1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
35                                    QualType ET,
36                                    RValue Result);
37 
38 /// Given the address of a variable of pointer type, find the correct
39 /// null to store into it.
40 static llvm::Constant *getNullForVariable(Address addr) {
41   llvm::Type *type = addr.getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57 /// or [NSValue valueWithBytes:objCType:].
58 ///
59 llvm::Value *
60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61   // Generate the correct selector for this literal's concrete type.
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   const Expr *SubExpr = E->getSubExpr();
65   assert(BoxingMethod && "BoxingMethod is null");
66   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
67   Selector Sel = BoxingMethod->getSelector();
68 
69   // Generate a reference to the class pointer, which will be the receiver.
70   // Assumes that the method was introduced in the class that should be
71   // messaged (avoids pulling it out of the result type).
72   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
73   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
74   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
75 
76   CallArgList Args;
77   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
78   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
79 
80   // ObjCBoxedExpr supports boxing of structs and unions
81   // via [NSValue valueWithBytes:objCType:]
82   const QualType ValueType(SubExpr->getType().getCanonicalType());
83   if (ValueType->isObjCBoxableRecordType()) {
84     // Emit CodeGen for first parameter
85     // and cast value to correct type
86     Address Temporary = CreateMemTemp(SubExpr->getType());
87     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
88     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
89     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
90 
91     // Create char array to store type encoding
92     std::string Str;
93     getContext().getObjCEncodingForType(ValueType, Str);
94     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
95 
96     // Cast type encoding to correct type
97     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
98     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
99     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
100 
101     Args.add(RValue::get(Cast), EncodingQT);
102   } else {
103     Args.add(EmitAnyExpr(SubExpr), ArgQT);
104   }
105 
106   RValue result = Runtime.GenerateMessageSend(
107       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
108       Args, ClassDecl, BoxingMethod);
109   return Builder.CreateBitCast(result.getScalarVal(),
110                                ConvertType(E->getType()));
111 }
112 
113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
114                                     const ObjCMethodDecl *MethodWithObjects) {
115   ASTContext &Context = CGM.getContext();
116   const ObjCDictionaryLiteral *DLE = nullptr;
117   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
118   if (!ALE)
119     DLE = cast<ObjCDictionaryLiteral>(E);
120 
121   // Compute the type of the array we're initializing.
122   uint64_t NumElements =
123     ALE ? ALE->getNumElements() : DLE->getNumElements();
124   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
125                             NumElements);
126   QualType ElementType = Context.getObjCIdType().withConst();
127   QualType ElementArrayType
128     = Context.getConstantArrayType(ElementType, APNumElements,
129                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
130 
131   // Allocate the temporary array(s).
132   Address Objects = CreateMemTemp(ElementArrayType, "objects");
133   Address Keys = Address::invalid();
134   if (DLE)
135     Keys = CreateMemTemp(ElementArrayType, "keys");
136 
137   // In ARC, we may need to do extra work to keep all the keys and
138   // values alive until after the call.
139   SmallVector<llvm::Value *, 16> NeededObjects;
140   bool TrackNeededObjects =
141     (getLangOpts().ObjCAutoRefCount &&
142     CGM.getCodeGenOpts().OptimizationLevel != 0);
143 
144   // Perform the actual initialialization of the array(s).
145   for (uint64_t i = 0; i < NumElements; i++) {
146     if (ALE) {
147       // Emit the element and store it to the appropriate array slot.
148       const Expr *Rhs = ALE->getElement(i);
149       LValue LV = MakeAddrLValue(
150           Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
151           ElementType, AlignmentSource::Decl);
152 
153       llvm::Value *value = EmitScalarExpr(Rhs);
154       EmitStoreThroughLValue(RValue::get(value), LV, true);
155       if (TrackNeededObjects) {
156         NeededObjects.push_back(value);
157       }
158     } else {
159       // Emit the key and store it to the appropriate array slot.
160       const Expr *Key = DLE->getKeyValueElement(i).Key;
161       LValue KeyLV = MakeAddrLValue(
162           Builder.CreateConstArrayGEP(Keys, i, getPointerSize()),
163           ElementType, AlignmentSource::Decl);
164       llvm::Value *keyValue = EmitScalarExpr(Key);
165       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
166 
167       // Emit the value and store it to the appropriate array slot.
168       const Expr *Value = DLE->getKeyValueElement(i).Value;
169       LValue ValueLV = MakeAddrLValue(
170           Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
171           ElementType, AlignmentSource::Decl);
172       llvm::Value *valueValue = EmitScalarExpr(Value);
173       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
174       if (TrackNeededObjects) {
175         NeededObjects.push_back(keyValue);
176         NeededObjects.push_back(valueValue);
177       }
178     }
179   }
180 
181   // Generate the argument list.
182   CallArgList Args;
183   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
184   const ParmVarDecl *argDecl = *PI++;
185   QualType ArgQT = argDecl->getType().getUnqualifiedType();
186   Args.add(RValue::get(Objects.getPointer()), ArgQT);
187   if (DLE) {
188     argDecl = *PI++;
189     ArgQT = argDecl->getType().getUnqualifiedType();
190     Args.add(RValue::get(Keys.getPointer()), ArgQT);
191   }
192   argDecl = *PI;
193   ArgQT = argDecl->getType().getUnqualifiedType();
194   llvm::Value *Count =
195     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
196   Args.add(RValue::get(Count), ArgQT);
197 
198   // Generate a reference to the class pointer, which will be the receiver.
199   Selector Sel = MethodWithObjects->getSelector();
200   QualType ResultType = E->getType();
201   const ObjCObjectPointerType *InterfacePointerType
202     = ResultType->getAsObjCInterfacePointerType();
203   ObjCInterfaceDecl *Class
204     = InterfacePointerType->getObjectType()->getInterface();
205   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
206   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
207 
208   // Generate the message send.
209   RValue result = Runtime.GenerateMessageSend(
210       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
211       Receiver, Args, Class, MethodWithObjects);
212 
213   // The above message send needs these objects, but in ARC they are
214   // passed in a buffer that is essentially __unsafe_unretained.
215   // Therefore we must prevent the optimizer from releasing them until
216   // after the call.
217   if (TrackNeededObjects) {
218     EmitARCIntrinsicUse(NeededObjects);
219   }
220 
221   return Builder.CreateBitCast(result.getScalarVal(),
222                                ConvertType(E->getType()));
223 }
224 
225 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
226   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
227 }
228 
229 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
230                                             const ObjCDictionaryLiteral *E) {
231   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
232 }
233 
234 /// Emit a selector.
235 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
236   // Untyped selector.
237   // Note that this implementation allows for non-constant strings to be passed
238   // as arguments to @selector().  Currently, the only thing preventing this
239   // behaviour is the type checking in the front end.
240   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
241 }
242 
243 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
244   // FIXME: This should pass the Decl not the name.
245   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
246 }
247 
248 /// \brief Adjust the type of an Objective-C object that doesn't match up due
249 /// to type erasure at various points, e.g., related result types or the use
250 /// of parameterized classes.
251 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
252                                    RValue Result) {
253   if (!ExpT->isObjCRetainableType())
254     return Result;
255 
256   // If the converted types are the same, we're done.
257   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
258   if (ExpLLVMTy == Result.getScalarVal()->getType())
259     return Result;
260 
261   // We have applied a substitution. Cast the rvalue appropriately.
262   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
263                                                ExpLLVMTy));
264 }
265 
266 /// Decide whether to extend the lifetime of the receiver of a
267 /// returns-inner-pointer message.
268 static bool
269 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
270   switch (message->getReceiverKind()) {
271 
272   // For a normal instance message, we should extend unless the
273   // receiver is loaded from a variable with precise lifetime.
274   case ObjCMessageExpr::Instance: {
275     const Expr *receiver = message->getInstanceReceiver();
276 
277     // Look through OVEs.
278     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
279       if (opaque->getSourceExpr())
280         receiver = opaque->getSourceExpr()->IgnoreParens();
281     }
282 
283     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
284     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
285     receiver = ice->getSubExpr()->IgnoreParens();
286 
287     // Look through OVEs.
288     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
289       if (opaque->getSourceExpr())
290         receiver = opaque->getSourceExpr()->IgnoreParens();
291     }
292 
293     // Only __strong variables.
294     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
295       return true;
296 
297     // All ivars and fields have precise lifetime.
298     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
299       return false;
300 
301     // Otherwise, check for variables.
302     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
303     if (!declRef) return true;
304     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
305     if (!var) return true;
306 
307     // All variables have precise lifetime except local variables with
308     // automatic storage duration that aren't specially marked.
309     return (var->hasLocalStorage() &&
310             !var->hasAttr<ObjCPreciseLifetimeAttr>());
311   }
312 
313   case ObjCMessageExpr::Class:
314   case ObjCMessageExpr::SuperClass:
315     // It's never necessary for class objects.
316     return false;
317 
318   case ObjCMessageExpr::SuperInstance:
319     // We generally assume that 'self' lives throughout a method call.
320     return false;
321   }
322 
323   llvm_unreachable("invalid receiver kind");
324 }
325 
326 /// Given an expression of ObjC pointer type, check whether it was
327 /// immediately loaded from an ARC __weak l-value.
328 static const Expr *findWeakLValue(const Expr *E) {
329   assert(E->getType()->isObjCRetainableType());
330   E = E->IgnoreParens();
331   if (auto CE = dyn_cast<CastExpr>(E)) {
332     if (CE->getCastKind() == CK_LValueToRValue) {
333       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
334         return CE->getSubExpr();
335     }
336   }
337 
338   return nullptr;
339 }
340 
341 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
342                                             ReturnValueSlot Return) {
343   // Only the lookup mechanism and first two arguments of the method
344   // implementation vary between runtimes.  We can get the receiver and
345   // arguments in generic code.
346 
347   bool isDelegateInit = E->isDelegateInitCall();
348 
349   const ObjCMethodDecl *method = E->getMethodDecl();
350 
351   // If the method is -retain, and the receiver's being loaded from
352   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
353   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
354       method->getMethodFamily() == OMF_retain) {
355     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
356       LValue lvalue = EmitLValue(lvalueExpr);
357       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
358       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
359     }
360   }
361 
362   // We don't retain the receiver in delegate init calls, and this is
363   // safe because the receiver value is always loaded from 'self',
364   // which we zero out.  We don't want to Block_copy block receivers,
365   // though.
366   bool retainSelf =
367     (!isDelegateInit &&
368      CGM.getLangOpts().ObjCAutoRefCount &&
369      method &&
370      method->hasAttr<NSConsumesSelfAttr>());
371 
372   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
373   bool isSuperMessage = false;
374   bool isClassMessage = false;
375   ObjCInterfaceDecl *OID = nullptr;
376   // Find the receiver
377   QualType ReceiverType;
378   llvm::Value *Receiver = nullptr;
379   switch (E->getReceiverKind()) {
380   case ObjCMessageExpr::Instance:
381     ReceiverType = E->getInstanceReceiver()->getType();
382     if (retainSelf) {
383       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
384                                                    E->getInstanceReceiver());
385       Receiver = ter.getPointer();
386       if (ter.getInt()) retainSelf = false;
387     } else
388       Receiver = EmitScalarExpr(E->getInstanceReceiver());
389     break;
390 
391   case ObjCMessageExpr::Class: {
392     ReceiverType = E->getClassReceiver();
393     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
394     assert(ObjTy && "Invalid Objective-C class message send");
395     OID = ObjTy->getInterface();
396     assert(OID && "Invalid Objective-C class message send");
397     Receiver = Runtime.GetClass(*this, OID);
398     isClassMessage = true;
399     break;
400   }
401 
402   case ObjCMessageExpr::SuperInstance:
403     ReceiverType = E->getSuperType();
404     Receiver = LoadObjCSelf();
405     isSuperMessage = true;
406     break;
407 
408   case ObjCMessageExpr::SuperClass:
409     ReceiverType = E->getSuperType();
410     Receiver = LoadObjCSelf();
411     isSuperMessage = true;
412     isClassMessage = true;
413     break;
414   }
415 
416   if (retainSelf)
417     Receiver = EmitARCRetainNonBlock(Receiver);
418 
419   // In ARC, we sometimes want to "extend the lifetime"
420   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
421   // messages.
422   if (getLangOpts().ObjCAutoRefCount && method &&
423       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
424       shouldExtendReceiverForInnerPointerMessage(E))
425     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
426 
427   QualType ResultType = method ? method->getReturnType() : E->getType();
428 
429   CallArgList Args;
430   EmitCallArgs(Args, method, E->arguments());
431 
432   // For delegate init calls in ARC, do an unsafe store of null into
433   // self.  This represents the call taking direct ownership of that
434   // value.  We have to do this after emitting the other call
435   // arguments because they might also reference self, but we don't
436   // have to worry about any of them modifying self because that would
437   // be an undefined read and write of an object in unordered
438   // expressions.
439   if (isDelegateInit) {
440     assert(getLangOpts().ObjCAutoRefCount &&
441            "delegate init calls should only be marked in ARC");
442 
443     // Do an unsafe store of null into self.
444     Address selfAddr =
445       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
446     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
447   }
448 
449   RValue result;
450   if (isSuperMessage) {
451     // super is only valid in an Objective-C method
452     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
453     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
454     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
455                                               E->getSelector(),
456                                               OMD->getClassInterface(),
457                                               isCategoryImpl,
458                                               Receiver,
459                                               isClassMessage,
460                                               Args,
461                                               method);
462   } else {
463     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
464                                          E->getSelector(),
465                                          Receiver, Args, OID,
466                                          method);
467   }
468 
469   // For delegate init calls in ARC, implicitly store the result of
470   // the call back into self.  This takes ownership of the value.
471   if (isDelegateInit) {
472     Address selfAddr =
473       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
474     llvm::Value *newSelf = result.getScalarVal();
475 
476     // The delegate return type isn't necessarily a matching type; in
477     // fact, it's quite likely to be 'id'.
478     llvm::Type *selfTy = selfAddr.getElementType();
479     newSelf = Builder.CreateBitCast(newSelf, selfTy);
480 
481     Builder.CreateStore(newSelf, selfAddr);
482   }
483 
484   return AdjustObjCObjectType(*this, E->getType(), result);
485 }
486 
487 namespace {
488 struct FinishARCDealloc final : EHScopeStack::Cleanup {
489   void Emit(CodeGenFunction &CGF, Flags flags) override {
490     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
491 
492     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
493     const ObjCInterfaceDecl *iface = impl->getClassInterface();
494     if (!iface->getSuperClass()) return;
495 
496     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
497 
498     // Call [super dealloc] if we have a superclass.
499     llvm::Value *self = CGF.LoadObjCSelf();
500 
501     CallArgList args;
502     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
503                                                       CGF.getContext().VoidTy,
504                                                       method->getSelector(),
505                                                       iface,
506                                                       isCategory,
507                                                       self,
508                                                       /*is class msg*/ false,
509                                                       args,
510                                                       method);
511   }
512 };
513 }
514 
515 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
516 /// the LLVM function and sets the other context used by
517 /// CodeGenFunction.
518 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
519                                       const ObjCContainerDecl *CD) {
520   SourceLocation StartLoc = OMD->getLocStart();
521   FunctionArgList args;
522   // Check if we should generate debug info for this method.
523   if (OMD->hasAttr<NoDebugAttr>())
524     DebugInfo = nullptr; // disable debug info indefinitely for this function
525 
526   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
527 
528   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
529   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
530 
531   args.push_back(OMD->getSelfDecl());
532   args.push_back(OMD->getCmdDecl());
533 
534   args.append(OMD->param_begin(), OMD->param_end());
535 
536   CurGD = OMD;
537   CurEHLocation = OMD->getLocEnd();
538 
539   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
540                 OMD->getLocation(), StartLoc);
541 
542   // In ARC, certain methods get an extra cleanup.
543   if (CGM.getLangOpts().ObjCAutoRefCount &&
544       OMD->isInstanceMethod() &&
545       OMD->getSelector().isUnarySelector()) {
546     const IdentifierInfo *ident =
547       OMD->getSelector().getIdentifierInfoForSlot(0);
548     if (ident->isStr("dealloc"))
549       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
550   }
551 }
552 
553 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
554                                               LValue lvalue, QualType type);
555 
556 /// Generate an Objective-C method.  An Objective-C method is a C function with
557 /// its pointer, name, and types registered in the class struture.
558 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
559   StartObjCMethod(OMD, OMD->getClassInterface());
560   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
561   assert(isa<CompoundStmt>(OMD->getBody()));
562   incrementProfileCounter(OMD->getBody());
563   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
564   FinishFunction(OMD->getBodyRBrace());
565 }
566 
567 /// emitStructGetterCall - Call the runtime function to load a property
568 /// into the return value slot.
569 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
570                                  bool isAtomic, bool hasStrong) {
571   ASTContext &Context = CGF.getContext();
572 
573   Address src =
574     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
575        .getAddress();
576 
577   // objc_copyStruct (ReturnValue, &structIvar,
578   //                  sizeof (Type of Ivar), isAtomic, false);
579   CallArgList args;
580 
581   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
582   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
583 
584   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
585   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
586 
587   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
588   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
589   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
590   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
591 
592   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
593   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
594                fn, ReturnValueSlot(), args);
595 }
596 
597 /// Determine whether the given architecture supports unaligned atomic
598 /// accesses.  They don't have to be fast, just faster than a function
599 /// call and a mutex.
600 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
601   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
602   // currently supported by the backend.)
603   return 0;
604 }
605 
606 /// Return the maximum size that permits atomic accesses for the given
607 /// architecture.
608 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
609                                         llvm::Triple::ArchType arch) {
610   // ARM has 8-byte atomic accesses, but it's not clear whether we
611   // want to rely on them here.
612 
613   // In the default case, just assume that any size up to a pointer is
614   // fine given adequate alignment.
615   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
616 }
617 
618 namespace {
619   class PropertyImplStrategy {
620   public:
621     enum StrategyKind {
622       /// The 'native' strategy is to use the architecture's provided
623       /// reads and writes.
624       Native,
625 
626       /// Use objc_setProperty and objc_getProperty.
627       GetSetProperty,
628 
629       /// Use objc_setProperty for the setter, but use expression
630       /// evaluation for the getter.
631       SetPropertyAndExpressionGet,
632 
633       /// Use objc_copyStruct.
634       CopyStruct,
635 
636       /// The 'expression' strategy is to emit normal assignment or
637       /// lvalue-to-rvalue expressions.
638       Expression
639     };
640 
641     StrategyKind getKind() const { return StrategyKind(Kind); }
642 
643     bool hasStrongMember() const { return HasStrong; }
644     bool isAtomic() const { return IsAtomic; }
645     bool isCopy() const { return IsCopy; }
646 
647     CharUnits getIvarSize() const { return IvarSize; }
648     CharUnits getIvarAlignment() const { return IvarAlignment; }
649 
650     PropertyImplStrategy(CodeGenModule &CGM,
651                          const ObjCPropertyImplDecl *propImpl);
652 
653   private:
654     unsigned Kind : 8;
655     unsigned IsAtomic : 1;
656     unsigned IsCopy : 1;
657     unsigned HasStrong : 1;
658 
659     CharUnits IvarSize;
660     CharUnits IvarAlignment;
661   };
662 }
663 
664 /// Pick an implementation strategy for the given property synthesis.
665 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
666                                      const ObjCPropertyImplDecl *propImpl) {
667   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
668   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
669 
670   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
671   IsAtomic = prop->isAtomic();
672   HasStrong = false; // doesn't matter here.
673 
674   // Evaluate the ivar's size and alignment.
675   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
676   QualType ivarType = ivar->getType();
677   std::tie(IvarSize, IvarAlignment) =
678       CGM.getContext().getTypeInfoInChars(ivarType);
679 
680   // If we have a copy property, we always have to use getProperty/setProperty.
681   // TODO: we could actually use setProperty and an expression for non-atomics.
682   if (IsCopy) {
683     Kind = GetSetProperty;
684     return;
685   }
686 
687   // Handle retain.
688   if (setterKind == ObjCPropertyDecl::Retain) {
689     // In GC-only, there's nothing special that needs to be done.
690     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
691       // fallthrough
692 
693     // In ARC, if the property is non-atomic, use expression emission,
694     // which translates to objc_storeStrong.  This isn't required, but
695     // it's slightly nicer.
696     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
697       // Using standard expression emission for the setter is only
698       // acceptable if the ivar is __strong, which won't be true if
699       // the property is annotated with __attribute__((NSObject)).
700       // TODO: falling all the way back to objc_setProperty here is
701       // just laziness, though;  we could still use objc_storeStrong
702       // if we hacked it right.
703       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
704         Kind = Expression;
705       else
706         Kind = SetPropertyAndExpressionGet;
707       return;
708 
709     // Otherwise, we need to at least use setProperty.  However, if
710     // the property isn't atomic, we can use normal expression
711     // emission for the getter.
712     } else if (!IsAtomic) {
713       Kind = SetPropertyAndExpressionGet;
714       return;
715 
716     // Otherwise, we have to use both setProperty and getProperty.
717     } else {
718       Kind = GetSetProperty;
719       return;
720     }
721   }
722 
723   // If we're not atomic, just use expression accesses.
724   if (!IsAtomic) {
725     Kind = Expression;
726     return;
727   }
728 
729   // Properties on bitfield ivars need to be emitted using expression
730   // accesses even if they're nominally atomic.
731   if (ivar->isBitField()) {
732     Kind = Expression;
733     return;
734   }
735 
736   // GC-qualified or ARC-qualified ivars need to be emitted as
737   // expressions.  This actually works out to being atomic anyway,
738   // except for ARC __strong, but that should trigger the above code.
739   if (ivarType.hasNonTrivialObjCLifetime() ||
740       (CGM.getLangOpts().getGC() &&
741        CGM.getContext().getObjCGCAttrKind(ivarType))) {
742     Kind = Expression;
743     return;
744   }
745 
746   // Compute whether the ivar has strong members.
747   if (CGM.getLangOpts().getGC())
748     if (const RecordType *recordType = ivarType->getAs<RecordType>())
749       HasStrong = recordType->getDecl()->hasObjectMember();
750 
751   // We can never access structs with object members with a native
752   // access, because we need to use write barriers.  This is what
753   // objc_copyStruct is for.
754   if (HasStrong) {
755     Kind = CopyStruct;
756     return;
757   }
758 
759   // Otherwise, this is target-dependent and based on the size and
760   // alignment of the ivar.
761 
762   // If the size of the ivar is not a power of two, give up.  We don't
763   // want to get into the business of doing compare-and-swaps.
764   if (!IvarSize.isPowerOfTwo()) {
765     Kind = CopyStruct;
766     return;
767   }
768 
769   llvm::Triple::ArchType arch =
770     CGM.getTarget().getTriple().getArch();
771 
772   // Most architectures require memory to fit within a single cache
773   // line, so the alignment has to be at least the size of the access.
774   // Otherwise we have to grab a lock.
775   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
776     Kind = CopyStruct;
777     return;
778   }
779 
780   // If the ivar's size exceeds the architecture's maximum atomic
781   // access size, we have to use CopyStruct.
782   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
783     Kind = CopyStruct;
784     return;
785   }
786 
787   // Otherwise, we can use native loads and stores.
788   Kind = Native;
789 }
790 
791 /// \brief Generate an Objective-C property getter function.
792 ///
793 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
794 /// is illegal within a category.
795 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
796                                          const ObjCPropertyImplDecl *PID) {
797   llvm::Constant *AtomicHelperFn =
798       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
799   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
800   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
801   assert(OMD && "Invalid call to generate getter (empty method)");
802   StartObjCMethod(OMD, IMP->getClassInterface());
803 
804   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
805 
806   FinishFunction();
807 }
808 
809 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
810   const Expr *getter = propImpl->getGetterCXXConstructor();
811   if (!getter) return true;
812 
813   // Sema only makes only of these when the ivar has a C++ class type,
814   // so the form is pretty constrained.
815 
816   // If the property has a reference type, we might just be binding a
817   // reference, in which case the result will be a gl-value.  We should
818   // treat this as a non-trivial operation.
819   if (getter->isGLValue())
820     return false;
821 
822   // If we selected a trivial copy-constructor, we're okay.
823   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
824     return (construct->getConstructor()->isTrivial());
825 
826   // The constructor might require cleanups (in which case it's never
827   // trivial).
828   assert(isa<ExprWithCleanups>(getter));
829   return false;
830 }
831 
832 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
833 /// copy the ivar into the resturn slot.
834 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
835                                           llvm::Value *returnAddr,
836                                           ObjCIvarDecl *ivar,
837                                           llvm::Constant *AtomicHelperFn) {
838   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
839   //                           AtomicHelperFn);
840   CallArgList args;
841 
842   // The 1st argument is the return Slot.
843   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
844 
845   // The 2nd argument is the address of the ivar.
846   llvm::Value *ivarAddr =
847     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
848                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
849   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
850   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
851 
852   // Third argument is the helper function.
853   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
854 
855   llvm::Value *copyCppAtomicObjectFn =
856     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
857   CGF.EmitCall(
858       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
859                copyCppAtomicObjectFn, ReturnValueSlot(), args);
860 }
861 
862 void
863 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
864                                         const ObjCPropertyImplDecl *propImpl,
865                                         const ObjCMethodDecl *GetterMethodDecl,
866                                         llvm::Constant *AtomicHelperFn) {
867   // If there's a non-trivial 'get' expression, we just have to emit that.
868   if (!hasTrivialGetExpr(propImpl)) {
869     if (!AtomicHelperFn) {
870       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
871                      /*nrvo*/ nullptr);
872       EmitReturnStmt(ret);
873     }
874     else {
875       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
876       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
877                                     ivar, AtomicHelperFn);
878     }
879     return;
880   }
881 
882   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
883   QualType propType = prop->getType();
884   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
885 
886   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
887 
888   // Pick an implementation strategy.
889   PropertyImplStrategy strategy(CGM, propImpl);
890   switch (strategy.getKind()) {
891   case PropertyImplStrategy::Native: {
892     // We don't need to do anything for a zero-size struct.
893     if (strategy.getIvarSize().isZero())
894       return;
895 
896     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
897 
898     // Currently, all atomic accesses have to be through integer
899     // types, so there's no point in trying to pick a prettier type.
900     llvm::Type *bitcastType =
901       llvm::Type::getIntNTy(getLLVMContext(),
902                             getContext().toBits(strategy.getIvarSize()));
903     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
904 
905     // Perform an atomic load.  This does not impose ordering constraints.
906     Address ivarAddr = LV.getAddress();
907     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
908     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
909     load->setAtomic(llvm::AtomicOrdering::Unordered);
910 
911     // Store that value into the return address.  Doing this with a
912     // bitcast is likely to produce some pretty ugly IR, but it's not
913     // the *most* terrible thing in the world.
914     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
915 
916     // Make sure we don't do an autorelease.
917     AutoreleaseResult = false;
918     return;
919   }
920 
921   case PropertyImplStrategy::GetSetProperty: {
922     llvm::Value *getPropertyFn =
923       CGM.getObjCRuntime().GetPropertyGetFunction();
924     if (!getPropertyFn) {
925       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
926       return;
927     }
928 
929     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
930     // FIXME: Can't this be simpler? This might even be worse than the
931     // corresponding gcc code.
932     llvm::Value *cmd =
933       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
934     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
935     llvm::Value *ivarOffset =
936       EmitIvarOffset(classImpl->getClassInterface(), ivar);
937 
938     CallArgList args;
939     args.add(RValue::get(self), getContext().getObjCIdType());
940     args.add(RValue::get(cmd), getContext().getObjCSelType());
941     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
942     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
943              getContext().BoolTy);
944 
945     // FIXME: We shouldn't need to get the function info here, the
946     // runtime already should have computed it to build the function.
947     llvm::Instruction *CallInstruction;
948     RValue RV = EmitCall(
949         getTypes().arrangeBuiltinFunctionCall(propType, args),
950         getPropertyFn, ReturnValueSlot(), args, CGCalleeInfo(),
951         &CallInstruction);
952     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
953       call->setTailCall();
954 
955     // We need to fix the type here. Ivars with copy & retain are
956     // always objects so we don't need to worry about complex or
957     // aggregates.
958     RV = RValue::get(Builder.CreateBitCast(
959         RV.getScalarVal(),
960         getTypes().ConvertType(getterMethod->getReturnType())));
961 
962     EmitReturnOfRValue(RV, propType);
963 
964     // objc_getProperty does an autorelease, so we should suppress ours.
965     AutoreleaseResult = false;
966 
967     return;
968   }
969 
970   case PropertyImplStrategy::CopyStruct:
971     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
972                          strategy.hasStrongMember());
973     return;
974 
975   case PropertyImplStrategy::Expression:
976   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
977     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
978 
979     QualType ivarType = ivar->getType();
980     switch (getEvaluationKind(ivarType)) {
981     case TEK_Complex: {
982       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
983       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
984                          /*init*/ true);
985       return;
986     }
987     case TEK_Aggregate:
988       // The return value slot is guaranteed to not be aliased, but
989       // that's not necessarily the same as "on the stack", so
990       // we still potentially need objc_memmove_collectable.
991       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
992       return;
993     case TEK_Scalar: {
994       llvm::Value *value;
995       if (propType->isReferenceType()) {
996         value = LV.getAddress().getPointer();
997       } else {
998         // We want to load and autoreleaseReturnValue ARC __weak ivars.
999         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1000           if (getLangOpts().ObjCAutoRefCount) {
1001             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1002           } else {
1003             value = EmitARCLoadWeak(LV.getAddress());
1004           }
1005 
1006         // Otherwise we want to do a simple load, suppressing the
1007         // final autorelease.
1008         } else {
1009           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1010           AutoreleaseResult = false;
1011         }
1012 
1013         value = Builder.CreateBitCast(value, ConvertType(propType));
1014         value = Builder.CreateBitCast(
1015             value, ConvertType(GetterMethodDecl->getReturnType()));
1016       }
1017 
1018       EmitReturnOfRValue(RValue::get(value), propType);
1019       return;
1020     }
1021     }
1022     llvm_unreachable("bad evaluation kind");
1023   }
1024 
1025   }
1026   llvm_unreachable("bad @property implementation strategy!");
1027 }
1028 
1029 /// emitStructSetterCall - Call the runtime function to store the value
1030 /// from the first formal parameter into the given ivar.
1031 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1032                                  ObjCIvarDecl *ivar) {
1033   // objc_copyStruct (&structIvar, &Arg,
1034   //                  sizeof (struct something), true, false);
1035   CallArgList args;
1036 
1037   // The first argument is the address of the ivar.
1038   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1039                                                 CGF.LoadObjCSelf(), ivar, 0)
1040     .getPointer();
1041   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1042   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1043 
1044   // The second argument is the address of the parameter variable.
1045   ParmVarDecl *argVar = *OMD->param_begin();
1046   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1047                      VK_LValue, SourceLocation());
1048   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1049   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1050   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1051 
1052   // The third argument is the sizeof the type.
1053   llvm::Value *size =
1054     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1055   args.add(RValue::get(size), CGF.getContext().getSizeType());
1056 
1057   // The fourth argument is the 'isAtomic' flag.
1058   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1059 
1060   // The fifth argument is the 'hasStrong' flag.
1061   // FIXME: should this really always be false?
1062   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1063 
1064   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1065   CGF.EmitCall(
1066       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1067                copyStructFn, ReturnValueSlot(), args);
1068 }
1069 
1070 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1071 /// the value from the first formal parameter into the given ivar, using
1072 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1073 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1074                                           ObjCMethodDecl *OMD,
1075                                           ObjCIvarDecl *ivar,
1076                                           llvm::Constant *AtomicHelperFn) {
1077   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1078   //                           AtomicHelperFn);
1079   CallArgList args;
1080 
1081   // The first argument is the address of the ivar.
1082   llvm::Value *ivarAddr =
1083     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1084                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
1085   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1086   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1087 
1088   // The second argument is the address of the parameter variable.
1089   ParmVarDecl *argVar = *OMD->param_begin();
1090   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1091                      VK_LValue, SourceLocation());
1092   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1093   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1094   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1095 
1096   // Third argument is the helper function.
1097   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1098 
1099   llvm::Value *copyCppAtomicObjectFn =
1100     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1101   CGF.EmitCall(
1102       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1103                copyCppAtomicObjectFn, ReturnValueSlot(), args);
1104 }
1105 
1106 
1107 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1108   Expr *setter = PID->getSetterCXXAssignment();
1109   if (!setter) return true;
1110 
1111   // Sema only makes only of these when the ivar has a C++ class type,
1112   // so the form is pretty constrained.
1113 
1114   // An operator call is trivial if the function it calls is trivial.
1115   // This also implies that there's nothing non-trivial going on with
1116   // the arguments, because operator= can only be trivial if it's a
1117   // synthesized assignment operator and therefore both parameters are
1118   // references.
1119   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1120     if (const FunctionDecl *callee
1121           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1122       if (callee->isTrivial())
1123         return true;
1124     return false;
1125   }
1126 
1127   assert(isa<ExprWithCleanups>(setter));
1128   return false;
1129 }
1130 
1131 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1132   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1133     return false;
1134   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1135 }
1136 
1137 void
1138 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1139                                         const ObjCPropertyImplDecl *propImpl,
1140                                         llvm::Constant *AtomicHelperFn) {
1141   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1142   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1143   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1144 
1145   // Just use the setter expression if Sema gave us one and it's
1146   // non-trivial.
1147   if (!hasTrivialSetExpr(propImpl)) {
1148     if (!AtomicHelperFn)
1149       // If non-atomic, assignment is called directly.
1150       EmitStmt(propImpl->getSetterCXXAssignment());
1151     else
1152       // If atomic, assignment is called via a locking api.
1153       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1154                                     AtomicHelperFn);
1155     return;
1156   }
1157 
1158   PropertyImplStrategy strategy(CGM, propImpl);
1159   switch (strategy.getKind()) {
1160   case PropertyImplStrategy::Native: {
1161     // We don't need to do anything for a zero-size struct.
1162     if (strategy.getIvarSize().isZero())
1163       return;
1164 
1165     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1166 
1167     LValue ivarLValue =
1168       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1169     Address ivarAddr = ivarLValue.getAddress();
1170 
1171     // Currently, all atomic accesses have to be through integer
1172     // types, so there's no point in trying to pick a prettier type.
1173     llvm::Type *bitcastType =
1174       llvm::Type::getIntNTy(getLLVMContext(),
1175                             getContext().toBits(strategy.getIvarSize()));
1176 
1177     // Cast both arguments to the chosen operation type.
1178     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1179     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1180 
1181     // This bitcast load is likely to cause some nasty IR.
1182     llvm::Value *load = Builder.CreateLoad(argAddr);
1183 
1184     // Perform an atomic store.  There are no memory ordering requirements.
1185     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1186     store->setAtomic(llvm::AtomicOrdering::Unordered);
1187     return;
1188   }
1189 
1190   case PropertyImplStrategy::GetSetProperty:
1191   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1192 
1193     llvm::Value *setOptimizedPropertyFn = nullptr;
1194     llvm::Value *setPropertyFn = nullptr;
1195     if (UseOptimizedSetter(CGM)) {
1196       // 10.8 and iOS 6.0 code and GC is off
1197       setOptimizedPropertyFn =
1198         CGM.getObjCRuntime()
1199            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1200                                             strategy.isCopy());
1201       if (!setOptimizedPropertyFn) {
1202         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1203         return;
1204       }
1205     }
1206     else {
1207       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1208       if (!setPropertyFn) {
1209         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1210         return;
1211       }
1212     }
1213 
1214     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1215     //                       <is-atomic>, <is-copy>).
1216     llvm::Value *cmd =
1217       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1218     llvm::Value *self =
1219       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1220     llvm::Value *ivarOffset =
1221       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1222     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1223     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1224     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1225 
1226     CallArgList args;
1227     args.add(RValue::get(self), getContext().getObjCIdType());
1228     args.add(RValue::get(cmd), getContext().getObjCSelType());
1229     if (setOptimizedPropertyFn) {
1230       args.add(RValue::get(arg), getContext().getObjCIdType());
1231       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1232       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1233                setOptimizedPropertyFn, ReturnValueSlot(), args);
1234     } else {
1235       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1236       args.add(RValue::get(arg), getContext().getObjCIdType());
1237       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1238                getContext().BoolTy);
1239       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1240                getContext().BoolTy);
1241       // FIXME: We shouldn't need to get the function info here, the runtime
1242       // already should have computed it to build the function.
1243       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1244                setPropertyFn, ReturnValueSlot(), args);
1245     }
1246 
1247     return;
1248   }
1249 
1250   case PropertyImplStrategy::CopyStruct:
1251     emitStructSetterCall(*this, setterMethod, ivar);
1252     return;
1253 
1254   case PropertyImplStrategy::Expression:
1255     break;
1256   }
1257 
1258   // Otherwise, fake up some ASTs and emit a normal assignment.
1259   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1260   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1261                    VK_LValue, SourceLocation());
1262   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1263                             selfDecl->getType(), CK_LValueToRValue, &self,
1264                             VK_RValue);
1265   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1266                           SourceLocation(), SourceLocation(),
1267                           &selfLoad, true, true);
1268 
1269   ParmVarDecl *argDecl = *setterMethod->param_begin();
1270   QualType argType = argDecl->getType().getNonReferenceType();
1271   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1272   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1273                            argType.getUnqualifiedType(), CK_LValueToRValue,
1274                            &arg, VK_RValue);
1275 
1276   // The property type can differ from the ivar type in some situations with
1277   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1278   // The following absurdity is just to ensure well-formed IR.
1279   CastKind argCK = CK_NoOp;
1280   if (ivarRef.getType()->isObjCObjectPointerType()) {
1281     if (argLoad.getType()->isObjCObjectPointerType())
1282       argCK = CK_BitCast;
1283     else if (argLoad.getType()->isBlockPointerType())
1284       argCK = CK_BlockPointerToObjCPointerCast;
1285     else
1286       argCK = CK_CPointerToObjCPointerCast;
1287   } else if (ivarRef.getType()->isBlockPointerType()) {
1288      if (argLoad.getType()->isBlockPointerType())
1289       argCK = CK_BitCast;
1290     else
1291       argCK = CK_AnyPointerToBlockPointerCast;
1292   } else if (ivarRef.getType()->isPointerType()) {
1293     argCK = CK_BitCast;
1294   }
1295   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1296                            ivarRef.getType(), argCK, &argLoad,
1297                            VK_RValue);
1298   Expr *finalArg = &argLoad;
1299   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1300                                            argLoad.getType()))
1301     finalArg = &argCast;
1302 
1303 
1304   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1305                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1306                         SourceLocation(), false);
1307   EmitStmt(&assign);
1308 }
1309 
1310 /// \brief Generate an Objective-C property setter function.
1311 ///
1312 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1313 /// is illegal within a category.
1314 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1315                                          const ObjCPropertyImplDecl *PID) {
1316   llvm::Constant *AtomicHelperFn =
1317       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1318   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1319   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1320   assert(OMD && "Invalid call to generate setter (empty method)");
1321   StartObjCMethod(OMD, IMP->getClassInterface());
1322 
1323   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1324 
1325   FinishFunction();
1326 }
1327 
1328 namespace {
1329   struct DestroyIvar final : EHScopeStack::Cleanup {
1330   private:
1331     llvm::Value *addr;
1332     const ObjCIvarDecl *ivar;
1333     CodeGenFunction::Destroyer *destroyer;
1334     bool useEHCleanupForArray;
1335   public:
1336     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1337                 CodeGenFunction::Destroyer *destroyer,
1338                 bool useEHCleanupForArray)
1339       : addr(addr), ivar(ivar), destroyer(destroyer),
1340         useEHCleanupForArray(useEHCleanupForArray) {}
1341 
1342     void Emit(CodeGenFunction &CGF, Flags flags) override {
1343       LValue lvalue
1344         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1345       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1346                       flags.isForNormalCleanup() && useEHCleanupForArray);
1347     }
1348   };
1349 }
1350 
1351 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1352 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1353                                       Address addr,
1354                                       QualType type) {
1355   llvm::Value *null = getNullForVariable(addr);
1356   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1357 }
1358 
1359 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1360                                   ObjCImplementationDecl *impl) {
1361   CodeGenFunction::RunCleanupsScope scope(CGF);
1362 
1363   llvm::Value *self = CGF.LoadObjCSelf();
1364 
1365   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1366   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1367        ivar; ivar = ivar->getNextIvar()) {
1368     QualType type = ivar->getType();
1369 
1370     // Check whether the ivar is a destructible type.
1371     QualType::DestructionKind dtorKind = type.isDestructedType();
1372     if (!dtorKind) continue;
1373 
1374     CodeGenFunction::Destroyer *destroyer = nullptr;
1375 
1376     // Use a call to objc_storeStrong to destroy strong ivars, for the
1377     // general benefit of the tools.
1378     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1379       destroyer = destroyARCStrongWithStore;
1380 
1381     // Otherwise use the default for the destruction kind.
1382     } else {
1383       destroyer = CGF.getDestroyer(dtorKind);
1384     }
1385 
1386     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1387 
1388     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1389                                          cleanupKind & EHCleanup);
1390   }
1391 
1392   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1393 }
1394 
1395 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1396                                                  ObjCMethodDecl *MD,
1397                                                  bool ctor) {
1398   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1399   StartObjCMethod(MD, IMP->getClassInterface());
1400 
1401   // Emit .cxx_construct.
1402   if (ctor) {
1403     // Suppress the final autorelease in ARC.
1404     AutoreleaseResult = false;
1405 
1406     for (const auto *IvarInit : IMP->inits()) {
1407       FieldDecl *Field = IvarInit->getAnyMember();
1408       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1409       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1410                                     LoadObjCSelf(), Ivar, 0);
1411       EmitAggExpr(IvarInit->getInit(),
1412                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1413                                           AggValueSlot::DoesNotNeedGCBarriers,
1414                                           AggValueSlot::IsNotAliased));
1415     }
1416     // constructor returns 'self'.
1417     CodeGenTypes &Types = CGM.getTypes();
1418     QualType IdTy(CGM.getContext().getObjCIdType());
1419     llvm::Value *SelfAsId =
1420       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1421     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1422 
1423   // Emit .cxx_destruct.
1424   } else {
1425     emitCXXDestructMethod(*this, IMP);
1426   }
1427   FinishFunction();
1428 }
1429 
1430 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1431   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1432   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1433                   Self->getType(), VK_LValue, SourceLocation());
1434   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1435 }
1436 
1437 QualType CodeGenFunction::TypeOfSelfObject() {
1438   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1439   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1440   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1441     getContext().getCanonicalType(selfDecl->getType()));
1442   return PTy->getPointeeType();
1443 }
1444 
1445 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1446   llvm::Constant *EnumerationMutationFn =
1447     CGM.getObjCRuntime().EnumerationMutationFunction();
1448 
1449   if (!EnumerationMutationFn) {
1450     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1451     return;
1452   }
1453 
1454   CGDebugInfo *DI = getDebugInfo();
1455   if (DI)
1456     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1457 
1458   // The local variable comes into scope immediately.
1459   AutoVarEmission variable = AutoVarEmission::invalid();
1460   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1461     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1462 
1463   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1464 
1465   // Fast enumeration state.
1466   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1467   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1468   EmitNullInitialization(StatePtr, StateTy);
1469 
1470   // Number of elements in the items array.
1471   static const unsigned NumItems = 16;
1472 
1473   // Fetch the countByEnumeratingWithState:objects:count: selector.
1474   IdentifierInfo *II[] = {
1475     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1476     &CGM.getContext().Idents.get("objects"),
1477     &CGM.getContext().Idents.get("count")
1478   };
1479   Selector FastEnumSel =
1480     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1481 
1482   QualType ItemsTy =
1483     getContext().getConstantArrayType(getContext().getObjCIdType(),
1484                                       llvm::APInt(32, NumItems),
1485                                       ArrayType::Normal, 0);
1486   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1487 
1488   RunCleanupsScope ForScope(*this);
1489 
1490   // Emit the collection pointer.  In ARC, we do a retain.
1491   llvm::Value *Collection;
1492   if (getLangOpts().ObjCAutoRefCount) {
1493     Collection = EmitARCRetainScalarExpr(S.getCollection());
1494 
1495     // Enter a cleanup to do the release.
1496     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1497   } else {
1498     Collection = EmitScalarExpr(S.getCollection());
1499   }
1500 
1501   // The 'continue' label needs to appear within the cleanup for the
1502   // collection object.
1503   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1504 
1505   // Send it our message:
1506   CallArgList Args;
1507 
1508   // The first argument is a temporary of the enumeration-state type.
1509   Args.add(RValue::get(StatePtr.getPointer()),
1510            getContext().getPointerType(StateTy));
1511 
1512   // The second argument is a temporary array with space for NumItems
1513   // pointers.  We'll actually be loading elements from the array
1514   // pointer written into the control state; this buffer is so that
1515   // collections that *aren't* backed by arrays can still queue up
1516   // batches of elements.
1517   Args.add(RValue::get(ItemsPtr.getPointer()),
1518            getContext().getPointerType(ItemsTy));
1519 
1520   // The third argument is the capacity of that temporary array.
1521   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1522   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1523   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1524 
1525   // Start the enumeration.
1526   RValue CountRV =
1527     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1528                                              getContext().UnsignedLongTy,
1529                                              FastEnumSel,
1530                                              Collection, Args);
1531 
1532   // The initial number of objects that were returned in the buffer.
1533   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1534 
1535   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1536   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1537 
1538   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1539 
1540   // If the limit pointer was zero to begin with, the collection is
1541   // empty; skip all this. Set the branch weight assuming this has the same
1542   // probability of exiting the loop as any other loop exit.
1543   uint64_t EntryCount = getCurrentProfileCount();
1544   Builder.CreateCondBr(
1545       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1546       LoopInitBB,
1547       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1548 
1549   // Otherwise, initialize the loop.
1550   EmitBlock(LoopInitBB);
1551 
1552   // Save the initial mutations value.  This is the value at an
1553   // address that was written into the state object by
1554   // countByEnumeratingWithState:objects:count:.
1555   Address StateMutationsPtrPtr = Builder.CreateStructGEP(
1556       StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr");
1557   llvm::Value *StateMutationsPtr
1558     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1559 
1560   llvm::Value *initialMutations =
1561     Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1562                               "forcoll.initial-mutations");
1563 
1564   // Start looping.  This is the point we return to whenever we have a
1565   // fresh, non-empty batch of objects.
1566   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1567   EmitBlock(LoopBodyBB);
1568 
1569   // The current index into the buffer.
1570   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1571   index->addIncoming(zero, LoopInitBB);
1572 
1573   // The current buffer size.
1574   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1575   count->addIncoming(initialBufferLimit, LoopInitBB);
1576 
1577   incrementProfileCounter(&S);
1578 
1579   // Check whether the mutations value has changed from where it was
1580   // at start.  StateMutationsPtr should actually be invariant between
1581   // refreshes.
1582   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1583   llvm::Value *currentMutations
1584     = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1585                                 "statemutations");
1586 
1587   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1588   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1589 
1590   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1591                        WasNotMutatedBB, WasMutatedBB);
1592 
1593   // If so, call the enumeration-mutation function.
1594   EmitBlock(WasMutatedBB);
1595   llvm::Value *V =
1596     Builder.CreateBitCast(Collection,
1597                           ConvertType(getContext().getObjCIdType()));
1598   CallArgList Args2;
1599   Args2.add(RValue::get(V), getContext().getObjCIdType());
1600   // FIXME: We shouldn't need to get the function info here, the runtime already
1601   // should have computed it to build the function.
1602   EmitCall(
1603           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1604            EnumerationMutationFn, ReturnValueSlot(), Args2);
1605 
1606   // Otherwise, or if the mutation function returns, just continue.
1607   EmitBlock(WasNotMutatedBB);
1608 
1609   // Initialize the element variable.
1610   RunCleanupsScope elementVariableScope(*this);
1611   bool elementIsVariable;
1612   LValue elementLValue;
1613   QualType elementType;
1614   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1615     // Initialize the variable, in case it's a __block variable or something.
1616     EmitAutoVarInit(variable);
1617 
1618     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1619     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1620                         VK_LValue, SourceLocation());
1621     elementLValue = EmitLValue(&tempDRE);
1622     elementType = D->getType();
1623     elementIsVariable = true;
1624 
1625     if (D->isARCPseudoStrong())
1626       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1627   } else {
1628     elementLValue = LValue(); // suppress warning
1629     elementType = cast<Expr>(S.getElement())->getType();
1630     elementIsVariable = false;
1631   }
1632   llvm::Type *convertedElementType = ConvertType(elementType);
1633 
1634   // Fetch the buffer out of the enumeration state.
1635   // TODO: this pointer should actually be invariant between
1636   // refreshes, which would help us do certain loop optimizations.
1637   Address StateItemsPtr = Builder.CreateStructGEP(
1638       StatePtr, 1, getPointerSize(), "stateitems.ptr");
1639   llvm::Value *EnumStateItems =
1640     Builder.CreateLoad(StateItemsPtr, "stateitems");
1641 
1642   // Fetch the value at the current index from the buffer.
1643   llvm::Value *CurrentItemPtr =
1644     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1645   llvm::Value *CurrentItem =
1646     Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1647 
1648   // Cast that value to the right type.
1649   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1650                                       "currentitem");
1651 
1652   // Make sure we have an l-value.  Yes, this gets evaluated every
1653   // time through the loop.
1654   if (!elementIsVariable) {
1655     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1656     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1657   } else {
1658     EmitScalarInit(CurrentItem, elementLValue);
1659   }
1660 
1661   // If we do have an element variable, this assignment is the end of
1662   // its initialization.
1663   if (elementIsVariable)
1664     EmitAutoVarCleanups(variable);
1665 
1666   // Perform the loop body, setting up break and continue labels.
1667   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1668   {
1669     RunCleanupsScope Scope(*this);
1670     EmitStmt(S.getBody());
1671   }
1672   BreakContinueStack.pop_back();
1673 
1674   // Destroy the element variable now.
1675   elementVariableScope.ForceCleanup();
1676 
1677   // Check whether there are more elements.
1678   EmitBlock(AfterBody.getBlock());
1679 
1680   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1681 
1682   // First we check in the local buffer.
1683   llvm::Value *indexPlusOne
1684     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1685 
1686   // If we haven't overrun the buffer yet, we can continue.
1687   // Set the branch weights based on the simplifying assumption that this is
1688   // like a while-loop, i.e., ignoring that the false branch fetches more
1689   // elements and then returns to the loop.
1690   Builder.CreateCondBr(
1691       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1692       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1693 
1694   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1695   count->addIncoming(count, AfterBody.getBlock());
1696 
1697   // Otherwise, we have to fetch more elements.
1698   EmitBlock(FetchMoreBB);
1699 
1700   CountRV =
1701     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1702                                              getContext().UnsignedLongTy,
1703                                              FastEnumSel,
1704                                              Collection, Args);
1705 
1706   // If we got a zero count, we're done.
1707   llvm::Value *refetchCount = CountRV.getScalarVal();
1708 
1709   // (note that the message send might split FetchMoreBB)
1710   index->addIncoming(zero, Builder.GetInsertBlock());
1711   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1712 
1713   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1714                        EmptyBB, LoopBodyBB);
1715 
1716   // No more elements.
1717   EmitBlock(EmptyBB);
1718 
1719   if (!elementIsVariable) {
1720     // If the element was not a declaration, set it to be null.
1721 
1722     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1723     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1724     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1725   }
1726 
1727   if (DI)
1728     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1729 
1730   ForScope.ForceCleanup();
1731   EmitBlock(LoopEnd.getBlock());
1732 }
1733 
1734 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1735   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1736 }
1737 
1738 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1739   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1740 }
1741 
1742 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1743                                               const ObjCAtSynchronizedStmt &S) {
1744   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1745 }
1746 
1747 namespace {
1748   struct CallObjCRelease final : EHScopeStack::Cleanup {
1749     CallObjCRelease(llvm::Value *object) : object(object) {}
1750     llvm::Value *object;
1751 
1752     void Emit(CodeGenFunction &CGF, Flags flags) override {
1753       // Releases at the end of the full-expression are imprecise.
1754       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1755     }
1756   };
1757 }
1758 
1759 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1760 /// release at the end of the full-expression.
1761 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1762                                                     llvm::Value *object) {
1763   // If we're in a conditional branch, we need to make the cleanup
1764   // conditional.
1765   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1766   return object;
1767 }
1768 
1769 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1770                                                            llvm::Value *value) {
1771   return EmitARCRetainAutorelease(type, value);
1772 }
1773 
1774 /// Given a number of pointers, inform the optimizer that they're
1775 /// being intrinsically used up until this point in the program.
1776 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1777   llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1778   if (!fn) {
1779     llvm::FunctionType *fnType =
1780       llvm::FunctionType::get(CGM.VoidTy, None, true);
1781     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1782   }
1783 
1784   // This isn't really a "runtime" function, but as an intrinsic it
1785   // doesn't really matter as long as we align things up.
1786   EmitNounwindRuntimeCall(fn, values);
1787 }
1788 
1789 
1790 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1791                                                 llvm::FunctionType *type,
1792                                                 StringRef fnName) {
1793   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1794 
1795   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1796     // If the target runtime doesn't naturally support ARC, emit weak
1797     // references to the runtime support library.  We don't really
1798     // permit this to fail, but we need a particular relocation style.
1799     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1800       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1801     } else if (fnName == "objc_retain" || fnName  == "objc_release") {
1802       // If we have Native ARC, set nonlazybind attribute for these APIs for
1803       // performance.
1804       f->addFnAttr(llvm::Attribute::NonLazyBind);
1805     }
1806   }
1807 
1808   return fn;
1809 }
1810 
1811 /// Perform an operation having the signature
1812 ///   i8* (i8*)
1813 /// where a null input causes a no-op and returns null.
1814 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1815                                           llvm::Value *value,
1816                                           llvm::Constant *&fn,
1817                                           StringRef fnName,
1818                                           bool isTailCall = false) {
1819   if (isa<llvm::ConstantPointerNull>(value)) return value;
1820 
1821   if (!fn) {
1822     llvm::FunctionType *fnType =
1823       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1824     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1825   }
1826 
1827   // Cast the argument to 'id'.
1828   llvm::Type *origType = value->getType();
1829   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1830 
1831   // Call the function.
1832   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1833   if (isTailCall)
1834     call->setTailCall();
1835 
1836   // Cast the result back to the original type.
1837   return CGF.Builder.CreateBitCast(call, origType);
1838 }
1839 
1840 /// Perform an operation having the following signature:
1841 ///   i8* (i8**)
1842 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1843                                          Address addr,
1844                                          llvm::Constant *&fn,
1845                                          StringRef fnName) {
1846   if (!fn) {
1847     llvm::FunctionType *fnType =
1848       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1849     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1850   }
1851 
1852   // Cast the argument to 'id*'.
1853   llvm::Type *origType = addr.getElementType();
1854   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1855 
1856   // Call the function.
1857   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
1858 
1859   // Cast the result back to a dereference of the original type.
1860   if (origType != CGF.Int8PtrTy)
1861     result = CGF.Builder.CreateBitCast(result, origType);
1862 
1863   return result;
1864 }
1865 
1866 /// Perform an operation having the following signature:
1867 ///   i8* (i8**, i8*)
1868 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1869                                           Address addr,
1870                                           llvm::Value *value,
1871                                           llvm::Constant *&fn,
1872                                           StringRef fnName,
1873                                           bool ignored) {
1874   assert(addr.getElementType() == value->getType());
1875 
1876   if (!fn) {
1877     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1878 
1879     llvm::FunctionType *fnType
1880       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1881     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1882   }
1883 
1884   llvm::Type *origType = value->getType();
1885 
1886   llvm::Value *args[] = {
1887     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
1888     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1889   };
1890   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1891 
1892   if (ignored) return nullptr;
1893 
1894   return CGF.Builder.CreateBitCast(result, origType);
1895 }
1896 
1897 /// Perform an operation having the following signature:
1898 ///   void (i8**, i8**)
1899 static void emitARCCopyOperation(CodeGenFunction &CGF,
1900                                  Address dst,
1901                                  Address src,
1902                                  llvm::Constant *&fn,
1903                                  StringRef fnName) {
1904   assert(dst.getType() == src.getType());
1905 
1906   if (!fn) {
1907     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1908 
1909     llvm::FunctionType *fnType
1910       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1911     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1912   }
1913 
1914   llvm::Value *args[] = {
1915     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
1916     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
1917   };
1918   CGF.EmitNounwindRuntimeCall(fn, args);
1919 }
1920 
1921 /// Produce the code to do a retain.  Based on the type, calls one of:
1922 ///   call i8* \@objc_retain(i8* %value)
1923 ///   call i8* \@objc_retainBlock(i8* %value)
1924 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1925   if (type->isBlockPointerType())
1926     return EmitARCRetainBlock(value, /*mandatory*/ false);
1927   else
1928     return EmitARCRetainNonBlock(value);
1929 }
1930 
1931 /// Retain the given object, with normal retain semantics.
1932 ///   call i8* \@objc_retain(i8* %value)
1933 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1934   return emitARCValueOperation(*this, value,
1935                                CGM.getObjCEntrypoints().objc_retain,
1936                                "objc_retain");
1937 }
1938 
1939 /// Retain the given block, with _Block_copy semantics.
1940 ///   call i8* \@objc_retainBlock(i8* %value)
1941 ///
1942 /// \param mandatory - If false, emit the call with metadata
1943 /// indicating that it's okay for the optimizer to eliminate this call
1944 /// if it can prove that the block never escapes except down the stack.
1945 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1946                                                  bool mandatory) {
1947   llvm::Value *result
1948     = emitARCValueOperation(*this, value,
1949                             CGM.getObjCEntrypoints().objc_retainBlock,
1950                             "objc_retainBlock");
1951 
1952   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1953   // tell the optimizer that it doesn't need to do this copy if the
1954   // block doesn't escape, where being passed as an argument doesn't
1955   // count as escaping.
1956   if (!mandatory && isa<llvm::Instruction>(result)) {
1957     llvm::CallInst *call
1958       = cast<llvm::CallInst>(result->stripPointerCasts());
1959     assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock);
1960 
1961     call->setMetadata("clang.arc.copy_on_escape",
1962                       llvm::MDNode::get(Builder.getContext(), None));
1963   }
1964 
1965   return result;
1966 }
1967 
1968 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
1969   // Fetch the void(void) inline asm which marks that we're going to
1970   // do something with the autoreleased return value.
1971   llvm::InlineAsm *&marker
1972     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
1973   if (!marker) {
1974     StringRef assembly
1975       = CGF.CGM.getTargetCodeGenInfo()
1976            .getARCRetainAutoreleasedReturnValueMarker();
1977 
1978     // If we have an empty assembly string, there's nothing to do.
1979     if (assembly.empty()) {
1980 
1981     // Otherwise, at -O0, build an inline asm that we're going to call
1982     // in a moment.
1983     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
1984       llvm::FunctionType *type =
1985         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
1986 
1987       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1988 
1989     // If we're at -O1 and above, we don't want to litter the code
1990     // with this marker yet, so leave a breadcrumb for the ARC
1991     // optimizer to pick up.
1992     } else {
1993       llvm::NamedMDNode *metadata =
1994         CGF.CGM.getModule().getOrInsertNamedMetadata(
1995                             "clang.arc.retainAutoreleasedReturnValueMarker");
1996       assert(metadata->getNumOperands() <= 1);
1997       if (metadata->getNumOperands() == 0) {
1998         auto &ctx = CGF.getLLVMContext();
1999         metadata->addOperand(llvm::MDNode::get(ctx,
2000                                      llvm::MDString::get(ctx, assembly)));
2001       }
2002     }
2003   }
2004 
2005   // Call the marker asm if we made one, which we do only at -O0.
2006   if (marker)
2007     CGF.Builder.CreateCall(marker);
2008 }
2009 
2010 /// Retain the given object which is the result of a function call.
2011 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2012 ///
2013 /// Yes, this function name is one character away from a different
2014 /// call with completely different semantics.
2015 llvm::Value *
2016 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2017   emitAutoreleasedReturnValueMarker(*this);
2018   return emitARCValueOperation(*this, value,
2019               CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2020                                "objc_retainAutoreleasedReturnValue");
2021 }
2022 
2023 /// Claim a possibly-autoreleased return value at +0.  This is only
2024 /// valid to do in contexts which do not rely on the retain to keep
2025 /// the object valid for for all of its uses; for example, when
2026 /// the value is ignored, or when it is being assigned to an
2027 /// __unsafe_unretained variable.
2028 ///
2029 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2030 llvm::Value *
2031 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2032   emitAutoreleasedReturnValueMarker(*this);
2033   return emitARCValueOperation(*this, value,
2034               CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2035                                "objc_unsafeClaimAutoreleasedReturnValue");
2036 }
2037 
2038 /// Release the given object.
2039 ///   call void \@objc_release(i8* %value)
2040 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2041                                      ARCPreciseLifetime_t precise) {
2042   if (isa<llvm::ConstantPointerNull>(value)) return;
2043 
2044   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release;
2045   if (!fn) {
2046     llvm::FunctionType *fnType =
2047       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2048     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
2049   }
2050 
2051   // Cast the argument to 'id'.
2052   value = Builder.CreateBitCast(value, Int8PtrTy);
2053 
2054   // Call objc_release.
2055   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2056 
2057   if (precise == ARCImpreciseLifetime) {
2058     call->setMetadata("clang.imprecise_release",
2059                       llvm::MDNode::get(Builder.getContext(), None));
2060   }
2061 }
2062 
2063 /// Destroy a __strong variable.
2064 ///
2065 /// At -O0, emit a call to store 'null' into the address;
2066 /// instrumenting tools prefer this because the address is exposed,
2067 /// but it's relatively cumbersome to optimize.
2068 ///
2069 /// At -O1 and above, just load and call objc_release.
2070 ///
2071 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2072 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2073                                            ARCPreciseLifetime_t precise) {
2074   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2075     llvm::Value *null = getNullForVariable(addr);
2076     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2077     return;
2078   }
2079 
2080   llvm::Value *value = Builder.CreateLoad(addr);
2081   EmitARCRelease(value, precise);
2082 }
2083 
2084 /// Store into a strong object.  Always calls this:
2085 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2086 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2087                                                      llvm::Value *value,
2088                                                      bool ignored) {
2089   assert(addr.getElementType() == value->getType());
2090 
2091   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2092   if (!fn) {
2093     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2094     llvm::FunctionType *fnType
2095       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2096     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2097   }
2098 
2099   llvm::Value *args[] = {
2100     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2101     Builder.CreateBitCast(value, Int8PtrTy)
2102   };
2103   EmitNounwindRuntimeCall(fn, args);
2104 
2105   if (ignored) return nullptr;
2106   return value;
2107 }
2108 
2109 /// Store into a strong object.  Sometimes calls this:
2110 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2111 /// Other times, breaks it down into components.
2112 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2113                                                  llvm::Value *newValue,
2114                                                  bool ignored) {
2115   QualType type = dst.getType();
2116   bool isBlock = type->isBlockPointerType();
2117 
2118   // Use a store barrier at -O0 unless this is a block type or the
2119   // lvalue is inadequately aligned.
2120   if (shouldUseFusedARCCalls() &&
2121       !isBlock &&
2122       (dst.getAlignment().isZero() ||
2123        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2124     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2125   }
2126 
2127   // Otherwise, split it out.
2128 
2129   // Retain the new value.
2130   newValue = EmitARCRetain(type, newValue);
2131 
2132   // Read the old value.
2133   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2134 
2135   // Store.  We do this before the release so that any deallocs won't
2136   // see the old value.
2137   EmitStoreOfScalar(newValue, dst);
2138 
2139   // Finally, release the old value.
2140   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2141 
2142   return newValue;
2143 }
2144 
2145 /// Autorelease the given object.
2146 ///   call i8* \@objc_autorelease(i8* %value)
2147 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2148   return emitARCValueOperation(*this, value,
2149                                CGM.getObjCEntrypoints().objc_autorelease,
2150                                "objc_autorelease");
2151 }
2152 
2153 /// Autorelease the given object.
2154 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2155 llvm::Value *
2156 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2157   return emitARCValueOperation(*this, value,
2158                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2159                                "objc_autoreleaseReturnValue",
2160                                /*isTailCall*/ true);
2161 }
2162 
2163 /// Do a fused retain/autorelease of the given object.
2164 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2165 llvm::Value *
2166 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2167   return emitARCValueOperation(*this, value,
2168                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2169                                "objc_retainAutoreleaseReturnValue",
2170                                /*isTailCall*/ true);
2171 }
2172 
2173 /// Do a fused retain/autorelease of the given object.
2174 ///   call i8* \@objc_retainAutorelease(i8* %value)
2175 /// or
2176 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2177 ///   call i8* \@objc_autorelease(i8* %retain)
2178 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2179                                                        llvm::Value *value) {
2180   if (!type->isBlockPointerType())
2181     return EmitARCRetainAutoreleaseNonBlock(value);
2182 
2183   if (isa<llvm::ConstantPointerNull>(value)) return value;
2184 
2185   llvm::Type *origType = value->getType();
2186   value = Builder.CreateBitCast(value, Int8PtrTy);
2187   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2188   value = EmitARCAutorelease(value);
2189   return Builder.CreateBitCast(value, origType);
2190 }
2191 
2192 /// Do a fused retain/autorelease of the given object.
2193 ///   call i8* \@objc_retainAutorelease(i8* %value)
2194 llvm::Value *
2195 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2196   return emitARCValueOperation(*this, value,
2197                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2198                                "objc_retainAutorelease");
2199 }
2200 
2201 /// i8* \@objc_loadWeak(i8** %addr)
2202 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2203 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2204   return emitARCLoadOperation(*this, addr,
2205                               CGM.getObjCEntrypoints().objc_loadWeak,
2206                               "objc_loadWeak");
2207 }
2208 
2209 /// i8* \@objc_loadWeakRetained(i8** %addr)
2210 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2211   return emitARCLoadOperation(*this, addr,
2212                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2213                               "objc_loadWeakRetained");
2214 }
2215 
2216 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2217 /// Returns %value.
2218 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2219                                                llvm::Value *value,
2220                                                bool ignored) {
2221   return emitARCStoreOperation(*this, addr, value,
2222                                CGM.getObjCEntrypoints().objc_storeWeak,
2223                                "objc_storeWeak", ignored);
2224 }
2225 
2226 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2227 /// Returns %value.  %addr is known to not have a current weak entry.
2228 /// Essentially equivalent to:
2229 ///   *addr = nil; objc_storeWeak(addr, value);
2230 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2231   // If we're initializing to null, just write null to memory; no need
2232   // to get the runtime involved.  But don't do this if optimization
2233   // is enabled, because accounting for this would make the optimizer
2234   // much more complicated.
2235   if (isa<llvm::ConstantPointerNull>(value) &&
2236       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2237     Builder.CreateStore(value, addr);
2238     return;
2239   }
2240 
2241   emitARCStoreOperation(*this, addr, value,
2242                         CGM.getObjCEntrypoints().objc_initWeak,
2243                         "objc_initWeak", /*ignored*/ true);
2244 }
2245 
2246 /// void \@objc_destroyWeak(i8** %addr)
2247 /// Essentially objc_storeWeak(addr, nil).
2248 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2249   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2250   if (!fn) {
2251     llvm::FunctionType *fnType =
2252       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2253     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2254   }
2255 
2256   // Cast the argument to 'id*'.
2257   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2258 
2259   EmitNounwindRuntimeCall(fn, addr.getPointer());
2260 }
2261 
2262 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2263 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2264 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2265 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2266   emitARCCopyOperation(*this, dst, src,
2267                        CGM.getObjCEntrypoints().objc_moveWeak,
2268                        "objc_moveWeak");
2269 }
2270 
2271 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2272 /// Disregards the current value in %dest.  Essentially
2273 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2274 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2275   emitARCCopyOperation(*this, dst, src,
2276                        CGM.getObjCEntrypoints().objc_copyWeak,
2277                        "objc_copyWeak");
2278 }
2279 
2280 /// Produce the code to do a objc_autoreleasepool_push.
2281 ///   call i8* \@objc_autoreleasePoolPush(void)
2282 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2283   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2284   if (!fn) {
2285     llvm::FunctionType *fnType =
2286       llvm::FunctionType::get(Int8PtrTy, false);
2287     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2288   }
2289 
2290   return EmitNounwindRuntimeCall(fn);
2291 }
2292 
2293 /// Produce the code to do a primitive release.
2294 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2295 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2296   assert(value->getType() == Int8PtrTy);
2297 
2298   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2299   if (!fn) {
2300     llvm::FunctionType *fnType =
2301       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2302 
2303     // We don't want to use a weak import here; instead we should not
2304     // fall into this path.
2305     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2306   }
2307 
2308   // objc_autoreleasePoolPop can throw.
2309   EmitRuntimeCallOrInvoke(fn, value);
2310 }
2311 
2312 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2313 /// Which is: [[NSAutoreleasePool alloc] init];
2314 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2315 /// init is declared as: - (id) init; in its NSObject super class.
2316 ///
2317 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2318   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2319   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2320   // [NSAutoreleasePool alloc]
2321   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2322   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2323   CallArgList Args;
2324   RValue AllocRV =
2325     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2326                                 getContext().getObjCIdType(),
2327                                 AllocSel, Receiver, Args);
2328 
2329   // [Receiver init]
2330   Receiver = AllocRV.getScalarVal();
2331   II = &CGM.getContext().Idents.get("init");
2332   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2333   RValue InitRV =
2334     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2335                                 getContext().getObjCIdType(),
2336                                 InitSel, Receiver, Args);
2337   return InitRV.getScalarVal();
2338 }
2339 
2340 /// Produce the code to do a primitive release.
2341 /// [tmp drain];
2342 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2343   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2344   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2345   CallArgList Args;
2346   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2347                               getContext().VoidTy, DrainSel, Arg, Args);
2348 }
2349 
2350 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2351                                               Address addr,
2352                                               QualType type) {
2353   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2354 }
2355 
2356 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2357                                                 Address addr,
2358                                                 QualType type) {
2359   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2360 }
2361 
2362 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2363                                      Address addr,
2364                                      QualType type) {
2365   CGF.EmitARCDestroyWeak(addr);
2366 }
2367 
2368 namespace {
2369   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2370     llvm::Value *Token;
2371 
2372     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2373 
2374     void Emit(CodeGenFunction &CGF, Flags flags) override {
2375       CGF.EmitObjCAutoreleasePoolPop(Token);
2376     }
2377   };
2378   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2379     llvm::Value *Token;
2380 
2381     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2382 
2383     void Emit(CodeGenFunction &CGF, Flags flags) override {
2384       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2385     }
2386   };
2387 }
2388 
2389 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2390   if (CGM.getLangOpts().ObjCAutoRefCount)
2391     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2392   else
2393     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2394 }
2395 
2396 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2397                                                   LValue lvalue,
2398                                                   QualType type) {
2399   switch (type.getObjCLifetime()) {
2400   case Qualifiers::OCL_None:
2401   case Qualifiers::OCL_ExplicitNone:
2402   case Qualifiers::OCL_Strong:
2403   case Qualifiers::OCL_Autoreleasing:
2404     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2405                                               SourceLocation()).getScalarVal(),
2406                          false);
2407 
2408   case Qualifiers::OCL_Weak:
2409     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2410                          true);
2411   }
2412 
2413   llvm_unreachable("impossible lifetime!");
2414 }
2415 
2416 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2417                                                   const Expr *e) {
2418   e = e->IgnoreParens();
2419   QualType type = e->getType();
2420 
2421   // If we're loading retained from a __strong xvalue, we can avoid
2422   // an extra retain/release pair by zeroing out the source of this
2423   // "move" operation.
2424   if (e->isXValue() &&
2425       !type.isConstQualified() &&
2426       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2427     // Emit the lvalue.
2428     LValue lv = CGF.EmitLValue(e);
2429 
2430     // Load the object pointer.
2431     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2432                                                SourceLocation()).getScalarVal();
2433 
2434     // Set the source pointer to NULL.
2435     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2436 
2437     return TryEmitResult(result, true);
2438   }
2439 
2440   // As a very special optimization, in ARC++, if the l-value is the
2441   // result of a non-volatile assignment, do a simple retain of the
2442   // result of the call to objc_storeWeak instead of reloading.
2443   if (CGF.getLangOpts().CPlusPlus &&
2444       !type.isVolatileQualified() &&
2445       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2446       isa<BinaryOperator>(e) &&
2447       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2448     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2449 
2450   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2451 }
2452 
2453 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2454                                          llvm::Value *value)>
2455   ValueTransform;
2456 
2457 /// Insert code immediately after a call.
2458 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2459                                               llvm::Value *value,
2460                                               ValueTransform doAfterCall,
2461                                               ValueTransform doFallback) {
2462   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2463     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2464 
2465     // Place the retain immediately following the call.
2466     CGF.Builder.SetInsertPoint(call->getParent(),
2467                                ++llvm::BasicBlock::iterator(call));
2468     value = doAfterCall(CGF, value);
2469 
2470     CGF.Builder.restoreIP(ip);
2471     return value;
2472   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2473     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2474 
2475     // Place the retain at the beginning of the normal destination block.
2476     llvm::BasicBlock *BB = invoke->getNormalDest();
2477     CGF.Builder.SetInsertPoint(BB, BB->begin());
2478     value = doAfterCall(CGF, value);
2479 
2480     CGF.Builder.restoreIP(ip);
2481     return value;
2482 
2483   // Bitcasts can arise because of related-result returns.  Rewrite
2484   // the operand.
2485   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2486     llvm::Value *operand = bitcast->getOperand(0);
2487     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2488     bitcast->setOperand(0, operand);
2489     return bitcast;
2490 
2491   // Generic fall-back case.
2492   } else {
2493     // Retain using the non-block variant: we never need to do a copy
2494     // of a block that's been returned to us.
2495     return doFallback(CGF, value);
2496   }
2497 }
2498 
2499 /// Given that the given expression is some sort of call (which does
2500 /// not return retained), emit a retain following it.
2501 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2502                                             const Expr *e) {
2503   llvm::Value *value = CGF.EmitScalarExpr(e);
2504   return emitARCOperationAfterCall(CGF, value,
2505            [](CodeGenFunction &CGF, llvm::Value *value) {
2506              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2507            },
2508            [](CodeGenFunction &CGF, llvm::Value *value) {
2509              return CGF.EmitARCRetainNonBlock(value);
2510            });
2511 }
2512 
2513 /// Given that the given expression is some sort of call (which does
2514 /// not return retained), perform an unsafeClaim following it.
2515 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2516                                                  const Expr *e) {
2517   llvm::Value *value = CGF.EmitScalarExpr(e);
2518   return emitARCOperationAfterCall(CGF, value,
2519            [](CodeGenFunction &CGF, llvm::Value *value) {
2520              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2521            },
2522            [](CodeGenFunction &CGF, llvm::Value *value) {
2523              return value;
2524            });
2525 }
2526 
2527 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2528                                                       bool allowUnsafeClaim) {
2529   if (allowUnsafeClaim &&
2530       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2531     return emitARCUnsafeClaimCallResult(*this, E);
2532   } else {
2533     llvm::Value *value = emitARCRetainCallResult(*this, E);
2534     return EmitObjCConsumeObject(E->getType(), value);
2535   }
2536 }
2537 
2538 /// Determine whether it might be important to emit a separate
2539 /// objc_retain_block on the result of the given expression, or
2540 /// whether it's okay to just emit it in a +1 context.
2541 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2542   assert(e->getType()->isBlockPointerType());
2543   e = e->IgnoreParens();
2544 
2545   // For future goodness, emit block expressions directly in +1
2546   // contexts if we can.
2547   if (isa<BlockExpr>(e))
2548     return false;
2549 
2550   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2551     switch (cast->getCastKind()) {
2552     // Emitting these operations in +1 contexts is goodness.
2553     case CK_LValueToRValue:
2554     case CK_ARCReclaimReturnedObject:
2555     case CK_ARCConsumeObject:
2556     case CK_ARCProduceObject:
2557       return false;
2558 
2559     // These operations preserve a block type.
2560     case CK_NoOp:
2561     case CK_BitCast:
2562       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2563 
2564     // These operations are known to be bad (or haven't been considered).
2565     case CK_AnyPointerToBlockPointerCast:
2566     default:
2567       return true;
2568     }
2569   }
2570 
2571   return true;
2572 }
2573 
2574 namespace {
2575 /// A CRTP base class for emitting expressions of retainable object
2576 /// pointer type in ARC.
2577 template <typename Impl, typename Result> class ARCExprEmitter {
2578 protected:
2579   CodeGenFunction &CGF;
2580   Impl &asImpl() { return *static_cast<Impl*>(this); }
2581 
2582   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2583 
2584 public:
2585   Result visit(const Expr *e);
2586   Result visitCastExpr(const CastExpr *e);
2587   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2588   Result visitBinaryOperator(const BinaryOperator *e);
2589   Result visitBinAssign(const BinaryOperator *e);
2590   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2591   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2592   Result visitBinAssignWeak(const BinaryOperator *e);
2593   Result visitBinAssignStrong(const BinaryOperator *e);
2594 
2595   // Minimal implementation:
2596   //   Result visitLValueToRValue(const Expr *e)
2597   //   Result visitConsumeObject(const Expr *e)
2598   //   Result visitExtendBlockObject(const Expr *e)
2599   //   Result visitReclaimReturnedObject(const Expr *e)
2600   //   Result visitCall(const Expr *e)
2601   //   Result visitExpr(const Expr *e)
2602   //
2603   //   Result emitBitCast(Result result, llvm::Type *resultType)
2604   //   llvm::Value *getValueOfResult(Result result)
2605 };
2606 }
2607 
2608 /// Try to emit a PseudoObjectExpr under special ARC rules.
2609 ///
2610 /// This massively duplicates emitPseudoObjectRValue.
2611 template <typename Impl, typename Result>
2612 Result
2613 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2614   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2615 
2616   // Find the result expression.
2617   const Expr *resultExpr = E->getResultExpr();
2618   assert(resultExpr);
2619   Result result;
2620 
2621   for (PseudoObjectExpr::const_semantics_iterator
2622          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2623     const Expr *semantic = *i;
2624 
2625     // If this semantic expression is an opaque value, bind it
2626     // to the result of its source expression.
2627     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2628       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2629       OVMA opaqueData;
2630 
2631       // If this semantic is the result of the pseudo-object
2632       // expression, try to evaluate the source as +1.
2633       if (ov == resultExpr) {
2634         assert(!OVMA::shouldBindAsLValue(ov));
2635         result = asImpl().visit(ov->getSourceExpr());
2636         opaqueData = OVMA::bind(CGF, ov,
2637                             RValue::get(asImpl().getValueOfResult(result)));
2638 
2639       // Otherwise, just bind it.
2640       } else {
2641         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2642       }
2643       opaques.push_back(opaqueData);
2644 
2645     // Otherwise, if the expression is the result, evaluate it
2646     // and remember the result.
2647     } else if (semantic == resultExpr) {
2648       result = asImpl().visit(semantic);
2649 
2650     // Otherwise, evaluate the expression in an ignored context.
2651     } else {
2652       CGF.EmitIgnoredExpr(semantic);
2653     }
2654   }
2655 
2656   // Unbind all the opaques now.
2657   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2658     opaques[i].unbind(CGF);
2659 
2660   return result;
2661 }
2662 
2663 template <typename Impl, typename Result>
2664 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
2665   switch (e->getCastKind()) {
2666 
2667   // No-op casts don't change the type, so we just ignore them.
2668   case CK_NoOp:
2669     return asImpl().visit(e->getSubExpr());
2670 
2671   // These casts can change the type.
2672   case CK_CPointerToObjCPointerCast:
2673   case CK_BlockPointerToObjCPointerCast:
2674   case CK_AnyPointerToBlockPointerCast:
2675   case CK_BitCast: {
2676     llvm::Type *resultType = CGF.ConvertType(e->getType());
2677     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
2678     Result result = asImpl().visit(e->getSubExpr());
2679     return asImpl().emitBitCast(result, resultType);
2680   }
2681 
2682   // Handle some casts specially.
2683   case CK_LValueToRValue:
2684     return asImpl().visitLValueToRValue(e->getSubExpr());
2685   case CK_ARCConsumeObject:
2686     return asImpl().visitConsumeObject(e->getSubExpr());
2687   case CK_ARCExtendBlockObject:
2688     return asImpl().visitExtendBlockObject(e->getSubExpr());
2689   case CK_ARCReclaimReturnedObject:
2690     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
2691 
2692   // Otherwise, use the default logic.
2693   default:
2694     return asImpl().visitExpr(e);
2695   }
2696 }
2697 
2698 template <typename Impl, typename Result>
2699 Result
2700 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
2701   switch (e->getOpcode()) {
2702   case BO_Comma:
2703     CGF.EmitIgnoredExpr(e->getLHS());
2704     CGF.EnsureInsertPoint();
2705     return asImpl().visit(e->getRHS());
2706 
2707   case BO_Assign:
2708     return asImpl().visitBinAssign(e);
2709 
2710   default:
2711     return asImpl().visitExpr(e);
2712   }
2713 }
2714 
2715 template <typename Impl, typename Result>
2716 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
2717   switch (e->getLHS()->getType().getObjCLifetime()) {
2718   case Qualifiers::OCL_ExplicitNone:
2719     return asImpl().visitBinAssignUnsafeUnretained(e);
2720 
2721   case Qualifiers::OCL_Weak:
2722     return asImpl().visitBinAssignWeak(e);
2723 
2724   case Qualifiers::OCL_Autoreleasing:
2725     return asImpl().visitBinAssignAutoreleasing(e);
2726 
2727   case Qualifiers::OCL_Strong:
2728     return asImpl().visitBinAssignStrong(e);
2729 
2730   case Qualifiers::OCL_None:
2731     return asImpl().visitExpr(e);
2732   }
2733   llvm_unreachable("bad ObjC ownership qualifier");
2734 }
2735 
2736 /// The default rule for __unsafe_unretained emits the RHS recursively,
2737 /// stores into the unsafe variable, and propagates the result outward.
2738 template <typename Impl, typename Result>
2739 Result ARCExprEmitter<Impl,Result>::
2740                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
2741   // Recursively emit the RHS.
2742   // For __block safety, do this before emitting the LHS.
2743   Result result = asImpl().visit(e->getRHS());
2744 
2745   // Perform the store.
2746   LValue lvalue =
2747     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
2748   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
2749                              lvalue);
2750 
2751   return result;
2752 }
2753 
2754 template <typename Impl, typename Result>
2755 Result
2756 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
2757   return asImpl().visitExpr(e);
2758 }
2759 
2760 template <typename Impl, typename Result>
2761 Result
2762 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
2763   return asImpl().visitExpr(e);
2764 }
2765 
2766 template <typename Impl, typename Result>
2767 Result
2768 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
2769   return asImpl().visitExpr(e);
2770 }
2771 
2772 /// The general expression-emission logic.
2773 template <typename Impl, typename Result>
2774 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
2775   // We should *never* see a nested full-expression here, because if
2776   // we fail to emit at +1, our caller must not retain after we close
2777   // out the full-expression.  This isn't as important in the unsafe
2778   // emitter.
2779   assert(!isa<ExprWithCleanups>(e));
2780 
2781   // Look through parens, __extension__, generic selection, etc.
2782   e = e->IgnoreParens();
2783 
2784   // Handle certain kinds of casts.
2785   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2786     return asImpl().visitCastExpr(ce);
2787 
2788   // Handle the comma operator.
2789   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
2790     return asImpl().visitBinaryOperator(op);
2791 
2792   // TODO: handle conditional operators here
2793 
2794   // For calls and message sends, use the retained-call logic.
2795   // Delegate inits are a special case in that they're the only
2796   // returns-retained expression that *isn't* surrounded by
2797   // a consume.
2798   } else if (isa<CallExpr>(e) ||
2799              (isa<ObjCMessageExpr>(e) &&
2800               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2801     return asImpl().visitCall(e);
2802 
2803   // Look through pseudo-object expressions.
2804   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2805     return asImpl().visitPseudoObjectExpr(pseudo);
2806   }
2807 
2808   return asImpl().visitExpr(e);
2809 }
2810 
2811 namespace {
2812 
2813 /// An emitter for +1 results.
2814 struct ARCRetainExprEmitter :
2815   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
2816 
2817   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
2818 
2819   llvm::Value *getValueOfResult(TryEmitResult result) {
2820     return result.getPointer();
2821   }
2822 
2823   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
2824     llvm::Value *value = result.getPointer();
2825     value = CGF.Builder.CreateBitCast(value, resultType);
2826     result.setPointer(value);
2827     return result;
2828   }
2829 
2830   TryEmitResult visitLValueToRValue(const Expr *e) {
2831     return tryEmitARCRetainLoadOfScalar(CGF, e);
2832   }
2833 
2834   /// For consumptions, just emit the subexpression and thus elide
2835   /// the retain/release pair.
2836   TryEmitResult visitConsumeObject(const Expr *e) {
2837     llvm::Value *result = CGF.EmitScalarExpr(e);
2838     return TryEmitResult(result, true);
2839   }
2840 
2841   /// Block extends are net +0.  Naively, we could just recurse on
2842   /// the subexpression, but actually we need to ensure that the
2843   /// value is copied as a block, so there's a little filter here.
2844   TryEmitResult visitExtendBlockObject(const Expr *e) {
2845     llvm::Value *result; // will be a +0 value
2846 
2847     // If we can't safely assume the sub-expression will produce a
2848     // block-copied value, emit the sub-expression at +0.
2849     if (shouldEmitSeparateBlockRetain(e)) {
2850       result = CGF.EmitScalarExpr(e);
2851 
2852     // Otherwise, try to emit the sub-expression at +1 recursively.
2853     } else {
2854       TryEmitResult subresult = asImpl().visit(e);
2855 
2856       // If that produced a retained value, just use that.
2857       if (subresult.getInt()) {
2858         return subresult;
2859       }
2860 
2861       // Otherwise it's +0.
2862       result = subresult.getPointer();
2863     }
2864 
2865     // Retain the object as a block.
2866     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2867     return TryEmitResult(result, true);
2868   }
2869 
2870   /// For reclaims, emit the subexpression as a retained call and
2871   /// skip the consumption.
2872   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
2873     llvm::Value *result = emitARCRetainCallResult(CGF, e);
2874     return TryEmitResult(result, true);
2875   }
2876 
2877   /// When we have an undecorated call, retroactively do a claim.
2878   TryEmitResult visitCall(const Expr *e) {
2879     llvm::Value *result = emitARCRetainCallResult(CGF, e);
2880     return TryEmitResult(result, true);
2881   }
2882 
2883   // TODO: maybe special-case visitBinAssignWeak?
2884 
2885   TryEmitResult visitExpr(const Expr *e) {
2886     // We didn't find an obvious production, so emit what we've got and
2887     // tell the caller that we didn't manage to retain.
2888     llvm::Value *result = CGF.EmitScalarExpr(e);
2889     return TryEmitResult(result, false);
2890   }
2891 };
2892 }
2893 
2894 static TryEmitResult
2895 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2896   return ARCRetainExprEmitter(CGF).visit(e);
2897 }
2898 
2899 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2900                                                 LValue lvalue,
2901                                                 QualType type) {
2902   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2903   llvm::Value *value = result.getPointer();
2904   if (!result.getInt())
2905     value = CGF.EmitARCRetain(type, value);
2906   return value;
2907 }
2908 
2909 /// EmitARCRetainScalarExpr - Semantically equivalent to
2910 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2911 /// best-effort attempt to peephole expressions that naturally produce
2912 /// retained objects.
2913 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2914   // The retain needs to happen within the full-expression.
2915   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2916     enterFullExpression(cleanups);
2917     RunCleanupsScope scope(*this);
2918     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2919   }
2920 
2921   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2922   llvm::Value *value = result.getPointer();
2923   if (!result.getInt())
2924     value = EmitARCRetain(e->getType(), value);
2925   return value;
2926 }
2927 
2928 llvm::Value *
2929 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2930   // The retain needs to happen within the full-expression.
2931   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2932     enterFullExpression(cleanups);
2933     RunCleanupsScope scope(*this);
2934     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2935   }
2936 
2937   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2938   llvm::Value *value = result.getPointer();
2939   if (result.getInt())
2940     value = EmitARCAutorelease(value);
2941   else
2942     value = EmitARCRetainAutorelease(e->getType(), value);
2943   return value;
2944 }
2945 
2946 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2947   llvm::Value *result;
2948   bool doRetain;
2949 
2950   if (shouldEmitSeparateBlockRetain(e)) {
2951     result = EmitScalarExpr(e);
2952     doRetain = true;
2953   } else {
2954     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2955     result = subresult.getPointer();
2956     doRetain = !subresult.getInt();
2957   }
2958 
2959   if (doRetain)
2960     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2961   return EmitObjCConsumeObject(e->getType(), result);
2962 }
2963 
2964 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2965   // In ARC, retain and autorelease the expression.
2966   if (getLangOpts().ObjCAutoRefCount) {
2967     // Do so before running any cleanups for the full-expression.
2968     // EmitARCRetainAutoreleaseScalarExpr does this for us.
2969     return EmitARCRetainAutoreleaseScalarExpr(expr);
2970   }
2971 
2972   // Otherwise, use the normal scalar-expression emission.  The
2973   // exception machinery doesn't do anything special with the
2974   // exception like retaining it, so there's no safety associated with
2975   // only running cleanups after the throw has started, and when it
2976   // matters it tends to be substantially inferior code.
2977   return EmitScalarExpr(expr);
2978 }
2979 
2980 namespace {
2981 
2982 /// An emitter for assigning into an __unsafe_unretained context.
2983 struct ARCUnsafeUnretainedExprEmitter :
2984   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
2985 
2986   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
2987 
2988   llvm::Value *getValueOfResult(llvm::Value *value) {
2989     return value;
2990   }
2991 
2992   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
2993     return CGF.Builder.CreateBitCast(value, resultType);
2994   }
2995 
2996   llvm::Value *visitLValueToRValue(const Expr *e) {
2997     return CGF.EmitScalarExpr(e);
2998   }
2999 
3000   /// For consumptions, just emit the subexpression and perform the
3001   /// consumption like normal.
3002   llvm::Value *visitConsumeObject(const Expr *e) {
3003     llvm::Value *value = CGF.EmitScalarExpr(e);
3004     return CGF.EmitObjCConsumeObject(e->getType(), value);
3005   }
3006 
3007   /// No special logic for block extensions.  (This probably can't
3008   /// actually happen in this emitter, though.)
3009   llvm::Value *visitExtendBlockObject(const Expr *e) {
3010     return CGF.EmitARCExtendBlockObject(e);
3011   }
3012 
3013   /// For reclaims, perform an unsafeClaim if that's enabled.
3014   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3015     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3016   }
3017 
3018   /// When we have an undecorated call, just emit it without adding
3019   /// the unsafeClaim.
3020   llvm::Value *visitCall(const Expr *e) {
3021     return CGF.EmitScalarExpr(e);
3022   }
3023 
3024   /// Just do normal scalar emission in the default case.
3025   llvm::Value *visitExpr(const Expr *e) {
3026     return CGF.EmitScalarExpr(e);
3027   }
3028 };
3029 }
3030 
3031 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3032                                                       const Expr *e) {
3033   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3034 }
3035 
3036 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3037 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3038 /// avoiding any spurious retains, including by performing reclaims
3039 /// with objc_unsafeClaimAutoreleasedReturnValue.
3040 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3041   // Look through full-expressions.
3042   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3043     enterFullExpression(cleanups);
3044     RunCleanupsScope scope(*this);
3045     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3046   }
3047 
3048   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3049 }
3050 
3051 std::pair<LValue,llvm::Value*>
3052 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3053                                               bool ignored) {
3054   // Evaluate the RHS first.  If we're ignoring the result, assume
3055   // that we can emit at an unsafe +0.
3056   llvm::Value *value;
3057   if (ignored) {
3058     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3059   } else {
3060     value = EmitScalarExpr(e->getRHS());
3061   }
3062 
3063   // Emit the LHS and perform the store.
3064   LValue lvalue = EmitLValue(e->getLHS());
3065   EmitStoreOfScalar(value, lvalue);
3066 
3067   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3068 }
3069 
3070 std::pair<LValue,llvm::Value*>
3071 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3072                                     bool ignored) {
3073   // Evaluate the RHS first.
3074   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3075   llvm::Value *value = result.getPointer();
3076 
3077   bool hasImmediateRetain = result.getInt();
3078 
3079   // If we didn't emit a retained object, and the l-value is of block
3080   // type, then we need to emit the block-retain immediately in case
3081   // it invalidates the l-value.
3082   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3083     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3084     hasImmediateRetain = true;
3085   }
3086 
3087   LValue lvalue = EmitLValue(e->getLHS());
3088 
3089   // If the RHS was emitted retained, expand this.
3090   if (hasImmediateRetain) {
3091     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3092     EmitStoreOfScalar(value, lvalue);
3093     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3094   } else {
3095     value = EmitARCStoreStrong(lvalue, value, ignored);
3096   }
3097 
3098   return std::pair<LValue,llvm::Value*>(lvalue, value);
3099 }
3100 
3101 std::pair<LValue,llvm::Value*>
3102 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3103   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3104   LValue lvalue = EmitLValue(e->getLHS());
3105 
3106   EmitStoreOfScalar(value, lvalue);
3107 
3108   return std::pair<LValue,llvm::Value*>(lvalue, value);
3109 }
3110 
3111 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3112                                           const ObjCAutoreleasePoolStmt &ARPS) {
3113   const Stmt *subStmt = ARPS.getSubStmt();
3114   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3115 
3116   CGDebugInfo *DI = getDebugInfo();
3117   if (DI)
3118     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3119 
3120   // Keep track of the current cleanup stack depth.
3121   RunCleanupsScope Scope(*this);
3122   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3123     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3124     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3125   } else {
3126     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3127     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3128   }
3129 
3130   for (const auto *I : S.body())
3131     EmitStmt(I);
3132 
3133   if (DI)
3134     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3135 }
3136 
3137 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3138 /// make sure it survives garbage collection until this point.
3139 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3140   // We just use an inline assembly.
3141   llvm::FunctionType *extenderType
3142     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3143   llvm::Value *extender
3144     = llvm::InlineAsm::get(extenderType,
3145                            /* assembly */ "",
3146                            /* constraints */ "r",
3147                            /* side effects */ true);
3148 
3149   object = Builder.CreateBitCast(object, VoidPtrTy);
3150   EmitNounwindRuntimeCall(extender, object);
3151 }
3152 
3153 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3154 /// non-trivial copy assignment function, produce following helper function.
3155 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3156 ///
3157 llvm::Constant *
3158 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3159                                         const ObjCPropertyImplDecl *PID) {
3160   if (!getLangOpts().CPlusPlus ||
3161       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3162     return nullptr;
3163   QualType Ty = PID->getPropertyIvarDecl()->getType();
3164   if (!Ty->isRecordType())
3165     return nullptr;
3166   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3167   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3168     return nullptr;
3169   llvm::Constant *HelperFn = nullptr;
3170   if (hasTrivialSetExpr(PID))
3171     return nullptr;
3172   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3173   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3174     return HelperFn;
3175 
3176   ASTContext &C = getContext();
3177   IdentifierInfo *II
3178     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3179   FunctionDecl *FD = FunctionDecl::Create(C,
3180                                           C.getTranslationUnitDecl(),
3181                                           SourceLocation(),
3182                                           SourceLocation(), II, C.VoidTy,
3183                                           nullptr, SC_Static,
3184                                           false,
3185                                           false);
3186 
3187   QualType DestTy = C.getPointerType(Ty);
3188   QualType SrcTy = Ty;
3189   SrcTy.addConst();
3190   SrcTy = C.getPointerType(SrcTy);
3191 
3192   FunctionArgList args;
3193   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
3194   args.push_back(&dstDecl);
3195   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
3196   args.push_back(&srcDecl);
3197 
3198   const CGFunctionInfo &FI =
3199     CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args);
3200 
3201   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3202 
3203   llvm::Function *Fn =
3204     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3205                            "__assign_helper_atomic_property_",
3206                            &CGM.getModule());
3207 
3208   CGM.SetInternalFunctionAttributes(nullptr, Fn, FI);
3209 
3210   StartFunction(FD, C.VoidTy, Fn, FI, args);
3211 
3212   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3213                       VK_RValue, SourceLocation());
3214   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
3215                     VK_LValue, OK_Ordinary, SourceLocation());
3216 
3217   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
3218                       VK_RValue, SourceLocation());
3219   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3220                     VK_LValue, OK_Ordinary, SourceLocation());
3221 
3222   Expr *Args[2] = { &DST, &SRC };
3223   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3224   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
3225                               Args, DestTy->getPointeeType(),
3226                               VK_LValue, SourceLocation(), false);
3227 
3228   EmitStmt(&TheCall);
3229 
3230   FinishFunction();
3231   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3232   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3233   return HelperFn;
3234 }
3235 
3236 llvm::Constant *
3237 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3238                                             const ObjCPropertyImplDecl *PID) {
3239   if (!getLangOpts().CPlusPlus ||
3240       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3241     return nullptr;
3242   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3243   QualType Ty = PD->getType();
3244   if (!Ty->isRecordType())
3245     return nullptr;
3246   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3247     return nullptr;
3248   llvm::Constant *HelperFn = nullptr;
3249 
3250   if (hasTrivialGetExpr(PID))
3251     return nullptr;
3252   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3253   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3254     return HelperFn;
3255 
3256 
3257   ASTContext &C = getContext();
3258   IdentifierInfo *II
3259   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3260   FunctionDecl *FD = FunctionDecl::Create(C,
3261                                           C.getTranslationUnitDecl(),
3262                                           SourceLocation(),
3263                                           SourceLocation(), II, C.VoidTy,
3264                                           nullptr, SC_Static,
3265                                           false,
3266                                           false);
3267 
3268   QualType DestTy = C.getPointerType(Ty);
3269   QualType SrcTy = Ty;
3270   SrcTy.addConst();
3271   SrcTy = C.getPointerType(SrcTy);
3272 
3273   FunctionArgList args;
3274   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
3275   args.push_back(&dstDecl);
3276   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
3277   args.push_back(&srcDecl);
3278 
3279   const CGFunctionInfo &FI =
3280     CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args);
3281 
3282   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3283 
3284   llvm::Function *Fn =
3285   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3286                          "__copy_helper_atomic_property_", &CGM.getModule());
3287 
3288   CGM.SetInternalFunctionAttributes(nullptr, Fn, FI);
3289 
3290   StartFunction(FD, C.VoidTy, Fn, FI, args);
3291 
3292   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
3293                       VK_RValue, SourceLocation());
3294 
3295   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3296                     VK_LValue, OK_Ordinary, SourceLocation());
3297 
3298   CXXConstructExpr *CXXConstExpr =
3299     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3300 
3301   SmallVector<Expr*, 4> ConstructorArgs;
3302   ConstructorArgs.push_back(&SRC);
3303   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3304                          CXXConstExpr->arg_end());
3305 
3306   CXXConstructExpr *TheCXXConstructExpr =
3307     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3308                              CXXConstExpr->getConstructor(),
3309                              CXXConstExpr->isElidable(),
3310                              ConstructorArgs,
3311                              CXXConstExpr->hadMultipleCandidates(),
3312                              CXXConstExpr->isListInitialization(),
3313                              CXXConstExpr->isStdInitListInitialization(),
3314                              CXXConstExpr->requiresZeroInitialization(),
3315                              CXXConstExpr->getConstructionKind(),
3316                              SourceRange());
3317 
3318   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3319                       VK_RValue, SourceLocation());
3320 
3321   RValue DV = EmitAnyExpr(&DstExpr);
3322   CharUnits Alignment
3323     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3324   EmitAggExpr(TheCXXConstructExpr,
3325               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3326                                     Qualifiers(),
3327                                     AggValueSlot::IsDestructed,
3328                                     AggValueSlot::DoesNotNeedGCBarriers,
3329                                     AggValueSlot::IsNotAliased));
3330 
3331   FinishFunction();
3332   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3333   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3334   return HelperFn;
3335 }
3336 
3337 llvm::Value *
3338 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3339   // Get selectors for retain/autorelease.
3340   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3341   Selector CopySelector =
3342       getContext().Selectors.getNullarySelector(CopyID);
3343   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3344   Selector AutoreleaseSelector =
3345       getContext().Selectors.getNullarySelector(AutoreleaseID);
3346 
3347   // Emit calls to retain/autorelease.
3348   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3349   llvm::Value *Val = Block;
3350   RValue Result;
3351   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3352                                        Ty, CopySelector,
3353                                        Val, CallArgList(), nullptr, nullptr);
3354   Val = Result.getScalarVal();
3355   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3356                                        Ty, AutoreleaseSelector,
3357                                        Val, CallArgList(), nullptr, nullptr);
3358   Val = Result.getScalarVal();
3359   return Val;
3360 }
3361 
3362 
3363 CGObjCRuntime::~CGObjCRuntime() {}
3364