1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 35 QualType ET, 36 RValue Result); 37 38 /// Given the address of a variable of pointer type, find the correct 39 /// null to store into it. 40 static llvm::Constant *getNullForVariable(llvm::Value *addr) { 41 llvm::Type *type = 42 cast<llvm::PointerType>(addr->getType())->getElementType(); 43 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 44 } 45 46 /// Emits an instance of NSConstantString representing the object. 47 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 48 { 49 llvm::Constant *C = 50 CGM.getObjCRuntime().GenerateConstantString(E->getString()); 51 // FIXME: This bitcast should just be made an invariant on the Runtime. 52 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 53 } 54 55 /// EmitObjCBoxedExpr - This routine generates code to call 56 /// the appropriate expression boxing method. This will either be 57 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 58 /// or [NSValue valueWithBytes:objCType:]. 59 /// 60 llvm::Value * 61 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 62 // Generate the correct selector for this literal's concrete type. 63 // Get the method. 64 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 65 const Expr *SubExpr = E->getSubExpr(); 66 assert(BoxingMethod && "BoxingMethod is null"); 67 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 68 Selector Sel = BoxingMethod->getSelector(); 69 70 // Generate a reference to the class pointer, which will be the receiver. 71 // Assumes that the method was introduced in the class that should be 72 // messaged (avoids pulling it out of the result type). 73 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 74 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 75 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 76 77 CallArgList Args; 78 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 79 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 80 81 // ObjCBoxedExpr supports boxing of structs and unions 82 // via [NSValue valueWithBytes:objCType:] 83 const QualType ValueType(SubExpr->getType().getCanonicalType()); 84 if (ValueType->isObjCBoxableRecordType()) { 85 // Emit CodeGen for first parameter 86 // and cast value to correct type 87 llvm::Value *Temporary = CreateMemTemp(SubExpr->getType()); 88 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 89 llvm::Value *BitCast = Builder.CreateBitCast(Temporary, 90 ConvertType(ArgQT)); 91 Args.add(RValue::get(BitCast), ArgQT); 92 93 // Create char array to store type encoding 94 std::string Str; 95 getContext().getObjCEncodingForType(ValueType, Str); 96 llvm::GlobalVariable *GV = CGM.GetAddrOfConstantCString(Str); 97 98 // Cast type encoding to correct type 99 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 100 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 101 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 102 103 Args.add(RValue::get(Cast), EncodingQT); 104 } else { 105 Args.add(EmitAnyExpr(SubExpr), ArgQT); 106 } 107 108 RValue result = Runtime.GenerateMessageSend( 109 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 110 Args, ClassDecl, BoxingMethod); 111 return Builder.CreateBitCast(result.getScalarVal(), 112 ConvertType(E->getType())); 113 } 114 115 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 116 const ObjCMethodDecl *MethodWithObjects) { 117 ASTContext &Context = CGM.getContext(); 118 const ObjCDictionaryLiteral *DLE = nullptr; 119 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 120 if (!ALE) 121 DLE = cast<ObjCDictionaryLiteral>(E); 122 123 // Compute the type of the array we're initializing. 124 uint64_t NumElements = 125 ALE ? ALE->getNumElements() : DLE->getNumElements(); 126 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 127 NumElements); 128 QualType ElementType = Context.getObjCIdType().withConst(); 129 QualType ElementArrayType 130 = Context.getConstantArrayType(ElementType, APNumElements, 131 ArrayType::Normal, /*IndexTypeQuals=*/0); 132 133 // Allocate the temporary array(s). 134 llvm::AllocaInst *Objects = CreateMemTemp(ElementArrayType, "objects"); 135 llvm::AllocaInst *Keys = nullptr; 136 if (DLE) 137 Keys = CreateMemTemp(ElementArrayType, "keys"); 138 139 // In ARC, we may need to do extra work to keep all the keys and 140 // values alive until after the call. 141 SmallVector<llvm::Value *, 16> NeededObjects; 142 bool TrackNeededObjects = 143 (getLangOpts().ObjCAutoRefCount && 144 CGM.getCodeGenOpts().OptimizationLevel != 0); 145 146 // Perform the actual initialialization of the array(s). 147 for (uint64_t i = 0; i < NumElements; i++) { 148 if (ALE) { 149 // Emit the element and store it to the appropriate array slot. 150 const Expr *Rhs = ALE->getElement(i); 151 LValue LV = LValue::MakeAddr( 152 Builder.CreateStructGEP(Objects->getAllocatedType(), Objects, i), 153 ElementType, Context.getTypeAlignInChars(Rhs->getType()), Context); 154 155 llvm::Value *value = EmitScalarExpr(Rhs); 156 EmitStoreThroughLValue(RValue::get(value), LV, true); 157 if (TrackNeededObjects) { 158 NeededObjects.push_back(value); 159 } 160 } else { 161 // Emit the key and store it to the appropriate array slot. 162 const Expr *Key = DLE->getKeyValueElement(i).Key; 163 LValue KeyLV = LValue::MakeAddr( 164 Builder.CreateStructGEP(Keys->getAllocatedType(), Keys, i), 165 ElementType, Context.getTypeAlignInChars(Key->getType()), Context); 166 llvm::Value *keyValue = EmitScalarExpr(Key); 167 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 168 169 // Emit the value and store it to the appropriate array slot. 170 const Expr *Value = DLE->getKeyValueElement(i).Value; 171 LValue ValueLV = LValue::MakeAddr( 172 Builder.CreateStructGEP(Objects->getAllocatedType(), Objects, i), 173 ElementType, Context.getTypeAlignInChars(Value->getType()), Context); 174 llvm::Value *valueValue = EmitScalarExpr(Value); 175 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 176 if (TrackNeededObjects) { 177 NeededObjects.push_back(keyValue); 178 NeededObjects.push_back(valueValue); 179 } 180 } 181 } 182 183 // Generate the argument list. 184 CallArgList Args; 185 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 186 const ParmVarDecl *argDecl = *PI++; 187 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 188 Args.add(RValue::get(Objects), ArgQT); 189 if (DLE) { 190 argDecl = *PI++; 191 ArgQT = argDecl->getType().getUnqualifiedType(); 192 Args.add(RValue::get(Keys), ArgQT); 193 } 194 argDecl = *PI; 195 ArgQT = argDecl->getType().getUnqualifiedType(); 196 llvm::Value *Count = 197 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 198 Args.add(RValue::get(Count), ArgQT); 199 200 // Generate a reference to the class pointer, which will be the receiver. 201 Selector Sel = MethodWithObjects->getSelector(); 202 QualType ResultType = E->getType(); 203 const ObjCObjectPointerType *InterfacePointerType 204 = ResultType->getAsObjCInterfacePointerType(); 205 ObjCInterfaceDecl *Class 206 = InterfacePointerType->getObjectType()->getInterface(); 207 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 208 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 209 210 // Generate the message send. 211 RValue result = Runtime.GenerateMessageSend( 212 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 213 Receiver, Args, Class, MethodWithObjects); 214 215 // The above message send needs these objects, but in ARC they are 216 // passed in a buffer that is essentially __unsafe_unretained. 217 // Therefore we must prevent the optimizer from releasing them until 218 // after the call. 219 if (TrackNeededObjects) { 220 EmitARCIntrinsicUse(NeededObjects); 221 } 222 223 return Builder.CreateBitCast(result.getScalarVal(), 224 ConvertType(E->getType())); 225 } 226 227 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 228 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 229 } 230 231 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 232 const ObjCDictionaryLiteral *E) { 233 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 234 } 235 236 /// Emit a selector. 237 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 238 // Untyped selector. 239 // Note that this implementation allows for non-constant strings to be passed 240 // as arguments to @selector(). Currently, the only thing preventing this 241 // behaviour is the type checking in the front end. 242 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 243 } 244 245 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 246 // FIXME: This should pass the Decl not the name. 247 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 248 } 249 250 /// \brief Adjust the type of an Objective-C object that doesn't match up due 251 /// to type erasure at various points, e.g., related result types or the use 252 /// of parameterized classes. 253 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 254 RValue Result) { 255 if (!ExpT->isObjCRetainableType()) 256 return Result; 257 258 // If the converted types are the same, we're done. 259 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 260 if (ExpLLVMTy == Result.getScalarVal()->getType()) 261 return Result; 262 263 // We have applied a substitution. Cast the rvalue appropriately. 264 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 265 ExpLLVMTy)); 266 } 267 268 /// Decide whether to extend the lifetime of the receiver of a 269 /// returns-inner-pointer message. 270 static bool 271 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 272 switch (message->getReceiverKind()) { 273 274 // For a normal instance message, we should extend unless the 275 // receiver is loaded from a variable with precise lifetime. 276 case ObjCMessageExpr::Instance: { 277 const Expr *receiver = message->getInstanceReceiver(); 278 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 279 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 280 receiver = ice->getSubExpr()->IgnoreParens(); 281 282 // Only __strong variables. 283 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 284 return true; 285 286 // All ivars and fields have precise lifetime. 287 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 288 return false; 289 290 // Otherwise, check for variables. 291 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 292 if (!declRef) return true; 293 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 294 if (!var) return true; 295 296 // All variables have precise lifetime except local variables with 297 // automatic storage duration that aren't specially marked. 298 return (var->hasLocalStorage() && 299 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 300 } 301 302 case ObjCMessageExpr::Class: 303 case ObjCMessageExpr::SuperClass: 304 // It's never necessary for class objects. 305 return false; 306 307 case ObjCMessageExpr::SuperInstance: 308 // We generally assume that 'self' lives throughout a method call. 309 return false; 310 } 311 312 llvm_unreachable("invalid receiver kind"); 313 } 314 315 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 316 ReturnValueSlot Return) { 317 // Only the lookup mechanism and first two arguments of the method 318 // implementation vary between runtimes. We can get the receiver and 319 // arguments in generic code. 320 321 bool isDelegateInit = E->isDelegateInitCall(); 322 323 const ObjCMethodDecl *method = E->getMethodDecl(); 324 325 // We don't retain the receiver in delegate init calls, and this is 326 // safe because the receiver value is always loaded from 'self', 327 // which we zero out. We don't want to Block_copy block receivers, 328 // though. 329 bool retainSelf = 330 (!isDelegateInit && 331 CGM.getLangOpts().ObjCAutoRefCount && 332 method && 333 method->hasAttr<NSConsumesSelfAttr>()); 334 335 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 336 bool isSuperMessage = false; 337 bool isClassMessage = false; 338 ObjCInterfaceDecl *OID = nullptr; 339 // Find the receiver 340 QualType ReceiverType; 341 llvm::Value *Receiver = nullptr; 342 switch (E->getReceiverKind()) { 343 case ObjCMessageExpr::Instance: 344 ReceiverType = E->getInstanceReceiver()->getType(); 345 if (retainSelf) { 346 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 347 E->getInstanceReceiver()); 348 Receiver = ter.getPointer(); 349 if (ter.getInt()) retainSelf = false; 350 } else 351 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 352 break; 353 354 case ObjCMessageExpr::Class: { 355 ReceiverType = E->getClassReceiver(); 356 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 357 assert(ObjTy && "Invalid Objective-C class message send"); 358 OID = ObjTy->getInterface(); 359 assert(OID && "Invalid Objective-C class message send"); 360 Receiver = Runtime.GetClass(*this, OID); 361 isClassMessage = true; 362 break; 363 } 364 365 case ObjCMessageExpr::SuperInstance: 366 ReceiverType = E->getSuperType(); 367 Receiver = LoadObjCSelf(); 368 isSuperMessage = true; 369 break; 370 371 case ObjCMessageExpr::SuperClass: 372 ReceiverType = E->getSuperType(); 373 Receiver = LoadObjCSelf(); 374 isSuperMessage = true; 375 isClassMessage = true; 376 break; 377 } 378 379 if (retainSelf) 380 Receiver = EmitARCRetainNonBlock(Receiver); 381 382 // In ARC, we sometimes want to "extend the lifetime" 383 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 384 // messages. 385 if (getLangOpts().ObjCAutoRefCount && method && 386 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 387 shouldExtendReceiverForInnerPointerMessage(E)) 388 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 389 390 QualType ResultType = method ? method->getReturnType() : E->getType(); 391 392 CallArgList Args; 393 EmitCallArgs(Args, method, E->arg_begin(), E->arg_end()); 394 395 // For delegate init calls in ARC, do an unsafe store of null into 396 // self. This represents the call taking direct ownership of that 397 // value. We have to do this after emitting the other call 398 // arguments because they might also reference self, but we don't 399 // have to worry about any of them modifying self because that would 400 // be an undefined read and write of an object in unordered 401 // expressions. 402 if (isDelegateInit) { 403 assert(getLangOpts().ObjCAutoRefCount && 404 "delegate init calls should only be marked in ARC"); 405 406 // Do an unsafe store of null into self. 407 llvm::Value *selfAddr = 408 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 409 assert(selfAddr && "no self entry for a delegate init call?"); 410 411 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 412 } 413 414 RValue result; 415 if (isSuperMessage) { 416 // super is only valid in an Objective-C method 417 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 418 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 419 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 420 E->getSelector(), 421 OMD->getClassInterface(), 422 isCategoryImpl, 423 Receiver, 424 isClassMessage, 425 Args, 426 method); 427 } else { 428 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 429 E->getSelector(), 430 Receiver, Args, OID, 431 method); 432 } 433 434 // For delegate init calls in ARC, implicitly store the result of 435 // the call back into self. This takes ownership of the value. 436 if (isDelegateInit) { 437 llvm::Value *selfAddr = 438 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; 439 llvm::Value *newSelf = result.getScalarVal(); 440 441 // The delegate return type isn't necessarily a matching type; in 442 // fact, it's quite likely to be 'id'. 443 llvm::Type *selfTy = 444 cast<llvm::PointerType>(selfAddr->getType())->getElementType(); 445 newSelf = Builder.CreateBitCast(newSelf, selfTy); 446 447 Builder.CreateStore(newSelf, selfAddr); 448 } 449 450 return AdjustObjCObjectType(*this, E->getType(), result); 451 } 452 453 namespace { 454 struct FinishARCDealloc : EHScopeStack::Cleanup { 455 void Emit(CodeGenFunction &CGF, Flags flags) override { 456 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 457 458 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 459 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 460 if (!iface->getSuperClass()) return; 461 462 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 463 464 // Call [super dealloc] if we have a superclass. 465 llvm::Value *self = CGF.LoadObjCSelf(); 466 467 CallArgList args; 468 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 469 CGF.getContext().VoidTy, 470 method->getSelector(), 471 iface, 472 isCategory, 473 self, 474 /*is class msg*/ false, 475 args, 476 method); 477 } 478 }; 479 } 480 481 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 482 /// the LLVM function and sets the other context used by 483 /// CodeGenFunction. 484 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 485 const ObjCContainerDecl *CD) { 486 SourceLocation StartLoc = OMD->getLocStart(); 487 FunctionArgList args; 488 // Check if we should generate debug info for this method. 489 if (OMD->hasAttr<NoDebugAttr>()) 490 DebugInfo = nullptr; // disable debug info indefinitely for this function 491 492 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 493 494 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 495 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 496 497 args.push_back(OMD->getSelfDecl()); 498 args.push_back(OMD->getCmdDecl()); 499 500 args.append(OMD->param_begin(), OMD->param_end()); 501 502 CurGD = OMD; 503 CurEHLocation = OMD->getLocEnd(); 504 505 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 506 OMD->getLocation(), StartLoc); 507 508 // In ARC, certain methods get an extra cleanup. 509 if (CGM.getLangOpts().ObjCAutoRefCount && 510 OMD->isInstanceMethod() && 511 OMD->getSelector().isUnarySelector()) { 512 const IdentifierInfo *ident = 513 OMD->getSelector().getIdentifierInfoForSlot(0); 514 if (ident->isStr("dealloc")) 515 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 516 } 517 } 518 519 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 520 LValue lvalue, QualType type); 521 522 /// Generate an Objective-C method. An Objective-C method is a C function with 523 /// its pointer, name, and types registered in the class struture. 524 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 525 StartObjCMethod(OMD, OMD->getClassInterface()); 526 PGO.assignRegionCounters(OMD, CurFn); 527 assert(isa<CompoundStmt>(OMD->getBody())); 528 incrementProfileCounter(OMD->getBody()); 529 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 530 FinishFunction(OMD->getBodyRBrace()); 531 } 532 533 /// emitStructGetterCall - Call the runtime function to load a property 534 /// into the return value slot. 535 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 536 bool isAtomic, bool hasStrong) { 537 ASTContext &Context = CGF.getContext(); 538 539 llvm::Value *src = 540 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), 541 ivar, 0).getAddress(); 542 543 // objc_copyStruct (ReturnValue, &structIvar, 544 // sizeof (Type of Ivar), isAtomic, false); 545 CallArgList args; 546 547 llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 548 args.add(RValue::get(dest), Context.VoidPtrTy); 549 550 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 551 args.add(RValue::get(src), Context.VoidPtrTy); 552 553 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 554 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 555 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 556 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 557 558 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 559 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args, 560 FunctionType::ExtInfo(), 561 RequiredArgs::All), 562 fn, ReturnValueSlot(), args); 563 } 564 565 /// Determine whether the given architecture supports unaligned atomic 566 /// accesses. They don't have to be fast, just faster than a function 567 /// call and a mutex. 568 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 569 // FIXME: Allow unaligned atomic load/store on x86. (It is not 570 // currently supported by the backend.) 571 return 0; 572 } 573 574 /// Return the maximum size that permits atomic accesses for the given 575 /// architecture. 576 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 577 llvm::Triple::ArchType arch) { 578 // ARM has 8-byte atomic accesses, but it's not clear whether we 579 // want to rely on them here. 580 581 // In the default case, just assume that any size up to a pointer is 582 // fine given adequate alignment. 583 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 584 } 585 586 namespace { 587 class PropertyImplStrategy { 588 public: 589 enum StrategyKind { 590 /// The 'native' strategy is to use the architecture's provided 591 /// reads and writes. 592 Native, 593 594 /// Use objc_setProperty and objc_getProperty. 595 GetSetProperty, 596 597 /// Use objc_setProperty for the setter, but use expression 598 /// evaluation for the getter. 599 SetPropertyAndExpressionGet, 600 601 /// Use objc_copyStruct. 602 CopyStruct, 603 604 /// The 'expression' strategy is to emit normal assignment or 605 /// lvalue-to-rvalue expressions. 606 Expression 607 }; 608 609 StrategyKind getKind() const { return StrategyKind(Kind); } 610 611 bool hasStrongMember() const { return HasStrong; } 612 bool isAtomic() const { return IsAtomic; } 613 bool isCopy() const { return IsCopy; } 614 615 CharUnits getIvarSize() const { return IvarSize; } 616 CharUnits getIvarAlignment() const { return IvarAlignment; } 617 618 PropertyImplStrategy(CodeGenModule &CGM, 619 const ObjCPropertyImplDecl *propImpl); 620 621 private: 622 unsigned Kind : 8; 623 unsigned IsAtomic : 1; 624 unsigned IsCopy : 1; 625 unsigned HasStrong : 1; 626 627 CharUnits IvarSize; 628 CharUnits IvarAlignment; 629 }; 630 } 631 632 /// Pick an implementation strategy for the given property synthesis. 633 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 634 const ObjCPropertyImplDecl *propImpl) { 635 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 636 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 637 638 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 639 IsAtomic = prop->isAtomic(); 640 HasStrong = false; // doesn't matter here. 641 642 // Evaluate the ivar's size and alignment. 643 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 644 QualType ivarType = ivar->getType(); 645 std::tie(IvarSize, IvarAlignment) = 646 CGM.getContext().getTypeInfoInChars(ivarType); 647 648 // If we have a copy property, we always have to use getProperty/setProperty. 649 // TODO: we could actually use setProperty and an expression for non-atomics. 650 if (IsCopy) { 651 Kind = GetSetProperty; 652 return; 653 } 654 655 // Handle retain. 656 if (setterKind == ObjCPropertyDecl::Retain) { 657 // In GC-only, there's nothing special that needs to be done. 658 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 659 // fallthrough 660 661 // In ARC, if the property is non-atomic, use expression emission, 662 // which translates to objc_storeStrong. This isn't required, but 663 // it's slightly nicer. 664 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 665 // Using standard expression emission for the setter is only 666 // acceptable if the ivar is __strong, which won't be true if 667 // the property is annotated with __attribute__((NSObject)). 668 // TODO: falling all the way back to objc_setProperty here is 669 // just laziness, though; we could still use objc_storeStrong 670 // if we hacked it right. 671 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 672 Kind = Expression; 673 else 674 Kind = SetPropertyAndExpressionGet; 675 return; 676 677 // Otherwise, we need to at least use setProperty. However, if 678 // the property isn't atomic, we can use normal expression 679 // emission for the getter. 680 } else if (!IsAtomic) { 681 Kind = SetPropertyAndExpressionGet; 682 return; 683 684 // Otherwise, we have to use both setProperty and getProperty. 685 } else { 686 Kind = GetSetProperty; 687 return; 688 } 689 } 690 691 // If we're not atomic, just use expression accesses. 692 if (!IsAtomic) { 693 Kind = Expression; 694 return; 695 } 696 697 // Properties on bitfield ivars need to be emitted using expression 698 // accesses even if they're nominally atomic. 699 if (ivar->isBitField()) { 700 Kind = Expression; 701 return; 702 } 703 704 // GC-qualified or ARC-qualified ivars need to be emitted as 705 // expressions. This actually works out to being atomic anyway, 706 // except for ARC __strong, but that should trigger the above code. 707 if (ivarType.hasNonTrivialObjCLifetime() || 708 (CGM.getLangOpts().getGC() && 709 CGM.getContext().getObjCGCAttrKind(ivarType))) { 710 Kind = Expression; 711 return; 712 } 713 714 // Compute whether the ivar has strong members. 715 if (CGM.getLangOpts().getGC()) 716 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 717 HasStrong = recordType->getDecl()->hasObjectMember(); 718 719 // We can never access structs with object members with a native 720 // access, because we need to use write barriers. This is what 721 // objc_copyStruct is for. 722 if (HasStrong) { 723 Kind = CopyStruct; 724 return; 725 } 726 727 // Otherwise, this is target-dependent and based on the size and 728 // alignment of the ivar. 729 730 // If the size of the ivar is not a power of two, give up. We don't 731 // want to get into the business of doing compare-and-swaps. 732 if (!IvarSize.isPowerOfTwo()) { 733 Kind = CopyStruct; 734 return; 735 } 736 737 llvm::Triple::ArchType arch = 738 CGM.getTarget().getTriple().getArch(); 739 740 // Most architectures require memory to fit within a single cache 741 // line, so the alignment has to be at least the size of the access. 742 // Otherwise we have to grab a lock. 743 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 744 Kind = CopyStruct; 745 return; 746 } 747 748 // If the ivar's size exceeds the architecture's maximum atomic 749 // access size, we have to use CopyStruct. 750 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 751 Kind = CopyStruct; 752 return; 753 } 754 755 // Otherwise, we can use native loads and stores. 756 Kind = Native; 757 } 758 759 /// \brief Generate an Objective-C property getter function. 760 /// 761 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 762 /// is illegal within a category. 763 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 764 const ObjCPropertyImplDecl *PID) { 765 llvm::Constant *AtomicHelperFn = 766 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 767 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 768 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 769 assert(OMD && "Invalid call to generate getter (empty method)"); 770 StartObjCMethod(OMD, IMP->getClassInterface()); 771 772 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 773 774 FinishFunction(); 775 } 776 777 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 778 const Expr *getter = propImpl->getGetterCXXConstructor(); 779 if (!getter) return true; 780 781 // Sema only makes only of these when the ivar has a C++ class type, 782 // so the form is pretty constrained. 783 784 // If the property has a reference type, we might just be binding a 785 // reference, in which case the result will be a gl-value. We should 786 // treat this as a non-trivial operation. 787 if (getter->isGLValue()) 788 return false; 789 790 // If we selected a trivial copy-constructor, we're okay. 791 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 792 return (construct->getConstructor()->isTrivial()); 793 794 // The constructor might require cleanups (in which case it's never 795 // trivial). 796 assert(isa<ExprWithCleanups>(getter)); 797 return false; 798 } 799 800 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 801 /// copy the ivar into the resturn slot. 802 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 803 llvm::Value *returnAddr, 804 ObjCIvarDecl *ivar, 805 llvm::Constant *AtomicHelperFn) { 806 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 807 // AtomicHelperFn); 808 CallArgList args; 809 810 // The 1st argument is the return Slot. 811 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 812 813 // The 2nd argument is the address of the ivar. 814 llvm::Value *ivarAddr = 815 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 816 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 817 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 818 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 819 820 // Third argument is the helper function. 821 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 822 823 llvm::Value *copyCppAtomicObjectFn = 824 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 825 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 826 args, 827 FunctionType::ExtInfo(), 828 RequiredArgs::All), 829 copyCppAtomicObjectFn, ReturnValueSlot(), args); 830 } 831 832 void 833 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 834 const ObjCPropertyImplDecl *propImpl, 835 const ObjCMethodDecl *GetterMethodDecl, 836 llvm::Constant *AtomicHelperFn) { 837 // If there's a non-trivial 'get' expression, we just have to emit that. 838 if (!hasTrivialGetExpr(propImpl)) { 839 if (!AtomicHelperFn) { 840 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 841 /*nrvo*/ nullptr); 842 EmitReturnStmt(ret); 843 } 844 else { 845 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 846 emitCPPObjectAtomicGetterCall(*this, ReturnValue, 847 ivar, AtomicHelperFn); 848 } 849 return; 850 } 851 852 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 853 QualType propType = prop->getType(); 854 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 855 856 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 857 858 // Pick an implementation strategy. 859 PropertyImplStrategy strategy(CGM, propImpl); 860 switch (strategy.getKind()) { 861 case PropertyImplStrategy::Native: { 862 // We don't need to do anything for a zero-size struct. 863 if (strategy.getIvarSize().isZero()) 864 return; 865 866 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 867 868 // Currently, all atomic accesses have to be through integer 869 // types, so there's no point in trying to pick a prettier type. 870 llvm::Type *bitcastType = 871 llvm::Type::getIntNTy(getLLVMContext(), 872 getContext().toBits(strategy.getIvarSize())); 873 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 874 875 // Perform an atomic load. This does not impose ordering constraints. 876 llvm::Value *ivarAddr = LV.getAddress(); 877 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 878 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 879 load->setAlignment(strategy.getIvarAlignment().getQuantity()); 880 load->setAtomic(llvm::Unordered); 881 882 // Store that value into the return address. Doing this with a 883 // bitcast is likely to produce some pretty ugly IR, but it's not 884 // the *most* terrible thing in the world. 885 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType)); 886 887 // Make sure we don't do an autorelease. 888 AutoreleaseResult = false; 889 return; 890 } 891 892 case PropertyImplStrategy::GetSetProperty: { 893 llvm::Value *getPropertyFn = 894 CGM.getObjCRuntime().GetPropertyGetFunction(); 895 if (!getPropertyFn) { 896 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 897 return; 898 } 899 900 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 901 // FIXME: Can't this be simpler? This might even be worse than the 902 // corresponding gcc code. 903 llvm::Value *cmd = 904 Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd"); 905 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 906 llvm::Value *ivarOffset = 907 EmitIvarOffset(classImpl->getClassInterface(), ivar); 908 909 CallArgList args; 910 args.add(RValue::get(self), getContext().getObjCIdType()); 911 args.add(RValue::get(cmd), getContext().getObjCSelType()); 912 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 913 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 914 getContext().BoolTy); 915 916 // FIXME: We shouldn't need to get the function info here, the 917 // runtime already should have computed it to build the function. 918 llvm::Instruction *CallInstruction; 919 RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args, 920 FunctionType::ExtInfo(), 921 RequiredArgs::All), 922 getPropertyFn, ReturnValueSlot(), args, nullptr, 923 &CallInstruction); 924 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 925 call->setTailCall(); 926 927 // We need to fix the type here. Ivars with copy & retain are 928 // always objects so we don't need to worry about complex or 929 // aggregates. 930 RV = RValue::get(Builder.CreateBitCast( 931 RV.getScalarVal(), 932 getTypes().ConvertType(getterMethod->getReturnType()))); 933 934 EmitReturnOfRValue(RV, propType); 935 936 // objc_getProperty does an autorelease, so we should suppress ours. 937 AutoreleaseResult = false; 938 939 return; 940 } 941 942 case PropertyImplStrategy::CopyStruct: 943 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 944 strategy.hasStrongMember()); 945 return; 946 947 case PropertyImplStrategy::Expression: 948 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 949 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 950 951 QualType ivarType = ivar->getType(); 952 switch (getEvaluationKind(ivarType)) { 953 case TEK_Complex: { 954 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 955 EmitStoreOfComplex(pair, 956 MakeNaturalAlignAddrLValue(ReturnValue, ivarType), 957 /*init*/ true); 958 return; 959 } 960 case TEK_Aggregate: 961 // The return value slot is guaranteed to not be aliased, but 962 // that's not necessarily the same as "on the stack", so 963 // we still potentially need objc_memmove_collectable. 964 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 965 return; 966 case TEK_Scalar: { 967 llvm::Value *value; 968 if (propType->isReferenceType()) { 969 value = LV.getAddress(); 970 } else { 971 // We want to load and autoreleaseReturnValue ARC __weak ivars. 972 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 973 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 974 975 // Otherwise we want to do a simple load, suppressing the 976 // final autorelease. 977 } else { 978 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 979 AutoreleaseResult = false; 980 } 981 982 value = Builder.CreateBitCast(value, ConvertType(propType)); 983 value = Builder.CreateBitCast( 984 value, ConvertType(GetterMethodDecl->getReturnType())); 985 } 986 987 EmitReturnOfRValue(RValue::get(value), propType); 988 return; 989 } 990 } 991 llvm_unreachable("bad evaluation kind"); 992 } 993 994 } 995 llvm_unreachable("bad @property implementation strategy!"); 996 } 997 998 /// emitStructSetterCall - Call the runtime function to store the value 999 /// from the first formal parameter into the given ivar. 1000 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1001 ObjCIvarDecl *ivar) { 1002 // objc_copyStruct (&structIvar, &Arg, 1003 // sizeof (struct something), true, false); 1004 CallArgList args; 1005 1006 // The first argument is the address of the ivar. 1007 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1008 CGF.LoadObjCSelf(), ivar, 0) 1009 .getAddress(); 1010 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1011 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1012 1013 // The second argument is the address of the parameter variable. 1014 ParmVarDecl *argVar = *OMD->param_begin(); 1015 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1016 VK_LValue, SourceLocation()); 1017 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 1018 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1019 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1020 1021 // The third argument is the sizeof the type. 1022 llvm::Value *size = 1023 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1024 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1025 1026 // The fourth argument is the 'isAtomic' flag. 1027 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1028 1029 // The fifth argument is the 'hasStrong' flag. 1030 // FIXME: should this really always be false? 1031 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1032 1033 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1034 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1035 args, 1036 FunctionType::ExtInfo(), 1037 RequiredArgs::All), 1038 copyStructFn, ReturnValueSlot(), args); 1039 } 1040 1041 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1042 /// the value from the first formal parameter into the given ivar, using 1043 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1044 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1045 ObjCMethodDecl *OMD, 1046 ObjCIvarDecl *ivar, 1047 llvm::Constant *AtomicHelperFn) { 1048 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1049 // AtomicHelperFn); 1050 CallArgList args; 1051 1052 // The first argument is the address of the ivar. 1053 llvm::Value *ivarAddr = 1054 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1055 CGF.LoadObjCSelf(), ivar, 0).getAddress(); 1056 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1057 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1058 1059 // The second argument is the address of the parameter variable. 1060 ParmVarDecl *argVar = *OMD->param_begin(); 1061 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1062 VK_LValue, SourceLocation()); 1063 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); 1064 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1065 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1066 1067 // Third argument is the helper function. 1068 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1069 1070 llvm::Value *copyCppAtomicObjectFn = 1071 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1072 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy, 1073 args, 1074 FunctionType::ExtInfo(), 1075 RequiredArgs::All), 1076 copyCppAtomicObjectFn, ReturnValueSlot(), args); 1077 } 1078 1079 1080 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1081 Expr *setter = PID->getSetterCXXAssignment(); 1082 if (!setter) return true; 1083 1084 // Sema only makes only of these when the ivar has a C++ class type, 1085 // so the form is pretty constrained. 1086 1087 // An operator call is trivial if the function it calls is trivial. 1088 // This also implies that there's nothing non-trivial going on with 1089 // the arguments, because operator= can only be trivial if it's a 1090 // synthesized assignment operator and therefore both parameters are 1091 // references. 1092 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1093 if (const FunctionDecl *callee 1094 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1095 if (callee->isTrivial()) 1096 return true; 1097 return false; 1098 } 1099 1100 assert(isa<ExprWithCleanups>(setter)); 1101 return false; 1102 } 1103 1104 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1105 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1106 return false; 1107 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1108 } 1109 1110 void 1111 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1112 const ObjCPropertyImplDecl *propImpl, 1113 llvm::Constant *AtomicHelperFn) { 1114 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1115 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1116 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1117 1118 // Just use the setter expression if Sema gave us one and it's 1119 // non-trivial. 1120 if (!hasTrivialSetExpr(propImpl)) { 1121 if (!AtomicHelperFn) 1122 // If non-atomic, assignment is called directly. 1123 EmitStmt(propImpl->getSetterCXXAssignment()); 1124 else 1125 // If atomic, assignment is called via a locking api. 1126 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1127 AtomicHelperFn); 1128 return; 1129 } 1130 1131 PropertyImplStrategy strategy(CGM, propImpl); 1132 switch (strategy.getKind()) { 1133 case PropertyImplStrategy::Native: { 1134 // We don't need to do anything for a zero-size struct. 1135 if (strategy.getIvarSize().isZero()) 1136 return; 1137 1138 llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()]; 1139 1140 LValue ivarLValue = 1141 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1142 llvm::Value *ivarAddr = ivarLValue.getAddress(); 1143 1144 // Currently, all atomic accesses have to be through integer 1145 // types, so there's no point in trying to pick a prettier type. 1146 llvm::Type *bitcastType = 1147 llvm::Type::getIntNTy(getLLVMContext(), 1148 getContext().toBits(strategy.getIvarSize())); 1149 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1150 1151 // Cast both arguments to the chosen operation type. 1152 argAddr = Builder.CreateBitCast(argAddr, bitcastType); 1153 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1154 1155 // This bitcast load is likely to cause some nasty IR. 1156 llvm::Value *load = Builder.CreateLoad(argAddr); 1157 1158 // Perform an atomic store. There are no memory ordering requirements. 1159 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1160 store->setAlignment(strategy.getIvarAlignment().getQuantity()); 1161 store->setAtomic(llvm::Unordered); 1162 return; 1163 } 1164 1165 case PropertyImplStrategy::GetSetProperty: 1166 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1167 1168 llvm::Value *setOptimizedPropertyFn = nullptr; 1169 llvm::Value *setPropertyFn = nullptr; 1170 if (UseOptimizedSetter(CGM)) { 1171 // 10.8 and iOS 6.0 code and GC is off 1172 setOptimizedPropertyFn = 1173 CGM.getObjCRuntime() 1174 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1175 strategy.isCopy()); 1176 if (!setOptimizedPropertyFn) { 1177 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1178 return; 1179 } 1180 } 1181 else { 1182 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1183 if (!setPropertyFn) { 1184 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1185 return; 1186 } 1187 } 1188 1189 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1190 // <is-atomic>, <is-copy>). 1191 llvm::Value *cmd = 1192 Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]); 1193 llvm::Value *self = 1194 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1195 llvm::Value *ivarOffset = 1196 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1197 llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()]; 1198 arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy); 1199 1200 CallArgList args; 1201 args.add(RValue::get(self), getContext().getObjCIdType()); 1202 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1203 if (setOptimizedPropertyFn) { 1204 args.add(RValue::get(arg), getContext().getObjCIdType()); 1205 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1206 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1207 FunctionType::ExtInfo(), 1208 RequiredArgs::All), 1209 setOptimizedPropertyFn, ReturnValueSlot(), args); 1210 } else { 1211 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1212 args.add(RValue::get(arg), getContext().getObjCIdType()); 1213 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1214 getContext().BoolTy); 1215 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1216 getContext().BoolTy); 1217 // FIXME: We shouldn't need to get the function info here, the runtime 1218 // already should have computed it to build the function. 1219 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args, 1220 FunctionType::ExtInfo(), 1221 RequiredArgs::All), 1222 setPropertyFn, ReturnValueSlot(), args); 1223 } 1224 1225 return; 1226 } 1227 1228 case PropertyImplStrategy::CopyStruct: 1229 emitStructSetterCall(*this, setterMethod, ivar); 1230 return; 1231 1232 case PropertyImplStrategy::Expression: 1233 break; 1234 } 1235 1236 // Otherwise, fake up some ASTs and emit a normal assignment. 1237 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1238 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1239 VK_LValue, SourceLocation()); 1240 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1241 selfDecl->getType(), CK_LValueToRValue, &self, 1242 VK_RValue); 1243 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1244 SourceLocation(), SourceLocation(), 1245 &selfLoad, true, true); 1246 1247 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1248 QualType argType = argDecl->getType().getNonReferenceType(); 1249 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1250 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1251 argType.getUnqualifiedType(), CK_LValueToRValue, 1252 &arg, VK_RValue); 1253 1254 // The property type can differ from the ivar type in some situations with 1255 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1256 // The following absurdity is just to ensure well-formed IR. 1257 CastKind argCK = CK_NoOp; 1258 if (ivarRef.getType()->isObjCObjectPointerType()) { 1259 if (argLoad.getType()->isObjCObjectPointerType()) 1260 argCK = CK_BitCast; 1261 else if (argLoad.getType()->isBlockPointerType()) 1262 argCK = CK_BlockPointerToObjCPointerCast; 1263 else 1264 argCK = CK_CPointerToObjCPointerCast; 1265 } else if (ivarRef.getType()->isBlockPointerType()) { 1266 if (argLoad.getType()->isBlockPointerType()) 1267 argCK = CK_BitCast; 1268 else 1269 argCK = CK_AnyPointerToBlockPointerCast; 1270 } else if (ivarRef.getType()->isPointerType()) { 1271 argCK = CK_BitCast; 1272 } 1273 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1274 ivarRef.getType(), argCK, &argLoad, 1275 VK_RValue); 1276 Expr *finalArg = &argLoad; 1277 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1278 argLoad.getType())) 1279 finalArg = &argCast; 1280 1281 1282 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1283 ivarRef.getType(), VK_RValue, OK_Ordinary, 1284 SourceLocation(), false); 1285 EmitStmt(&assign); 1286 } 1287 1288 /// \brief Generate an Objective-C property setter function. 1289 /// 1290 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1291 /// is illegal within a category. 1292 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1293 const ObjCPropertyImplDecl *PID) { 1294 llvm::Constant *AtomicHelperFn = 1295 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1296 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1297 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1298 assert(OMD && "Invalid call to generate setter (empty method)"); 1299 StartObjCMethod(OMD, IMP->getClassInterface()); 1300 1301 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1302 1303 FinishFunction(); 1304 } 1305 1306 namespace { 1307 struct DestroyIvar : EHScopeStack::Cleanup { 1308 private: 1309 llvm::Value *addr; 1310 const ObjCIvarDecl *ivar; 1311 CodeGenFunction::Destroyer *destroyer; 1312 bool useEHCleanupForArray; 1313 public: 1314 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1315 CodeGenFunction::Destroyer *destroyer, 1316 bool useEHCleanupForArray) 1317 : addr(addr), ivar(ivar), destroyer(destroyer), 1318 useEHCleanupForArray(useEHCleanupForArray) {} 1319 1320 void Emit(CodeGenFunction &CGF, Flags flags) override { 1321 LValue lvalue 1322 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1323 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1324 flags.isForNormalCleanup() && useEHCleanupForArray); 1325 } 1326 }; 1327 } 1328 1329 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1330 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1331 llvm::Value *addr, 1332 QualType type) { 1333 llvm::Value *null = getNullForVariable(addr); 1334 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1335 } 1336 1337 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1338 ObjCImplementationDecl *impl) { 1339 CodeGenFunction::RunCleanupsScope scope(CGF); 1340 1341 llvm::Value *self = CGF.LoadObjCSelf(); 1342 1343 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1344 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1345 ivar; ivar = ivar->getNextIvar()) { 1346 QualType type = ivar->getType(); 1347 1348 // Check whether the ivar is a destructible type. 1349 QualType::DestructionKind dtorKind = type.isDestructedType(); 1350 if (!dtorKind) continue; 1351 1352 CodeGenFunction::Destroyer *destroyer = nullptr; 1353 1354 // Use a call to objc_storeStrong to destroy strong ivars, for the 1355 // general benefit of the tools. 1356 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1357 destroyer = destroyARCStrongWithStore; 1358 1359 // Otherwise use the default for the destruction kind. 1360 } else { 1361 destroyer = CGF.getDestroyer(dtorKind); 1362 } 1363 1364 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1365 1366 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1367 cleanupKind & EHCleanup); 1368 } 1369 1370 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1371 } 1372 1373 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1374 ObjCMethodDecl *MD, 1375 bool ctor) { 1376 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1377 StartObjCMethod(MD, IMP->getClassInterface()); 1378 1379 // Emit .cxx_construct. 1380 if (ctor) { 1381 // Suppress the final autorelease in ARC. 1382 AutoreleaseResult = false; 1383 1384 for (const auto *IvarInit : IMP->inits()) { 1385 FieldDecl *Field = IvarInit->getAnyMember(); 1386 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1387 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1388 LoadObjCSelf(), Ivar, 0); 1389 EmitAggExpr(IvarInit->getInit(), 1390 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1391 AggValueSlot::DoesNotNeedGCBarriers, 1392 AggValueSlot::IsNotAliased)); 1393 } 1394 // constructor returns 'self'. 1395 CodeGenTypes &Types = CGM.getTypes(); 1396 QualType IdTy(CGM.getContext().getObjCIdType()); 1397 llvm::Value *SelfAsId = 1398 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1399 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1400 1401 // Emit .cxx_destruct. 1402 } else { 1403 emitCXXDestructMethod(*this, IMP); 1404 } 1405 FinishFunction(); 1406 } 1407 1408 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) { 1409 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(); 1410 it++; it++; 1411 const ABIArgInfo &AI = it->info; 1412 // FIXME. Is this sufficient check? 1413 return (AI.getKind() == ABIArgInfo::Indirect); 1414 } 1415 1416 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) { 1417 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) 1418 return false; 1419 if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>()) 1420 return FDTTy->getDecl()->hasObjectMember(); 1421 return false; 1422 } 1423 1424 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1425 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1426 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1427 Self->getType(), VK_LValue, SourceLocation()); 1428 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1429 } 1430 1431 QualType CodeGenFunction::TypeOfSelfObject() { 1432 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1433 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1434 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1435 getContext().getCanonicalType(selfDecl->getType())); 1436 return PTy->getPointeeType(); 1437 } 1438 1439 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1440 llvm::Constant *EnumerationMutationFn = 1441 CGM.getObjCRuntime().EnumerationMutationFunction(); 1442 1443 if (!EnumerationMutationFn) { 1444 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1445 return; 1446 } 1447 1448 CGDebugInfo *DI = getDebugInfo(); 1449 if (DI) 1450 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1451 1452 // The local variable comes into scope immediately. 1453 AutoVarEmission variable = AutoVarEmission::invalid(); 1454 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1455 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1456 1457 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1458 1459 // Fast enumeration state. 1460 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1461 llvm::AllocaInst *StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1462 EmitNullInitialization(StatePtr, StateTy); 1463 1464 // Number of elements in the items array. 1465 static const unsigned NumItems = 16; 1466 1467 // Fetch the countByEnumeratingWithState:objects:count: selector. 1468 IdentifierInfo *II[] = { 1469 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1470 &CGM.getContext().Idents.get("objects"), 1471 &CGM.getContext().Idents.get("count") 1472 }; 1473 Selector FastEnumSel = 1474 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1475 1476 QualType ItemsTy = 1477 getContext().getConstantArrayType(getContext().getObjCIdType(), 1478 llvm::APInt(32, NumItems), 1479 ArrayType::Normal, 0); 1480 llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1481 1482 // Emit the collection pointer. In ARC, we do a retain. 1483 llvm::Value *Collection; 1484 if (getLangOpts().ObjCAutoRefCount) { 1485 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1486 1487 // Enter a cleanup to do the release. 1488 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1489 } else { 1490 Collection = EmitScalarExpr(S.getCollection()); 1491 } 1492 1493 // The 'continue' label needs to appear within the cleanup for the 1494 // collection object. 1495 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1496 1497 // Send it our message: 1498 CallArgList Args; 1499 1500 // The first argument is a temporary of the enumeration-state type. 1501 Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy)); 1502 1503 // The second argument is a temporary array with space for NumItems 1504 // pointers. We'll actually be loading elements from the array 1505 // pointer written into the control state; this buffer is so that 1506 // collections that *aren't* backed by arrays can still queue up 1507 // batches of elements. 1508 Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy)); 1509 1510 // The third argument is the capacity of that temporary array. 1511 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1512 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1513 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1514 1515 // Start the enumeration. 1516 RValue CountRV = 1517 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1518 getContext().UnsignedLongTy, 1519 FastEnumSel, 1520 Collection, Args); 1521 1522 // The initial number of objects that were returned in the buffer. 1523 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1524 1525 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1526 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1527 1528 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1529 1530 // If the limit pointer was zero to begin with, the collection is 1531 // empty; skip all this. Set the branch weight assuming this has the same 1532 // probability of exiting the loop as any other loop exit. 1533 uint64_t EntryCount = getCurrentProfileCount(); 1534 Builder.CreateCondBr( 1535 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1536 LoopInitBB, 1537 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1538 1539 // Otherwise, initialize the loop. 1540 EmitBlock(LoopInitBB); 1541 1542 // Save the initial mutations value. This is the value at an 1543 // address that was written into the state object by 1544 // countByEnumeratingWithState:objects:count:. 1545 llvm::Value *StateMutationsPtrPtr = Builder.CreateStructGEP( 1546 StatePtr->getAllocatedType(), StatePtr, 2, "mutationsptr.ptr"); 1547 llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, 1548 "mutationsptr"); 1549 1550 llvm::Value *initialMutations = 1551 Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations"); 1552 1553 // Start looping. This is the point we return to whenever we have a 1554 // fresh, non-empty batch of objects. 1555 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1556 EmitBlock(LoopBodyBB); 1557 1558 // The current index into the buffer. 1559 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1560 index->addIncoming(zero, LoopInitBB); 1561 1562 // The current buffer size. 1563 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1564 count->addIncoming(initialBufferLimit, LoopInitBB); 1565 1566 incrementProfileCounter(&S); 1567 1568 // Check whether the mutations value has changed from where it was 1569 // at start. StateMutationsPtr should actually be invariant between 1570 // refreshes. 1571 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1572 llvm::Value *currentMutations 1573 = Builder.CreateLoad(StateMutationsPtr, "statemutations"); 1574 1575 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1576 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1577 1578 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1579 WasNotMutatedBB, WasMutatedBB); 1580 1581 // If so, call the enumeration-mutation function. 1582 EmitBlock(WasMutatedBB); 1583 llvm::Value *V = 1584 Builder.CreateBitCast(Collection, 1585 ConvertType(getContext().getObjCIdType())); 1586 CallArgList Args2; 1587 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1588 // FIXME: We shouldn't need to get the function info here, the runtime already 1589 // should have computed it to build the function. 1590 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2, 1591 FunctionType::ExtInfo(), 1592 RequiredArgs::All), 1593 EnumerationMutationFn, ReturnValueSlot(), Args2); 1594 1595 // Otherwise, or if the mutation function returns, just continue. 1596 EmitBlock(WasNotMutatedBB); 1597 1598 // Initialize the element variable. 1599 RunCleanupsScope elementVariableScope(*this); 1600 bool elementIsVariable; 1601 LValue elementLValue; 1602 QualType elementType; 1603 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1604 // Initialize the variable, in case it's a __block variable or something. 1605 EmitAutoVarInit(variable); 1606 1607 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1608 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1609 VK_LValue, SourceLocation()); 1610 elementLValue = EmitLValue(&tempDRE); 1611 elementType = D->getType(); 1612 elementIsVariable = true; 1613 1614 if (D->isARCPseudoStrong()) 1615 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1616 } else { 1617 elementLValue = LValue(); // suppress warning 1618 elementType = cast<Expr>(S.getElement())->getType(); 1619 elementIsVariable = false; 1620 } 1621 llvm::Type *convertedElementType = ConvertType(elementType); 1622 1623 // Fetch the buffer out of the enumeration state. 1624 // TODO: this pointer should actually be invariant between 1625 // refreshes, which would help us do certain loop optimizations. 1626 llvm::Value *StateItemsPtr = Builder.CreateStructGEP( 1627 StatePtr->getAllocatedType(), StatePtr, 1, "stateitems.ptr"); 1628 llvm::Value *EnumStateItems = 1629 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1630 1631 // Fetch the value at the current index from the buffer. 1632 llvm::Value *CurrentItemPtr = 1633 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1634 llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr); 1635 1636 // Cast that value to the right type. 1637 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1638 "currentitem"); 1639 1640 // Make sure we have an l-value. Yes, this gets evaluated every 1641 // time through the loop. 1642 if (!elementIsVariable) { 1643 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1644 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1645 } else { 1646 EmitScalarInit(CurrentItem, elementLValue); 1647 } 1648 1649 // If we do have an element variable, this assignment is the end of 1650 // its initialization. 1651 if (elementIsVariable) 1652 EmitAutoVarCleanups(variable); 1653 1654 // Perform the loop body, setting up break and continue labels. 1655 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1656 { 1657 RunCleanupsScope Scope(*this); 1658 EmitStmt(S.getBody()); 1659 } 1660 BreakContinueStack.pop_back(); 1661 1662 // Destroy the element variable now. 1663 elementVariableScope.ForceCleanup(); 1664 1665 // Check whether there are more elements. 1666 EmitBlock(AfterBody.getBlock()); 1667 1668 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1669 1670 // First we check in the local buffer. 1671 llvm::Value *indexPlusOne 1672 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1673 1674 // If we haven't overrun the buffer yet, we can continue. 1675 // Set the branch weights based on the simplifying assumption that this is 1676 // like a while-loop, i.e., ignoring that the false branch fetches more 1677 // elements and then returns to the loop. 1678 Builder.CreateCondBr( 1679 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1680 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1681 1682 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1683 count->addIncoming(count, AfterBody.getBlock()); 1684 1685 // Otherwise, we have to fetch more elements. 1686 EmitBlock(FetchMoreBB); 1687 1688 CountRV = 1689 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1690 getContext().UnsignedLongTy, 1691 FastEnumSel, 1692 Collection, Args); 1693 1694 // If we got a zero count, we're done. 1695 llvm::Value *refetchCount = CountRV.getScalarVal(); 1696 1697 // (note that the message send might split FetchMoreBB) 1698 index->addIncoming(zero, Builder.GetInsertBlock()); 1699 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1700 1701 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1702 EmptyBB, LoopBodyBB); 1703 1704 // No more elements. 1705 EmitBlock(EmptyBB); 1706 1707 if (!elementIsVariable) { 1708 // If the element was not a declaration, set it to be null. 1709 1710 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1711 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1712 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1713 } 1714 1715 if (DI) 1716 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1717 1718 // Leave the cleanup we entered in ARC. 1719 if (getLangOpts().ObjCAutoRefCount) 1720 PopCleanupBlock(); 1721 1722 EmitBlock(LoopEnd.getBlock()); 1723 } 1724 1725 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1726 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1727 } 1728 1729 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1730 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1731 } 1732 1733 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1734 const ObjCAtSynchronizedStmt &S) { 1735 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1736 } 1737 1738 /// Produce the code for a CK_ARCProduceObject. Just does a 1739 /// primitive retain. 1740 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type, 1741 llvm::Value *value) { 1742 return EmitARCRetain(type, value); 1743 } 1744 1745 namespace { 1746 struct CallObjCRelease : EHScopeStack::Cleanup { 1747 CallObjCRelease(llvm::Value *object) : object(object) {} 1748 llvm::Value *object; 1749 1750 void Emit(CodeGenFunction &CGF, Flags flags) override { 1751 // Releases at the end of the full-expression are imprecise. 1752 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1753 } 1754 }; 1755 } 1756 1757 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1758 /// release at the end of the full-expression. 1759 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1760 llvm::Value *object) { 1761 // If we're in a conditional branch, we need to make the cleanup 1762 // conditional. 1763 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1764 return object; 1765 } 1766 1767 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1768 llvm::Value *value) { 1769 return EmitARCRetainAutorelease(type, value); 1770 } 1771 1772 /// Given a number of pointers, inform the optimizer that they're 1773 /// being intrinsically used up until this point in the program. 1774 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1775 llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use; 1776 if (!fn) { 1777 llvm::FunctionType *fnType = 1778 llvm::FunctionType::get(CGM.VoidTy, None, true); 1779 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use"); 1780 } 1781 1782 // This isn't really a "runtime" function, but as an intrinsic it 1783 // doesn't really matter as long as we align things up. 1784 EmitNounwindRuntimeCall(fn, values); 1785 } 1786 1787 1788 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1789 llvm::FunctionType *type, 1790 StringRef fnName) { 1791 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1792 1793 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) { 1794 // If the target runtime doesn't naturally support ARC, emit weak 1795 // references to the runtime support library. We don't really 1796 // permit this to fail, but we need a particular relocation style. 1797 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 1798 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1799 } else if (fnName == "objc_retain" || fnName == "objc_release") { 1800 // If we have Native ARC, set nonlazybind attribute for these APIs for 1801 // performance. 1802 f->addFnAttr(llvm::Attribute::NonLazyBind); 1803 } 1804 } 1805 1806 return fn; 1807 } 1808 1809 /// Perform an operation having the signature 1810 /// i8* (i8*) 1811 /// where a null input causes a no-op and returns null. 1812 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1813 llvm::Value *value, 1814 llvm::Constant *&fn, 1815 StringRef fnName, 1816 bool isTailCall = false) { 1817 if (isa<llvm::ConstantPointerNull>(value)) return value; 1818 1819 if (!fn) { 1820 llvm::FunctionType *fnType = 1821 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 1822 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1823 } 1824 1825 // Cast the argument to 'id'. 1826 llvm::Type *origType = value->getType(); 1827 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1828 1829 // Call the function. 1830 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1831 if (isTailCall) 1832 call->setTailCall(); 1833 1834 // Cast the result back to the original type. 1835 return CGF.Builder.CreateBitCast(call, origType); 1836 } 1837 1838 /// Perform an operation having the following signature: 1839 /// i8* (i8**) 1840 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1841 llvm::Value *addr, 1842 llvm::Constant *&fn, 1843 StringRef fnName) { 1844 if (!fn) { 1845 llvm::FunctionType *fnType = 1846 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false); 1847 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1848 } 1849 1850 // Cast the argument to 'id*'. 1851 llvm::Type *origType = addr->getType(); 1852 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1853 1854 // Call the function. 1855 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr); 1856 1857 // Cast the result back to a dereference of the original type. 1858 if (origType != CGF.Int8PtrPtrTy) 1859 result = CGF.Builder.CreateBitCast(result, 1860 cast<llvm::PointerType>(origType)->getElementType()); 1861 1862 return result; 1863 } 1864 1865 /// Perform an operation having the following signature: 1866 /// i8* (i8**, i8*) 1867 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1868 llvm::Value *addr, 1869 llvm::Value *value, 1870 llvm::Constant *&fn, 1871 StringRef fnName, 1872 bool ignored) { 1873 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 1874 == value->getType()); 1875 1876 if (!fn) { 1877 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1878 1879 llvm::FunctionType *fnType 1880 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1881 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1882 } 1883 1884 llvm::Type *origType = value->getType(); 1885 1886 llvm::Value *args[] = { 1887 CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy), 1888 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 1889 }; 1890 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 1891 1892 if (ignored) return nullptr; 1893 1894 return CGF.Builder.CreateBitCast(result, origType); 1895 } 1896 1897 /// Perform an operation having the following signature: 1898 /// void (i8**, i8**) 1899 static void emitARCCopyOperation(CodeGenFunction &CGF, 1900 llvm::Value *dst, 1901 llvm::Value *src, 1902 llvm::Constant *&fn, 1903 StringRef fnName) { 1904 assert(dst->getType() == src->getType()); 1905 1906 if (!fn) { 1907 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy }; 1908 1909 llvm::FunctionType *fnType 1910 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1911 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1912 } 1913 1914 llvm::Value *args[] = { 1915 CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy), 1916 CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy) 1917 }; 1918 CGF.EmitNounwindRuntimeCall(fn, args); 1919 } 1920 1921 /// Produce the code to do a retain. Based on the type, calls one of: 1922 /// call i8* \@objc_retain(i8* %value) 1923 /// call i8* \@objc_retainBlock(i8* %value) 1924 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1925 if (type->isBlockPointerType()) 1926 return EmitARCRetainBlock(value, /*mandatory*/ false); 1927 else 1928 return EmitARCRetainNonBlock(value); 1929 } 1930 1931 /// Retain the given object, with normal retain semantics. 1932 /// call i8* \@objc_retain(i8* %value) 1933 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1934 return emitARCValueOperation(*this, value, 1935 CGM.getARCEntrypoints().objc_retain, 1936 "objc_retain"); 1937 } 1938 1939 /// Retain the given block, with _Block_copy semantics. 1940 /// call i8* \@objc_retainBlock(i8* %value) 1941 /// 1942 /// \param mandatory - If false, emit the call with metadata 1943 /// indicating that it's okay for the optimizer to eliminate this call 1944 /// if it can prove that the block never escapes except down the stack. 1945 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1946 bool mandatory) { 1947 llvm::Value *result 1948 = emitARCValueOperation(*this, value, 1949 CGM.getARCEntrypoints().objc_retainBlock, 1950 "objc_retainBlock"); 1951 1952 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1953 // tell the optimizer that it doesn't need to do this copy if the 1954 // block doesn't escape, where being passed as an argument doesn't 1955 // count as escaping. 1956 if (!mandatory && isa<llvm::Instruction>(result)) { 1957 llvm::CallInst *call 1958 = cast<llvm::CallInst>(result->stripPointerCasts()); 1959 assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock); 1960 1961 call->setMetadata("clang.arc.copy_on_escape", 1962 llvm::MDNode::get(Builder.getContext(), None)); 1963 } 1964 1965 return result; 1966 } 1967 1968 /// Retain the given object which is the result of a function call. 1969 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 1970 /// 1971 /// Yes, this function name is one character away from a different 1972 /// call with completely different semantics. 1973 llvm::Value * 1974 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 1975 // Fetch the void(void) inline asm which marks that we're going to 1976 // retain the autoreleased return value. 1977 llvm::InlineAsm *&marker 1978 = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker; 1979 if (!marker) { 1980 StringRef assembly 1981 = CGM.getTargetCodeGenInfo() 1982 .getARCRetainAutoreleasedReturnValueMarker(); 1983 1984 // If we have an empty assembly string, there's nothing to do. 1985 if (assembly.empty()) { 1986 1987 // Otherwise, at -O0, build an inline asm that we're going to call 1988 // in a moment. 1989 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1990 llvm::FunctionType *type = 1991 llvm::FunctionType::get(VoidTy, /*variadic*/false); 1992 1993 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 1994 1995 // If we're at -O1 and above, we don't want to litter the code 1996 // with this marker yet, so leave a breadcrumb for the ARC 1997 // optimizer to pick up. 1998 } else { 1999 llvm::NamedMDNode *metadata = 2000 CGM.getModule().getOrInsertNamedMetadata( 2001 "clang.arc.retainAutoreleasedReturnValueMarker"); 2002 assert(metadata->getNumOperands() <= 1); 2003 if (metadata->getNumOperands() == 0) { 2004 metadata->addOperand(llvm::MDNode::get( 2005 getLLVMContext(), llvm::MDString::get(getLLVMContext(), assembly))); 2006 } 2007 } 2008 } 2009 2010 // Call the marker asm if we made one, which we do only at -O0. 2011 if (marker) 2012 Builder.CreateCall(marker, {}); 2013 2014 return emitARCValueOperation(*this, value, 2015 CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue, 2016 "objc_retainAutoreleasedReturnValue"); 2017 } 2018 2019 /// Release the given object. 2020 /// call void \@objc_release(i8* %value) 2021 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2022 ARCPreciseLifetime_t precise) { 2023 if (isa<llvm::ConstantPointerNull>(value)) return; 2024 2025 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release; 2026 if (!fn) { 2027 llvm::FunctionType *fnType = 2028 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2029 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 2030 } 2031 2032 // Cast the argument to 'id'. 2033 value = Builder.CreateBitCast(value, Int8PtrTy); 2034 2035 // Call objc_release. 2036 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2037 2038 if (precise == ARCImpreciseLifetime) { 2039 call->setMetadata("clang.imprecise_release", 2040 llvm::MDNode::get(Builder.getContext(), None)); 2041 } 2042 } 2043 2044 /// Destroy a __strong variable. 2045 /// 2046 /// At -O0, emit a call to store 'null' into the address; 2047 /// instrumenting tools prefer this because the address is exposed, 2048 /// but it's relatively cumbersome to optimize. 2049 /// 2050 /// At -O1 and above, just load and call objc_release. 2051 /// 2052 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2053 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr, 2054 ARCPreciseLifetime_t precise) { 2055 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2056 llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType()); 2057 llvm::Value *null = llvm::ConstantPointerNull::get( 2058 cast<llvm::PointerType>(addrTy->getElementType())); 2059 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2060 return; 2061 } 2062 2063 llvm::Value *value = Builder.CreateLoad(addr); 2064 EmitARCRelease(value, precise); 2065 } 2066 2067 /// Store into a strong object. Always calls this: 2068 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2069 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr, 2070 llvm::Value *value, 2071 bool ignored) { 2072 assert(cast<llvm::PointerType>(addr->getType())->getElementType() 2073 == value->getType()); 2074 2075 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong; 2076 if (!fn) { 2077 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 2078 llvm::FunctionType *fnType 2079 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 2080 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 2081 } 2082 2083 llvm::Value *args[] = { 2084 Builder.CreateBitCast(addr, Int8PtrPtrTy), 2085 Builder.CreateBitCast(value, Int8PtrTy) 2086 }; 2087 EmitNounwindRuntimeCall(fn, args); 2088 2089 if (ignored) return nullptr; 2090 return value; 2091 } 2092 2093 /// Store into a strong object. Sometimes calls this: 2094 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2095 /// Other times, breaks it down into components. 2096 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2097 llvm::Value *newValue, 2098 bool ignored) { 2099 QualType type = dst.getType(); 2100 bool isBlock = type->isBlockPointerType(); 2101 2102 // Use a store barrier at -O0 unless this is a block type or the 2103 // lvalue is inadequately aligned. 2104 if (shouldUseFusedARCCalls() && 2105 !isBlock && 2106 (dst.getAlignment().isZero() || 2107 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2108 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2109 } 2110 2111 // Otherwise, split it out. 2112 2113 // Retain the new value. 2114 newValue = EmitARCRetain(type, newValue); 2115 2116 // Read the old value. 2117 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2118 2119 // Store. We do this before the release so that any deallocs won't 2120 // see the old value. 2121 EmitStoreOfScalar(newValue, dst); 2122 2123 // Finally, release the old value. 2124 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2125 2126 return newValue; 2127 } 2128 2129 /// Autorelease the given object. 2130 /// call i8* \@objc_autorelease(i8* %value) 2131 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2132 return emitARCValueOperation(*this, value, 2133 CGM.getARCEntrypoints().objc_autorelease, 2134 "objc_autorelease"); 2135 } 2136 2137 /// Autorelease the given object. 2138 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2139 llvm::Value * 2140 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2141 return emitARCValueOperation(*this, value, 2142 CGM.getARCEntrypoints().objc_autoreleaseReturnValue, 2143 "objc_autoreleaseReturnValue", 2144 /*isTailCall*/ true); 2145 } 2146 2147 /// Do a fused retain/autorelease of the given object. 2148 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2149 llvm::Value * 2150 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2151 return emitARCValueOperation(*this, value, 2152 CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue, 2153 "objc_retainAutoreleaseReturnValue", 2154 /*isTailCall*/ true); 2155 } 2156 2157 /// Do a fused retain/autorelease of the given object. 2158 /// call i8* \@objc_retainAutorelease(i8* %value) 2159 /// or 2160 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2161 /// call i8* \@objc_autorelease(i8* %retain) 2162 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2163 llvm::Value *value) { 2164 if (!type->isBlockPointerType()) 2165 return EmitARCRetainAutoreleaseNonBlock(value); 2166 2167 if (isa<llvm::ConstantPointerNull>(value)) return value; 2168 2169 llvm::Type *origType = value->getType(); 2170 value = Builder.CreateBitCast(value, Int8PtrTy); 2171 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2172 value = EmitARCAutorelease(value); 2173 return Builder.CreateBitCast(value, origType); 2174 } 2175 2176 /// Do a fused retain/autorelease of the given object. 2177 /// call i8* \@objc_retainAutorelease(i8* %value) 2178 llvm::Value * 2179 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2180 return emitARCValueOperation(*this, value, 2181 CGM.getARCEntrypoints().objc_retainAutorelease, 2182 "objc_retainAutorelease"); 2183 } 2184 2185 /// i8* \@objc_loadWeak(i8** %addr) 2186 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2187 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) { 2188 return emitARCLoadOperation(*this, addr, 2189 CGM.getARCEntrypoints().objc_loadWeak, 2190 "objc_loadWeak"); 2191 } 2192 2193 /// i8* \@objc_loadWeakRetained(i8** %addr) 2194 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) { 2195 return emitARCLoadOperation(*this, addr, 2196 CGM.getARCEntrypoints().objc_loadWeakRetained, 2197 "objc_loadWeakRetained"); 2198 } 2199 2200 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2201 /// Returns %value. 2202 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr, 2203 llvm::Value *value, 2204 bool ignored) { 2205 return emitARCStoreOperation(*this, addr, value, 2206 CGM.getARCEntrypoints().objc_storeWeak, 2207 "objc_storeWeak", ignored); 2208 } 2209 2210 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2211 /// Returns %value. %addr is known to not have a current weak entry. 2212 /// Essentially equivalent to: 2213 /// *addr = nil; objc_storeWeak(addr, value); 2214 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) { 2215 // If we're initializing to null, just write null to memory; no need 2216 // to get the runtime involved. But don't do this if optimization 2217 // is enabled, because accounting for this would make the optimizer 2218 // much more complicated. 2219 if (isa<llvm::ConstantPointerNull>(value) && 2220 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2221 Builder.CreateStore(value, addr); 2222 return; 2223 } 2224 2225 emitARCStoreOperation(*this, addr, value, 2226 CGM.getARCEntrypoints().objc_initWeak, 2227 "objc_initWeak", /*ignored*/ true); 2228 } 2229 2230 /// void \@objc_destroyWeak(i8** %addr) 2231 /// Essentially objc_storeWeak(addr, nil). 2232 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) { 2233 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak; 2234 if (!fn) { 2235 llvm::FunctionType *fnType = 2236 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false); 2237 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 2238 } 2239 2240 // Cast the argument to 'id*'. 2241 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2242 2243 EmitNounwindRuntimeCall(fn, addr); 2244 } 2245 2246 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2247 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2248 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2249 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) { 2250 emitARCCopyOperation(*this, dst, src, 2251 CGM.getARCEntrypoints().objc_moveWeak, 2252 "objc_moveWeak"); 2253 } 2254 2255 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2256 /// Disregards the current value in %dest. Essentially 2257 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2258 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) { 2259 emitARCCopyOperation(*this, dst, src, 2260 CGM.getARCEntrypoints().objc_copyWeak, 2261 "objc_copyWeak"); 2262 } 2263 2264 /// Produce the code to do a objc_autoreleasepool_push. 2265 /// call i8* \@objc_autoreleasePoolPush(void) 2266 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2267 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush; 2268 if (!fn) { 2269 llvm::FunctionType *fnType = 2270 llvm::FunctionType::get(Int8PtrTy, false); 2271 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 2272 } 2273 2274 return EmitNounwindRuntimeCall(fn); 2275 } 2276 2277 /// Produce the code to do a primitive release. 2278 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2279 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2280 assert(value->getType() == Int8PtrTy); 2281 2282 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop; 2283 if (!fn) { 2284 llvm::FunctionType *fnType = 2285 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2286 2287 // We don't want to use a weak import here; instead we should not 2288 // fall into this path. 2289 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 2290 } 2291 2292 // objc_autoreleasePoolPop can throw. 2293 EmitRuntimeCallOrInvoke(fn, value); 2294 } 2295 2296 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2297 /// Which is: [[NSAutoreleasePool alloc] init]; 2298 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2299 /// init is declared as: - (id) init; in its NSObject super class. 2300 /// 2301 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2302 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2303 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2304 // [NSAutoreleasePool alloc] 2305 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2306 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2307 CallArgList Args; 2308 RValue AllocRV = 2309 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2310 getContext().getObjCIdType(), 2311 AllocSel, Receiver, Args); 2312 2313 // [Receiver init] 2314 Receiver = AllocRV.getScalarVal(); 2315 II = &CGM.getContext().Idents.get("init"); 2316 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2317 RValue InitRV = 2318 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2319 getContext().getObjCIdType(), 2320 InitSel, Receiver, Args); 2321 return InitRV.getScalarVal(); 2322 } 2323 2324 /// Produce the code to do a primitive release. 2325 /// [tmp drain]; 2326 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2327 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2328 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2329 CallArgList Args; 2330 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2331 getContext().VoidTy, DrainSel, Arg, Args); 2332 } 2333 2334 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2335 llvm::Value *addr, 2336 QualType type) { 2337 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2338 } 2339 2340 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2341 llvm::Value *addr, 2342 QualType type) { 2343 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2344 } 2345 2346 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2347 llvm::Value *addr, 2348 QualType type) { 2349 CGF.EmitARCDestroyWeak(addr); 2350 } 2351 2352 namespace { 2353 struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup { 2354 llvm::Value *Token; 2355 2356 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2357 2358 void Emit(CodeGenFunction &CGF, Flags flags) override { 2359 CGF.EmitObjCAutoreleasePoolPop(Token); 2360 } 2361 }; 2362 struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup { 2363 llvm::Value *Token; 2364 2365 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2366 2367 void Emit(CodeGenFunction &CGF, Flags flags) override { 2368 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2369 } 2370 }; 2371 } 2372 2373 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2374 if (CGM.getLangOpts().ObjCAutoRefCount) 2375 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2376 else 2377 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2378 } 2379 2380 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2381 LValue lvalue, 2382 QualType type) { 2383 switch (type.getObjCLifetime()) { 2384 case Qualifiers::OCL_None: 2385 case Qualifiers::OCL_ExplicitNone: 2386 case Qualifiers::OCL_Strong: 2387 case Qualifiers::OCL_Autoreleasing: 2388 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue, 2389 SourceLocation()).getScalarVal(), 2390 false); 2391 2392 case Qualifiers::OCL_Weak: 2393 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2394 true); 2395 } 2396 2397 llvm_unreachable("impossible lifetime!"); 2398 } 2399 2400 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2401 const Expr *e) { 2402 e = e->IgnoreParens(); 2403 QualType type = e->getType(); 2404 2405 // If we're loading retained from a __strong xvalue, we can avoid 2406 // an extra retain/release pair by zeroing out the source of this 2407 // "move" operation. 2408 if (e->isXValue() && 2409 !type.isConstQualified() && 2410 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2411 // Emit the lvalue. 2412 LValue lv = CGF.EmitLValue(e); 2413 2414 // Load the object pointer. 2415 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2416 SourceLocation()).getScalarVal(); 2417 2418 // Set the source pointer to NULL. 2419 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2420 2421 return TryEmitResult(result, true); 2422 } 2423 2424 // As a very special optimization, in ARC++, if the l-value is the 2425 // result of a non-volatile assignment, do a simple retain of the 2426 // result of the call to objc_storeWeak instead of reloading. 2427 if (CGF.getLangOpts().CPlusPlus && 2428 !type.isVolatileQualified() && 2429 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2430 isa<BinaryOperator>(e) && 2431 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2432 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2433 2434 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2435 } 2436 2437 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2438 llvm::Value *value); 2439 2440 /// Given that the given expression is some sort of call (which does 2441 /// not return retained), emit a retain following it. 2442 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) { 2443 llvm::Value *value = CGF.EmitScalarExpr(e); 2444 return emitARCRetainAfterCall(CGF, value); 2445 } 2446 2447 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, 2448 llvm::Value *value) { 2449 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2450 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2451 2452 // Place the retain immediately following the call. 2453 CGF.Builder.SetInsertPoint(call->getParent(), 2454 ++llvm::BasicBlock::iterator(call)); 2455 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2456 2457 CGF.Builder.restoreIP(ip); 2458 return value; 2459 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2460 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2461 2462 // Place the retain at the beginning of the normal destination block. 2463 llvm::BasicBlock *BB = invoke->getNormalDest(); 2464 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2465 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 2466 2467 CGF.Builder.restoreIP(ip); 2468 return value; 2469 2470 // Bitcasts can arise because of related-result returns. Rewrite 2471 // the operand. 2472 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2473 llvm::Value *operand = bitcast->getOperand(0); 2474 operand = emitARCRetainAfterCall(CGF, operand); 2475 bitcast->setOperand(0, operand); 2476 return bitcast; 2477 2478 // Generic fall-back case. 2479 } else { 2480 // Retain using the non-block variant: we never need to do a copy 2481 // of a block that's been returned to us. 2482 return CGF.EmitARCRetainNonBlock(value); 2483 } 2484 } 2485 2486 /// Determine whether it might be important to emit a separate 2487 /// objc_retain_block on the result of the given expression, or 2488 /// whether it's okay to just emit it in a +1 context. 2489 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2490 assert(e->getType()->isBlockPointerType()); 2491 e = e->IgnoreParens(); 2492 2493 // For future goodness, emit block expressions directly in +1 2494 // contexts if we can. 2495 if (isa<BlockExpr>(e)) 2496 return false; 2497 2498 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2499 switch (cast->getCastKind()) { 2500 // Emitting these operations in +1 contexts is goodness. 2501 case CK_LValueToRValue: 2502 case CK_ARCReclaimReturnedObject: 2503 case CK_ARCConsumeObject: 2504 case CK_ARCProduceObject: 2505 return false; 2506 2507 // These operations preserve a block type. 2508 case CK_NoOp: 2509 case CK_BitCast: 2510 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2511 2512 // These operations are known to be bad (or haven't been considered). 2513 case CK_AnyPointerToBlockPointerCast: 2514 default: 2515 return true; 2516 } 2517 } 2518 2519 return true; 2520 } 2521 2522 /// Try to emit a PseudoObjectExpr at +1. 2523 /// 2524 /// This massively duplicates emitPseudoObjectRValue. 2525 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF, 2526 const PseudoObjectExpr *E) { 2527 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2528 2529 // Find the result expression. 2530 const Expr *resultExpr = E->getResultExpr(); 2531 assert(resultExpr); 2532 TryEmitResult result; 2533 2534 for (PseudoObjectExpr::const_semantics_iterator 2535 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2536 const Expr *semantic = *i; 2537 2538 // If this semantic expression is an opaque value, bind it 2539 // to the result of its source expression. 2540 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2541 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2542 OVMA opaqueData; 2543 2544 // If this semantic is the result of the pseudo-object 2545 // expression, try to evaluate the source as +1. 2546 if (ov == resultExpr) { 2547 assert(!OVMA::shouldBindAsLValue(ov)); 2548 result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr()); 2549 opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer())); 2550 2551 // Otherwise, just bind it. 2552 } else { 2553 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2554 } 2555 opaques.push_back(opaqueData); 2556 2557 // Otherwise, if the expression is the result, evaluate it 2558 // and remember the result. 2559 } else if (semantic == resultExpr) { 2560 result = tryEmitARCRetainScalarExpr(CGF, semantic); 2561 2562 // Otherwise, evaluate the expression in an ignored context. 2563 } else { 2564 CGF.EmitIgnoredExpr(semantic); 2565 } 2566 } 2567 2568 // Unbind all the opaques now. 2569 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2570 opaques[i].unbind(CGF); 2571 2572 return result; 2573 } 2574 2575 static TryEmitResult 2576 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2577 // We should *never* see a nested full-expression here, because if 2578 // we fail to emit at +1, our caller must not retain after we close 2579 // out the full-expression. 2580 assert(!isa<ExprWithCleanups>(e)); 2581 2582 // The desired result type, if it differs from the type of the 2583 // ultimate opaque expression. 2584 llvm::Type *resultType = nullptr; 2585 2586 while (true) { 2587 e = e->IgnoreParens(); 2588 2589 // There's a break at the end of this if-chain; anything 2590 // that wants to keep looping has to explicitly continue. 2591 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2592 switch (ce->getCastKind()) { 2593 // No-op casts don't change the type, so we just ignore them. 2594 case CK_NoOp: 2595 e = ce->getSubExpr(); 2596 continue; 2597 2598 case CK_LValueToRValue: { 2599 TryEmitResult loadResult 2600 = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr()); 2601 if (resultType) { 2602 llvm::Value *value = loadResult.getPointer(); 2603 value = CGF.Builder.CreateBitCast(value, resultType); 2604 loadResult.setPointer(value); 2605 } 2606 return loadResult; 2607 } 2608 2609 // These casts can change the type, so remember that and 2610 // soldier on. We only need to remember the outermost such 2611 // cast, though. 2612 case CK_CPointerToObjCPointerCast: 2613 case CK_BlockPointerToObjCPointerCast: 2614 case CK_AnyPointerToBlockPointerCast: 2615 case CK_BitCast: 2616 if (!resultType) 2617 resultType = CGF.ConvertType(ce->getType()); 2618 e = ce->getSubExpr(); 2619 assert(e->getType()->hasPointerRepresentation()); 2620 continue; 2621 2622 // For consumptions, just emit the subexpression and thus elide 2623 // the retain/release pair. 2624 case CK_ARCConsumeObject: { 2625 llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr()); 2626 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2627 return TryEmitResult(result, true); 2628 } 2629 2630 // Block extends are net +0. Naively, we could just recurse on 2631 // the subexpression, but actually we need to ensure that the 2632 // value is copied as a block, so there's a little filter here. 2633 case CK_ARCExtendBlockObject: { 2634 llvm::Value *result; // will be a +0 value 2635 2636 // If we can't safely assume the sub-expression will produce a 2637 // block-copied value, emit the sub-expression at +0. 2638 if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) { 2639 result = CGF.EmitScalarExpr(ce->getSubExpr()); 2640 2641 // Otherwise, try to emit the sub-expression at +1 recursively. 2642 } else { 2643 TryEmitResult subresult 2644 = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr()); 2645 result = subresult.getPointer(); 2646 2647 // If that produced a retained value, just use that, 2648 // possibly casting down. 2649 if (subresult.getInt()) { 2650 if (resultType) 2651 result = CGF.Builder.CreateBitCast(result, resultType); 2652 return TryEmitResult(result, true); 2653 } 2654 2655 // Otherwise it's +0. 2656 } 2657 2658 // Retain the object as a block, then cast down. 2659 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2660 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2661 return TryEmitResult(result, true); 2662 } 2663 2664 // For reclaims, emit the subexpression as a retained call and 2665 // skip the consumption. 2666 case CK_ARCReclaimReturnedObject: { 2667 llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr()); 2668 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2669 return TryEmitResult(result, true); 2670 } 2671 2672 default: 2673 break; 2674 } 2675 2676 // Skip __extension__. 2677 } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 2678 if (op->getOpcode() == UO_Extension) { 2679 e = op->getSubExpr(); 2680 continue; 2681 } 2682 2683 // For calls and message sends, use the retained-call logic. 2684 // Delegate inits are a special case in that they're the only 2685 // returns-retained expression that *isn't* surrounded by 2686 // a consume. 2687 } else if (isa<CallExpr>(e) || 2688 (isa<ObjCMessageExpr>(e) && 2689 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2690 llvm::Value *result = emitARCRetainCall(CGF, e); 2691 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2692 return TryEmitResult(result, true); 2693 2694 // Look through pseudo-object expressions. 2695 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2696 TryEmitResult result 2697 = tryEmitARCRetainPseudoObject(CGF, pseudo); 2698 if (resultType) { 2699 llvm::Value *value = result.getPointer(); 2700 value = CGF.Builder.CreateBitCast(value, resultType); 2701 result.setPointer(value); 2702 } 2703 return result; 2704 } 2705 2706 // Conservatively halt the search at any other expression kind. 2707 break; 2708 } 2709 2710 // We didn't find an obvious production, so emit what we've got and 2711 // tell the caller that we didn't manage to retain. 2712 llvm::Value *result = CGF.EmitScalarExpr(e); 2713 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); 2714 return TryEmitResult(result, false); 2715 } 2716 2717 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2718 LValue lvalue, 2719 QualType type) { 2720 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2721 llvm::Value *value = result.getPointer(); 2722 if (!result.getInt()) 2723 value = CGF.EmitARCRetain(type, value); 2724 return value; 2725 } 2726 2727 /// EmitARCRetainScalarExpr - Semantically equivalent to 2728 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2729 /// best-effort attempt to peephole expressions that naturally produce 2730 /// retained objects. 2731 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2732 // The retain needs to happen within the full-expression. 2733 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2734 enterFullExpression(cleanups); 2735 RunCleanupsScope scope(*this); 2736 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 2737 } 2738 2739 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2740 llvm::Value *value = result.getPointer(); 2741 if (!result.getInt()) 2742 value = EmitARCRetain(e->getType(), value); 2743 return value; 2744 } 2745 2746 llvm::Value * 2747 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2748 // The retain needs to happen within the full-expression. 2749 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2750 enterFullExpression(cleanups); 2751 RunCleanupsScope scope(*this); 2752 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 2753 } 2754 2755 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2756 llvm::Value *value = result.getPointer(); 2757 if (result.getInt()) 2758 value = EmitARCAutorelease(value); 2759 else 2760 value = EmitARCRetainAutorelease(e->getType(), value); 2761 return value; 2762 } 2763 2764 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2765 llvm::Value *result; 2766 bool doRetain; 2767 2768 if (shouldEmitSeparateBlockRetain(e)) { 2769 result = EmitScalarExpr(e); 2770 doRetain = true; 2771 } else { 2772 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2773 result = subresult.getPointer(); 2774 doRetain = !subresult.getInt(); 2775 } 2776 2777 if (doRetain) 2778 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2779 return EmitObjCConsumeObject(e->getType(), result); 2780 } 2781 2782 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2783 // In ARC, retain and autorelease the expression. 2784 if (getLangOpts().ObjCAutoRefCount) { 2785 // Do so before running any cleanups for the full-expression. 2786 // EmitARCRetainAutoreleaseScalarExpr does this for us. 2787 return EmitARCRetainAutoreleaseScalarExpr(expr); 2788 } 2789 2790 // Otherwise, use the normal scalar-expression emission. The 2791 // exception machinery doesn't do anything special with the 2792 // exception like retaining it, so there's no safety associated with 2793 // only running cleanups after the throw has started, and when it 2794 // matters it tends to be substantially inferior code. 2795 return EmitScalarExpr(expr); 2796 } 2797 2798 std::pair<LValue,llvm::Value*> 2799 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 2800 bool ignored) { 2801 // Evaluate the RHS first. 2802 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 2803 llvm::Value *value = result.getPointer(); 2804 2805 bool hasImmediateRetain = result.getInt(); 2806 2807 // If we didn't emit a retained object, and the l-value is of block 2808 // type, then we need to emit the block-retain immediately in case 2809 // it invalidates the l-value. 2810 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 2811 value = EmitARCRetainBlock(value, /*mandatory*/ false); 2812 hasImmediateRetain = true; 2813 } 2814 2815 LValue lvalue = EmitLValue(e->getLHS()); 2816 2817 // If the RHS was emitted retained, expand this. 2818 if (hasImmediateRetain) { 2819 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 2820 EmitStoreOfScalar(value, lvalue); 2821 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 2822 } else { 2823 value = EmitARCStoreStrong(lvalue, value, ignored); 2824 } 2825 2826 return std::pair<LValue,llvm::Value*>(lvalue, value); 2827 } 2828 2829 std::pair<LValue,llvm::Value*> 2830 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 2831 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 2832 LValue lvalue = EmitLValue(e->getLHS()); 2833 2834 EmitStoreOfScalar(value, lvalue); 2835 2836 return std::pair<LValue,llvm::Value*>(lvalue, value); 2837 } 2838 2839 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 2840 const ObjCAutoreleasePoolStmt &ARPS) { 2841 const Stmt *subStmt = ARPS.getSubStmt(); 2842 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 2843 2844 CGDebugInfo *DI = getDebugInfo(); 2845 if (DI) 2846 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 2847 2848 // Keep track of the current cleanup stack depth. 2849 RunCleanupsScope Scope(*this); 2850 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 2851 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 2852 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 2853 } else { 2854 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 2855 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 2856 } 2857 2858 for (const auto *I : S.body()) 2859 EmitStmt(I); 2860 2861 if (DI) 2862 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 2863 } 2864 2865 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2866 /// make sure it survives garbage collection until this point. 2867 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 2868 // We just use an inline assembly. 2869 llvm::FunctionType *extenderType 2870 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 2871 llvm::Value *extender 2872 = llvm::InlineAsm::get(extenderType, 2873 /* assembly */ "", 2874 /* constraints */ "r", 2875 /* side effects */ true); 2876 2877 object = Builder.CreateBitCast(object, VoidPtrTy); 2878 EmitNounwindRuntimeCall(extender, object); 2879 } 2880 2881 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 2882 /// non-trivial copy assignment function, produce following helper function. 2883 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 2884 /// 2885 llvm::Constant * 2886 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 2887 const ObjCPropertyImplDecl *PID) { 2888 if (!getLangOpts().CPlusPlus || 2889 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2890 return nullptr; 2891 QualType Ty = PID->getPropertyIvarDecl()->getType(); 2892 if (!Ty->isRecordType()) 2893 return nullptr; 2894 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2895 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2896 return nullptr; 2897 llvm::Constant *HelperFn = nullptr; 2898 if (hasTrivialSetExpr(PID)) 2899 return nullptr; 2900 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 2901 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 2902 return HelperFn; 2903 2904 ASTContext &C = getContext(); 2905 IdentifierInfo *II 2906 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 2907 FunctionDecl *FD = FunctionDecl::Create(C, 2908 C.getTranslationUnitDecl(), 2909 SourceLocation(), 2910 SourceLocation(), II, C.VoidTy, 2911 nullptr, SC_Static, 2912 false, 2913 false); 2914 2915 QualType DestTy = C.getPointerType(Ty); 2916 QualType SrcTy = Ty; 2917 SrcTy.addConst(); 2918 SrcTy = C.getPointerType(SrcTy); 2919 2920 FunctionArgList args; 2921 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 2922 args.push_back(&dstDecl); 2923 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 2924 args.push_back(&srcDecl); 2925 2926 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 2927 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All); 2928 2929 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 2930 2931 llvm::Function *Fn = 2932 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 2933 "__assign_helper_atomic_property_", 2934 &CGM.getModule()); 2935 2936 StartFunction(FD, C.VoidTy, Fn, FI, args); 2937 2938 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 2939 VK_RValue, SourceLocation()); 2940 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 2941 VK_LValue, OK_Ordinary, SourceLocation()); 2942 2943 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 2944 VK_RValue, SourceLocation()); 2945 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 2946 VK_LValue, OK_Ordinary, SourceLocation()); 2947 2948 Expr *Args[2] = { &DST, &SRC }; 2949 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 2950 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 2951 Args, DestTy->getPointeeType(), 2952 VK_LValue, SourceLocation(), false); 2953 2954 EmitStmt(&TheCall); 2955 2956 FinishFunction(); 2957 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 2958 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 2959 return HelperFn; 2960 } 2961 2962 llvm::Constant * 2963 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 2964 const ObjCPropertyImplDecl *PID) { 2965 if (!getLangOpts().CPlusPlus || 2966 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 2967 return nullptr; 2968 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2969 QualType Ty = PD->getType(); 2970 if (!Ty->isRecordType()) 2971 return nullptr; 2972 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 2973 return nullptr; 2974 llvm::Constant *HelperFn = nullptr; 2975 2976 if (hasTrivialGetExpr(PID)) 2977 return nullptr; 2978 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 2979 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 2980 return HelperFn; 2981 2982 2983 ASTContext &C = getContext(); 2984 IdentifierInfo *II 2985 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 2986 FunctionDecl *FD = FunctionDecl::Create(C, 2987 C.getTranslationUnitDecl(), 2988 SourceLocation(), 2989 SourceLocation(), II, C.VoidTy, 2990 nullptr, SC_Static, 2991 false, 2992 false); 2993 2994 QualType DestTy = C.getPointerType(Ty); 2995 QualType SrcTy = Ty; 2996 SrcTy.addConst(); 2997 SrcTy = C.getPointerType(SrcTy); 2998 2999 FunctionArgList args; 3000 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 3001 args.push_back(&dstDecl); 3002 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 3003 args.push_back(&srcDecl); 3004 3005 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration( 3006 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All); 3007 3008 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3009 3010 llvm::Function *Fn = 3011 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3012 "__copy_helper_atomic_property_", &CGM.getModule()); 3013 3014 StartFunction(FD, C.VoidTy, Fn, FI, args); 3015 3016 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 3017 VK_RValue, SourceLocation()); 3018 3019 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3020 VK_LValue, OK_Ordinary, SourceLocation()); 3021 3022 CXXConstructExpr *CXXConstExpr = 3023 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3024 3025 SmallVector<Expr*, 4> ConstructorArgs; 3026 ConstructorArgs.push_back(&SRC); 3027 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3028 CXXConstExpr->arg_end()); 3029 3030 CXXConstructExpr *TheCXXConstructExpr = 3031 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3032 CXXConstExpr->getConstructor(), 3033 CXXConstExpr->isElidable(), 3034 ConstructorArgs, 3035 CXXConstExpr->hadMultipleCandidates(), 3036 CXXConstExpr->isListInitialization(), 3037 CXXConstExpr->isStdInitListInitialization(), 3038 CXXConstExpr->requiresZeroInitialization(), 3039 CXXConstExpr->getConstructionKind(), 3040 SourceRange()); 3041 3042 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 3043 VK_RValue, SourceLocation()); 3044 3045 RValue DV = EmitAnyExpr(&DstExpr); 3046 CharUnits Alignment 3047 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3048 EmitAggExpr(TheCXXConstructExpr, 3049 AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(), 3050 AggValueSlot::IsDestructed, 3051 AggValueSlot::DoesNotNeedGCBarriers, 3052 AggValueSlot::IsNotAliased)); 3053 3054 FinishFunction(); 3055 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3056 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3057 return HelperFn; 3058 } 3059 3060 llvm::Value * 3061 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3062 // Get selectors for retain/autorelease. 3063 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3064 Selector CopySelector = 3065 getContext().Selectors.getNullarySelector(CopyID); 3066 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3067 Selector AutoreleaseSelector = 3068 getContext().Selectors.getNullarySelector(AutoreleaseID); 3069 3070 // Emit calls to retain/autorelease. 3071 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3072 llvm::Value *Val = Block; 3073 RValue Result; 3074 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3075 Ty, CopySelector, 3076 Val, CallArgList(), nullptr, nullptr); 3077 Val = Result.getScalarVal(); 3078 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3079 Ty, AutoreleaseSelector, 3080 Val, CallArgList(), nullptr, nullptr); 3081 Val = Result.getScalarVal(); 3082 return Val; 3083 } 3084 3085 3086 CGObjCRuntime::~CGObjCRuntime() {} 3087