1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
35                                    QualType ET,
36                                    RValue Result);
37 
38 /// Given the address of a variable of pointer type, find the correct
39 /// null to store into it.
40 static llvm::Constant *getNullForVariable(Address addr) {
41   llvm::Type *type = addr.getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57 /// or [NSValue valueWithBytes:objCType:].
58 ///
59 llvm::Value *
60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61   // Generate the correct selector for this literal's concrete type.
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   const Expr *SubExpr = E->getSubExpr();
65   assert(BoxingMethod && "BoxingMethod is null");
66   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
67   Selector Sel = BoxingMethod->getSelector();
68 
69   // Generate a reference to the class pointer, which will be the receiver.
70   // Assumes that the method was introduced in the class that should be
71   // messaged (avoids pulling it out of the result type).
72   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
73   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
74   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
75 
76   CallArgList Args;
77   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
78   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
79 
80   // ObjCBoxedExpr supports boxing of structs and unions
81   // via [NSValue valueWithBytes:objCType:]
82   const QualType ValueType(SubExpr->getType().getCanonicalType());
83   if (ValueType->isObjCBoxableRecordType()) {
84     // Emit CodeGen for first parameter
85     // and cast value to correct type
86     Address Temporary = CreateMemTemp(SubExpr->getType());
87     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
88     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
89     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
90 
91     // Create char array to store type encoding
92     std::string Str;
93     getContext().getObjCEncodingForType(ValueType, Str);
94     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
95 
96     // Cast type encoding to correct type
97     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
98     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
99     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
100 
101     Args.add(RValue::get(Cast), EncodingQT);
102   } else {
103     Args.add(EmitAnyExpr(SubExpr), ArgQT);
104   }
105 
106   RValue result = Runtime.GenerateMessageSend(
107       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
108       Args, ClassDecl, BoxingMethod);
109   return Builder.CreateBitCast(result.getScalarVal(),
110                                ConvertType(E->getType()));
111 }
112 
113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
114                                     const ObjCMethodDecl *MethodWithObjects) {
115   ASTContext &Context = CGM.getContext();
116   const ObjCDictionaryLiteral *DLE = nullptr;
117   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
118   if (!ALE)
119     DLE = cast<ObjCDictionaryLiteral>(E);
120 
121   // Optimize empty collections by referencing constants, when available.
122   uint64_t NumElements =
123     ALE ? ALE->getNumElements() : DLE->getNumElements();
124   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
125     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
126     QualType IdTy(CGM.getContext().getObjCIdType());
127     llvm::Constant *Constant =
128         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
129     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
130     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getLocStart());
131     cast<llvm::LoadInst>(Ptr)->setMetadata(
132         CGM.getModule().getMDKindID("invariant.load"),
133         llvm::MDNode::get(getLLVMContext(), None));
134     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
135   }
136 
137   // Compute the type of the array we're initializing.
138   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
139                             NumElements);
140   QualType ElementType = Context.getObjCIdType().withConst();
141   QualType ElementArrayType
142     = Context.getConstantArrayType(ElementType, APNumElements,
143                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
144 
145   // Allocate the temporary array(s).
146   Address Objects = CreateMemTemp(ElementArrayType, "objects");
147   Address Keys = Address::invalid();
148   if (DLE)
149     Keys = CreateMemTemp(ElementArrayType, "keys");
150 
151   // In ARC, we may need to do extra work to keep all the keys and
152   // values alive until after the call.
153   SmallVector<llvm::Value *, 16> NeededObjects;
154   bool TrackNeededObjects =
155     (getLangOpts().ObjCAutoRefCount &&
156     CGM.getCodeGenOpts().OptimizationLevel != 0);
157 
158   // Perform the actual initialialization of the array(s).
159   for (uint64_t i = 0; i < NumElements; i++) {
160     if (ALE) {
161       // Emit the element and store it to the appropriate array slot.
162       const Expr *Rhs = ALE->getElement(i);
163       LValue LV = MakeAddrLValue(
164           Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
165           ElementType, AlignmentSource::Decl);
166 
167       llvm::Value *value = EmitScalarExpr(Rhs);
168       EmitStoreThroughLValue(RValue::get(value), LV, true);
169       if (TrackNeededObjects) {
170         NeededObjects.push_back(value);
171       }
172     } else {
173       // Emit the key and store it to the appropriate array slot.
174       const Expr *Key = DLE->getKeyValueElement(i).Key;
175       LValue KeyLV = MakeAddrLValue(
176           Builder.CreateConstArrayGEP(Keys, i, getPointerSize()),
177           ElementType, AlignmentSource::Decl);
178       llvm::Value *keyValue = EmitScalarExpr(Key);
179       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
180 
181       // Emit the value and store it to the appropriate array slot.
182       const Expr *Value = DLE->getKeyValueElement(i).Value;
183       LValue ValueLV = MakeAddrLValue(
184           Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
185           ElementType, AlignmentSource::Decl);
186       llvm::Value *valueValue = EmitScalarExpr(Value);
187       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
188       if (TrackNeededObjects) {
189         NeededObjects.push_back(keyValue);
190         NeededObjects.push_back(valueValue);
191       }
192     }
193   }
194 
195   // Generate the argument list.
196   CallArgList Args;
197   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
198   const ParmVarDecl *argDecl = *PI++;
199   QualType ArgQT = argDecl->getType().getUnqualifiedType();
200   Args.add(RValue::get(Objects.getPointer()), ArgQT);
201   if (DLE) {
202     argDecl = *PI++;
203     ArgQT = argDecl->getType().getUnqualifiedType();
204     Args.add(RValue::get(Keys.getPointer()), ArgQT);
205   }
206   argDecl = *PI;
207   ArgQT = argDecl->getType().getUnqualifiedType();
208   llvm::Value *Count =
209     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
210   Args.add(RValue::get(Count), ArgQT);
211 
212   // Generate a reference to the class pointer, which will be the receiver.
213   Selector Sel = MethodWithObjects->getSelector();
214   QualType ResultType = E->getType();
215   const ObjCObjectPointerType *InterfacePointerType
216     = ResultType->getAsObjCInterfacePointerType();
217   ObjCInterfaceDecl *Class
218     = InterfacePointerType->getObjectType()->getInterface();
219   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
220   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
221 
222   // Generate the message send.
223   RValue result = Runtime.GenerateMessageSend(
224       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
225       Receiver, Args, Class, MethodWithObjects);
226 
227   // The above message send needs these objects, but in ARC they are
228   // passed in a buffer that is essentially __unsafe_unretained.
229   // Therefore we must prevent the optimizer from releasing them until
230   // after the call.
231   if (TrackNeededObjects) {
232     EmitARCIntrinsicUse(NeededObjects);
233   }
234 
235   return Builder.CreateBitCast(result.getScalarVal(),
236                                ConvertType(E->getType()));
237 }
238 
239 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
240   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
241 }
242 
243 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
244                                             const ObjCDictionaryLiteral *E) {
245   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
246 }
247 
248 /// Emit a selector.
249 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
250   // Untyped selector.
251   // Note that this implementation allows for non-constant strings to be passed
252   // as arguments to @selector().  Currently, the only thing preventing this
253   // behaviour is the type checking in the front end.
254   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
255 }
256 
257 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
258   // FIXME: This should pass the Decl not the name.
259   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
260 }
261 
262 /// \brief Adjust the type of an Objective-C object that doesn't match up due
263 /// to type erasure at various points, e.g., related result types or the use
264 /// of parameterized classes.
265 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
266                                    RValue Result) {
267   if (!ExpT->isObjCRetainableType())
268     return Result;
269 
270   // If the converted types are the same, we're done.
271   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
272   if (ExpLLVMTy == Result.getScalarVal()->getType())
273     return Result;
274 
275   // We have applied a substitution. Cast the rvalue appropriately.
276   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
277                                                ExpLLVMTy));
278 }
279 
280 /// Decide whether to extend the lifetime of the receiver of a
281 /// returns-inner-pointer message.
282 static bool
283 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
284   switch (message->getReceiverKind()) {
285 
286   // For a normal instance message, we should extend unless the
287   // receiver is loaded from a variable with precise lifetime.
288   case ObjCMessageExpr::Instance: {
289     const Expr *receiver = message->getInstanceReceiver();
290 
291     // Look through OVEs.
292     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
293       if (opaque->getSourceExpr())
294         receiver = opaque->getSourceExpr()->IgnoreParens();
295     }
296 
297     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
298     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
299     receiver = ice->getSubExpr()->IgnoreParens();
300 
301     // Look through OVEs.
302     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
303       if (opaque->getSourceExpr())
304         receiver = opaque->getSourceExpr()->IgnoreParens();
305     }
306 
307     // Only __strong variables.
308     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
309       return true;
310 
311     // All ivars and fields have precise lifetime.
312     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
313       return false;
314 
315     // Otherwise, check for variables.
316     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
317     if (!declRef) return true;
318     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
319     if (!var) return true;
320 
321     // All variables have precise lifetime except local variables with
322     // automatic storage duration that aren't specially marked.
323     return (var->hasLocalStorage() &&
324             !var->hasAttr<ObjCPreciseLifetimeAttr>());
325   }
326 
327   case ObjCMessageExpr::Class:
328   case ObjCMessageExpr::SuperClass:
329     // It's never necessary for class objects.
330     return false;
331 
332   case ObjCMessageExpr::SuperInstance:
333     // We generally assume that 'self' lives throughout a method call.
334     return false;
335   }
336 
337   llvm_unreachable("invalid receiver kind");
338 }
339 
340 /// Given an expression of ObjC pointer type, check whether it was
341 /// immediately loaded from an ARC __weak l-value.
342 static const Expr *findWeakLValue(const Expr *E) {
343   assert(E->getType()->isObjCRetainableType());
344   E = E->IgnoreParens();
345   if (auto CE = dyn_cast<CastExpr>(E)) {
346     if (CE->getCastKind() == CK_LValueToRValue) {
347       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
348         return CE->getSubExpr();
349     }
350   }
351 
352   return nullptr;
353 }
354 
355 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
356                                             ReturnValueSlot Return) {
357   // Only the lookup mechanism and first two arguments of the method
358   // implementation vary between runtimes.  We can get the receiver and
359   // arguments in generic code.
360 
361   bool isDelegateInit = E->isDelegateInitCall();
362 
363   const ObjCMethodDecl *method = E->getMethodDecl();
364 
365   // If the method is -retain, and the receiver's being loaded from
366   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
367   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
368       method->getMethodFamily() == OMF_retain) {
369     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
370       LValue lvalue = EmitLValue(lvalueExpr);
371       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
372       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
373     }
374   }
375 
376   // We don't retain the receiver in delegate init calls, and this is
377   // safe because the receiver value is always loaded from 'self',
378   // which we zero out.  We don't want to Block_copy block receivers,
379   // though.
380   bool retainSelf =
381     (!isDelegateInit &&
382      CGM.getLangOpts().ObjCAutoRefCount &&
383      method &&
384      method->hasAttr<NSConsumesSelfAttr>());
385 
386   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
387   bool isSuperMessage = false;
388   bool isClassMessage = false;
389   ObjCInterfaceDecl *OID = nullptr;
390   // Find the receiver
391   QualType ReceiverType;
392   llvm::Value *Receiver = nullptr;
393   switch (E->getReceiverKind()) {
394   case ObjCMessageExpr::Instance:
395     ReceiverType = E->getInstanceReceiver()->getType();
396     if (retainSelf) {
397       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
398                                                    E->getInstanceReceiver());
399       Receiver = ter.getPointer();
400       if (ter.getInt()) retainSelf = false;
401     } else
402       Receiver = EmitScalarExpr(E->getInstanceReceiver());
403     break;
404 
405   case ObjCMessageExpr::Class: {
406     ReceiverType = E->getClassReceiver();
407     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
408     assert(ObjTy && "Invalid Objective-C class message send");
409     OID = ObjTy->getInterface();
410     assert(OID && "Invalid Objective-C class message send");
411     Receiver = Runtime.GetClass(*this, OID);
412     isClassMessage = true;
413     break;
414   }
415 
416   case ObjCMessageExpr::SuperInstance:
417     ReceiverType = E->getSuperType();
418     Receiver = LoadObjCSelf();
419     isSuperMessage = true;
420     break;
421 
422   case ObjCMessageExpr::SuperClass:
423     ReceiverType = E->getSuperType();
424     Receiver = LoadObjCSelf();
425     isSuperMessage = true;
426     isClassMessage = true;
427     break;
428   }
429 
430   if (retainSelf)
431     Receiver = EmitARCRetainNonBlock(Receiver);
432 
433   // In ARC, we sometimes want to "extend the lifetime"
434   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
435   // messages.
436   if (getLangOpts().ObjCAutoRefCount && method &&
437       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
438       shouldExtendReceiverForInnerPointerMessage(E))
439     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
440 
441   QualType ResultType = method ? method->getReturnType() : E->getType();
442 
443   CallArgList Args;
444   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
445 
446   // For delegate init calls in ARC, do an unsafe store of null into
447   // self.  This represents the call taking direct ownership of that
448   // value.  We have to do this after emitting the other call
449   // arguments because they might also reference self, but we don't
450   // have to worry about any of them modifying self because that would
451   // be an undefined read and write of an object in unordered
452   // expressions.
453   if (isDelegateInit) {
454     assert(getLangOpts().ObjCAutoRefCount &&
455            "delegate init calls should only be marked in ARC");
456 
457     // Do an unsafe store of null into self.
458     Address selfAddr =
459       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
460     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
461   }
462 
463   RValue result;
464   if (isSuperMessage) {
465     // super is only valid in an Objective-C method
466     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
467     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
468     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
469                                               E->getSelector(),
470                                               OMD->getClassInterface(),
471                                               isCategoryImpl,
472                                               Receiver,
473                                               isClassMessage,
474                                               Args,
475                                               method);
476   } else {
477     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
478                                          E->getSelector(),
479                                          Receiver, Args, OID,
480                                          method);
481   }
482 
483   // For delegate init calls in ARC, implicitly store the result of
484   // the call back into self.  This takes ownership of the value.
485   if (isDelegateInit) {
486     Address selfAddr =
487       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
488     llvm::Value *newSelf = result.getScalarVal();
489 
490     // The delegate return type isn't necessarily a matching type; in
491     // fact, it's quite likely to be 'id'.
492     llvm::Type *selfTy = selfAddr.getElementType();
493     newSelf = Builder.CreateBitCast(newSelf, selfTy);
494 
495     Builder.CreateStore(newSelf, selfAddr);
496   }
497 
498   return AdjustObjCObjectType(*this, E->getType(), result);
499 }
500 
501 namespace {
502 struct FinishARCDealloc final : EHScopeStack::Cleanup {
503   void Emit(CodeGenFunction &CGF, Flags flags) override {
504     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
505 
506     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
507     const ObjCInterfaceDecl *iface = impl->getClassInterface();
508     if (!iface->getSuperClass()) return;
509 
510     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
511 
512     // Call [super dealloc] if we have a superclass.
513     llvm::Value *self = CGF.LoadObjCSelf();
514 
515     CallArgList args;
516     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
517                                                       CGF.getContext().VoidTy,
518                                                       method->getSelector(),
519                                                       iface,
520                                                       isCategory,
521                                                       self,
522                                                       /*is class msg*/ false,
523                                                       args,
524                                                       method);
525   }
526 };
527 }
528 
529 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
530 /// the LLVM function and sets the other context used by
531 /// CodeGenFunction.
532 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
533                                       const ObjCContainerDecl *CD) {
534   SourceLocation StartLoc = OMD->getLocStart();
535   FunctionArgList args;
536   // Check if we should generate debug info for this method.
537   if (OMD->hasAttr<NoDebugAttr>())
538     DebugInfo = nullptr; // disable debug info indefinitely for this function
539 
540   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
541 
542   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
543   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
544 
545   args.push_back(OMD->getSelfDecl());
546   args.push_back(OMD->getCmdDecl());
547 
548   args.append(OMD->param_begin(), OMD->param_end());
549 
550   CurGD = OMD;
551   CurEHLocation = OMD->getLocEnd();
552 
553   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
554                 OMD->getLocation(), StartLoc);
555 
556   // In ARC, certain methods get an extra cleanup.
557   if (CGM.getLangOpts().ObjCAutoRefCount &&
558       OMD->isInstanceMethod() &&
559       OMD->getSelector().isUnarySelector()) {
560     const IdentifierInfo *ident =
561       OMD->getSelector().getIdentifierInfoForSlot(0);
562     if (ident->isStr("dealloc"))
563       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
564   }
565 }
566 
567 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
568                                               LValue lvalue, QualType type);
569 
570 /// Generate an Objective-C method.  An Objective-C method is a C function with
571 /// its pointer, name, and types registered in the class struture.
572 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
573   StartObjCMethod(OMD, OMD->getClassInterface());
574   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
575   assert(isa<CompoundStmt>(OMD->getBody()));
576   incrementProfileCounter(OMD->getBody());
577   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
578   FinishFunction(OMD->getBodyRBrace());
579 }
580 
581 /// emitStructGetterCall - Call the runtime function to load a property
582 /// into the return value slot.
583 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
584                                  bool isAtomic, bool hasStrong) {
585   ASTContext &Context = CGF.getContext();
586 
587   Address src =
588     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
589        .getAddress();
590 
591   // objc_copyStruct (ReturnValue, &structIvar,
592   //                  sizeof (Type of Ivar), isAtomic, false);
593   CallArgList args;
594 
595   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
596   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
597 
598   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
599   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
600 
601   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
602   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
603   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
604   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
605 
606   llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
607   CGCallee callee = CGCallee::forDirect(fn);
608   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
609                callee, ReturnValueSlot(), args);
610 }
611 
612 /// Determine whether the given architecture supports unaligned atomic
613 /// accesses.  They don't have to be fast, just faster than a function
614 /// call and a mutex.
615 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
616   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
617   // currently supported by the backend.)
618   return 0;
619 }
620 
621 /// Return the maximum size that permits atomic accesses for the given
622 /// architecture.
623 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
624                                         llvm::Triple::ArchType arch) {
625   // ARM has 8-byte atomic accesses, but it's not clear whether we
626   // want to rely on them here.
627 
628   // In the default case, just assume that any size up to a pointer is
629   // fine given adequate alignment.
630   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
631 }
632 
633 namespace {
634   class PropertyImplStrategy {
635   public:
636     enum StrategyKind {
637       /// The 'native' strategy is to use the architecture's provided
638       /// reads and writes.
639       Native,
640 
641       /// Use objc_setProperty and objc_getProperty.
642       GetSetProperty,
643 
644       /// Use objc_setProperty for the setter, but use expression
645       /// evaluation for the getter.
646       SetPropertyAndExpressionGet,
647 
648       /// Use objc_copyStruct.
649       CopyStruct,
650 
651       /// The 'expression' strategy is to emit normal assignment or
652       /// lvalue-to-rvalue expressions.
653       Expression
654     };
655 
656     StrategyKind getKind() const { return StrategyKind(Kind); }
657 
658     bool hasStrongMember() const { return HasStrong; }
659     bool isAtomic() const { return IsAtomic; }
660     bool isCopy() const { return IsCopy; }
661 
662     CharUnits getIvarSize() const { return IvarSize; }
663     CharUnits getIvarAlignment() const { return IvarAlignment; }
664 
665     PropertyImplStrategy(CodeGenModule &CGM,
666                          const ObjCPropertyImplDecl *propImpl);
667 
668   private:
669     unsigned Kind : 8;
670     unsigned IsAtomic : 1;
671     unsigned IsCopy : 1;
672     unsigned HasStrong : 1;
673 
674     CharUnits IvarSize;
675     CharUnits IvarAlignment;
676   };
677 }
678 
679 /// Pick an implementation strategy for the given property synthesis.
680 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
681                                      const ObjCPropertyImplDecl *propImpl) {
682   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
683   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
684 
685   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
686   IsAtomic = prop->isAtomic();
687   HasStrong = false; // doesn't matter here.
688 
689   // Evaluate the ivar's size and alignment.
690   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
691   QualType ivarType = ivar->getType();
692   std::tie(IvarSize, IvarAlignment) =
693       CGM.getContext().getTypeInfoInChars(ivarType);
694 
695   // If we have a copy property, we always have to use getProperty/setProperty.
696   // TODO: we could actually use setProperty and an expression for non-atomics.
697   if (IsCopy) {
698     Kind = GetSetProperty;
699     return;
700   }
701 
702   // Handle retain.
703   if (setterKind == ObjCPropertyDecl::Retain) {
704     // In GC-only, there's nothing special that needs to be done.
705     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
706       // fallthrough
707 
708     // In ARC, if the property is non-atomic, use expression emission,
709     // which translates to objc_storeStrong.  This isn't required, but
710     // it's slightly nicer.
711     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
712       // Using standard expression emission for the setter is only
713       // acceptable if the ivar is __strong, which won't be true if
714       // the property is annotated with __attribute__((NSObject)).
715       // TODO: falling all the way back to objc_setProperty here is
716       // just laziness, though;  we could still use objc_storeStrong
717       // if we hacked it right.
718       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
719         Kind = Expression;
720       else
721         Kind = SetPropertyAndExpressionGet;
722       return;
723 
724     // Otherwise, we need to at least use setProperty.  However, if
725     // the property isn't atomic, we can use normal expression
726     // emission for the getter.
727     } else if (!IsAtomic) {
728       Kind = SetPropertyAndExpressionGet;
729       return;
730 
731     // Otherwise, we have to use both setProperty and getProperty.
732     } else {
733       Kind = GetSetProperty;
734       return;
735     }
736   }
737 
738   // If we're not atomic, just use expression accesses.
739   if (!IsAtomic) {
740     Kind = Expression;
741     return;
742   }
743 
744   // Properties on bitfield ivars need to be emitted using expression
745   // accesses even if they're nominally atomic.
746   if (ivar->isBitField()) {
747     Kind = Expression;
748     return;
749   }
750 
751   // GC-qualified or ARC-qualified ivars need to be emitted as
752   // expressions.  This actually works out to being atomic anyway,
753   // except for ARC __strong, but that should trigger the above code.
754   if (ivarType.hasNonTrivialObjCLifetime() ||
755       (CGM.getLangOpts().getGC() &&
756        CGM.getContext().getObjCGCAttrKind(ivarType))) {
757     Kind = Expression;
758     return;
759   }
760 
761   // Compute whether the ivar has strong members.
762   if (CGM.getLangOpts().getGC())
763     if (const RecordType *recordType = ivarType->getAs<RecordType>())
764       HasStrong = recordType->getDecl()->hasObjectMember();
765 
766   // We can never access structs with object members with a native
767   // access, because we need to use write barriers.  This is what
768   // objc_copyStruct is for.
769   if (HasStrong) {
770     Kind = CopyStruct;
771     return;
772   }
773 
774   // Otherwise, this is target-dependent and based on the size and
775   // alignment of the ivar.
776 
777   // If the size of the ivar is not a power of two, give up.  We don't
778   // want to get into the business of doing compare-and-swaps.
779   if (!IvarSize.isPowerOfTwo()) {
780     Kind = CopyStruct;
781     return;
782   }
783 
784   llvm::Triple::ArchType arch =
785     CGM.getTarget().getTriple().getArch();
786 
787   // Most architectures require memory to fit within a single cache
788   // line, so the alignment has to be at least the size of the access.
789   // Otherwise we have to grab a lock.
790   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
791     Kind = CopyStruct;
792     return;
793   }
794 
795   // If the ivar's size exceeds the architecture's maximum atomic
796   // access size, we have to use CopyStruct.
797   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
798     Kind = CopyStruct;
799     return;
800   }
801 
802   // Otherwise, we can use native loads and stores.
803   Kind = Native;
804 }
805 
806 /// \brief Generate an Objective-C property getter function.
807 ///
808 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
809 /// is illegal within a category.
810 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
811                                          const ObjCPropertyImplDecl *PID) {
812   llvm::Constant *AtomicHelperFn =
813       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
814   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
815   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
816   assert(OMD && "Invalid call to generate getter (empty method)");
817   StartObjCMethod(OMD, IMP->getClassInterface());
818 
819   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
820 
821   FinishFunction();
822 }
823 
824 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
825   const Expr *getter = propImpl->getGetterCXXConstructor();
826   if (!getter) return true;
827 
828   // Sema only makes only of these when the ivar has a C++ class type,
829   // so the form is pretty constrained.
830 
831   // If the property has a reference type, we might just be binding a
832   // reference, in which case the result will be a gl-value.  We should
833   // treat this as a non-trivial operation.
834   if (getter->isGLValue())
835     return false;
836 
837   // If we selected a trivial copy-constructor, we're okay.
838   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
839     return (construct->getConstructor()->isTrivial());
840 
841   // The constructor might require cleanups (in which case it's never
842   // trivial).
843   assert(isa<ExprWithCleanups>(getter));
844   return false;
845 }
846 
847 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
848 /// copy the ivar into the resturn slot.
849 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
850                                           llvm::Value *returnAddr,
851                                           ObjCIvarDecl *ivar,
852                                           llvm::Constant *AtomicHelperFn) {
853   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
854   //                           AtomicHelperFn);
855   CallArgList args;
856 
857   // The 1st argument is the return Slot.
858   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
859 
860   // The 2nd argument is the address of the ivar.
861   llvm::Value *ivarAddr =
862     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
863                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
864   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
865   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
866 
867   // Third argument is the helper function.
868   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
869 
870   llvm::Constant *copyCppAtomicObjectFn =
871     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
872   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
873   CGF.EmitCall(
874       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
875                callee, ReturnValueSlot(), args);
876 }
877 
878 void
879 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
880                                         const ObjCPropertyImplDecl *propImpl,
881                                         const ObjCMethodDecl *GetterMethodDecl,
882                                         llvm::Constant *AtomicHelperFn) {
883   // If there's a non-trivial 'get' expression, we just have to emit that.
884   if (!hasTrivialGetExpr(propImpl)) {
885     if (!AtomicHelperFn) {
886       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
887                      /*nrvo*/ nullptr);
888       EmitReturnStmt(ret);
889     }
890     else {
891       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
892       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
893                                     ivar, AtomicHelperFn);
894     }
895     return;
896   }
897 
898   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
899   QualType propType = prop->getType();
900   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
901 
902   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
903 
904   // Pick an implementation strategy.
905   PropertyImplStrategy strategy(CGM, propImpl);
906   switch (strategy.getKind()) {
907   case PropertyImplStrategy::Native: {
908     // We don't need to do anything for a zero-size struct.
909     if (strategy.getIvarSize().isZero())
910       return;
911 
912     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
913 
914     // Currently, all atomic accesses have to be through integer
915     // types, so there's no point in trying to pick a prettier type.
916     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
917     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
918     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
919 
920     // Perform an atomic load.  This does not impose ordering constraints.
921     Address ivarAddr = LV.getAddress();
922     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
923     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
924     load->setAtomic(llvm::AtomicOrdering::Unordered);
925 
926     // Store that value into the return address.  Doing this with a
927     // bitcast is likely to produce some pretty ugly IR, but it's not
928     // the *most* terrible thing in the world.
929     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
930     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
931     llvm::Value *ivarVal = load;
932     if (ivarSize > retTySize) {
933       llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
934       ivarVal = Builder.CreateTrunc(load, newTy);
935       bitcastType = newTy->getPointerTo();
936     }
937     Builder.CreateStore(ivarVal,
938                         Builder.CreateBitCast(ReturnValue, bitcastType));
939 
940     // Make sure we don't do an autorelease.
941     AutoreleaseResult = false;
942     return;
943   }
944 
945   case PropertyImplStrategy::GetSetProperty: {
946     llvm::Constant *getPropertyFn =
947       CGM.getObjCRuntime().GetPropertyGetFunction();
948     if (!getPropertyFn) {
949       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
950       return;
951     }
952     CGCallee callee = CGCallee::forDirect(getPropertyFn);
953 
954     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
955     // FIXME: Can't this be simpler? This might even be worse than the
956     // corresponding gcc code.
957     llvm::Value *cmd =
958       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
959     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
960     llvm::Value *ivarOffset =
961       EmitIvarOffset(classImpl->getClassInterface(), ivar);
962 
963     CallArgList args;
964     args.add(RValue::get(self), getContext().getObjCIdType());
965     args.add(RValue::get(cmd), getContext().getObjCSelType());
966     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
967     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
968              getContext().BoolTy);
969 
970     // FIXME: We shouldn't need to get the function info here, the
971     // runtime already should have computed it to build the function.
972     llvm::Instruction *CallInstruction;
973     RValue RV = EmitCall(
974         getTypes().arrangeBuiltinFunctionCall(propType, args),
975         callee, ReturnValueSlot(), args, &CallInstruction);
976     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
977       call->setTailCall();
978 
979     // We need to fix the type here. Ivars with copy & retain are
980     // always objects so we don't need to worry about complex or
981     // aggregates.
982     RV = RValue::get(Builder.CreateBitCast(
983         RV.getScalarVal(),
984         getTypes().ConvertType(getterMethod->getReturnType())));
985 
986     EmitReturnOfRValue(RV, propType);
987 
988     // objc_getProperty does an autorelease, so we should suppress ours.
989     AutoreleaseResult = false;
990 
991     return;
992   }
993 
994   case PropertyImplStrategy::CopyStruct:
995     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
996                          strategy.hasStrongMember());
997     return;
998 
999   case PropertyImplStrategy::Expression:
1000   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1001     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1002 
1003     QualType ivarType = ivar->getType();
1004     switch (getEvaluationKind(ivarType)) {
1005     case TEK_Complex: {
1006       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1007       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1008                          /*init*/ true);
1009       return;
1010     }
1011     case TEK_Aggregate: {
1012       // The return value slot is guaranteed to not be aliased, but
1013       // that's not necessarily the same as "on the stack", so
1014       // we still potentially need objc_memmove_collectable.
1015       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1016                         /* Src= */ LV, ivarType);
1017       return; }
1018     case TEK_Scalar: {
1019       llvm::Value *value;
1020       if (propType->isReferenceType()) {
1021         value = LV.getAddress().getPointer();
1022       } else {
1023         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1024         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1025           if (getLangOpts().ObjCAutoRefCount) {
1026             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1027           } else {
1028             value = EmitARCLoadWeak(LV.getAddress());
1029           }
1030 
1031         // Otherwise we want to do a simple load, suppressing the
1032         // final autorelease.
1033         } else {
1034           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1035           AutoreleaseResult = false;
1036         }
1037 
1038         value = Builder.CreateBitCast(
1039             value, ConvertType(GetterMethodDecl->getReturnType()));
1040       }
1041 
1042       EmitReturnOfRValue(RValue::get(value), propType);
1043       return;
1044     }
1045     }
1046     llvm_unreachable("bad evaluation kind");
1047   }
1048 
1049   }
1050   llvm_unreachable("bad @property implementation strategy!");
1051 }
1052 
1053 /// emitStructSetterCall - Call the runtime function to store the value
1054 /// from the first formal parameter into the given ivar.
1055 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1056                                  ObjCIvarDecl *ivar) {
1057   // objc_copyStruct (&structIvar, &Arg,
1058   //                  sizeof (struct something), true, false);
1059   CallArgList args;
1060 
1061   // The first argument is the address of the ivar.
1062   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1063                                                 CGF.LoadObjCSelf(), ivar, 0)
1064     .getPointer();
1065   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1066   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1067 
1068   // The second argument is the address of the parameter variable.
1069   ParmVarDecl *argVar = *OMD->param_begin();
1070   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1071                      VK_LValue, SourceLocation());
1072   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1073   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1074   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1075 
1076   // The third argument is the sizeof the type.
1077   llvm::Value *size =
1078     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1079   args.add(RValue::get(size), CGF.getContext().getSizeType());
1080 
1081   // The fourth argument is the 'isAtomic' flag.
1082   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1083 
1084   // The fifth argument is the 'hasStrong' flag.
1085   // FIXME: should this really always be false?
1086   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1087 
1088   llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1089   CGCallee callee = CGCallee::forDirect(fn);
1090   CGF.EmitCall(
1091       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1092                callee, ReturnValueSlot(), args);
1093 }
1094 
1095 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1096 /// the value from the first formal parameter into the given ivar, using
1097 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1098 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1099                                           ObjCMethodDecl *OMD,
1100                                           ObjCIvarDecl *ivar,
1101                                           llvm::Constant *AtomicHelperFn) {
1102   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1103   //                           AtomicHelperFn);
1104   CallArgList args;
1105 
1106   // The first argument is the address of the ivar.
1107   llvm::Value *ivarAddr =
1108     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1109                           CGF.LoadObjCSelf(), ivar, 0).getPointer();
1110   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1111   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1112 
1113   // The second argument is the address of the parameter variable.
1114   ParmVarDecl *argVar = *OMD->param_begin();
1115   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1116                      VK_LValue, SourceLocation());
1117   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1118   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1119   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1120 
1121   // Third argument is the helper function.
1122   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1123 
1124   llvm::Constant *fn =
1125     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1126   CGCallee callee = CGCallee::forDirect(fn);
1127   CGF.EmitCall(
1128       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1129                callee, ReturnValueSlot(), args);
1130 }
1131 
1132 
1133 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1134   Expr *setter = PID->getSetterCXXAssignment();
1135   if (!setter) return true;
1136 
1137   // Sema only makes only of these when the ivar has a C++ class type,
1138   // so the form is pretty constrained.
1139 
1140   // An operator call is trivial if the function it calls is trivial.
1141   // This also implies that there's nothing non-trivial going on with
1142   // the arguments, because operator= can only be trivial if it's a
1143   // synthesized assignment operator and therefore both parameters are
1144   // references.
1145   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1146     if (const FunctionDecl *callee
1147           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1148       if (callee->isTrivial())
1149         return true;
1150     return false;
1151   }
1152 
1153   assert(isa<ExprWithCleanups>(setter));
1154   return false;
1155 }
1156 
1157 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1158   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1159     return false;
1160   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1161 }
1162 
1163 void
1164 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1165                                         const ObjCPropertyImplDecl *propImpl,
1166                                         llvm::Constant *AtomicHelperFn) {
1167   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1168   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1169   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1170 
1171   // Just use the setter expression if Sema gave us one and it's
1172   // non-trivial.
1173   if (!hasTrivialSetExpr(propImpl)) {
1174     if (!AtomicHelperFn)
1175       // If non-atomic, assignment is called directly.
1176       EmitStmt(propImpl->getSetterCXXAssignment());
1177     else
1178       // If atomic, assignment is called via a locking api.
1179       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1180                                     AtomicHelperFn);
1181     return;
1182   }
1183 
1184   PropertyImplStrategy strategy(CGM, propImpl);
1185   switch (strategy.getKind()) {
1186   case PropertyImplStrategy::Native: {
1187     // We don't need to do anything for a zero-size struct.
1188     if (strategy.getIvarSize().isZero())
1189       return;
1190 
1191     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1192 
1193     LValue ivarLValue =
1194       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1195     Address ivarAddr = ivarLValue.getAddress();
1196 
1197     // Currently, all atomic accesses have to be through integer
1198     // types, so there's no point in trying to pick a prettier type.
1199     llvm::Type *bitcastType =
1200       llvm::Type::getIntNTy(getLLVMContext(),
1201                             getContext().toBits(strategy.getIvarSize()));
1202 
1203     // Cast both arguments to the chosen operation type.
1204     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1205     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1206 
1207     // This bitcast load is likely to cause some nasty IR.
1208     llvm::Value *load = Builder.CreateLoad(argAddr);
1209 
1210     // Perform an atomic store.  There are no memory ordering requirements.
1211     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1212     store->setAtomic(llvm::AtomicOrdering::Unordered);
1213     return;
1214   }
1215 
1216   case PropertyImplStrategy::GetSetProperty:
1217   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1218 
1219     llvm::Constant *setOptimizedPropertyFn = nullptr;
1220     llvm::Constant *setPropertyFn = nullptr;
1221     if (UseOptimizedSetter(CGM)) {
1222       // 10.8 and iOS 6.0 code and GC is off
1223       setOptimizedPropertyFn =
1224         CGM.getObjCRuntime()
1225            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1226                                             strategy.isCopy());
1227       if (!setOptimizedPropertyFn) {
1228         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1229         return;
1230       }
1231     }
1232     else {
1233       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1234       if (!setPropertyFn) {
1235         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1236         return;
1237       }
1238     }
1239 
1240     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1241     //                       <is-atomic>, <is-copy>).
1242     llvm::Value *cmd =
1243       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1244     llvm::Value *self =
1245       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1246     llvm::Value *ivarOffset =
1247       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1248     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1249     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1250     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1251 
1252     CallArgList args;
1253     args.add(RValue::get(self), getContext().getObjCIdType());
1254     args.add(RValue::get(cmd), getContext().getObjCSelType());
1255     if (setOptimizedPropertyFn) {
1256       args.add(RValue::get(arg), getContext().getObjCIdType());
1257       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1258       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1259       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1260                callee, ReturnValueSlot(), args);
1261     } else {
1262       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1263       args.add(RValue::get(arg), getContext().getObjCIdType());
1264       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1265                getContext().BoolTy);
1266       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1267                getContext().BoolTy);
1268       // FIXME: We shouldn't need to get the function info here, the runtime
1269       // already should have computed it to build the function.
1270       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1271       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1272                callee, ReturnValueSlot(), args);
1273     }
1274 
1275     return;
1276   }
1277 
1278   case PropertyImplStrategy::CopyStruct:
1279     emitStructSetterCall(*this, setterMethod, ivar);
1280     return;
1281 
1282   case PropertyImplStrategy::Expression:
1283     break;
1284   }
1285 
1286   // Otherwise, fake up some ASTs and emit a normal assignment.
1287   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1288   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1289                    VK_LValue, SourceLocation());
1290   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1291                             selfDecl->getType(), CK_LValueToRValue, &self,
1292                             VK_RValue);
1293   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1294                           SourceLocation(), SourceLocation(),
1295                           &selfLoad, true, true);
1296 
1297   ParmVarDecl *argDecl = *setterMethod->param_begin();
1298   QualType argType = argDecl->getType().getNonReferenceType();
1299   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1300   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1301                            argType.getUnqualifiedType(), CK_LValueToRValue,
1302                            &arg, VK_RValue);
1303 
1304   // The property type can differ from the ivar type in some situations with
1305   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1306   // The following absurdity is just to ensure well-formed IR.
1307   CastKind argCK = CK_NoOp;
1308   if (ivarRef.getType()->isObjCObjectPointerType()) {
1309     if (argLoad.getType()->isObjCObjectPointerType())
1310       argCK = CK_BitCast;
1311     else if (argLoad.getType()->isBlockPointerType())
1312       argCK = CK_BlockPointerToObjCPointerCast;
1313     else
1314       argCK = CK_CPointerToObjCPointerCast;
1315   } else if (ivarRef.getType()->isBlockPointerType()) {
1316      if (argLoad.getType()->isBlockPointerType())
1317       argCK = CK_BitCast;
1318     else
1319       argCK = CK_AnyPointerToBlockPointerCast;
1320   } else if (ivarRef.getType()->isPointerType()) {
1321     argCK = CK_BitCast;
1322   }
1323   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1324                            ivarRef.getType(), argCK, &argLoad,
1325                            VK_RValue);
1326   Expr *finalArg = &argLoad;
1327   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1328                                            argLoad.getType()))
1329     finalArg = &argCast;
1330 
1331 
1332   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1333                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1334                         SourceLocation(), FPOptions());
1335   EmitStmt(&assign);
1336 }
1337 
1338 /// \brief Generate an Objective-C property setter function.
1339 ///
1340 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1341 /// is illegal within a category.
1342 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1343                                          const ObjCPropertyImplDecl *PID) {
1344   llvm::Constant *AtomicHelperFn =
1345       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1346   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1347   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1348   assert(OMD && "Invalid call to generate setter (empty method)");
1349   StartObjCMethod(OMD, IMP->getClassInterface());
1350 
1351   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1352 
1353   FinishFunction();
1354 }
1355 
1356 namespace {
1357   struct DestroyIvar final : EHScopeStack::Cleanup {
1358   private:
1359     llvm::Value *addr;
1360     const ObjCIvarDecl *ivar;
1361     CodeGenFunction::Destroyer *destroyer;
1362     bool useEHCleanupForArray;
1363   public:
1364     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1365                 CodeGenFunction::Destroyer *destroyer,
1366                 bool useEHCleanupForArray)
1367       : addr(addr), ivar(ivar), destroyer(destroyer),
1368         useEHCleanupForArray(useEHCleanupForArray) {}
1369 
1370     void Emit(CodeGenFunction &CGF, Flags flags) override {
1371       LValue lvalue
1372         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1373       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1374                       flags.isForNormalCleanup() && useEHCleanupForArray);
1375     }
1376   };
1377 }
1378 
1379 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1380 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1381                                       Address addr,
1382                                       QualType type) {
1383   llvm::Value *null = getNullForVariable(addr);
1384   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1385 }
1386 
1387 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1388                                   ObjCImplementationDecl *impl) {
1389   CodeGenFunction::RunCleanupsScope scope(CGF);
1390 
1391   llvm::Value *self = CGF.LoadObjCSelf();
1392 
1393   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1394   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1395        ivar; ivar = ivar->getNextIvar()) {
1396     QualType type = ivar->getType();
1397 
1398     // Check whether the ivar is a destructible type.
1399     QualType::DestructionKind dtorKind = type.isDestructedType();
1400     if (!dtorKind) continue;
1401 
1402     CodeGenFunction::Destroyer *destroyer = nullptr;
1403 
1404     // Use a call to objc_storeStrong to destroy strong ivars, for the
1405     // general benefit of the tools.
1406     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1407       destroyer = destroyARCStrongWithStore;
1408 
1409     // Otherwise use the default for the destruction kind.
1410     } else {
1411       destroyer = CGF.getDestroyer(dtorKind);
1412     }
1413 
1414     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1415 
1416     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1417                                          cleanupKind & EHCleanup);
1418   }
1419 
1420   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1421 }
1422 
1423 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1424                                                  ObjCMethodDecl *MD,
1425                                                  bool ctor) {
1426   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1427   StartObjCMethod(MD, IMP->getClassInterface());
1428 
1429   // Emit .cxx_construct.
1430   if (ctor) {
1431     // Suppress the final autorelease in ARC.
1432     AutoreleaseResult = false;
1433 
1434     for (const auto *IvarInit : IMP->inits()) {
1435       FieldDecl *Field = IvarInit->getAnyMember();
1436       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1437       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1438                                     LoadObjCSelf(), Ivar, 0);
1439       EmitAggExpr(IvarInit->getInit(),
1440                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1441                                           AggValueSlot::DoesNotNeedGCBarriers,
1442                                           AggValueSlot::IsNotAliased));
1443     }
1444     // constructor returns 'self'.
1445     CodeGenTypes &Types = CGM.getTypes();
1446     QualType IdTy(CGM.getContext().getObjCIdType());
1447     llvm::Value *SelfAsId =
1448       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1449     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1450 
1451   // Emit .cxx_destruct.
1452   } else {
1453     emitCXXDestructMethod(*this, IMP);
1454   }
1455   FinishFunction();
1456 }
1457 
1458 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1459   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1460   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1461                   Self->getType(), VK_LValue, SourceLocation());
1462   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1463 }
1464 
1465 QualType CodeGenFunction::TypeOfSelfObject() {
1466   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1467   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1468   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1469     getContext().getCanonicalType(selfDecl->getType()));
1470   return PTy->getPointeeType();
1471 }
1472 
1473 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1474   llvm::Constant *EnumerationMutationFnPtr =
1475     CGM.getObjCRuntime().EnumerationMutationFunction();
1476   if (!EnumerationMutationFnPtr) {
1477     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1478     return;
1479   }
1480   CGCallee EnumerationMutationFn =
1481     CGCallee::forDirect(EnumerationMutationFnPtr);
1482 
1483   CGDebugInfo *DI = getDebugInfo();
1484   if (DI)
1485     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1486 
1487   RunCleanupsScope ForScope(*this);
1488 
1489   // The local variable comes into scope immediately.
1490   AutoVarEmission variable = AutoVarEmission::invalid();
1491   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1492     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1493 
1494   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1495 
1496   // Fast enumeration state.
1497   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1498   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1499   EmitNullInitialization(StatePtr, StateTy);
1500 
1501   // Number of elements in the items array.
1502   static const unsigned NumItems = 16;
1503 
1504   // Fetch the countByEnumeratingWithState:objects:count: selector.
1505   IdentifierInfo *II[] = {
1506     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1507     &CGM.getContext().Idents.get("objects"),
1508     &CGM.getContext().Idents.get("count")
1509   };
1510   Selector FastEnumSel =
1511     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1512 
1513   QualType ItemsTy =
1514     getContext().getConstantArrayType(getContext().getObjCIdType(),
1515                                       llvm::APInt(32, NumItems),
1516                                       ArrayType::Normal, 0);
1517   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1518 
1519   // Emit the collection pointer.  In ARC, we do a retain.
1520   llvm::Value *Collection;
1521   if (getLangOpts().ObjCAutoRefCount) {
1522     Collection = EmitARCRetainScalarExpr(S.getCollection());
1523 
1524     // Enter a cleanup to do the release.
1525     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1526   } else {
1527     Collection = EmitScalarExpr(S.getCollection());
1528   }
1529 
1530   // The 'continue' label needs to appear within the cleanup for the
1531   // collection object.
1532   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1533 
1534   // Send it our message:
1535   CallArgList Args;
1536 
1537   // The first argument is a temporary of the enumeration-state type.
1538   Args.add(RValue::get(StatePtr.getPointer()),
1539            getContext().getPointerType(StateTy));
1540 
1541   // The second argument is a temporary array with space for NumItems
1542   // pointers.  We'll actually be loading elements from the array
1543   // pointer written into the control state; this buffer is so that
1544   // collections that *aren't* backed by arrays can still queue up
1545   // batches of elements.
1546   Args.add(RValue::get(ItemsPtr.getPointer()),
1547            getContext().getPointerType(ItemsTy));
1548 
1549   // The third argument is the capacity of that temporary array.
1550   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1551   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1552   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1553 
1554   // Start the enumeration.
1555   RValue CountRV =
1556       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1557                                                getContext().getNSUIntegerType(),
1558                                                FastEnumSel, Collection, Args);
1559 
1560   // The initial number of objects that were returned in the buffer.
1561   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1562 
1563   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1564   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1565 
1566   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1567 
1568   // If the limit pointer was zero to begin with, the collection is
1569   // empty; skip all this. Set the branch weight assuming this has the same
1570   // probability of exiting the loop as any other loop exit.
1571   uint64_t EntryCount = getCurrentProfileCount();
1572   Builder.CreateCondBr(
1573       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1574       LoopInitBB,
1575       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1576 
1577   // Otherwise, initialize the loop.
1578   EmitBlock(LoopInitBB);
1579 
1580   // Save the initial mutations value.  This is the value at an
1581   // address that was written into the state object by
1582   // countByEnumeratingWithState:objects:count:.
1583   Address StateMutationsPtrPtr = Builder.CreateStructGEP(
1584       StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr");
1585   llvm::Value *StateMutationsPtr
1586     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1587 
1588   llvm::Value *initialMutations =
1589     Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1590                               "forcoll.initial-mutations");
1591 
1592   // Start looping.  This is the point we return to whenever we have a
1593   // fresh, non-empty batch of objects.
1594   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1595   EmitBlock(LoopBodyBB);
1596 
1597   // The current index into the buffer.
1598   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1599   index->addIncoming(zero, LoopInitBB);
1600 
1601   // The current buffer size.
1602   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1603   count->addIncoming(initialBufferLimit, LoopInitBB);
1604 
1605   incrementProfileCounter(&S);
1606 
1607   // Check whether the mutations value has changed from where it was
1608   // at start.  StateMutationsPtr should actually be invariant between
1609   // refreshes.
1610   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1611   llvm::Value *currentMutations
1612     = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1613                                 "statemutations");
1614 
1615   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1616   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1617 
1618   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1619                        WasNotMutatedBB, WasMutatedBB);
1620 
1621   // If so, call the enumeration-mutation function.
1622   EmitBlock(WasMutatedBB);
1623   llvm::Value *V =
1624     Builder.CreateBitCast(Collection,
1625                           ConvertType(getContext().getObjCIdType()));
1626   CallArgList Args2;
1627   Args2.add(RValue::get(V), getContext().getObjCIdType());
1628   // FIXME: We shouldn't need to get the function info here, the runtime already
1629   // should have computed it to build the function.
1630   EmitCall(
1631           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1632            EnumerationMutationFn, ReturnValueSlot(), Args2);
1633 
1634   // Otherwise, or if the mutation function returns, just continue.
1635   EmitBlock(WasNotMutatedBB);
1636 
1637   // Initialize the element variable.
1638   RunCleanupsScope elementVariableScope(*this);
1639   bool elementIsVariable;
1640   LValue elementLValue;
1641   QualType elementType;
1642   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1643     // Initialize the variable, in case it's a __block variable or something.
1644     EmitAutoVarInit(variable);
1645 
1646     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1647     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1648                         VK_LValue, SourceLocation());
1649     elementLValue = EmitLValue(&tempDRE);
1650     elementType = D->getType();
1651     elementIsVariable = true;
1652 
1653     if (D->isARCPseudoStrong())
1654       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1655   } else {
1656     elementLValue = LValue(); // suppress warning
1657     elementType = cast<Expr>(S.getElement())->getType();
1658     elementIsVariable = false;
1659   }
1660   llvm::Type *convertedElementType = ConvertType(elementType);
1661 
1662   // Fetch the buffer out of the enumeration state.
1663   // TODO: this pointer should actually be invariant between
1664   // refreshes, which would help us do certain loop optimizations.
1665   Address StateItemsPtr = Builder.CreateStructGEP(
1666       StatePtr, 1, getPointerSize(), "stateitems.ptr");
1667   llvm::Value *EnumStateItems =
1668     Builder.CreateLoad(StateItemsPtr, "stateitems");
1669 
1670   // Fetch the value at the current index from the buffer.
1671   llvm::Value *CurrentItemPtr =
1672     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1673   llvm::Value *CurrentItem =
1674     Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1675 
1676   // Cast that value to the right type.
1677   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1678                                       "currentitem");
1679 
1680   // Make sure we have an l-value.  Yes, this gets evaluated every
1681   // time through the loop.
1682   if (!elementIsVariable) {
1683     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1684     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1685   } else {
1686     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1687                            /*isInit*/ true);
1688   }
1689 
1690   // If we do have an element variable, this assignment is the end of
1691   // its initialization.
1692   if (elementIsVariable)
1693     EmitAutoVarCleanups(variable);
1694 
1695   // Perform the loop body, setting up break and continue labels.
1696   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1697   {
1698     RunCleanupsScope Scope(*this);
1699     EmitStmt(S.getBody());
1700   }
1701   BreakContinueStack.pop_back();
1702 
1703   // Destroy the element variable now.
1704   elementVariableScope.ForceCleanup();
1705 
1706   // Check whether there are more elements.
1707   EmitBlock(AfterBody.getBlock());
1708 
1709   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1710 
1711   // First we check in the local buffer.
1712   llvm::Value *indexPlusOne =
1713       Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1714 
1715   // If we haven't overrun the buffer yet, we can continue.
1716   // Set the branch weights based on the simplifying assumption that this is
1717   // like a while-loop, i.e., ignoring that the false branch fetches more
1718   // elements and then returns to the loop.
1719   Builder.CreateCondBr(
1720       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1721       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1722 
1723   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1724   count->addIncoming(count, AfterBody.getBlock());
1725 
1726   // Otherwise, we have to fetch more elements.
1727   EmitBlock(FetchMoreBB);
1728 
1729   CountRV =
1730       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1731                                                getContext().getNSUIntegerType(),
1732                                                FastEnumSel, Collection, Args);
1733 
1734   // If we got a zero count, we're done.
1735   llvm::Value *refetchCount = CountRV.getScalarVal();
1736 
1737   // (note that the message send might split FetchMoreBB)
1738   index->addIncoming(zero, Builder.GetInsertBlock());
1739   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1740 
1741   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1742                        EmptyBB, LoopBodyBB);
1743 
1744   // No more elements.
1745   EmitBlock(EmptyBB);
1746 
1747   if (!elementIsVariable) {
1748     // If the element was not a declaration, set it to be null.
1749 
1750     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1751     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1752     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1753   }
1754 
1755   if (DI)
1756     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1757 
1758   ForScope.ForceCleanup();
1759   EmitBlock(LoopEnd.getBlock());
1760 }
1761 
1762 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1763   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1764 }
1765 
1766 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1767   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1768 }
1769 
1770 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1771                                               const ObjCAtSynchronizedStmt &S) {
1772   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1773 }
1774 
1775 namespace {
1776   struct CallObjCRelease final : EHScopeStack::Cleanup {
1777     CallObjCRelease(llvm::Value *object) : object(object) {}
1778     llvm::Value *object;
1779 
1780     void Emit(CodeGenFunction &CGF, Flags flags) override {
1781       // Releases at the end of the full-expression are imprecise.
1782       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1783     }
1784   };
1785 }
1786 
1787 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1788 /// release at the end of the full-expression.
1789 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1790                                                     llvm::Value *object) {
1791   // If we're in a conditional branch, we need to make the cleanup
1792   // conditional.
1793   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1794   return object;
1795 }
1796 
1797 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1798                                                            llvm::Value *value) {
1799   return EmitARCRetainAutorelease(type, value);
1800 }
1801 
1802 /// Given a number of pointers, inform the optimizer that they're
1803 /// being intrinsically used up until this point in the program.
1804 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1805   llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1806   if (!fn) {
1807     llvm::FunctionType *fnType =
1808       llvm::FunctionType::get(CGM.VoidTy, None, true);
1809     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1810   }
1811 
1812   // This isn't really a "runtime" function, but as an intrinsic it
1813   // doesn't really matter as long as we align things up.
1814   EmitNounwindRuntimeCall(fn, values);
1815 }
1816 
1817 
1818 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1819                                                 llvm::FunctionType *FTy,
1820                                                 StringRef Name) {
1821   llvm::Constant *RTF = CGM.CreateRuntimeFunction(FTy, Name);
1822 
1823   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
1824     // If the target runtime doesn't naturally support ARC, emit weak
1825     // references to the runtime support library.  We don't really
1826     // permit this to fail, but we need a particular relocation style.
1827     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
1828         !CGM.getTriple().isOSBinFormatCOFF()) {
1829       F->setLinkage(llvm::Function::ExternalWeakLinkage);
1830     } else if (Name == "objc_retain" || Name  == "objc_release") {
1831       // If we have Native ARC, set nonlazybind attribute for these APIs for
1832       // performance.
1833       F->addFnAttr(llvm::Attribute::NonLazyBind);
1834     }
1835   }
1836 
1837   return RTF;
1838 }
1839 
1840 /// Perform an operation having the signature
1841 ///   i8* (i8*)
1842 /// where a null input causes a no-op and returns null.
1843 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1844                                           llvm::Value *value,
1845                                           llvm::Constant *&fn,
1846                                           StringRef fnName,
1847                                           bool isTailCall = false) {
1848   if (isa<llvm::ConstantPointerNull>(value))
1849     return value;
1850 
1851   if (!fn) {
1852     llvm::FunctionType *fnType =
1853       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1854     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1855   }
1856 
1857   // Cast the argument to 'id'.
1858   llvm::Type *origType = value->getType();
1859   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1860 
1861   // Call the function.
1862   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1863   if (isTailCall)
1864     call->setTailCall();
1865 
1866   // Cast the result back to the original type.
1867   return CGF.Builder.CreateBitCast(call, origType);
1868 }
1869 
1870 /// Perform an operation having the following signature:
1871 ///   i8* (i8**)
1872 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1873                                          Address addr,
1874                                          llvm::Constant *&fn,
1875                                          StringRef fnName) {
1876   if (!fn) {
1877     llvm::FunctionType *fnType =
1878       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1879     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1880   }
1881 
1882   // Cast the argument to 'id*'.
1883   llvm::Type *origType = addr.getElementType();
1884   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1885 
1886   // Call the function.
1887   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
1888 
1889   // Cast the result back to a dereference of the original type.
1890   if (origType != CGF.Int8PtrTy)
1891     result = CGF.Builder.CreateBitCast(result, origType);
1892 
1893   return result;
1894 }
1895 
1896 /// Perform an operation having the following signature:
1897 ///   i8* (i8**, i8*)
1898 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1899                                           Address addr,
1900                                           llvm::Value *value,
1901                                           llvm::Constant *&fn,
1902                                           StringRef fnName,
1903                                           bool ignored) {
1904   assert(addr.getElementType() == value->getType());
1905 
1906   if (!fn) {
1907     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1908 
1909     llvm::FunctionType *fnType
1910       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1911     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1912   }
1913 
1914   llvm::Type *origType = value->getType();
1915 
1916   llvm::Value *args[] = {
1917     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
1918     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1919   };
1920   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1921 
1922   if (ignored) return nullptr;
1923 
1924   return CGF.Builder.CreateBitCast(result, origType);
1925 }
1926 
1927 /// Perform an operation having the following signature:
1928 ///   void (i8**, i8**)
1929 static void emitARCCopyOperation(CodeGenFunction &CGF,
1930                                  Address dst,
1931                                  Address src,
1932                                  llvm::Constant *&fn,
1933                                  StringRef fnName) {
1934   assert(dst.getType() == src.getType());
1935 
1936   if (!fn) {
1937     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1938 
1939     llvm::FunctionType *fnType
1940       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1941     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1942   }
1943 
1944   llvm::Value *args[] = {
1945     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
1946     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
1947   };
1948   CGF.EmitNounwindRuntimeCall(fn, args);
1949 }
1950 
1951 /// Produce the code to do a retain.  Based on the type, calls one of:
1952 ///   call i8* \@objc_retain(i8* %value)
1953 ///   call i8* \@objc_retainBlock(i8* %value)
1954 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1955   if (type->isBlockPointerType())
1956     return EmitARCRetainBlock(value, /*mandatory*/ false);
1957   else
1958     return EmitARCRetainNonBlock(value);
1959 }
1960 
1961 /// Retain the given object, with normal retain semantics.
1962 ///   call i8* \@objc_retain(i8* %value)
1963 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1964   return emitARCValueOperation(*this, value,
1965                                CGM.getObjCEntrypoints().objc_retain,
1966                                "objc_retain");
1967 }
1968 
1969 /// Retain the given block, with _Block_copy semantics.
1970 ///   call i8* \@objc_retainBlock(i8* %value)
1971 ///
1972 /// \param mandatory - If false, emit the call with metadata
1973 /// indicating that it's okay for the optimizer to eliminate this call
1974 /// if it can prove that the block never escapes except down the stack.
1975 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1976                                                  bool mandatory) {
1977   llvm::Value *result
1978     = emitARCValueOperation(*this, value,
1979                             CGM.getObjCEntrypoints().objc_retainBlock,
1980                             "objc_retainBlock");
1981 
1982   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1983   // tell the optimizer that it doesn't need to do this copy if the
1984   // block doesn't escape, where being passed as an argument doesn't
1985   // count as escaping.
1986   if (!mandatory && isa<llvm::Instruction>(result)) {
1987     llvm::CallInst *call
1988       = cast<llvm::CallInst>(result->stripPointerCasts());
1989     assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock);
1990 
1991     call->setMetadata("clang.arc.copy_on_escape",
1992                       llvm::MDNode::get(Builder.getContext(), None));
1993   }
1994 
1995   return result;
1996 }
1997 
1998 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
1999   // Fetch the void(void) inline asm which marks that we're going to
2000   // do something with the autoreleased return value.
2001   llvm::InlineAsm *&marker
2002     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2003   if (!marker) {
2004     StringRef assembly
2005       = CGF.CGM.getTargetCodeGenInfo()
2006            .getARCRetainAutoreleasedReturnValueMarker();
2007 
2008     // If we have an empty assembly string, there's nothing to do.
2009     if (assembly.empty()) {
2010 
2011     // Otherwise, at -O0, build an inline asm that we're going to call
2012     // in a moment.
2013     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2014       llvm::FunctionType *type =
2015         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2016 
2017       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2018 
2019     // If we're at -O1 and above, we don't want to litter the code
2020     // with this marker yet, so leave a breadcrumb for the ARC
2021     // optimizer to pick up.
2022     } else {
2023       llvm::NamedMDNode *metadata =
2024         CGF.CGM.getModule().getOrInsertNamedMetadata(
2025                             "clang.arc.retainAutoreleasedReturnValueMarker");
2026       assert(metadata->getNumOperands() <= 1);
2027       if (metadata->getNumOperands() == 0) {
2028         auto &ctx = CGF.getLLVMContext();
2029         metadata->addOperand(llvm::MDNode::get(ctx,
2030                                      llvm::MDString::get(ctx, assembly)));
2031       }
2032     }
2033   }
2034 
2035   // Call the marker asm if we made one, which we do only at -O0.
2036   if (marker)
2037     CGF.Builder.CreateCall(marker);
2038 }
2039 
2040 /// Retain the given object which is the result of a function call.
2041 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2042 ///
2043 /// Yes, this function name is one character away from a different
2044 /// call with completely different semantics.
2045 llvm::Value *
2046 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2047   emitAutoreleasedReturnValueMarker(*this);
2048   return emitARCValueOperation(*this, value,
2049               CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2050                                "objc_retainAutoreleasedReturnValue");
2051 }
2052 
2053 /// Claim a possibly-autoreleased return value at +0.  This is only
2054 /// valid to do in contexts which do not rely on the retain to keep
2055 /// the object valid for all of its uses; for example, when
2056 /// the value is ignored, or when it is being assigned to an
2057 /// __unsafe_unretained variable.
2058 ///
2059 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2060 llvm::Value *
2061 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2062   emitAutoreleasedReturnValueMarker(*this);
2063   return emitARCValueOperation(*this, value,
2064               CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2065                                "objc_unsafeClaimAutoreleasedReturnValue");
2066 }
2067 
2068 /// Release the given object.
2069 ///   call void \@objc_release(i8* %value)
2070 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2071                                      ARCPreciseLifetime_t precise) {
2072   if (isa<llvm::ConstantPointerNull>(value)) return;
2073 
2074   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release;
2075   if (!fn) {
2076     llvm::FunctionType *fnType =
2077       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2078     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
2079   }
2080 
2081   // Cast the argument to 'id'.
2082   value = Builder.CreateBitCast(value, Int8PtrTy);
2083 
2084   // Call objc_release.
2085   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2086 
2087   if (precise == ARCImpreciseLifetime) {
2088     call->setMetadata("clang.imprecise_release",
2089                       llvm::MDNode::get(Builder.getContext(), None));
2090   }
2091 }
2092 
2093 /// Destroy a __strong variable.
2094 ///
2095 /// At -O0, emit a call to store 'null' into the address;
2096 /// instrumenting tools prefer this because the address is exposed,
2097 /// but it's relatively cumbersome to optimize.
2098 ///
2099 /// At -O1 and above, just load and call objc_release.
2100 ///
2101 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2102 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2103                                            ARCPreciseLifetime_t precise) {
2104   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2105     llvm::Value *null = getNullForVariable(addr);
2106     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2107     return;
2108   }
2109 
2110   llvm::Value *value = Builder.CreateLoad(addr);
2111   EmitARCRelease(value, precise);
2112 }
2113 
2114 /// Store into a strong object.  Always calls this:
2115 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2116 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2117                                                      llvm::Value *value,
2118                                                      bool ignored) {
2119   assert(addr.getElementType() == value->getType());
2120 
2121   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2122   if (!fn) {
2123     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2124     llvm::FunctionType *fnType
2125       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2126     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2127   }
2128 
2129   llvm::Value *args[] = {
2130     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2131     Builder.CreateBitCast(value, Int8PtrTy)
2132   };
2133   EmitNounwindRuntimeCall(fn, args);
2134 
2135   if (ignored) return nullptr;
2136   return value;
2137 }
2138 
2139 /// Store into a strong object.  Sometimes calls this:
2140 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2141 /// Other times, breaks it down into components.
2142 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2143                                                  llvm::Value *newValue,
2144                                                  bool ignored) {
2145   QualType type = dst.getType();
2146   bool isBlock = type->isBlockPointerType();
2147 
2148   // Use a store barrier at -O0 unless this is a block type or the
2149   // lvalue is inadequately aligned.
2150   if (shouldUseFusedARCCalls() &&
2151       !isBlock &&
2152       (dst.getAlignment().isZero() ||
2153        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2154     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2155   }
2156 
2157   // Otherwise, split it out.
2158 
2159   // Retain the new value.
2160   newValue = EmitARCRetain(type, newValue);
2161 
2162   // Read the old value.
2163   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2164 
2165   // Store.  We do this before the release so that any deallocs won't
2166   // see the old value.
2167   EmitStoreOfScalar(newValue, dst);
2168 
2169   // Finally, release the old value.
2170   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2171 
2172   return newValue;
2173 }
2174 
2175 /// Autorelease the given object.
2176 ///   call i8* \@objc_autorelease(i8* %value)
2177 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2178   return emitARCValueOperation(*this, value,
2179                                CGM.getObjCEntrypoints().objc_autorelease,
2180                                "objc_autorelease");
2181 }
2182 
2183 /// Autorelease the given object.
2184 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2185 llvm::Value *
2186 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2187   return emitARCValueOperation(*this, value,
2188                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2189                                "objc_autoreleaseReturnValue",
2190                                /*isTailCall*/ true);
2191 }
2192 
2193 /// Do a fused retain/autorelease of the given object.
2194 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2195 llvm::Value *
2196 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2197   return emitARCValueOperation(*this, value,
2198                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2199                                "objc_retainAutoreleaseReturnValue",
2200                                /*isTailCall*/ true);
2201 }
2202 
2203 /// Do a fused retain/autorelease of the given object.
2204 ///   call i8* \@objc_retainAutorelease(i8* %value)
2205 /// or
2206 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2207 ///   call i8* \@objc_autorelease(i8* %retain)
2208 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2209                                                        llvm::Value *value) {
2210   if (!type->isBlockPointerType())
2211     return EmitARCRetainAutoreleaseNonBlock(value);
2212 
2213   if (isa<llvm::ConstantPointerNull>(value)) return value;
2214 
2215   llvm::Type *origType = value->getType();
2216   value = Builder.CreateBitCast(value, Int8PtrTy);
2217   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2218   value = EmitARCAutorelease(value);
2219   return Builder.CreateBitCast(value, origType);
2220 }
2221 
2222 /// Do a fused retain/autorelease of the given object.
2223 ///   call i8* \@objc_retainAutorelease(i8* %value)
2224 llvm::Value *
2225 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2226   return emitARCValueOperation(*this, value,
2227                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2228                                "objc_retainAutorelease");
2229 }
2230 
2231 /// i8* \@objc_loadWeak(i8** %addr)
2232 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2233 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2234   return emitARCLoadOperation(*this, addr,
2235                               CGM.getObjCEntrypoints().objc_loadWeak,
2236                               "objc_loadWeak");
2237 }
2238 
2239 /// i8* \@objc_loadWeakRetained(i8** %addr)
2240 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2241   return emitARCLoadOperation(*this, addr,
2242                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2243                               "objc_loadWeakRetained");
2244 }
2245 
2246 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2247 /// Returns %value.
2248 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2249                                                llvm::Value *value,
2250                                                bool ignored) {
2251   return emitARCStoreOperation(*this, addr, value,
2252                                CGM.getObjCEntrypoints().objc_storeWeak,
2253                                "objc_storeWeak", ignored);
2254 }
2255 
2256 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2257 /// Returns %value.  %addr is known to not have a current weak entry.
2258 /// Essentially equivalent to:
2259 ///   *addr = nil; objc_storeWeak(addr, value);
2260 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2261   // If we're initializing to null, just write null to memory; no need
2262   // to get the runtime involved.  But don't do this if optimization
2263   // is enabled, because accounting for this would make the optimizer
2264   // much more complicated.
2265   if (isa<llvm::ConstantPointerNull>(value) &&
2266       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2267     Builder.CreateStore(value, addr);
2268     return;
2269   }
2270 
2271   emitARCStoreOperation(*this, addr, value,
2272                         CGM.getObjCEntrypoints().objc_initWeak,
2273                         "objc_initWeak", /*ignored*/ true);
2274 }
2275 
2276 /// void \@objc_destroyWeak(i8** %addr)
2277 /// Essentially objc_storeWeak(addr, nil).
2278 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2279   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2280   if (!fn) {
2281     llvm::FunctionType *fnType =
2282       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2283     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2284   }
2285 
2286   // Cast the argument to 'id*'.
2287   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2288 
2289   EmitNounwindRuntimeCall(fn, addr.getPointer());
2290 }
2291 
2292 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2293 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2294 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2295 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2296   emitARCCopyOperation(*this, dst, src,
2297                        CGM.getObjCEntrypoints().objc_moveWeak,
2298                        "objc_moveWeak");
2299 }
2300 
2301 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2302 /// Disregards the current value in %dest.  Essentially
2303 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2304 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2305   emitARCCopyOperation(*this, dst, src,
2306                        CGM.getObjCEntrypoints().objc_copyWeak,
2307                        "objc_copyWeak");
2308 }
2309 
2310 /// Produce the code to do a objc_autoreleasepool_push.
2311 ///   call i8* \@objc_autoreleasePoolPush(void)
2312 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2313   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2314   if (!fn) {
2315     llvm::FunctionType *fnType =
2316       llvm::FunctionType::get(Int8PtrTy, false);
2317     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2318   }
2319 
2320   return EmitNounwindRuntimeCall(fn);
2321 }
2322 
2323 /// Produce the code to do a primitive release.
2324 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2325 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2326   assert(value->getType() == Int8PtrTy);
2327 
2328   llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2329   if (!fn) {
2330     llvm::FunctionType *fnType =
2331       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2332 
2333     // We don't want to use a weak import here; instead we should not
2334     // fall into this path.
2335     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2336   }
2337 
2338   // objc_autoreleasePoolPop can throw.
2339   EmitRuntimeCallOrInvoke(fn, value);
2340 }
2341 
2342 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2343 /// Which is: [[NSAutoreleasePool alloc] init];
2344 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2345 /// init is declared as: - (id) init; in its NSObject super class.
2346 ///
2347 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2348   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2349   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2350   // [NSAutoreleasePool alloc]
2351   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2352   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2353   CallArgList Args;
2354   RValue AllocRV =
2355     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2356                                 getContext().getObjCIdType(),
2357                                 AllocSel, Receiver, Args);
2358 
2359   // [Receiver init]
2360   Receiver = AllocRV.getScalarVal();
2361   II = &CGM.getContext().Idents.get("init");
2362   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2363   RValue InitRV =
2364     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2365                                 getContext().getObjCIdType(),
2366                                 InitSel, Receiver, Args);
2367   return InitRV.getScalarVal();
2368 }
2369 
2370 /// Produce the code to do a primitive release.
2371 /// [tmp drain];
2372 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2373   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2374   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2375   CallArgList Args;
2376   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2377                               getContext().VoidTy, DrainSel, Arg, Args);
2378 }
2379 
2380 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2381                                               Address addr,
2382                                               QualType type) {
2383   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2384 }
2385 
2386 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2387                                                 Address addr,
2388                                                 QualType type) {
2389   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2390 }
2391 
2392 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2393                                      Address addr,
2394                                      QualType type) {
2395   CGF.EmitARCDestroyWeak(addr);
2396 }
2397 
2398 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2399                                           QualType type) {
2400   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2401   CGF.EmitARCIntrinsicUse(value);
2402 }
2403 
2404 namespace {
2405   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2406     llvm::Value *Token;
2407 
2408     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2409 
2410     void Emit(CodeGenFunction &CGF, Flags flags) override {
2411       CGF.EmitObjCAutoreleasePoolPop(Token);
2412     }
2413   };
2414   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2415     llvm::Value *Token;
2416 
2417     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2418 
2419     void Emit(CodeGenFunction &CGF, Flags flags) override {
2420       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2421     }
2422   };
2423 }
2424 
2425 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2426   if (CGM.getLangOpts().ObjCAutoRefCount)
2427     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2428   else
2429     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2430 }
2431 
2432 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2433                                                   LValue lvalue,
2434                                                   QualType type) {
2435   switch (type.getObjCLifetime()) {
2436   case Qualifiers::OCL_None:
2437   case Qualifiers::OCL_ExplicitNone:
2438   case Qualifiers::OCL_Strong:
2439   case Qualifiers::OCL_Autoreleasing:
2440     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2441                                               SourceLocation()).getScalarVal(),
2442                          false);
2443 
2444   case Qualifiers::OCL_Weak:
2445     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2446                          true);
2447   }
2448 
2449   llvm_unreachable("impossible lifetime!");
2450 }
2451 
2452 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2453                                                   const Expr *e) {
2454   e = e->IgnoreParens();
2455   QualType type = e->getType();
2456 
2457   // If we're loading retained from a __strong xvalue, we can avoid
2458   // an extra retain/release pair by zeroing out the source of this
2459   // "move" operation.
2460   if (e->isXValue() &&
2461       !type.isConstQualified() &&
2462       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2463     // Emit the lvalue.
2464     LValue lv = CGF.EmitLValue(e);
2465 
2466     // Load the object pointer.
2467     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2468                                                SourceLocation()).getScalarVal();
2469 
2470     // Set the source pointer to NULL.
2471     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2472 
2473     return TryEmitResult(result, true);
2474   }
2475 
2476   // As a very special optimization, in ARC++, if the l-value is the
2477   // result of a non-volatile assignment, do a simple retain of the
2478   // result of the call to objc_storeWeak instead of reloading.
2479   if (CGF.getLangOpts().CPlusPlus &&
2480       !type.isVolatileQualified() &&
2481       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2482       isa<BinaryOperator>(e) &&
2483       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2484     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2485 
2486   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2487 }
2488 
2489 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2490                                          llvm::Value *value)>
2491   ValueTransform;
2492 
2493 /// Insert code immediately after a call.
2494 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2495                                               llvm::Value *value,
2496                                               ValueTransform doAfterCall,
2497                                               ValueTransform doFallback) {
2498   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2499     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2500 
2501     // Place the retain immediately following the call.
2502     CGF.Builder.SetInsertPoint(call->getParent(),
2503                                ++llvm::BasicBlock::iterator(call));
2504     value = doAfterCall(CGF, value);
2505 
2506     CGF.Builder.restoreIP(ip);
2507     return value;
2508   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2509     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2510 
2511     // Place the retain at the beginning of the normal destination block.
2512     llvm::BasicBlock *BB = invoke->getNormalDest();
2513     CGF.Builder.SetInsertPoint(BB, BB->begin());
2514     value = doAfterCall(CGF, value);
2515 
2516     CGF.Builder.restoreIP(ip);
2517     return value;
2518 
2519   // Bitcasts can arise because of related-result returns.  Rewrite
2520   // the operand.
2521   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2522     llvm::Value *operand = bitcast->getOperand(0);
2523     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2524     bitcast->setOperand(0, operand);
2525     return bitcast;
2526 
2527   // Generic fall-back case.
2528   } else {
2529     // Retain using the non-block variant: we never need to do a copy
2530     // of a block that's been returned to us.
2531     return doFallback(CGF, value);
2532   }
2533 }
2534 
2535 /// Given that the given expression is some sort of call (which does
2536 /// not return retained), emit a retain following it.
2537 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2538                                             const Expr *e) {
2539   llvm::Value *value = CGF.EmitScalarExpr(e);
2540   return emitARCOperationAfterCall(CGF, value,
2541            [](CodeGenFunction &CGF, llvm::Value *value) {
2542              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2543            },
2544            [](CodeGenFunction &CGF, llvm::Value *value) {
2545              return CGF.EmitARCRetainNonBlock(value);
2546            });
2547 }
2548 
2549 /// Given that the given expression is some sort of call (which does
2550 /// not return retained), perform an unsafeClaim following it.
2551 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2552                                                  const Expr *e) {
2553   llvm::Value *value = CGF.EmitScalarExpr(e);
2554   return emitARCOperationAfterCall(CGF, value,
2555            [](CodeGenFunction &CGF, llvm::Value *value) {
2556              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2557            },
2558            [](CodeGenFunction &CGF, llvm::Value *value) {
2559              return value;
2560            });
2561 }
2562 
2563 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2564                                                       bool allowUnsafeClaim) {
2565   if (allowUnsafeClaim &&
2566       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2567     return emitARCUnsafeClaimCallResult(*this, E);
2568   } else {
2569     llvm::Value *value = emitARCRetainCallResult(*this, E);
2570     return EmitObjCConsumeObject(E->getType(), value);
2571   }
2572 }
2573 
2574 /// Determine whether it might be important to emit a separate
2575 /// objc_retain_block on the result of the given expression, or
2576 /// whether it's okay to just emit it in a +1 context.
2577 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2578   assert(e->getType()->isBlockPointerType());
2579   e = e->IgnoreParens();
2580 
2581   // For future goodness, emit block expressions directly in +1
2582   // contexts if we can.
2583   if (isa<BlockExpr>(e))
2584     return false;
2585 
2586   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2587     switch (cast->getCastKind()) {
2588     // Emitting these operations in +1 contexts is goodness.
2589     case CK_LValueToRValue:
2590     case CK_ARCReclaimReturnedObject:
2591     case CK_ARCConsumeObject:
2592     case CK_ARCProduceObject:
2593       return false;
2594 
2595     // These operations preserve a block type.
2596     case CK_NoOp:
2597     case CK_BitCast:
2598       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2599 
2600     // These operations are known to be bad (or haven't been considered).
2601     case CK_AnyPointerToBlockPointerCast:
2602     default:
2603       return true;
2604     }
2605   }
2606 
2607   return true;
2608 }
2609 
2610 namespace {
2611 /// A CRTP base class for emitting expressions of retainable object
2612 /// pointer type in ARC.
2613 template <typename Impl, typename Result> class ARCExprEmitter {
2614 protected:
2615   CodeGenFunction &CGF;
2616   Impl &asImpl() { return *static_cast<Impl*>(this); }
2617 
2618   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2619 
2620 public:
2621   Result visit(const Expr *e);
2622   Result visitCastExpr(const CastExpr *e);
2623   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2624   Result visitBinaryOperator(const BinaryOperator *e);
2625   Result visitBinAssign(const BinaryOperator *e);
2626   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2627   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2628   Result visitBinAssignWeak(const BinaryOperator *e);
2629   Result visitBinAssignStrong(const BinaryOperator *e);
2630 
2631   // Minimal implementation:
2632   //   Result visitLValueToRValue(const Expr *e)
2633   //   Result visitConsumeObject(const Expr *e)
2634   //   Result visitExtendBlockObject(const Expr *e)
2635   //   Result visitReclaimReturnedObject(const Expr *e)
2636   //   Result visitCall(const Expr *e)
2637   //   Result visitExpr(const Expr *e)
2638   //
2639   //   Result emitBitCast(Result result, llvm::Type *resultType)
2640   //   llvm::Value *getValueOfResult(Result result)
2641 };
2642 }
2643 
2644 /// Try to emit a PseudoObjectExpr under special ARC rules.
2645 ///
2646 /// This massively duplicates emitPseudoObjectRValue.
2647 template <typename Impl, typename Result>
2648 Result
2649 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2650   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2651 
2652   // Find the result expression.
2653   const Expr *resultExpr = E->getResultExpr();
2654   assert(resultExpr);
2655   Result result;
2656 
2657   for (PseudoObjectExpr::const_semantics_iterator
2658          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2659     const Expr *semantic = *i;
2660 
2661     // If this semantic expression is an opaque value, bind it
2662     // to the result of its source expression.
2663     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2664       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2665       OVMA opaqueData;
2666 
2667       // If this semantic is the result of the pseudo-object
2668       // expression, try to evaluate the source as +1.
2669       if (ov == resultExpr) {
2670         assert(!OVMA::shouldBindAsLValue(ov));
2671         result = asImpl().visit(ov->getSourceExpr());
2672         opaqueData = OVMA::bind(CGF, ov,
2673                             RValue::get(asImpl().getValueOfResult(result)));
2674 
2675       // Otherwise, just bind it.
2676       } else {
2677         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2678       }
2679       opaques.push_back(opaqueData);
2680 
2681     // Otherwise, if the expression is the result, evaluate it
2682     // and remember the result.
2683     } else if (semantic == resultExpr) {
2684       result = asImpl().visit(semantic);
2685 
2686     // Otherwise, evaluate the expression in an ignored context.
2687     } else {
2688       CGF.EmitIgnoredExpr(semantic);
2689     }
2690   }
2691 
2692   // Unbind all the opaques now.
2693   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2694     opaques[i].unbind(CGF);
2695 
2696   return result;
2697 }
2698 
2699 template <typename Impl, typename Result>
2700 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
2701   switch (e->getCastKind()) {
2702 
2703   // No-op casts don't change the type, so we just ignore them.
2704   case CK_NoOp:
2705     return asImpl().visit(e->getSubExpr());
2706 
2707   // These casts can change the type.
2708   case CK_CPointerToObjCPointerCast:
2709   case CK_BlockPointerToObjCPointerCast:
2710   case CK_AnyPointerToBlockPointerCast:
2711   case CK_BitCast: {
2712     llvm::Type *resultType = CGF.ConvertType(e->getType());
2713     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
2714     Result result = asImpl().visit(e->getSubExpr());
2715     return asImpl().emitBitCast(result, resultType);
2716   }
2717 
2718   // Handle some casts specially.
2719   case CK_LValueToRValue:
2720     return asImpl().visitLValueToRValue(e->getSubExpr());
2721   case CK_ARCConsumeObject:
2722     return asImpl().visitConsumeObject(e->getSubExpr());
2723   case CK_ARCExtendBlockObject:
2724     return asImpl().visitExtendBlockObject(e->getSubExpr());
2725   case CK_ARCReclaimReturnedObject:
2726     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
2727 
2728   // Otherwise, use the default logic.
2729   default:
2730     return asImpl().visitExpr(e);
2731   }
2732 }
2733 
2734 template <typename Impl, typename Result>
2735 Result
2736 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
2737   switch (e->getOpcode()) {
2738   case BO_Comma:
2739     CGF.EmitIgnoredExpr(e->getLHS());
2740     CGF.EnsureInsertPoint();
2741     return asImpl().visit(e->getRHS());
2742 
2743   case BO_Assign:
2744     return asImpl().visitBinAssign(e);
2745 
2746   default:
2747     return asImpl().visitExpr(e);
2748   }
2749 }
2750 
2751 template <typename Impl, typename Result>
2752 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
2753   switch (e->getLHS()->getType().getObjCLifetime()) {
2754   case Qualifiers::OCL_ExplicitNone:
2755     return asImpl().visitBinAssignUnsafeUnretained(e);
2756 
2757   case Qualifiers::OCL_Weak:
2758     return asImpl().visitBinAssignWeak(e);
2759 
2760   case Qualifiers::OCL_Autoreleasing:
2761     return asImpl().visitBinAssignAutoreleasing(e);
2762 
2763   case Qualifiers::OCL_Strong:
2764     return asImpl().visitBinAssignStrong(e);
2765 
2766   case Qualifiers::OCL_None:
2767     return asImpl().visitExpr(e);
2768   }
2769   llvm_unreachable("bad ObjC ownership qualifier");
2770 }
2771 
2772 /// The default rule for __unsafe_unretained emits the RHS recursively,
2773 /// stores into the unsafe variable, and propagates the result outward.
2774 template <typename Impl, typename Result>
2775 Result ARCExprEmitter<Impl,Result>::
2776                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
2777   // Recursively emit the RHS.
2778   // For __block safety, do this before emitting the LHS.
2779   Result result = asImpl().visit(e->getRHS());
2780 
2781   // Perform the store.
2782   LValue lvalue =
2783     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
2784   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
2785                              lvalue);
2786 
2787   return result;
2788 }
2789 
2790 template <typename Impl, typename Result>
2791 Result
2792 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
2793   return asImpl().visitExpr(e);
2794 }
2795 
2796 template <typename Impl, typename Result>
2797 Result
2798 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
2799   return asImpl().visitExpr(e);
2800 }
2801 
2802 template <typename Impl, typename Result>
2803 Result
2804 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
2805   return asImpl().visitExpr(e);
2806 }
2807 
2808 /// The general expression-emission logic.
2809 template <typename Impl, typename Result>
2810 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
2811   // We should *never* see a nested full-expression here, because if
2812   // we fail to emit at +1, our caller must not retain after we close
2813   // out the full-expression.  This isn't as important in the unsafe
2814   // emitter.
2815   assert(!isa<ExprWithCleanups>(e));
2816 
2817   // Look through parens, __extension__, generic selection, etc.
2818   e = e->IgnoreParens();
2819 
2820   // Handle certain kinds of casts.
2821   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2822     return asImpl().visitCastExpr(ce);
2823 
2824   // Handle the comma operator.
2825   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
2826     return asImpl().visitBinaryOperator(op);
2827 
2828   // TODO: handle conditional operators here
2829 
2830   // For calls and message sends, use the retained-call logic.
2831   // Delegate inits are a special case in that they're the only
2832   // returns-retained expression that *isn't* surrounded by
2833   // a consume.
2834   } else if (isa<CallExpr>(e) ||
2835              (isa<ObjCMessageExpr>(e) &&
2836               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2837     return asImpl().visitCall(e);
2838 
2839   // Look through pseudo-object expressions.
2840   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2841     return asImpl().visitPseudoObjectExpr(pseudo);
2842   }
2843 
2844   return asImpl().visitExpr(e);
2845 }
2846 
2847 namespace {
2848 
2849 /// An emitter for +1 results.
2850 struct ARCRetainExprEmitter :
2851   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
2852 
2853   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
2854 
2855   llvm::Value *getValueOfResult(TryEmitResult result) {
2856     return result.getPointer();
2857   }
2858 
2859   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
2860     llvm::Value *value = result.getPointer();
2861     value = CGF.Builder.CreateBitCast(value, resultType);
2862     result.setPointer(value);
2863     return result;
2864   }
2865 
2866   TryEmitResult visitLValueToRValue(const Expr *e) {
2867     return tryEmitARCRetainLoadOfScalar(CGF, e);
2868   }
2869 
2870   /// For consumptions, just emit the subexpression and thus elide
2871   /// the retain/release pair.
2872   TryEmitResult visitConsumeObject(const Expr *e) {
2873     llvm::Value *result = CGF.EmitScalarExpr(e);
2874     return TryEmitResult(result, true);
2875   }
2876 
2877   /// Block extends are net +0.  Naively, we could just recurse on
2878   /// the subexpression, but actually we need to ensure that the
2879   /// value is copied as a block, so there's a little filter here.
2880   TryEmitResult visitExtendBlockObject(const Expr *e) {
2881     llvm::Value *result; // will be a +0 value
2882 
2883     // If we can't safely assume the sub-expression will produce a
2884     // block-copied value, emit the sub-expression at +0.
2885     if (shouldEmitSeparateBlockRetain(e)) {
2886       result = CGF.EmitScalarExpr(e);
2887 
2888     // Otherwise, try to emit the sub-expression at +1 recursively.
2889     } else {
2890       TryEmitResult subresult = asImpl().visit(e);
2891 
2892       // If that produced a retained value, just use that.
2893       if (subresult.getInt()) {
2894         return subresult;
2895       }
2896 
2897       // Otherwise it's +0.
2898       result = subresult.getPointer();
2899     }
2900 
2901     // Retain the object as a block.
2902     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2903     return TryEmitResult(result, true);
2904   }
2905 
2906   /// For reclaims, emit the subexpression as a retained call and
2907   /// skip the consumption.
2908   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
2909     llvm::Value *result = emitARCRetainCallResult(CGF, e);
2910     return TryEmitResult(result, true);
2911   }
2912 
2913   /// When we have an undecorated call, retroactively do a claim.
2914   TryEmitResult visitCall(const Expr *e) {
2915     llvm::Value *result = emitARCRetainCallResult(CGF, e);
2916     return TryEmitResult(result, true);
2917   }
2918 
2919   // TODO: maybe special-case visitBinAssignWeak?
2920 
2921   TryEmitResult visitExpr(const Expr *e) {
2922     // We didn't find an obvious production, so emit what we've got and
2923     // tell the caller that we didn't manage to retain.
2924     llvm::Value *result = CGF.EmitScalarExpr(e);
2925     return TryEmitResult(result, false);
2926   }
2927 };
2928 }
2929 
2930 static TryEmitResult
2931 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2932   return ARCRetainExprEmitter(CGF).visit(e);
2933 }
2934 
2935 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2936                                                 LValue lvalue,
2937                                                 QualType type) {
2938   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2939   llvm::Value *value = result.getPointer();
2940   if (!result.getInt())
2941     value = CGF.EmitARCRetain(type, value);
2942   return value;
2943 }
2944 
2945 /// EmitARCRetainScalarExpr - Semantically equivalent to
2946 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2947 /// best-effort attempt to peephole expressions that naturally produce
2948 /// retained objects.
2949 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2950   // The retain needs to happen within the full-expression.
2951   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2952     enterFullExpression(cleanups);
2953     RunCleanupsScope scope(*this);
2954     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2955   }
2956 
2957   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2958   llvm::Value *value = result.getPointer();
2959   if (!result.getInt())
2960     value = EmitARCRetain(e->getType(), value);
2961   return value;
2962 }
2963 
2964 llvm::Value *
2965 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2966   // The retain needs to happen within the full-expression.
2967   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2968     enterFullExpression(cleanups);
2969     RunCleanupsScope scope(*this);
2970     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2971   }
2972 
2973   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2974   llvm::Value *value = result.getPointer();
2975   if (result.getInt())
2976     value = EmitARCAutorelease(value);
2977   else
2978     value = EmitARCRetainAutorelease(e->getType(), value);
2979   return value;
2980 }
2981 
2982 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2983   llvm::Value *result;
2984   bool doRetain;
2985 
2986   if (shouldEmitSeparateBlockRetain(e)) {
2987     result = EmitScalarExpr(e);
2988     doRetain = true;
2989   } else {
2990     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2991     result = subresult.getPointer();
2992     doRetain = !subresult.getInt();
2993   }
2994 
2995   if (doRetain)
2996     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2997   return EmitObjCConsumeObject(e->getType(), result);
2998 }
2999 
3000 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3001   // In ARC, retain and autorelease the expression.
3002   if (getLangOpts().ObjCAutoRefCount) {
3003     // Do so before running any cleanups for the full-expression.
3004     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3005     return EmitARCRetainAutoreleaseScalarExpr(expr);
3006   }
3007 
3008   // Otherwise, use the normal scalar-expression emission.  The
3009   // exception machinery doesn't do anything special with the
3010   // exception like retaining it, so there's no safety associated with
3011   // only running cleanups after the throw has started, and when it
3012   // matters it tends to be substantially inferior code.
3013   return EmitScalarExpr(expr);
3014 }
3015 
3016 namespace {
3017 
3018 /// An emitter for assigning into an __unsafe_unretained context.
3019 struct ARCUnsafeUnretainedExprEmitter :
3020   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3021 
3022   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3023 
3024   llvm::Value *getValueOfResult(llvm::Value *value) {
3025     return value;
3026   }
3027 
3028   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3029     return CGF.Builder.CreateBitCast(value, resultType);
3030   }
3031 
3032   llvm::Value *visitLValueToRValue(const Expr *e) {
3033     return CGF.EmitScalarExpr(e);
3034   }
3035 
3036   /// For consumptions, just emit the subexpression and perform the
3037   /// consumption like normal.
3038   llvm::Value *visitConsumeObject(const Expr *e) {
3039     llvm::Value *value = CGF.EmitScalarExpr(e);
3040     return CGF.EmitObjCConsumeObject(e->getType(), value);
3041   }
3042 
3043   /// No special logic for block extensions.  (This probably can't
3044   /// actually happen in this emitter, though.)
3045   llvm::Value *visitExtendBlockObject(const Expr *e) {
3046     return CGF.EmitARCExtendBlockObject(e);
3047   }
3048 
3049   /// For reclaims, perform an unsafeClaim if that's enabled.
3050   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3051     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3052   }
3053 
3054   /// When we have an undecorated call, just emit it without adding
3055   /// the unsafeClaim.
3056   llvm::Value *visitCall(const Expr *e) {
3057     return CGF.EmitScalarExpr(e);
3058   }
3059 
3060   /// Just do normal scalar emission in the default case.
3061   llvm::Value *visitExpr(const Expr *e) {
3062     return CGF.EmitScalarExpr(e);
3063   }
3064 };
3065 }
3066 
3067 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3068                                                       const Expr *e) {
3069   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3070 }
3071 
3072 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3073 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3074 /// avoiding any spurious retains, including by performing reclaims
3075 /// with objc_unsafeClaimAutoreleasedReturnValue.
3076 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3077   // Look through full-expressions.
3078   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3079     enterFullExpression(cleanups);
3080     RunCleanupsScope scope(*this);
3081     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3082   }
3083 
3084   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3085 }
3086 
3087 std::pair<LValue,llvm::Value*>
3088 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3089                                               bool ignored) {
3090   // Evaluate the RHS first.  If we're ignoring the result, assume
3091   // that we can emit at an unsafe +0.
3092   llvm::Value *value;
3093   if (ignored) {
3094     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3095   } else {
3096     value = EmitScalarExpr(e->getRHS());
3097   }
3098 
3099   // Emit the LHS and perform the store.
3100   LValue lvalue = EmitLValue(e->getLHS());
3101   EmitStoreOfScalar(value, lvalue);
3102 
3103   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3104 }
3105 
3106 std::pair<LValue,llvm::Value*>
3107 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3108                                     bool ignored) {
3109   // Evaluate the RHS first.
3110   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3111   llvm::Value *value = result.getPointer();
3112 
3113   bool hasImmediateRetain = result.getInt();
3114 
3115   // If we didn't emit a retained object, and the l-value is of block
3116   // type, then we need to emit the block-retain immediately in case
3117   // it invalidates the l-value.
3118   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3119     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3120     hasImmediateRetain = true;
3121   }
3122 
3123   LValue lvalue = EmitLValue(e->getLHS());
3124 
3125   // If the RHS was emitted retained, expand this.
3126   if (hasImmediateRetain) {
3127     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3128     EmitStoreOfScalar(value, lvalue);
3129     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3130   } else {
3131     value = EmitARCStoreStrong(lvalue, value, ignored);
3132   }
3133 
3134   return std::pair<LValue,llvm::Value*>(lvalue, value);
3135 }
3136 
3137 std::pair<LValue,llvm::Value*>
3138 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3139   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3140   LValue lvalue = EmitLValue(e->getLHS());
3141 
3142   EmitStoreOfScalar(value, lvalue);
3143 
3144   return std::pair<LValue,llvm::Value*>(lvalue, value);
3145 }
3146 
3147 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3148                                           const ObjCAutoreleasePoolStmt &ARPS) {
3149   const Stmt *subStmt = ARPS.getSubStmt();
3150   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3151 
3152   CGDebugInfo *DI = getDebugInfo();
3153   if (DI)
3154     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3155 
3156   // Keep track of the current cleanup stack depth.
3157   RunCleanupsScope Scope(*this);
3158   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3159     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3160     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3161   } else {
3162     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3163     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3164   }
3165 
3166   for (const auto *I : S.body())
3167     EmitStmt(I);
3168 
3169   if (DI)
3170     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3171 }
3172 
3173 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3174 /// make sure it survives garbage collection until this point.
3175 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3176   // We just use an inline assembly.
3177   llvm::FunctionType *extenderType
3178     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3179   llvm::Value *extender
3180     = llvm::InlineAsm::get(extenderType,
3181                            /* assembly */ "",
3182                            /* constraints */ "r",
3183                            /* side effects */ true);
3184 
3185   object = Builder.CreateBitCast(object, VoidPtrTy);
3186   EmitNounwindRuntimeCall(extender, object);
3187 }
3188 
3189 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3190 /// non-trivial copy assignment function, produce following helper function.
3191 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3192 ///
3193 llvm::Constant *
3194 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3195                                         const ObjCPropertyImplDecl *PID) {
3196   if (!getLangOpts().CPlusPlus ||
3197       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3198     return nullptr;
3199   QualType Ty = PID->getPropertyIvarDecl()->getType();
3200   if (!Ty->isRecordType())
3201     return nullptr;
3202   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3203   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3204     return nullptr;
3205   llvm::Constant *HelperFn = nullptr;
3206   if (hasTrivialSetExpr(PID))
3207     return nullptr;
3208   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3209   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3210     return HelperFn;
3211 
3212   ASTContext &C = getContext();
3213   IdentifierInfo *II
3214     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3215   FunctionDecl *FD = FunctionDecl::Create(C,
3216                                           C.getTranslationUnitDecl(),
3217                                           SourceLocation(),
3218                                           SourceLocation(), II, C.VoidTy,
3219                                           nullptr, SC_Static,
3220                                           false,
3221                                           false);
3222 
3223   QualType DestTy = C.getPointerType(Ty);
3224   QualType SrcTy = Ty;
3225   SrcTy.addConst();
3226   SrcTy = C.getPointerType(SrcTy);
3227 
3228   FunctionArgList args;
3229   ImplicitParamDecl DstDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr,
3230                             DestTy, ImplicitParamDecl::Other);
3231   args.push_back(&DstDecl);
3232   ImplicitParamDecl SrcDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr,
3233                             SrcTy, ImplicitParamDecl::Other);
3234   args.push_back(&SrcDecl);
3235 
3236   const CGFunctionInfo &FI =
3237     CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args);
3238 
3239   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3240 
3241   llvm::Function *Fn =
3242     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3243                            "__assign_helper_atomic_property_",
3244                            &CGM.getModule());
3245 
3246   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3247 
3248   StartFunction(FD, C.VoidTy, Fn, FI, args);
3249 
3250   DeclRefExpr DstExpr(&DstDecl, false, DestTy,
3251                       VK_RValue, SourceLocation());
3252   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
3253                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3254 
3255   DeclRefExpr SrcExpr(&SrcDecl, false, SrcTy,
3256                       VK_RValue, SourceLocation());
3257   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3258                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3259 
3260   Expr *Args[2] = { &DST, &SRC };
3261   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3262   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
3263                               Args, DestTy->getPointeeType(),
3264                               VK_LValue, SourceLocation(), FPOptions());
3265 
3266   EmitStmt(&TheCall);
3267 
3268   FinishFunction();
3269   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3270   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3271   return HelperFn;
3272 }
3273 
3274 llvm::Constant *
3275 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3276                                             const ObjCPropertyImplDecl *PID) {
3277   if (!getLangOpts().CPlusPlus ||
3278       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3279     return nullptr;
3280   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3281   QualType Ty = PD->getType();
3282   if (!Ty->isRecordType())
3283     return nullptr;
3284   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3285     return nullptr;
3286   llvm::Constant *HelperFn = nullptr;
3287 
3288   if (hasTrivialGetExpr(PID))
3289     return nullptr;
3290   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3291   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3292     return HelperFn;
3293 
3294 
3295   ASTContext &C = getContext();
3296   IdentifierInfo *II
3297   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3298   FunctionDecl *FD = FunctionDecl::Create(C,
3299                                           C.getTranslationUnitDecl(),
3300                                           SourceLocation(),
3301                                           SourceLocation(), II, C.VoidTy,
3302                                           nullptr, SC_Static,
3303                                           false,
3304                                           false);
3305 
3306   QualType DestTy = C.getPointerType(Ty);
3307   QualType SrcTy = Ty;
3308   SrcTy.addConst();
3309   SrcTy = C.getPointerType(SrcTy);
3310 
3311   FunctionArgList args;
3312   ImplicitParamDecl DstDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr,
3313                             DestTy, ImplicitParamDecl::Other);
3314   args.push_back(&DstDecl);
3315   ImplicitParamDecl SrcDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr,
3316                             SrcTy, ImplicitParamDecl::Other);
3317   args.push_back(&SrcDecl);
3318 
3319   const CGFunctionInfo &FI =
3320     CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args);
3321 
3322   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3323 
3324   llvm::Function *Fn =
3325   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3326                          "__copy_helper_atomic_property_", &CGM.getModule());
3327 
3328   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3329 
3330   StartFunction(FD, C.VoidTy, Fn, FI, args);
3331 
3332   DeclRefExpr SrcExpr(&SrcDecl, false, SrcTy,
3333                       VK_RValue, SourceLocation());
3334 
3335   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3336                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3337 
3338   CXXConstructExpr *CXXConstExpr =
3339     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3340 
3341   SmallVector<Expr*, 4> ConstructorArgs;
3342   ConstructorArgs.push_back(&SRC);
3343   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3344                          CXXConstExpr->arg_end());
3345 
3346   CXXConstructExpr *TheCXXConstructExpr =
3347     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3348                              CXXConstExpr->getConstructor(),
3349                              CXXConstExpr->isElidable(),
3350                              ConstructorArgs,
3351                              CXXConstExpr->hadMultipleCandidates(),
3352                              CXXConstExpr->isListInitialization(),
3353                              CXXConstExpr->isStdInitListInitialization(),
3354                              CXXConstExpr->requiresZeroInitialization(),
3355                              CXXConstExpr->getConstructionKind(),
3356                              SourceRange());
3357 
3358   DeclRefExpr DstExpr(&DstDecl, false, DestTy,
3359                       VK_RValue, SourceLocation());
3360 
3361   RValue DV = EmitAnyExpr(&DstExpr);
3362   CharUnits Alignment
3363     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3364   EmitAggExpr(TheCXXConstructExpr,
3365               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3366                                     Qualifiers(),
3367                                     AggValueSlot::IsDestructed,
3368                                     AggValueSlot::DoesNotNeedGCBarriers,
3369                                     AggValueSlot::IsNotAliased));
3370 
3371   FinishFunction();
3372   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3373   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3374   return HelperFn;
3375 }
3376 
3377 llvm::Value *
3378 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3379   // Get selectors for retain/autorelease.
3380   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3381   Selector CopySelector =
3382       getContext().Selectors.getNullarySelector(CopyID);
3383   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3384   Selector AutoreleaseSelector =
3385       getContext().Selectors.getNullarySelector(AutoreleaseID);
3386 
3387   // Emit calls to retain/autorelease.
3388   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3389   llvm::Value *Val = Block;
3390   RValue Result;
3391   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3392                                        Ty, CopySelector,
3393                                        Val, CallArgList(), nullptr, nullptr);
3394   Val = Result.getScalarVal();
3395   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3396                                        Ty, AutoreleaseSelector,
3397                                        Val, CallArgList(), nullptr, nullptr);
3398   Val = Result.getScalarVal();
3399   return Val;
3400 }
3401 
3402 llvm::Value *
3403 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) {
3404   assert(Args.size() == 3 && "Expected 3 argument here!");
3405 
3406   if (!CGM.IsOSVersionAtLeastFn) {
3407     llvm::FunctionType *FTy =
3408         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3409     CGM.IsOSVersionAtLeastFn =
3410         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3411   }
3412 
3413   llvm::Value *CallRes =
3414       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3415 
3416   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3417 }
3418 
3419 void CodeGenModule::emitAtAvailableLinkGuard() {
3420   if (!IsOSVersionAtLeastFn)
3421     return;
3422   // @available requires CoreFoundation only on Darwin.
3423   if (!Target.getTriple().isOSDarwin())
3424     return;
3425   // Add -framework CoreFoundation to the linker commands. We still want to
3426   // emit the core foundation reference down below because otherwise if
3427   // CoreFoundation is not used in the code, the linker won't link the
3428   // framework.
3429   auto &Context = getLLVMContext();
3430   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3431                              llvm::MDString::get(Context, "CoreFoundation")};
3432   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3433   // Emit a reference to a symbol from CoreFoundation to ensure that
3434   // CoreFoundation is linked into the final binary.
3435   llvm::FunctionType *FTy =
3436       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3437   llvm::Constant *CFFunc =
3438       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3439 
3440   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3441   llvm::Function *CFLinkCheckFunc = cast<llvm::Function>(CreateBuiltinFunction(
3442       CheckFTy, "__clang_at_available_requires_core_foundation_framework"));
3443   CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3444   CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3445   CodeGenFunction CGF(*this);
3446   CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3447   CGF.EmitNounwindRuntimeCall(CFFunc, llvm::Constant::getNullValue(VoidPtrTy));
3448   CGF.Builder.CreateUnreachable();
3449   addCompilerUsedGlobal(CFLinkCheckFunc);
3450 }
3451 
3452 CGObjCRuntime::~CGObjCRuntime() {}
3453