1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Objective-C code as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/StmtObjC.h" 21 #include "clang/Basic/Diagnostic.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/InlineAsm.h" 26 using namespace clang; 27 using namespace CodeGen; 28 29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 30 static TryEmitResult 31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 32 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 33 QualType ET, 34 RValue Result); 35 36 /// Given the address of a variable of pointer type, find the correct 37 /// null to store into it. 38 static llvm::Constant *getNullForVariable(Address addr) { 39 llvm::Type *type = addr.getElementType(); 40 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 41 } 42 43 /// Emits an instance of NSConstantString representing the object. 44 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 45 { 46 llvm::Constant *C = 47 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 48 // FIXME: This bitcast should just be made an invariant on the Runtime. 49 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 50 } 51 52 /// EmitObjCBoxedExpr - This routine generates code to call 53 /// the appropriate expression boxing method. This will either be 54 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 55 /// or [NSValue valueWithBytes:objCType:]. 56 /// 57 llvm::Value * 58 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 59 // Generate the correct selector for this literal's concrete type. 60 // Get the method. 61 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 62 const Expr *SubExpr = E->getSubExpr(); 63 assert(BoxingMethod && "BoxingMethod is null"); 64 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 65 Selector Sel = BoxingMethod->getSelector(); 66 67 // Generate a reference to the class pointer, which will be the receiver. 68 // Assumes that the method was introduced in the class that should be 69 // messaged (avoids pulling it out of the result type). 70 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 71 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 72 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 73 74 CallArgList Args; 75 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 76 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 77 78 // ObjCBoxedExpr supports boxing of structs and unions 79 // via [NSValue valueWithBytes:objCType:] 80 const QualType ValueType(SubExpr->getType().getCanonicalType()); 81 if (ValueType->isObjCBoxableRecordType()) { 82 // Emit CodeGen for first parameter 83 // and cast value to correct type 84 Address Temporary = CreateMemTemp(SubExpr->getType()); 85 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 86 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 87 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 88 89 // Create char array to store type encoding 90 std::string Str; 91 getContext().getObjCEncodingForType(ValueType, Str); 92 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 93 94 // Cast type encoding to correct type 95 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 96 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 97 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 98 99 Args.add(RValue::get(Cast), EncodingQT); 100 } else { 101 Args.add(EmitAnyExpr(SubExpr), ArgQT); 102 } 103 104 RValue result = Runtime.GenerateMessageSend( 105 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 106 Args, ClassDecl, BoxingMethod); 107 return Builder.CreateBitCast(result.getScalarVal(), 108 ConvertType(E->getType())); 109 } 110 111 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 112 const ObjCMethodDecl *MethodWithObjects) { 113 ASTContext &Context = CGM.getContext(); 114 const ObjCDictionaryLiteral *DLE = nullptr; 115 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 116 if (!ALE) 117 DLE = cast<ObjCDictionaryLiteral>(E); 118 119 // Optimize empty collections by referencing constants, when available. 120 uint64_t NumElements = 121 ALE ? ALE->getNumElements() : DLE->getNumElements(); 122 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 123 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 124 QualType IdTy(CGM.getContext().getObjCIdType()); 125 llvm::Constant *Constant = 126 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 127 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 128 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); 129 cast<llvm::LoadInst>(Ptr)->setMetadata( 130 CGM.getModule().getMDKindID("invariant.load"), 131 llvm::MDNode::get(getLLVMContext(), None)); 132 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 133 } 134 135 // Compute the type of the array we're initializing. 136 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 137 NumElements); 138 QualType ElementType = Context.getObjCIdType().withConst(); 139 QualType ElementArrayType 140 = Context.getConstantArrayType(ElementType, APNumElements, 141 ArrayType::Normal, /*IndexTypeQuals=*/0); 142 143 // Allocate the temporary array(s). 144 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 145 Address Keys = Address::invalid(); 146 if (DLE) 147 Keys = CreateMemTemp(ElementArrayType, "keys"); 148 149 // In ARC, we may need to do extra work to keep all the keys and 150 // values alive until after the call. 151 SmallVector<llvm::Value *, 16> NeededObjects; 152 bool TrackNeededObjects = 153 (getLangOpts().ObjCAutoRefCount && 154 CGM.getCodeGenOpts().OptimizationLevel != 0); 155 156 // Perform the actual initialialization of the array(s). 157 for (uint64_t i = 0; i < NumElements; i++) { 158 if (ALE) { 159 // Emit the element and store it to the appropriate array slot. 160 const Expr *Rhs = ALE->getElement(i); 161 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 162 ElementType, AlignmentSource::Decl); 163 164 llvm::Value *value = EmitScalarExpr(Rhs); 165 EmitStoreThroughLValue(RValue::get(value), LV, true); 166 if (TrackNeededObjects) { 167 NeededObjects.push_back(value); 168 } 169 } else { 170 // Emit the key and store it to the appropriate array slot. 171 const Expr *Key = DLE->getKeyValueElement(i).Key; 172 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i), 173 ElementType, AlignmentSource::Decl); 174 llvm::Value *keyValue = EmitScalarExpr(Key); 175 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 176 177 // Emit the value and store it to the appropriate array slot. 178 const Expr *Value = DLE->getKeyValueElement(i).Value; 179 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 180 ElementType, AlignmentSource::Decl); 181 llvm::Value *valueValue = EmitScalarExpr(Value); 182 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 183 if (TrackNeededObjects) { 184 NeededObjects.push_back(keyValue); 185 NeededObjects.push_back(valueValue); 186 } 187 } 188 } 189 190 // Generate the argument list. 191 CallArgList Args; 192 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 193 const ParmVarDecl *argDecl = *PI++; 194 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 195 Args.add(RValue::get(Objects.getPointer()), ArgQT); 196 if (DLE) { 197 argDecl = *PI++; 198 ArgQT = argDecl->getType().getUnqualifiedType(); 199 Args.add(RValue::get(Keys.getPointer()), ArgQT); 200 } 201 argDecl = *PI; 202 ArgQT = argDecl->getType().getUnqualifiedType(); 203 llvm::Value *Count = 204 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 205 Args.add(RValue::get(Count), ArgQT); 206 207 // Generate a reference to the class pointer, which will be the receiver. 208 Selector Sel = MethodWithObjects->getSelector(); 209 QualType ResultType = E->getType(); 210 const ObjCObjectPointerType *InterfacePointerType 211 = ResultType->getAsObjCInterfacePointerType(); 212 ObjCInterfaceDecl *Class 213 = InterfacePointerType->getObjectType()->getInterface(); 214 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 215 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 216 217 // Generate the message send. 218 RValue result = Runtime.GenerateMessageSend( 219 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 220 Receiver, Args, Class, MethodWithObjects); 221 222 // The above message send needs these objects, but in ARC they are 223 // passed in a buffer that is essentially __unsafe_unretained. 224 // Therefore we must prevent the optimizer from releasing them until 225 // after the call. 226 if (TrackNeededObjects) { 227 EmitARCIntrinsicUse(NeededObjects); 228 } 229 230 return Builder.CreateBitCast(result.getScalarVal(), 231 ConvertType(E->getType())); 232 } 233 234 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 235 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 236 } 237 238 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 239 const ObjCDictionaryLiteral *E) { 240 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 241 } 242 243 /// Emit a selector. 244 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 245 // Untyped selector. 246 // Note that this implementation allows for non-constant strings to be passed 247 // as arguments to @selector(). Currently, the only thing preventing this 248 // behaviour is the type checking in the front end. 249 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 250 } 251 252 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 253 // FIXME: This should pass the Decl not the name. 254 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 255 } 256 257 /// Adjust the type of an Objective-C object that doesn't match up due 258 /// to type erasure at various points, e.g., related result types or the use 259 /// of parameterized classes. 260 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 261 RValue Result) { 262 if (!ExpT->isObjCRetainableType()) 263 return Result; 264 265 // If the converted types are the same, we're done. 266 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 267 if (ExpLLVMTy == Result.getScalarVal()->getType()) 268 return Result; 269 270 // We have applied a substitution. Cast the rvalue appropriately. 271 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 272 ExpLLVMTy)); 273 } 274 275 /// Decide whether to extend the lifetime of the receiver of a 276 /// returns-inner-pointer message. 277 static bool 278 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 279 switch (message->getReceiverKind()) { 280 281 // For a normal instance message, we should extend unless the 282 // receiver is loaded from a variable with precise lifetime. 283 case ObjCMessageExpr::Instance: { 284 const Expr *receiver = message->getInstanceReceiver(); 285 286 // Look through OVEs. 287 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 288 if (opaque->getSourceExpr()) 289 receiver = opaque->getSourceExpr()->IgnoreParens(); 290 } 291 292 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 293 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 294 receiver = ice->getSubExpr()->IgnoreParens(); 295 296 // Look through OVEs. 297 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 298 if (opaque->getSourceExpr()) 299 receiver = opaque->getSourceExpr()->IgnoreParens(); 300 } 301 302 // Only __strong variables. 303 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 304 return true; 305 306 // All ivars and fields have precise lifetime. 307 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 308 return false; 309 310 // Otherwise, check for variables. 311 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 312 if (!declRef) return true; 313 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 314 if (!var) return true; 315 316 // All variables have precise lifetime except local variables with 317 // automatic storage duration that aren't specially marked. 318 return (var->hasLocalStorage() && 319 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 320 } 321 322 case ObjCMessageExpr::Class: 323 case ObjCMessageExpr::SuperClass: 324 // It's never necessary for class objects. 325 return false; 326 327 case ObjCMessageExpr::SuperInstance: 328 // We generally assume that 'self' lives throughout a method call. 329 return false; 330 } 331 332 llvm_unreachable("invalid receiver kind"); 333 } 334 335 /// Given an expression of ObjC pointer type, check whether it was 336 /// immediately loaded from an ARC __weak l-value. 337 static const Expr *findWeakLValue(const Expr *E) { 338 assert(E->getType()->isObjCRetainableType()); 339 E = E->IgnoreParens(); 340 if (auto CE = dyn_cast<CastExpr>(E)) { 341 if (CE->getCastKind() == CK_LValueToRValue) { 342 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 343 return CE->getSubExpr(); 344 } 345 } 346 347 return nullptr; 348 } 349 350 /// The ObjC runtime may provide entrypoints that are likely to be faster 351 /// than an ordinary message send of the appropriate selector. 352 /// 353 /// The entrypoints are guaranteed to be equivalent to just sending the 354 /// corresponding message. If the entrypoint is implemented naively as just a 355 /// message send, using it is a trade-off: it sacrifices a few cycles of 356 /// overhead to save a small amount of code. However, it's possible for 357 /// runtimes to detect and special-case classes that use "standard" 358 /// behavior; if that's dynamically a large proportion of all objects, using 359 /// the entrypoint will also be faster than using a message send. 360 /// 361 /// If the runtime does support a required entrypoint, then this method will 362 /// generate a call and return the resulting value. Otherwise it will return 363 /// None and the caller can generate a msgSend instead. 364 static Optional<llvm::Value *> 365 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType, 366 llvm::Value *Receiver, 367 const CallArgList& Args, Selector Sel, 368 const ObjCMethodDecl *method, 369 bool isClassMessage) { 370 auto &CGM = CGF.CGM; 371 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) 372 return None; 373 374 auto &Runtime = CGM.getLangOpts().ObjCRuntime; 375 switch (Sel.getMethodFamily()) { 376 case OMF_alloc: 377 if (isClassMessage && 378 Runtime.shouldUseRuntimeFunctionsForAlloc() && 379 ResultType->isObjCObjectPointerType()) { 380 // [Foo alloc] -> objc_alloc(Foo) 381 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc") 382 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType)); 383 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) 384 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && 385 Args.size() == 1 && Args.front().getType()->isPointerType() && 386 Sel.getNameForSlot(0) == "allocWithZone") { 387 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); 388 if (isa<llvm::ConstantPointerNull>(arg)) 389 return CGF.EmitObjCAllocWithZone(Receiver, 390 CGF.ConvertType(ResultType)); 391 return None; 392 } 393 } 394 break; 395 396 case OMF_autorelease: 397 if (ResultType->isObjCObjectPointerType() && 398 CGM.getLangOpts().getGC() == LangOptions::NonGC && 399 Runtime.shouldUseARCFunctionsForRetainRelease()) 400 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType)); 401 break; 402 403 case OMF_retain: 404 if (ResultType->isObjCObjectPointerType() && 405 CGM.getLangOpts().getGC() == LangOptions::NonGC && 406 Runtime.shouldUseARCFunctionsForRetainRelease()) 407 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType)); 408 break; 409 410 case OMF_release: 411 if (ResultType->isVoidType() && 412 CGM.getLangOpts().getGC() == LangOptions::NonGC && 413 Runtime.shouldUseARCFunctionsForRetainRelease()) { 414 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime); 415 return nullptr; 416 } 417 break; 418 419 default: 420 break; 421 } 422 return None; 423 } 424 425 /// Instead of '[[MyClass alloc] init]', try to generate 426 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the 427 /// caller side, as well as the optimized objc_alloc. 428 static Optional<llvm::Value *> 429 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) { 430 auto &Runtime = CGF.getLangOpts().ObjCRuntime; 431 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit()) 432 return None; 433 434 // Match the exact pattern '[[MyClass alloc] init]'. 435 Selector Sel = OME->getSelector(); 436 if (OME->getReceiverKind() != ObjCMessageExpr::Instance || 437 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() || 438 Sel.getNameForSlot(0) != "init") 439 return None; 440 441 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'. 442 auto *SubOME = 443 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParens()); 444 if (!SubOME) 445 return None; 446 Selector SubSel = SubOME->getSelector(); 447 if (SubOME->getReceiverKind() != ObjCMessageExpr::Class || 448 !SubOME->getType()->isObjCObjectPointerType() || 449 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc") 450 return None; 451 452 QualType ReceiverType = SubOME->getClassReceiver(); 453 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 454 const ObjCInterfaceDecl *ID = ObjTy->getInterface(); 455 assert(ID && "null interface should be impossible here"); 456 llvm::Value *Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID); 457 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType())); 458 } 459 460 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 461 ReturnValueSlot Return) { 462 // Only the lookup mechanism and first two arguments of the method 463 // implementation vary between runtimes. We can get the receiver and 464 // arguments in generic code. 465 466 bool isDelegateInit = E->isDelegateInitCall(); 467 468 const ObjCMethodDecl *method = E->getMethodDecl(); 469 470 // If the method is -retain, and the receiver's being loaded from 471 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 472 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 473 method->getMethodFamily() == OMF_retain) { 474 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 475 LValue lvalue = EmitLValue(lvalueExpr); 476 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress()); 477 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 478 } 479 } 480 481 if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E)) 482 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val)); 483 484 // We don't retain the receiver in delegate init calls, and this is 485 // safe because the receiver value is always loaded from 'self', 486 // which we zero out. We don't want to Block_copy block receivers, 487 // though. 488 bool retainSelf = 489 (!isDelegateInit && 490 CGM.getLangOpts().ObjCAutoRefCount && 491 method && 492 method->hasAttr<NSConsumesSelfAttr>()); 493 494 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 495 bool isSuperMessage = false; 496 bool isClassMessage = false; 497 ObjCInterfaceDecl *OID = nullptr; 498 // Find the receiver 499 QualType ReceiverType; 500 llvm::Value *Receiver = nullptr; 501 switch (E->getReceiverKind()) { 502 case ObjCMessageExpr::Instance: 503 ReceiverType = E->getInstanceReceiver()->getType(); 504 if (retainSelf) { 505 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 506 E->getInstanceReceiver()); 507 Receiver = ter.getPointer(); 508 if (ter.getInt()) retainSelf = false; 509 } else 510 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 511 break; 512 513 case ObjCMessageExpr::Class: { 514 ReceiverType = E->getClassReceiver(); 515 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 516 assert(ObjTy && "Invalid Objective-C class message send"); 517 OID = ObjTy->getInterface(); 518 assert(OID && "Invalid Objective-C class message send"); 519 Receiver = Runtime.GetClass(*this, OID); 520 isClassMessage = true; 521 break; 522 } 523 524 case ObjCMessageExpr::SuperInstance: 525 ReceiverType = E->getSuperType(); 526 Receiver = LoadObjCSelf(); 527 isSuperMessage = true; 528 break; 529 530 case ObjCMessageExpr::SuperClass: 531 ReceiverType = E->getSuperType(); 532 Receiver = LoadObjCSelf(); 533 isSuperMessage = true; 534 isClassMessage = true; 535 break; 536 } 537 538 if (retainSelf) 539 Receiver = EmitARCRetainNonBlock(Receiver); 540 541 // In ARC, we sometimes want to "extend the lifetime" 542 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 543 // messages. 544 if (getLangOpts().ObjCAutoRefCount && method && 545 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 546 shouldExtendReceiverForInnerPointerMessage(E)) 547 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 548 549 QualType ResultType = method ? method->getReturnType() : E->getType(); 550 551 CallArgList Args; 552 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 553 554 // For delegate init calls in ARC, do an unsafe store of null into 555 // self. This represents the call taking direct ownership of that 556 // value. We have to do this after emitting the other call 557 // arguments because they might also reference self, but we don't 558 // have to worry about any of them modifying self because that would 559 // be an undefined read and write of an object in unordered 560 // expressions. 561 if (isDelegateInit) { 562 assert(getLangOpts().ObjCAutoRefCount && 563 "delegate init calls should only be marked in ARC"); 564 565 // Do an unsafe store of null into self. 566 Address selfAddr = 567 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 568 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 569 } 570 571 RValue result; 572 if (isSuperMessage) { 573 // super is only valid in an Objective-C method 574 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 575 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 576 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 577 E->getSelector(), 578 OMD->getClassInterface(), 579 isCategoryImpl, 580 Receiver, 581 isClassMessage, 582 Args, 583 method); 584 } else { 585 // Call runtime methods directly if we can. 586 if (Optional<llvm::Value *> SpecializedResult = 587 tryGenerateSpecializedMessageSend(*this, ResultType, Receiver, Args, 588 E->getSelector(), method, 589 isClassMessage)) { 590 result = RValue::get(SpecializedResult.getValue()); 591 } else { 592 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 593 E->getSelector(), Receiver, Args, 594 OID, method); 595 } 596 } 597 598 // For delegate init calls in ARC, implicitly store the result of 599 // the call back into self. This takes ownership of the value. 600 if (isDelegateInit) { 601 Address selfAddr = 602 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 603 llvm::Value *newSelf = result.getScalarVal(); 604 605 // The delegate return type isn't necessarily a matching type; in 606 // fact, it's quite likely to be 'id'. 607 llvm::Type *selfTy = selfAddr.getElementType(); 608 newSelf = Builder.CreateBitCast(newSelf, selfTy); 609 610 Builder.CreateStore(newSelf, selfAddr); 611 } 612 613 return AdjustObjCObjectType(*this, E->getType(), result); 614 } 615 616 namespace { 617 struct FinishARCDealloc final : EHScopeStack::Cleanup { 618 void Emit(CodeGenFunction &CGF, Flags flags) override { 619 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 620 621 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 622 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 623 if (!iface->getSuperClass()) return; 624 625 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 626 627 // Call [super dealloc] if we have a superclass. 628 llvm::Value *self = CGF.LoadObjCSelf(); 629 630 CallArgList args; 631 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 632 CGF.getContext().VoidTy, 633 method->getSelector(), 634 iface, 635 isCategory, 636 self, 637 /*is class msg*/ false, 638 args, 639 method); 640 } 641 }; 642 } 643 644 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 645 /// the LLVM function and sets the other context used by 646 /// CodeGenFunction. 647 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 648 const ObjCContainerDecl *CD) { 649 SourceLocation StartLoc = OMD->getBeginLoc(); 650 FunctionArgList args; 651 // Check if we should generate debug info for this method. 652 if (OMD->hasAttr<NoDebugAttr>()) 653 DebugInfo = nullptr; // disable debug info indefinitely for this function 654 655 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 656 657 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 658 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 659 660 args.push_back(OMD->getSelfDecl()); 661 args.push_back(OMD->getCmdDecl()); 662 663 args.append(OMD->param_begin(), OMD->param_end()); 664 665 CurGD = OMD; 666 CurEHLocation = OMD->getEndLoc(); 667 668 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 669 OMD->getLocation(), StartLoc); 670 671 // In ARC, certain methods get an extra cleanup. 672 if (CGM.getLangOpts().ObjCAutoRefCount && 673 OMD->isInstanceMethod() && 674 OMD->getSelector().isUnarySelector()) { 675 const IdentifierInfo *ident = 676 OMD->getSelector().getIdentifierInfoForSlot(0); 677 if (ident->isStr("dealloc")) 678 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 679 } 680 } 681 682 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 683 LValue lvalue, QualType type); 684 685 /// Generate an Objective-C method. An Objective-C method is a C function with 686 /// its pointer, name, and types registered in the class structure. 687 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 688 StartObjCMethod(OMD, OMD->getClassInterface()); 689 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 690 assert(isa<CompoundStmt>(OMD->getBody())); 691 incrementProfileCounter(OMD->getBody()); 692 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 693 FinishFunction(OMD->getBodyRBrace()); 694 } 695 696 /// emitStructGetterCall - Call the runtime function to load a property 697 /// into the return value slot. 698 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 699 bool isAtomic, bool hasStrong) { 700 ASTContext &Context = CGF.getContext(); 701 702 Address src = 703 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 704 .getAddress(); 705 706 // objc_copyStruct (ReturnValue, &structIvar, 707 // sizeof (Type of Ivar), isAtomic, false); 708 CallArgList args; 709 710 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 711 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 712 713 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 714 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 715 716 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 717 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 718 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 719 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 720 721 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 722 CGCallee callee = CGCallee::forDirect(fn); 723 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 724 callee, ReturnValueSlot(), args); 725 } 726 727 /// Determine whether the given architecture supports unaligned atomic 728 /// accesses. They don't have to be fast, just faster than a function 729 /// call and a mutex. 730 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 731 // FIXME: Allow unaligned atomic load/store on x86. (It is not 732 // currently supported by the backend.) 733 return 0; 734 } 735 736 /// Return the maximum size that permits atomic accesses for the given 737 /// architecture. 738 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 739 llvm::Triple::ArchType arch) { 740 // ARM has 8-byte atomic accesses, but it's not clear whether we 741 // want to rely on them here. 742 743 // In the default case, just assume that any size up to a pointer is 744 // fine given adequate alignment. 745 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 746 } 747 748 namespace { 749 class PropertyImplStrategy { 750 public: 751 enum StrategyKind { 752 /// The 'native' strategy is to use the architecture's provided 753 /// reads and writes. 754 Native, 755 756 /// Use objc_setProperty and objc_getProperty. 757 GetSetProperty, 758 759 /// Use objc_setProperty for the setter, but use expression 760 /// evaluation for the getter. 761 SetPropertyAndExpressionGet, 762 763 /// Use objc_copyStruct. 764 CopyStruct, 765 766 /// The 'expression' strategy is to emit normal assignment or 767 /// lvalue-to-rvalue expressions. 768 Expression 769 }; 770 771 StrategyKind getKind() const { return StrategyKind(Kind); } 772 773 bool hasStrongMember() const { return HasStrong; } 774 bool isAtomic() const { return IsAtomic; } 775 bool isCopy() const { return IsCopy; } 776 777 CharUnits getIvarSize() const { return IvarSize; } 778 CharUnits getIvarAlignment() const { return IvarAlignment; } 779 780 PropertyImplStrategy(CodeGenModule &CGM, 781 const ObjCPropertyImplDecl *propImpl); 782 783 private: 784 unsigned Kind : 8; 785 unsigned IsAtomic : 1; 786 unsigned IsCopy : 1; 787 unsigned HasStrong : 1; 788 789 CharUnits IvarSize; 790 CharUnits IvarAlignment; 791 }; 792 } 793 794 /// Pick an implementation strategy for the given property synthesis. 795 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 796 const ObjCPropertyImplDecl *propImpl) { 797 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 798 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 799 800 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 801 IsAtomic = prop->isAtomic(); 802 HasStrong = false; // doesn't matter here. 803 804 // Evaluate the ivar's size and alignment. 805 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 806 QualType ivarType = ivar->getType(); 807 std::tie(IvarSize, IvarAlignment) = 808 CGM.getContext().getTypeInfoInChars(ivarType); 809 810 // If we have a copy property, we always have to use getProperty/setProperty. 811 // TODO: we could actually use setProperty and an expression for non-atomics. 812 if (IsCopy) { 813 Kind = GetSetProperty; 814 return; 815 } 816 817 // Handle retain. 818 if (setterKind == ObjCPropertyDecl::Retain) { 819 // In GC-only, there's nothing special that needs to be done. 820 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 821 // fallthrough 822 823 // In ARC, if the property is non-atomic, use expression emission, 824 // which translates to objc_storeStrong. This isn't required, but 825 // it's slightly nicer. 826 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 827 // Using standard expression emission for the setter is only 828 // acceptable if the ivar is __strong, which won't be true if 829 // the property is annotated with __attribute__((NSObject)). 830 // TODO: falling all the way back to objc_setProperty here is 831 // just laziness, though; we could still use objc_storeStrong 832 // if we hacked it right. 833 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 834 Kind = Expression; 835 else 836 Kind = SetPropertyAndExpressionGet; 837 return; 838 839 // Otherwise, we need to at least use setProperty. However, if 840 // the property isn't atomic, we can use normal expression 841 // emission for the getter. 842 } else if (!IsAtomic) { 843 Kind = SetPropertyAndExpressionGet; 844 return; 845 846 // Otherwise, we have to use both setProperty and getProperty. 847 } else { 848 Kind = GetSetProperty; 849 return; 850 } 851 } 852 853 // If we're not atomic, just use expression accesses. 854 if (!IsAtomic) { 855 Kind = Expression; 856 return; 857 } 858 859 // Properties on bitfield ivars need to be emitted using expression 860 // accesses even if they're nominally atomic. 861 if (ivar->isBitField()) { 862 Kind = Expression; 863 return; 864 } 865 866 // GC-qualified or ARC-qualified ivars need to be emitted as 867 // expressions. This actually works out to being atomic anyway, 868 // except for ARC __strong, but that should trigger the above code. 869 if (ivarType.hasNonTrivialObjCLifetime() || 870 (CGM.getLangOpts().getGC() && 871 CGM.getContext().getObjCGCAttrKind(ivarType))) { 872 Kind = Expression; 873 return; 874 } 875 876 // Compute whether the ivar has strong members. 877 if (CGM.getLangOpts().getGC()) 878 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 879 HasStrong = recordType->getDecl()->hasObjectMember(); 880 881 // We can never access structs with object members with a native 882 // access, because we need to use write barriers. This is what 883 // objc_copyStruct is for. 884 if (HasStrong) { 885 Kind = CopyStruct; 886 return; 887 } 888 889 // Otherwise, this is target-dependent and based on the size and 890 // alignment of the ivar. 891 892 // If the size of the ivar is not a power of two, give up. We don't 893 // want to get into the business of doing compare-and-swaps. 894 if (!IvarSize.isPowerOfTwo()) { 895 Kind = CopyStruct; 896 return; 897 } 898 899 llvm::Triple::ArchType arch = 900 CGM.getTarget().getTriple().getArch(); 901 902 // Most architectures require memory to fit within a single cache 903 // line, so the alignment has to be at least the size of the access. 904 // Otherwise we have to grab a lock. 905 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 906 Kind = CopyStruct; 907 return; 908 } 909 910 // If the ivar's size exceeds the architecture's maximum atomic 911 // access size, we have to use CopyStruct. 912 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 913 Kind = CopyStruct; 914 return; 915 } 916 917 // Otherwise, we can use native loads and stores. 918 Kind = Native; 919 } 920 921 /// Generate an Objective-C property getter function. 922 /// 923 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 924 /// is illegal within a category. 925 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 926 const ObjCPropertyImplDecl *PID) { 927 llvm::Constant *AtomicHelperFn = 928 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 929 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 930 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 931 assert(OMD && "Invalid call to generate getter (empty method)"); 932 StartObjCMethod(OMD, IMP->getClassInterface()); 933 934 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 935 936 FinishFunction(); 937 } 938 939 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 940 const Expr *getter = propImpl->getGetterCXXConstructor(); 941 if (!getter) return true; 942 943 // Sema only makes only of these when the ivar has a C++ class type, 944 // so the form is pretty constrained. 945 946 // If the property has a reference type, we might just be binding a 947 // reference, in which case the result will be a gl-value. We should 948 // treat this as a non-trivial operation. 949 if (getter->isGLValue()) 950 return false; 951 952 // If we selected a trivial copy-constructor, we're okay. 953 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 954 return (construct->getConstructor()->isTrivial()); 955 956 // The constructor might require cleanups (in which case it's never 957 // trivial). 958 assert(isa<ExprWithCleanups>(getter)); 959 return false; 960 } 961 962 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 963 /// copy the ivar into the resturn slot. 964 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 965 llvm::Value *returnAddr, 966 ObjCIvarDecl *ivar, 967 llvm::Constant *AtomicHelperFn) { 968 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 969 // AtomicHelperFn); 970 CallArgList args; 971 972 // The 1st argument is the return Slot. 973 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 974 975 // The 2nd argument is the address of the ivar. 976 llvm::Value *ivarAddr = 977 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 978 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 979 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 980 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 981 982 // Third argument is the helper function. 983 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 984 985 llvm::FunctionCallee copyCppAtomicObjectFn = 986 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 987 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 988 CGF.EmitCall( 989 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 990 callee, ReturnValueSlot(), args); 991 } 992 993 void 994 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 995 const ObjCPropertyImplDecl *propImpl, 996 const ObjCMethodDecl *GetterMethodDecl, 997 llvm::Constant *AtomicHelperFn) { 998 // If there's a non-trivial 'get' expression, we just have to emit that. 999 if (!hasTrivialGetExpr(propImpl)) { 1000 if (!AtomicHelperFn) { 1001 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(), 1002 propImpl->getGetterCXXConstructor(), 1003 /* NRVOCandidate=*/nullptr); 1004 EmitReturnStmt(*ret); 1005 } 1006 else { 1007 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1008 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 1009 ivar, AtomicHelperFn); 1010 } 1011 return; 1012 } 1013 1014 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1015 QualType propType = prop->getType(); 1016 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 1017 1018 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1019 1020 // Pick an implementation strategy. 1021 PropertyImplStrategy strategy(CGM, propImpl); 1022 switch (strategy.getKind()) { 1023 case PropertyImplStrategy::Native: { 1024 // We don't need to do anything for a zero-size struct. 1025 if (strategy.getIvarSize().isZero()) 1026 return; 1027 1028 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1029 1030 // Currently, all atomic accesses have to be through integer 1031 // types, so there's no point in trying to pick a prettier type. 1032 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 1033 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 1034 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 1035 1036 // Perform an atomic load. This does not impose ordering constraints. 1037 Address ivarAddr = LV.getAddress(); 1038 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 1039 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 1040 load->setAtomic(llvm::AtomicOrdering::Unordered); 1041 1042 // Store that value into the return address. Doing this with a 1043 // bitcast is likely to produce some pretty ugly IR, but it's not 1044 // the *most* terrible thing in the world. 1045 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 1046 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 1047 llvm::Value *ivarVal = load; 1048 if (ivarSize > retTySize) { 1049 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 1050 ivarVal = Builder.CreateTrunc(load, newTy); 1051 bitcastType = newTy->getPointerTo(); 1052 } 1053 Builder.CreateStore(ivarVal, 1054 Builder.CreateBitCast(ReturnValue, bitcastType)); 1055 1056 // Make sure we don't do an autorelease. 1057 AutoreleaseResult = false; 1058 return; 1059 } 1060 1061 case PropertyImplStrategy::GetSetProperty: { 1062 llvm::FunctionCallee getPropertyFn = 1063 CGM.getObjCRuntime().GetPropertyGetFunction(); 1064 if (!getPropertyFn) { 1065 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 1066 return; 1067 } 1068 CGCallee callee = CGCallee::forDirect(getPropertyFn); 1069 1070 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 1071 // FIXME: Can't this be simpler? This might even be worse than the 1072 // corresponding gcc code. 1073 llvm::Value *cmd = 1074 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 1075 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1076 llvm::Value *ivarOffset = 1077 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1078 1079 CallArgList args; 1080 args.add(RValue::get(self), getContext().getObjCIdType()); 1081 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1082 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1083 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1084 getContext().BoolTy); 1085 1086 // FIXME: We shouldn't need to get the function info here, the 1087 // runtime already should have computed it to build the function. 1088 llvm::CallBase *CallInstruction; 1089 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall( 1090 getContext().getObjCIdType(), args), 1091 callee, ReturnValueSlot(), args, &CallInstruction); 1092 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 1093 call->setTailCall(); 1094 1095 // We need to fix the type here. Ivars with copy & retain are 1096 // always objects so we don't need to worry about complex or 1097 // aggregates. 1098 RV = RValue::get(Builder.CreateBitCast( 1099 RV.getScalarVal(), 1100 getTypes().ConvertType(getterMethod->getReturnType()))); 1101 1102 EmitReturnOfRValue(RV, propType); 1103 1104 // objc_getProperty does an autorelease, so we should suppress ours. 1105 AutoreleaseResult = false; 1106 1107 return; 1108 } 1109 1110 case PropertyImplStrategy::CopyStruct: 1111 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 1112 strategy.hasStrongMember()); 1113 return; 1114 1115 case PropertyImplStrategy::Expression: 1116 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1117 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1118 1119 QualType ivarType = ivar->getType(); 1120 switch (getEvaluationKind(ivarType)) { 1121 case TEK_Complex: { 1122 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1123 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1124 /*init*/ true); 1125 return; 1126 } 1127 case TEK_Aggregate: { 1128 // The return value slot is guaranteed to not be aliased, but 1129 // that's not necessarily the same as "on the stack", so 1130 // we still potentially need objc_memmove_collectable. 1131 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1132 /* Src= */ LV, ivarType, overlapForReturnValue()); 1133 return; 1134 } 1135 case TEK_Scalar: { 1136 llvm::Value *value; 1137 if (propType->isReferenceType()) { 1138 value = LV.getAddress().getPointer(); 1139 } else { 1140 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1141 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1142 if (getLangOpts().ObjCAutoRefCount) { 1143 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1144 } else { 1145 value = EmitARCLoadWeak(LV.getAddress()); 1146 } 1147 1148 // Otherwise we want to do a simple load, suppressing the 1149 // final autorelease. 1150 } else { 1151 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1152 AutoreleaseResult = false; 1153 } 1154 1155 value = Builder.CreateBitCast( 1156 value, ConvertType(GetterMethodDecl->getReturnType())); 1157 } 1158 1159 EmitReturnOfRValue(RValue::get(value), propType); 1160 return; 1161 } 1162 } 1163 llvm_unreachable("bad evaluation kind"); 1164 } 1165 1166 } 1167 llvm_unreachable("bad @property implementation strategy!"); 1168 } 1169 1170 /// emitStructSetterCall - Call the runtime function to store the value 1171 /// from the first formal parameter into the given ivar. 1172 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1173 ObjCIvarDecl *ivar) { 1174 // objc_copyStruct (&structIvar, &Arg, 1175 // sizeof (struct something), true, false); 1176 CallArgList args; 1177 1178 // The first argument is the address of the ivar. 1179 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1180 CGF.LoadObjCSelf(), ivar, 0) 1181 .getPointer(); 1182 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1183 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1184 1185 // The second argument is the address of the parameter variable. 1186 ParmVarDecl *argVar = *OMD->param_begin(); 1187 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1188 argVar->getType().getNonReferenceType(), VK_LValue, 1189 SourceLocation()); 1190 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1191 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1192 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1193 1194 // The third argument is the sizeof the type. 1195 llvm::Value *size = 1196 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1197 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1198 1199 // The fourth argument is the 'isAtomic' flag. 1200 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1201 1202 // The fifth argument is the 'hasStrong' flag. 1203 // FIXME: should this really always be false? 1204 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1205 1206 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1207 CGCallee callee = CGCallee::forDirect(fn); 1208 CGF.EmitCall( 1209 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1210 callee, ReturnValueSlot(), args); 1211 } 1212 1213 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1214 /// the value from the first formal parameter into the given ivar, using 1215 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1216 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1217 ObjCMethodDecl *OMD, 1218 ObjCIvarDecl *ivar, 1219 llvm::Constant *AtomicHelperFn) { 1220 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1221 // AtomicHelperFn); 1222 CallArgList args; 1223 1224 // The first argument is the address of the ivar. 1225 llvm::Value *ivarAddr = 1226 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1227 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 1228 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1229 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1230 1231 // The second argument is the address of the parameter variable. 1232 ParmVarDecl *argVar = *OMD->param_begin(); 1233 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1234 argVar->getType().getNonReferenceType(), VK_LValue, 1235 SourceLocation()); 1236 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1237 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1238 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1239 1240 // Third argument is the helper function. 1241 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1242 1243 llvm::FunctionCallee fn = 1244 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1245 CGCallee callee = CGCallee::forDirect(fn); 1246 CGF.EmitCall( 1247 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1248 callee, ReturnValueSlot(), args); 1249 } 1250 1251 1252 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1253 Expr *setter = PID->getSetterCXXAssignment(); 1254 if (!setter) return true; 1255 1256 // Sema only makes only of these when the ivar has a C++ class type, 1257 // so the form is pretty constrained. 1258 1259 // An operator call is trivial if the function it calls is trivial. 1260 // This also implies that there's nothing non-trivial going on with 1261 // the arguments, because operator= can only be trivial if it's a 1262 // synthesized assignment operator and therefore both parameters are 1263 // references. 1264 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1265 if (const FunctionDecl *callee 1266 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1267 if (callee->isTrivial()) 1268 return true; 1269 return false; 1270 } 1271 1272 assert(isa<ExprWithCleanups>(setter)); 1273 return false; 1274 } 1275 1276 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1277 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1278 return false; 1279 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1280 } 1281 1282 void 1283 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1284 const ObjCPropertyImplDecl *propImpl, 1285 llvm::Constant *AtomicHelperFn) { 1286 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1287 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1288 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1289 1290 // Just use the setter expression if Sema gave us one and it's 1291 // non-trivial. 1292 if (!hasTrivialSetExpr(propImpl)) { 1293 if (!AtomicHelperFn) 1294 // If non-atomic, assignment is called directly. 1295 EmitStmt(propImpl->getSetterCXXAssignment()); 1296 else 1297 // If atomic, assignment is called via a locking api. 1298 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1299 AtomicHelperFn); 1300 return; 1301 } 1302 1303 PropertyImplStrategy strategy(CGM, propImpl); 1304 switch (strategy.getKind()) { 1305 case PropertyImplStrategy::Native: { 1306 // We don't need to do anything for a zero-size struct. 1307 if (strategy.getIvarSize().isZero()) 1308 return; 1309 1310 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1311 1312 LValue ivarLValue = 1313 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1314 Address ivarAddr = ivarLValue.getAddress(); 1315 1316 // Currently, all atomic accesses have to be through integer 1317 // types, so there's no point in trying to pick a prettier type. 1318 llvm::Type *bitcastType = 1319 llvm::Type::getIntNTy(getLLVMContext(), 1320 getContext().toBits(strategy.getIvarSize())); 1321 1322 // Cast both arguments to the chosen operation type. 1323 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1324 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1325 1326 // This bitcast load is likely to cause some nasty IR. 1327 llvm::Value *load = Builder.CreateLoad(argAddr); 1328 1329 // Perform an atomic store. There are no memory ordering requirements. 1330 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1331 store->setAtomic(llvm::AtomicOrdering::Unordered); 1332 return; 1333 } 1334 1335 case PropertyImplStrategy::GetSetProperty: 1336 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1337 1338 llvm::FunctionCallee setOptimizedPropertyFn = nullptr; 1339 llvm::FunctionCallee setPropertyFn = nullptr; 1340 if (UseOptimizedSetter(CGM)) { 1341 // 10.8 and iOS 6.0 code and GC is off 1342 setOptimizedPropertyFn = 1343 CGM.getObjCRuntime().GetOptimizedPropertySetFunction( 1344 strategy.isAtomic(), strategy.isCopy()); 1345 if (!setOptimizedPropertyFn) { 1346 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1347 return; 1348 } 1349 } 1350 else { 1351 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1352 if (!setPropertyFn) { 1353 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1354 return; 1355 } 1356 } 1357 1358 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1359 // <is-atomic>, <is-copy>). 1360 llvm::Value *cmd = 1361 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1362 llvm::Value *self = 1363 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1364 llvm::Value *ivarOffset = 1365 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1366 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1367 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1368 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1369 1370 CallArgList args; 1371 args.add(RValue::get(self), getContext().getObjCIdType()); 1372 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1373 if (setOptimizedPropertyFn) { 1374 args.add(RValue::get(arg), getContext().getObjCIdType()); 1375 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1376 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1377 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1378 callee, ReturnValueSlot(), args); 1379 } else { 1380 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1381 args.add(RValue::get(arg), getContext().getObjCIdType()); 1382 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1383 getContext().BoolTy); 1384 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1385 getContext().BoolTy); 1386 // FIXME: We shouldn't need to get the function info here, the runtime 1387 // already should have computed it to build the function. 1388 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1389 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1390 callee, ReturnValueSlot(), args); 1391 } 1392 1393 return; 1394 } 1395 1396 case PropertyImplStrategy::CopyStruct: 1397 emitStructSetterCall(*this, setterMethod, ivar); 1398 return; 1399 1400 case PropertyImplStrategy::Expression: 1401 break; 1402 } 1403 1404 // Otherwise, fake up some ASTs and emit a normal assignment. 1405 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1406 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(), 1407 VK_LValue, SourceLocation()); 1408 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1409 selfDecl->getType(), CK_LValueToRValue, &self, 1410 VK_RValue); 1411 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1412 SourceLocation(), SourceLocation(), 1413 &selfLoad, true, true); 1414 1415 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1416 QualType argType = argDecl->getType().getNonReferenceType(); 1417 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue, 1418 SourceLocation()); 1419 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1420 argType.getUnqualifiedType(), CK_LValueToRValue, 1421 &arg, VK_RValue); 1422 1423 // The property type can differ from the ivar type in some situations with 1424 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1425 // The following absurdity is just to ensure well-formed IR. 1426 CastKind argCK = CK_NoOp; 1427 if (ivarRef.getType()->isObjCObjectPointerType()) { 1428 if (argLoad.getType()->isObjCObjectPointerType()) 1429 argCK = CK_BitCast; 1430 else if (argLoad.getType()->isBlockPointerType()) 1431 argCK = CK_BlockPointerToObjCPointerCast; 1432 else 1433 argCK = CK_CPointerToObjCPointerCast; 1434 } else if (ivarRef.getType()->isBlockPointerType()) { 1435 if (argLoad.getType()->isBlockPointerType()) 1436 argCK = CK_BitCast; 1437 else 1438 argCK = CK_AnyPointerToBlockPointerCast; 1439 } else if (ivarRef.getType()->isPointerType()) { 1440 argCK = CK_BitCast; 1441 } 1442 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1443 ivarRef.getType(), argCK, &argLoad, 1444 VK_RValue); 1445 Expr *finalArg = &argLoad; 1446 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1447 argLoad.getType())) 1448 finalArg = &argCast; 1449 1450 1451 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1452 ivarRef.getType(), VK_RValue, OK_Ordinary, 1453 SourceLocation(), FPOptions()); 1454 EmitStmt(&assign); 1455 } 1456 1457 /// Generate an Objective-C property setter function. 1458 /// 1459 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1460 /// is illegal within a category. 1461 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1462 const ObjCPropertyImplDecl *PID) { 1463 llvm::Constant *AtomicHelperFn = 1464 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1465 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1466 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1467 assert(OMD && "Invalid call to generate setter (empty method)"); 1468 StartObjCMethod(OMD, IMP->getClassInterface()); 1469 1470 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1471 1472 FinishFunction(); 1473 } 1474 1475 namespace { 1476 struct DestroyIvar final : EHScopeStack::Cleanup { 1477 private: 1478 llvm::Value *addr; 1479 const ObjCIvarDecl *ivar; 1480 CodeGenFunction::Destroyer *destroyer; 1481 bool useEHCleanupForArray; 1482 public: 1483 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1484 CodeGenFunction::Destroyer *destroyer, 1485 bool useEHCleanupForArray) 1486 : addr(addr), ivar(ivar), destroyer(destroyer), 1487 useEHCleanupForArray(useEHCleanupForArray) {} 1488 1489 void Emit(CodeGenFunction &CGF, Flags flags) override { 1490 LValue lvalue 1491 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1492 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1493 flags.isForNormalCleanup() && useEHCleanupForArray); 1494 } 1495 }; 1496 } 1497 1498 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1499 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1500 Address addr, 1501 QualType type) { 1502 llvm::Value *null = getNullForVariable(addr); 1503 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1504 } 1505 1506 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1507 ObjCImplementationDecl *impl) { 1508 CodeGenFunction::RunCleanupsScope scope(CGF); 1509 1510 llvm::Value *self = CGF.LoadObjCSelf(); 1511 1512 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1513 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1514 ivar; ivar = ivar->getNextIvar()) { 1515 QualType type = ivar->getType(); 1516 1517 // Check whether the ivar is a destructible type. 1518 QualType::DestructionKind dtorKind = type.isDestructedType(); 1519 if (!dtorKind) continue; 1520 1521 CodeGenFunction::Destroyer *destroyer = nullptr; 1522 1523 // Use a call to objc_storeStrong to destroy strong ivars, for the 1524 // general benefit of the tools. 1525 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1526 destroyer = destroyARCStrongWithStore; 1527 1528 // Otherwise use the default for the destruction kind. 1529 } else { 1530 destroyer = CGF.getDestroyer(dtorKind); 1531 } 1532 1533 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1534 1535 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1536 cleanupKind & EHCleanup); 1537 } 1538 1539 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1540 } 1541 1542 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1543 ObjCMethodDecl *MD, 1544 bool ctor) { 1545 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1546 StartObjCMethod(MD, IMP->getClassInterface()); 1547 1548 // Emit .cxx_construct. 1549 if (ctor) { 1550 // Suppress the final autorelease in ARC. 1551 AutoreleaseResult = false; 1552 1553 for (const auto *IvarInit : IMP->inits()) { 1554 FieldDecl *Field = IvarInit->getAnyMember(); 1555 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1556 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1557 LoadObjCSelf(), Ivar, 0); 1558 EmitAggExpr(IvarInit->getInit(), 1559 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1560 AggValueSlot::DoesNotNeedGCBarriers, 1561 AggValueSlot::IsNotAliased, 1562 AggValueSlot::DoesNotOverlap)); 1563 } 1564 // constructor returns 'self'. 1565 CodeGenTypes &Types = CGM.getTypes(); 1566 QualType IdTy(CGM.getContext().getObjCIdType()); 1567 llvm::Value *SelfAsId = 1568 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1569 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1570 1571 // Emit .cxx_destruct. 1572 } else { 1573 emitCXXDestructMethod(*this, IMP); 1574 } 1575 FinishFunction(); 1576 } 1577 1578 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1579 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1580 DeclRefExpr DRE(getContext(), Self, 1581 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1582 Self->getType(), VK_LValue, SourceLocation()); 1583 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1584 } 1585 1586 QualType CodeGenFunction::TypeOfSelfObject() { 1587 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1588 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1589 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1590 getContext().getCanonicalType(selfDecl->getType())); 1591 return PTy->getPointeeType(); 1592 } 1593 1594 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1595 llvm::FunctionCallee EnumerationMutationFnPtr = 1596 CGM.getObjCRuntime().EnumerationMutationFunction(); 1597 if (!EnumerationMutationFnPtr) { 1598 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1599 return; 1600 } 1601 CGCallee EnumerationMutationFn = 1602 CGCallee::forDirect(EnumerationMutationFnPtr); 1603 1604 CGDebugInfo *DI = getDebugInfo(); 1605 if (DI) 1606 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1607 1608 RunCleanupsScope ForScope(*this); 1609 1610 // The local variable comes into scope immediately. 1611 AutoVarEmission variable = AutoVarEmission::invalid(); 1612 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1613 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1614 1615 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1616 1617 // Fast enumeration state. 1618 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1619 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1620 EmitNullInitialization(StatePtr, StateTy); 1621 1622 // Number of elements in the items array. 1623 static const unsigned NumItems = 16; 1624 1625 // Fetch the countByEnumeratingWithState:objects:count: selector. 1626 IdentifierInfo *II[] = { 1627 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1628 &CGM.getContext().Idents.get("objects"), 1629 &CGM.getContext().Idents.get("count") 1630 }; 1631 Selector FastEnumSel = 1632 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1633 1634 QualType ItemsTy = 1635 getContext().getConstantArrayType(getContext().getObjCIdType(), 1636 llvm::APInt(32, NumItems), 1637 ArrayType::Normal, 0); 1638 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1639 1640 // Emit the collection pointer. In ARC, we do a retain. 1641 llvm::Value *Collection; 1642 if (getLangOpts().ObjCAutoRefCount) { 1643 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1644 1645 // Enter a cleanup to do the release. 1646 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1647 } else { 1648 Collection = EmitScalarExpr(S.getCollection()); 1649 } 1650 1651 // The 'continue' label needs to appear within the cleanup for the 1652 // collection object. 1653 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1654 1655 // Send it our message: 1656 CallArgList Args; 1657 1658 // The first argument is a temporary of the enumeration-state type. 1659 Args.add(RValue::get(StatePtr.getPointer()), 1660 getContext().getPointerType(StateTy)); 1661 1662 // The second argument is a temporary array with space for NumItems 1663 // pointers. We'll actually be loading elements from the array 1664 // pointer written into the control state; this buffer is so that 1665 // collections that *aren't* backed by arrays can still queue up 1666 // batches of elements. 1667 Args.add(RValue::get(ItemsPtr.getPointer()), 1668 getContext().getPointerType(ItemsTy)); 1669 1670 // The third argument is the capacity of that temporary array. 1671 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1672 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1673 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1674 1675 // Start the enumeration. 1676 RValue CountRV = 1677 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1678 getContext().getNSUIntegerType(), 1679 FastEnumSel, Collection, Args); 1680 1681 // The initial number of objects that were returned in the buffer. 1682 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1683 1684 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1685 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1686 1687 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1688 1689 // If the limit pointer was zero to begin with, the collection is 1690 // empty; skip all this. Set the branch weight assuming this has the same 1691 // probability of exiting the loop as any other loop exit. 1692 uint64_t EntryCount = getCurrentProfileCount(); 1693 Builder.CreateCondBr( 1694 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1695 LoopInitBB, 1696 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1697 1698 // Otherwise, initialize the loop. 1699 EmitBlock(LoopInitBB); 1700 1701 // Save the initial mutations value. This is the value at an 1702 // address that was written into the state object by 1703 // countByEnumeratingWithState:objects:count:. 1704 Address StateMutationsPtrPtr = 1705 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1706 llvm::Value *StateMutationsPtr 1707 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1708 1709 llvm::Value *initialMutations = 1710 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1711 "forcoll.initial-mutations"); 1712 1713 // Start looping. This is the point we return to whenever we have a 1714 // fresh, non-empty batch of objects. 1715 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1716 EmitBlock(LoopBodyBB); 1717 1718 // The current index into the buffer. 1719 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1720 index->addIncoming(zero, LoopInitBB); 1721 1722 // The current buffer size. 1723 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1724 count->addIncoming(initialBufferLimit, LoopInitBB); 1725 1726 incrementProfileCounter(&S); 1727 1728 // Check whether the mutations value has changed from where it was 1729 // at start. StateMutationsPtr should actually be invariant between 1730 // refreshes. 1731 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1732 llvm::Value *currentMutations 1733 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1734 "statemutations"); 1735 1736 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1737 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1738 1739 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1740 WasNotMutatedBB, WasMutatedBB); 1741 1742 // If so, call the enumeration-mutation function. 1743 EmitBlock(WasMutatedBB); 1744 llvm::Value *V = 1745 Builder.CreateBitCast(Collection, 1746 ConvertType(getContext().getObjCIdType())); 1747 CallArgList Args2; 1748 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1749 // FIXME: We shouldn't need to get the function info here, the runtime already 1750 // should have computed it to build the function. 1751 EmitCall( 1752 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1753 EnumerationMutationFn, ReturnValueSlot(), Args2); 1754 1755 // Otherwise, or if the mutation function returns, just continue. 1756 EmitBlock(WasNotMutatedBB); 1757 1758 // Initialize the element variable. 1759 RunCleanupsScope elementVariableScope(*this); 1760 bool elementIsVariable; 1761 LValue elementLValue; 1762 QualType elementType; 1763 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1764 // Initialize the variable, in case it's a __block variable or something. 1765 EmitAutoVarInit(variable); 1766 1767 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl()); 1768 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false, 1769 D->getType(), VK_LValue, SourceLocation()); 1770 elementLValue = EmitLValue(&tempDRE); 1771 elementType = D->getType(); 1772 elementIsVariable = true; 1773 1774 if (D->isARCPseudoStrong()) 1775 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1776 } else { 1777 elementLValue = LValue(); // suppress warning 1778 elementType = cast<Expr>(S.getElement())->getType(); 1779 elementIsVariable = false; 1780 } 1781 llvm::Type *convertedElementType = ConvertType(elementType); 1782 1783 // Fetch the buffer out of the enumeration state. 1784 // TODO: this pointer should actually be invariant between 1785 // refreshes, which would help us do certain loop optimizations. 1786 Address StateItemsPtr = 1787 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1788 llvm::Value *EnumStateItems = 1789 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1790 1791 // Fetch the value at the current index from the buffer. 1792 llvm::Value *CurrentItemPtr = 1793 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1794 llvm::Value *CurrentItem = 1795 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1796 1797 // Cast that value to the right type. 1798 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1799 "currentitem"); 1800 1801 // Make sure we have an l-value. Yes, this gets evaluated every 1802 // time through the loop. 1803 if (!elementIsVariable) { 1804 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1805 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1806 } else { 1807 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1808 /*isInit*/ true); 1809 } 1810 1811 // If we do have an element variable, this assignment is the end of 1812 // its initialization. 1813 if (elementIsVariable) 1814 EmitAutoVarCleanups(variable); 1815 1816 // Perform the loop body, setting up break and continue labels. 1817 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1818 { 1819 RunCleanupsScope Scope(*this); 1820 EmitStmt(S.getBody()); 1821 } 1822 BreakContinueStack.pop_back(); 1823 1824 // Destroy the element variable now. 1825 elementVariableScope.ForceCleanup(); 1826 1827 // Check whether there are more elements. 1828 EmitBlock(AfterBody.getBlock()); 1829 1830 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1831 1832 // First we check in the local buffer. 1833 llvm::Value *indexPlusOne = 1834 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 1835 1836 // If we haven't overrun the buffer yet, we can continue. 1837 // Set the branch weights based on the simplifying assumption that this is 1838 // like a while-loop, i.e., ignoring that the false branch fetches more 1839 // elements and then returns to the loop. 1840 Builder.CreateCondBr( 1841 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1842 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1843 1844 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1845 count->addIncoming(count, AfterBody.getBlock()); 1846 1847 // Otherwise, we have to fetch more elements. 1848 EmitBlock(FetchMoreBB); 1849 1850 CountRV = 1851 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1852 getContext().getNSUIntegerType(), 1853 FastEnumSel, Collection, Args); 1854 1855 // If we got a zero count, we're done. 1856 llvm::Value *refetchCount = CountRV.getScalarVal(); 1857 1858 // (note that the message send might split FetchMoreBB) 1859 index->addIncoming(zero, Builder.GetInsertBlock()); 1860 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1861 1862 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1863 EmptyBB, LoopBodyBB); 1864 1865 // No more elements. 1866 EmitBlock(EmptyBB); 1867 1868 if (!elementIsVariable) { 1869 // If the element was not a declaration, set it to be null. 1870 1871 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1872 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1873 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1874 } 1875 1876 if (DI) 1877 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1878 1879 ForScope.ForceCleanup(); 1880 EmitBlock(LoopEnd.getBlock()); 1881 } 1882 1883 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1884 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1885 } 1886 1887 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1888 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1889 } 1890 1891 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1892 const ObjCAtSynchronizedStmt &S) { 1893 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1894 } 1895 1896 namespace { 1897 struct CallObjCRelease final : EHScopeStack::Cleanup { 1898 CallObjCRelease(llvm::Value *object) : object(object) {} 1899 llvm::Value *object; 1900 1901 void Emit(CodeGenFunction &CGF, Flags flags) override { 1902 // Releases at the end of the full-expression are imprecise. 1903 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1904 } 1905 }; 1906 } 1907 1908 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1909 /// release at the end of the full-expression. 1910 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1911 llvm::Value *object) { 1912 // If we're in a conditional branch, we need to make the cleanup 1913 // conditional. 1914 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1915 return object; 1916 } 1917 1918 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1919 llvm::Value *value) { 1920 return EmitARCRetainAutorelease(type, value); 1921 } 1922 1923 /// Given a number of pointers, inform the optimizer that they're 1924 /// being intrinsically used up until this point in the program. 1925 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1926 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use; 1927 if (!fn) 1928 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use); 1929 1930 // This isn't really a "runtime" function, but as an intrinsic it 1931 // doesn't really matter as long as we align things up. 1932 EmitNounwindRuntimeCall(fn, values); 1933 } 1934 1935 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) { 1936 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 1937 // If the target runtime doesn't naturally support ARC, emit weak 1938 // references to the runtime support library. We don't really 1939 // permit this to fail, but we need a particular relocation style. 1940 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 1941 !CGM.getTriple().isOSBinFormatCOFF()) { 1942 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1943 } 1944 } 1945 } 1946 1947 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, 1948 llvm::FunctionCallee RTF) { 1949 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee()); 1950 } 1951 1952 /// Perform an operation having the signature 1953 /// i8* (i8*) 1954 /// where a null input causes a no-op and returns null. 1955 static llvm::Value * 1956 emitARCValueOperation(CodeGenFunction &CGF, llvm::Value *value, 1957 llvm::Type *returnType, llvm::Function *&fn, 1958 llvm::Intrinsic::ID IntID, bool isTailCall = false) { 1959 if (isa<llvm::ConstantPointerNull>(value)) 1960 return value; 1961 1962 if (!fn) { 1963 fn = CGF.CGM.getIntrinsic(IntID); 1964 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 1965 } 1966 1967 // Cast the argument to 'id'. 1968 llvm::Type *origType = returnType ? returnType : value->getType(); 1969 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1970 1971 // Call the function. 1972 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1973 if (isTailCall) 1974 call->setTailCall(); 1975 1976 // Cast the result back to the original type. 1977 return CGF.Builder.CreateBitCast(call, origType); 1978 } 1979 1980 /// Perform an operation having the following signature: 1981 /// i8* (i8**) 1982 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr, 1983 llvm::Function *&fn, 1984 llvm::Intrinsic::ID IntID) { 1985 if (!fn) { 1986 fn = CGF.CGM.getIntrinsic(IntID); 1987 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 1988 } 1989 1990 // Cast the argument to 'id*'. 1991 llvm::Type *origType = addr.getElementType(); 1992 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1993 1994 // Call the function. 1995 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 1996 1997 // Cast the result back to a dereference of the original type. 1998 if (origType != CGF.Int8PtrTy) 1999 result = CGF.Builder.CreateBitCast(result, origType); 2000 2001 return result; 2002 } 2003 2004 /// Perform an operation having the following signature: 2005 /// i8* (i8**, i8*) 2006 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr, 2007 llvm::Value *value, 2008 llvm::Function *&fn, 2009 llvm::Intrinsic::ID IntID, 2010 bool ignored) { 2011 assert(addr.getElementType() == value->getType()); 2012 2013 if (!fn) { 2014 fn = CGF.CGM.getIntrinsic(IntID); 2015 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2016 } 2017 2018 llvm::Type *origType = value->getType(); 2019 2020 llvm::Value *args[] = { 2021 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 2022 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 2023 }; 2024 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 2025 2026 if (ignored) return nullptr; 2027 2028 return CGF.Builder.CreateBitCast(result, origType); 2029 } 2030 2031 /// Perform an operation having the following signature: 2032 /// void (i8**, i8**) 2033 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, 2034 llvm::Function *&fn, 2035 llvm::Intrinsic::ID IntID) { 2036 assert(dst.getType() == src.getType()); 2037 2038 if (!fn) { 2039 fn = CGF.CGM.getIntrinsic(IntID); 2040 setARCRuntimeFunctionLinkage(CGF.CGM, fn); 2041 } 2042 2043 llvm::Value *args[] = { 2044 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 2045 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 2046 }; 2047 CGF.EmitNounwindRuntimeCall(fn, args); 2048 } 2049 2050 /// Perform an operation having the signature 2051 /// i8* (i8*) 2052 /// where a null input causes a no-op and returns null. 2053 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, 2054 llvm::Value *value, 2055 llvm::Type *returnType, 2056 llvm::FunctionCallee &fn, 2057 StringRef fnName, bool MayThrow) { 2058 if (isa<llvm::ConstantPointerNull>(value)) 2059 return value; 2060 2061 if (!fn) { 2062 llvm::FunctionType *fnType = 2063 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 2064 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName); 2065 2066 // We have Native ARC, so set nonlazybind attribute for performance 2067 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2068 if (fnName == "objc_retain") 2069 f->addFnAttr(llvm::Attribute::NonLazyBind); 2070 } 2071 2072 // Cast the argument to 'id'. 2073 llvm::Type *origType = returnType ? returnType : value->getType(); 2074 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2075 2076 // Call the function. 2077 llvm::CallBase *Inst = nullptr; 2078 if (MayThrow) 2079 Inst = CGF.EmitCallOrInvoke(fn, value); 2080 else 2081 Inst = CGF.EmitNounwindRuntimeCall(fn, value); 2082 2083 // Cast the result back to the original type. 2084 return CGF.Builder.CreateBitCast(Inst, origType); 2085 } 2086 2087 /// Produce the code to do a retain. Based on the type, calls one of: 2088 /// call i8* \@objc_retain(i8* %value) 2089 /// call i8* \@objc_retainBlock(i8* %value) 2090 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 2091 if (type->isBlockPointerType()) 2092 return EmitARCRetainBlock(value, /*mandatory*/ false); 2093 else 2094 return EmitARCRetainNonBlock(value); 2095 } 2096 2097 /// Retain the given object, with normal retain semantics. 2098 /// call i8* \@objc_retain(i8* %value) 2099 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 2100 return emitARCValueOperation(*this, value, nullptr, 2101 CGM.getObjCEntrypoints().objc_retain, 2102 llvm::Intrinsic::objc_retain); 2103 } 2104 2105 /// Retain the given block, with _Block_copy semantics. 2106 /// call i8* \@objc_retainBlock(i8* %value) 2107 /// 2108 /// \param mandatory - If false, emit the call with metadata 2109 /// indicating that it's okay for the optimizer to eliminate this call 2110 /// if it can prove that the block never escapes except down the stack. 2111 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 2112 bool mandatory) { 2113 llvm::Value *result 2114 = emitARCValueOperation(*this, value, nullptr, 2115 CGM.getObjCEntrypoints().objc_retainBlock, 2116 llvm::Intrinsic::objc_retainBlock); 2117 2118 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 2119 // tell the optimizer that it doesn't need to do this copy if the 2120 // block doesn't escape, where being passed as an argument doesn't 2121 // count as escaping. 2122 if (!mandatory && isa<llvm::Instruction>(result)) { 2123 llvm::CallInst *call 2124 = cast<llvm::CallInst>(result->stripPointerCasts()); 2125 assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock); 2126 2127 call->setMetadata("clang.arc.copy_on_escape", 2128 llvm::MDNode::get(Builder.getContext(), None)); 2129 } 2130 2131 return result; 2132 } 2133 2134 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 2135 // Fetch the void(void) inline asm which marks that we're going to 2136 // do something with the autoreleased return value. 2137 llvm::InlineAsm *&marker 2138 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2139 if (!marker) { 2140 StringRef assembly 2141 = CGF.CGM.getTargetCodeGenInfo() 2142 .getARCRetainAutoreleasedReturnValueMarker(); 2143 2144 // If we have an empty assembly string, there's nothing to do. 2145 if (assembly.empty()) { 2146 2147 // Otherwise, at -O0, build an inline asm that we're going to call 2148 // in a moment. 2149 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2150 llvm::FunctionType *type = 2151 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2152 2153 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2154 2155 // If we're at -O1 and above, we don't want to litter the code 2156 // with this marker yet, so leave a breadcrumb for the ARC 2157 // optimizer to pick up. 2158 } else { 2159 llvm::NamedMDNode *metadata = 2160 CGF.CGM.getModule().getOrInsertNamedMetadata( 2161 "clang.arc.retainAutoreleasedReturnValueMarker"); 2162 assert(metadata->getNumOperands() <= 1); 2163 if (metadata->getNumOperands() == 0) { 2164 auto &ctx = CGF.getLLVMContext(); 2165 metadata->addOperand(llvm::MDNode::get(ctx, 2166 llvm::MDString::get(ctx, assembly))); 2167 } 2168 } 2169 } 2170 2171 // Call the marker asm if we made one, which we do only at -O0. 2172 if (marker) 2173 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker)); 2174 } 2175 2176 /// Retain the given object which is the result of a function call. 2177 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2178 /// 2179 /// Yes, this function name is one character away from a different 2180 /// call with completely different semantics. 2181 llvm::Value * 2182 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2183 emitAutoreleasedReturnValueMarker(*this); 2184 return emitARCValueOperation(*this, value, nullptr, 2185 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, 2186 llvm::Intrinsic::objc_retainAutoreleasedReturnValue); 2187 } 2188 2189 /// Claim a possibly-autoreleased return value at +0. This is only 2190 /// valid to do in contexts which do not rely on the retain to keep 2191 /// the object valid for all of its uses; for example, when 2192 /// the value is ignored, or when it is being assigned to an 2193 /// __unsafe_unretained variable. 2194 /// 2195 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2196 llvm::Value * 2197 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2198 emitAutoreleasedReturnValueMarker(*this); 2199 return emitARCValueOperation(*this, value, nullptr, 2200 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, 2201 llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue); 2202 } 2203 2204 /// Release the given object. 2205 /// call void \@objc_release(i8* %value) 2206 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2207 ARCPreciseLifetime_t precise) { 2208 if (isa<llvm::ConstantPointerNull>(value)) return; 2209 2210 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release; 2211 if (!fn) { 2212 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release); 2213 setARCRuntimeFunctionLinkage(CGM, fn); 2214 } 2215 2216 // Cast the argument to 'id'. 2217 value = Builder.CreateBitCast(value, Int8PtrTy); 2218 2219 // Call objc_release. 2220 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2221 2222 if (precise == ARCImpreciseLifetime) { 2223 call->setMetadata("clang.imprecise_release", 2224 llvm::MDNode::get(Builder.getContext(), None)); 2225 } 2226 } 2227 2228 /// Destroy a __strong variable. 2229 /// 2230 /// At -O0, emit a call to store 'null' into the address; 2231 /// instrumenting tools prefer this because the address is exposed, 2232 /// but it's relatively cumbersome to optimize. 2233 /// 2234 /// At -O1 and above, just load and call objc_release. 2235 /// 2236 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2237 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2238 ARCPreciseLifetime_t precise) { 2239 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2240 llvm::Value *null = getNullForVariable(addr); 2241 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2242 return; 2243 } 2244 2245 llvm::Value *value = Builder.CreateLoad(addr); 2246 EmitARCRelease(value, precise); 2247 } 2248 2249 /// Store into a strong object. Always calls this: 2250 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2251 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2252 llvm::Value *value, 2253 bool ignored) { 2254 assert(addr.getElementType() == value->getType()); 2255 2256 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2257 if (!fn) { 2258 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong); 2259 setARCRuntimeFunctionLinkage(CGM, fn); 2260 } 2261 2262 llvm::Value *args[] = { 2263 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2264 Builder.CreateBitCast(value, Int8PtrTy) 2265 }; 2266 EmitNounwindRuntimeCall(fn, args); 2267 2268 if (ignored) return nullptr; 2269 return value; 2270 } 2271 2272 /// Store into a strong object. Sometimes calls this: 2273 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2274 /// Other times, breaks it down into components. 2275 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2276 llvm::Value *newValue, 2277 bool ignored) { 2278 QualType type = dst.getType(); 2279 bool isBlock = type->isBlockPointerType(); 2280 2281 // Use a store barrier at -O0 unless this is a block type or the 2282 // lvalue is inadequately aligned. 2283 if (shouldUseFusedARCCalls() && 2284 !isBlock && 2285 (dst.getAlignment().isZero() || 2286 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2287 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2288 } 2289 2290 // Otherwise, split it out. 2291 2292 // Retain the new value. 2293 newValue = EmitARCRetain(type, newValue); 2294 2295 // Read the old value. 2296 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2297 2298 // Store. We do this before the release so that any deallocs won't 2299 // see the old value. 2300 EmitStoreOfScalar(newValue, dst); 2301 2302 // Finally, release the old value. 2303 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2304 2305 return newValue; 2306 } 2307 2308 /// Autorelease the given object. 2309 /// call i8* \@objc_autorelease(i8* %value) 2310 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2311 return emitARCValueOperation(*this, value, nullptr, 2312 CGM.getObjCEntrypoints().objc_autorelease, 2313 llvm::Intrinsic::objc_autorelease); 2314 } 2315 2316 /// Autorelease the given object. 2317 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2318 llvm::Value * 2319 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2320 return emitARCValueOperation(*this, value, nullptr, 2321 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2322 llvm::Intrinsic::objc_autoreleaseReturnValue, 2323 /*isTailCall*/ true); 2324 } 2325 2326 /// Do a fused retain/autorelease of the given object. 2327 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2328 llvm::Value * 2329 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2330 return emitARCValueOperation(*this, value, nullptr, 2331 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2332 llvm::Intrinsic::objc_retainAutoreleaseReturnValue, 2333 /*isTailCall*/ true); 2334 } 2335 2336 /// Do a fused retain/autorelease of the given object. 2337 /// call i8* \@objc_retainAutorelease(i8* %value) 2338 /// or 2339 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2340 /// call i8* \@objc_autorelease(i8* %retain) 2341 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2342 llvm::Value *value) { 2343 if (!type->isBlockPointerType()) 2344 return EmitARCRetainAutoreleaseNonBlock(value); 2345 2346 if (isa<llvm::ConstantPointerNull>(value)) return value; 2347 2348 llvm::Type *origType = value->getType(); 2349 value = Builder.CreateBitCast(value, Int8PtrTy); 2350 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2351 value = EmitARCAutorelease(value); 2352 return Builder.CreateBitCast(value, origType); 2353 } 2354 2355 /// Do a fused retain/autorelease of the given object. 2356 /// call i8* \@objc_retainAutorelease(i8* %value) 2357 llvm::Value * 2358 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2359 return emitARCValueOperation(*this, value, nullptr, 2360 CGM.getObjCEntrypoints().objc_retainAutorelease, 2361 llvm::Intrinsic::objc_retainAutorelease); 2362 } 2363 2364 /// i8* \@objc_loadWeak(i8** %addr) 2365 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2366 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2367 return emitARCLoadOperation(*this, addr, 2368 CGM.getObjCEntrypoints().objc_loadWeak, 2369 llvm::Intrinsic::objc_loadWeak); 2370 } 2371 2372 /// i8* \@objc_loadWeakRetained(i8** %addr) 2373 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2374 return emitARCLoadOperation(*this, addr, 2375 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2376 llvm::Intrinsic::objc_loadWeakRetained); 2377 } 2378 2379 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2380 /// Returns %value. 2381 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2382 llvm::Value *value, 2383 bool ignored) { 2384 return emitARCStoreOperation(*this, addr, value, 2385 CGM.getObjCEntrypoints().objc_storeWeak, 2386 llvm::Intrinsic::objc_storeWeak, ignored); 2387 } 2388 2389 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2390 /// Returns %value. %addr is known to not have a current weak entry. 2391 /// Essentially equivalent to: 2392 /// *addr = nil; objc_storeWeak(addr, value); 2393 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2394 // If we're initializing to null, just write null to memory; no need 2395 // to get the runtime involved. But don't do this if optimization 2396 // is enabled, because accounting for this would make the optimizer 2397 // much more complicated. 2398 if (isa<llvm::ConstantPointerNull>(value) && 2399 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2400 Builder.CreateStore(value, addr); 2401 return; 2402 } 2403 2404 emitARCStoreOperation(*this, addr, value, 2405 CGM.getObjCEntrypoints().objc_initWeak, 2406 llvm::Intrinsic::objc_initWeak, /*ignored*/ true); 2407 } 2408 2409 /// void \@objc_destroyWeak(i8** %addr) 2410 /// Essentially objc_storeWeak(addr, nil). 2411 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2412 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2413 if (!fn) { 2414 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak); 2415 setARCRuntimeFunctionLinkage(CGM, fn); 2416 } 2417 2418 // Cast the argument to 'id*'. 2419 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2420 2421 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2422 } 2423 2424 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2425 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2426 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2427 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2428 emitARCCopyOperation(*this, dst, src, 2429 CGM.getObjCEntrypoints().objc_moveWeak, 2430 llvm::Intrinsic::objc_moveWeak); 2431 } 2432 2433 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2434 /// Disregards the current value in %dest. Essentially 2435 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2436 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2437 emitARCCopyOperation(*this, dst, src, 2438 CGM.getObjCEntrypoints().objc_copyWeak, 2439 llvm::Intrinsic::objc_copyWeak); 2440 } 2441 2442 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, 2443 Address SrcAddr) { 2444 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2445 Object = EmitObjCConsumeObject(Ty, Object); 2446 EmitARCStoreWeak(DstAddr, Object, false); 2447 } 2448 2449 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, 2450 Address SrcAddr) { 2451 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2452 Object = EmitObjCConsumeObject(Ty, Object); 2453 EmitARCStoreWeak(DstAddr, Object, false); 2454 EmitARCDestroyWeak(SrcAddr); 2455 } 2456 2457 /// Produce the code to do a objc_autoreleasepool_push. 2458 /// call i8* \@objc_autoreleasePoolPush(void) 2459 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2460 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2461 if (!fn) { 2462 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush); 2463 setARCRuntimeFunctionLinkage(CGM, fn); 2464 } 2465 2466 return EmitNounwindRuntimeCall(fn); 2467 } 2468 2469 /// Produce the code to do a primitive release. 2470 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2471 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2472 assert(value->getType() == Int8PtrTy); 2473 2474 if (getInvokeDest()) { 2475 // Call the runtime method not the intrinsic if we are handling exceptions 2476 llvm::FunctionCallee &fn = 2477 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; 2478 if (!fn) { 2479 llvm::FunctionType *fnType = 2480 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2481 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop"); 2482 setARCRuntimeFunctionLinkage(CGM, fn); 2483 } 2484 2485 // objc_autoreleasePoolPop can throw. 2486 EmitRuntimeCallOrInvoke(fn, value); 2487 } else { 2488 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2489 if (!fn) { 2490 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop); 2491 setARCRuntimeFunctionLinkage(CGM, fn); 2492 } 2493 2494 EmitRuntimeCall(fn, value); 2495 } 2496 } 2497 2498 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2499 /// Which is: [[NSAutoreleasePool alloc] init]; 2500 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2501 /// init is declared as: - (id) init; in its NSObject super class. 2502 /// 2503 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2504 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2505 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2506 // [NSAutoreleasePool alloc] 2507 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2508 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2509 CallArgList Args; 2510 RValue AllocRV = 2511 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2512 getContext().getObjCIdType(), 2513 AllocSel, Receiver, Args); 2514 2515 // [Receiver init] 2516 Receiver = AllocRV.getScalarVal(); 2517 II = &CGM.getContext().Idents.get("init"); 2518 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2519 RValue InitRV = 2520 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2521 getContext().getObjCIdType(), 2522 InitSel, Receiver, Args); 2523 return InitRV.getScalarVal(); 2524 } 2525 2526 /// Allocate the given objc object. 2527 /// call i8* \@objc_alloc(i8* %value) 2528 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, 2529 llvm::Type *resultType) { 2530 return emitObjCValueOperation(*this, value, resultType, 2531 CGM.getObjCEntrypoints().objc_alloc, 2532 "objc_alloc", /*MayThrow=*/true); 2533 } 2534 2535 /// Allocate the given objc object. 2536 /// call i8* \@objc_allocWithZone(i8* %value) 2537 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, 2538 llvm::Type *resultType) { 2539 return emitObjCValueOperation(*this, value, resultType, 2540 CGM.getObjCEntrypoints().objc_allocWithZone, 2541 "objc_allocWithZone", /*MayThrow=*/true); 2542 } 2543 2544 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value, 2545 llvm::Type *resultType) { 2546 return emitObjCValueOperation(*this, value, resultType, 2547 CGM.getObjCEntrypoints().objc_alloc_init, 2548 "objc_alloc_init", /*MayThrow=*/true); 2549 } 2550 2551 /// Produce the code to do a primitive release. 2552 /// [tmp drain]; 2553 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2554 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2555 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2556 CallArgList Args; 2557 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2558 getContext().VoidTy, DrainSel, Arg, Args); 2559 } 2560 2561 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2562 Address addr, 2563 QualType type) { 2564 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2565 } 2566 2567 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2568 Address addr, 2569 QualType type) { 2570 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2571 } 2572 2573 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2574 Address addr, 2575 QualType type) { 2576 CGF.EmitARCDestroyWeak(addr); 2577 } 2578 2579 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2580 QualType type) { 2581 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2582 CGF.EmitARCIntrinsicUse(value); 2583 } 2584 2585 /// Autorelease the given object. 2586 /// call i8* \@objc_autorelease(i8* %value) 2587 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value, 2588 llvm::Type *returnType) { 2589 return emitObjCValueOperation( 2590 *this, value, returnType, 2591 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction, 2592 "objc_autorelease", /*MayThrow=*/false); 2593 } 2594 2595 /// Retain the given object, with normal retain semantics. 2596 /// call i8* \@objc_retain(i8* %value) 2597 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value, 2598 llvm::Type *returnType) { 2599 return emitObjCValueOperation( 2600 *this, value, returnType, 2601 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain", 2602 /*MayThrow=*/false); 2603 } 2604 2605 /// Release the given object. 2606 /// call void \@objc_release(i8* %value) 2607 void CodeGenFunction::EmitObjCRelease(llvm::Value *value, 2608 ARCPreciseLifetime_t precise) { 2609 if (isa<llvm::ConstantPointerNull>(value)) return; 2610 2611 llvm::FunctionCallee &fn = 2612 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction; 2613 if (!fn) { 2614 llvm::FunctionType *fnType = 2615 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2616 fn = CGM.CreateRuntimeFunction(fnType, "objc_release"); 2617 setARCRuntimeFunctionLinkage(CGM, fn); 2618 // We have Native ARC, so set nonlazybind attribute for performance 2619 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2620 f->addFnAttr(llvm::Attribute::NonLazyBind); 2621 } 2622 2623 // Cast the argument to 'id'. 2624 value = Builder.CreateBitCast(value, Int8PtrTy); 2625 2626 // Call objc_release. 2627 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2628 2629 if (precise == ARCImpreciseLifetime) { 2630 call->setMetadata("clang.imprecise_release", 2631 llvm::MDNode::get(Builder.getContext(), None)); 2632 } 2633 } 2634 2635 namespace { 2636 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2637 llvm::Value *Token; 2638 2639 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2640 2641 void Emit(CodeGenFunction &CGF, Flags flags) override { 2642 CGF.EmitObjCAutoreleasePoolPop(Token); 2643 } 2644 }; 2645 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2646 llvm::Value *Token; 2647 2648 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2649 2650 void Emit(CodeGenFunction &CGF, Flags flags) override { 2651 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2652 } 2653 }; 2654 } 2655 2656 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2657 if (CGM.getLangOpts().ObjCAutoRefCount) 2658 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2659 else 2660 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2661 } 2662 2663 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { 2664 switch (lifetime) { 2665 case Qualifiers::OCL_None: 2666 case Qualifiers::OCL_ExplicitNone: 2667 case Qualifiers::OCL_Strong: 2668 case Qualifiers::OCL_Autoreleasing: 2669 return true; 2670 2671 case Qualifiers::OCL_Weak: 2672 return false; 2673 } 2674 2675 llvm_unreachable("impossible lifetime!"); 2676 } 2677 2678 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2679 LValue lvalue, 2680 QualType type) { 2681 llvm::Value *result; 2682 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime()); 2683 if (shouldRetain) { 2684 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal(); 2685 } else { 2686 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); 2687 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress()); 2688 } 2689 return TryEmitResult(result, !shouldRetain); 2690 } 2691 2692 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2693 const Expr *e) { 2694 e = e->IgnoreParens(); 2695 QualType type = e->getType(); 2696 2697 // If we're loading retained from a __strong xvalue, we can avoid 2698 // an extra retain/release pair by zeroing out the source of this 2699 // "move" operation. 2700 if (e->isXValue() && 2701 !type.isConstQualified() && 2702 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2703 // Emit the lvalue. 2704 LValue lv = CGF.EmitLValue(e); 2705 2706 // Load the object pointer. 2707 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2708 SourceLocation()).getScalarVal(); 2709 2710 // Set the source pointer to NULL. 2711 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2712 2713 return TryEmitResult(result, true); 2714 } 2715 2716 // As a very special optimization, in ARC++, if the l-value is the 2717 // result of a non-volatile assignment, do a simple retain of the 2718 // result of the call to objc_storeWeak instead of reloading. 2719 if (CGF.getLangOpts().CPlusPlus && 2720 !type.isVolatileQualified() && 2721 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2722 isa<BinaryOperator>(e) && 2723 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2724 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2725 2726 // Try to emit code for scalar constant instead of emitting LValue and 2727 // loading it because we are not guaranteed to have an l-value. One of such 2728 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. 2729 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) { 2730 auto *DRE = const_cast<DeclRefExpr *>(decl_expr); 2731 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE)) 2732 return TryEmitResult(CGF.emitScalarConstant(constant, DRE), 2733 !shouldRetainObjCLifetime(type.getObjCLifetime())); 2734 } 2735 2736 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2737 } 2738 2739 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2740 llvm::Value *value)> 2741 ValueTransform; 2742 2743 /// Insert code immediately after a call. 2744 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2745 llvm::Value *value, 2746 ValueTransform doAfterCall, 2747 ValueTransform doFallback) { 2748 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2749 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2750 2751 // Place the retain immediately following the call. 2752 CGF.Builder.SetInsertPoint(call->getParent(), 2753 ++llvm::BasicBlock::iterator(call)); 2754 value = doAfterCall(CGF, value); 2755 2756 CGF.Builder.restoreIP(ip); 2757 return value; 2758 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2759 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2760 2761 // Place the retain at the beginning of the normal destination block. 2762 llvm::BasicBlock *BB = invoke->getNormalDest(); 2763 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2764 value = doAfterCall(CGF, value); 2765 2766 CGF.Builder.restoreIP(ip); 2767 return value; 2768 2769 // Bitcasts can arise because of related-result returns. Rewrite 2770 // the operand. 2771 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2772 llvm::Value *operand = bitcast->getOperand(0); 2773 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2774 bitcast->setOperand(0, operand); 2775 return bitcast; 2776 2777 // Generic fall-back case. 2778 } else { 2779 // Retain using the non-block variant: we never need to do a copy 2780 // of a block that's been returned to us. 2781 return doFallback(CGF, value); 2782 } 2783 } 2784 2785 /// Given that the given expression is some sort of call (which does 2786 /// not return retained), emit a retain following it. 2787 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2788 const Expr *e) { 2789 llvm::Value *value = CGF.EmitScalarExpr(e); 2790 return emitARCOperationAfterCall(CGF, value, 2791 [](CodeGenFunction &CGF, llvm::Value *value) { 2792 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2793 }, 2794 [](CodeGenFunction &CGF, llvm::Value *value) { 2795 return CGF.EmitARCRetainNonBlock(value); 2796 }); 2797 } 2798 2799 /// Given that the given expression is some sort of call (which does 2800 /// not return retained), perform an unsafeClaim following it. 2801 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 2802 const Expr *e) { 2803 llvm::Value *value = CGF.EmitScalarExpr(e); 2804 return emitARCOperationAfterCall(CGF, value, 2805 [](CodeGenFunction &CGF, llvm::Value *value) { 2806 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 2807 }, 2808 [](CodeGenFunction &CGF, llvm::Value *value) { 2809 return value; 2810 }); 2811 } 2812 2813 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 2814 bool allowUnsafeClaim) { 2815 if (allowUnsafeClaim && 2816 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 2817 return emitARCUnsafeClaimCallResult(*this, E); 2818 } else { 2819 llvm::Value *value = emitARCRetainCallResult(*this, E); 2820 return EmitObjCConsumeObject(E->getType(), value); 2821 } 2822 } 2823 2824 /// Determine whether it might be important to emit a separate 2825 /// objc_retain_block on the result of the given expression, or 2826 /// whether it's okay to just emit it in a +1 context. 2827 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2828 assert(e->getType()->isBlockPointerType()); 2829 e = e->IgnoreParens(); 2830 2831 // For future goodness, emit block expressions directly in +1 2832 // contexts if we can. 2833 if (isa<BlockExpr>(e)) 2834 return false; 2835 2836 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2837 switch (cast->getCastKind()) { 2838 // Emitting these operations in +1 contexts is goodness. 2839 case CK_LValueToRValue: 2840 case CK_ARCReclaimReturnedObject: 2841 case CK_ARCConsumeObject: 2842 case CK_ARCProduceObject: 2843 return false; 2844 2845 // These operations preserve a block type. 2846 case CK_NoOp: 2847 case CK_BitCast: 2848 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2849 2850 // These operations are known to be bad (or haven't been considered). 2851 case CK_AnyPointerToBlockPointerCast: 2852 default: 2853 return true; 2854 } 2855 } 2856 2857 return true; 2858 } 2859 2860 namespace { 2861 /// A CRTP base class for emitting expressions of retainable object 2862 /// pointer type in ARC. 2863 template <typename Impl, typename Result> class ARCExprEmitter { 2864 protected: 2865 CodeGenFunction &CGF; 2866 Impl &asImpl() { return *static_cast<Impl*>(this); } 2867 2868 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 2869 2870 public: 2871 Result visit(const Expr *e); 2872 Result visitCastExpr(const CastExpr *e); 2873 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 2874 Result visitBlockExpr(const BlockExpr *e); 2875 Result visitBinaryOperator(const BinaryOperator *e); 2876 Result visitBinAssign(const BinaryOperator *e); 2877 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 2878 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 2879 Result visitBinAssignWeak(const BinaryOperator *e); 2880 Result visitBinAssignStrong(const BinaryOperator *e); 2881 2882 // Minimal implementation: 2883 // Result visitLValueToRValue(const Expr *e) 2884 // Result visitConsumeObject(const Expr *e) 2885 // Result visitExtendBlockObject(const Expr *e) 2886 // Result visitReclaimReturnedObject(const Expr *e) 2887 // Result visitCall(const Expr *e) 2888 // Result visitExpr(const Expr *e) 2889 // 2890 // Result emitBitCast(Result result, llvm::Type *resultType) 2891 // llvm::Value *getValueOfResult(Result result) 2892 }; 2893 } 2894 2895 /// Try to emit a PseudoObjectExpr under special ARC rules. 2896 /// 2897 /// This massively duplicates emitPseudoObjectRValue. 2898 template <typename Impl, typename Result> 2899 Result 2900 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 2901 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2902 2903 // Find the result expression. 2904 const Expr *resultExpr = E->getResultExpr(); 2905 assert(resultExpr); 2906 Result result; 2907 2908 for (PseudoObjectExpr::const_semantics_iterator 2909 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2910 const Expr *semantic = *i; 2911 2912 // If this semantic expression is an opaque value, bind it 2913 // to the result of its source expression. 2914 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2915 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2916 OVMA opaqueData; 2917 2918 // If this semantic is the result of the pseudo-object 2919 // expression, try to evaluate the source as +1. 2920 if (ov == resultExpr) { 2921 assert(!OVMA::shouldBindAsLValue(ov)); 2922 result = asImpl().visit(ov->getSourceExpr()); 2923 opaqueData = OVMA::bind(CGF, ov, 2924 RValue::get(asImpl().getValueOfResult(result))); 2925 2926 // Otherwise, just bind it. 2927 } else { 2928 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2929 } 2930 opaques.push_back(opaqueData); 2931 2932 // Otherwise, if the expression is the result, evaluate it 2933 // and remember the result. 2934 } else if (semantic == resultExpr) { 2935 result = asImpl().visit(semantic); 2936 2937 // Otherwise, evaluate the expression in an ignored context. 2938 } else { 2939 CGF.EmitIgnoredExpr(semantic); 2940 } 2941 } 2942 2943 // Unbind all the opaques now. 2944 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2945 opaques[i].unbind(CGF); 2946 2947 return result; 2948 } 2949 2950 template <typename Impl, typename Result> 2951 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) { 2952 // The default implementation just forwards the expression to visitExpr. 2953 return asImpl().visitExpr(e); 2954 } 2955 2956 template <typename Impl, typename Result> 2957 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 2958 switch (e->getCastKind()) { 2959 2960 // No-op casts don't change the type, so we just ignore them. 2961 case CK_NoOp: 2962 return asImpl().visit(e->getSubExpr()); 2963 2964 // These casts can change the type. 2965 case CK_CPointerToObjCPointerCast: 2966 case CK_BlockPointerToObjCPointerCast: 2967 case CK_AnyPointerToBlockPointerCast: 2968 case CK_BitCast: { 2969 llvm::Type *resultType = CGF.ConvertType(e->getType()); 2970 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 2971 Result result = asImpl().visit(e->getSubExpr()); 2972 return asImpl().emitBitCast(result, resultType); 2973 } 2974 2975 // Handle some casts specially. 2976 case CK_LValueToRValue: 2977 return asImpl().visitLValueToRValue(e->getSubExpr()); 2978 case CK_ARCConsumeObject: 2979 return asImpl().visitConsumeObject(e->getSubExpr()); 2980 case CK_ARCExtendBlockObject: 2981 return asImpl().visitExtendBlockObject(e->getSubExpr()); 2982 case CK_ARCReclaimReturnedObject: 2983 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 2984 2985 // Otherwise, use the default logic. 2986 default: 2987 return asImpl().visitExpr(e); 2988 } 2989 } 2990 2991 template <typename Impl, typename Result> 2992 Result 2993 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 2994 switch (e->getOpcode()) { 2995 case BO_Comma: 2996 CGF.EmitIgnoredExpr(e->getLHS()); 2997 CGF.EnsureInsertPoint(); 2998 return asImpl().visit(e->getRHS()); 2999 3000 case BO_Assign: 3001 return asImpl().visitBinAssign(e); 3002 3003 default: 3004 return asImpl().visitExpr(e); 3005 } 3006 } 3007 3008 template <typename Impl, typename Result> 3009 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 3010 switch (e->getLHS()->getType().getObjCLifetime()) { 3011 case Qualifiers::OCL_ExplicitNone: 3012 return asImpl().visitBinAssignUnsafeUnretained(e); 3013 3014 case Qualifiers::OCL_Weak: 3015 return asImpl().visitBinAssignWeak(e); 3016 3017 case Qualifiers::OCL_Autoreleasing: 3018 return asImpl().visitBinAssignAutoreleasing(e); 3019 3020 case Qualifiers::OCL_Strong: 3021 return asImpl().visitBinAssignStrong(e); 3022 3023 case Qualifiers::OCL_None: 3024 return asImpl().visitExpr(e); 3025 } 3026 llvm_unreachable("bad ObjC ownership qualifier"); 3027 } 3028 3029 /// The default rule for __unsafe_unretained emits the RHS recursively, 3030 /// stores into the unsafe variable, and propagates the result outward. 3031 template <typename Impl, typename Result> 3032 Result ARCExprEmitter<Impl,Result>:: 3033 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 3034 // Recursively emit the RHS. 3035 // For __block safety, do this before emitting the LHS. 3036 Result result = asImpl().visit(e->getRHS()); 3037 3038 // Perform the store. 3039 LValue lvalue = 3040 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 3041 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 3042 lvalue); 3043 3044 return result; 3045 } 3046 3047 template <typename Impl, typename Result> 3048 Result 3049 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 3050 return asImpl().visitExpr(e); 3051 } 3052 3053 template <typename Impl, typename Result> 3054 Result 3055 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 3056 return asImpl().visitExpr(e); 3057 } 3058 3059 template <typename Impl, typename Result> 3060 Result 3061 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 3062 return asImpl().visitExpr(e); 3063 } 3064 3065 /// The general expression-emission logic. 3066 template <typename Impl, typename Result> 3067 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 3068 // We should *never* see a nested full-expression here, because if 3069 // we fail to emit at +1, our caller must not retain after we close 3070 // out the full-expression. This isn't as important in the unsafe 3071 // emitter. 3072 assert(!isa<ExprWithCleanups>(e)); 3073 3074 // Look through parens, __extension__, generic selection, etc. 3075 e = e->IgnoreParens(); 3076 3077 // Handle certain kinds of casts. 3078 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 3079 return asImpl().visitCastExpr(ce); 3080 3081 // Handle the comma operator. 3082 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 3083 return asImpl().visitBinaryOperator(op); 3084 3085 // TODO: handle conditional operators here 3086 3087 // For calls and message sends, use the retained-call logic. 3088 // Delegate inits are a special case in that they're the only 3089 // returns-retained expression that *isn't* surrounded by 3090 // a consume. 3091 } else if (isa<CallExpr>(e) || 3092 (isa<ObjCMessageExpr>(e) && 3093 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 3094 return asImpl().visitCall(e); 3095 3096 // Look through pseudo-object expressions. 3097 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 3098 return asImpl().visitPseudoObjectExpr(pseudo); 3099 } else if (auto *be = dyn_cast<BlockExpr>(e)) 3100 return asImpl().visitBlockExpr(be); 3101 3102 return asImpl().visitExpr(e); 3103 } 3104 3105 namespace { 3106 3107 /// An emitter for +1 results. 3108 struct ARCRetainExprEmitter : 3109 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 3110 3111 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3112 3113 llvm::Value *getValueOfResult(TryEmitResult result) { 3114 return result.getPointer(); 3115 } 3116 3117 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 3118 llvm::Value *value = result.getPointer(); 3119 value = CGF.Builder.CreateBitCast(value, resultType); 3120 result.setPointer(value); 3121 return result; 3122 } 3123 3124 TryEmitResult visitLValueToRValue(const Expr *e) { 3125 return tryEmitARCRetainLoadOfScalar(CGF, e); 3126 } 3127 3128 /// For consumptions, just emit the subexpression and thus elide 3129 /// the retain/release pair. 3130 TryEmitResult visitConsumeObject(const Expr *e) { 3131 llvm::Value *result = CGF.EmitScalarExpr(e); 3132 return TryEmitResult(result, true); 3133 } 3134 3135 TryEmitResult visitBlockExpr(const BlockExpr *e) { 3136 TryEmitResult result = visitExpr(e); 3137 // Avoid the block-retain if this is a block literal that doesn't need to be 3138 // copied to the heap. 3139 if (e->getBlockDecl()->canAvoidCopyToHeap()) 3140 result.setInt(true); 3141 return result; 3142 } 3143 3144 /// Block extends are net +0. Naively, we could just recurse on 3145 /// the subexpression, but actually we need to ensure that the 3146 /// value is copied as a block, so there's a little filter here. 3147 TryEmitResult visitExtendBlockObject(const Expr *e) { 3148 llvm::Value *result; // will be a +0 value 3149 3150 // If we can't safely assume the sub-expression will produce a 3151 // block-copied value, emit the sub-expression at +0. 3152 if (shouldEmitSeparateBlockRetain(e)) { 3153 result = CGF.EmitScalarExpr(e); 3154 3155 // Otherwise, try to emit the sub-expression at +1 recursively. 3156 } else { 3157 TryEmitResult subresult = asImpl().visit(e); 3158 3159 // If that produced a retained value, just use that. 3160 if (subresult.getInt()) { 3161 return subresult; 3162 } 3163 3164 // Otherwise it's +0. 3165 result = subresult.getPointer(); 3166 } 3167 3168 // Retain the object as a block. 3169 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 3170 return TryEmitResult(result, true); 3171 } 3172 3173 /// For reclaims, emit the subexpression as a retained call and 3174 /// skip the consumption. 3175 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 3176 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3177 return TryEmitResult(result, true); 3178 } 3179 3180 /// When we have an undecorated call, retroactively do a claim. 3181 TryEmitResult visitCall(const Expr *e) { 3182 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3183 return TryEmitResult(result, true); 3184 } 3185 3186 // TODO: maybe special-case visitBinAssignWeak? 3187 3188 TryEmitResult visitExpr(const Expr *e) { 3189 // We didn't find an obvious production, so emit what we've got and 3190 // tell the caller that we didn't manage to retain. 3191 llvm::Value *result = CGF.EmitScalarExpr(e); 3192 return TryEmitResult(result, false); 3193 } 3194 }; 3195 } 3196 3197 static TryEmitResult 3198 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 3199 return ARCRetainExprEmitter(CGF).visit(e); 3200 } 3201 3202 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 3203 LValue lvalue, 3204 QualType type) { 3205 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 3206 llvm::Value *value = result.getPointer(); 3207 if (!result.getInt()) 3208 value = CGF.EmitARCRetain(type, value); 3209 return value; 3210 } 3211 3212 /// EmitARCRetainScalarExpr - Semantically equivalent to 3213 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 3214 /// best-effort attempt to peephole expressions that naturally produce 3215 /// retained objects. 3216 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 3217 // The retain needs to happen within the full-expression. 3218 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3219 enterFullExpression(cleanups); 3220 RunCleanupsScope scope(*this); 3221 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 3222 } 3223 3224 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3225 llvm::Value *value = result.getPointer(); 3226 if (!result.getInt()) 3227 value = EmitARCRetain(e->getType(), value); 3228 return value; 3229 } 3230 3231 llvm::Value * 3232 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 3233 // The retain needs to happen within the full-expression. 3234 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3235 enterFullExpression(cleanups); 3236 RunCleanupsScope scope(*this); 3237 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 3238 } 3239 3240 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3241 llvm::Value *value = result.getPointer(); 3242 if (result.getInt()) 3243 value = EmitARCAutorelease(value); 3244 else 3245 value = EmitARCRetainAutorelease(e->getType(), value); 3246 return value; 3247 } 3248 3249 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 3250 llvm::Value *result; 3251 bool doRetain; 3252 3253 if (shouldEmitSeparateBlockRetain(e)) { 3254 result = EmitScalarExpr(e); 3255 doRetain = true; 3256 } else { 3257 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 3258 result = subresult.getPointer(); 3259 doRetain = !subresult.getInt(); 3260 } 3261 3262 if (doRetain) 3263 result = EmitARCRetainBlock(result, /*mandatory*/ true); 3264 return EmitObjCConsumeObject(e->getType(), result); 3265 } 3266 3267 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3268 // In ARC, retain and autorelease the expression. 3269 if (getLangOpts().ObjCAutoRefCount) { 3270 // Do so before running any cleanups for the full-expression. 3271 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3272 return EmitARCRetainAutoreleaseScalarExpr(expr); 3273 } 3274 3275 // Otherwise, use the normal scalar-expression emission. The 3276 // exception machinery doesn't do anything special with the 3277 // exception like retaining it, so there's no safety associated with 3278 // only running cleanups after the throw has started, and when it 3279 // matters it tends to be substantially inferior code. 3280 return EmitScalarExpr(expr); 3281 } 3282 3283 namespace { 3284 3285 /// An emitter for assigning into an __unsafe_unretained context. 3286 struct ARCUnsafeUnretainedExprEmitter : 3287 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3288 3289 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3290 3291 llvm::Value *getValueOfResult(llvm::Value *value) { 3292 return value; 3293 } 3294 3295 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3296 return CGF.Builder.CreateBitCast(value, resultType); 3297 } 3298 3299 llvm::Value *visitLValueToRValue(const Expr *e) { 3300 return CGF.EmitScalarExpr(e); 3301 } 3302 3303 /// For consumptions, just emit the subexpression and perform the 3304 /// consumption like normal. 3305 llvm::Value *visitConsumeObject(const Expr *e) { 3306 llvm::Value *value = CGF.EmitScalarExpr(e); 3307 return CGF.EmitObjCConsumeObject(e->getType(), value); 3308 } 3309 3310 /// No special logic for block extensions. (This probably can't 3311 /// actually happen in this emitter, though.) 3312 llvm::Value *visitExtendBlockObject(const Expr *e) { 3313 return CGF.EmitARCExtendBlockObject(e); 3314 } 3315 3316 /// For reclaims, perform an unsafeClaim if that's enabled. 3317 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3318 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3319 } 3320 3321 /// When we have an undecorated call, just emit it without adding 3322 /// the unsafeClaim. 3323 llvm::Value *visitCall(const Expr *e) { 3324 return CGF.EmitScalarExpr(e); 3325 } 3326 3327 /// Just do normal scalar emission in the default case. 3328 llvm::Value *visitExpr(const Expr *e) { 3329 return CGF.EmitScalarExpr(e); 3330 } 3331 }; 3332 } 3333 3334 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3335 const Expr *e) { 3336 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3337 } 3338 3339 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3340 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3341 /// avoiding any spurious retains, including by performing reclaims 3342 /// with objc_unsafeClaimAutoreleasedReturnValue. 3343 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3344 // Look through full-expressions. 3345 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3346 enterFullExpression(cleanups); 3347 RunCleanupsScope scope(*this); 3348 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3349 } 3350 3351 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3352 } 3353 3354 std::pair<LValue,llvm::Value*> 3355 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3356 bool ignored) { 3357 // Evaluate the RHS first. If we're ignoring the result, assume 3358 // that we can emit at an unsafe +0. 3359 llvm::Value *value; 3360 if (ignored) { 3361 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3362 } else { 3363 value = EmitScalarExpr(e->getRHS()); 3364 } 3365 3366 // Emit the LHS and perform the store. 3367 LValue lvalue = EmitLValue(e->getLHS()); 3368 EmitStoreOfScalar(value, lvalue); 3369 3370 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3371 } 3372 3373 std::pair<LValue,llvm::Value*> 3374 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3375 bool ignored) { 3376 // Evaluate the RHS first. 3377 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3378 llvm::Value *value = result.getPointer(); 3379 3380 bool hasImmediateRetain = result.getInt(); 3381 3382 // If we didn't emit a retained object, and the l-value is of block 3383 // type, then we need to emit the block-retain immediately in case 3384 // it invalidates the l-value. 3385 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3386 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3387 hasImmediateRetain = true; 3388 } 3389 3390 LValue lvalue = EmitLValue(e->getLHS()); 3391 3392 // If the RHS was emitted retained, expand this. 3393 if (hasImmediateRetain) { 3394 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3395 EmitStoreOfScalar(value, lvalue); 3396 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3397 } else { 3398 value = EmitARCStoreStrong(lvalue, value, ignored); 3399 } 3400 3401 return std::pair<LValue,llvm::Value*>(lvalue, value); 3402 } 3403 3404 std::pair<LValue,llvm::Value*> 3405 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3406 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3407 LValue lvalue = EmitLValue(e->getLHS()); 3408 3409 EmitStoreOfScalar(value, lvalue); 3410 3411 return std::pair<LValue,llvm::Value*>(lvalue, value); 3412 } 3413 3414 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3415 const ObjCAutoreleasePoolStmt &ARPS) { 3416 const Stmt *subStmt = ARPS.getSubStmt(); 3417 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3418 3419 CGDebugInfo *DI = getDebugInfo(); 3420 if (DI) 3421 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3422 3423 // Keep track of the current cleanup stack depth. 3424 RunCleanupsScope Scope(*this); 3425 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3426 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3427 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3428 } else { 3429 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3430 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3431 } 3432 3433 for (const auto *I : S.body()) 3434 EmitStmt(I); 3435 3436 if (DI) 3437 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3438 } 3439 3440 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3441 /// make sure it survives garbage collection until this point. 3442 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3443 // We just use an inline assembly. 3444 llvm::FunctionType *extenderType 3445 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3446 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType, 3447 /* assembly */ "", 3448 /* constraints */ "r", 3449 /* side effects */ true); 3450 3451 object = Builder.CreateBitCast(object, VoidPtrTy); 3452 EmitNounwindRuntimeCall(extender, object); 3453 } 3454 3455 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3456 /// non-trivial copy assignment function, produce following helper function. 3457 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3458 /// 3459 llvm::Constant * 3460 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3461 const ObjCPropertyImplDecl *PID) { 3462 if (!getLangOpts().CPlusPlus || 3463 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3464 return nullptr; 3465 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3466 if (!Ty->isRecordType()) 3467 return nullptr; 3468 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3469 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3470 return nullptr; 3471 llvm::Constant *HelperFn = nullptr; 3472 if (hasTrivialSetExpr(PID)) 3473 return nullptr; 3474 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3475 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3476 return HelperFn; 3477 3478 ASTContext &C = getContext(); 3479 IdentifierInfo *II 3480 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3481 3482 QualType ReturnTy = C.VoidTy; 3483 QualType DestTy = C.getPointerType(Ty); 3484 QualType SrcTy = Ty; 3485 SrcTy.addConst(); 3486 SrcTy = C.getPointerType(SrcTy); 3487 3488 SmallVector<QualType, 2> ArgTys; 3489 ArgTys.push_back(DestTy); 3490 ArgTys.push_back(SrcTy); 3491 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3492 3493 FunctionDecl *FD = FunctionDecl::Create( 3494 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3495 FunctionTy, nullptr, SC_Static, false, false); 3496 3497 FunctionArgList args; 3498 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3499 ImplicitParamDecl::Other); 3500 args.push_back(&DstDecl); 3501 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3502 ImplicitParamDecl::Other); 3503 args.push_back(&SrcDecl); 3504 3505 const CGFunctionInfo &FI = 3506 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3507 3508 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3509 3510 llvm::Function *Fn = 3511 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3512 "__assign_helper_atomic_property_", 3513 &CGM.getModule()); 3514 3515 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3516 3517 StartFunction(FD, ReturnTy, Fn, FI, args); 3518 3519 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue, 3520 SourceLocation()); 3521 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 3522 VK_LValue, OK_Ordinary, SourceLocation(), false); 3523 3524 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue, 3525 SourceLocation()); 3526 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3527 VK_LValue, OK_Ordinary, SourceLocation(), false); 3528 3529 Expr *Args[2] = { &DST, &SRC }; 3530 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3531 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 3532 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(), 3533 VK_LValue, SourceLocation(), FPOptions()); 3534 3535 EmitStmt(TheCall); 3536 3537 FinishFunction(); 3538 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3539 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3540 return HelperFn; 3541 } 3542 3543 llvm::Constant * 3544 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3545 const ObjCPropertyImplDecl *PID) { 3546 if (!getLangOpts().CPlusPlus || 3547 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3548 return nullptr; 3549 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3550 QualType Ty = PD->getType(); 3551 if (!Ty->isRecordType()) 3552 return nullptr; 3553 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3554 return nullptr; 3555 llvm::Constant *HelperFn = nullptr; 3556 if (hasTrivialGetExpr(PID)) 3557 return nullptr; 3558 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3559 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3560 return HelperFn; 3561 3562 ASTContext &C = getContext(); 3563 IdentifierInfo *II = 3564 &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3565 3566 QualType ReturnTy = C.VoidTy; 3567 QualType DestTy = C.getPointerType(Ty); 3568 QualType SrcTy = Ty; 3569 SrcTy.addConst(); 3570 SrcTy = C.getPointerType(SrcTy); 3571 3572 SmallVector<QualType, 2> ArgTys; 3573 ArgTys.push_back(DestTy); 3574 ArgTys.push_back(SrcTy); 3575 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3576 3577 FunctionDecl *FD = FunctionDecl::Create( 3578 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3579 FunctionTy, nullptr, SC_Static, false, false); 3580 3581 FunctionArgList args; 3582 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy, 3583 ImplicitParamDecl::Other); 3584 args.push_back(&DstDecl); 3585 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy, 3586 ImplicitParamDecl::Other); 3587 args.push_back(&SrcDecl); 3588 3589 const CGFunctionInfo &FI = 3590 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3591 3592 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3593 3594 llvm::Function *Fn = llvm::Function::Create( 3595 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_", 3596 &CGM.getModule()); 3597 3598 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3599 3600 StartFunction(FD, ReturnTy, Fn, FI, args); 3601 3602 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue, 3603 SourceLocation()); 3604 3605 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3606 VK_LValue, OK_Ordinary, SourceLocation(), false); 3607 3608 CXXConstructExpr *CXXConstExpr = 3609 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3610 3611 SmallVector<Expr*, 4> ConstructorArgs; 3612 ConstructorArgs.push_back(&SRC); 3613 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3614 CXXConstExpr->arg_end()); 3615 3616 CXXConstructExpr *TheCXXConstructExpr = 3617 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3618 CXXConstExpr->getConstructor(), 3619 CXXConstExpr->isElidable(), 3620 ConstructorArgs, 3621 CXXConstExpr->hadMultipleCandidates(), 3622 CXXConstExpr->isListInitialization(), 3623 CXXConstExpr->isStdInitListInitialization(), 3624 CXXConstExpr->requiresZeroInitialization(), 3625 CXXConstExpr->getConstructionKind(), 3626 SourceRange()); 3627 3628 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue, 3629 SourceLocation()); 3630 3631 RValue DV = EmitAnyExpr(&DstExpr); 3632 CharUnits Alignment 3633 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3634 EmitAggExpr(TheCXXConstructExpr, 3635 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3636 Qualifiers(), 3637 AggValueSlot::IsDestructed, 3638 AggValueSlot::DoesNotNeedGCBarriers, 3639 AggValueSlot::IsNotAliased, 3640 AggValueSlot::DoesNotOverlap)); 3641 3642 FinishFunction(); 3643 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3644 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3645 return HelperFn; 3646 } 3647 3648 llvm::Value * 3649 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3650 // Get selectors for retain/autorelease. 3651 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3652 Selector CopySelector = 3653 getContext().Selectors.getNullarySelector(CopyID); 3654 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3655 Selector AutoreleaseSelector = 3656 getContext().Selectors.getNullarySelector(AutoreleaseID); 3657 3658 // Emit calls to retain/autorelease. 3659 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3660 llvm::Value *Val = Block; 3661 RValue Result; 3662 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3663 Ty, CopySelector, 3664 Val, CallArgList(), nullptr, nullptr); 3665 Val = Result.getScalarVal(); 3666 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3667 Ty, AutoreleaseSelector, 3668 Val, CallArgList(), nullptr, nullptr); 3669 Val = Result.getScalarVal(); 3670 return Val; 3671 } 3672 3673 llvm::Value * 3674 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) { 3675 assert(Args.size() == 3 && "Expected 3 argument here!"); 3676 3677 if (!CGM.IsOSVersionAtLeastFn) { 3678 llvm::FunctionType *FTy = 3679 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 3680 CGM.IsOSVersionAtLeastFn = 3681 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 3682 } 3683 3684 llvm::Value *CallRes = 3685 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 3686 3687 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 3688 } 3689 3690 void CodeGenModule::emitAtAvailableLinkGuard() { 3691 if (!IsOSVersionAtLeastFn) 3692 return; 3693 // @available requires CoreFoundation only on Darwin. 3694 if (!Target.getTriple().isOSDarwin()) 3695 return; 3696 // Add -framework CoreFoundation to the linker commands. We still want to 3697 // emit the core foundation reference down below because otherwise if 3698 // CoreFoundation is not used in the code, the linker won't link the 3699 // framework. 3700 auto &Context = getLLVMContext(); 3701 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3702 llvm::MDString::get(Context, "CoreFoundation")}; 3703 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 3704 // Emit a reference to a symbol from CoreFoundation to ensure that 3705 // CoreFoundation is linked into the final binary. 3706 llvm::FunctionType *FTy = 3707 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 3708 llvm::FunctionCallee CFFunc = 3709 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 3710 3711 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 3712 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction( 3713 CheckFTy, "__clang_at_available_requires_core_foundation_framework", 3714 llvm::AttributeList(), /*IsLocal=*/true); 3715 llvm::Function *CFLinkCheckFunc = 3716 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts()); 3717 if (CFLinkCheckFunc->empty()) { 3718 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 3719 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 3720 CodeGenFunction CGF(*this); 3721 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 3722 CGF.EmitNounwindRuntimeCall(CFFunc, 3723 llvm::Constant::getNullValue(VoidPtrTy)); 3724 CGF.Builder.CreateUnreachable(); 3725 addCompilerUsedGlobal(CFLinkCheckFunc); 3726 } 3727 } 3728 3729 CGObjCRuntime::~CGObjCRuntime() {} 3730