1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Objective-C code as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/StmtObjC.h" 21 #include "clang/Basic/Diagnostic.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/InlineAsm.h" 26 using namespace clang; 27 using namespace CodeGen; 28 29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 30 static TryEmitResult 31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 32 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 33 QualType ET, 34 RValue Result); 35 36 /// Given the address of a variable of pointer type, find the correct 37 /// null to store into it. 38 static llvm::Constant *getNullForVariable(Address addr) { 39 llvm::Type *type = addr.getElementType(); 40 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 41 } 42 43 /// Emits an instance of NSConstantString representing the object. 44 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 45 { 46 llvm::Constant *C = 47 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 48 // FIXME: This bitcast should just be made an invariant on the Runtime. 49 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 50 } 51 52 /// EmitObjCBoxedExpr - This routine generates code to call 53 /// the appropriate expression boxing method. This will either be 54 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 55 /// or [NSValue valueWithBytes:objCType:]. 56 /// 57 llvm::Value * 58 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 59 // Generate the correct selector for this literal's concrete type. 60 // Get the method. 61 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 62 const Expr *SubExpr = E->getSubExpr(); 63 assert(BoxingMethod && "BoxingMethod is null"); 64 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 65 Selector Sel = BoxingMethod->getSelector(); 66 67 // Generate a reference to the class pointer, which will be the receiver. 68 // Assumes that the method was introduced in the class that should be 69 // messaged (avoids pulling it out of the result type). 70 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 71 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 72 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 73 74 CallArgList Args; 75 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 76 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 77 78 // ObjCBoxedExpr supports boxing of structs and unions 79 // via [NSValue valueWithBytes:objCType:] 80 const QualType ValueType(SubExpr->getType().getCanonicalType()); 81 if (ValueType->isObjCBoxableRecordType()) { 82 // Emit CodeGen for first parameter 83 // and cast value to correct type 84 Address Temporary = CreateMemTemp(SubExpr->getType()); 85 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 86 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 87 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 88 89 // Create char array to store type encoding 90 std::string Str; 91 getContext().getObjCEncodingForType(ValueType, Str); 92 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 93 94 // Cast type encoding to correct type 95 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 96 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 97 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 98 99 Args.add(RValue::get(Cast), EncodingQT); 100 } else { 101 Args.add(EmitAnyExpr(SubExpr), ArgQT); 102 } 103 104 RValue result = Runtime.GenerateMessageSend( 105 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 106 Args, ClassDecl, BoxingMethod); 107 return Builder.CreateBitCast(result.getScalarVal(), 108 ConvertType(E->getType())); 109 } 110 111 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 112 const ObjCMethodDecl *MethodWithObjects) { 113 ASTContext &Context = CGM.getContext(); 114 const ObjCDictionaryLiteral *DLE = nullptr; 115 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 116 if (!ALE) 117 DLE = cast<ObjCDictionaryLiteral>(E); 118 119 // Optimize empty collections by referencing constants, when available. 120 uint64_t NumElements = 121 ALE ? ALE->getNumElements() : DLE->getNumElements(); 122 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 123 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 124 QualType IdTy(CGM.getContext().getObjCIdType()); 125 llvm::Constant *Constant = 126 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 127 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 128 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); 129 cast<llvm::LoadInst>(Ptr)->setMetadata( 130 CGM.getModule().getMDKindID("invariant.load"), 131 llvm::MDNode::get(getLLVMContext(), None)); 132 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 133 } 134 135 // Compute the type of the array we're initializing. 136 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 137 NumElements); 138 QualType ElementType = Context.getObjCIdType().withConst(); 139 QualType ElementArrayType 140 = Context.getConstantArrayType(ElementType, APNumElements, 141 ArrayType::Normal, /*IndexTypeQuals=*/0); 142 143 // Allocate the temporary array(s). 144 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 145 Address Keys = Address::invalid(); 146 if (DLE) 147 Keys = CreateMemTemp(ElementArrayType, "keys"); 148 149 // In ARC, we may need to do extra work to keep all the keys and 150 // values alive until after the call. 151 SmallVector<llvm::Value *, 16> NeededObjects; 152 bool TrackNeededObjects = 153 (getLangOpts().ObjCAutoRefCount && 154 CGM.getCodeGenOpts().OptimizationLevel != 0); 155 156 // Perform the actual initialialization of the array(s). 157 for (uint64_t i = 0; i < NumElements; i++) { 158 if (ALE) { 159 // Emit the element and store it to the appropriate array slot. 160 const Expr *Rhs = ALE->getElement(i); 161 LValue LV = MakeAddrLValue( 162 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 163 ElementType, AlignmentSource::Decl); 164 165 llvm::Value *value = EmitScalarExpr(Rhs); 166 EmitStoreThroughLValue(RValue::get(value), LV, true); 167 if (TrackNeededObjects) { 168 NeededObjects.push_back(value); 169 } 170 } else { 171 // Emit the key and store it to the appropriate array slot. 172 const Expr *Key = DLE->getKeyValueElement(i).Key; 173 LValue KeyLV = MakeAddrLValue( 174 Builder.CreateConstArrayGEP(Keys, i, getPointerSize()), 175 ElementType, AlignmentSource::Decl); 176 llvm::Value *keyValue = EmitScalarExpr(Key); 177 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 178 179 // Emit the value and store it to the appropriate array slot. 180 const Expr *Value = DLE->getKeyValueElement(i).Value; 181 LValue ValueLV = MakeAddrLValue( 182 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 183 ElementType, AlignmentSource::Decl); 184 llvm::Value *valueValue = EmitScalarExpr(Value); 185 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 186 if (TrackNeededObjects) { 187 NeededObjects.push_back(keyValue); 188 NeededObjects.push_back(valueValue); 189 } 190 } 191 } 192 193 // Generate the argument list. 194 CallArgList Args; 195 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 196 const ParmVarDecl *argDecl = *PI++; 197 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 198 Args.add(RValue::get(Objects.getPointer()), ArgQT); 199 if (DLE) { 200 argDecl = *PI++; 201 ArgQT = argDecl->getType().getUnqualifiedType(); 202 Args.add(RValue::get(Keys.getPointer()), ArgQT); 203 } 204 argDecl = *PI; 205 ArgQT = argDecl->getType().getUnqualifiedType(); 206 llvm::Value *Count = 207 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 208 Args.add(RValue::get(Count), ArgQT); 209 210 // Generate a reference to the class pointer, which will be the receiver. 211 Selector Sel = MethodWithObjects->getSelector(); 212 QualType ResultType = E->getType(); 213 const ObjCObjectPointerType *InterfacePointerType 214 = ResultType->getAsObjCInterfacePointerType(); 215 ObjCInterfaceDecl *Class 216 = InterfacePointerType->getObjectType()->getInterface(); 217 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 218 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 219 220 // Generate the message send. 221 RValue result = Runtime.GenerateMessageSend( 222 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 223 Receiver, Args, Class, MethodWithObjects); 224 225 // The above message send needs these objects, but in ARC they are 226 // passed in a buffer that is essentially __unsafe_unretained. 227 // Therefore we must prevent the optimizer from releasing them until 228 // after the call. 229 if (TrackNeededObjects) { 230 EmitARCIntrinsicUse(NeededObjects); 231 } 232 233 return Builder.CreateBitCast(result.getScalarVal(), 234 ConvertType(E->getType())); 235 } 236 237 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 238 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 239 } 240 241 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 242 const ObjCDictionaryLiteral *E) { 243 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 244 } 245 246 /// Emit a selector. 247 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 248 // Untyped selector. 249 // Note that this implementation allows for non-constant strings to be passed 250 // as arguments to @selector(). Currently, the only thing preventing this 251 // behaviour is the type checking in the front end. 252 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 253 } 254 255 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 256 // FIXME: This should pass the Decl not the name. 257 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 258 } 259 260 /// Adjust the type of an Objective-C object that doesn't match up due 261 /// to type erasure at various points, e.g., related result types or the use 262 /// of parameterized classes. 263 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 264 RValue Result) { 265 if (!ExpT->isObjCRetainableType()) 266 return Result; 267 268 // If the converted types are the same, we're done. 269 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 270 if (ExpLLVMTy == Result.getScalarVal()->getType()) 271 return Result; 272 273 // We have applied a substitution. Cast the rvalue appropriately. 274 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 275 ExpLLVMTy)); 276 } 277 278 /// Decide whether to extend the lifetime of the receiver of a 279 /// returns-inner-pointer message. 280 static bool 281 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 282 switch (message->getReceiverKind()) { 283 284 // For a normal instance message, we should extend unless the 285 // receiver is loaded from a variable with precise lifetime. 286 case ObjCMessageExpr::Instance: { 287 const Expr *receiver = message->getInstanceReceiver(); 288 289 // Look through OVEs. 290 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 291 if (opaque->getSourceExpr()) 292 receiver = opaque->getSourceExpr()->IgnoreParens(); 293 } 294 295 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 296 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 297 receiver = ice->getSubExpr()->IgnoreParens(); 298 299 // Look through OVEs. 300 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 301 if (opaque->getSourceExpr()) 302 receiver = opaque->getSourceExpr()->IgnoreParens(); 303 } 304 305 // Only __strong variables. 306 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 307 return true; 308 309 // All ivars and fields have precise lifetime. 310 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 311 return false; 312 313 // Otherwise, check for variables. 314 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 315 if (!declRef) return true; 316 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 317 if (!var) return true; 318 319 // All variables have precise lifetime except local variables with 320 // automatic storage duration that aren't specially marked. 321 return (var->hasLocalStorage() && 322 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 323 } 324 325 case ObjCMessageExpr::Class: 326 case ObjCMessageExpr::SuperClass: 327 // It's never necessary for class objects. 328 return false; 329 330 case ObjCMessageExpr::SuperInstance: 331 // We generally assume that 'self' lives throughout a method call. 332 return false; 333 } 334 335 llvm_unreachable("invalid receiver kind"); 336 } 337 338 /// Given an expression of ObjC pointer type, check whether it was 339 /// immediately loaded from an ARC __weak l-value. 340 static const Expr *findWeakLValue(const Expr *E) { 341 assert(E->getType()->isObjCRetainableType()); 342 E = E->IgnoreParens(); 343 if (auto CE = dyn_cast<CastExpr>(E)) { 344 if (CE->getCastKind() == CK_LValueToRValue) { 345 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 346 return CE->getSubExpr(); 347 } 348 } 349 350 return nullptr; 351 } 352 353 /// The ObjC runtime may provide entrypoints that are likely to be faster 354 /// than an ordinary message send of the appropriate selector. 355 /// 356 /// The entrypoints are guaranteed to be equivalent to just sending the 357 /// corresponding message. If the entrypoint is implemented naively as just a 358 /// message send, using it is a trade-off: it sacrifices a few cycles of 359 /// overhead to save a small amount of code. However, it's possible for 360 /// runtimes to detect and special-case classes that use "standard" 361 /// behavior; if that's dynamically a large proportion of all objects, using 362 /// the entrypoint will also be faster than using a message send. 363 /// 364 /// If the runtime does support a required entrypoint, then this method will 365 /// generate a call and return the resulting value. Otherwise it will return 366 /// None and the caller can generate a msgSend instead. 367 static Optional<llvm::Value *> 368 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType, 369 llvm::Value *Receiver, 370 const CallArgList& Args, Selector Sel, 371 const ObjCMethodDecl *method, 372 bool isClassMessage) { 373 auto &CGM = CGF.CGM; 374 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) 375 return None; 376 377 auto &Runtime = CGM.getLangOpts().ObjCRuntime; 378 switch (Sel.getMethodFamily()) { 379 case OMF_alloc: 380 if (isClassMessage && 381 Runtime.shouldUseRuntimeFunctionsForAlloc() && 382 ResultType->isObjCObjectPointerType()) { 383 // [Foo alloc] -> objc_alloc(Foo) 384 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc") 385 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType)); 386 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) 387 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && 388 Args.size() == 1 && Args.front().getType()->isPointerType() && 389 Sel.getNameForSlot(0) == "allocWithZone") { 390 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); 391 if (isa<llvm::ConstantPointerNull>(arg)) 392 return CGF.EmitObjCAllocWithZone(Receiver, 393 CGF.ConvertType(ResultType)); 394 return None; 395 } 396 } 397 break; 398 399 case OMF_autorelease: 400 if (ResultType->isObjCObjectPointerType() && 401 CGM.getLangOpts().getGC() == LangOptions::NonGC && 402 Runtime.shouldUseARCFunctionsForRetainRelease()) 403 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType)); 404 break; 405 406 case OMF_retain: 407 if (ResultType->isObjCObjectPointerType() && 408 CGM.getLangOpts().getGC() == LangOptions::NonGC && 409 Runtime.shouldUseARCFunctionsForRetainRelease()) 410 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType)); 411 break; 412 413 case OMF_release: 414 if (ResultType->isVoidType() && 415 CGM.getLangOpts().getGC() == LangOptions::NonGC && 416 Runtime.shouldUseARCFunctionsForRetainRelease()) { 417 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime); 418 return nullptr; 419 } 420 break; 421 422 default: 423 break; 424 } 425 return None; 426 } 427 428 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 429 ReturnValueSlot Return) { 430 // Only the lookup mechanism and first two arguments of the method 431 // implementation vary between runtimes. We can get the receiver and 432 // arguments in generic code. 433 434 bool isDelegateInit = E->isDelegateInitCall(); 435 436 const ObjCMethodDecl *method = E->getMethodDecl(); 437 438 // If the method is -retain, and the receiver's being loaded from 439 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 440 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 441 method->getMethodFamily() == OMF_retain) { 442 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 443 LValue lvalue = EmitLValue(lvalueExpr); 444 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress()); 445 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 446 } 447 } 448 449 // We don't retain the receiver in delegate init calls, and this is 450 // safe because the receiver value is always loaded from 'self', 451 // which we zero out. We don't want to Block_copy block receivers, 452 // though. 453 bool retainSelf = 454 (!isDelegateInit && 455 CGM.getLangOpts().ObjCAutoRefCount && 456 method && 457 method->hasAttr<NSConsumesSelfAttr>()); 458 459 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 460 bool isSuperMessage = false; 461 bool isClassMessage = false; 462 ObjCInterfaceDecl *OID = nullptr; 463 // Find the receiver 464 QualType ReceiverType; 465 llvm::Value *Receiver = nullptr; 466 switch (E->getReceiverKind()) { 467 case ObjCMessageExpr::Instance: 468 ReceiverType = E->getInstanceReceiver()->getType(); 469 if (retainSelf) { 470 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 471 E->getInstanceReceiver()); 472 Receiver = ter.getPointer(); 473 if (ter.getInt()) retainSelf = false; 474 } else 475 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 476 break; 477 478 case ObjCMessageExpr::Class: { 479 ReceiverType = E->getClassReceiver(); 480 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 481 assert(ObjTy && "Invalid Objective-C class message send"); 482 OID = ObjTy->getInterface(); 483 assert(OID && "Invalid Objective-C class message send"); 484 Receiver = Runtime.GetClass(*this, OID); 485 isClassMessage = true; 486 break; 487 } 488 489 case ObjCMessageExpr::SuperInstance: 490 ReceiverType = E->getSuperType(); 491 Receiver = LoadObjCSelf(); 492 isSuperMessage = true; 493 break; 494 495 case ObjCMessageExpr::SuperClass: 496 ReceiverType = E->getSuperType(); 497 Receiver = LoadObjCSelf(); 498 isSuperMessage = true; 499 isClassMessage = true; 500 break; 501 } 502 503 if (retainSelf) 504 Receiver = EmitARCRetainNonBlock(Receiver); 505 506 // In ARC, we sometimes want to "extend the lifetime" 507 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 508 // messages. 509 if (getLangOpts().ObjCAutoRefCount && method && 510 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 511 shouldExtendReceiverForInnerPointerMessage(E)) 512 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 513 514 QualType ResultType = method ? method->getReturnType() : E->getType(); 515 516 CallArgList Args; 517 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 518 519 // For delegate init calls in ARC, do an unsafe store of null into 520 // self. This represents the call taking direct ownership of that 521 // value. We have to do this after emitting the other call 522 // arguments because they might also reference self, but we don't 523 // have to worry about any of them modifying self because that would 524 // be an undefined read and write of an object in unordered 525 // expressions. 526 if (isDelegateInit) { 527 assert(getLangOpts().ObjCAutoRefCount && 528 "delegate init calls should only be marked in ARC"); 529 530 // Do an unsafe store of null into self. 531 Address selfAddr = 532 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 533 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 534 } 535 536 RValue result; 537 if (isSuperMessage) { 538 // super is only valid in an Objective-C method 539 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 540 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 541 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 542 E->getSelector(), 543 OMD->getClassInterface(), 544 isCategoryImpl, 545 Receiver, 546 isClassMessage, 547 Args, 548 method); 549 } else { 550 // Call runtime methods directly if we can. 551 if (Optional<llvm::Value *> SpecializedResult = 552 tryGenerateSpecializedMessageSend(*this, ResultType, Receiver, Args, 553 E->getSelector(), method, 554 isClassMessage)) { 555 result = RValue::get(SpecializedResult.getValue()); 556 } else { 557 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 558 E->getSelector(), Receiver, Args, 559 OID, method); 560 } 561 } 562 563 // For delegate init calls in ARC, implicitly store the result of 564 // the call back into self. This takes ownership of the value. 565 if (isDelegateInit) { 566 Address selfAddr = 567 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 568 llvm::Value *newSelf = result.getScalarVal(); 569 570 // The delegate return type isn't necessarily a matching type; in 571 // fact, it's quite likely to be 'id'. 572 llvm::Type *selfTy = selfAddr.getElementType(); 573 newSelf = Builder.CreateBitCast(newSelf, selfTy); 574 575 Builder.CreateStore(newSelf, selfAddr); 576 } 577 578 return AdjustObjCObjectType(*this, E->getType(), result); 579 } 580 581 namespace { 582 struct FinishARCDealloc final : EHScopeStack::Cleanup { 583 void Emit(CodeGenFunction &CGF, Flags flags) override { 584 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 585 586 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 587 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 588 if (!iface->getSuperClass()) return; 589 590 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 591 592 // Call [super dealloc] if we have a superclass. 593 llvm::Value *self = CGF.LoadObjCSelf(); 594 595 CallArgList args; 596 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 597 CGF.getContext().VoidTy, 598 method->getSelector(), 599 iface, 600 isCategory, 601 self, 602 /*is class msg*/ false, 603 args, 604 method); 605 } 606 }; 607 } 608 609 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 610 /// the LLVM function and sets the other context used by 611 /// CodeGenFunction. 612 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 613 const ObjCContainerDecl *CD) { 614 SourceLocation StartLoc = OMD->getBeginLoc(); 615 FunctionArgList args; 616 // Check if we should generate debug info for this method. 617 if (OMD->hasAttr<NoDebugAttr>()) 618 DebugInfo = nullptr; // disable debug info indefinitely for this function 619 620 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 621 622 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 623 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 624 625 args.push_back(OMD->getSelfDecl()); 626 args.push_back(OMD->getCmdDecl()); 627 628 args.append(OMD->param_begin(), OMD->param_end()); 629 630 CurGD = OMD; 631 CurEHLocation = OMD->getEndLoc(); 632 633 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 634 OMD->getLocation(), StartLoc); 635 636 // In ARC, certain methods get an extra cleanup. 637 if (CGM.getLangOpts().ObjCAutoRefCount && 638 OMD->isInstanceMethod() && 639 OMD->getSelector().isUnarySelector()) { 640 const IdentifierInfo *ident = 641 OMD->getSelector().getIdentifierInfoForSlot(0); 642 if (ident->isStr("dealloc")) 643 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 644 } 645 } 646 647 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 648 LValue lvalue, QualType type); 649 650 /// Generate an Objective-C method. An Objective-C method is a C function with 651 /// its pointer, name, and types registered in the class structure. 652 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 653 StartObjCMethod(OMD, OMD->getClassInterface()); 654 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 655 assert(isa<CompoundStmt>(OMD->getBody())); 656 incrementProfileCounter(OMD->getBody()); 657 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 658 FinishFunction(OMD->getBodyRBrace()); 659 } 660 661 /// emitStructGetterCall - Call the runtime function to load a property 662 /// into the return value slot. 663 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 664 bool isAtomic, bool hasStrong) { 665 ASTContext &Context = CGF.getContext(); 666 667 Address src = 668 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 669 .getAddress(); 670 671 // objc_copyStruct (ReturnValue, &structIvar, 672 // sizeof (Type of Ivar), isAtomic, false); 673 CallArgList args; 674 675 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 676 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 677 678 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 679 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 680 681 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 682 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 683 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 684 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 685 686 llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 687 CGCallee callee = CGCallee::forDirect(fn); 688 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 689 callee, ReturnValueSlot(), args); 690 } 691 692 /// Determine whether the given architecture supports unaligned atomic 693 /// accesses. They don't have to be fast, just faster than a function 694 /// call and a mutex. 695 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 696 // FIXME: Allow unaligned atomic load/store on x86. (It is not 697 // currently supported by the backend.) 698 return 0; 699 } 700 701 /// Return the maximum size that permits atomic accesses for the given 702 /// architecture. 703 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 704 llvm::Triple::ArchType arch) { 705 // ARM has 8-byte atomic accesses, but it's not clear whether we 706 // want to rely on them here. 707 708 // In the default case, just assume that any size up to a pointer is 709 // fine given adequate alignment. 710 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 711 } 712 713 namespace { 714 class PropertyImplStrategy { 715 public: 716 enum StrategyKind { 717 /// The 'native' strategy is to use the architecture's provided 718 /// reads and writes. 719 Native, 720 721 /// Use objc_setProperty and objc_getProperty. 722 GetSetProperty, 723 724 /// Use objc_setProperty for the setter, but use expression 725 /// evaluation for the getter. 726 SetPropertyAndExpressionGet, 727 728 /// Use objc_copyStruct. 729 CopyStruct, 730 731 /// The 'expression' strategy is to emit normal assignment or 732 /// lvalue-to-rvalue expressions. 733 Expression 734 }; 735 736 StrategyKind getKind() const { return StrategyKind(Kind); } 737 738 bool hasStrongMember() const { return HasStrong; } 739 bool isAtomic() const { return IsAtomic; } 740 bool isCopy() const { return IsCopy; } 741 742 CharUnits getIvarSize() const { return IvarSize; } 743 CharUnits getIvarAlignment() const { return IvarAlignment; } 744 745 PropertyImplStrategy(CodeGenModule &CGM, 746 const ObjCPropertyImplDecl *propImpl); 747 748 private: 749 unsigned Kind : 8; 750 unsigned IsAtomic : 1; 751 unsigned IsCopy : 1; 752 unsigned HasStrong : 1; 753 754 CharUnits IvarSize; 755 CharUnits IvarAlignment; 756 }; 757 } 758 759 /// Pick an implementation strategy for the given property synthesis. 760 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 761 const ObjCPropertyImplDecl *propImpl) { 762 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 763 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 764 765 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 766 IsAtomic = prop->isAtomic(); 767 HasStrong = false; // doesn't matter here. 768 769 // Evaluate the ivar's size and alignment. 770 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 771 QualType ivarType = ivar->getType(); 772 std::tie(IvarSize, IvarAlignment) = 773 CGM.getContext().getTypeInfoInChars(ivarType); 774 775 // If we have a copy property, we always have to use getProperty/setProperty. 776 // TODO: we could actually use setProperty and an expression for non-atomics. 777 if (IsCopy) { 778 Kind = GetSetProperty; 779 return; 780 } 781 782 // Handle retain. 783 if (setterKind == ObjCPropertyDecl::Retain) { 784 // In GC-only, there's nothing special that needs to be done. 785 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 786 // fallthrough 787 788 // In ARC, if the property is non-atomic, use expression emission, 789 // which translates to objc_storeStrong. This isn't required, but 790 // it's slightly nicer. 791 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 792 // Using standard expression emission for the setter is only 793 // acceptable if the ivar is __strong, which won't be true if 794 // the property is annotated with __attribute__((NSObject)). 795 // TODO: falling all the way back to objc_setProperty here is 796 // just laziness, though; we could still use objc_storeStrong 797 // if we hacked it right. 798 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 799 Kind = Expression; 800 else 801 Kind = SetPropertyAndExpressionGet; 802 return; 803 804 // Otherwise, we need to at least use setProperty. However, if 805 // the property isn't atomic, we can use normal expression 806 // emission for the getter. 807 } else if (!IsAtomic) { 808 Kind = SetPropertyAndExpressionGet; 809 return; 810 811 // Otherwise, we have to use both setProperty and getProperty. 812 } else { 813 Kind = GetSetProperty; 814 return; 815 } 816 } 817 818 // If we're not atomic, just use expression accesses. 819 if (!IsAtomic) { 820 Kind = Expression; 821 return; 822 } 823 824 // Properties on bitfield ivars need to be emitted using expression 825 // accesses even if they're nominally atomic. 826 if (ivar->isBitField()) { 827 Kind = Expression; 828 return; 829 } 830 831 // GC-qualified or ARC-qualified ivars need to be emitted as 832 // expressions. This actually works out to being atomic anyway, 833 // except for ARC __strong, but that should trigger the above code. 834 if (ivarType.hasNonTrivialObjCLifetime() || 835 (CGM.getLangOpts().getGC() && 836 CGM.getContext().getObjCGCAttrKind(ivarType))) { 837 Kind = Expression; 838 return; 839 } 840 841 // Compute whether the ivar has strong members. 842 if (CGM.getLangOpts().getGC()) 843 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 844 HasStrong = recordType->getDecl()->hasObjectMember(); 845 846 // We can never access structs with object members with a native 847 // access, because we need to use write barriers. This is what 848 // objc_copyStruct is for. 849 if (HasStrong) { 850 Kind = CopyStruct; 851 return; 852 } 853 854 // Otherwise, this is target-dependent and based on the size and 855 // alignment of the ivar. 856 857 // If the size of the ivar is not a power of two, give up. We don't 858 // want to get into the business of doing compare-and-swaps. 859 if (!IvarSize.isPowerOfTwo()) { 860 Kind = CopyStruct; 861 return; 862 } 863 864 llvm::Triple::ArchType arch = 865 CGM.getTarget().getTriple().getArch(); 866 867 // Most architectures require memory to fit within a single cache 868 // line, so the alignment has to be at least the size of the access. 869 // Otherwise we have to grab a lock. 870 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 871 Kind = CopyStruct; 872 return; 873 } 874 875 // If the ivar's size exceeds the architecture's maximum atomic 876 // access size, we have to use CopyStruct. 877 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 878 Kind = CopyStruct; 879 return; 880 } 881 882 // Otherwise, we can use native loads and stores. 883 Kind = Native; 884 } 885 886 /// Generate an Objective-C property getter function. 887 /// 888 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 889 /// is illegal within a category. 890 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 891 const ObjCPropertyImplDecl *PID) { 892 llvm::Constant *AtomicHelperFn = 893 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 894 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 895 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 896 assert(OMD && "Invalid call to generate getter (empty method)"); 897 StartObjCMethod(OMD, IMP->getClassInterface()); 898 899 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 900 901 FinishFunction(); 902 } 903 904 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 905 const Expr *getter = propImpl->getGetterCXXConstructor(); 906 if (!getter) return true; 907 908 // Sema only makes only of these when the ivar has a C++ class type, 909 // so the form is pretty constrained. 910 911 // If the property has a reference type, we might just be binding a 912 // reference, in which case the result will be a gl-value. We should 913 // treat this as a non-trivial operation. 914 if (getter->isGLValue()) 915 return false; 916 917 // If we selected a trivial copy-constructor, we're okay. 918 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 919 return (construct->getConstructor()->isTrivial()); 920 921 // The constructor might require cleanups (in which case it's never 922 // trivial). 923 assert(isa<ExprWithCleanups>(getter)); 924 return false; 925 } 926 927 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 928 /// copy the ivar into the resturn slot. 929 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 930 llvm::Value *returnAddr, 931 ObjCIvarDecl *ivar, 932 llvm::Constant *AtomicHelperFn) { 933 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 934 // AtomicHelperFn); 935 CallArgList args; 936 937 // The 1st argument is the return Slot. 938 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 939 940 // The 2nd argument is the address of the ivar. 941 llvm::Value *ivarAddr = 942 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 943 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 944 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 945 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 946 947 // Third argument is the helper function. 948 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 949 950 llvm::Constant *copyCppAtomicObjectFn = 951 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 952 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 953 CGF.EmitCall( 954 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 955 callee, ReturnValueSlot(), args); 956 } 957 958 void 959 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 960 const ObjCPropertyImplDecl *propImpl, 961 const ObjCMethodDecl *GetterMethodDecl, 962 llvm::Constant *AtomicHelperFn) { 963 // If there's a non-trivial 'get' expression, we just have to emit that. 964 if (!hasTrivialGetExpr(propImpl)) { 965 if (!AtomicHelperFn) { 966 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(), 967 propImpl->getGetterCXXConstructor(), 968 /* NRVOCandidate=*/nullptr); 969 EmitReturnStmt(*ret); 970 } 971 else { 972 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 973 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 974 ivar, AtomicHelperFn); 975 } 976 return; 977 } 978 979 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 980 QualType propType = prop->getType(); 981 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 982 983 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 984 985 // Pick an implementation strategy. 986 PropertyImplStrategy strategy(CGM, propImpl); 987 switch (strategy.getKind()) { 988 case PropertyImplStrategy::Native: { 989 // We don't need to do anything for a zero-size struct. 990 if (strategy.getIvarSize().isZero()) 991 return; 992 993 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 994 995 // Currently, all atomic accesses have to be through integer 996 // types, so there's no point in trying to pick a prettier type. 997 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 998 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 999 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1000 1001 // Perform an atomic load. This does not impose ordering constraints. 1002 Address ivarAddr = LV.getAddress(); 1003 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1004 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 1005 load->setAtomic(llvm::AtomicOrdering::Unordered); 1006 1007 // Store that value into the return address. Doing this with a 1008 // bitcast is likely to produce some pretty ugly IR, but it's not 1009 // the *most* terrible thing in the world. 1010 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 1011 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 1012 llvm::Value *ivarVal = load; 1013 if (ivarSize > retTySize) { 1014 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 1015 ivarVal = Builder.CreateTrunc(load, newTy); 1016 bitcastType = newTy->getPointerTo(); 1017 } 1018 Builder.CreateStore(ivarVal, 1019 Builder.CreateBitCast(ReturnValue, bitcastType)); 1020 1021 // Make sure we don't do an autorelease. 1022 AutoreleaseResult = false; 1023 return; 1024 } 1025 1026 case PropertyImplStrategy::GetSetProperty: { 1027 llvm::Constant *getPropertyFn = 1028 CGM.getObjCRuntime().GetPropertyGetFunction(); 1029 if (!getPropertyFn) { 1030 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 1031 return; 1032 } 1033 CGCallee callee = CGCallee::forDirect(getPropertyFn); 1034 1035 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 1036 // FIXME: Can't this be simpler? This might even be worse than the 1037 // corresponding gcc code. 1038 llvm::Value *cmd = 1039 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 1040 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1041 llvm::Value *ivarOffset = 1042 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1043 1044 CallArgList args; 1045 args.add(RValue::get(self), getContext().getObjCIdType()); 1046 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1047 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1048 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1049 getContext().BoolTy); 1050 1051 // FIXME: We shouldn't need to get the function info here, the 1052 // runtime already should have computed it to build the function. 1053 llvm::CallBase *CallInstruction; 1054 RValue RV = EmitCall( 1055 getTypes().arrangeBuiltinFunctionCall(propType, args), 1056 callee, ReturnValueSlot(), args, &CallInstruction); 1057 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 1058 call->setTailCall(); 1059 1060 // We need to fix the type here. Ivars with copy & retain are 1061 // always objects so we don't need to worry about complex or 1062 // aggregates. 1063 RV = RValue::get(Builder.CreateBitCast( 1064 RV.getScalarVal(), 1065 getTypes().ConvertType(getterMethod->getReturnType()))); 1066 1067 EmitReturnOfRValue(RV, propType); 1068 1069 // objc_getProperty does an autorelease, so we should suppress ours. 1070 AutoreleaseResult = false; 1071 1072 return; 1073 } 1074 1075 case PropertyImplStrategy::CopyStruct: 1076 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 1077 strategy.hasStrongMember()); 1078 return; 1079 1080 case PropertyImplStrategy::Expression: 1081 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1082 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1083 1084 QualType ivarType = ivar->getType(); 1085 switch (getEvaluationKind(ivarType)) { 1086 case TEK_Complex: { 1087 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1088 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1089 /*init*/ true); 1090 return; 1091 } 1092 case TEK_Aggregate: { 1093 // The return value slot is guaranteed to not be aliased, but 1094 // that's not necessarily the same as "on the stack", so 1095 // we still potentially need objc_memmove_collectable. 1096 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1097 /* Src= */ LV, ivarType, overlapForReturnValue()); 1098 return; 1099 } 1100 case TEK_Scalar: { 1101 llvm::Value *value; 1102 if (propType->isReferenceType()) { 1103 value = LV.getAddress().getPointer(); 1104 } else { 1105 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1106 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1107 if (getLangOpts().ObjCAutoRefCount) { 1108 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1109 } else { 1110 value = EmitARCLoadWeak(LV.getAddress()); 1111 } 1112 1113 // Otherwise we want to do a simple load, suppressing the 1114 // final autorelease. 1115 } else { 1116 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1117 AutoreleaseResult = false; 1118 } 1119 1120 value = Builder.CreateBitCast( 1121 value, ConvertType(GetterMethodDecl->getReturnType())); 1122 } 1123 1124 EmitReturnOfRValue(RValue::get(value), propType); 1125 return; 1126 } 1127 } 1128 llvm_unreachable("bad evaluation kind"); 1129 } 1130 1131 } 1132 llvm_unreachable("bad @property implementation strategy!"); 1133 } 1134 1135 /// emitStructSetterCall - Call the runtime function to store the value 1136 /// from the first formal parameter into the given ivar. 1137 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1138 ObjCIvarDecl *ivar) { 1139 // objc_copyStruct (&structIvar, &Arg, 1140 // sizeof (struct something), true, false); 1141 CallArgList args; 1142 1143 // The first argument is the address of the ivar. 1144 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1145 CGF.LoadObjCSelf(), ivar, 0) 1146 .getPointer(); 1147 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1148 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1149 1150 // The second argument is the address of the parameter variable. 1151 ParmVarDecl *argVar = *OMD->param_begin(); 1152 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1153 argVar->getType().getNonReferenceType(), VK_LValue, 1154 SourceLocation()); 1155 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1156 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1157 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1158 1159 // The third argument is the sizeof the type. 1160 llvm::Value *size = 1161 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1162 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1163 1164 // The fourth argument is the 'isAtomic' flag. 1165 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1166 1167 // The fifth argument is the 'hasStrong' flag. 1168 // FIXME: should this really always be false? 1169 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1170 1171 llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1172 CGCallee callee = CGCallee::forDirect(fn); 1173 CGF.EmitCall( 1174 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1175 callee, ReturnValueSlot(), args); 1176 } 1177 1178 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1179 /// the value from the first formal parameter into the given ivar, using 1180 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1181 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1182 ObjCMethodDecl *OMD, 1183 ObjCIvarDecl *ivar, 1184 llvm::Constant *AtomicHelperFn) { 1185 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1186 // AtomicHelperFn); 1187 CallArgList args; 1188 1189 // The first argument is the address of the ivar. 1190 llvm::Value *ivarAddr = 1191 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1192 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 1193 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1194 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1195 1196 // The second argument is the address of the parameter variable. 1197 ParmVarDecl *argVar = *OMD->param_begin(); 1198 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1199 argVar->getType().getNonReferenceType(), VK_LValue, 1200 SourceLocation()); 1201 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1202 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1203 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1204 1205 // Third argument is the helper function. 1206 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1207 1208 llvm::Constant *fn = 1209 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1210 CGCallee callee = CGCallee::forDirect(fn); 1211 CGF.EmitCall( 1212 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1213 callee, ReturnValueSlot(), args); 1214 } 1215 1216 1217 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1218 Expr *setter = PID->getSetterCXXAssignment(); 1219 if (!setter) return true; 1220 1221 // Sema only makes only of these when the ivar has a C++ class type, 1222 // so the form is pretty constrained. 1223 1224 // An operator call is trivial if the function it calls is trivial. 1225 // This also implies that there's nothing non-trivial going on with 1226 // the arguments, because operator= can only be trivial if it's a 1227 // synthesized assignment operator and therefore both parameters are 1228 // references. 1229 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1230 if (const FunctionDecl *callee 1231 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1232 if (callee->isTrivial()) 1233 return true; 1234 return false; 1235 } 1236 1237 assert(isa<ExprWithCleanups>(setter)); 1238 return false; 1239 } 1240 1241 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1242 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1243 return false; 1244 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1245 } 1246 1247 void 1248 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1249 const ObjCPropertyImplDecl *propImpl, 1250 llvm::Constant *AtomicHelperFn) { 1251 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1252 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1253 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1254 1255 // Just use the setter expression if Sema gave us one and it's 1256 // non-trivial. 1257 if (!hasTrivialSetExpr(propImpl)) { 1258 if (!AtomicHelperFn) 1259 // If non-atomic, assignment is called directly. 1260 EmitStmt(propImpl->getSetterCXXAssignment()); 1261 else 1262 // If atomic, assignment is called via a locking api. 1263 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1264 AtomicHelperFn); 1265 return; 1266 } 1267 1268 PropertyImplStrategy strategy(CGM, propImpl); 1269 switch (strategy.getKind()) { 1270 case PropertyImplStrategy::Native: { 1271 // We don't need to do anything for a zero-size struct. 1272 if (strategy.getIvarSize().isZero()) 1273 return; 1274 1275 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1276 1277 LValue ivarLValue = 1278 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1279 Address ivarAddr = ivarLValue.getAddress(); 1280 1281 // Currently, all atomic accesses have to be through integer 1282 // types, so there's no point in trying to pick a prettier type. 1283 llvm::Type *bitcastType = 1284 llvm::Type::getIntNTy(getLLVMContext(), 1285 getContext().toBits(strategy.getIvarSize())); 1286 1287 // Cast both arguments to the chosen operation type. 1288 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1289 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1290 1291 // This bitcast load is likely to cause some nasty IR. 1292 llvm::Value *load = Builder.CreateLoad(argAddr); 1293 1294 // Perform an atomic store. There are no memory ordering requirements. 1295 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1296 store->setAtomic(llvm::AtomicOrdering::Unordered); 1297 return; 1298 } 1299 1300 case PropertyImplStrategy::GetSetProperty: 1301 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1302 1303 llvm::Constant *setOptimizedPropertyFn = nullptr; 1304 llvm::Constant *setPropertyFn = nullptr; 1305 if (UseOptimizedSetter(CGM)) { 1306 // 10.8 and iOS 6.0 code and GC is off 1307 setOptimizedPropertyFn = 1308 CGM.getObjCRuntime() 1309 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1310 strategy.isCopy()); 1311 if (!setOptimizedPropertyFn) { 1312 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1313 return; 1314 } 1315 } 1316 else { 1317 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1318 if (!setPropertyFn) { 1319 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1320 return; 1321 } 1322 } 1323 1324 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1325 // <is-atomic>, <is-copy>). 1326 llvm::Value *cmd = 1327 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1328 llvm::Value *self = 1329 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1330 llvm::Value *ivarOffset = 1331 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1332 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1333 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1334 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1335 1336 CallArgList args; 1337 args.add(RValue::get(self), getContext().getObjCIdType()); 1338 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1339 if (setOptimizedPropertyFn) { 1340 args.add(RValue::get(arg), getContext().getObjCIdType()); 1341 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1342 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1343 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1344 callee, ReturnValueSlot(), args); 1345 } else { 1346 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1347 args.add(RValue::get(arg), getContext().getObjCIdType()); 1348 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1349 getContext().BoolTy); 1350 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1351 getContext().BoolTy); 1352 // FIXME: We shouldn't need to get the function info here, the runtime 1353 // already should have computed it to build the function. 1354 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1355 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1356 callee, ReturnValueSlot(), args); 1357 } 1358 1359 return; 1360 } 1361 1362 case PropertyImplStrategy::CopyStruct: 1363 emitStructSetterCall(*this, setterMethod, ivar); 1364 return; 1365 1366 case PropertyImplStrategy::Expression: 1367 break; 1368 } 1369 1370 // Otherwise, fake up some ASTs and emit a normal assignment. 1371 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1372 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(), 1373 VK_LValue, SourceLocation()); 1374 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1375 selfDecl->getType(), CK_LValueToRValue, &self, 1376 VK_RValue); 1377 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1378 SourceLocation(), SourceLocation(), 1379 &selfLoad, true, true); 1380 1381 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1382 QualType argType = argDecl->getType().getNonReferenceType(); 1383 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue, 1384 SourceLocation()); 1385 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1386 argType.getUnqualifiedType(), CK_LValueToRValue, 1387 &arg, VK_RValue); 1388 1389 // The property type can differ from the ivar type in some situations with 1390 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1391 // The following absurdity is just to ensure well-formed IR. 1392 CastKind argCK = CK_NoOp; 1393 if (ivarRef.getType()->isObjCObjectPointerType()) { 1394 if (argLoad.getType()->isObjCObjectPointerType()) 1395 argCK = CK_BitCast; 1396 else if (argLoad.getType()->isBlockPointerType()) 1397 argCK = CK_BlockPointerToObjCPointerCast; 1398 else 1399 argCK = CK_CPointerToObjCPointerCast; 1400 } else if (ivarRef.getType()->isBlockPointerType()) { 1401 if (argLoad.getType()->isBlockPointerType()) 1402 argCK = CK_BitCast; 1403 else 1404 argCK = CK_AnyPointerToBlockPointerCast; 1405 } else if (ivarRef.getType()->isPointerType()) { 1406 argCK = CK_BitCast; 1407 } 1408 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1409 ivarRef.getType(), argCK, &argLoad, 1410 VK_RValue); 1411 Expr *finalArg = &argLoad; 1412 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1413 argLoad.getType())) 1414 finalArg = &argCast; 1415 1416 1417 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1418 ivarRef.getType(), VK_RValue, OK_Ordinary, 1419 SourceLocation(), FPOptions()); 1420 EmitStmt(&assign); 1421 } 1422 1423 /// Generate an Objective-C property setter function. 1424 /// 1425 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1426 /// is illegal within a category. 1427 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1428 const ObjCPropertyImplDecl *PID) { 1429 llvm::Constant *AtomicHelperFn = 1430 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1431 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1432 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1433 assert(OMD && "Invalid call to generate setter (empty method)"); 1434 StartObjCMethod(OMD, IMP->getClassInterface()); 1435 1436 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1437 1438 FinishFunction(); 1439 } 1440 1441 namespace { 1442 struct DestroyIvar final : EHScopeStack::Cleanup { 1443 private: 1444 llvm::Value *addr; 1445 const ObjCIvarDecl *ivar; 1446 CodeGenFunction::Destroyer *destroyer; 1447 bool useEHCleanupForArray; 1448 public: 1449 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1450 CodeGenFunction::Destroyer *destroyer, 1451 bool useEHCleanupForArray) 1452 : addr(addr), ivar(ivar), destroyer(destroyer), 1453 useEHCleanupForArray(useEHCleanupForArray) {} 1454 1455 void Emit(CodeGenFunction &CGF, Flags flags) override { 1456 LValue lvalue 1457 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1458 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1459 flags.isForNormalCleanup() && useEHCleanupForArray); 1460 } 1461 }; 1462 } 1463 1464 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1465 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1466 Address addr, 1467 QualType type) { 1468 llvm::Value *null = getNullForVariable(addr); 1469 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1470 } 1471 1472 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1473 ObjCImplementationDecl *impl) { 1474 CodeGenFunction::RunCleanupsScope scope(CGF); 1475 1476 llvm::Value *self = CGF.LoadObjCSelf(); 1477 1478 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1479 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1480 ivar; ivar = ivar->getNextIvar()) { 1481 QualType type = ivar->getType(); 1482 1483 // Check whether the ivar is a destructible type. 1484 QualType::DestructionKind dtorKind = type.isDestructedType(); 1485 if (!dtorKind) continue; 1486 1487 CodeGenFunction::Destroyer *destroyer = nullptr; 1488 1489 // Use a call to objc_storeStrong to destroy strong ivars, for the 1490 // general benefit of the tools. 1491 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1492 destroyer = destroyARCStrongWithStore; 1493 1494 // Otherwise use the default for the destruction kind. 1495 } else { 1496 destroyer = CGF.getDestroyer(dtorKind); 1497 } 1498 1499 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1500 1501 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1502 cleanupKind & EHCleanup); 1503 } 1504 1505 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1506 } 1507 1508 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1509 ObjCMethodDecl *MD, 1510 bool ctor) { 1511 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1512 StartObjCMethod(MD, IMP->getClassInterface()); 1513 1514 // Emit .cxx_construct. 1515 if (ctor) { 1516 // Suppress the final autorelease in ARC. 1517 AutoreleaseResult = false; 1518 1519 for (const auto *IvarInit : IMP->inits()) { 1520 FieldDecl *Field = IvarInit->getAnyMember(); 1521 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1522 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1523 LoadObjCSelf(), Ivar, 0); 1524 EmitAggExpr(IvarInit->getInit(), 1525 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1526 AggValueSlot::DoesNotNeedGCBarriers, 1527 AggValueSlot::IsNotAliased, 1528 AggValueSlot::DoesNotOverlap)); 1529 } 1530 // constructor returns 'self'. 1531 CodeGenTypes &Types = CGM.getTypes(); 1532 QualType IdTy(CGM.getContext().getObjCIdType()); 1533 llvm::Value *SelfAsId = 1534 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1535 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1536 1537 // Emit .cxx_destruct. 1538 } else { 1539 emitCXXDestructMethod(*this, IMP); 1540 } 1541 FinishFunction(); 1542 } 1543 1544 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1545 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1546 DeclRefExpr DRE(getContext(), Self, 1547 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1548 Self->getType(), VK_LValue, SourceLocation()); 1549 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1550 } 1551 1552 QualType CodeGenFunction::TypeOfSelfObject() { 1553 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1554 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1555 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1556 getContext().getCanonicalType(selfDecl->getType())); 1557 return PTy->getPointeeType(); 1558 } 1559 1560 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1561 llvm::Constant *EnumerationMutationFnPtr = 1562 CGM.getObjCRuntime().EnumerationMutationFunction(); 1563 if (!EnumerationMutationFnPtr) { 1564 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1565 return; 1566 } 1567 CGCallee EnumerationMutationFn = 1568 CGCallee::forDirect(EnumerationMutationFnPtr); 1569 1570 CGDebugInfo *DI = getDebugInfo(); 1571 if (DI) 1572 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1573 1574 RunCleanupsScope ForScope(*this); 1575 1576 // The local variable comes into scope immediately. 1577 AutoVarEmission variable = AutoVarEmission::invalid(); 1578 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1579 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1580 1581 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1582 1583 // Fast enumeration state. 1584 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1585 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1586 EmitNullInitialization(StatePtr, StateTy); 1587 1588 // Number of elements in the items array. 1589 static const unsigned NumItems = 16; 1590 1591 // Fetch the countByEnumeratingWithState:objects:count: selector. 1592 IdentifierInfo *II[] = { 1593 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1594 &CGM.getContext().Idents.get("objects"), 1595 &CGM.getContext().Idents.get("count") 1596 }; 1597 Selector FastEnumSel = 1598 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1599 1600 QualType ItemsTy = 1601 getContext().getConstantArrayType(getContext().getObjCIdType(), 1602 llvm::APInt(32, NumItems), 1603 ArrayType::Normal, 0); 1604 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1605 1606 // Emit the collection pointer. In ARC, we do a retain. 1607 llvm::Value *Collection; 1608 if (getLangOpts().ObjCAutoRefCount) { 1609 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1610 1611 // Enter a cleanup to do the release. 1612 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1613 } else { 1614 Collection = EmitScalarExpr(S.getCollection()); 1615 } 1616 1617 // The 'continue' label needs to appear within the cleanup for the 1618 // collection object. 1619 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1620 1621 // Send it our message: 1622 CallArgList Args; 1623 1624 // The first argument is a temporary of the enumeration-state type. 1625 Args.add(RValue::get(StatePtr.getPointer()), 1626 getContext().getPointerType(StateTy)); 1627 1628 // The second argument is a temporary array with space for NumItems 1629 // pointers. We'll actually be loading elements from the array 1630 // pointer written into the control state; this buffer is so that 1631 // collections that *aren't* backed by arrays can still queue up 1632 // batches of elements. 1633 Args.add(RValue::get(ItemsPtr.getPointer()), 1634 getContext().getPointerType(ItemsTy)); 1635 1636 // The third argument is the capacity of that temporary array. 1637 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1638 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1639 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1640 1641 // Start the enumeration. 1642 RValue CountRV = 1643 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1644 getContext().getNSUIntegerType(), 1645 FastEnumSel, Collection, Args); 1646 1647 // The initial number of objects that were returned in the buffer. 1648 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1649 1650 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1651 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1652 1653 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1654 1655 // If the limit pointer was zero to begin with, the collection is 1656 // empty; skip all this. Set the branch weight assuming this has the same 1657 // probability of exiting the loop as any other loop exit. 1658 uint64_t EntryCount = getCurrentProfileCount(); 1659 Builder.CreateCondBr( 1660 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1661 LoopInitBB, 1662 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1663 1664 // Otherwise, initialize the loop. 1665 EmitBlock(LoopInitBB); 1666 1667 // Save the initial mutations value. This is the value at an 1668 // address that was written into the state object by 1669 // countByEnumeratingWithState:objects:count:. 1670 Address StateMutationsPtrPtr = Builder.CreateStructGEP( 1671 StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr"); 1672 llvm::Value *StateMutationsPtr 1673 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1674 1675 llvm::Value *initialMutations = 1676 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1677 "forcoll.initial-mutations"); 1678 1679 // Start looping. This is the point we return to whenever we have a 1680 // fresh, non-empty batch of objects. 1681 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1682 EmitBlock(LoopBodyBB); 1683 1684 // The current index into the buffer. 1685 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1686 index->addIncoming(zero, LoopInitBB); 1687 1688 // The current buffer size. 1689 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1690 count->addIncoming(initialBufferLimit, LoopInitBB); 1691 1692 incrementProfileCounter(&S); 1693 1694 // Check whether the mutations value has changed from where it was 1695 // at start. StateMutationsPtr should actually be invariant between 1696 // refreshes. 1697 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1698 llvm::Value *currentMutations 1699 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1700 "statemutations"); 1701 1702 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1703 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1704 1705 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1706 WasNotMutatedBB, WasMutatedBB); 1707 1708 // If so, call the enumeration-mutation function. 1709 EmitBlock(WasMutatedBB); 1710 llvm::Value *V = 1711 Builder.CreateBitCast(Collection, 1712 ConvertType(getContext().getObjCIdType())); 1713 CallArgList Args2; 1714 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1715 // FIXME: We shouldn't need to get the function info here, the runtime already 1716 // should have computed it to build the function. 1717 EmitCall( 1718 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1719 EnumerationMutationFn, ReturnValueSlot(), Args2); 1720 1721 // Otherwise, or if the mutation function returns, just continue. 1722 EmitBlock(WasNotMutatedBB); 1723 1724 // Initialize the element variable. 1725 RunCleanupsScope elementVariableScope(*this); 1726 bool elementIsVariable; 1727 LValue elementLValue; 1728 QualType elementType; 1729 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1730 // Initialize the variable, in case it's a __block variable or something. 1731 EmitAutoVarInit(variable); 1732 1733 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl()); 1734 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false, 1735 D->getType(), VK_LValue, SourceLocation()); 1736 elementLValue = EmitLValue(&tempDRE); 1737 elementType = D->getType(); 1738 elementIsVariable = true; 1739 1740 if (D->isARCPseudoStrong()) 1741 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1742 } else { 1743 elementLValue = LValue(); // suppress warning 1744 elementType = cast<Expr>(S.getElement())->getType(); 1745 elementIsVariable = false; 1746 } 1747 llvm::Type *convertedElementType = ConvertType(elementType); 1748 1749 // Fetch the buffer out of the enumeration state. 1750 // TODO: this pointer should actually be invariant between 1751 // refreshes, which would help us do certain loop optimizations. 1752 Address StateItemsPtr = Builder.CreateStructGEP( 1753 StatePtr, 1, getPointerSize(), "stateitems.ptr"); 1754 llvm::Value *EnumStateItems = 1755 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1756 1757 // Fetch the value at the current index from the buffer. 1758 llvm::Value *CurrentItemPtr = 1759 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1760 llvm::Value *CurrentItem = 1761 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1762 1763 // Cast that value to the right type. 1764 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1765 "currentitem"); 1766 1767 // Make sure we have an l-value. Yes, this gets evaluated every 1768 // time through the loop. 1769 if (!elementIsVariable) { 1770 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1771 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1772 } else { 1773 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1774 /*isInit*/ true); 1775 } 1776 1777 // If we do have an element variable, this assignment is the end of 1778 // its initialization. 1779 if (elementIsVariable) 1780 EmitAutoVarCleanups(variable); 1781 1782 // Perform the loop body, setting up break and continue labels. 1783 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1784 { 1785 RunCleanupsScope Scope(*this); 1786 EmitStmt(S.getBody()); 1787 } 1788 BreakContinueStack.pop_back(); 1789 1790 // Destroy the element variable now. 1791 elementVariableScope.ForceCleanup(); 1792 1793 // Check whether there are more elements. 1794 EmitBlock(AfterBody.getBlock()); 1795 1796 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1797 1798 // First we check in the local buffer. 1799 llvm::Value *indexPlusOne = 1800 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 1801 1802 // If we haven't overrun the buffer yet, we can continue. 1803 // Set the branch weights based on the simplifying assumption that this is 1804 // like a while-loop, i.e., ignoring that the false branch fetches more 1805 // elements and then returns to the loop. 1806 Builder.CreateCondBr( 1807 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1808 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1809 1810 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1811 count->addIncoming(count, AfterBody.getBlock()); 1812 1813 // Otherwise, we have to fetch more elements. 1814 EmitBlock(FetchMoreBB); 1815 1816 CountRV = 1817 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1818 getContext().getNSUIntegerType(), 1819 FastEnumSel, Collection, Args); 1820 1821 // If we got a zero count, we're done. 1822 llvm::Value *refetchCount = CountRV.getScalarVal(); 1823 1824 // (note that the message send might split FetchMoreBB) 1825 index->addIncoming(zero, Builder.GetInsertBlock()); 1826 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1827 1828 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1829 EmptyBB, LoopBodyBB); 1830 1831 // No more elements. 1832 EmitBlock(EmptyBB); 1833 1834 if (!elementIsVariable) { 1835 // If the element was not a declaration, set it to be null. 1836 1837 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1838 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1839 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1840 } 1841 1842 if (DI) 1843 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1844 1845 ForScope.ForceCleanup(); 1846 EmitBlock(LoopEnd.getBlock()); 1847 } 1848 1849 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1850 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1851 } 1852 1853 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1854 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1855 } 1856 1857 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1858 const ObjCAtSynchronizedStmt &S) { 1859 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1860 } 1861 1862 namespace { 1863 struct CallObjCRelease final : EHScopeStack::Cleanup { 1864 CallObjCRelease(llvm::Value *object) : object(object) {} 1865 llvm::Value *object; 1866 1867 void Emit(CodeGenFunction &CGF, Flags flags) override { 1868 // Releases at the end of the full-expression are imprecise. 1869 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1870 } 1871 }; 1872 } 1873 1874 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1875 /// release at the end of the full-expression. 1876 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1877 llvm::Value *object) { 1878 // If we're in a conditional branch, we need to make the cleanup 1879 // conditional. 1880 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1881 return object; 1882 } 1883 1884 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1885 llvm::Value *value) { 1886 return EmitARCRetainAutorelease(type, value); 1887 } 1888 1889 /// Given a number of pointers, inform the optimizer that they're 1890 /// being intrinsically used up until this point in the program. 1891 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1892 llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use; 1893 if (!fn) 1894 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use); 1895 1896 // This isn't really a "runtime" function, but as an intrinsic it 1897 // doesn't really matter as long as we align things up. 1898 EmitNounwindRuntimeCall(fn, values); 1899 } 1900 1901 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, 1902 llvm::Constant *RTF) { 1903 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 1904 // If the target runtime doesn't naturally support ARC, emit weak 1905 // references to the runtime support library. We don't really 1906 // permit this to fail, but we need a particular relocation style. 1907 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 1908 !CGM.getTriple().isOSBinFormatCOFF()) { 1909 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1910 } 1911 } 1912 } 1913 1914 /// Perform an operation having the signature 1915 /// i8* (i8*) 1916 /// where a null input causes a no-op and returns null. 1917 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1918 llvm::Value *value, 1919 llvm::Type *returnType, 1920 llvm::Constant *&fn, 1921 llvm::Intrinsic::ID IntID, 1922 bool isTailCall = false) { 1923 if (isa<llvm::ConstantPointerNull>(value)) 1924 return value; 1925 1926 if (!fn) { 1927 fn = CGF.CGM.getIntrinsic(IntID); 1928 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 1929 } 1930 1931 // Cast the argument to 'id'. 1932 llvm::Type *origType = returnType ? returnType : value->getType(); 1933 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1934 1935 // Call the function. 1936 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1937 if (isTailCall) 1938 call->setTailCall(); 1939 1940 // Cast the result back to the original type. 1941 return CGF.Builder.CreateBitCast(call, origType); 1942 } 1943 1944 /// Perform an operation having the following signature: 1945 /// i8* (i8**) 1946 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1947 Address addr, 1948 llvm::Constant *&fn, 1949 llvm::Intrinsic::ID IntID) { 1950 if (!fn) { 1951 fn = CGF.CGM.getIntrinsic(IntID); 1952 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 1953 } 1954 1955 // Cast the argument to 'id*'. 1956 llvm::Type *origType = addr.getElementType(); 1957 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1958 1959 // Call the function. 1960 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 1961 1962 // Cast the result back to a dereference of the original type. 1963 if (origType != CGF.Int8PtrTy) 1964 result = CGF.Builder.CreateBitCast(result, origType); 1965 1966 return result; 1967 } 1968 1969 /// Perform an operation having the following signature: 1970 /// i8* (i8**, i8*) 1971 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1972 Address addr, 1973 llvm::Value *value, 1974 llvm::Constant *&fn, 1975 llvm::Intrinsic::ID IntID, 1976 bool ignored) { 1977 assert(addr.getElementType() == value->getType()); 1978 1979 if (!fn) { 1980 fn = CGF.CGM.getIntrinsic(IntID); 1981 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 1982 } 1983 1984 llvm::Type *origType = value->getType(); 1985 1986 llvm::Value *args[] = { 1987 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 1988 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 1989 }; 1990 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 1991 1992 if (ignored) return nullptr; 1993 1994 return CGF.Builder.CreateBitCast(result, origType); 1995 } 1996 1997 /// Perform an operation having the following signature: 1998 /// void (i8**, i8**) 1999 static void emitARCCopyOperation(CodeGenFunction &CGF, 2000 Address dst, 2001 Address src, 2002 llvm::Constant *&fn, 2003 llvm::Intrinsic::ID IntID) { 2004 assert(dst.getType() == src.getType()); 2005 2006 if (!fn) { 2007 fn = CGF.CGM.getIntrinsic(IntID); 2008 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2009 } 2010 2011 llvm::Value *args[] = { 2012 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 2013 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 2014 }; 2015 CGF.EmitNounwindRuntimeCall(fn, args); 2016 } 2017 2018 /// Perform an operation having the signature 2019 /// i8* (i8*) 2020 /// where a null input causes a no-op and returns null. 2021 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, 2022 llvm::Value *value, 2023 llvm::Type *returnType, 2024 llvm::Constant *&fn, 2025 StringRef fnName, 2026 bool MayThrow) { 2027 if (isa<llvm::ConstantPointerNull>(value)) 2028 return value; 2029 2030 if (!fn) { 2031 llvm::FunctionType *fnType = 2032 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 2033 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName); 2034 2035 // We have Native ARC, so set nonlazybind attribute for performance 2036 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) 2037 if (fnName == "objc_retain") 2038 f->addFnAttr(llvm::Attribute::NonLazyBind); 2039 } 2040 2041 // Cast the argument to 'id'. 2042 llvm::Type *origType = returnType ? returnType : value->getType(); 2043 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2044 2045 // Call the function. 2046 llvm::CallBase *Inst = nullptr; 2047 if (MayThrow) 2048 Inst = CGF.EmitCallOrInvoke(fn, value); 2049 else 2050 Inst = CGF.EmitNounwindRuntimeCall(fn, value); 2051 2052 // Cast the result back to the original type. 2053 return CGF.Builder.CreateBitCast(Inst, origType); 2054 } 2055 2056 /// Produce the code to do a retain. Based on the type, calls one of: 2057 /// call i8* \@objc_retain(i8* %value) 2058 /// call i8* \@objc_retainBlock(i8* %value) 2059 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 2060 if (type->isBlockPointerType()) 2061 return EmitARCRetainBlock(value, /*mandatory*/ false); 2062 else 2063 return EmitARCRetainNonBlock(value); 2064 } 2065 2066 /// Retain the given object, with normal retain semantics. 2067 /// call i8* \@objc_retain(i8* %value) 2068 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 2069 return emitARCValueOperation(*this, value, nullptr, 2070 CGM.getObjCEntrypoints().objc_retain, 2071 llvm::Intrinsic::objc_retain); 2072 } 2073 2074 /// Retain the given block, with _Block_copy semantics. 2075 /// call i8* \@objc_retainBlock(i8* %value) 2076 /// 2077 /// \param mandatory - If false, emit the call with metadata 2078 /// indicating that it's okay for the optimizer to eliminate this call 2079 /// if it can prove that the block never escapes except down the stack. 2080 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 2081 bool mandatory) { 2082 llvm::Value *result 2083 = emitARCValueOperation(*this, value, nullptr, 2084 CGM.getObjCEntrypoints().objc_retainBlock, 2085 llvm::Intrinsic::objc_retainBlock); 2086 2087 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 2088 // tell the optimizer that it doesn't need to do this copy if the 2089 // block doesn't escape, where being passed as an argument doesn't 2090 // count as escaping. 2091 if (!mandatory && isa<llvm::Instruction>(result)) { 2092 llvm::CallInst *call 2093 = cast<llvm::CallInst>(result->stripPointerCasts()); 2094 assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock); 2095 2096 call->setMetadata("clang.arc.copy_on_escape", 2097 llvm::MDNode::get(Builder.getContext(), None)); 2098 } 2099 2100 return result; 2101 } 2102 2103 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 2104 // Fetch the void(void) inline asm which marks that we're going to 2105 // do something with the autoreleased return value. 2106 llvm::InlineAsm *&marker 2107 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2108 if (!marker) { 2109 StringRef assembly 2110 = CGF.CGM.getTargetCodeGenInfo() 2111 .getARCRetainAutoreleasedReturnValueMarker(); 2112 2113 // If we have an empty assembly string, there's nothing to do. 2114 if (assembly.empty()) { 2115 2116 // Otherwise, at -O0, build an inline asm that we're going to call 2117 // in a moment. 2118 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2119 llvm::FunctionType *type = 2120 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2121 2122 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2123 2124 // If we're at -O1 and above, we don't want to litter the code 2125 // with this marker yet, so leave a breadcrumb for the ARC 2126 // optimizer to pick up. 2127 } else { 2128 llvm::NamedMDNode *metadata = 2129 CGF.CGM.getModule().getOrInsertNamedMetadata( 2130 "clang.arc.retainAutoreleasedReturnValueMarker"); 2131 assert(metadata->getNumOperands() <= 1); 2132 if (metadata->getNumOperands() == 0) { 2133 auto &ctx = CGF.getLLVMContext(); 2134 metadata->addOperand(llvm::MDNode::get(ctx, 2135 llvm::MDString::get(ctx, assembly))); 2136 } 2137 } 2138 } 2139 2140 // Call the marker asm if we made one, which we do only at -O0. 2141 if (marker) 2142 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker)); 2143 } 2144 2145 /// Retain the given object which is the result of a function call. 2146 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2147 /// 2148 /// Yes, this function name is one character away from a different 2149 /// call with completely different semantics. 2150 llvm::Value * 2151 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2152 emitAutoreleasedReturnValueMarker(*this); 2153 return emitARCValueOperation(*this, value, nullptr, 2154 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, 2155 llvm::Intrinsic::objc_retainAutoreleasedReturnValue); 2156 } 2157 2158 /// Claim a possibly-autoreleased return value at +0. This is only 2159 /// valid to do in contexts which do not rely on the retain to keep 2160 /// the object valid for all of its uses; for example, when 2161 /// the value is ignored, or when it is being assigned to an 2162 /// __unsafe_unretained variable. 2163 /// 2164 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2165 llvm::Value * 2166 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2167 emitAutoreleasedReturnValueMarker(*this); 2168 return emitARCValueOperation(*this, value, nullptr, 2169 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, 2170 llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue); 2171 } 2172 2173 /// Release the given object. 2174 /// call void \@objc_release(i8* %value) 2175 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2176 ARCPreciseLifetime_t precise) { 2177 if (isa<llvm::ConstantPointerNull>(value)) return; 2178 2179 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release; 2180 if (!fn) { 2181 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release); 2182 setARCRuntimeFunctionLinkage(CGM, fn); 2183 } 2184 2185 // Cast the argument to 'id'. 2186 value = Builder.CreateBitCast(value, Int8PtrTy); 2187 2188 // Call objc_release. 2189 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2190 2191 if (precise == ARCImpreciseLifetime) { 2192 call->setMetadata("clang.imprecise_release", 2193 llvm::MDNode::get(Builder.getContext(), None)); 2194 } 2195 } 2196 2197 /// Destroy a __strong variable. 2198 /// 2199 /// At -O0, emit a call to store 'null' into the address; 2200 /// instrumenting tools prefer this because the address is exposed, 2201 /// but it's relatively cumbersome to optimize. 2202 /// 2203 /// At -O1 and above, just load and call objc_release. 2204 /// 2205 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2206 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2207 ARCPreciseLifetime_t precise) { 2208 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2209 llvm::Value *null = getNullForVariable(addr); 2210 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2211 return; 2212 } 2213 2214 llvm::Value *value = Builder.CreateLoad(addr); 2215 EmitARCRelease(value, precise); 2216 } 2217 2218 /// Store into a strong object. Always calls this: 2219 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2220 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2221 llvm::Value *value, 2222 bool ignored) { 2223 assert(addr.getElementType() == value->getType()); 2224 2225 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2226 if (!fn) { 2227 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong); 2228 setARCRuntimeFunctionLinkage(CGM, fn); 2229 } 2230 2231 llvm::Value *args[] = { 2232 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2233 Builder.CreateBitCast(value, Int8PtrTy) 2234 }; 2235 EmitNounwindRuntimeCall(fn, args); 2236 2237 if (ignored) return nullptr; 2238 return value; 2239 } 2240 2241 /// Store into a strong object. Sometimes calls this: 2242 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2243 /// Other times, breaks it down into components. 2244 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2245 llvm::Value *newValue, 2246 bool ignored) { 2247 QualType type = dst.getType(); 2248 bool isBlock = type->isBlockPointerType(); 2249 2250 // Use a store barrier at -O0 unless this is a block type or the 2251 // lvalue is inadequately aligned. 2252 if (shouldUseFusedARCCalls() && 2253 !isBlock && 2254 (dst.getAlignment().isZero() || 2255 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2256 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2257 } 2258 2259 // Otherwise, split it out. 2260 2261 // Retain the new value. 2262 newValue = EmitARCRetain(type, newValue); 2263 2264 // Read the old value. 2265 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2266 2267 // Store. We do this before the release so that any deallocs won't 2268 // see the old value. 2269 EmitStoreOfScalar(newValue, dst); 2270 2271 // Finally, release the old value. 2272 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2273 2274 return newValue; 2275 } 2276 2277 /// Autorelease the given object. 2278 /// call i8* \@objc_autorelease(i8* %value) 2279 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2280 return emitARCValueOperation(*this, value, nullptr, 2281 CGM.getObjCEntrypoints().objc_autorelease, 2282 llvm::Intrinsic::objc_autorelease); 2283 } 2284 2285 /// Autorelease the given object. 2286 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2287 llvm::Value * 2288 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2289 return emitARCValueOperation(*this, value, nullptr, 2290 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2291 llvm::Intrinsic::objc_autoreleaseReturnValue, 2292 /*isTailCall*/ true); 2293 } 2294 2295 /// Do a fused retain/autorelease of the given object. 2296 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2297 llvm::Value * 2298 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2299 return emitARCValueOperation(*this, value, nullptr, 2300 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2301 llvm::Intrinsic::objc_retainAutoreleaseReturnValue, 2302 /*isTailCall*/ true); 2303 } 2304 2305 /// Do a fused retain/autorelease of the given object. 2306 /// call i8* \@objc_retainAutorelease(i8* %value) 2307 /// or 2308 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2309 /// call i8* \@objc_autorelease(i8* %retain) 2310 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2311 llvm::Value *value) { 2312 if (!type->isBlockPointerType()) 2313 return EmitARCRetainAutoreleaseNonBlock(value); 2314 2315 if (isa<llvm::ConstantPointerNull>(value)) return value; 2316 2317 llvm::Type *origType = value->getType(); 2318 value = Builder.CreateBitCast(value, Int8PtrTy); 2319 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2320 value = EmitARCAutorelease(value); 2321 return Builder.CreateBitCast(value, origType); 2322 } 2323 2324 /// Do a fused retain/autorelease of the given object. 2325 /// call i8* \@objc_retainAutorelease(i8* %value) 2326 llvm::Value * 2327 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2328 return emitARCValueOperation(*this, value, nullptr, 2329 CGM.getObjCEntrypoints().objc_retainAutorelease, 2330 llvm::Intrinsic::objc_retainAutorelease); 2331 } 2332 2333 /// i8* \@objc_loadWeak(i8** %addr) 2334 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2335 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2336 return emitARCLoadOperation(*this, addr, 2337 CGM.getObjCEntrypoints().objc_loadWeak, 2338 llvm::Intrinsic::objc_loadWeak); 2339 } 2340 2341 /// i8* \@objc_loadWeakRetained(i8** %addr) 2342 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2343 return emitARCLoadOperation(*this, addr, 2344 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2345 llvm::Intrinsic::objc_loadWeakRetained); 2346 } 2347 2348 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2349 /// Returns %value. 2350 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2351 llvm::Value *value, 2352 bool ignored) { 2353 return emitARCStoreOperation(*this, addr, value, 2354 CGM.getObjCEntrypoints().objc_storeWeak, 2355 llvm::Intrinsic::objc_storeWeak, ignored); 2356 } 2357 2358 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2359 /// Returns %value. %addr is known to not have a current weak entry. 2360 /// Essentially equivalent to: 2361 /// *addr = nil; objc_storeWeak(addr, value); 2362 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2363 // If we're initializing to null, just write null to memory; no need 2364 // to get the runtime involved. But don't do this if optimization 2365 // is enabled, because accounting for this would make the optimizer 2366 // much more complicated. 2367 if (isa<llvm::ConstantPointerNull>(value) && 2368 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2369 Builder.CreateStore(value, addr); 2370 return; 2371 } 2372 2373 emitARCStoreOperation(*this, addr, value, 2374 CGM.getObjCEntrypoints().objc_initWeak, 2375 llvm::Intrinsic::objc_initWeak, /*ignored*/ true); 2376 } 2377 2378 /// void \@objc_destroyWeak(i8** %addr) 2379 /// Essentially objc_storeWeak(addr, nil). 2380 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2381 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2382 if (!fn) { 2383 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak); 2384 setARCRuntimeFunctionLinkage(CGM, fn); 2385 } 2386 2387 // Cast the argument to 'id*'. 2388 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2389 2390 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2391 } 2392 2393 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2394 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2395 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2396 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2397 emitARCCopyOperation(*this, dst, src, 2398 CGM.getObjCEntrypoints().objc_moveWeak, 2399 llvm::Intrinsic::objc_moveWeak); 2400 } 2401 2402 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2403 /// Disregards the current value in %dest. Essentially 2404 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2405 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2406 emitARCCopyOperation(*this, dst, src, 2407 CGM.getObjCEntrypoints().objc_copyWeak, 2408 llvm::Intrinsic::objc_copyWeak); 2409 } 2410 2411 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, 2412 Address SrcAddr) { 2413 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2414 Object = EmitObjCConsumeObject(Ty, Object); 2415 EmitARCStoreWeak(DstAddr, Object, false); 2416 } 2417 2418 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, 2419 Address SrcAddr) { 2420 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2421 Object = EmitObjCConsumeObject(Ty, Object); 2422 EmitARCStoreWeak(DstAddr, Object, false); 2423 EmitARCDestroyWeak(SrcAddr); 2424 } 2425 2426 /// Produce the code to do a objc_autoreleasepool_push. 2427 /// call i8* \@objc_autoreleasePoolPush(void) 2428 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2429 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2430 if (!fn) { 2431 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush); 2432 setARCRuntimeFunctionLinkage(CGM, fn); 2433 } 2434 2435 return EmitNounwindRuntimeCall(fn); 2436 } 2437 2438 /// Produce the code to do a primitive release. 2439 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2440 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2441 assert(value->getType() == Int8PtrTy); 2442 2443 if (getInvokeDest()) { 2444 // Call the runtime method not the intrinsic if we are handling exceptions 2445 llvm::Constant *&fn = 2446 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; 2447 if (!fn) { 2448 llvm::FunctionType *fnType = 2449 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2450 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop"); 2451 setARCRuntimeFunctionLinkage(CGM, fn); 2452 } 2453 2454 // objc_autoreleasePoolPop can throw. 2455 EmitRuntimeCallOrInvoke(fn, value); 2456 } else { 2457 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2458 if (!fn) { 2459 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop); 2460 setARCRuntimeFunctionLinkage(CGM, fn); 2461 } 2462 2463 EmitRuntimeCall(fn, value); 2464 } 2465 } 2466 2467 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2468 /// Which is: [[NSAutoreleasePool alloc] init]; 2469 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2470 /// init is declared as: - (id) init; in its NSObject super class. 2471 /// 2472 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2473 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2474 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2475 // [NSAutoreleasePool alloc] 2476 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2477 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2478 CallArgList Args; 2479 RValue AllocRV = 2480 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2481 getContext().getObjCIdType(), 2482 AllocSel, Receiver, Args); 2483 2484 // [Receiver init] 2485 Receiver = AllocRV.getScalarVal(); 2486 II = &CGM.getContext().Idents.get("init"); 2487 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2488 RValue InitRV = 2489 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2490 getContext().getObjCIdType(), 2491 InitSel, Receiver, Args); 2492 return InitRV.getScalarVal(); 2493 } 2494 2495 /// Allocate the given objc object. 2496 /// call i8* \@objc_alloc(i8* %value) 2497 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, 2498 llvm::Type *resultType) { 2499 return emitObjCValueOperation(*this, value, resultType, 2500 CGM.getObjCEntrypoints().objc_alloc, 2501 "objc_alloc", /*MayThrow=*/true); 2502 } 2503 2504 /// Allocate the given objc object. 2505 /// call i8* \@objc_allocWithZone(i8* %value) 2506 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, 2507 llvm::Type *resultType) { 2508 return emitObjCValueOperation(*this, value, resultType, 2509 CGM.getObjCEntrypoints().objc_allocWithZone, 2510 "objc_allocWithZone", /*MayThrow=*/true); 2511 } 2512 2513 /// Produce the code to do a primitive release. 2514 /// [tmp drain]; 2515 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2516 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2517 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2518 CallArgList Args; 2519 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2520 getContext().VoidTy, DrainSel, Arg, Args); 2521 } 2522 2523 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2524 Address addr, 2525 QualType type) { 2526 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2527 } 2528 2529 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2530 Address addr, 2531 QualType type) { 2532 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2533 } 2534 2535 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2536 Address addr, 2537 QualType type) { 2538 CGF.EmitARCDestroyWeak(addr); 2539 } 2540 2541 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2542 QualType type) { 2543 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2544 CGF.EmitARCIntrinsicUse(value); 2545 } 2546 2547 /// Autorelease the given object. 2548 /// call i8* \@objc_autorelease(i8* %value) 2549 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value, 2550 llvm::Type *returnType) { 2551 return emitObjCValueOperation( 2552 *this, value, returnType, 2553 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction, 2554 "objc_autorelease", /*MayThrow=*/false); 2555 } 2556 2557 /// Retain the given object, with normal retain semantics. 2558 /// call i8* \@objc_retain(i8* %value) 2559 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value, 2560 llvm::Type *returnType) { 2561 return emitObjCValueOperation( 2562 *this, value, returnType, 2563 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain", 2564 /*MayThrow=*/false); 2565 } 2566 2567 /// Release the given object. 2568 /// call void \@objc_release(i8* %value) 2569 void CodeGenFunction::EmitObjCRelease(llvm::Value *value, 2570 ARCPreciseLifetime_t precise) { 2571 if (isa<llvm::ConstantPointerNull>(value)) return; 2572 2573 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release; 2574 if (!fn) { 2575 if (!fn) { 2576 llvm::FunctionType *fnType = 2577 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2578 fn = CGM.CreateRuntimeFunction(fnType, "objc_release"); 2579 setARCRuntimeFunctionLinkage(CGM, fn); 2580 // We have Native ARC, so set nonlazybind attribute for performance 2581 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) 2582 f->addFnAttr(llvm::Attribute::NonLazyBind); 2583 } 2584 } 2585 2586 // Cast the argument to 'id'. 2587 value = Builder.CreateBitCast(value, Int8PtrTy); 2588 2589 // Call objc_release. 2590 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2591 2592 if (precise == ARCImpreciseLifetime) { 2593 call->setMetadata("clang.imprecise_release", 2594 llvm::MDNode::get(Builder.getContext(), None)); 2595 } 2596 } 2597 2598 namespace { 2599 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2600 llvm::Value *Token; 2601 2602 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2603 2604 void Emit(CodeGenFunction &CGF, Flags flags) override { 2605 CGF.EmitObjCAutoreleasePoolPop(Token); 2606 } 2607 }; 2608 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2609 llvm::Value *Token; 2610 2611 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2612 2613 void Emit(CodeGenFunction &CGF, Flags flags) override { 2614 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2615 } 2616 }; 2617 } 2618 2619 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2620 if (CGM.getLangOpts().ObjCAutoRefCount) 2621 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2622 else 2623 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2624 } 2625 2626 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { 2627 switch (lifetime) { 2628 case Qualifiers::OCL_None: 2629 case Qualifiers::OCL_ExplicitNone: 2630 case Qualifiers::OCL_Strong: 2631 case Qualifiers::OCL_Autoreleasing: 2632 return true; 2633 2634 case Qualifiers::OCL_Weak: 2635 return false; 2636 } 2637 2638 llvm_unreachable("impossible lifetime!"); 2639 } 2640 2641 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2642 LValue lvalue, 2643 QualType type) { 2644 llvm::Value *result; 2645 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime()); 2646 if (shouldRetain) { 2647 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal(); 2648 } else { 2649 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); 2650 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress()); 2651 } 2652 return TryEmitResult(result, !shouldRetain); 2653 } 2654 2655 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2656 const Expr *e) { 2657 e = e->IgnoreParens(); 2658 QualType type = e->getType(); 2659 2660 // If we're loading retained from a __strong xvalue, we can avoid 2661 // an extra retain/release pair by zeroing out the source of this 2662 // "move" operation. 2663 if (e->isXValue() && 2664 !type.isConstQualified() && 2665 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2666 // Emit the lvalue. 2667 LValue lv = CGF.EmitLValue(e); 2668 2669 // Load the object pointer. 2670 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2671 SourceLocation()).getScalarVal(); 2672 2673 // Set the source pointer to NULL. 2674 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2675 2676 return TryEmitResult(result, true); 2677 } 2678 2679 // As a very special optimization, in ARC++, if the l-value is the 2680 // result of a non-volatile assignment, do a simple retain of the 2681 // result of the call to objc_storeWeak instead of reloading. 2682 if (CGF.getLangOpts().CPlusPlus && 2683 !type.isVolatileQualified() && 2684 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2685 isa<BinaryOperator>(e) && 2686 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2687 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2688 2689 // Try to emit code for scalar constant instead of emitting LValue and 2690 // loading it because we are not guaranteed to have an l-value. One of such 2691 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. 2692 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) { 2693 auto *DRE = const_cast<DeclRefExpr *>(decl_expr); 2694 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE)) 2695 return TryEmitResult(CGF.emitScalarConstant(constant, DRE), 2696 !shouldRetainObjCLifetime(type.getObjCLifetime())); 2697 } 2698 2699 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2700 } 2701 2702 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2703 llvm::Value *value)> 2704 ValueTransform; 2705 2706 /// Insert code immediately after a call. 2707 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2708 llvm::Value *value, 2709 ValueTransform doAfterCall, 2710 ValueTransform doFallback) { 2711 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2712 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2713 2714 // Place the retain immediately following the call. 2715 CGF.Builder.SetInsertPoint(call->getParent(), 2716 ++llvm::BasicBlock::iterator(call)); 2717 value = doAfterCall(CGF, value); 2718 2719 CGF.Builder.restoreIP(ip); 2720 return value; 2721 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2722 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2723 2724 // Place the retain at the beginning of the normal destination block. 2725 llvm::BasicBlock *BB = invoke->getNormalDest(); 2726 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2727 value = doAfterCall(CGF, value); 2728 2729 CGF.Builder.restoreIP(ip); 2730 return value; 2731 2732 // Bitcasts can arise because of related-result returns. Rewrite 2733 // the operand. 2734 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2735 llvm::Value *operand = bitcast->getOperand(0); 2736 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2737 bitcast->setOperand(0, operand); 2738 return bitcast; 2739 2740 // Generic fall-back case. 2741 } else { 2742 // Retain using the non-block variant: we never need to do a copy 2743 // of a block that's been returned to us. 2744 return doFallback(CGF, value); 2745 } 2746 } 2747 2748 /// Given that the given expression is some sort of call (which does 2749 /// not return retained), emit a retain following it. 2750 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2751 const Expr *e) { 2752 llvm::Value *value = CGF.EmitScalarExpr(e); 2753 return emitARCOperationAfterCall(CGF, value, 2754 [](CodeGenFunction &CGF, llvm::Value *value) { 2755 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2756 }, 2757 [](CodeGenFunction &CGF, llvm::Value *value) { 2758 return CGF.EmitARCRetainNonBlock(value); 2759 }); 2760 } 2761 2762 /// Given that the given expression is some sort of call (which does 2763 /// not return retained), perform an unsafeClaim following it. 2764 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 2765 const Expr *e) { 2766 llvm::Value *value = CGF.EmitScalarExpr(e); 2767 return emitARCOperationAfterCall(CGF, value, 2768 [](CodeGenFunction &CGF, llvm::Value *value) { 2769 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 2770 }, 2771 [](CodeGenFunction &CGF, llvm::Value *value) { 2772 return value; 2773 }); 2774 } 2775 2776 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 2777 bool allowUnsafeClaim) { 2778 if (allowUnsafeClaim && 2779 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 2780 return emitARCUnsafeClaimCallResult(*this, E); 2781 } else { 2782 llvm::Value *value = emitARCRetainCallResult(*this, E); 2783 return EmitObjCConsumeObject(E->getType(), value); 2784 } 2785 } 2786 2787 /// Determine whether it might be important to emit a separate 2788 /// objc_retain_block on the result of the given expression, or 2789 /// whether it's okay to just emit it in a +1 context. 2790 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2791 assert(e->getType()->isBlockPointerType()); 2792 e = e->IgnoreParens(); 2793 2794 // For future goodness, emit block expressions directly in +1 2795 // contexts if we can. 2796 if (isa<BlockExpr>(e)) 2797 return false; 2798 2799 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2800 switch (cast->getCastKind()) { 2801 // Emitting these operations in +1 contexts is goodness. 2802 case CK_LValueToRValue: 2803 case CK_ARCReclaimReturnedObject: 2804 case CK_ARCConsumeObject: 2805 case CK_ARCProduceObject: 2806 return false; 2807 2808 // These operations preserve a block type. 2809 case CK_NoOp: 2810 case CK_BitCast: 2811 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2812 2813 // These operations are known to be bad (or haven't been considered). 2814 case CK_AnyPointerToBlockPointerCast: 2815 default: 2816 return true; 2817 } 2818 } 2819 2820 return true; 2821 } 2822 2823 namespace { 2824 /// A CRTP base class for emitting expressions of retainable object 2825 /// pointer type in ARC. 2826 template <typename Impl, typename Result> class ARCExprEmitter { 2827 protected: 2828 CodeGenFunction &CGF; 2829 Impl &asImpl() { return *static_cast<Impl*>(this); } 2830 2831 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 2832 2833 public: 2834 Result visit(const Expr *e); 2835 Result visitCastExpr(const CastExpr *e); 2836 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 2837 Result visitBinaryOperator(const BinaryOperator *e); 2838 Result visitBinAssign(const BinaryOperator *e); 2839 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 2840 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 2841 Result visitBinAssignWeak(const BinaryOperator *e); 2842 Result visitBinAssignStrong(const BinaryOperator *e); 2843 2844 // Minimal implementation: 2845 // Result visitLValueToRValue(const Expr *e) 2846 // Result visitConsumeObject(const Expr *e) 2847 // Result visitExtendBlockObject(const Expr *e) 2848 // Result visitReclaimReturnedObject(const Expr *e) 2849 // Result visitCall(const Expr *e) 2850 // Result visitExpr(const Expr *e) 2851 // 2852 // Result emitBitCast(Result result, llvm::Type *resultType) 2853 // llvm::Value *getValueOfResult(Result result) 2854 }; 2855 } 2856 2857 /// Try to emit a PseudoObjectExpr under special ARC rules. 2858 /// 2859 /// This massively duplicates emitPseudoObjectRValue. 2860 template <typename Impl, typename Result> 2861 Result 2862 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 2863 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2864 2865 // Find the result expression. 2866 const Expr *resultExpr = E->getResultExpr(); 2867 assert(resultExpr); 2868 Result result; 2869 2870 for (PseudoObjectExpr::const_semantics_iterator 2871 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2872 const Expr *semantic = *i; 2873 2874 // If this semantic expression is an opaque value, bind it 2875 // to the result of its source expression. 2876 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2877 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2878 OVMA opaqueData; 2879 2880 // If this semantic is the result of the pseudo-object 2881 // expression, try to evaluate the source as +1. 2882 if (ov == resultExpr) { 2883 assert(!OVMA::shouldBindAsLValue(ov)); 2884 result = asImpl().visit(ov->getSourceExpr()); 2885 opaqueData = OVMA::bind(CGF, ov, 2886 RValue::get(asImpl().getValueOfResult(result))); 2887 2888 // Otherwise, just bind it. 2889 } else { 2890 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2891 } 2892 opaques.push_back(opaqueData); 2893 2894 // Otherwise, if the expression is the result, evaluate it 2895 // and remember the result. 2896 } else if (semantic == resultExpr) { 2897 result = asImpl().visit(semantic); 2898 2899 // Otherwise, evaluate the expression in an ignored context. 2900 } else { 2901 CGF.EmitIgnoredExpr(semantic); 2902 } 2903 } 2904 2905 // Unbind all the opaques now. 2906 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2907 opaques[i].unbind(CGF); 2908 2909 return result; 2910 } 2911 2912 template <typename Impl, typename Result> 2913 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 2914 switch (e->getCastKind()) { 2915 2916 // No-op casts don't change the type, so we just ignore them. 2917 case CK_NoOp: 2918 return asImpl().visit(e->getSubExpr()); 2919 2920 // These casts can change the type. 2921 case CK_CPointerToObjCPointerCast: 2922 case CK_BlockPointerToObjCPointerCast: 2923 case CK_AnyPointerToBlockPointerCast: 2924 case CK_BitCast: { 2925 llvm::Type *resultType = CGF.ConvertType(e->getType()); 2926 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 2927 Result result = asImpl().visit(e->getSubExpr()); 2928 return asImpl().emitBitCast(result, resultType); 2929 } 2930 2931 // Handle some casts specially. 2932 case CK_LValueToRValue: 2933 return asImpl().visitLValueToRValue(e->getSubExpr()); 2934 case CK_ARCConsumeObject: 2935 return asImpl().visitConsumeObject(e->getSubExpr()); 2936 case CK_ARCExtendBlockObject: 2937 return asImpl().visitExtendBlockObject(e->getSubExpr()); 2938 case CK_ARCReclaimReturnedObject: 2939 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 2940 2941 // Otherwise, use the default logic. 2942 default: 2943 return asImpl().visitExpr(e); 2944 } 2945 } 2946 2947 template <typename Impl, typename Result> 2948 Result 2949 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 2950 switch (e->getOpcode()) { 2951 case BO_Comma: 2952 CGF.EmitIgnoredExpr(e->getLHS()); 2953 CGF.EnsureInsertPoint(); 2954 return asImpl().visit(e->getRHS()); 2955 2956 case BO_Assign: 2957 return asImpl().visitBinAssign(e); 2958 2959 default: 2960 return asImpl().visitExpr(e); 2961 } 2962 } 2963 2964 template <typename Impl, typename Result> 2965 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 2966 switch (e->getLHS()->getType().getObjCLifetime()) { 2967 case Qualifiers::OCL_ExplicitNone: 2968 return asImpl().visitBinAssignUnsafeUnretained(e); 2969 2970 case Qualifiers::OCL_Weak: 2971 return asImpl().visitBinAssignWeak(e); 2972 2973 case Qualifiers::OCL_Autoreleasing: 2974 return asImpl().visitBinAssignAutoreleasing(e); 2975 2976 case Qualifiers::OCL_Strong: 2977 return asImpl().visitBinAssignStrong(e); 2978 2979 case Qualifiers::OCL_None: 2980 return asImpl().visitExpr(e); 2981 } 2982 llvm_unreachable("bad ObjC ownership qualifier"); 2983 } 2984 2985 /// The default rule for __unsafe_unretained emits the RHS recursively, 2986 /// stores into the unsafe variable, and propagates the result outward. 2987 template <typename Impl, typename Result> 2988 Result ARCExprEmitter<Impl,Result>:: 2989 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 2990 // Recursively emit the RHS. 2991 // For __block safety, do this before emitting the LHS. 2992 Result result = asImpl().visit(e->getRHS()); 2993 2994 // Perform the store. 2995 LValue lvalue = 2996 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 2997 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 2998 lvalue); 2999 3000 return result; 3001 } 3002 3003 template <typename Impl, typename Result> 3004 Result 3005 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 3006 return asImpl().visitExpr(e); 3007 } 3008 3009 template <typename Impl, typename Result> 3010 Result 3011 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 3012 return asImpl().visitExpr(e); 3013 } 3014 3015 template <typename Impl, typename Result> 3016 Result 3017 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 3018 return asImpl().visitExpr(e); 3019 } 3020 3021 /// The general expression-emission logic. 3022 template <typename Impl, typename Result> 3023 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 3024 // We should *never* see a nested full-expression here, because if 3025 // we fail to emit at +1, our caller must not retain after we close 3026 // out the full-expression. This isn't as important in the unsafe 3027 // emitter. 3028 assert(!isa<ExprWithCleanups>(e)); 3029 3030 // Look through parens, __extension__, generic selection, etc. 3031 e = e->IgnoreParens(); 3032 3033 // Handle certain kinds of casts. 3034 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 3035 return asImpl().visitCastExpr(ce); 3036 3037 // Handle the comma operator. 3038 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 3039 return asImpl().visitBinaryOperator(op); 3040 3041 // TODO: handle conditional operators here 3042 3043 // For calls and message sends, use the retained-call logic. 3044 // Delegate inits are a special case in that they're the only 3045 // returns-retained expression that *isn't* surrounded by 3046 // a consume. 3047 } else if (isa<CallExpr>(e) || 3048 (isa<ObjCMessageExpr>(e) && 3049 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 3050 return asImpl().visitCall(e); 3051 3052 // Look through pseudo-object expressions. 3053 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 3054 return asImpl().visitPseudoObjectExpr(pseudo); 3055 } 3056 3057 return asImpl().visitExpr(e); 3058 } 3059 3060 namespace { 3061 3062 /// An emitter for +1 results. 3063 struct ARCRetainExprEmitter : 3064 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 3065 3066 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3067 3068 llvm::Value *getValueOfResult(TryEmitResult result) { 3069 return result.getPointer(); 3070 } 3071 3072 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 3073 llvm::Value *value = result.getPointer(); 3074 value = CGF.Builder.CreateBitCast(value, resultType); 3075 result.setPointer(value); 3076 return result; 3077 } 3078 3079 TryEmitResult visitLValueToRValue(const Expr *e) { 3080 return tryEmitARCRetainLoadOfScalar(CGF, e); 3081 } 3082 3083 /// For consumptions, just emit the subexpression and thus elide 3084 /// the retain/release pair. 3085 TryEmitResult visitConsumeObject(const Expr *e) { 3086 llvm::Value *result = CGF.EmitScalarExpr(e); 3087 return TryEmitResult(result, true); 3088 } 3089 3090 /// Block extends are net +0. Naively, we could just recurse on 3091 /// the subexpression, but actually we need to ensure that the 3092 /// value is copied as a block, so there's a little filter here. 3093 TryEmitResult visitExtendBlockObject(const Expr *e) { 3094 llvm::Value *result; // will be a +0 value 3095 3096 // If we can't safely assume the sub-expression will produce a 3097 // block-copied value, emit the sub-expression at +0. 3098 if (shouldEmitSeparateBlockRetain(e)) { 3099 result = CGF.EmitScalarExpr(e); 3100 3101 // Otherwise, try to emit the sub-expression at +1 recursively. 3102 } else { 3103 TryEmitResult subresult = asImpl().visit(e); 3104 3105 // If that produced a retained value, just use that. 3106 if (subresult.getInt()) { 3107 return subresult; 3108 } 3109 3110 // Otherwise it's +0. 3111 result = subresult.getPointer(); 3112 } 3113 3114 // Retain the object as a block. 3115 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 3116 return TryEmitResult(result, true); 3117 } 3118 3119 /// For reclaims, emit the subexpression as a retained call and 3120 /// skip the consumption. 3121 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 3122 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3123 return TryEmitResult(result, true); 3124 } 3125 3126 /// When we have an undecorated call, retroactively do a claim. 3127 TryEmitResult visitCall(const Expr *e) { 3128 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3129 return TryEmitResult(result, true); 3130 } 3131 3132 // TODO: maybe special-case visitBinAssignWeak? 3133 3134 TryEmitResult visitExpr(const Expr *e) { 3135 // We didn't find an obvious production, so emit what we've got and 3136 // tell the caller that we didn't manage to retain. 3137 llvm::Value *result = CGF.EmitScalarExpr(e); 3138 return TryEmitResult(result, false); 3139 } 3140 }; 3141 } 3142 3143 static TryEmitResult 3144 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 3145 return ARCRetainExprEmitter(CGF).visit(e); 3146 } 3147 3148 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 3149 LValue lvalue, 3150 QualType type) { 3151 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 3152 llvm::Value *value = result.getPointer(); 3153 if (!result.getInt()) 3154 value = CGF.EmitARCRetain(type, value); 3155 return value; 3156 } 3157 3158 /// EmitARCRetainScalarExpr - Semantically equivalent to 3159 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 3160 /// best-effort attempt to peephole expressions that naturally produce 3161 /// retained objects. 3162 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 3163 // The retain needs to happen within the full-expression. 3164 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3165 enterFullExpression(cleanups); 3166 RunCleanupsScope scope(*this); 3167 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 3168 } 3169 3170 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3171 llvm::Value *value = result.getPointer(); 3172 if (!result.getInt()) 3173 value = EmitARCRetain(e->getType(), value); 3174 return value; 3175 } 3176 3177 llvm::Value * 3178 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 3179 // The retain needs to happen within the full-expression. 3180 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3181 enterFullExpression(cleanups); 3182 RunCleanupsScope scope(*this); 3183 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 3184 } 3185 3186 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3187 llvm::Value *value = result.getPointer(); 3188 if (result.getInt()) 3189 value = EmitARCAutorelease(value); 3190 else 3191 value = EmitARCRetainAutorelease(e->getType(), value); 3192 return value; 3193 } 3194 3195 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 3196 llvm::Value *result; 3197 bool doRetain; 3198 3199 if (shouldEmitSeparateBlockRetain(e)) { 3200 result = EmitScalarExpr(e); 3201 doRetain = true; 3202 } else { 3203 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 3204 result = subresult.getPointer(); 3205 doRetain = !subresult.getInt(); 3206 } 3207 3208 if (doRetain) 3209 result = EmitARCRetainBlock(result, /*mandatory*/ true); 3210 return EmitObjCConsumeObject(e->getType(), result); 3211 } 3212 3213 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3214 // In ARC, retain and autorelease the expression. 3215 if (getLangOpts().ObjCAutoRefCount) { 3216 // Do so before running any cleanups for the full-expression. 3217 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3218 return EmitARCRetainAutoreleaseScalarExpr(expr); 3219 } 3220 3221 // Otherwise, use the normal scalar-expression emission. The 3222 // exception machinery doesn't do anything special with the 3223 // exception like retaining it, so there's no safety associated with 3224 // only running cleanups after the throw has started, and when it 3225 // matters it tends to be substantially inferior code. 3226 return EmitScalarExpr(expr); 3227 } 3228 3229 namespace { 3230 3231 /// An emitter for assigning into an __unsafe_unretained context. 3232 struct ARCUnsafeUnretainedExprEmitter : 3233 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3234 3235 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3236 3237 llvm::Value *getValueOfResult(llvm::Value *value) { 3238 return value; 3239 } 3240 3241 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3242 return CGF.Builder.CreateBitCast(value, resultType); 3243 } 3244 3245 llvm::Value *visitLValueToRValue(const Expr *e) { 3246 return CGF.EmitScalarExpr(e); 3247 } 3248 3249 /// For consumptions, just emit the subexpression and perform the 3250 /// consumption like normal. 3251 llvm::Value *visitConsumeObject(const Expr *e) { 3252 llvm::Value *value = CGF.EmitScalarExpr(e); 3253 return CGF.EmitObjCConsumeObject(e->getType(), value); 3254 } 3255 3256 /// No special logic for block extensions. (This probably can't 3257 /// actually happen in this emitter, though.) 3258 llvm::Value *visitExtendBlockObject(const Expr *e) { 3259 return CGF.EmitARCExtendBlockObject(e); 3260 } 3261 3262 /// For reclaims, perform an unsafeClaim if that's enabled. 3263 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3264 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3265 } 3266 3267 /// When we have an undecorated call, just emit it without adding 3268 /// the unsafeClaim. 3269 llvm::Value *visitCall(const Expr *e) { 3270 return CGF.EmitScalarExpr(e); 3271 } 3272 3273 /// Just do normal scalar emission in the default case. 3274 llvm::Value *visitExpr(const Expr *e) { 3275 return CGF.EmitScalarExpr(e); 3276 } 3277 }; 3278 } 3279 3280 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3281 const Expr *e) { 3282 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3283 } 3284 3285 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3286 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3287 /// avoiding any spurious retains, including by performing reclaims 3288 /// with objc_unsafeClaimAutoreleasedReturnValue. 3289 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3290 // Look through full-expressions. 3291 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3292 enterFullExpression(cleanups); 3293 RunCleanupsScope scope(*this); 3294 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3295 } 3296 3297 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3298 } 3299 3300 std::pair<LValue,llvm::Value*> 3301 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3302 bool ignored) { 3303 // Evaluate the RHS first. If we're ignoring the result, assume 3304 // that we can emit at an unsafe +0. 3305 llvm::Value *value; 3306 if (ignored) { 3307 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3308 } else { 3309 value = EmitScalarExpr(e->getRHS()); 3310 } 3311 3312 // Emit the LHS and perform the store. 3313 LValue lvalue = EmitLValue(e->getLHS()); 3314 EmitStoreOfScalar(value, lvalue); 3315 3316 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3317 } 3318 3319 std::pair<LValue,llvm::Value*> 3320 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3321 bool ignored) { 3322 // Evaluate the RHS first. 3323 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3324 llvm::Value *value = result.getPointer(); 3325 3326 bool hasImmediateRetain = result.getInt(); 3327 3328 // If we didn't emit a retained object, and the l-value is of block 3329 // type, then we need to emit the block-retain immediately in case 3330 // it invalidates the l-value. 3331 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3332 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3333 hasImmediateRetain = true; 3334 } 3335 3336 LValue lvalue = EmitLValue(e->getLHS()); 3337 3338 // If the RHS was emitted retained, expand this. 3339 if (hasImmediateRetain) { 3340 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3341 EmitStoreOfScalar(value, lvalue); 3342 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3343 } else { 3344 value = EmitARCStoreStrong(lvalue, value, ignored); 3345 } 3346 3347 return std::pair<LValue,llvm::Value*>(lvalue, value); 3348 } 3349 3350 std::pair<LValue,llvm::Value*> 3351 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3352 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3353 LValue lvalue = EmitLValue(e->getLHS()); 3354 3355 EmitStoreOfScalar(value, lvalue); 3356 3357 return std::pair<LValue,llvm::Value*>(lvalue, value); 3358 } 3359 3360 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3361 const ObjCAutoreleasePoolStmt &ARPS) { 3362 const Stmt *subStmt = ARPS.getSubStmt(); 3363 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3364 3365 CGDebugInfo *DI = getDebugInfo(); 3366 if (DI) 3367 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3368 3369 // Keep track of the current cleanup stack depth. 3370 RunCleanupsScope Scope(*this); 3371 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3372 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3373 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3374 } else { 3375 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3376 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3377 } 3378 3379 for (const auto *I : S.body()) 3380 EmitStmt(I); 3381 3382 if (DI) 3383 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3384 } 3385 3386 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3387 /// make sure it survives garbage collection until this point. 3388 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3389 // We just use an inline assembly. 3390 llvm::FunctionType *extenderType 3391 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3392 llvm::Value *extender 3393 = llvm::InlineAsm::get(extenderType, 3394 /* assembly */ "", 3395 /* constraints */ "r", 3396 /* side effects */ true); 3397 3398 object = Builder.CreateBitCast(object, VoidPtrTy); 3399 EmitNounwindRuntimeCall(extender, object); 3400 } 3401 3402 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3403 /// non-trivial copy assignment function, produce following helper function. 3404 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3405 /// 3406 llvm::Constant * 3407 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3408 const ObjCPropertyImplDecl *PID) { 3409 if (!getLangOpts().CPlusPlus || 3410 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3411 return nullptr; 3412 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3413 if (!Ty->isRecordType()) 3414 return nullptr; 3415 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3416 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3417 return nullptr; 3418 llvm::Constant *HelperFn = nullptr; 3419 if (hasTrivialSetExpr(PID)) 3420 return nullptr; 3421 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3422 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3423 return HelperFn; 3424 3425 ASTContext &C = getContext(); 3426 IdentifierInfo *II 3427 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3428 3429 QualType ReturnTy = C.VoidTy; 3430 QualType DestTy = C.getPointerType(Ty); 3431 QualType SrcTy = Ty; 3432 SrcTy.addConst(); 3433 SrcTy = C.getPointerType(SrcTy); 3434 3435 SmallVector<QualType, 2> ArgTys; 3436 ArgTys.push_back(DestTy); 3437 ArgTys.push_back(SrcTy); 3438 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3439 3440 FunctionDecl *FD = FunctionDecl::Create( 3441 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3442 FunctionTy, nullptr, SC_Static, false, false); 3443 3444 FunctionArgList args; 3445 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3446 ImplicitParamDecl::Other); 3447 args.push_back(&DstDecl); 3448 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3449 ImplicitParamDecl::Other); 3450 args.push_back(&SrcDecl); 3451 3452 const CGFunctionInfo &FI = 3453 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3454 3455 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3456 3457 llvm::Function *Fn = 3458 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3459 "__assign_helper_atomic_property_", 3460 &CGM.getModule()); 3461 3462 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3463 3464 StartFunction(FD, ReturnTy, Fn, FI, args); 3465 3466 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue, 3467 SourceLocation()); 3468 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 3469 VK_LValue, OK_Ordinary, SourceLocation(), false); 3470 3471 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue, 3472 SourceLocation()); 3473 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3474 VK_LValue, OK_Ordinary, SourceLocation(), false); 3475 3476 Expr *Args[2] = { &DST, &SRC }; 3477 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3478 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 3479 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(), 3480 VK_LValue, SourceLocation(), FPOptions()); 3481 3482 EmitStmt(TheCall); 3483 3484 FinishFunction(); 3485 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3486 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3487 return HelperFn; 3488 } 3489 3490 llvm::Constant * 3491 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3492 const ObjCPropertyImplDecl *PID) { 3493 if (!getLangOpts().CPlusPlus || 3494 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3495 return nullptr; 3496 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3497 QualType Ty = PD->getType(); 3498 if (!Ty->isRecordType()) 3499 return nullptr; 3500 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3501 return nullptr; 3502 llvm::Constant *HelperFn = nullptr; 3503 if (hasTrivialGetExpr(PID)) 3504 return nullptr; 3505 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3506 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3507 return HelperFn; 3508 3509 ASTContext &C = getContext(); 3510 IdentifierInfo *II = 3511 &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3512 3513 QualType ReturnTy = C.VoidTy; 3514 QualType DestTy = C.getPointerType(Ty); 3515 QualType SrcTy = Ty; 3516 SrcTy.addConst(); 3517 SrcTy = C.getPointerType(SrcTy); 3518 3519 SmallVector<QualType, 2> ArgTys; 3520 ArgTys.push_back(DestTy); 3521 ArgTys.push_back(SrcTy); 3522 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3523 3524 FunctionDecl *FD = FunctionDecl::Create( 3525 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3526 FunctionTy, nullptr, SC_Static, false, false); 3527 3528 FunctionArgList args; 3529 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3530 ImplicitParamDecl::Other); 3531 args.push_back(&DstDecl); 3532 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3533 ImplicitParamDecl::Other); 3534 args.push_back(&SrcDecl); 3535 3536 const CGFunctionInfo &FI = 3537 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3538 3539 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3540 3541 llvm::Function *Fn = llvm::Function::Create( 3542 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_", 3543 &CGM.getModule()); 3544 3545 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3546 3547 StartFunction(FD, ReturnTy, Fn, FI, args); 3548 3549 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue, 3550 SourceLocation()); 3551 3552 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3553 VK_LValue, OK_Ordinary, SourceLocation(), false); 3554 3555 CXXConstructExpr *CXXConstExpr = 3556 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3557 3558 SmallVector<Expr*, 4> ConstructorArgs; 3559 ConstructorArgs.push_back(&SRC); 3560 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3561 CXXConstExpr->arg_end()); 3562 3563 CXXConstructExpr *TheCXXConstructExpr = 3564 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3565 CXXConstExpr->getConstructor(), 3566 CXXConstExpr->isElidable(), 3567 ConstructorArgs, 3568 CXXConstExpr->hadMultipleCandidates(), 3569 CXXConstExpr->isListInitialization(), 3570 CXXConstExpr->isStdInitListInitialization(), 3571 CXXConstExpr->requiresZeroInitialization(), 3572 CXXConstExpr->getConstructionKind(), 3573 SourceRange()); 3574 3575 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue, 3576 SourceLocation()); 3577 3578 RValue DV = EmitAnyExpr(&DstExpr); 3579 CharUnits Alignment 3580 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3581 EmitAggExpr(TheCXXConstructExpr, 3582 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3583 Qualifiers(), 3584 AggValueSlot::IsDestructed, 3585 AggValueSlot::DoesNotNeedGCBarriers, 3586 AggValueSlot::IsNotAliased, 3587 AggValueSlot::DoesNotOverlap)); 3588 3589 FinishFunction(); 3590 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3591 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3592 return HelperFn; 3593 } 3594 3595 llvm::Value * 3596 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3597 // Get selectors for retain/autorelease. 3598 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3599 Selector CopySelector = 3600 getContext().Selectors.getNullarySelector(CopyID); 3601 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3602 Selector AutoreleaseSelector = 3603 getContext().Selectors.getNullarySelector(AutoreleaseID); 3604 3605 // Emit calls to retain/autorelease. 3606 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3607 llvm::Value *Val = Block; 3608 RValue Result; 3609 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3610 Ty, CopySelector, 3611 Val, CallArgList(), nullptr, nullptr); 3612 Val = Result.getScalarVal(); 3613 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3614 Ty, AutoreleaseSelector, 3615 Val, CallArgList(), nullptr, nullptr); 3616 Val = Result.getScalarVal(); 3617 return Val; 3618 } 3619 3620 llvm::Value * 3621 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) { 3622 assert(Args.size() == 3 && "Expected 3 argument here!"); 3623 3624 if (!CGM.IsOSVersionAtLeastFn) { 3625 llvm::FunctionType *FTy = 3626 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 3627 CGM.IsOSVersionAtLeastFn = 3628 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 3629 } 3630 3631 llvm::Value *CallRes = 3632 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 3633 3634 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 3635 } 3636 3637 void CodeGenModule::emitAtAvailableLinkGuard() { 3638 if (!IsOSVersionAtLeastFn) 3639 return; 3640 // @available requires CoreFoundation only on Darwin. 3641 if (!Target.getTriple().isOSDarwin()) 3642 return; 3643 // Add -framework CoreFoundation to the linker commands. We still want to 3644 // emit the core foundation reference down below because otherwise if 3645 // CoreFoundation is not used in the code, the linker won't link the 3646 // framework. 3647 auto &Context = getLLVMContext(); 3648 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3649 llvm::MDString::get(Context, "CoreFoundation")}; 3650 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 3651 // Emit a reference to a symbol from CoreFoundation to ensure that 3652 // CoreFoundation is linked into the final binary. 3653 llvm::FunctionType *FTy = 3654 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 3655 llvm::Constant *CFFunc = 3656 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 3657 3658 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 3659 llvm::Function *CFLinkCheckFunc = cast<llvm::Function>(CreateBuiltinFunction( 3660 CheckFTy, "__clang_at_available_requires_core_foundation_framework")); 3661 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 3662 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 3663 CodeGenFunction CGF(*this); 3664 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 3665 CGF.EmitNounwindRuntimeCall(CFFunc, llvm::Constant::getNullValue(VoidPtrTy)); 3666 CGF.Builder.CreateUnreachable(); 3667 addCompilerUsedGlobal(CFLinkCheckFunc); 3668 } 3669 3670 CGObjCRuntime::~CGObjCRuntime() {} 3671