization(), 3822 CXXConstExpr->isStdInitListInitialization(), 3823 CXXConstExpr->requiresZeroInitialization(), 3824 CXXConstExpr->getConstructionKind(), 3825 SourceRange()); 3826 3827 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue, 3828 SourceLocation()); 3829 3830 RValue DV = EmitAnyExpr(&DstExpr); 3831 CharUnits Alignment 3832 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3833 EmitAggExpr(TheCXXConstructExpr, 3834 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3835 Qualifiers(), 3836 AggValueSlot::IsDestructed, 3837 AggValueSlot::DoesNotNeedGCBarriers, 3838 AggValueSlot::IsNotAliased, 3839 AggValueSlot::DoesNotOverlap)); 3840 3841 FinishFunction(); 3842 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3843 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3844 return HelperFn; 3845 } 3846 3847 llvm::Value * 3848 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3849 // Get selectors for retain/autorelease. 3850 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3851 Selector CopySelector = 3852 getContext().Selectors.getNullarySelector(CopyID); 3853 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3854 Selector AutoreleaseSelector = 3855 getContext().Selectors.getNullarySelector(AutoreleaseID); 3856 3857 // Emit calls to retain/autorelease. 3858 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3859 llvm::Value *Val = Block; 3860 RValue Result; 3861 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3862 Ty, CopySelector, 3863 Val, CallArgList(), nullptr, nullptr); 3864 Val = Result.getScalarVal(); 3865 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3866 Ty, AutoreleaseSelector, 3867 Val, CallArgList(), nullptr, nullptr); 3868 Val = Result.getScalarVal(); 3869 return Val; 3870 } 3871 3872 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) { 3873 switch (TT.getOS()) { 3874 case llvm::Triple::Darwin: 3875 case llvm::Triple::MacOSX: 3876 return llvm::MachO::PLATFORM_MACOS; 3877 case llvm::Triple::IOS: 3878 return llvm::MachO::PLATFORM_IOS; 3879 case llvm::Triple::TvOS: 3880 return llvm::MachO::PLATFORM_TVOS; 3881 case llvm::Triple::WatchOS: 3882 return llvm::MachO::PLATFORM_WATCHOS; 3883 default: 3884 return /*Unknown platform*/ 0; 3885 } 3886 } 3887 3888 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF, 3889 const VersionTuple &Version) { 3890 CodeGenModule &CGM = CGF.CGM; 3891 // Note: we intend to support multi-platform version checks, so reserve 3892 // the room for a dual platform checking invocation that will be 3893 // implemented in the future. 3894 llvm::SmallVector<llvm::Value *, 8> Args; 3895 3896 auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) { 3897 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 3898 Args.push_back( 3899 llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT))); 3900 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor())); 3901 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0)); 3902 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0)); 3903 }; 3904 3905 assert(!Version.empty() && "unexpected empty version"); 3906 EmitArgs(Version, CGM.getTarget().getTriple()); 3907 3908 if (!CGM.IsPlatformVersionAtLeastFn) { 3909 llvm::FunctionType *FTy = llvm::FunctionType::get( 3910 CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty}, 3911 false); 3912 CGM.IsPlatformVersionAtLeastFn = 3913 CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast"); 3914 } 3915 3916 llvm::Value *Check = 3917 CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args); 3918 return CGF.Builder.CreateICmpNE(Check, 3919 llvm::Constant::getNullValue(CGM.Int32Ty)); 3920 } 3921 3922 llvm::Value * 3923 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) { 3924 // Darwin uses the new __isPlatformVersionAtLeast family of routines. 3925 if (CGM.getTarget().getTriple().isOSDarwin()) 3926 return emitIsPlatformVersionAtLeast(*this, Version); 3927 3928 if (!CGM.IsOSVersionAtLeastFn) { 3929 llvm::FunctionType *FTy = 3930 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 3931 CGM.IsOSVersionAtLeastFn = 3932 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 3933 } 3934 3935 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 3936 llvm::Value *Args[] = { 3937 llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()), 3938 llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0), 3939 llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0), 3940 }; 3941 3942 llvm::Value *CallRes = 3943 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 3944 3945 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 3946 } 3947 3948 static bool isFoundationNeededForDarwinAvailabilityCheck( 3949 const llvm::Triple &TT, const VersionTuple &TargetVersion) { 3950 VersionTuple FoundationDroppedInVersion; 3951 switch (TT.getOS()) { 3952 case llvm::Triple::IOS: 3953 case llvm::Triple::TvOS: 3954 FoundationDroppedInVersion = VersionTuple(/*Major=*/13); 3955 break; 3956 case llvm::Triple::WatchOS: 3957 FoundationDroppedInVersion = VersionTuple(/*Major=*/6); 3958 break; 3959 case llvm::Triple::Darwin: 3960 case llvm::Triple::MacOSX: 3961 FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15); 3962 break; 3963 default: 3964 llvm_unreachable("Unexpected OS"); 3965 } 3966 return TargetVersion < FoundationDroppedInVersion; 3967 } 3968 3969 void CodeGenModule::emitAtAvailableLinkGuard() { 3970 if (!IsPlatformVersionAtLeastFn) 3971 return; 3972 // @available requires CoreFoundation only on Darwin. 3973 if (!Target.getTriple().isOSDarwin()) 3974 return; 3975 // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or 3976 // watchOS 6+. 3977 if (!isFoundationNeededForDarwinAvailabilityCheck( 3978 Target.getTriple(), Target.getPlatformMinVersion())) 3979 return; 3980 // Add -framework CoreFoundation to the linker commands. We still want to 3981 // emit the core foundation reference down below because otherwise if 3982 // CoreFoundation is not used in the code, the linker won't link the 3983 // framework. 3984 auto &Context = getLLVMContext(); 3985 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3986 llvm::MDString::get(Context, "CoreFoundation")}; 3987 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 3988 // Emit a reference to a symbol from CoreFoundation to ensure that 3989 // CoreFoundation is linked into the final binary. 3990 llvm::FunctionType *FTy = 3991 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 3992 llvm::FunctionCallee CFFunc = 3993 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 3994 3995 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 3996 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction( 3997 CheckFTy, "__clang_at_available_requires_core_foundation_framework", 3998 llvm::AttributeList(), /*Local=*/true); 3999 llvm::Function *CFLinkCheckFunc = 4000 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts()); 4001 if (CFLinkCheckFunc->empty()) { 4002 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 4003 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 4004 CodeGenFunction CGF(*this); 4005 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 4006 CGF.EmitNounwindRuntimeCall(CFFunc, 4007 llvm::Constant::getNullValue(VoidPtrTy)); 4008 CGF.Builder.CreateUnreachable(); 4009 addCompilerUsedGlobal(CFLinkCheckFunc); 4010 } 4011 } 4012 4013 CGObjCRuntime::~CGObjCRuntime() {} 4014