1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 35 QualType ET, 36 RValue Result); 37 38 /// Given the address of a variable of pointer type, find the correct 39 /// null to store into it. 40 static llvm::Constant *getNullForVariable(Address addr) { 41 llvm::Type *type = addr.getElementType(); 42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 43 } 44 45 /// Emits an instance of NSConstantString representing the object. 46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 47 { 48 llvm::Constant *C = 49 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 50 // FIXME: This bitcast should just be made an invariant on the Runtime. 51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 52 } 53 54 /// EmitObjCBoxedExpr - This routine generates code to call 55 /// the appropriate expression boxing method. This will either be 56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 57 /// or [NSValue valueWithBytes:objCType:]. 58 /// 59 llvm::Value * 60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 61 // Generate the correct selector for this literal's concrete type. 62 // Get the method. 63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 64 const Expr *SubExpr = E->getSubExpr(); 65 assert(BoxingMethod && "BoxingMethod is null"); 66 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 67 Selector Sel = BoxingMethod->getSelector(); 68 69 // Generate a reference to the class pointer, which will be the receiver. 70 // Assumes that the method was introduced in the class that should be 71 // messaged (avoids pulling it out of the result type). 72 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 73 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 74 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 75 76 CallArgList Args; 77 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 78 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 79 80 // ObjCBoxedExpr supports boxing of structs and unions 81 // via [NSValue valueWithBytes:objCType:] 82 const QualType ValueType(SubExpr->getType().getCanonicalType()); 83 if (ValueType->isObjCBoxableRecordType()) { 84 // Emit CodeGen for first parameter 85 // and cast value to correct type 86 Address Temporary = CreateMemTemp(SubExpr->getType()); 87 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 88 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 89 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 90 91 // Create char array to store type encoding 92 std::string Str; 93 getContext().getObjCEncodingForType(ValueType, Str); 94 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 95 96 // Cast type encoding to correct type 97 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 98 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 99 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 100 101 Args.add(RValue::get(Cast), EncodingQT); 102 } else { 103 Args.add(EmitAnyExpr(SubExpr), ArgQT); 104 } 105 106 RValue result = Runtime.GenerateMessageSend( 107 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 108 Args, ClassDecl, BoxingMethod); 109 return Builder.CreateBitCast(result.getScalarVal(), 110 ConvertType(E->getType())); 111 } 112 113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 114 const ObjCMethodDecl *MethodWithObjects) { 115 ASTContext &Context = CGM.getContext(); 116 const ObjCDictionaryLiteral *DLE = nullptr; 117 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 118 if (!ALE) 119 DLE = cast<ObjCDictionaryLiteral>(E); 120 121 // Compute the type of the array we're initializing. 122 uint64_t NumElements = 123 ALE ? ALE->getNumElements() : DLE->getNumElements(); 124 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 125 NumElements); 126 QualType ElementType = Context.getObjCIdType().withConst(); 127 QualType ElementArrayType 128 = Context.getConstantArrayType(ElementType, APNumElements, 129 ArrayType::Normal, /*IndexTypeQuals=*/0); 130 131 // Allocate the temporary array(s). 132 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 133 Address Keys = Address::invalid(); 134 if (DLE) 135 Keys = CreateMemTemp(ElementArrayType, "keys"); 136 137 // In ARC, we may need to do extra work to keep all the keys and 138 // values alive until after the call. 139 SmallVector<llvm::Value *, 16> NeededObjects; 140 bool TrackNeededObjects = 141 (getLangOpts().ObjCAutoRefCount && 142 CGM.getCodeGenOpts().OptimizationLevel != 0); 143 144 // Perform the actual initialialization of the array(s). 145 for (uint64_t i = 0; i < NumElements; i++) { 146 if (ALE) { 147 // Emit the element and store it to the appropriate array slot. 148 const Expr *Rhs = ALE->getElement(i); 149 LValue LV = MakeAddrLValue( 150 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 151 ElementType, AlignmentSource::Decl); 152 153 llvm::Value *value = EmitScalarExpr(Rhs); 154 EmitStoreThroughLValue(RValue::get(value), LV, true); 155 if (TrackNeededObjects) { 156 NeededObjects.push_back(value); 157 } 158 } else { 159 // Emit the key and store it to the appropriate array slot. 160 const Expr *Key = DLE->getKeyValueElement(i).Key; 161 LValue KeyLV = MakeAddrLValue( 162 Builder.CreateConstArrayGEP(Keys, i, getPointerSize()), 163 ElementType, AlignmentSource::Decl); 164 llvm::Value *keyValue = EmitScalarExpr(Key); 165 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 166 167 // Emit the value and store it to the appropriate array slot. 168 const Expr *Value = DLE->getKeyValueElement(i).Value; 169 LValue ValueLV = MakeAddrLValue( 170 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 171 ElementType, AlignmentSource::Decl); 172 llvm::Value *valueValue = EmitScalarExpr(Value); 173 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 174 if (TrackNeededObjects) { 175 NeededObjects.push_back(keyValue); 176 NeededObjects.push_back(valueValue); 177 } 178 } 179 } 180 181 // Generate the argument list. 182 CallArgList Args; 183 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 184 const ParmVarDecl *argDecl = *PI++; 185 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 186 Args.add(RValue::get(Objects.getPointer()), ArgQT); 187 if (DLE) { 188 argDecl = *PI++; 189 ArgQT = argDecl->getType().getUnqualifiedType(); 190 Args.add(RValue::get(Keys.getPointer()), ArgQT); 191 } 192 argDecl = *PI; 193 ArgQT = argDecl->getType().getUnqualifiedType(); 194 llvm::Value *Count = 195 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 196 Args.add(RValue::get(Count), ArgQT); 197 198 // Generate a reference to the class pointer, which will be the receiver. 199 Selector Sel = MethodWithObjects->getSelector(); 200 QualType ResultType = E->getType(); 201 const ObjCObjectPointerType *InterfacePointerType 202 = ResultType->getAsObjCInterfacePointerType(); 203 ObjCInterfaceDecl *Class 204 = InterfacePointerType->getObjectType()->getInterface(); 205 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 206 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 207 208 // Generate the message send. 209 RValue result = Runtime.GenerateMessageSend( 210 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 211 Receiver, Args, Class, MethodWithObjects); 212 213 // The above message send needs these objects, but in ARC they are 214 // passed in a buffer that is essentially __unsafe_unretained. 215 // Therefore we must prevent the optimizer from releasing them until 216 // after the call. 217 if (TrackNeededObjects) { 218 EmitARCIntrinsicUse(NeededObjects); 219 } 220 221 return Builder.CreateBitCast(result.getScalarVal(), 222 ConvertType(E->getType())); 223 } 224 225 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 226 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 227 } 228 229 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 230 const ObjCDictionaryLiteral *E) { 231 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 232 } 233 234 /// Emit a selector. 235 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 236 // Untyped selector. 237 // Note that this implementation allows for non-constant strings to be passed 238 // as arguments to @selector(). Currently, the only thing preventing this 239 // behaviour is the type checking in the front end. 240 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 241 } 242 243 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 244 // FIXME: This should pass the Decl not the name. 245 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 246 } 247 248 /// \brief Adjust the type of an Objective-C object that doesn't match up due 249 /// to type erasure at various points, e.g., related result types or the use 250 /// of parameterized classes. 251 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 252 RValue Result) { 253 if (!ExpT->isObjCRetainableType()) 254 return Result; 255 256 // If the converted types are the same, we're done. 257 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 258 if (ExpLLVMTy == Result.getScalarVal()->getType()) 259 return Result; 260 261 // We have applied a substitution. Cast the rvalue appropriately. 262 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 263 ExpLLVMTy)); 264 } 265 266 /// Decide whether to extend the lifetime of the receiver of a 267 /// returns-inner-pointer message. 268 static bool 269 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 270 switch (message->getReceiverKind()) { 271 272 // For a normal instance message, we should extend unless the 273 // receiver is loaded from a variable with precise lifetime. 274 case ObjCMessageExpr::Instance: { 275 const Expr *receiver = message->getInstanceReceiver(); 276 277 // Look through OVEs. 278 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 279 if (opaque->getSourceExpr()) 280 receiver = opaque->getSourceExpr()->IgnoreParens(); 281 } 282 283 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 284 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 285 receiver = ice->getSubExpr()->IgnoreParens(); 286 287 // Look through OVEs. 288 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 289 if (opaque->getSourceExpr()) 290 receiver = opaque->getSourceExpr()->IgnoreParens(); 291 } 292 293 // Only __strong variables. 294 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 295 return true; 296 297 // All ivars and fields have precise lifetime. 298 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 299 return false; 300 301 // Otherwise, check for variables. 302 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 303 if (!declRef) return true; 304 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 305 if (!var) return true; 306 307 // All variables have precise lifetime except local variables with 308 // automatic storage duration that aren't specially marked. 309 return (var->hasLocalStorage() && 310 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 311 } 312 313 case ObjCMessageExpr::Class: 314 case ObjCMessageExpr::SuperClass: 315 // It's never necessary for class objects. 316 return false; 317 318 case ObjCMessageExpr::SuperInstance: 319 // We generally assume that 'self' lives throughout a method call. 320 return false; 321 } 322 323 llvm_unreachable("invalid receiver kind"); 324 } 325 326 /// Given an expression of ObjC pointer type, check whether it was 327 /// immediately loaded from an ARC __weak l-value. 328 static const Expr *findWeakLValue(const Expr *E) { 329 assert(E->getType()->isObjCRetainableType()); 330 E = E->IgnoreParens(); 331 if (auto CE = dyn_cast<CastExpr>(E)) { 332 if (CE->getCastKind() == CK_LValueToRValue) { 333 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 334 return CE->getSubExpr(); 335 } 336 } 337 338 return nullptr; 339 } 340 341 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 342 ReturnValueSlot Return) { 343 // Only the lookup mechanism and first two arguments of the method 344 // implementation vary between runtimes. We can get the receiver and 345 // arguments in generic code. 346 347 bool isDelegateInit = E->isDelegateInitCall(); 348 349 const ObjCMethodDecl *method = E->getMethodDecl(); 350 351 // If the method is -retain, and the receiver's being loaded from 352 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 353 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 354 method->getMethodFamily() == OMF_retain) { 355 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 356 LValue lvalue = EmitLValue(lvalueExpr); 357 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress()); 358 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 359 } 360 } 361 362 // We don't retain the receiver in delegate init calls, and this is 363 // safe because the receiver value is always loaded from 'self', 364 // which we zero out. We don't want to Block_copy block receivers, 365 // though. 366 bool retainSelf = 367 (!isDelegateInit && 368 CGM.getLangOpts().ObjCAutoRefCount && 369 method && 370 method->hasAttr<NSConsumesSelfAttr>()); 371 372 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 373 bool isSuperMessage = false; 374 bool isClassMessage = false; 375 ObjCInterfaceDecl *OID = nullptr; 376 // Find the receiver 377 QualType ReceiverType; 378 llvm::Value *Receiver = nullptr; 379 switch (E->getReceiverKind()) { 380 case ObjCMessageExpr::Instance: 381 ReceiverType = E->getInstanceReceiver()->getType(); 382 if (retainSelf) { 383 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 384 E->getInstanceReceiver()); 385 Receiver = ter.getPointer(); 386 if (ter.getInt()) retainSelf = false; 387 } else 388 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 389 break; 390 391 case ObjCMessageExpr::Class: { 392 ReceiverType = E->getClassReceiver(); 393 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 394 assert(ObjTy && "Invalid Objective-C class message send"); 395 OID = ObjTy->getInterface(); 396 assert(OID && "Invalid Objective-C class message send"); 397 Receiver = Runtime.GetClass(*this, OID); 398 isClassMessage = true; 399 break; 400 } 401 402 case ObjCMessageExpr::SuperInstance: 403 ReceiverType = E->getSuperType(); 404 Receiver = LoadObjCSelf(); 405 isSuperMessage = true; 406 break; 407 408 case ObjCMessageExpr::SuperClass: 409 ReceiverType = E->getSuperType(); 410 Receiver = LoadObjCSelf(); 411 isSuperMessage = true; 412 isClassMessage = true; 413 break; 414 } 415 416 if (retainSelf) 417 Receiver = EmitARCRetainNonBlock(Receiver); 418 419 // In ARC, we sometimes want to "extend the lifetime" 420 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 421 // messages. 422 if (getLangOpts().ObjCAutoRefCount && method && 423 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 424 shouldExtendReceiverForInnerPointerMessage(E)) 425 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 426 427 QualType ResultType = method ? method->getReturnType() : E->getType(); 428 429 CallArgList Args; 430 EmitCallArgs(Args, method, E->arguments()); 431 432 // For delegate init calls in ARC, do an unsafe store of null into 433 // self. This represents the call taking direct ownership of that 434 // value. We have to do this after emitting the other call 435 // arguments because they might also reference self, but we don't 436 // have to worry about any of them modifying self because that would 437 // be an undefined read and write of an object in unordered 438 // expressions. 439 if (isDelegateInit) { 440 assert(getLangOpts().ObjCAutoRefCount && 441 "delegate init calls should only be marked in ARC"); 442 443 // Do an unsafe store of null into self. 444 Address selfAddr = 445 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 446 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 447 } 448 449 RValue result; 450 if (isSuperMessage) { 451 // super is only valid in an Objective-C method 452 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 453 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 454 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 455 E->getSelector(), 456 OMD->getClassInterface(), 457 isCategoryImpl, 458 Receiver, 459 isClassMessage, 460 Args, 461 method); 462 } else { 463 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 464 E->getSelector(), 465 Receiver, Args, OID, 466 method); 467 } 468 469 // For delegate init calls in ARC, implicitly store the result of 470 // the call back into self. This takes ownership of the value. 471 if (isDelegateInit) { 472 Address selfAddr = 473 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 474 llvm::Value *newSelf = result.getScalarVal(); 475 476 // The delegate return type isn't necessarily a matching type; in 477 // fact, it's quite likely to be 'id'. 478 llvm::Type *selfTy = selfAddr.getElementType(); 479 newSelf = Builder.CreateBitCast(newSelf, selfTy); 480 481 Builder.CreateStore(newSelf, selfAddr); 482 } 483 484 return AdjustObjCObjectType(*this, E->getType(), result); 485 } 486 487 namespace { 488 struct FinishARCDealloc final : EHScopeStack::Cleanup { 489 void Emit(CodeGenFunction &CGF, Flags flags) override { 490 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 491 492 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 493 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 494 if (!iface->getSuperClass()) return; 495 496 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 497 498 // Call [super dealloc] if we have a superclass. 499 llvm::Value *self = CGF.LoadObjCSelf(); 500 501 CallArgList args; 502 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 503 CGF.getContext().VoidTy, 504 method->getSelector(), 505 iface, 506 isCategory, 507 self, 508 /*is class msg*/ false, 509 args, 510 method); 511 } 512 }; 513 } 514 515 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 516 /// the LLVM function and sets the other context used by 517 /// CodeGenFunction. 518 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 519 const ObjCContainerDecl *CD) { 520 SourceLocation StartLoc = OMD->getLocStart(); 521 FunctionArgList args; 522 // Check if we should generate debug info for this method. 523 if (OMD->hasAttr<NoDebugAttr>()) 524 DebugInfo = nullptr; // disable debug info indefinitely for this function 525 526 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 527 528 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 529 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 530 531 args.push_back(OMD->getSelfDecl()); 532 args.push_back(OMD->getCmdDecl()); 533 534 args.append(OMD->param_begin(), OMD->param_end()); 535 536 CurGD = OMD; 537 CurEHLocation = OMD->getLocEnd(); 538 539 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 540 OMD->getLocation(), StartLoc); 541 542 // In ARC, certain methods get an extra cleanup. 543 if (CGM.getLangOpts().ObjCAutoRefCount && 544 OMD->isInstanceMethod() && 545 OMD->getSelector().isUnarySelector()) { 546 const IdentifierInfo *ident = 547 OMD->getSelector().getIdentifierInfoForSlot(0); 548 if (ident->isStr("dealloc")) 549 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 550 } 551 } 552 553 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 554 LValue lvalue, QualType type); 555 556 /// Generate an Objective-C method. An Objective-C method is a C function with 557 /// its pointer, name, and types registered in the class struture. 558 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 559 StartObjCMethod(OMD, OMD->getClassInterface()); 560 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 561 assert(isa<CompoundStmt>(OMD->getBody())); 562 incrementProfileCounter(OMD->getBody()); 563 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 564 FinishFunction(OMD->getBodyRBrace()); 565 } 566 567 /// emitStructGetterCall - Call the runtime function to load a property 568 /// into the return value slot. 569 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 570 bool isAtomic, bool hasStrong) { 571 ASTContext &Context = CGF.getContext(); 572 573 Address src = 574 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 575 .getAddress(); 576 577 // objc_copyStruct (ReturnValue, &structIvar, 578 // sizeof (Type of Ivar), isAtomic, false); 579 CallArgList args; 580 581 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 582 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 583 584 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 585 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 586 587 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 588 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 589 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 590 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 591 592 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 593 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 594 fn, ReturnValueSlot(), args); 595 } 596 597 /// Determine whether the given architecture supports unaligned atomic 598 /// accesses. They don't have to be fast, just faster than a function 599 /// call and a mutex. 600 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 601 // FIXME: Allow unaligned atomic load/store on x86. (It is not 602 // currently supported by the backend.) 603 return 0; 604 } 605 606 /// Return the maximum size that permits atomic accesses for the given 607 /// architecture. 608 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 609 llvm::Triple::ArchType arch) { 610 // ARM has 8-byte atomic accesses, but it's not clear whether we 611 // want to rely on them here. 612 613 // In the default case, just assume that any size up to a pointer is 614 // fine given adequate alignment. 615 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 616 } 617 618 namespace { 619 class PropertyImplStrategy { 620 public: 621 enum StrategyKind { 622 /// The 'native' strategy is to use the architecture's provided 623 /// reads and writes. 624 Native, 625 626 /// Use objc_setProperty and objc_getProperty. 627 GetSetProperty, 628 629 /// Use objc_setProperty for the setter, but use expression 630 /// evaluation for the getter. 631 SetPropertyAndExpressionGet, 632 633 /// Use objc_copyStruct. 634 CopyStruct, 635 636 /// The 'expression' strategy is to emit normal assignment or 637 /// lvalue-to-rvalue expressions. 638 Expression 639 }; 640 641 StrategyKind getKind() const { return StrategyKind(Kind); } 642 643 bool hasStrongMember() const { return HasStrong; } 644 bool isAtomic() const { return IsAtomic; } 645 bool isCopy() const { return IsCopy; } 646 647 CharUnits getIvarSize() const { return IvarSize; } 648 CharUnits getIvarAlignment() const { return IvarAlignment; } 649 650 PropertyImplStrategy(CodeGenModule &CGM, 651 const ObjCPropertyImplDecl *propImpl); 652 653 private: 654 unsigned Kind : 8; 655 unsigned IsAtomic : 1; 656 unsigned IsCopy : 1; 657 unsigned HasStrong : 1; 658 659 CharUnits IvarSize; 660 CharUnits IvarAlignment; 661 }; 662 } 663 664 /// Pick an implementation strategy for the given property synthesis. 665 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 666 const ObjCPropertyImplDecl *propImpl) { 667 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 668 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 669 670 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 671 IsAtomic = prop->isAtomic(); 672 HasStrong = false; // doesn't matter here. 673 674 // Evaluate the ivar's size and alignment. 675 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 676 QualType ivarType = ivar->getType(); 677 std::tie(IvarSize, IvarAlignment) = 678 CGM.getContext().getTypeInfoInChars(ivarType); 679 680 // If we have a copy property, we always have to use getProperty/setProperty. 681 // TODO: we could actually use setProperty and an expression for non-atomics. 682 if (IsCopy) { 683 Kind = GetSetProperty; 684 return; 685 } 686 687 // Handle retain. 688 if (setterKind == ObjCPropertyDecl::Retain) { 689 // In GC-only, there's nothing special that needs to be done. 690 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 691 // fallthrough 692 693 // In ARC, if the property is non-atomic, use expression emission, 694 // which translates to objc_storeStrong. This isn't required, but 695 // it's slightly nicer. 696 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 697 // Using standard expression emission for the setter is only 698 // acceptable if the ivar is __strong, which won't be true if 699 // the property is annotated with __attribute__((NSObject)). 700 // TODO: falling all the way back to objc_setProperty here is 701 // just laziness, though; we could still use objc_storeStrong 702 // if we hacked it right. 703 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 704 Kind = Expression; 705 else 706 Kind = SetPropertyAndExpressionGet; 707 return; 708 709 // Otherwise, we need to at least use setProperty. However, if 710 // the property isn't atomic, we can use normal expression 711 // emission for the getter. 712 } else if (!IsAtomic) { 713 Kind = SetPropertyAndExpressionGet; 714 return; 715 716 // Otherwise, we have to use both setProperty and getProperty. 717 } else { 718 Kind = GetSetProperty; 719 return; 720 } 721 } 722 723 // If we're not atomic, just use expression accesses. 724 if (!IsAtomic) { 725 Kind = Expression; 726 return; 727 } 728 729 // Properties on bitfield ivars need to be emitted using expression 730 // accesses even if they're nominally atomic. 731 if (ivar->isBitField()) { 732 Kind = Expression; 733 return; 734 } 735 736 // GC-qualified or ARC-qualified ivars need to be emitted as 737 // expressions. This actually works out to being atomic anyway, 738 // except for ARC __strong, but that should trigger the above code. 739 if (ivarType.hasNonTrivialObjCLifetime() || 740 (CGM.getLangOpts().getGC() && 741 CGM.getContext().getObjCGCAttrKind(ivarType))) { 742 Kind = Expression; 743 return; 744 } 745 746 // Compute whether the ivar has strong members. 747 if (CGM.getLangOpts().getGC()) 748 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 749 HasStrong = recordType->getDecl()->hasObjectMember(); 750 751 // We can never access structs with object members with a native 752 // access, because we need to use write barriers. This is what 753 // objc_copyStruct is for. 754 if (HasStrong) { 755 Kind = CopyStruct; 756 return; 757 } 758 759 // Otherwise, this is target-dependent and based on the size and 760 // alignment of the ivar. 761 762 // If the size of the ivar is not a power of two, give up. We don't 763 // want to get into the business of doing compare-and-swaps. 764 if (!IvarSize.isPowerOfTwo()) { 765 Kind = CopyStruct; 766 return; 767 } 768 769 llvm::Triple::ArchType arch = 770 CGM.getTarget().getTriple().getArch(); 771 772 // Most architectures require memory to fit within a single cache 773 // line, so the alignment has to be at least the size of the access. 774 // Otherwise we have to grab a lock. 775 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 776 Kind = CopyStruct; 777 return; 778 } 779 780 // If the ivar's size exceeds the architecture's maximum atomic 781 // access size, we have to use CopyStruct. 782 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 783 Kind = CopyStruct; 784 return; 785 } 786 787 // Otherwise, we can use native loads and stores. 788 Kind = Native; 789 } 790 791 /// \brief Generate an Objective-C property getter function. 792 /// 793 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 794 /// is illegal within a category. 795 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 796 const ObjCPropertyImplDecl *PID) { 797 llvm::Constant *AtomicHelperFn = 798 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 799 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 800 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 801 assert(OMD && "Invalid call to generate getter (empty method)"); 802 StartObjCMethod(OMD, IMP->getClassInterface()); 803 804 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 805 806 FinishFunction(); 807 } 808 809 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 810 const Expr *getter = propImpl->getGetterCXXConstructor(); 811 if (!getter) return true; 812 813 // Sema only makes only of these when the ivar has a C++ class type, 814 // so the form is pretty constrained. 815 816 // If the property has a reference type, we might just be binding a 817 // reference, in which case the result will be a gl-value. We should 818 // treat this as a non-trivial operation. 819 if (getter->isGLValue()) 820 return false; 821 822 // If we selected a trivial copy-constructor, we're okay. 823 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 824 return (construct->getConstructor()->isTrivial()); 825 826 // The constructor might require cleanups (in which case it's never 827 // trivial). 828 assert(isa<ExprWithCleanups>(getter)); 829 return false; 830 } 831 832 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 833 /// copy the ivar into the resturn slot. 834 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 835 llvm::Value *returnAddr, 836 ObjCIvarDecl *ivar, 837 llvm::Constant *AtomicHelperFn) { 838 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 839 // AtomicHelperFn); 840 CallArgList args; 841 842 // The 1st argument is the return Slot. 843 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 844 845 // The 2nd argument is the address of the ivar. 846 llvm::Value *ivarAddr = 847 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 848 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 849 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 850 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 851 852 // Third argument is the helper function. 853 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 854 855 llvm::Value *copyCppAtomicObjectFn = 856 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 857 CGF.EmitCall( 858 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 859 copyCppAtomicObjectFn, ReturnValueSlot(), args); 860 } 861 862 void 863 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 864 const ObjCPropertyImplDecl *propImpl, 865 const ObjCMethodDecl *GetterMethodDecl, 866 llvm::Constant *AtomicHelperFn) { 867 // If there's a non-trivial 'get' expression, we just have to emit that. 868 if (!hasTrivialGetExpr(propImpl)) { 869 if (!AtomicHelperFn) { 870 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 871 /*nrvo*/ nullptr); 872 EmitReturnStmt(ret); 873 } 874 else { 875 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 876 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 877 ivar, AtomicHelperFn); 878 } 879 return; 880 } 881 882 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 883 QualType propType = prop->getType(); 884 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 885 886 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 887 888 // Pick an implementation strategy. 889 PropertyImplStrategy strategy(CGM, propImpl); 890 switch (strategy.getKind()) { 891 case PropertyImplStrategy::Native: { 892 // We don't need to do anything for a zero-size struct. 893 if (strategy.getIvarSize().isZero()) 894 return; 895 896 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 897 898 // Currently, all atomic accesses have to be through integer 899 // types, so there's no point in trying to pick a prettier type. 900 llvm::Type *bitcastType = 901 llvm::Type::getIntNTy(getLLVMContext(), 902 getContext().toBits(strategy.getIvarSize())); 903 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 904 905 // Perform an atomic load. This does not impose ordering constraints. 906 Address ivarAddr = LV.getAddress(); 907 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 908 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 909 load->setAtomic(llvm::AtomicOrdering::Unordered); 910 911 // Store that value into the return address. Doing this with a 912 // bitcast is likely to produce some pretty ugly IR, but it's not 913 // the *most* terrible thing in the world. 914 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType)); 915 916 // Make sure we don't do an autorelease. 917 AutoreleaseResult = false; 918 return; 919 } 920 921 case PropertyImplStrategy::GetSetProperty: { 922 llvm::Value *getPropertyFn = 923 CGM.getObjCRuntime().GetPropertyGetFunction(); 924 if (!getPropertyFn) { 925 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 926 return; 927 } 928 929 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 930 // FIXME: Can't this be simpler? This might even be worse than the 931 // corresponding gcc code. 932 llvm::Value *cmd = 933 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 934 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 935 llvm::Value *ivarOffset = 936 EmitIvarOffset(classImpl->getClassInterface(), ivar); 937 938 CallArgList args; 939 args.add(RValue::get(self), getContext().getObjCIdType()); 940 args.add(RValue::get(cmd), getContext().getObjCSelType()); 941 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 942 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 943 getContext().BoolTy); 944 945 // FIXME: We shouldn't need to get the function info here, the 946 // runtime already should have computed it to build the function. 947 llvm::Instruction *CallInstruction; 948 RValue RV = EmitCall( 949 getTypes().arrangeBuiltinFunctionCall(propType, args), 950 getPropertyFn, ReturnValueSlot(), args, CGCalleeInfo(), 951 &CallInstruction); 952 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 953 call->setTailCall(); 954 955 // We need to fix the type here. Ivars with copy & retain are 956 // always objects so we don't need to worry about complex or 957 // aggregates. 958 RV = RValue::get(Builder.CreateBitCast( 959 RV.getScalarVal(), 960 getTypes().ConvertType(getterMethod->getReturnType()))); 961 962 EmitReturnOfRValue(RV, propType); 963 964 // objc_getProperty does an autorelease, so we should suppress ours. 965 AutoreleaseResult = false; 966 967 return; 968 } 969 970 case PropertyImplStrategy::CopyStruct: 971 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 972 strategy.hasStrongMember()); 973 return; 974 975 case PropertyImplStrategy::Expression: 976 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 977 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 978 979 QualType ivarType = ivar->getType(); 980 switch (getEvaluationKind(ivarType)) { 981 case TEK_Complex: { 982 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 983 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 984 /*init*/ true); 985 return; 986 } 987 case TEK_Aggregate: 988 // The return value slot is guaranteed to not be aliased, but 989 // that's not necessarily the same as "on the stack", so 990 // we still potentially need objc_memmove_collectable. 991 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); 992 return; 993 case TEK_Scalar: { 994 llvm::Value *value; 995 if (propType->isReferenceType()) { 996 value = LV.getAddress().getPointer(); 997 } else { 998 // We want to load and autoreleaseReturnValue ARC __weak ivars. 999 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1000 if (getLangOpts().ObjCAutoRefCount) { 1001 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1002 } else { 1003 value = EmitARCLoadWeak(LV.getAddress()); 1004 } 1005 1006 // Otherwise we want to do a simple load, suppressing the 1007 // final autorelease. 1008 } else { 1009 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1010 AutoreleaseResult = false; 1011 } 1012 1013 value = Builder.CreateBitCast(value, ConvertType(propType)); 1014 value = Builder.CreateBitCast( 1015 value, ConvertType(GetterMethodDecl->getReturnType())); 1016 } 1017 1018 EmitReturnOfRValue(RValue::get(value), propType); 1019 return; 1020 } 1021 } 1022 llvm_unreachable("bad evaluation kind"); 1023 } 1024 1025 } 1026 llvm_unreachable("bad @property implementation strategy!"); 1027 } 1028 1029 /// emitStructSetterCall - Call the runtime function to store the value 1030 /// from the first formal parameter into the given ivar. 1031 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1032 ObjCIvarDecl *ivar) { 1033 // objc_copyStruct (&structIvar, &Arg, 1034 // sizeof (struct something), true, false); 1035 CallArgList args; 1036 1037 // The first argument is the address of the ivar. 1038 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1039 CGF.LoadObjCSelf(), ivar, 0) 1040 .getPointer(); 1041 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1042 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1043 1044 // The second argument is the address of the parameter variable. 1045 ParmVarDecl *argVar = *OMD->param_begin(); 1046 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1047 VK_LValue, SourceLocation()); 1048 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1049 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1050 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1051 1052 // The third argument is the sizeof the type. 1053 llvm::Value *size = 1054 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1055 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1056 1057 // The fourth argument is the 'isAtomic' flag. 1058 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1059 1060 // The fifth argument is the 'hasStrong' flag. 1061 // FIXME: should this really always be false? 1062 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1063 1064 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1065 CGF.EmitCall( 1066 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1067 copyStructFn, ReturnValueSlot(), args); 1068 } 1069 1070 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1071 /// the value from the first formal parameter into the given ivar, using 1072 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1073 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1074 ObjCMethodDecl *OMD, 1075 ObjCIvarDecl *ivar, 1076 llvm::Constant *AtomicHelperFn) { 1077 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1078 // AtomicHelperFn); 1079 CallArgList args; 1080 1081 // The first argument is the address of the ivar. 1082 llvm::Value *ivarAddr = 1083 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1084 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 1085 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1086 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1087 1088 // The second argument is the address of the parameter variable. 1089 ParmVarDecl *argVar = *OMD->param_begin(); 1090 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1091 VK_LValue, SourceLocation()); 1092 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1093 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1094 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1095 1096 // Third argument is the helper function. 1097 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1098 1099 llvm::Value *copyCppAtomicObjectFn = 1100 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1101 CGF.EmitCall( 1102 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1103 copyCppAtomicObjectFn, ReturnValueSlot(), args); 1104 } 1105 1106 1107 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1108 Expr *setter = PID->getSetterCXXAssignment(); 1109 if (!setter) return true; 1110 1111 // Sema only makes only of these when the ivar has a C++ class type, 1112 // so the form is pretty constrained. 1113 1114 // An operator call is trivial if the function it calls is trivial. 1115 // This also implies that there's nothing non-trivial going on with 1116 // the arguments, because operator= can only be trivial if it's a 1117 // synthesized assignment operator and therefore both parameters are 1118 // references. 1119 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1120 if (const FunctionDecl *callee 1121 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1122 if (callee->isTrivial()) 1123 return true; 1124 return false; 1125 } 1126 1127 assert(isa<ExprWithCleanups>(setter)); 1128 return false; 1129 } 1130 1131 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1132 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1133 return false; 1134 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1135 } 1136 1137 void 1138 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1139 const ObjCPropertyImplDecl *propImpl, 1140 llvm::Constant *AtomicHelperFn) { 1141 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1142 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1143 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1144 1145 // Just use the setter expression if Sema gave us one and it's 1146 // non-trivial. 1147 if (!hasTrivialSetExpr(propImpl)) { 1148 if (!AtomicHelperFn) 1149 // If non-atomic, assignment is called directly. 1150 EmitStmt(propImpl->getSetterCXXAssignment()); 1151 else 1152 // If atomic, assignment is called via a locking api. 1153 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1154 AtomicHelperFn); 1155 return; 1156 } 1157 1158 PropertyImplStrategy strategy(CGM, propImpl); 1159 switch (strategy.getKind()) { 1160 case PropertyImplStrategy::Native: { 1161 // We don't need to do anything for a zero-size struct. 1162 if (strategy.getIvarSize().isZero()) 1163 return; 1164 1165 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1166 1167 LValue ivarLValue = 1168 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1169 Address ivarAddr = ivarLValue.getAddress(); 1170 1171 // Currently, all atomic accesses have to be through integer 1172 // types, so there's no point in trying to pick a prettier type. 1173 llvm::Type *bitcastType = 1174 llvm::Type::getIntNTy(getLLVMContext(), 1175 getContext().toBits(strategy.getIvarSize())); 1176 1177 // Cast both arguments to the chosen operation type. 1178 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1179 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1180 1181 // This bitcast load is likely to cause some nasty IR. 1182 llvm::Value *load = Builder.CreateLoad(argAddr); 1183 1184 // Perform an atomic store. There are no memory ordering requirements. 1185 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1186 store->setAtomic(llvm::AtomicOrdering::Unordered); 1187 return; 1188 } 1189 1190 case PropertyImplStrategy::GetSetProperty: 1191 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1192 1193 llvm::Value *setOptimizedPropertyFn = nullptr; 1194 llvm::Value *setPropertyFn = nullptr; 1195 if (UseOptimizedSetter(CGM)) { 1196 // 10.8 and iOS 6.0 code and GC is off 1197 setOptimizedPropertyFn = 1198 CGM.getObjCRuntime() 1199 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1200 strategy.isCopy()); 1201 if (!setOptimizedPropertyFn) { 1202 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1203 return; 1204 } 1205 } 1206 else { 1207 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1208 if (!setPropertyFn) { 1209 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1210 return; 1211 } 1212 } 1213 1214 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1215 // <is-atomic>, <is-copy>). 1216 llvm::Value *cmd = 1217 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1218 llvm::Value *self = 1219 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1220 llvm::Value *ivarOffset = 1221 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1222 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1223 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1224 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1225 1226 CallArgList args; 1227 args.add(RValue::get(self), getContext().getObjCIdType()); 1228 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1229 if (setOptimizedPropertyFn) { 1230 args.add(RValue::get(arg), getContext().getObjCIdType()); 1231 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1232 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1233 setOptimizedPropertyFn, ReturnValueSlot(), args); 1234 } else { 1235 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1236 args.add(RValue::get(arg), getContext().getObjCIdType()); 1237 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1238 getContext().BoolTy); 1239 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1240 getContext().BoolTy); 1241 // FIXME: We shouldn't need to get the function info here, the runtime 1242 // already should have computed it to build the function. 1243 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1244 setPropertyFn, ReturnValueSlot(), args); 1245 } 1246 1247 return; 1248 } 1249 1250 case PropertyImplStrategy::CopyStruct: 1251 emitStructSetterCall(*this, setterMethod, ivar); 1252 return; 1253 1254 case PropertyImplStrategy::Expression: 1255 break; 1256 } 1257 1258 // Otherwise, fake up some ASTs and emit a normal assignment. 1259 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1260 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1261 VK_LValue, SourceLocation()); 1262 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1263 selfDecl->getType(), CK_LValueToRValue, &self, 1264 VK_RValue); 1265 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1266 SourceLocation(), SourceLocation(), 1267 &selfLoad, true, true); 1268 1269 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1270 QualType argType = argDecl->getType().getNonReferenceType(); 1271 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1272 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1273 argType.getUnqualifiedType(), CK_LValueToRValue, 1274 &arg, VK_RValue); 1275 1276 // The property type can differ from the ivar type in some situations with 1277 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1278 // The following absurdity is just to ensure well-formed IR. 1279 CastKind argCK = CK_NoOp; 1280 if (ivarRef.getType()->isObjCObjectPointerType()) { 1281 if (argLoad.getType()->isObjCObjectPointerType()) 1282 argCK = CK_BitCast; 1283 else if (argLoad.getType()->isBlockPointerType()) 1284 argCK = CK_BlockPointerToObjCPointerCast; 1285 else 1286 argCK = CK_CPointerToObjCPointerCast; 1287 } else if (ivarRef.getType()->isBlockPointerType()) { 1288 if (argLoad.getType()->isBlockPointerType()) 1289 argCK = CK_BitCast; 1290 else 1291 argCK = CK_AnyPointerToBlockPointerCast; 1292 } else if (ivarRef.getType()->isPointerType()) { 1293 argCK = CK_BitCast; 1294 } 1295 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1296 ivarRef.getType(), argCK, &argLoad, 1297 VK_RValue); 1298 Expr *finalArg = &argLoad; 1299 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1300 argLoad.getType())) 1301 finalArg = &argCast; 1302 1303 1304 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1305 ivarRef.getType(), VK_RValue, OK_Ordinary, 1306 SourceLocation(), false); 1307 EmitStmt(&assign); 1308 } 1309 1310 /// \brief Generate an Objective-C property setter function. 1311 /// 1312 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1313 /// is illegal within a category. 1314 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1315 const ObjCPropertyImplDecl *PID) { 1316 llvm::Constant *AtomicHelperFn = 1317 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1318 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1319 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1320 assert(OMD && "Invalid call to generate setter (empty method)"); 1321 StartObjCMethod(OMD, IMP->getClassInterface()); 1322 1323 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1324 1325 FinishFunction(); 1326 } 1327 1328 namespace { 1329 struct DestroyIvar final : EHScopeStack::Cleanup { 1330 private: 1331 llvm::Value *addr; 1332 const ObjCIvarDecl *ivar; 1333 CodeGenFunction::Destroyer *destroyer; 1334 bool useEHCleanupForArray; 1335 public: 1336 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1337 CodeGenFunction::Destroyer *destroyer, 1338 bool useEHCleanupForArray) 1339 : addr(addr), ivar(ivar), destroyer(destroyer), 1340 useEHCleanupForArray(useEHCleanupForArray) {} 1341 1342 void Emit(CodeGenFunction &CGF, Flags flags) override { 1343 LValue lvalue 1344 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1345 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1346 flags.isForNormalCleanup() && useEHCleanupForArray); 1347 } 1348 }; 1349 } 1350 1351 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1352 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1353 Address addr, 1354 QualType type) { 1355 llvm::Value *null = getNullForVariable(addr); 1356 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1357 } 1358 1359 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1360 ObjCImplementationDecl *impl) { 1361 CodeGenFunction::RunCleanupsScope scope(CGF); 1362 1363 llvm::Value *self = CGF.LoadObjCSelf(); 1364 1365 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1366 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1367 ivar; ivar = ivar->getNextIvar()) { 1368 QualType type = ivar->getType(); 1369 1370 // Check whether the ivar is a destructible type. 1371 QualType::DestructionKind dtorKind = type.isDestructedType(); 1372 if (!dtorKind) continue; 1373 1374 CodeGenFunction::Destroyer *destroyer = nullptr; 1375 1376 // Use a call to objc_storeStrong to destroy strong ivars, for the 1377 // general benefit of the tools. 1378 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1379 destroyer = destroyARCStrongWithStore; 1380 1381 // Otherwise use the default for the destruction kind. 1382 } else { 1383 destroyer = CGF.getDestroyer(dtorKind); 1384 } 1385 1386 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1387 1388 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1389 cleanupKind & EHCleanup); 1390 } 1391 1392 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1393 } 1394 1395 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1396 ObjCMethodDecl *MD, 1397 bool ctor) { 1398 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1399 StartObjCMethod(MD, IMP->getClassInterface()); 1400 1401 // Emit .cxx_construct. 1402 if (ctor) { 1403 // Suppress the final autorelease in ARC. 1404 AutoreleaseResult = false; 1405 1406 for (const auto *IvarInit : IMP->inits()) { 1407 FieldDecl *Field = IvarInit->getAnyMember(); 1408 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1409 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1410 LoadObjCSelf(), Ivar, 0); 1411 EmitAggExpr(IvarInit->getInit(), 1412 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1413 AggValueSlot::DoesNotNeedGCBarriers, 1414 AggValueSlot::IsNotAliased)); 1415 } 1416 // constructor returns 'self'. 1417 CodeGenTypes &Types = CGM.getTypes(); 1418 QualType IdTy(CGM.getContext().getObjCIdType()); 1419 llvm::Value *SelfAsId = 1420 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1421 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1422 1423 // Emit .cxx_destruct. 1424 } else { 1425 emitCXXDestructMethod(*this, IMP); 1426 } 1427 FinishFunction(); 1428 } 1429 1430 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1431 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1432 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1433 Self->getType(), VK_LValue, SourceLocation()); 1434 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1435 } 1436 1437 QualType CodeGenFunction::TypeOfSelfObject() { 1438 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1439 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1440 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1441 getContext().getCanonicalType(selfDecl->getType())); 1442 return PTy->getPointeeType(); 1443 } 1444 1445 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1446 llvm::Constant *EnumerationMutationFn = 1447 CGM.getObjCRuntime().EnumerationMutationFunction(); 1448 1449 if (!EnumerationMutationFn) { 1450 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1451 return; 1452 } 1453 1454 CGDebugInfo *DI = getDebugInfo(); 1455 if (DI) 1456 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1457 1458 // The local variable comes into scope immediately. 1459 AutoVarEmission variable = AutoVarEmission::invalid(); 1460 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1461 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1462 1463 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1464 1465 // Fast enumeration state. 1466 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1467 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1468 EmitNullInitialization(StatePtr, StateTy); 1469 1470 // Number of elements in the items array. 1471 static const unsigned NumItems = 16; 1472 1473 // Fetch the countByEnumeratingWithState:objects:count: selector. 1474 IdentifierInfo *II[] = { 1475 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1476 &CGM.getContext().Idents.get("objects"), 1477 &CGM.getContext().Idents.get("count") 1478 }; 1479 Selector FastEnumSel = 1480 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1481 1482 QualType ItemsTy = 1483 getContext().getConstantArrayType(getContext().getObjCIdType(), 1484 llvm::APInt(32, NumItems), 1485 ArrayType::Normal, 0); 1486 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1487 1488 RunCleanupsScope ForScope(*this); 1489 1490 // Emit the collection pointer. In ARC, we do a retain. 1491 llvm::Value *Collection; 1492 if (getLangOpts().ObjCAutoRefCount) { 1493 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1494 1495 // Enter a cleanup to do the release. 1496 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1497 } else { 1498 Collection = EmitScalarExpr(S.getCollection()); 1499 } 1500 1501 // The 'continue' label needs to appear within the cleanup for the 1502 // collection object. 1503 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1504 1505 // Send it our message: 1506 CallArgList Args; 1507 1508 // The first argument is a temporary of the enumeration-state type. 1509 Args.add(RValue::get(StatePtr.getPointer()), 1510 getContext().getPointerType(StateTy)); 1511 1512 // The second argument is a temporary array with space for NumItems 1513 // pointers. We'll actually be loading elements from the array 1514 // pointer written into the control state; this buffer is so that 1515 // collections that *aren't* backed by arrays can still queue up 1516 // batches of elements. 1517 Args.add(RValue::get(ItemsPtr.getPointer()), 1518 getContext().getPointerType(ItemsTy)); 1519 1520 // The third argument is the capacity of that temporary array. 1521 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); 1522 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); 1523 Args.add(RValue::get(Count), getContext().UnsignedLongTy); 1524 1525 // Start the enumeration. 1526 RValue CountRV = 1527 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1528 getContext().UnsignedLongTy, 1529 FastEnumSel, 1530 Collection, Args); 1531 1532 // The initial number of objects that were returned in the buffer. 1533 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1534 1535 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1536 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1537 1538 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); 1539 1540 // If the limit pointer was zero to begin with, the collection is 1541 // empty; skip all this. Set the branch weight assuming this has the same 1542 // probability of exiting the loop as any other loop exit. 1543 uint64_t EntryCount = getCurrentProfileCount(); 1544 Builder.CreateCondBr( 1545 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1546 LoopInitBB, 1547 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1548 1549 // Otherwise, initialize the loop. 1550 EmitBlock(LoopInitBB); 1551 1552 // Save the initial mutations value. This is the value at an 1553 // address that was written into the state object by 1554 // countByEnumeratingWithState:objects:count:. 1555 Address StateMutationsPtrPtr = Builder.CreateStructGEP( 1556 StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr"); 1557 llvm::Value *StateMutationsPtr 1558 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1559 1560 llvm::Value *initialMutations = 1561 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1562 "forcoll.initial-mutations"); 1563 1564 // Start looping. This is the point we return to whenever we have a 1565 // fresh, non-empty batch of objects. 1566 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1567 EmitBlock(LoopBodyBB); 1568 1569 // The current index into the buffer. 1570 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); 1571 index->addIncoming(zero, LoopInitBB); 1572 1573 // The current buffer size. 1574 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); 1575 count->addIncoming(initialBufferLimit, LoopInitBB); 1576 1577 incrementProfileCounter(&S); 1578 1579 // Check whether the mutations value has changed from where it was 1580 // at start. StateMutationsPtr should actually be invariant between 1581 // refreshes. 1582 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1583 llvm::Value *currentMutations 1584 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1585 "statemutations"); 1586 1587 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1588 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1589 1590 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1591 WasNotMutatedBB, WasMutatedBB); 1592 1593 // If so, call the enumeration-mutation function. 1594 EmitBlock(WasMutatedBB); 1595 llvm::Value *V = 1596 Builder.CreateBitCast(Collection, 1597 ConvertType(getContext().getObjCIdType())); 1598 CallArgList Args2; 1599 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1600 // FIXME: We shouldn't need to get the function info here, the runtime already 1601 // should have computed it to build the function. 1602 EmitCall( 1603 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1604 EnumerationMutationFn, ReturnValueSlot(), Args2); 1605 1606 // Otherwise, or if the mutation function returns, just continue. 1607 EmitBlock(WasNotMutatedBB); 1608 1609 // Initialize the element variable. 1610 RunCleanupsScope elementVariableScope(*this); 1611 bool elementIsVariable; 1612 LValue elementLValue; 1613 QualType elementType; 1614 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1615 // Initialize the variable, in case it's a __block variable or something. 1616 EmitAutoVarInit(variable); 1617 1618 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1619 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1620 VK_LValue, SourceLocation()); 1621 elementLValue = EmitLValue(&tempDRE); 1622 elementType = D->getType(); 1623 elementIsVariable = true; 1624 1625 if (D->isARCPseudoStrong()) 1626 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1627 } else { 1628 elementLValue = LValue(); // suppress warning 1629 elementType = cast<Expr>(S.getElement())->getType(); 1630 elementIsVariable = false; 1631 } 1632 llvm::Type *convertedElementType = ConvertType(elementType); 1633 1634 // Fetch the buffer out of the enumeration state. 1635 // TODO: this pointer should actually be invariant between 1636 // refreshes, which would help us do certain loop optimizations. 1637 Address StateItemsPtr = Builder.CreateStructGEP( 1638 StatePtr, 1, getPointerSize(), "stateitems.ptr"); 1639 llvm::Value *EnumStateItems = 1640 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1641 1642 // Fetch the value at the current index from the buffer. 1643 llvm::Value *CurrentItemPtr = 1644 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1645 llvm::Value *CurrentItem = 1646 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1647 1648 // Cast that value to the right type. 1649 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1650 "currentitem"); 1651 1652 // Make sure we have an l-value. Yes, this gets evaluated every 1653 // time through the loop. 1654 if (!elementIsVariable) { 1655 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1656 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1657 } else { 1658 EmitScalarInit(CurrentItem, elementLValue); 1659 } 1660 1661 // If we do have an element variable, this assignment is the end of 1662 // its initialization. 1663 if (elementIsVariable) 1664 EmitAutoVarCleanups(variable); 1665 1666 // Perform the loop body, setting up break and continue labels. 1667 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1668 { 1669 RunCleanupsScope Scope(*this); 1670 EmitStmt(S.getBody()); 1671 } 1672 BreakContinueStack.pop_back(); 1673 1674 // Destroy the element variable now. 1675 elementVariableScope.ForceCleanup(); 1676 1677 // Check whether there are more elements. 1678 EmitBlock(AfterBody.getBlock()); 1679 1680 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1681 1682 // First we check in the local buffer. 1683 llvm::Value *indexPlusOne 1684 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); 1685 1686 // If we haven't overrun the buffer yet, we can continue. 1687 // Set the branch weights based on the simplifying assumption that this is 1688 // like a while-loop, i.e., ignoring that the false branch fetches more 1689 // elements and then returns to the loop. 1690 Builder.CreateCondBr( 1691 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1692 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1693 1694 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1695 count->addIncoming(count, AfterBody.getBlock()); 1696 1697 // Otherwise, we have to fetch more elements. 1698 EmitBlock(FetchMoreBB); 1699 1700 CountRV = 1701 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1702 getContext().UnsignedLongTy, 1703 FastEnumSel, 1704 Collection, Args); 1705 1706 // If we got a zero count, we're done. 1707 llvm::Value *refetchCount = CountRV.getScalarVal(); 1708 1709 // (note that the message send might split FetchMoreBB) 1710 index->addIncoming(zero, Builder.GetInsertBlock()); 1711 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1712 1713 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1714 EmptyBB, LoopBodyBB); 1715 1716 // No more elements. 1717 EmitBlock(EmptyBB); 1718 1719 if (!elementIsVariable) { 1720 // If the element was not a declaration, set it to be null. 1721 1722 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1723 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1724 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1725 } 1726 1727 if (DI) 1728 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1729 1730 ForScope.ForceCleanup(); 1731 EmitBlock(LoopEnd.getBlock()); 1732 } 1733 1734 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1735 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1736 } 1737 1738 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1739 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1740 } 1741 1742 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1743 const ObjCAtSynchronizedStmt &S) { 1744 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1745 } 1746 1747 namespace { 1748 struct CallObjCRelease final : EHScopeStack::Cleanup { 1749 CallObjCRelease(llvm::Value *object) : object(object) {} 1750 llvm::Value *object; 1751 1752 void Emit(CodeGenFunction &CGF, Flags flags) override { 1753 // Releases at the end of the full-expression are imprecise. 1754 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1755 } 1756 }; 1757 } 1758 1759 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1760 /// release at the end of the full-expression. 1761 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1762 llvm::Value *object) { 1763 // If we're in a conditional branch, we need to make the cleanup 1764 // conditional. 1765 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1766 return object; 1767 } 1768 1769 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1770 llvm::Value *value) { 1771 return EmitARCRetainAutorelease(type, value); 1772 } 1773 1774 /// Given a number of pointers, inform the optimizer that they're 1775 /// being intrinsically used up until this point in the program. 1776 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1777 llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use; 1778 if (!fn) { 1779 llvm::FunctionType *fnType = 1780 llvm::FunctionType::get(CGM.VoidTy, None, true); 1781 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use"); 1782 } 1783 1784 // This isn't really a "runtime" function, but as an intrinsic it 1785 // doesn't really matter as long as we align things up. 1786 EmitNounwindRuntimeCall(fn, values); 1787 } 1788 1789 1790 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1791 llvm::FunctionType *type, 1792 StringRef fnName) { 1793 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); 1794 1795 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) { 1796 // If the target runtime doesn't naturally support ARC, emit weak 1797 // references to the runtime support library. We don't really 1798 // permit this to fail, but we need a particular relocation style. 1799 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 1800 f->setLinkage(llvm::Function::ExternalWeakLinkage); 1801 } else if (fnName == "objc_retain" || fnName == "objc_release") { 1802 // If we have Native ARC, set nonlazybind attribute for these APIs for 1803 // performance. 1804 f->addFnAttr(llvm::Attribute::NonLazyBind); 1805 } 1806 } 1807 1808 return fn; 1809 } 1810 1811 /// Perform an operation having the signature 1812 /// i8* (i8*) 1813 /// where a null input causes a no-op and returns null. 1814 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1815 llvm::Value *value, 1816 llvm::Constant *&fn, 1817 StringRef fnName, 1818 bool isTailCall = false) { 1819 if (isa<llvm::ConstantPointerNull>(value)) return value; 1820 1821 if (!fn) { 1822 llvm::FunctionType *fnType = 1823 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 1824 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1825 } 1826 1827 // Cast the argument to 'id'. 1828 llvm::Type *origType = value->getType(); 1829 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1830 1831 // Call the function. 1832 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1833 if (isTailCall) 1834 call->setTailCall(); 1835 1836 // Cast the result back to the original type. 1837 return CGF.Builder.CreateBitCast(call, origType); 1838 } 1839 1840 /// Perform an operation having the following signature: 1841 /// i8* (i8**) 1842 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1843 Address addr, 1844 llvm::Constant *&fn, 1845 StringRef fnName) { 1846 if (!fn) { 1847 llvm::FunctionType *fnType = 1848 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false); 1849 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1850 } 1851 1852 // Cast the argument to 'id*'. 1853 llvm::Type *origType = addr.getElementType(); 1854 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1855 1856 // Call the function. 1857 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 1858 1859 // Cast the result back to a dereference of the original type. 1860 if (origType != CGF.Int8PtrTy) 1861 result = CGF.Builder.CreateBitCast(result, origType); 1862 1863 return result; 1864 } 1865 1866 /// Perform an operation having the following signature: 1867 /// i8* (i8**, i8*) 1868 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1869 Address addr, 1870 llvm::Value *value, 1871 llvm::Constant *&fn, 1872 StringRef fnName, 1873 bool ignored) { 1874 assert(addr.getElementType() == value->getType()); 1875 1876 if (!fn) { 1877 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1878 1879 llvm::FunctionType *fnType 1880 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1881 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1882 } 1883 1884 llvm::Type *origType = value->getType(); 1885 1886 llvm::Value *args[] = { 1887 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 1888 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 1889 }; 1890 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 1891 1892 if (ignored) return nullptr; 1893 1894 return CGF.Builder.CreateBitCast(result, origType); 1895 } 1896 1897 /// Perform an operation having the following signature: 1898 /// void (i8**, i8**) 1899 static void emitARCCopyOperation(CodeGenFunction &CGF, 1900 Address dst, 1901 Address src, 1902 llvm::Constant *&fn, 1903 StringRef fnName) { 1904 assert(dst.getType() == src.getType()); 1905 1906 if (!fn) { 1907 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy }; 1908 1909 llvm::FunctionType *fnType 1910 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1911 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1912 } 1913 1914 llvm::Value *args[] = { 1915 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 1916 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 1917 }; 1918 CGF.EmitNounwindRuntimeCall(fn, args); 1919 } 1920 1921 /// Produce the code to do a retain. Based on the type, calls one of: 1922 /// call i8* \@objc_retain(i8* %value) 1923 /// call i8* \@objc_retainBlock(i8* %value) 1924 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1925 if (type->isBlockPointerType()) 1926 return EmitARCRetainBlock(value, /*mandatory*/ false); 1927 else 1928 return EmitARCRetainNonBlock(value); 1929 } 1930 1931 /// Retain the given object, with normal retain semantics. 1932 /// call i8* \@objc_retain(i8* %value) 1933 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1934 return emitARCValueOperation(*this, value, 1935 CGM.getObjCEntrypoints().objc_retain, 1936 "objc_retain"); 1937 } 1938 1939 /// Retain the given block, with _Block_copy semantics. 1940 /// call i8* \@objc_retainBlock(i8* %value) 1941 /// 1942 /// \param mandatory - If false, emit the call with metadata 1943 /// indicating that it's okay for the optimizer to eliminate this call 1944 /// if it can prove that the block never escapes except down the stack. 1945 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1946 bool mandatory) { 1947 llvm::Value *result 1948 = emitARCValueOperation(*this, value, 1949 CGM.getObjCEntrypoints().objc_retainBlock, 1950 "objc_retainBlock"); 1951 1952 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1953 // tell the optimizer that it doesn't need to do this copy if the 1954 // block doesn't escape, where being passed as an argument doesn't 1955 // count as escaping. 1956 if (!mandatory && isa<llvm::Instruction>(result)) { 1957 llvm::CallInst *call 1958 = cast<llvm::CallInst>(result->stripPointerCasts()); 1959 assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock); 1960 1961 call->setMetadata("clang.arc.copy_on_escape", 1962 llvm::MDNode::get(Builder.getContext(), None)); 1963 } 1964 1965 return result; 1966 } 1967 1968 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 1969 // Fetch the void(void) inline asm which marks that we're going to 1970 // do something with the autoreleased return value. 1971 llvm::InlineAsm *&marker 1972 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 1973 if (!marker) { 1974 StringRef assembly 1975 = CGF.CGM.getTargetCodeGenInfo() 1976 .getARCRetainAutoreleasedReturnValueMarker(); 1977 1978 // If we have an empty assembly string, there's nothing to do. 1979 if (assembly.empty()) { 1980 1981 // Otherwise, at -O0, build an inline asm that we're going to call 1982 // in a moment. 1983 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 1984 llvm::FunctionType *type = 1985 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 1986 1987 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 1988 1989 // If we're at -O1 and above, we don't want to litter the code 1990 // with this marker yet, so leave a breadcrumb for the ARC 1991 // optimizer to pick up. 1992 } else { 1993 llvm::NamedMDNode *metadata = 1994 CGF.CGM.getModule().getOrInsertNamedMetadata( 1995 "clang.arc.retainAutoreleasedReturnValueMarker"); 1996 assert(metadata->getNumOperands() <= 1); 1997 if (metadata->getNumOperands() == 0) { 1998 auto &ctx = CGF.getLLVMContext(); 1999 metadata->addOperand(llvm::MDNode::get(ctx, 2000 llvm::MDString::get(ctx, assembly))); 2001 } 2002 } 2003 } 2004 2005 // Call the marker asm if we made one, which we do only at -O0. 2006 if (marker) 2007 CGF.Builder.CreateCall(marker); 2008 } 2009 2010 /// Retain the given object which is the result of a function call. 2011 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2012 /// 2013 /// Yes, this function name is one character away from a different 2014 /// call with completely different semantics. 2015 llvm::Value * 2016 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2017 emitAutoreleasedReturnValueMarker(*this); 2018 return emitARCValueOperation(*this, value, 2019 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, 2020 "objc_retainAutoreleasedReturnValue"); 2021 } 2022 2023 /// Claim a possibly-autoreleased return value at +0. This is only 2024 /// valid to do in contexts which do not rely on the retain to keep 2025 /// the object valid for for all of its uses; for example, when 2026 /// the value is ignored, or when it is being assigned to an 2027 /// __unsafe_unretained variable. 2028 /// 2029 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2030 llvm::Value * 2031 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2032 emitAutoreleasedReturnValueMarker(*this); 2033 return emitARCValueOperation(*this, value, 2034 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, 2035 "objc_unsafeClaimAutoreleasedReturnValue"); 2036 } 2037 2038 /// Release the given object. 2039 /// call void \@objc_release(i8* %value) 2040 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2041 ARCPreciseLifetime_t precise) { 2042 if (isa<llvm::ConstantPointerNull>(value)) return; 2043 2044 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release; 2045 if (!fn) { 2046 llvm::FunctionType *fnType = 2047 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2048 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 2049 } 2050 2051 // Cast the argument to 'id'. 2052 value = Builder.CreateBitCast(value, Int8PtrTy); 2053 2054 // Call objc_release. 2055 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2056 2057 if (precise == ARCImpreciseLifetime) { 2058 call->setMetadata("clang.imprecise_release", 2059 llvm::MDNode::get(Builder.getContext(), None)); 2060 } 2061 } 2062 2063 /// Destroy a __strong variable. 2064 /// 2065 /// At -O0, emit a call to store 'null' into the address; 2066 /// instrumenting tools prefer this because the address is exposed, 2067 /// but it's relatively cumbersome to optimize. 2068 /// 2069 /// At -O1 and above, just load and call objc_release. 2070 /// 2071 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2072 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2073 ARCPreciseLifetime_t precise) { 2074 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2075 llvm::Value *null = getNullForVariable(addr); 2076 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2077 return; 2078 } 2079 2080 llvm::Value *value = Builder.CreateLoad(addr); 2081 EmitARCRelease(value, precise); 2082 } 2083 2084 /// Store into a strong object. Always calls this: 2085 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2086 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2087 llvm::Value *value, 2088 bool ignored) { 2089 assert(addr.getElementType() == value->getType()); 2090 2091 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2092 if (!fn) { 2093 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 2094 llvm::FunctionType *fnType 2095 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 2096 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 2097 } 2098 2099 llvm::Value *args[] = { 2100 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2101 Builder.CreateBitCast(value, Int8PtrTy) 2102 }; 2103 EmitNounwindRuntimeCall(fn, args); 2104 2105 if (ignored) return nullptr; 2106 return value; 2107 } 2108 2109 /// Store into a strong object. Sometimes calls this: 2110 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2111 /// Other times, breaks it down into components. 2112 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2113 llvm::Value *newValue, 2114 bool ignored) { 2115 QualType type = dst.getType(); 2116 bool isBlock = type->isBlockPointerType(); 2117 2118 // Use a store barrier at -O0 unless this is a block type or the 2119 // lvalue is inadequately aligned. 2120 if (shouldUseFusedARCCalls() && 2121 !isBlock && 2122 (dst.getAlignment().isZero() || 2123 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2124 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2125 } 2126 2127 // Otherwise, split it out. 2128 2129 // Retain the new value. 2130 newValue = EmitARCRetain(type, newValue); 2131 2132 // Read the old value. 2133 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2134 2135 // Store. We do this before the release so that any deallocs won't 2136 // see the old value. 2137 EmitStoreOfScalar(newValue, dst); 2138 2139 // Finally, release the old value. 2140 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2141 2142 return newValue; 2143 } 2144 2145 /// Autorelease the given object. 2146 /// call i8* \@objc_autorelease(i8* %value) 2147 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2148 return emitARCValueOperation(*this, value, 2149 CGM.getObjCEntrypoints().objc_autorelease, 2150 "objc_autorelease"); 2151 } 2152 2153 /// Autorelease the given object. 2154 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2155 llvm::Value * 2156 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2157 return emitARCValueOperation(*this, value, 2158 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2159 "objc_autoreleaseReturnValue", 2160 /*isTailCall*/ true); 2161 } 2162 2163 /// Do a fused retain/autorelease of the given object. 2164 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2165 llvm::Value * 2166 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2167 return emitARCValueOperation(*this, value, 2168 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2169 "objc_retainAutoreleaseReturnValue", 2170 /*isTailCall*/ true); 2171 } 2172 2173 /// Do a fused retain/autorelease of the given object. 2174 /// call i8* \@objc_retainAutorelease(i8* %value) 2175 /// or 2176 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2177 /// call i8* \@objc_autorelease(i8* %retain) 2178 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2179 llvm::Value *value) { 2180 if (!type->isBlockPointerType()) 2181 return EmitARCRetainAutoreleaseNonBlock(value); 2182 2183 if (isa<llvm::ConstantPointerNull>(value)) return value; 2184 2185 llvm::Type *origType = value->getType(); 2186 value = Builder.CreateBitCast(value, Int8PtrTy); 2187 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2188 value = EmitARCAutorelease(value); 2189 return Builder.CreateBitCast(value, origType); 2190 } 2191 2192 /// Do a fused retain/autorelease of the given object. 2193 /// call i8* \@objc_retainAutorelease(i8* %value) 2194 llvm::Value * 2195 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2196 return emitARCValueOperation(*this, value, 2197 CGM.getObjCEntrypoints().objc_retainAutorelease, 2198 "objc_retainAutorelease"); 2199 } 2200 2201 /// i8* \@objc_loadWeak(i8** %addr) 2202 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2203 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2204 return emitARCLoadOperation(*this, addr, 2205 CGM.getObjCEntrypoints().objc_loadWeak, 2206 "objc_loadWeak"); 2207 } 2208 2209 /// i8* \@objc_loadWeakRetained(i8** %addr) 2210 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2211 return emitARCLoadOperation(*this, addr, 2212 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2213 "objc_loadWeakRetained"); 2214 } 2215 2216 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2217 /// Returns %value. 2218 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2219 llvm::Value *value, 2220 bool ignored) { 2221 return emitARCStoreOperation(*this, addr, value, 2222 CGM.getObjCEntrypoints().objc_storeWeak, 2223 "objc_storeWeak", ignored); 2224 } 2225 2226 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2227 /// Returns %value. %addr is known to not have a current weak entry. 2228 /// Essentially equivalent to: 2229 /// *addr = nil; objc_storeWeak(addr, value); 2230 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2231 // If we're initializing to null, just write null to memory; no need 2232 // to get the runtime involved. But don't do this if optimization 2233 // is enabled, because accounting for this would make the optimizer 2234 // much more complicated. 2235 if (isa<llvm::ConstantPointerNull>(value) && 2236 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2237 Builder.CreateStore(value, addr); 2238 return; 2239 } 2240 2241 emitARCStoreOperation(*this, addr, value, 2242 CGM.getObjCEntrypoints().objc_initWeak, 2243 "objc_initWeak", /*ignored*/ true); 2244 } 2245 2246 /// void \@objc_destroyWeak(i8** %addr) 2247 /// Essentially objc_storeWeak(addr, nil). 2248 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2249 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2250 if (!fn) { 2251 llvm::FunctionType *fnType = 2252 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false); 2253 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 2254 } 2255 2256 // Cast the argument to 'id*'. 2257 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2258 2259 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2260 } 2261 2262 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2263 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2264 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2265 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2266 emitARCCopyOperation(*this, dst, src, 2267 CGM.getObjCEntrypoints().objc_moveWeak, 2268 "objc_moveWeak"); 2269 } 2270 2271 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2272 /// Disregards the current value in %dest. Essentially 2273 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2274 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2275 emitARCCopyOperation(*this, dst, src, 2276 CGM.getObjCEntrypoints().objc_copyWeak, 2277 "objc_copyWeak"); 2278 } 2279 2280 /// Produce the code to do a objc_autoreleasepool_push. 2281 /// call i8* \@objc_autoreleasePoolPush(void) 2282 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2283 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2284 if (!fn) { 2285 llvm::FunctionType *fnType = 2286 llvm::FunctionType::get(Int8PtrTy, false); 2287 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 2288 } 2289 2290 return EmitNounwindRuntimeCall(fn); 2291 } 2292 2293 /// Produce the code to do a primitive release. 2294 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2295 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2296 assert(value->getType() == Int8PtrTy); 2297 2298 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2299 if (!fn) { 2300 llvm::FunctionType *fnType = 2301 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2302 2303 // We don't want to use a weak import here; instead we should not 2304 // fall into this path. 2305 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 2306 } 2307 2308 // objc_autoreleasePoolPop can throw. 2309 EmitRuntimeCallOrInvoke(fn, value); 2310 } 2311 2312 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2313 /// Which is: [[NSAutoreleasePool alloc] init]; 2314 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2315 /// init is declared as: - (id) init; in its NSObject super class. 2316 /// 2317 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2318 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2319 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2320 // [NSAutoreleasePool alloc] 2321 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2322 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2323 CallArgList Args; 2324 RValue AllocRV = 2325 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2326 getContext().getObjCIdType(), 2327 AllocSel, Receiver, Args); 2328 2329 // [Receiver init] 2330 Receiver = AllocRV.getScalarVal(); 2331 II = &CGM.getContext().Idents.get("init"); 2332 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2333 RValue InitRV = 2334 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2335 getContext().getObjCIdType(), 2336 InitSel, Receiver, Args); 2337 return InitRV.getScalarVal(); 2338 } 2339 2340 /// Produce the code to do a primitive release. 2341 /// [tmp drain]; 2342 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2343 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2344 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2345 CallArgList Args; 2346 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2347 getContext().VoidTy, DrainSel, Arg, Args); 2348 } 2349 2350 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2351 Address addr, 2352 QualType type) { 2353 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2354 } 2355 2356 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2357 Address addr, 2358 QualType type) { 2359 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2360 } 2361 2362 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2363 Address addr, 2364 QualType type) { 2365 CGF.EmitARCDestroyWeak(addr); 2366 } 2367 2368 namespace { 2369 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2370 llvm::Value *Token; 2371 2372 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2373 2374 void Emit(CodeGenFunction &CGF, Flags flags) override { 2375 CGF.EmitObjCAutoreleasePoolPop(Token); 2376 } 2377 }; 2378 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2379 llvm::Value *Token; 2380 2381 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2382 2383 void Emit(CodeGenFunction &CGF, Flags flags) override { 2384 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2385 } 2386 }; 2387 } 2388 2389 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2390 if (CGM.getLangOpts().ObjCAutoRefCount) 2391 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2392 else 2393 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2394 } 2395 2396 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2397 LValue lvalue, 2398 QualType type) { 2399 switch (type.getObjCLifetime()) { 2400 case Qualifiers::OCL_None: 2401 case Qualifiers::OCL_ExplicitNone: 2402 case Qualifiers::OCL_Strong: 2403 case Qualifiers::OCL_Autoreleasing: 2404 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue, 2405 SourceLocation()).getScalarVal(), 2406 false); 2407 2408 case Qualifiers::OCL_Weak: 2409 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2410 true); 2411 } 2412 2413 llvm_unreachable("impossible lifetime!"); 2414 } 2415 2416 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2417 const Expr *e) { 2418 e = e->IgnoreParens(); 2419 QualType type = e->getType(); 2420 2421 // If we're loading retained from a __strong xvalue, we can avoid 2422 // an extra retain/release pair by zeroing out the source of this 2423 // "move" operation. 2424 if (e->isXValue() && 2425 !type.isConstQualified() && 2426 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2427 // Emit the lvalue. 2428 LValue lv = CGF.EmitLValue(e); 2429 2430 // Load the object pointer. 2431 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2432 SourceLocation()).getScalarVal(); 2433 2434 // Set the source pointer to NULL. 2435 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2436 2437 return TryEmitResult(result, true); 2438 } 2439 2440 // As a very special optimization, in ARC++, if the l-value is the 2441 // result of a non-volatile assignment, do a simple retain of the 2442 // result of the call to objc_storeWeak instead of reloading. 2443 if (CGF.getLangOpts().CPlusPlus && 2444 !type.isVolatileQualified() && 2445 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2446 isa<BinaryOperator>(e) && 2447 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2448 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2449 2450 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2451 } 2452 2453 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2454 llvm::Value *value)> 2455 ValueTransform; 2456 2457 /// Insert code immediately after a call. 2458 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2459 llvm::Value *value, 2460 ValueTransform doAfterCall, 2461 ValueTransform doFallback) { 2462 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2463 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2464 2465 // Place the retain immediately following the call. 2466 CGF.Builder.SetInsertPoint(call->getParent(), 2467 ++llvm::BasicBlock::iterator(call)); 2468 value = doAfterCall(CGF, value); 2469 2470 CGF.Builder.restoreIP(ip); 2471 return value; 2472 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2473 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2474 2475 // Place the retain at the beginning of the normal destination block. 2476 llvm::BasicBlock *BB = invoke->getNormalDest(); 2477 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2478 value = doAfterCall(CGF, value); 2479 2480 CGF.Builder.restoreIP(ip); 2481 return value; 2482 2483 // Bitcasts can arise because of related-result returns. Rewrite 2484 // the operand. 2485 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2486 llvm::Value *operand = bitcast->getOperand(0); 2487 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2488 bitcast->setOperand(0, operand); 2489 return bitcast; 2490 2491 // Generic fall-back case. 2492 } else { 2493 // Retain using the non-block variant: we never need to do a copy 2494 // of a block that's been returned to us. 2495 return doFallback(CGF, value); 2496 } 2497 } 2498 2499 /// Given that the given expression is some sort of call (which does 2500 /// not return retained), emit a retain following it. 2501 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2502 const Expr *e) { 2503 llvm::Value *value = CGF.EmitScalarExpr(e); 2504 return emitARCOperationAfterCall(CGF, value, 2505 [](CodeGenFunction &CGF, llvm::Value *value) { 2506 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2507 }, 2508 [](CodeGenFunction &CGF, llvm::Value *value) { 2509 return CGF.EmitARCRetainNonBlock(value); 2510 }); 2511 } 2512 2513 /// Given that the given expression is some sort of call (which does 2514 /// not return retained), perform an unsafeClaim following it. 2515 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 2516 const Expr *e) { 2517 llvm::Value *value = CGF.EmitScalarExpr(e); 2518 return emitARCOperationAfterCall(CGF, value, 2519 [](CodeGenFunction &CGF, llvm::Value *value) { 2520 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 2521 }, 2522 [](CodeGenFunction &CGF, llvm::Value *value) { 2523 return value; 2524 }); 2525 } 2526 2527 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 2528 bool allowUnsafeClaim) { 2529 if (allowUnsafeClaim && 2530 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 2531 return emitARCUnsafeClaimCallResult(*this, E); 2532 } else { 2533 llvm::Value *value = emitARCRetainCallResult(*this, E); 2534 return EmitObjCConsumeObject(E->getType(), value); 2535 } 2536 } 2537 2538 /// Determine whether it might be important to emit a separate 2539 /// objc_retain_block on the result of the given expression, or 2540 /// whether it's okay to just emit it in a +1 context. 2541 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2542 assert(e->getType()->isBlockPointerType()); 2543 e = e->IgnoreParens(); 2544 2545 // For future goodness, emit block expressions directly in +1 2546 // contexts if we can. 2547 if (isa<BlockExpr>(e)) 2548 return false; 2549 2550 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2551 switch (cast->getCastKind()) { 2552 // Emitting these operations in +1 contexts is goodness. 2553 case CK_LValueToRValue: 2554 case CK_ARCReclaimReturnedObject: 2555 case CK_ARCConsumeObject: 2556 case CK_ARCProduceObject: 2557 return false; 2558 2559 // These operations preserve a block type. 2560 case CK_NoOp: 2561 case CK_BitCast: 2562 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2563 2564 // These operations are known to be bad (or haven't been considered). 2565 case CK_AnyPointerToBlockPointerCast: 2566 default: 2567 return true; 2568 } 2569 } 2570 2571 return true; 2572 } 2573 2574 namespace { 2575 /// A CRTP base class for emitting expressions of retainable object 2576 /// pointer type in ARC. 2577 template <typename Impl, typename Result> class ARCExprEmitter { 2578 protected: 2579 CodeGenFunction &CGF; 2580 Impl &asImpl() { return *static_cast<Impl*>(this); } 2581 2582 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 2583 2584 public: 2585 Result visit(const Expr *e); 2586 Result visitCastExpr(const CastExpr *e); 2587 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 2588 Result visitBinaryOperator(const BinaryOperator *e); 2589 Result visitBinAssign(const BinaryOperator *e); 2590 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 2591 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 2592 Result visitBinAssignWeak(const BinaryOperator *e); 2593 Result visitBinAssignStrong(const BinaryOperator *e); 2594 2595 // Minimal implementation: 2596 // Result visitLValueToRValue(const Expr *e) 2597 // Result visitConsumeObject(const Expr *e) 2598 // Result visitExtendBlockObject(const Expr *e) 2599 // Result visitReclaimReturnedObject(const Expr *e) 2600 // Result visitCall(const Expr *e) 2601 // Result visitExpr(const Expr *e) 2602 // 2603 // Result emitBitCast(Result result, llvm::Type *resultType) 2604 // llvm::Value *getValueOfResult(Result result) 2605 }; 2606 } 2607 2608 /// Try to emit a PseudoObjectExpr under special ARC rules. 2609 /// 2610 /// This massively duplicates emitPseudoObjectRValue. 2611 template <typename Impl, typename Result> 2612 Result 2613 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 2614 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2615 2616 // Find the result expression. 2617 const Expr *resultExpr = E->getResultExpr(); 2618 assert(resultExpr); 2619 Result result; 2620 2621 for (PseudoObjectExpr::const_semantics_iterator 2622 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2623 const Expr *semantic = *i; 2624 2625 // If this semantic expression is an opaque value, bind it 2626 // to the result of its source expression. 2627 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2628 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2629 OVMA opaqueData; 2630 2631 // If this semantic is the result of the pseudo-object 2632 // expression, try to evaluate the source as +1. 2633 if (ov == resultExpr) { 2634 assert(!OVMA::shouldBindAsLValue(ov)); 2635 result = asImpl().visit(ov->getSourceExpr()); 2636 opaqueData = OVMA::bind(CGF, ov, 2637 RValue::get(asImpl().getValueOfResult(result))); 2638 2639 // Otherwise, just bind it. 2640 } else { 2641 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2642 } 2643 opaques.push_back(opaqueData); 2644 2645 // Otherwise, if the expression is the result, evaluate it 2646 // and remember the result. 2647 } else if (semantic == resultExpr) { 2648 result = asImpl().visit(semantic); 2649 2650 // Otherwise, evaluate the expression in an ignored context. 2651 } else { 2652 CGF.EmitIgnoredExpr(semantic); 2653 } 2654 } 2655 2656 // Unbind all the opaques now. 2657 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2658 opaques[i].unbind(CGF); 2659 2660 return result; 2661 } 2662 2663 template <typename Impl, typename Result> 2664 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 2665 switch (e->getCastKind()) { 2666 2667 // No-op casts don't change the type, so we just ignore them. 2668 case CK_NoOp: 2669 return asImpl().visit(e->getSubExpr()); 2670 2671 // These casts can change the type. 2672 case CK_CPointerToObjCPointerCast: 2673 case CK_BlockPointerToObjCPointerCast: 2674 case CK_AnyPointerToBlockPointerCast: 2675 case CK_BitCast: { 2676 llvm::Type *resultType = CGF.ConvertType(e->getType()); 2677 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 2678 Result result = asImpl().visit(e->getSubExpr()); 2679 return asImpl().emitBitCast(result, resultType); 2680 } 2681 2682 // Handle some casts specially. 2683 case CK_LValueToRValue: 2684 return asImpl().visitLValueToRValue(e->getSubExpr()); 2685 case CK_ARCConsumeObject: 2686 return asImpl().visitConsumeObject(e->getSubExpr()); 2687 case CK_ARCExtendBlockObject: 2688 return asImpl().visitExtendBlockObject(e->getSubExpr()); 2689 case CK_ARCReclaimReturnedObject: 2690 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 2691 2692 // Otherwise, use the default logic. 2693 default: 2694 return asImpl().visitExpr(e); 2695 } 2696 } 2697 2698 template <typename Impl, typename Result> 2699 Result 2700 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 2701 switch (e->getOpcode()) { 2702 case BO_Comma: 2703 CGF.EmitIgnoredExpr(e->getLHS()); 2704 CGF.EnsureInsertPoint(); 2705 return asImpl().visit(e->getRHS()); 2706 2707 case BO_Assign: 2708 return asImpl().visitBinAssign(e); 2709 2710 default: 2711 return asImpl().visitExpr(e); 2712 } 2713 } 2714 2715 template <typename Impl, typename Result> 2716 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 2717 switch (e->getLHS()->getType().getObjCLifetime()) { 2718 case Qualifiers::OCL_ExplicitNone: 2719 return asImpl().visitBinAssignUnsafeUnretained(e); 2720 2721 case Qualifiers::OCL_Weak: 2722 return asImpl().visitBinAssignWeak(e); 2723 2724 case Qualifiers::OCL_Autoreleasing: 2725 return asImpl().visitBinAssignAutoreleasing(e); 2726 2727 case Qualifiers::OCL_Strong: 2728 return asImpl().visitBinAssignStrong(e); 2729 2730 case Qualifiers::OCL_None: 2731 return asImpl().visitExpr(e); 2732 } 2733 llvm_unreachable("bad ObjC ownership qualifier"); 2734 } 2735 2736 /// The default rule for __unsafe_unretained emits the RHS recursively, 2737 /// stores into the unsafe variable, and propagates the result outward. 2738 template <typename Impl, typename Result> 2739 Result ARCExprEmitter<Impl,Result>:: 2740 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 2741 // Recursively emit the RHS. 2742 // For __block safety, do this before emitting the LHS. 2743 Result result = asImpl().visit(e->getRHS()); 2744 2745 // Perform the store. 2746 LValue lvalue = 2747 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 2748 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 2749 lvalue); 2750 2751 return result; 2752 } 2753 2754 template <typename Impl, typename Result> 2755 Result 2756 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 2757 return asImpl().visitExpr(e); 2758 } 2759 2760 template <typename Impl, typename Result> 2761 Result 2762 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 2763 return asImpl().visitExpr(e); 2764 } 2765 2766 template <typename Impl, typename Result> 2767 Result 2768 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 2769 return asImpl().visitExpr(e); 2770 } 2771 2772 /// The general expression-emission logic. 2773 template <typename Impl, typename Result> 2774 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 2775 // We should *never* see a nested full-expression here, because if 2776 // we fail to emit at +1, our caller must not retain after we close 2777 // out the full-expression. This isn't as important in the unsafe 2778 // emitter. 2779 assert(!isa<ExprWithCleanups>(e)); 2780 2781 // Look through parens, __extension__, generic selection, etc. 2782 e = e->IgnoreParens(); 2783 2784 // Handle certain kinds of casts. 2785 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2786 return asImpl().visitCastExpr(ce); 2787 2788 // Handle the comma operator. 2789 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 2790 return asImpl().visitBinaryOperator(op); 2791 2792 // TODO: handle conditional operators here 2793 2794 // For calls and message sends, use the retained-call logic. 2795 // Delegate inits are a special case in that they're the only 2796 // returns-retained expression that *isn't* surrounded by 2797 // a consume. 2798 } else if (isa<CallExpr>(e) || 2799 (isa<ObjCMessageExpr>(e) && 2800 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2801 return asImpl().visitCall(e); 2802 2803 // Look through pseudo-object expressions. 2804 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2805 return asImpl().visitPseudoObjectExpr(pseudo); 2806 } 2807 2808 return asImpl().visitExpr(e); 2809 } 2810 2811 namespace { 2812 2813 /// An emitter for +1 results. 2814 struct ARCRetainExprEmitter : 2815 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 2816 2817 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 2818 2819 llvm::Value *getValueOfResult(TryEmitResult result) { 2820 return result.getPointer(); 2821 } 2822 2823 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 2824 llvm::Value *value = result.getPointer(); 2825 value = CGF.Builder.CreateBitCast(value, resultType); 2826 result.setPointer(value); 2827 return result; 2828 } 2829 2830 TryEmitResult visitLValueToRValue(const Expr *e) { 2831 return tryEmitARCRetainLoadOfScalar(CGF, e); 2832 } 2833 2834 /// For consumptions, just emit the subexpression and thus elide 2835 /// the retain/release pair. 2836 TryEmitResult visitConsumeObject(const Expr *e) { 2837 llvm::Value *result = CGF.EmitScalarExpr(e); 2838 return TryEmitResult(result, true); 2839 } 2840 2841 /// Block extends are net +0. Naively, we could just recurse on 2842 /// the subexpression, but actually we need to ensure that the 2843 /// value is copied as a block, so there's a little filter here. 2844 TryEmitResult visitExtendBlockObject(const Expr *e) { 2845 llvm::Value *result; // will be a +0 value 2846 2847 // If we can't safely assume the sub-expression will produce a 2848 // block-copied value, emit the sub-expression at +0. 2849 if (shouldEmitSeparateBlockRetain(e)) { 2850 result = CGF.EmitScalarExpr(e); 2851 2852 // Otherwise, try to emit the sub-expression at +1 recursively. 2853 } else { 2854 TryEmitResult subresult = asImpl().visit(e); 2855 2856 // If that produced a retained value, just use that. 2857 if (subresult.getInt()) { 2858 return subresult; 2859 } 2860 2861 // Otherwise it's +0. 2862 result = subresult.getPointer(); 2863 } 2864 2865 // Retain the object as a block. 2866 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2867 return TryEmitResult(result, true); 2868 } 2869 2870 /// For reclaims, emit the subexpression as a retained call and 2871 /// skip the consumption. 2872 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 2873 llvm::Value *result = emitARCRetainCallResult(CGF, e); 2874 return TryEmitResult(result, true); 2875 } 2876 2877 /// When we have an undecorated call, retroactively do a claim. 2878 TryEmitResult visitCall(const Expr *e) { 2879 llvm::Value *result = emitARCRetainCallResult(CGF, e); 2880 return TryEmitResult(result, true); 2881 } 2882 2883 // TODO: maybe special-case visitBinAssignWeak? 2884 2885 TryEmitResult visitExpr(const Expr *e) { 2886 // We didn't find an obvious production, so emit what we've got and 2887 // tell the caller that we didn't manage to retain. 2888 llvm::Value *result = CGF.EmitScalarExpr(e); 2889 return TryEmitResult(result, false); 2890 } 2891 }; 2892 } 2893 2894 static TryEmitResult 2895 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2896 return ARCRetainExprEmitter(CGF).visit(e); 2897 } 2898 2899 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2900 LValue lvalue, 2901 QualType type) { 2902 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2903 llvm::Value *value = result.getPointer(); 2904 if (!result.getInt()) 2905 value = CGF.EmitARCRetain(type, value); 2906 return value; 2907 } 2908 2909 /// EmitARCRetainScalarExpr - Semantically equivalent to 2910 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2911 /// best-effort attempt to peephole expressions that naturally produce 2912 /// retained objects. 2913 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2914 // The retain needs to happen within the full-expression. 2915 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2916 enterFullExpression(cleanups); 2917 RunCleanupsScope scope(*this); 2918 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 2919 } 2920 2921 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2922 llvm::Value *value = result.getPointer(); 2923 if (!result.getInt()) 2924 value = EmitARCRetain(e->getType(), value); 2925 return value; 2926 } 2927 2928 llvm::Value * 2929 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2930 // The retain needs to happen within the full-expression. 2931 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2932 enterFullExpression(cleanups); 2933 RunCleanupsScope scope(*this); 2934 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 2935 } 2936 2937 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2938 llvm::Value *value = result.getPointer(); 2939 if (result.getInt()) 2940 value = EmitARCAutorelease(value); 2941 else 2942 value = EmitARCRetainAutorelease(e->getType(), value); 2943 return value; 2944 } 2945 2946 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2947 llvm::Value *result; 2948 bool doRetain; 2949 2950 if (shouldEmitSeparateBlockRetain(e)) { 2951 result = EmitScalarExpr(e); 2952 doRetain = true; 2953 } else { 2954 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2955 result = subresult.getPointer(); 2956 doRetain = !subresult.getInt(); 2957 } 2958 2959 if (doRetain) 2960 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2961 return EmitObjCConsumeObject(e->getType(), result); 2962 } 2963 2964 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 2965 // In ARC, retain and autorelease the expression. 2966 if (getLangOpts().ObjCAutoRefCount) { 2967 // Do so before running any cleanups for the full-expression. 2968 // EmitARCRetainAutoreleaseScalarExpr does this for us. 2969 return EmitARCRetainAutoreleaseScalarExpr(expr); 2970 } 2971 2972 // Otherwise, use the normal scalar-expression emission. The 2973 // exception machinery doesn't do anything special with the 2974 // exception like retaining it, so there's no safety associated with 2975 // only running cleanups after the throw has started, and when it 2976 // matters it tends to be substantially inferior code. 2977 return EmitScalarExpr(expr); 2978 } 2979 2980 namespace { 2981 2982 /// An emitter for assigning into an __unsafe_unretained context. 2983 struct ARCUnsafeUnretainedExprEmitter : 2984 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 2985 2986 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 2987 2988 llvm::Value *getValueOfResult(llvm::Value *value) { 2989 return value; 2990 } 2991 2992 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 2993 return CGF.Builder.CreateBitCast(value, resultType); 2994 } 2995 2996 llvm::Value *visitLValueToRValue(const Expr *e) { 2997 return CGF.EmitScalarExpr(e); 2998 } 2999 3000 /// For consumptions, just emit the subexpression and perform the 3001 /// consumption like normal. 3002 llvm::Value *visitConsumeObject(const Expr *e) { 3003 llvm::Value *value = CGF.EmitScalarExpr(e); 3004 return CGF.EmitObjCConsumeObject(e->getType(), value); 3005 } 3006 3007 /// No special logic for block extensions. (This probably can't 3008 /// actually happen in this emitter, though.) 3009 llvm::Value *visitExtendBlockObject(const Expr *e) { 3010 return CGF.EmitARCExtendBlockObject(e); 3011 } 3012 3013 /// For reclaims, perform an unsafeClaim if that's enabled. 3014 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3015 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3016 } 3017 3018 /// When we have an undecorated call, just emit it without adding 3019 /// the unsafeClaim. 3020 llvm::Value *visitCall(const Expr *e) { 3021 return CGF.EmitScalarExpr(e); 3022 } 3023 3024 /// Just do normal scalar emission in the default case. 3025 llvm::Value *visitExpr(const Expr *e) { 3026 return CGF.EmitScalarExpr(e); 3027 } 3028 }; 3029 } 3030 3031 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3032 const Expr *e) { 3033 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3034 } 3035 3036 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3037 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3038 /// avoiding any spurious retains, including by performing reclaims 3039 /// with objc_unsafeClaimAutoreleasedReturnValue. 3040 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3041 // Look through full-expressions. 3042 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3043 enterFullExpression(cleanups); 3044 RunCleanupsScope scope(*this); 3045 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3046 } 3047 3048 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3049 } 3050 3051 std::pair<LValue,llvm::Value*> 3052 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3053 bool ignored) { 3054 // Evaluate the RHS first. If we're ignoring the result, assume 3055 // that we can emit at an unsafe +0. 3056 llvm::Value *value; 3057 if (ignored) { 3058 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3059 } else { 3060 value = EmitScalarExpr(e->getRHS()); 3061 } 3062 3063 // Emit the LHS and perform the store. 3064 LValue lvalue = EmitLValue(e->getLHS()); 3065 EmitStoreOfScalar(value, lvalue); 3066 3067 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3068 } 3069 3070 std::pair<LValue,llvm::Value*> 3071 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3072 bool ignored) { 3073 // Evaluate the RHS first. 3074 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3075 llvm::Value *value = result.getPointer(); 3076 3077 bool hasImmediateRetain = result.getInt(); 3078 3079 // If we didn't emit a retained object, and the l-value is of block 3080 // type, then we need to emit the block-retain immediately in case 3081 // it invalidates the l-value. 3082 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3083 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3084 hasImmediateRetain = true; 3085 } 3086 3087 LValue lvalue = EmitLValue(e->getLHS()); 3088 3089 // If the RHS was emitted retained, expand this. 3090 if (hasImmediateRetain) { 3091 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3092 EmitStoreOfScalar(value, lvalue); 3093 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3094 } else { 3095 value = EmitARCStoreStrong(lvalue, value, ignored); 3096 } 3097 3098 return std::pair<LValue,llvm::Value*>(lvalue, value); 3099 } 3100 3101 std::pair<LValue,llvm::Value*> 3102 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3103 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3104 LValue lvalue = EmitLValue(e->getLHS()); 3105 3106 EmitStoreOfScalar(value, lvalue); 3107 3108 return std::pair<LValue,llvm::Value*>(lvalue, value); 3109 } 3110 3111 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3112 const ObjCAutoreleasePoolStmt &ARPS) { 3113 const Stmt *subStmt = ARPS.getSubStmt(); 3114 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3115 3116 CGDebugInfo *DI = getDebugInfo(); 3117 if (DI) 3118 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3119 3120 // Keep track of the current cleanup stack depth. 3121 RunCleanupsScope Scope(*this); 3122 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3123 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3124 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3125 } else { 3126 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3127 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3128 } 3129 3130 for (const auto *I : S.body()) 3131 EmitStmt(I); 3132 3133 if (DI) 3134 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3135 } 3136 3137 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3138 /// make sure it survives garbage collection until this point. 3139 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3140 // We just use an inline assembly. 3141 llvm::FunctionType *extenderType 3142 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3143 llvm::Value *extender 3144 = llvm::InlineAsm::get(extenderType, 3145 /* assembly */ "", 3146 /* constraints */ "r", 3147 /* side effects */ true); 3148 3149 object = Builder.CreateBitCast(object, VoidPtrTy); 3150 EmitNounwindRuntimeCall(extender, object); 3151 } 3152 3153 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3154 /// non-trivial copy assignment function, produce following helper function. 3155 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3156 /// 3157 llvm::Constant * 3158 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3159 const ObjCPropertyImplDecl *PID) { 3160 if (!getLangOpts().CPlusPlus || 3161 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3162 return nullptr; 3163 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3164 if (!Ty->isRecordType()) 3165 return nullptr; 3166 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3167 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3168 return nullptr; 3169 llvm::Constant *HelperFn = nullptr; 3170 if (hasTrivialSetExpr(PID)) 3171 return nullptr; 3172 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3173 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3174 return HelperFn; 3175 3176 ASTContext &C = getContext(); 3177 IdentifierInfo *II 3178 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3179 FunctionDecl *FD = FunctionDecl::Create(C, 3180 C.getTranslationUnitDecl(), 3181 SourceLocation(), 3182 SourceLocation(), II, C.VoidTy, 3183 nullptr, SC_Static, 3184 false, 3185 false); 3186 3187 QualType DestTy = C.getPointerType(Ty); 3188 QualType SrcTy = Ty; 3189 SrcTy.addConst(); 3190 SrcTy = C.getPointerType(SrcTy); 3191 3192 FunctionArgList args; 3193 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 3194 args.push_back(&dstDecl); 3195 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 3196 args.push_back(&srcDecl); 3197 3198 const CGFunctionInfo &FI = 3199 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); 3200 3201 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3202 3203 llvm::Function *Fn = 3204 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3205 "__assign_helper_atomic_property_", 3206 &CGM.getModule()); 3207 3208 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 3209 3210 StartFunction(FD, C.VoidTy, Fn, FI, args); 3211 3212 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 3213 VK_RValue, SourceLocation()); 3214 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 3215 VK_LValue, OK_Ordinary, SourceLocation()); 3216 3217 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 3218 VK_RValue, SourceLocation()); 3219 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3220 VK_LValue, OK_Ordinary, SourceLocation()); 3221 3222 Expr *Args[2] = { &DST, &SRC }; 3223 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3224 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 3225 Args, DestTy->getPointeeType(), 3226 VK_LValue, SourceLocation(), false); 3227 3228 EmitStmt(&TheCall); 3229 3230 FinishFunction(); 3231 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3232 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3233 return HelperFn; 3234 } 3235 3236 llvm::Constant * 3237 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3238 const ObjCPropertyImplDecl *PID) { 3239 if (!getLangOpts().CPlusPlus || 3240 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3241 return nullptr; 3242 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3243 QualType Ty = PD->getType(); 3244 if (!Ty->isRecordType()) 3245 return nullptr; 3246 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3247 return nullptr; 3248 llvm::Constant *HelperFn = nullptr; 3249 3250 if (hasTrivialGetExpr(PID)) 3251 return nullptr; 3252 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3253 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3254 return HelperFn; 3255 3256 3257 ASTContext &C = getContext(); 3258 IdentifierInfo *II 3259 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3260 FunctionDecl *FD = FunctionDecl::Create(C, 3261 C.getTranslationUnitDecl(), 3262 SourceLocation(), 3263 SourceLocation(), II, C.VoidTy, 3264 nullptr, SC_Static, 3265 false, 3266 false); 3267 3268 QualType DestTy = C.getPointerType(Ty); 3269 QualType SrcTy = Ty; 3270 SrcTy.addConst(); 3271 SrcTy = C.getPointerType(SrcTy); 3272 3273 FunctionArgList args; 3274 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); 3275 args.push_back(&dstDecl); 3276 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); 3277 args.push_back(&srcDecl); 3278 3279 const CGFunctionInfo &FI = 3280 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); 3281 3282 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3283 3284 llvm::Function *Fn = 3285 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3286 "__copy_helper_atomic_property_", &CGM.getModule()); 3287 3288 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); 3289 3290 StartFunction(FD, C.VoidTy, Fn, FI, args); 3291 3292 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, 3293 VK_RValue, SourceLocation()); 3294 3295 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3296 VK_LValue, OK_Ordinary, SourceLocation()); 3297 3298 CXXConstructExpr *CXXConstExpr = 3299 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3300 3301 SmallVector<Expr*, 4> ConstructorArgs; 3302 ConstructorArgs.push_back(&SRC); 3303 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3304 CXXConstExpr->arg_end()); 3305 3306 CXXConstructExpr *TheCXXConstructExpr = 3307 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3308 CXXConstExpr->getConstructor(), 3309 CXXConstExpr->isElidable(), 3310 ConstructorArgs, 3311 CXXConstExpr->hadMultipleCandidates(), 3312 CXXConstExpr->isListInitialization(), 3313 CXXConstExpr->isStdInitListInitialization(), 3314 CXXConstExpr->requiresZeroInitialization(), 3315 CXXConstExpr->getConstructionKind(), 3316 SourceRange()); 3317 3318 DeclRefExpr DstExpr(&dstDecl, false, DestTy, 3319 VK_RValue, SourceLocation()); 3320 3321 RValue DV = EmitAnyExpr(&DstExpr); 3322 CharUnits Alignment 3323 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3324 EmitAggExpr(TheCXXConstructExpr, 3325 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3326 Qualifiers(), 3327 AggValueSlot::IsDestructed, 3328 AggValueSlot::DoesNotNeedGCBarriers, 3329 AggValueSlot::IsNotAliased)); 3330 3331 FinishFunction(); 3332 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3333 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3334 return HelperFn; 3335 } 3336 3337 llvm::Value * 3338 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3339 // Get selectors for retain/autorelease. 3340 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3341 Selector CopySelector = 3342 getContext().Selectors.getNullarySelector(CopyID); 3343 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3344 Selector AutoreleaseSelector = 3345 getContext().Selectors.getNullarySelector(AutoreleaseID); 3346 3347 // Emit calls to retain/autorelease. 3348 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3349 llvm::Value *Val = Block; 3350 RValue Result; 3351 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3352 Ty, CopySelector, 3353 Val, CallArgList(), nullptr, nullptr); 3354 Val = Result.getScalarVal(); 3355 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3356 Ty, AutoreleaseSelector, 3357 Val, CallArgList(), nullptr, nullptr); 3358 Val = Result.getScalarVal(); 3359 return Val; 3360 } 3361 3362 3363 CGObjCRuntime::~CGObjCRuntime() {} 3364