1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Objective-C code as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/StmtObjC.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 32 static TryEmitResult 33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 35 QualType ET, 36 RValue Result); 37 38 /// Given the address of a variable of pointer type, find the correct 39 /// null to store into it. 40 static llvm::Constant *getNullForVariable(Address addr) { 41 llvm::Type *type = addr.getElementType(); 42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 43 } 44 45 /// Emits an instance of NSConstantString representing the object. 46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 47 { 48 llvm::Constant *C = 49 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 50 // FIXME: This bitcast should just be made an invariant on the Runtime. 51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 52 } 53 54 /// EmitObjCBoxedExpr - This routine generates code to call 55 /// the appropriate expression boxing method. This will either be 56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 57 /// or [NSValue valueWithBytes:objCType:]. 58 /// 59 llvm::Value * 60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 61 // Generate the correct selector for this literal's concrete type. 62 // Get the method. 63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 64 const Expr *SubExpr = E->getSubExpr(); 65 assert(BoxingMethod && "BoxingMethod is null"); 66 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 67 Selector Sel = BoxingMethod->getSelector(); 68 69 // Generate a reference to the class pointer, which will be the receiver. 70 // Assumes that the method was introduced in the class that should be 71 // messaged (avoids pulling it out of the result type). 72 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 73 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 74 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 75 76 CallArgList Args; 77 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 78 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 79 80 // ObjCBoxedExpr supports boxing of structs and unions 81 // via [NSValue valueWithBytes:objCType:] 82 const QualType ValueType(SubExpr->getType().getCanonicalType()); 83 if (ValueType->isObjCBoxableRecordType()) { 84 // Emit CodeGen for first parameter 85 // and cast value to correct type 86 Address Temporary = CreateMemTemp(SubExpr->getType()); 87 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 88 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); 89 Args.add(RValue::get(BitCast.getPointer()), ArgQT); 90 91 // Create char array to store type encoding 92 std::string Str; 93 getContext().getObjCEncodingForType(ValueType, Str); 94 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 95 96 // Cast type encoding to correct type 97 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 98 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 99 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 100 101 Args.add(RValue::get(Cast), EncodingQT); 102 } else { 103 Args.add(EmitAnyExpr(SubExpr), ArgQT); 104 } 105 106 RValue result = Runtime.GenerateMessageSend( 107 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 108 Args, ClassDecl, BoxingMethod); 109 return Builder.CreateBitCast(result.getScalarVal(), 110 ConvertType(E->getType())); 111 } 112 113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 114 const ObjCMethodDecl *MethodWithObjects) { 115 ASTContext &Context = CGM.getContext(); 116 const ObjCDictionaryLiteral *DLE = nullptr; 117 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 118 if (!ALE) 119 DLE = cast<ObjCDictionaryLiteral>(E); 120 121 // Optimize empty collections by referencing constants, when available. 122 uint64_t NumElements = 123 ALE ? ALE->getNumElements() : DLE->getNumElements(); 124 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 125 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 126 QualType IdTy(CGM.getContext().getObjCIdType()); 127 llvm::Constant *Constant = 128 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 129 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 130 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getLocStart()); 131 cast<llvm::LoadInst>(Ptr)->setMetadata( 132 CGM.getModule().getMDKindID("invariant.load"), 133 llvm::MDNode::get(getLLVMContext(), None)); 134 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 135 } 136 137 // Compute the type of the array we're initializing. 138 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 139 NumElements); 140 QualType ElementType = Context.getObjCIdType().withConst(); 141 QualType ElementArrayType 142 = Context.getConstantArrayType(ElementType, APNumElements, 143 ArrayType::Normal, /*IndexTypeQuals=*/0); 144 145 // Allocate the temporary array(s). 146 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 147 Address Keys = Address::invalid(); 148 if (DLE) 149 Keys = CreateMemTemp(ElementArrayType, "keys"); 150 151 // In ARC, we may need to do extra work to keep all the keys and 152 // values alive until after the call. 153 SmallVector<llvm::Value *, 16> NeededObjects; 154 bool TrackNeededObjects = 155 (getLangOpts().ObjCAutoRefCount && 156 CGM.getCodeGenOpts().OptimizationLevel != 0); 157 158 // Perform the actual initialialization of the array(s). 159 for (uint64_t i = 0; i < NumElements; i++) { 160 if (ALE) { 161 // Emit the element and store it to the appropriate array slot. 162 const Expr *Rhs = ALE->getElement(i); 163 LValue LV = MakeAddrLValue( 164 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 165 ElementType, AlignmentSource::Decl); 166 167 llvm::Value *value = EmitScalarExpr(Rhs); 168 EmitStoreThroughLValue(RValue::get(value), LV, true); 169 if (TrackNeededObjects) { 170 NeededObjects.push_back(value); 171 } 172 } else { 173 // Emit the key and store it to the appropriate array slot. 174 const Expr *Key = DLE->getKeyValueElement(i).Key; 175 LValue KeyLV = MakeAddrLValue( 176 Builder.CreateConstArrayGEP(Keys, i, getPointerSize()), 177 ElementType, AlignmentSource::Decl); 178 llvm::Value *keyValue = EmitScalarExpr(Key); 179 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 180 181 // Emit the value and store it to the appropriate array slot. 182 const Expr *Value = DLE->getKeyValueElement(i).Value; 183 LValue ValueLV = MakeAddrLValue( 184 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), 185 ElementType, AlignmentSource::Decl); 186 llvm::Value *valueValue = EmitScalarExpr(Value); 187 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 188 if (TrackNeededObjects) { 189 NeededObjects.push_back(keyValue); 190 NeededObjects.push_back(valueValue); 191 } 192 } 193 } 194 195 // Generate the argument list. 196 CallArgList Args; 197 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 198 const ParmVarDecl *argDecl = *PI++; 199 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 200 Args.add(RValue::get(Objects.getPointer()), ArgQT); 201 if (DLE) { 202 argDecl = *PI++; 203 ArgQT = argDecl->getType().getUnqualifiedType(); 204 Args.add(RValue::get(Keys.getPointer()), ArgQT); 205 } 206 argDecl = *PI; 207 ArgQT = argDecl->getType().getUnqualifiedType(); 208 llvm::Value *Count = 209 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 210 Args.add(RValue::get(Count), ArgQT); 211 212 // Generate a reference to the class pointer, which will be the receiver. 213 Selector Sel = MethodWithObjects->getSelector(); 214 QualType ResultType = E->getType(); 215 const ObjCObjectPointerType *InterfacePointerType 216 = ResultType->getAsObjCInterfacePointerType(); 217 ObjCInterfaceDecl *Class 218 = InterfacePointerType->getObjectType()->getInterface(); 219 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 220 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 221 222 // Generate the message send. 223 RValue result = Runtime.GenerateMessageSend( 224 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 225 Receiver, Args, Class, MethodWithObjects); 226 227 // The above message send needs these objects, but in ARC they are 228 // passed in a buffer that is essentially __unsafe_unretained. 229 // Therefore we must prevent the optimizer from releasing them until 230 // after the call. 231 if (TrackNeededObjects) { 232 EmitARCIntrinsicUse(NeededObjects); 233 } 234 235 return Builder.CreateBitCast(result.getScalarVal(), 236 ConvertType(E->getType())); 237 } 238 239 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 240 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 241 } 242 243 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 244 const ObjCDictionaryLiteral *E) { 245 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 246 } 247 248 /// Emit a selector. 249 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 250 // Untyped selector. 251 // Note that this implementation allows for non-constant strings to be passed 252 // as arguments to @selector(). Currently, the only thing preventing this 253 // behaviour is the type checking in the front end. 254 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 255 } 256 257 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 258 // FIXME: This should pass the Decl not the name. 259 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 260 } 261 262 /// \brief Adjust the type of an Objective-C object that doesn't match up due 263 /// to type erasure at various points, e.g., related result types or the use 264 /// of parameterized classes. 265 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 266 RValue Result) { 267 if (!ExpT->isObjCRetainableType()) 268 return Result; 269 270 // If the converted types are the same, we're done. 271 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 272 if (ExpLLVMTy == Result.getScalarVal()->getType()) 273 return Result; 274 275 // We have applied a substitution. Cast the rvalue appropriately. 276 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 277 ExpLLVMTy)); 278 } 279 280 /// Decide whether to extend the lifetime of the receiver of a 281 /// returns-inner-pointer message. 282 static bool 283 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 284 switch (message->getReceiverKind()) { 285 286 // For a normal instance message, we should extend unless the 287 // receiver is loaded from a variable with precise lifetime. 288 case ObjCMessageExpr::Instance: { 289 const Expr *receiver = message->getInstanceReceiver(); 290 291 // Look through OVEs. 292 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 293 if (opaque->getSourceExpr()) 294 receiver = opaque->getSourceExpr()->IgnoreParens(); 295 } 296 297 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 298 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 299 receiver = ice->getSubExpr()->IgnoreParens(); 300 301 // Look through OVEs. 302 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 303 if (opaque->getSourceExpr()) 304 receiver = opaque->getSourceExpr()->IgnoreParens(); 305 } 306 307 // Only __strong variables. 308 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 309 return true; 310 311 // All ivars and fields have precise lifetime. 312 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 313 return false; 314 315 // Otherwise, check for variables. 316 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 317 if (!declRef) return true; 318 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 319 if (!var) return true; 320 321 // All variables have precise lifetime except local variables with 322 // automatic storage duration that aren't specially marked. 323 return (var->hasLocalStorage() && 324 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 325 } 326 327 case ObjCMessageExpr::Class: 328 case ObjCMessageExpr::SuperClass: 329 // It's never necessary for class objects. 330 return false; 331 332 case ObjCMessageExpr::SuperInstance: 333 // We generally assume that 'self' lives throughout a method call. 334 return false; 335 } 336 337 llvm_unreachable("invalid receiver kind"); 338 } 339 340 /// Given an expression of ObjC pointer type, check whether it was 341 /// immediately loaded from an ARC __weak l-value. 342 static const Expr *findWeakLValue(const Expr *E) { 343 assert(E->getType()->isObjCRetainableType()); 344 E = E->IgnoreParens(); 345 if (auto CE = dyn_cast<CastExpr>(E)) { 346 if (CE->getCastKind() == CK_LValueToRValue) { 347 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 348 return CE->getSubExpr(); 349 } 350 } 351 352 return nullptr; 353 } 354 355 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 356 ReturnValueSlot Return) { 357 // Only the lookup mechanism and first two arguments of the method 358 // implementation vary between runtimes. We can get the receiver and 359 // arguments in generic code. 360 361 bool isDelegateInit = E->isDelegateInitCall(); 362 363 const ObjCMethodDecl *method = E->getMethodDecl(); 364 365 // If the method is -retain, and the receiver's being loaded from 366 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 367 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 368 method->getMethodFamily() == OMF_retain) { 369 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 370 LValue lvalue = EmitLValue(lvalueExpr); 371 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress()); 372 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 373 } 374 } 375 376 // We don't retain the receiver in delegate init calls, and this is 377 // safe because the receiver value is always loaded from 'self', 378 // which we zero out. We don't want to Block_copy block receivers, 379 // though. 380 bool retainSelf = 381 (!isDelegateInit && 382 CGM.getLangOpts().ObjCAutoRefCount && 383 method && 384 method->hasAttr<NSConsumesSelfAttr>()); 385 386 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 387 bool isSuperMessage = false; 388 bool isClassMessage = false; 389 ObjCInterfaceDecl *OID = nullptr; 390 // Find the receiver 391 QualType ReceiverType; 392 llvm::Value *Receiver = nullptr; 393 switch (E->getReceiverKind()) { 394 case ObjCMessageExpr::Instance: 395 ReceiverType = E->getInstanceReceiver()->getType(); 396 if (retainSelf) { 397 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 398 E->getInstanceReceiver()); 399 Receiver = ter.getPointer(); 400 if (ter.getInt()) retainSelf = false; 401 } else 402 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 403 break; 404 405 case ObjCMessageExpr::Class: { 406 ReceiverType = E->getClassReceiver(); 407 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); 408 assert(ObjTy && "Invalid Objective-C class message send"); 409 OID = ObjTy->getInterface(); 410 assert(OID && "Invalid Objective-C class message send"); 411 Receiver = Runtime.GetClass(*this, OID); 412 isClassMessage = true; 413 break; 414 } 415 416 case ObjCMessageExpr::SuperInstance: 417 ReceiverType = E->getSuperType(); 418 Receiver = LoadObjCSelf(); 419 isSuperMessage = true; 420 break; 421 422 case ObjCMessageExpr::SuperClass: 423 ReceiverType = E->getSuperType(); 424 Receiver = LoadObjCSelf(); 425 isSuperMessage = true; 426 isClassMessage = true; 427 break; 428 } 429 430 if (retainSelf) 431 Receiver = EmitARCRetainNonBlock(Receiver); 432 433 // In ARC, we sometimes want to "extend the lifetime" 434 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 435 // messages. 436 if (getLangOpts().ObjCAutoRefCount && method && 437 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 438 shouldExtendReceiverForInnerPointerMessage(E)) 439 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 440 441 QualType ResultType = method ? method->getReturnType() : E->getType(); 442 443 CallArgList Args; 444 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 445 446 // For delegate init calls in ARC, do an unsafe store of null into 447 // self. This represents the call taking direct ownership of that 448 // value. We have to do this after emitting the other call 449 // arguments because they might also reference self, but we don't 450 // have to worry about any of them modifying self because that would 451 // be an undefined read and write of an object in unordered 452 // expressions. 453 if (isDelegateInit) { 454 assert(getLangOpts().ObjCAutoRefCount && 455 "delegate init calls should only be marked in ARC"); 456 457 // Do an unsafe store of null into self. 458 Address selfAddr = 459 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 460 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 461 } 462 463 RValue result; 464 if (isSuperMessage) { 465 // super is only valid in an Objective-C method 466 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 467 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 468 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 469 E->getSelector(), 470 OMD->getClassInterface(), 471 isCategoryImpl, 472 Receiver, 473 isClassMessage, 474 Args, 475 method); 476 } else { 477 result = Runtime.GenerateMessageSend(*this, Return, ResultType, 478 E->getSelector(), 479 Receiver, Args, OID, 480 method); 481 } 482 483 // For delegate init calls in ARC, implicitly store the result of 484 // the call back into self. This takes ownership of the value. 485 if (isDelegateInit) { 486 Address selfAddr = 487 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 488 llvm::Value *newSelf = result.getScalarVal(); 489 490 // The delegate return type isn't necessarily a matching type; in 491 // fact, it's quite likely to be 'id'. 492 llvm::Type *selfTy = selfAddr.getElementType(); 493 newSelf = Builder.CreateBitCast(newSelf, selfTy); 494 495 Builder.CreateStore(newSelf, selfAddr); 496 } 497 498 return AdjustObjCObjectType(*this, E->getType(), result); 499 } 500 501 namespace { 502 struct FinishARCDealloc final : EHScopeStack::Cleanup { 503 void Emit(CodeGenFunction &CGF, Flags flags) override { 504 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 505 506 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 507 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 508 if (!iface->getSuperClass()) return; 509 510 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 511 512 // Call [super dealloc] if we have a superclass. 513 llvm::Value *self = CGF.LoadObjCSelf(); 514 515 CallArgList args; 516 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 517 CGF.getContext().VoidTy, 518 method->getSelector(), 519 iface, 520 isCategory, 521 self, 522 /*is class msg*/ false, 523 args, 524 method); 525 } 526 }; 527 } 528 529 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 530 /// the LLVM function and sets the other context used by 531 /// CodeGenFunction. 532 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 533 const ObjCContainerDecl *CD) { 534 SourceLocation StartLoc = OMD->getLocStart(); 535 FunctionArgList args; 536 // Check if we should generate debug info for this method. 537 if (OMD->hasAttr<NoDebugAttr>()) 538 DebugInfo = nullptr; // disable debug info indefinitely for this function 539 540 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 541 542 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 543 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 544 545 args.push_back(OMD->getSelfDecl()); 546 args.push_back(OMD->getCmdDecl()); 547 548 args.append(OMD->param_begin(), OMD->param_end()); 549 550 CurGD = OMD; 551 CurEHLocation = OMD->getLocEnd(); 552 553 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 554 OMD->getLocation(), StartLoc); 555 556 // In ARC, certain methods get an extra cleanup. 557 if (CGM.getLangOpts().ObjCAutoRefCount && 558 OMD->isInstanceMethod() && 559 OMD->getSelector().isUnarySelector()) { 560 const IdentifierInfo *ident = 561 OMD->getSelector().getIdentifierInfoForSlot(0); 562 if (ident->isStr("dealloc")) 563 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 564 } 565 } 566 567 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 568 LValue lvalue, QualType type); 569 570 /// Generate an Objective-C method. An Objective-C method is a C function with 571 /// its pointer, name, and types registered in the class struture. 572 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 573 StartObjCMethod(OMD, OMD->getClassInterface()); 574 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 575 assert(isa<CompoundStmt>(OMD->getBody())); 576 incrementProfileCounter(OMD->getBody()); 577 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 578 FinishFunction(OMD->getBodyRBrace()); 579 } 580 581 /// emitStructGetterCall - Call the runtime function to load a property 582 /// into the return value slot. 583 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 584 bool isAtomic, bool hasStrong) { 585 ASTContext &Context = CGF.getContext(); 586 587 Address src = 588 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 589 .getAddress(); 590 591 // objc_copyStruct (ReturnValue, &structIvar, 592 // sizeof (Type of Ivar), isAtomic, false); 593 CallArgList args; 594 595 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); 596 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); 597 598 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 599 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); 600 601 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 602 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 603 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 604 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 605 606 llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 607 CGCallee callee = CGCallee::forDirect(fn); 608 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 609 callee, ReturnValueSlot(), args); 610 } 611 612 /// Determine whether the given architecture supports unaligned atomic 613 /// accesses. They don't have to be fast, just faster than a function 614 /// call and a mutex. 615 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 616 // FIXME: Allow unaligned atomic load/store on x86. (It is not 617 // currently supported by the backend.) 618 return 0; 619 } 620 621 /// Return the maximum size that permits atomic accesses for the given 622 /// architecture. 623 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 624 llvm::Triple::ArchType arch) { 625 // ARM has 8-byte atomic accesses, but it's not clear whether we 626 // want to rely on them here. 627 628 // In the default case, just assume that any size up to a pointer is 629 // fine given adequate alignment. 630 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 631 } 632 633 namespace { 634 class PropertyImplStrategy { 635 public: 636 enum StrategyKind { 637 /// The 'native' strategy is to use the architecture's provided 638 /// reads and writes. 639 Native, 640 641 /// Use objc_setProperty and objc_getProperty. 642 GetSetProperty, 643 644 /// Use objc_setProperty for the setter, but use expression 645 /// evaluation for the getter. 646 SetPropertyAndExpressionGet, 647 648 /// Use objc_copyStruct. 649 CopyStruct, 650 651 /// The 'expression' strategy is to emit normal assignment or 652 /// lvalue-to-rvalue expressions. 653 Expression 654 }; 655 656 StrategyKind getKind() const { return StrategyKind(Kind); } 657 658 bool hasStrongMember() const { return HasStrong; } 659 bool isAtomic() const { return IsAtomic; } 660 bool isCopy() const { return IsCopy; } 661 662 CharUnits getIvarSize() const { return IvarSize; } 663 CharUnits getIvarAlignment() const { return IvarAlignment; } 664 665 PropertyImplStrategy(CodeGenModule &CGM, 666 const ObjCPropertyImplDecl *propImpl); 667 668 private: 669 unsigned Kind : 8; 670 unsigned IsAtomic : 1; 671 unsigned IsCopy : 1; 672 unsigned HasStrong : 1; 673 674 CharUnits IvarSize; 675 CharUnits IvarAlignment; 676 }; 677 } 678 679 /// Pick an implementation strategy for the given property synthesis. 680 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 681 const ObjCPropertyImplDecl *propImpl) { 682 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 683 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 684 685 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 686 IsAtomic = prop->isAtomic(); 687 HasStrong = false; // doesn't matter here. 688 689 // Evaluate the ivar's size and alignment. 690 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 691 QualType ivarType = ivar->getType(); 692 std::tie(IvarSize, IvarAlignment) = 693 CGM.getContext().getTypeInfoInChars(ivarType); 694 695 // If we have a copy property, we always have to use getProperty/setProperty. 696 // TODO: we could actually use setProperty and an expression for non-atomics. 697 if (IsCopy) { 698 Kind = GetSetProperty; 699 return; 700 } 701 702 // Handle retain. 703 if (setterKind == ObjCPropertyDecl::Retain) { 704 // In GC-only, there's nothing special that needs to be done. 705 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 706 // fallthrough 707 708 // In ARC, if the property is non-atomic, use expression emission, 709 // which translates to objc_storeStrong. This isn't required, but 710 // it's slightly nicer. 711 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 712 // Using standard expression emission for the setter is only 713 // acceptable if the ivar is __strong, which won't be true if 714 // the property is annotated with __attribute__((NSObject)). 715 // TODO: falling all the way back to objc_setProperty here is 716 // just laziness, though; we could still use objc_storeStrong 717 // if we hacked it right. 718 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 719 Kind = Expression; 720 else 721 Kind = SetPropertyAndExpressionGet; 722 return; 723 724 // Otherwise, we need to at least use setProperty. However, if 725 // the property isn't atomic, we can use normal expression 726 // emission for the getter. 727 } else if (!IsAtomic) { 728 Kind = SetPropertyAndExpressionGet; 729 return; 730 731 // Otherwise, we have to use both setProperty and getProperty. 732 } else { 733 Kind = GetSetProperty; 734 return; 735 } 736 } 737 738 // If we're not atomic, just use expression accesses. 739 if (!IsAtomic) { 740 Kind = Expression; 741 return; 742 } 743 744 // Properties on bitfield ivars need to be emitted using expression 745 // accesses even if they're nominally atomic. 746 if (ivar->isBitField()) { 747 Kind = Expression; 748 return; 749 } 750 751 // GC-qualified or ARC-qualified ivars need to be emitted as 752 // expressions. This actually works out to being atomic anyway, 753 // except for ARC __strong, but that should trigger the above code. 754 if (ivarType.hasNonTrivialObjCLifetime() || 755 (CGM.getLangOpts().getGC() && 756 CGM.getContext().getObjCGCAttrKind(ivarType))) { 757 Kind = Expression; 758 return; 759 } 760 761 // Compute whether the ivar has strong members. 762 if (CGM.getLangOpts().getGC()) 763 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 764 HasStrong = recordType->getDecl()->hasObjectMember(); 765 766 // We can never access structs with object members with a native 767 // access, because we need to use write barriers. This is what 768 // objc_copyStruct is for. 769 if (HasStrong) { 770 Kind = CopyStruct; 771 return; 772 } 773 774 // Otherwise, this is target-dependent and based on the size and 775 // alignment of the ivar. 776 777 // If the size of the ivar is not a power of two, give up. We don't 778 // want to get into the business of doing compare-and-swaps. 779 if (!IvarSize.isPowerOfTwo()) { 780 Kind = CopyStruct; 781 return; 782 } 783 784 llvm::Triple::ArchType arch = 785 CGM.getTarget().getTriple().getArch(); 786 787 // Most architectures require memory to fit within a single cache 788 // line, so the alignment has to be at least the size of the access. 789 // Otherwise we have to grab a lock. 790 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 791 Kind = CopyStruct; 792 return; 793 } 794 795 // If the ivar's size exceeds the architecture's maximum atomic 796 // access size, we have to use CopyStruct. 797 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 798 Kind = CopyStruct; 799 return; 800 } 801 802 // Otherwise, we can use native loads and stores. 803 Kind = Native; 804 } 805 806 /// \brief Generate an Objective-C property getter function. 807 /// 808 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 809 /// is illegal within a category. 810 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 811 const ObjCPropertyImplDecl *PID) { 812 llvm::Constant *AtomicHelperFn = 813 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 814 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 815 ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); 816 assert(OMD && "Invalid call to generate getter (empty method)"); 817 StartObjCMethod(OMD, IMP->getClassInterface()); 818 819 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 820 821 FinishFunction(); 822 } 823 824 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 825 const Expr *getter = propImpl->getGetterCXXConstructor(); 826 if (!getter) return true; 827 828 // Sema only makes only of these when the ivar has a C++ class type, 829 // so the form is pretty constrained. 830 831 // If the property has a reference type, we might just be binding a 832 // reference, in which case the result will be a gl-value. We should 833 // treat this as a non-trivial operation. 834 if (getter->isGLValue()) 835 return false; 836 837 // If we selected a trivial copy-constructor, we're okay. 838 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 839 return (construct->getConstructor()->isTrivial()); 840 841 // The constructor might require cleanups (in which case it's never 842 // trivial). 843 assert(isa<ExprWithCleanups>(getter)); 844 return false; 845 } 846 847 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 848 /// copy the ivar into the resturn slot. 849 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 850 llvm::Value *returnAddr, 851 ObjCIvarDecl *ivar, 852 llvm::Constant *AtomicHelperFn) { 853 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 854 // AtomicHelperFn); 855 CallArgList args; 856 857 // The 1st argument is the return Slot. 858 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 859 860 // The 2nd argument is the address of the ivar. 861 llvm::Value *ivarAddr = 862 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 863 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 864 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 865 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 866 867 // Third argument is the helper function. 868 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 869 870 llvm::Constant *copyCppAtomicObjectFn = 871 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 872 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 873 CGF.EmitCall( 874 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 875 callee, ReturnValueSlot(), args); 876 } 877 878 void 879 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 880 const ObjCPropertyImplDecl *propImpl, 881 const ObjCMethodDecl *GetterMethodDecl, 882 llvm::Constant *AtomicHelperFn) { 883 // If there's a non-trivial 'get' expression, we just have to emit that. 884 if (!hasTrivialGetExpr(propImpl)) { 885 if (!AtomicHelperFn) { 886 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), 887 /*nrvo*/ nullptr); 888 EmitReturnStmt(ret); 889 } 890 else { 891 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 892 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 893 ivar, AtomicHelperFn); 894 } 895 return; 896 } 897 898 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 899 QualType propType = prop->getType(); 900 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); 901 902 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 903 904 // Pick an implementation strategy. 905 PropertyImplStrategy strategy(CGM, propImpl); 906 switch (strategy.getKind()) { 907 case PropertyImplStrategy::Native: { 908 // We don't need to do anything for a zero-size struct. 909 if (strategy.getIvarSize().isZero()) 910 return; 911 912 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 913 914 // Currently, all atomic accesses have to be through integer 915 // types, so there's no point in trying to pick a prettier type. 916 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 917 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 918 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay 919 920 // Perform an atomic load. This does not impose ordering constraints. 921 Address ivarAddr = LV.getAddress(); 922 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); 923 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 924 load->setAtomic(llvm::AtomicOrdering::Unordered); 925 926 // Store that value into the return address. Doing this with a 927 // bitcast is likely to produce some pretty ugly IR, but it's not 928 // the *most* terrible thing in the world. 929 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 930 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 931 llvm::Value *ivarVal = load; 932 if (ivarSize > retTySize) { 933 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 934 ivarVal = Builder.CreateTrunc(load, newTy); 935 bitcastType = newTy->getPointerTo(); 936 } 937 Builder.CreateStore(ivarVal, 938 Builder.CreateBitCast(ReturnValue, bitcastType)); 939 940 // Make sure we don't do an autorelease. 941 AutoreleaseResult = false; 942 return; 943 } 944 945 case PropertyImplStrategy::GetSetProperty: { 946 llvm::Constant *getPropertyFn = 947 CGM.getObjCRuntime().GetPropertyGetFunction(); 948 if (!getPropertyFn) { 949 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 950 return; 951 } 952 CGCallee callee = CGCallee::forDirect(getPropertyFn); 953 954 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 955 // FIXME: Can't this be simpler? This might even be worse than the 956 // corresponding gcc code. 957 llvm::Value *cmd = 958 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); 959 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 960 llvm::Value *ivarOffset = 961 EmitIvarOffset(classImpl->getClassInterface(), ivar); 962 963 CallArgList args; 964 args.add(RValue::get(self), getContext().getObjCIdType()); 965 args.add(RValue::get(cmd), getContext().getObjCSelType()); 966 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 967 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 968 getContext().BoolTy); 969 970 // FIXME: We shouldn't need to get the function info here, the 971 // runtime already should have computed it to build the function. 972 llvm::Instruction *CallInstruction; 973 RValue RV = EmitCall( 974 getTypes().arrangeBuiltinFunctionCall(propType, args), 975 callee, ReturnValueSlot(), args, &CallInstruction); 976 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 977 call->setTailCall(); 978 979 // We need to fix the type here. Ivars with copy & retain are 980 // always objects so we don't need to worry about complex or 981 // aggregates. 982 RV = RValue::get(Builder.CreateBitCast( 983 RV.getScalarVal(), 984 getTypes().ConvertType(getterMethod->getReturnType()))); 985 986 EmitReturnOfRValue(RV, propType); 987 988 // objc_getProperty does an autorelease, so we should suppress ours. 989 AutoreleaseResult = false; 990 991 return; 992 } 993 994 case PropertyImplStrategy::CopyStruct: 995 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 996 strategy.hasStrongMember()); 997 return; 998 999 case PropertyImplStrategy::Expression: 1000 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1001 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1002 1003 QualType ivarType = ivar->getType(); 1004 switch (getEvaluationKind(ivarType)) { 1005 case TEK_Complex: { 1006 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1007 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1008 /*init*/ true); 1009 return; 1010 } 1011 case TEK_Aggregate: { 1012 // The return value slot is guaranteed to not be aliased, but 1013 // that's not necessarily the same as "on the stack", so 1014 // we still potentially need objc_memmove_collectable. 1015 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1016 /* Src= */ LV, ivarType); 1017 return; } 1018 case TEK_Scalar: { 1019 llvm::Value *value; 1020 if (propType->isReferenceType()) { 1021 value = LV.getAddress().getPointer(); 1022 } else { 1023 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1024 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1025 if (getLangOpts().ObjCAutoRefCount) { 1026 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1027 } else { 1028 value = EmitARCLoadWeak(LV.getAddress()); 1029 } 1030 1031 // Otherwise we want to do a simple load, suppressing the 1032 // final autorelease. 1033 } else { 1034 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1035 AutoreleaseResult = false; 1036 } 1037 1038 value = Builder.CreateBitCast( 1039 value, ConvertType(GetterMethodDecl->getReturnType())); 1040 } 1041 1042 EmitReturnOfRValue(RValue::get(value), propType); 1043 return; 1044 } 1045 } 1046 llvm_unreachable("bad evaluation kind"); 1047 } 1048 1049 } 1050 llvm_unreachable("bad @property implementation strategy!"); 1051 } 1052 1053 /// emitStructSetterCall - Call the runtime function to store the value 1054 /// from the first formal parameter into the given ivar. 1055 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1056 ObjCIvarDecl *ivar) { 1057 // objc_copyStruct (&structIvar, &Arg, 1058 // sizeof (struct something), true, false); 1059 CallArgList args; 1060 1061 // The first argument is the address of the ivar. 1062 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1063 CGF.LoadObjCSelf(), ivar, 0) 1064 .getPointer(); 1065 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1066 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1067 1068 // The second argument is the address of the parameter variable. 1069 ParmVarDecl *argVar = *OMD->param_begin(); 1070 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1071 VK_LValue, SourceLocation()); 1072 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1073 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1074 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1075 1076 // The third argument is the sizeof the type. 1077 llvm::Value *size = 1078 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1079 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1080 1081 // The fourth argument is the 'isAtomic' flag. 1082 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1083 1084 // The fifth argument is the 'hasStrong' flag. 1085 // FIXME: should this really always be false? 1086 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1087 1088 llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1089 CGCallee callee = CGCallee::forDirect(fn); 1090 CGF.EmitCall( 1091 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1092 callee, ReturnValueSlot(), args); 1093 } 1094 1095 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1096 /// the value from the first formal parameter into the given ivar, using 1097 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1098 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1099 ObjCMethodDecl *OMD, 1100 ObjCIvarDecl *ivar, 1101 llvm::Constant *AtomicHelperFn) { 1102 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1103 // AtomicHelperFn); 1104 CallArgList args; 1105 1106 // The first argument is the address of the ivar. 1107 llvm::Value *ivarAddr = 1108 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), 1109 CGF.LoadObjCSelf(), ivar, 0).getPointer(); 1110 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1111 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1112 1113 // The second argument is the address of the parameter variable. 1114 ParmVarDecl *argVar = *OMD->param_begin(); 1115 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(), 1116 VK_LValue, SourceLocation()); 1117 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); 1118 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1119 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1120 1121 // Third argument is the helper function. 1122 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1123 1124 llvm::Constant *fn = 1125 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1126 CGCallee callee = CGCallee::forDirect(fn); 1127 CGF.EmitCall( 1128 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1129 callee, ReturnValueSlot(), args); 1130 } 1131 1132 1133 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1134 Expr *setter = PID->getSetterCXXAssignment(); 1135 if (!setter) return true; 1136 1137 // Sema only makes only of these when the ivar has a C++ class type, 1138 // so the form is pretty constrained. 1139 1140 // An operator call is trivial if the function it calls is trivial. 1141 // This also implies that there's nothing non-trivial going on with 1142 // the arguments, because operator= can only be trivial if it's a 1143 // synthesized assignment operator and therefore both parameters are 1144 // references. 1145 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1146 if (const FunctionDecl *callee 1147 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1148 if (callee->isTrivial()) 1149 return true; 1150 return false; 1151 } 1152 1153 assert(isa<ExprWithCleanups>(setter)); 1154 return false; 1155 } 1156 1157 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1158 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1159 return false; 1160 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1161 } 1162 1163 void 1164 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1165 const ObjCPropertyImplDecl *propImpl, 1166 llvm::Constant *AtomicHelperFn) { 1167 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1168 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1169 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); 1170 1171 // Just use the setter expression if Sema gave us one and it's 1172 // non-trivial. 1173 if (!hasTrivialSetExpr(propImpl)) { 1174 if (!AtomicHelperFn) 1175 // If non-atomic, assignment is called directly. 1176 EmitStmt(propImpl->getSetterCXXAssignment()); 1177 else 1178 // If atomic, assignment is called via a locking api. 1179 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1180 AtomicHelperFn); 1181 return; 1182 } 1183 1184 PropertyImplStrategy strategy(CGM, propImpl); 1185 switch (strategy.getKind()) { 1186 case PropertyImplStrategy::Native: { 1187 // We don't need to do anything for a zero-size struct. 1188 if (strategy.getIvarSize().isZero()) 1189 return; 1190 1191 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1192 1193 LValue ivarLValue = 1194 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1195 Address ivarAddr = ivarLValue.getAddress(); 1196 1197 // Currently, all atomic accesses have to be through integer 1198 // types, so there's no point in trying to pick a prettier type. 1199 llvm::Type *bitcastType = 1200 llvm::Type::getIntNTy(getLLVMContext(), 1201 getContext().toBits(strategy.getIvarSize())); 1202 1203 // Cast both arguments to the chosen operation type. 1204 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1205 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1206 1207 // This bitcast load is likely to cause some nasty IR. 1208 llvm::Value *load = Builder.CreateLoad(argAddr); 1209 1210 // Perform an atomic store. There are no memory ordering requirements. 1211 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1212 store->setAtomic(llvm::AtomicOrdering::Unordered); 1213 return; 1214 } 1215 1216 case PropertyImplStrategy::GetSetProperty: 1217 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1218 1219 llvm::Constant *setOptimizedPropertyFn = nullptr; 1220 llvm::Constant *setPropertyFn = nullptr; 1221 if (UseOptimizedSetter(CGM)) { 1222 // 10.8 and iOS 6.0 code and GC is off 1223 setOptimizedPropertyFn = 1224 CGM.getObjCRuntime() 1225 .GetOptimizedPropertySetFunction(strategy.isAtomic(), 1226 strategy.isCopy()); 1227 if (!setOptimizedPropertyFn) { 1228 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1229 return; 1230 } 1231 } 1232 else { 1233 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1234 if (!setPropertyFn) { 1235 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1236 return; 1237 } 1238 } 1239 1240 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1241 // <is-atomic>, <is-copy>). 1242 llvm::Value *cmd = 1243 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); 1244 llvm::Value *self = 1245 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1246 llvm::Value *ivarOffset = 1247 EmitIvarOffset(classImpl->getClassInterface(), ivar); 1248 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1249 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1250 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1251 1252 CallArgList args; 1253 args.add(RValue::get(self), getContext().getObjCIdType()); 1254 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1255 if (setOptimizedPropertyFn) { 1256 args.add(RValue::get(arg), getContext().getObjCIdType()); 1257 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1258 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1259 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1260 callee, ReturnValueSlot(), args); 1261 } else { 1262 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1263 args.add(RValue::get(arg), getContext().getObjCIdType()); 1264 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1265 getContext().BoolTy); 1266 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1267 getContext().BoolTy); 1268 // FIXME: We shouldn't need to get the function info here, the runtime 1269 // already should have computed it to build the function. 1270 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1271 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1272 callee, ReturnValueSlot(), args); 1273 } 1274 1275 return; 1276 } 1277 1278 case PropertyImplStrategy::CopyStruct: 1279 emitStructSetterCall(*this, setterMethod, ivar); 1280 return; 1281 1282 case PropertyImplStrategy::Expression: 1283 break; 1284 } 1285 1286 // Otherwise, fake up some ASTs and emit a normal assignment. 1287 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1288 DeclRefExpr self(selfDecl, false, selfDecl->getType(), 1289 VK_LValue, SourceLocation()); 1290 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, 1291 selfDecl->getType(), CK_LValueToRValue, &self, 1292 VK_RValue); 1293 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1294 SourceLocation(), SourceLocation(), 1295 &selfLoad, true, true); 1296 1297 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1298 QualType argType = argDecl->getType().getNonReferenceType(); 1299 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); 1300 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1301 argType.getUnqualifiedType(), CK_LValueToRValue, 1302 &arg, VK_RValue); 1303 1304 // The property type can differ from the ivar type in some situations with 1305 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1306 // The following absurdity is just to ensure well-formed IR. 1307 CastKind argCK = CK_NoOp; 1308 if (ivarRef.getType()->isObjCObjectPointerType()) { 1309 if (argLoad.getType()->isObjCObjectPointerType()) 1310 argCK = CK_BitCast; 1311 else if (argLoad.getType()->isBlockPointerType()) 1312 argCK = CK_BlockPointerToObjCPointerCast; 1313 else 1314 argCK = CK_CPointerToObjCPointerCast; 1315 } else if (ivarRef.getType()->isBlockPointerType()) { 1316 if (argLoad.getType()->isBlockPointerType()) 1317 argCK = CK_BitCast; 1318 else 1319 argCK = CK_AnyPointerToBlockPointerCast; 1320 } else if (ivarRef.getType()->isPointerType()) { 1321 argCK = CK_BitCast; 1322 } 1323 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, 1324 ivarRef.getType(), argCK, &argLoad, 1325 VK_RValue); 1326 Expr *finalArg = &argLoad; 1327 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1328 argLoad.getType())) 1329 finalArg = &argCast; 1330 1331 1332 BinaryOperator assign(&ivarRef, finalArg, BO_Assign, 1333 ivarRef.getType(), VK_RValue, OK_Ordinary, 1334 SourceLocation(), FPOptions()); 1335 EmitStmt(&assign); 1336 } 1337 1338 /// \brief Generate an Objective-C property setter function. 1339 /// 1340 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1341 /// is illegal within a category. 1342 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1343 const ObjCPropertyImplDecl *PID) { 1344 llvm::Constant *AtomicHelperFn = 1345 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1346 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1347 ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); 1348 assert(OMD && "Invalid call to generate setter (empty method)"); 1349 StartObjCMethod(OMD, IMP->getClassInterface()); 1350 1351 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1352 1353 FinishFunction(); 1354 } 1355 1356 namespace { 1357 struct DestroyIvar final : EHScopeStack::Cleanup { 1358 private: 1359 llvm::Value *addr; 1360 const ObjCIvarDecl *ivar; 1361 CodeGenFunction::Destroyer *destroyer; 1362 bool useEHCleanupForArray; 1363 public: 1364 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1365 CodeGenFunction::Destroyer *destroyer, 1366 bool useEHCleanupForArray) 1367 : addr(addr), ivar(ivar), destroyer(destroyer), 1368 useEHCleanupForArray(useEHCleanupForArray) {} 1369 1370 void Emit(CodeGenFunction &CGF, Flags flags) override { 1371 LValue lvalue 1372 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1373 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, 1374 flags.isForNormalCleanup() && useEHCleanupForArray); 1375 } 1376 }; 1377 } 1378 1379 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1380 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1381 Address addr, 1382 QualType type) { 1383 llvm::Value *null = getNullForVariable(addr); 1384 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1385 } 1386 1387 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1388 ObjCImplementationDecl *impl) { 1389 CodeGenFunction::RunCleanupsScope scope(CGF); 1390 1391 llvm::Value *self = CGF.LoadObjCSelf(); 1392 1393 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1394 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1395 ivar; ivar = ivar->getNextIvar()) { 1396 QualType type = ivar->getType(); 1397 1398 // Check whether the ivar is a destructible type. 1399 QualType::DestructionKind dtorKind = type.isDestructedType(); 1400 if (!dtorKind) continue; 1401 1402 CodeGenFunction::Destroyer *destroyer = nullptr; 1403 1404 // Use a call to objc_storeStrong to destroy strong ivars, for the 1405 // general benefit of the tools. 1406 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1407 destroyer = destroyARCStrongWithStore; 1408 1409 // Otherwise use the default for the destruction kind. 1410 } else { 1411 destroyer = CGF.getDestroyer(dtorKind); 1412 } 1413 1414 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1415 1416 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1417 cleanupKind & EHCleanup); 1418 } 1419 1420 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1421 } 1422 1423 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1424 ObjCMethodDecl *MD, 1425 bool ctor) { 1426 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1427 StartObjCMethod(MD, IMP->getClassInterface()); 1428 1429 // Emit .cxx_construct. 1430 if (ctor) { 1431 // Suppress the final autorelease in ARC. 1432 AutoreleaseResult = false; 1433 1434 for (const auto *IvarInit : IMP->inits()) { 1435 FieldDecl *Field = IvarInit->getAnyMember(); 1436 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1437 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1438 LoadObjCSelf(), Ivar, 0); 1439 EmitAggExpr(IvarInit->getInit(), 1440 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, 1441 AggValueSlot::DoesNotNeedGCBarriers, 1442 AggValueSlot::IsNotAliased)); 1443 } 1444 // constructor returns 'self'. 1445 CodeGenTypes &Types = CGM.getTypes(); 1446 QualType IdTy(CGM.getContext().getObjCIdType()); 1447 llvm::Value *SelfAsId = 1448 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1449 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1450 1451 // Emit .cxx_destruct. 1452 } else { 1453 emitCXXDestructMethod(*this, IMP); 1454 } 1455 FinishFunction(); 1456 } 1457 1458 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1459 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1460 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1461 Self->getType(), VK_LValue, SourceLocation()); 1462 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1463 } 1464 1465 QualType CodeGenFunction::TypeOfSelfObject() { 1466 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1467 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1468 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1469 getContext().getCanonicalType(selfDecl->getType())); 1470 return PTy->getPointeeType(); 1471 } 1472 1473 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1474 llvm::Constant *EnumerationMutationFnPtr = 1475 CGM.getObjCRuntime().EnumerationMutationFunction(); 1476 if (!EnumerationMutationFnPtr) { 1477 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1478 return; 1479 } 1480 CGCallee EnumerationMutationFn = 1481 CGCallee::forDirect(EnumerationMutationFnPtr); 1482 1483 CGDebugInfo *DI = getDebugInfo(); 1484 if (DI) 1485 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1486 1487 RunCleanupsScope ForScope(*this); 1488 1489 // The local variable comes into scope immediately. 1490 AutoVarEmission variable = AutoVarEmission::invalid(); 1491 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1492 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1493 1494 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1495 1496 // Fast enumeration state. 1497 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1498 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1499 EmitNullInitialization(StatePtr, StateTy); 1500 1501 // Number of elements in the items array. 1502 static const unsigned NumItems = 16; 1503 1504 // Fetch the countByEnumeratingWithState:objects:count: selector. 1505 IdentifierInfo *II[] = { 1506 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1507 &CGM.getContext().Idents.get("objects"), 1508 &CGM.getContext().Idents.get("count") 1509 }; 1510 Selector FastEnumSel = 1511 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); 1512 1513 QualType ItemsTy = 1514 getContext().getConstantArrayType(getContext().getObjCIdType(), 1515 llvm::APInt(32, NumItems), 1516 ArrayType::Normal, 0); 1517 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1518 1519 // Emit the collection pointer. In ARC, we do a retain. 1520 llvm::Value *Collection; 1521 if (getLangOpts().ObjCAutoRefCount) { 1522 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1523 1524 // Enter a cleanup to do the release. 1525 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1526 } else { 1527 Collection = EmitScalarExpr(S.getCollection()); 1528 } 1529 1530 // The 'continue' label needs to appear within the cleanup for the 1531 // collection object. 1532 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1533 1534 // Send it our message: 1535 CallArgList Args; 1536 1537 // The first argument is a temporary of the enumeration-state type. 1538 Args.add(RValue::get(StatePtr.getPointer()), 1539 getContext().getPointerType(StateTy)); 1540 1541 // The second argument is a temporary array with space for NumItems 1542 // pointers. We'll actually be loading elements from the array 1543 // pointer written into the control state; this buffer is so that 1544 // collections that *aren't* backed by arrays can still queue up 1545 // batches of elements. 1546 Args.add(RValue::get(ItemsPtr.getPointer()), 1547 getContext().getPointerType(ItemsTy)); 1548 1549 // The third argument is the capacity of that temporary array. 1550 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1551 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1552 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1553 1554 // Start the enumeration. 1555 RValue CountRV = 1556 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1557 getContext().getNSUIntegerType(), 1558 FastEnumSel, Collection, Args); 1559 1560 // The initial number of objects that were returned in the buffer. 1561 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1562 1563 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1564 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1565 1566 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1567 1568 // If the limit pointer was zero to begin with, the collection is 1569 // empty; skip all this. Set the branch weight assuming this has the same 1570 // probability of exiting the loop as any other loop exit. 1571 uint64_t EntryCount = getCurrentProfileCount(); 1572 Builder.CreateCondBr( 1573 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1574 LoopInitBB, 1575 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1576 1577 // Otherwise, initialize the loop. 1578 EmitBlock(LoopInitBB); 1579 1580 // Save the initial mutations value. This is the value at an 1581 // address that was written into the state object by 1582 // countByEnumeratingWithState:objects:count:. 1583 Address StateMutationsPtrPtr = Builder.CreateStructGEP( 1584 StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr"); 1585 llvm::Value *StateMutationsPtr 1586 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1587 1588 llvm::Value *initialMutations = 1589 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1590 "forcoll.initial-mutations"); 1591 1592 // Start looping. This is the point we return to whenever we have a 1593 // fresh, non-empty batch of objects. 1594 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1595 EmitBlock(LoopBodyBB); 1596 1597 // The current index into the buffer. 1598 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1599 index->addIncoming(zero, LoopInitBB); 1600 1601 // The current buffer size. 1602 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1603 count->addIncoming(initialBufferLimit, LoopInitBB); 1604 1605 incrementProfileCounter(&S); 1606 1607 // Check whether the mutations value has changed from where it was 1608 // at start. StateMutationsPtr should actually be invariant between 1609 // refreshes. 1610 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1611 llvm::Value *currentMutations 1612 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), 1613 "statemutations"); 1614 1615 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1616 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1617 1618 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1619 WasNotMutatedBB, WasMutatedBB); 1620 1621 // If so, call the enumeration-mutation function. 1622 EmitBlock(WasMutatedBB); 1623 llvm::Value *V = 1624 Builder.CreateBitCast(Collection, 1625 ConvertType(getContext().getObjCIdType())); 1626 CallArgList Args2; 1627 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1628 // FIXME: We shouldn't need to get the function info here, the runtime already 1629 // should have computed it to build the function. 1630 EmitCall( 1631 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1632 EnumerationMutationFn, ReturnValueSlot(), Args2); 1633 1634 // Otherwise, or if the mutation function returns, just continue. 1635 EmitBlock(WasNotMutatedBB); 1636 1637 // Initialize the element variable. 1638 RunCleanupsScope elementVariableScope(*this); 1639 bool elementIsVariable; 1640 LValue elementLValue; 1641 QualType elementType; 1642 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1643 // Initialize the variable, in case it's a __block variable or something. 1644 EmitAutoVarInit(variable); 1645 1646 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); 1647 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), 1648 VK_LValue, SourceLocation()); 1649 elementLValue = EmitLValue(&tempDRE); 1650 elementType = D->getType(); 1651 elementIsVariable = true; 1652 1653 if (D->isARCPseudoStrong()) 1654 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1655 } else { 1656 elementLValue = LValue(); // suppress warning 1657 elementType = cast<Expr>(S.getElement())->getType(); 1658 elementIsVariable = false; 1659 } 1660 llvm::Type *convertedElementType = ConvertType(elementType); 1661 1662 // Fetch the buffer out of the enumeration state. 1663 // TODO: this pointer should actually be invariant between 1664 // refreshes, which would help us do certain loop optimizations. 1665 Address StateItemsPtr = Builder.CreateStructGEP( 1666 StatePtr, 1, getPointerSize(), "stateitems.ptr"); 1667 llvm::Value *EnumStateItems = 1668 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1669 1670 // Fetch the value at the current index from the buffer. 1671 llvm::Value *CurrentItemPtr = 1672 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); 1673 llvm::Value *CurrentItem = 1674 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); 1675 1676 // Cast that value to the right type. 1677 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 1678 "currentitem"); 1679 1680 // Make sure we have an l-value. Yes, this gets evaluated every 1681 // time through the loop. 1682 if (!elementIsVariable) { 1683 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1684 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 1685 } else { 1686 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 1687 /*isInit*/ true); 1688 } 1689 1690 // If we do have an element variable, this assignment is the end of 1691 // its initialization. 1692 if (elementIsVariable) 1693 EmitAutoVarCleanups(variable); 1694 1695 // Perform the loop body, setting up break and continue labels. 1696 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 1697 { 1698 RunCleanupsScope Scope(*this); 1699 EmitStmt(S.getBody()); 1700 } 1701 BreakContinueStack.pop_back(); 1702 1703 // Destroy the element variable now. 1704 elementVariableScope.ForceCleanup(); 1705 1706 // Check whether there are more elements. 1707 EmitBlock(AfterBody.getBlock()); 1708 1709 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 1710 1711 // First we check in the local buffer. 1712 llvm::Value *indexPlusOne = 1713 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 1714 1715 // If we haven't overrun the buffer yet, we can continue. 1716 // Set the branch weights based on the simplifying assumption that this is 1717 // like a while-loop, i.e., ignoring that the false branch fetches more 1718 // elements and then returns to the loop. 1719 Builder.CreateCondBr( 1720 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 1721 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 1722 1723 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 1724 count->addIncoming(count, AfterBody.getBlock()); 1725 1726 // Otherwise, we have to fetch more elements. 1727 EmitBlock(FetchMoreBB); 1728 1729 CountRV = 1730 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1731 getContext().getNSUIntegerType(), 1732 FastEnumSel, Collection, Args); 1733 1734 // If we got a zero count, we're done. 1735 llvm::Value *refetchCount = CountRV.getScalarVal(); 1736 1737 // (note that the message send might split FetchMoreBB) 1738 index->addIncoming(zero, Builder.GetInsertBlock()); 1739 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 1740 1741 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 1742 EmptyBB, LoopBodyBB); 1743 1744 // No more elements. 1745 EmitBlock(EmptyBB); 1746 1747 if (!elementIsVariable) { 1748 // If the element was not a declaration, set it to be null. 1749 1750 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 1751 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 1752 EmitStoreThroughLValue(RValue::get(null), elementLValue); 1753 } 1754 1755 if (DI) 1756 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 1757 1758 ForScope.ForceCleanup(); 1759 EmitBlock(LoopEnd.getBlock()); 1760 } 1761 1762 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 1763 CGM.getObjCRuntime().EmitTryStmt(*this, S); 1764 } 1765 1766 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 1767 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 1768 } 1769 1770 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 1771 const ObjCAtSynchronizedStmt &S) { 1772 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 1773 } 1774 1775 namespace { 1776 struct CallObjCRelease final : EHScopeStack::Cleanup { 1777 CallObjCRelease(llvm::Value *object) : object(object) {} 1778 llvm::Value *object; 1779 1780 void Emit(CodeGenFunction &CGF, Flags flags) override { 1781 // Releases at the end of the full-expression are imprecise. 1782 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 1783 } 1784 }; 1785 } 1786 1787 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 1788 /// release at the end of the full-expression. 1789 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 1790 llvm::Value *object) { 1791 // If we're in a conditional branch, we need to make the cleanup 1792 // conditional. 1793 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 1794 return object; 1795 } 1796 1797 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 1798 llvm::Value *value) { 1799 return EmitARCRetainAutorelease(type, value); 1800 } 1801 1802 /// Given a number of pointers, inform the optimizer that they're 1803 /// being intrinsically used up until this point in the program. 1804 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 1805 llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use; 1806 if (!fn) { 1807 llvm::FunctionType *fnType = 1808 llvm::FunctionType::get(CGM.VoidTy, None, true); 1809 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use"); 1810 } 1811 1812 // This isn't really a "runtime" function, but as an intrinsic it 1813 // doesn't really matter as long as we align things up. 1814 EmitNounwindRuntimeCall(fn, values); 1815 } 1816 1817 1818 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, 1819 llvm::FunctionType *FTy, 1820 StringRef Name) { 1821 llvm::Constant *RTF = CGM.CreateRuntimeFunction(FTy, Name); 1822 1823 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 1824 // If the target runtime doesn't naturally support ARC, emit weak 1825 // references to the runtime support library. We don't really 1826 // permit this to fail, but we need a particular relocation style. 1827 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 1828 !CGM.getTriple().isOSBinFormatCOFF()) { 1829 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1830 } else if (Name == "objc_retain" || Name == "objc_release") { 1831 // If we have Native ARC, set nonlazybind attribute for these APIs for 1832 // performance. 1833 F->addFnAttr(llvm::Attribute::NonLazyBind); 1834 } 1835 } 1836 1837 return RTF; 1838 } 1839 1840 /// Perform an operation having the signature 1841 /// i8* (i8*) 1842 /// where a null input causes a no-op and returns null. 1843 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, 1844 llvm::Value *value, 1845 llvm::Constant *&fn, 1846 StringRef fnName, 1847 bool isTailCall = false) { 1848 if (isa<llvm::ConstantPointerNull>(value)) 1849 return value; 1850 1851 if (!fn) { 1852 llvm::FunctionType *fnType = 1853 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 1854 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1855 } 1856 1857 // Cast the argument to 'id'. 1858 llvm::Type *origType = value->getType(); 1859 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 1860 1861 // Call the function. 1862 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 1863 if (isTailCall) 1864 call->setTailCall(); 1865 1866 // Cast the result back to the original type. 1867 return CGF.Builder.CreateBitCast(call, origType); 1868 } 1869 1870 /// Perform an operation having the following signature: 1871 /// i8* (i8**) 1872 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, 1873 Address addr, 1874 llvm::Constant *&fn, 1875 StringRef fnName) { 1876 if (!fn) { 1877 llvm::FunctionType *fnType = 1878 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false); 1879 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1880 } 1881 1882 // Cast the argument to 'id*'. 1883 llvm::Type *origType = addr.getElementType(); 1884 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); 1885 1886 // Call the function. 1887 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 1888 1889 // Cast the result back to a dereference of the original type. 1890 if (origType != CGF.Int8PtrTy) 1891 result = CGF.Builder.CreateBitCast(result, origType); 1892 1893 return result; 1894 } 1895 1896 /// Perform an operation having the following signature: 1897 /// i8* (i8**, i8*) 1898 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, 1899 Address addr, 1900 llvm::Value *value, 1901 llvm::Constant *&fn, 1902 StringRef fnName, 1903 bool ignored) { 1904 assert(addr.getElementType() == value->getType()); 1905 1906 if (!fn) { 1907 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; 1908 1909 llvm::FunctionType *fnType 1910 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); 1911 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1912 } 1913 1914 llvm::Type *origType = value->getType(); 1915 1916 llvm::Value *args[] = { 1917 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 1918 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 1919 }; 1920 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 1921 1922 if (ignored) return nullptr; 1923 1924 return CGF.Builder.CreateBitCast(result, origType); 1925 } 1926 1927 /// Perform an operation having the following signature: 1928 /// void (i8**, i8**) 1929 static void emitARCCopyOperation(CodeGenFunction &CGF, 1930 Address dst, 1931 Address src, 1932 llvm::Constant *&fn, 1933 StringRef fnName) { 1934 assert(dst.getType() == src.getType()); 1935 1936 if (!fn) { 1937 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy }; 1938 1939 llvm::FunctionType *fnType 1940 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); 1941 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); 1942 } 1943 1944 llvm::Value *args[] = { 1945 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 1946 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 1947 }; 1948 CGF.EmitNounwindRuntimeCall(fn, args); 1949 } 1950 1951 /// Produce the code to do a retain. Based on the type, calls one of: 1952 /// call i8* \@objc_retain(i8* %value) 1953 /// call i8* \@objc_retainBlock(i8* %value) 1954 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 1955 if (type->isBlockPointerType()) 1956 return EmitARCRetainBlock(value, /*mandatory*/ false); 1957 else 1958 return EmitARCRetainNonBlock(value); 1959 } 1960 1961 /// Retain the given object, with normal retain semantics. 1962 /// call i8* \@objc_retain(i8* %value) 1963 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 1964 return emitARCValueOperation(*this, value, 1965 CGM.getObjCEntrypoints().objc_retain, 1966 "objc_retain"); 1967 } 1968 1969 /// Retain the given block, with _Block_copy semantics. 1970 /// call i8* \@objc_retainBlock(i8* %value) 1971 /// 1972 /// \param mandatory - If false, emit the call with metadata 1973 /// indicating that it's okay for the optimizer to eliminate this call 1974 /// if it can prove that the block never escapes except down the stack. 1975 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 1976 bool mandatory) { 1977 llvm::Value *result 1978 = emitARCValueOperation(*this, value, 1979 CGM.getObjCEntrypoints().objc_retainBlock, 1980 "objc_retainBlock"); 1981 1982 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 1983 // tell the optimizer that it doesn't need to do this copy if the 1984 // block doesn't escape, where being passed as an argument doesn't 1985 // count as escaping. 1986 if (!mandatory && isa<llvm::Instruction>(result)) { 1987 llvm::CallInst *call 1988 = cast<llvm::CallInst>(result->stripPointerCasts()); 1989 assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock); 1990 1991 call->setMetadata("clang.arc.copy_on_escape", 1992 llvm::MDNode::get(Builder.getContext(), None)); 1993 } 1994 1995 return result; 1996 } 1997 1998 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 1999 // Fetch the void(void) inline asm which marks that we're going to 2000 // do something with the autoreleased return value. 2001 llvm::InlineAsm *&marker 2002 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2003 if (!marker) { 2004 StringRef assembly 2005 = CGF.CGM.getTargetCodeGenInfo() 2006 .getARCRetainAutoreleasedReturnValueMarker(); 2007 2008 // If we have an empty assembly string, there's nothing to do. 2009 if (assembly.empty()) { 2010 2011 // Otherwise, at -O0, build an inline asm that we're going to call 2012 // in a moment. 2013 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2014 llvm::FunctionType *type = 2015 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2016 2017 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2018 2019 // If we're at -O1 and above, we don't want to litter the code 2020 // with this marker yet, so leave a breadcrumb for the ARC 2021 // optimizer to pick up. 2022 } else { 2023 llvm::NamedMDNode *metadata = 2024 CGF.CGM.getModule().getOrInsertNamedMetadata( 2025 "clang.arc.retainAutoreleasedReturnValueMarker"); 2026 assert(metadata->getNumOperands() <= 1); 2027 if (metadata->getNumOperands() == 0) { 2028 auto &ctx = CGF.getLLVMContext(); 2029 metadata->addOperand(llvm::MDNode::get(ctx, 2030 llvm::MDString::get(ctx, assembly))); 2031 } 2032 } 2033 } 2034 2035 // Call the marker asm if we made one, which we do only at -O0. 2036 if (marker) 2037 CGF.Builder.CreateCall(marker); 2038 } 2039 2040 /// Retain the given object which is the result of a function call. 2041 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2042 /// 2043 /// Yes, this function name is one character away from a different 2044 /// call with completely different semantics. 2045 llvm::Value * 2046 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2047 emitAutoreleasedReturnValueMarker(*this); 2048 return emitARCValueOperation(*this, value, 2049 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, 2050 "objc_retainAutoreleasedReturnValue"); 2051 } 2052 2053 /// Claim a possibly-autoreleased return value at +0. This is only 2054 /// valid to do in contexts which do not rely on the retain to keep 2055 /// the object valid for all of its uses; for example, when 2056 /// the value is ignored, or when it is being assigned to an 2057 /// __unsafe_unretained variable. 2058 /// 2059 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2060 llvm::Value * 2061 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2062 emitAutoreleasedReturnValueMarker(*this); 2063 return emitARCValueOperation(*this, value, 2064 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, 2065 "objc_unsafeClaimAutoreleasedReturnValue"); 2066 } 2067 2068 /// Release the given object. 2069 /// call void \@objc_release(i8* %value) 2070 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2071 ARCPreciseLifetime_t precise) { 2072 if (isa<llvm::ConstantPointerNull>(value)) return; 2073 2074 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release; 2075 if (!fn) { 2076 llvm::FunctionType *fnType = 2077 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2078 fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); 2079 } 2080 2081 // Cast the argument to 'id'. 2082 value = Builder.CreateBitCast(value, Int8PtrTy); 2083 2084 // Call objc_release. 2085 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2086 2087 if (precise == ARCImpreciseLifetime) { 2088 call->setMetadata("clang.imprecise_release", 2089 llvm::MDNode::get(Builder.getContext(), None)); 2090 } 2091 } 2092 2093 /// Destroy a __strong variable. 2094 /// 2095 /// At -O0, emit a call to store 'null' into the address; 2096 /// instrumenting tools prefer this because the address is exposed, 2097 /// but it's relatively cumbersome to optimize. 2098 /// 2099 /// At -O1 and above, just load and call objc_release. 2100 /// 2101 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2102 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2103 ARCPreciseLifetime_t precise) { 2104 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2105 llvm::Value *null = getNullForVariable(addr); 2106 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2107 return; 2108 } 2109 2110 llvm::Value *value = Builder.CreateLoad(addr); 2111 EmitARCRelease(value, precise); 2112 } 2113 2114 /// Store into a strong object. Always calls this: 2115 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2116 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2117 llvm::Value *value, 2118 bool ignored) { 2119 assert(addr.getElementType() == value->getType()); 2120 2121 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2122 if (!fn) { 2123 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; 2124 llvm::FunctionType *fnType 2125 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); 2126 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); 2127 } 2128 2129 llvm::Value *args[] = { 2130 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2131 Builder.CreateBitCast(value, Int8PtrTy) 2132 }; 2133 EmitNounwindRuntimeCall(fn, args); 2134 2135 if (ignored) return nullptr; 2136 return value; 2137 } 2138 2139 /// Store into a strong object. Sometimes calls this: 2140 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2141 /// Other times, breaks it down into components. 2142 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2143 llvm::Value *newValue, 2144 bool ignored) { 2145 QualType type = dst.getType(); 2146 bool isBlock = type->isBlockPointerType(); 2147 2148 // Use a store barrier at -O0 unless this is a block type or the 2149 // lvalue is inadequately aligned. 2150 if (shouldUseFusedARCCalls() && 2151 !isBlock && 2152 (dst.getAlignment().isZero() || 2153 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2154 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); 2155 } 2156 2157 // Otherwise, split it out. 2158 2159 // Retain the new value. 2160 newValue = EmitARCRetain(type, newValue); 2161 2162 // Read the old value. 2163 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2164 2165 // Store. We do this before the release so that any deallocs won't 2166 // see the old value. 2167 EmitStoreOfScalar(newValue, dst); 2168 2169 // Finally, release the old value. 2170 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2171 2172 return newValue; 2173 } 2174 2175 /// Autorelease the given object. 2176 /// call i8* \@objc_autorelease(i8* %value) 2177 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2178 return emitARCValueOperation(*this, value, 2179 CGM.getObjCEntrypoints().objc_autorelease, 2180 "objc_autorelease"); 2181 } 2182 2183 /// Autorelease the given object. 2184 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2185 llvm::Value * 2186 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2187 return emitARCValueOperation(*this, value, 2188 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2189 "objc_autoreleaseReturnValue", 2190 /*isTailCall*/ true); 2191 } 2192 2193 /// Do a fused retain/autorelease of the given object. 2194 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2195 llvm::Value * 2196 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2197 return emitARCValueOperation(*this, value, 2198 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2199 "objc_retainAutoreleaseReturnValue", 2200 /*isTailCall*/ true); 2201 } 2202 2203 /// Do a fused retain/autorelease of the given object. 2204 /// call i8* \@objc_retainAutorelease(i8* %value) 2205 /// or 2206 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2207 /// call i8* \@objc_autorelease(i8* %retain) 2208 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2209 llvm::Value *value) { 2210 if (!type->isBlockPointerType()) 2211 return EmitARCRetainAutoreleaseNonBlock(value); 2212 2213 if (isa<llvm::ConstantPointerNull>(value)) return value; 2214 2215 llvm::Type *origType = value->getType(); 2216 value = Builder.CreateBitCast(value, Int8PtrTy); 2217 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2218 value = EmitARCAutorelease(value); 2219 return Builder.CreateBitCast(value, origType); 2220 } 2221 2222 /// Do a fused retain/autorelease of the given object. 2223 /// call i8* \@objc_retainAutorelease(i8* %value) 2224 llvm::Value * 2225 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2226 return emitARCValueOperation(*this, value, 2227 CGM.getObjCEntrypoints().objc_retainAutorelease, 2228 "objc_retainAutorelease"); 2229 } 2230 2231 /// i8* \@objc_loadWeak(i8** %addr) 2232 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2233 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2234 return emitARCLoadOperation(*this, addr, 2235 CGM.getObjCEntrypoints().objc_loadWeak, 2236 "objc_loadWeak"); 2237 } 2238 2239 /// i8* \@objc_loadWeakRetained(i8** %addr) 2240 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2241 return emitARCLoadOperation(*this, addr, 2242 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2243 "objc_loadWeakRetained"); 2244 } 2245 2246 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2247 /// Returns %value. 2248 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2249 llvm::Value *value, 2250 bool ignored) { 2251 return emitARCStoreOperation(*this, addr, value, 2252 CGM.getObjCEntrypoints().objc_storeWeak, 2253 "objc_storeWeak", ignored); 2254 } 2255 2256 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2257 /// Returns %value. %addr is known to not have a current weak entry. 2258 /// Essentially equivalent to: 2259 /// *addr = nil; objc_storeWeak(addr, value); 2260 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2261 // If we're initializing to null, just write null to memory; no need 2262 // to get the runtime involved. But don't do this if optimization 2263 // is enabled, because accounting for this would make the optimizer 2264 // much more complicated. 2265 if (isa<llvm::ConstantPointerNull>(value) && 2266 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2267 Builder.CreateStore(value, addr); 2268 return; 2269 } 2270 2271 emitARCStoreOperation(*this, addr, value, 2272 CGM.getObjCEntrypoints().objc_initWeak, 2273 "objc_initWeak", /*ignored*/ true); 2274 } 2275 2276 /// void \@objc_destroyWeak(i8** %addr) 2277 /// Essentially objc_storeWeak(addr, nil). 2278 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2279 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2280 if (!fn) { 2281 llvm::FunctionType *fnType = 2282 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false); 2283 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); 2284 } 2285 2286 // Cast the argument to 'id*'. 2287 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); 2288 2289 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2290 } 2291 2292 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2293 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2294 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2295 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2296 emitARCCopyOperation(*this, dst, src, 2297 CGM.getObjCEntrypoints().objc_moveWeak, 2298 "objc_moveWeak"); 2299 } 2300 2301 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2302 /// Disregards the current value in %dest. Essentially 2303 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2304 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2305 emitARCCopyOperation(*this, dst, src, 2306 CGM.getObjCEntrypoints().objc_copyWeak, 2307 "objc_copyWeak"); 2308 } 2309 2310 /// Produce the code to do a objc_autoreleasepool_push. 2311 /// call i8* \@objc_autoreleasePoolPush(void) 2312 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2313 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2314 if (!fn) { 2315 llvm::FunctionType *fnType = 2316 llvm::FunctionType::get(Int8PtrTy, false); 2317 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); 2318 } 2319 2320 return EmitNounwindRuntimeCall(fn); 2321 } 2322 2323 /// Produce the code to do a primitive release. 2324 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2325 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2326 assert(value->getType() == Int8PtrTy); 2327 2328 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2329 if (!fn) { 2330 llvm::FunctionType *fnType = 2331 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2332 2333 // We don't want to use a weak import here; instead we should not 2334 // fall into this path. 2335 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); 2336 } 2337 2338 // objc_autoreleasePoolPop can throw. 2339 EmitRuntimeCallOrInvoke(fn, value); 2340 } 2341 2342 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2343 /// Which is: [[NSAutoreleasePool alloc] init]; 2344 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2345 /// init is declared as: - (id) init; in its NSObject super class. 2346 /// 2347 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2348 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2349 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2350 // [NSAutoreleasePool alloc] 2351 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2352 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2353 CallArgList Args; 2354 RValue AllocRV = 2355 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2356 getContext().getObjCIdType(), 2357 AllocSel, Receiver, Args); 2358 2359 // [Receiver init] 2360 Receiver = AllocRV.getScalarVal(); 2361 II = &CGM.getContext().Idents.get("init"); 2362 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2363 RValue InitRV = 2364 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2365 getContext().getObjCIdType(), 2366 InitSel, Receiver, Args); 2367 return InitRV.getScalarVal(); 2368 } 2369 2370 /// Produce the code to do a primitive release. 2371 /// [tmp drain]; 2372 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2373 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2374 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2375 CallArgList Args; 2376 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2377 getContext().VoidTy, DrainSel, Arg, Args); 2378 } 2379 2380 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2381 Address addr, 2382 QualType type) { 2383 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2384 } 2385 2386 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2387 Address addr, 2388 QualType type) { 2389 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2390 } 2391 2392 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2393 Address addr, 2394 QualType type) { 2395 CGF.EmitARCDestroyWeak(addr); 2396 } 2397 2398 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2399 QualType type) { 2400 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2401 CGF.EmitARCIntrinsicUse(value); 2402 } 2403 2404 namespace { 2405 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2406 llvm::Value *Token; 2407 2408 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2409 2410 void Emit(CodeGenFunction &CGF, Flags flags) override { 2411 CGF.EmitObjCAutoreleasePoolPop(Token); 2412 } 2413 }; 2414 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2415 llvm::Value *Token; 2416 2417 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2418 2419 void Emit(CodeGenFunction &CGF, Flags flags) override { 2420 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2421 } 2422 }; 2423 } 2424 2425 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2426 if (CGM.getLangOpts().ObjCAutoRefCount) 2427 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2428 else 2429 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2430 } 2431 2432 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2433 LValue lvalue, 2434 QualType type) { 2435 switch (type.getObjCLifetime()) { 2436 case Qualifiers::OCL_None: 2437 case Qualifiers::OCL_ExplicitNone: 2438 case Qualifiers::OCL_Strong: 2439 case Qualifiers::OCL_Autoreleasing: 2440 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue, 2441 SourceLocation()).getScalarVal(), 2442 false); 2443 2444 case Qualifiers::OCL_Weak: 2445 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), 2446 true); 2447 } 2448 2449 llvm_unreachable("impossible lifetime!"); 2450 } 2451 2452 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2453 const Expr *e) { 2454 e = e->IgnoreParens(); 2455 QualType type = e->getType(); 2456 2457 // If we're loading retained from a __strong xvalue, we can avoid 2458 // an extra retain/release pair by zeroing out the source of this 2459 // "move" operation. 2460 if (e->isXValue() && 2461 !type.isConstQualified() && 2462 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2463 // Emit the lvalue. 2464 LValue lv = CGF.EmitLValue(e); 2465 2466 // Load the object pointer. 2467 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2468 SourceLocation()).getScalarVal(); 2469 2470 // Set the source pointer to NULL. 2471 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); 2472 2473 return TryEmitResult(result, true); 2474 } 2475 2476 // As a very special optimization, in ARC++, if the l-value is the 2477 // result of a non-volatile assignment, do a simple retain of the 2478 // result of the call to objc_storeWeak instead of reloading. 2479 if (CGF.getLangOpts().CPlusPlus && 2480 !type.isVolatileQualified() && 2481 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2482 isa<BinaryOperator>(e) && 2483 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2484 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2485 2486 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2487 } 2488 2489 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2490 llvm::Value *value)> 2491 ValueTransform; 2492 2493 /// Insert code immediately after a call. 2494 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2495 llvm::Value *value, 2496 ValueTransform doAfterCall, 2497 ValueTransform doFallback) { 2498 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2499 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2500 2501 // Place the retain immediately following the call. 2502 CGF.Builder.SetInsertPoint(call->getParent(), 2503 ++llvm::BasicBlock::iterator(call)); 2504 value = doAfterCall(CGF, value); 2505 2506 CGF.Builder.restoreIP(ip); 2507 return value; 2508 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 2509 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2510 2511 // Place the retain at the beginning of the normal destination block. 2512 llvm::BasicBlock *BB = invoke->getNormalDest(); 2513 CGF.Builder.SetInsertPoint(BB, BB->begin()); 2514 value = doAfterCall(CGF, value); 2515 2516 CGF.Builder.restoreIP(ip); 2517 return value; 2518 2519 // Bitcasts can arise because of related-result returns. Rewrite 2520 // the operand. 2521 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 2522 llvm::Value *operand = bitcast->getOperand(0); 2523 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 2524 bitcast->setOperand(0, operand); 2525 return bitcast; 2526 2527 // Generic fall-back case. 2528 } else { 2529 // Retain using the non-block variant: we never need to do a copy 2530 // of a block that's been returned to us. 2531 return doFallback(CGF, value); 2532 } 2533 } 2534 2535 /// Given that the given expression is some sort of call (which does 2536 /// not return retained), emit a retain following it. 2537 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 2538 const Expr *e) { 2539 llvm::Value *value = CGF.EmitScalarExpr(e); 2540 return emitARCOperationAfterCall(CGF, value, 2541 [](CodeGenFunction &CGF, llvm::Value *value) { 2542 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 2543 }, 2544 [](CodeGenFunction &CGF, llvm::Value *value) { 2545 return CGF.EmitARCRetainNonBlock(value); 2546 }); 2547 } 2548 2549 /// Given that the given expression is some sort of call (which does 2550 /// not return retained), perform an unsafeClaim following it. 2551 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 2552 const Expr *e) { 2553 llvm::Value *value = CGF.EmitScalarExpr(e); 2554 return emitARCOperationAfterCall(CGF, value, 2555 [](CodeGenFunction &CGF, llvm::Value *value) { 2556 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 2557 }, 2558 [](CodeGenFunction &CGF, llvm::Value *value) { 2559 return value; 2560 }); 2561 } 2562 2563 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 2564 bool allowUnsafeClaim) { 2565 if (allowUnsafeClaim && 2566 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 2567 return emitARCUnsafeClaimCallResult(*this, E); 2568 } else { 2569 llvm::Value *value = emitARCRetainCallResult(*this, E); 2570 return EmitObjCConsumeObject(E->getType(), value); 2571 } 2572 } 2573 2574 /// Determine whether it might be important to emit a separate 2575 /// objc_retain_block on the result of the given expression, or 2576 /// whether it's okay to just emit it in a +1 context. 2577 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 2578 assert(e->getType()->isBlockPointerType()); 2579 e = e->IgnoreParens(); 2580 2581 // For future goodness, emit block expressions directly in +1 2582 // contexts if we can. 2583 if (isa<BlockExpr>(e)) 2584 return false; 2585 2586 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 2587 switch (cast->getCastKind()) { 2588 // Emitting these operations in +1 contexts is goodness. 2589 case CK_LValueToRValue: 2590 case CK_ARCReclaimReturnedObject: 2591 case CK_ARCConsumeObject: 2592 case CK_ARCProduceObject: 2593 return false; 2594 2595 // These operations preserve a block type. 2596 case CK_NoOp: 2597 case CK_BitCast: 2598 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 2599 2600 // These operations are known to be bad (or haven't been considered). 2601 case CK_AnyPointerToBlockPointerCast: 2602 default: 2603 return true; 2604 } 2605 } 2606 2607 return true; 2608 } 2609 2610 namespace { 2611 /// A CRTP base class for emitting expressions of retainable object 2612 /// pointer type in ARC. 2613 template <typename Impl, typename Result> class ARCExprEmitter { 2614 protected: 2615 CodeGenFunction &CGF; 2616 Impl &asImpl() { return *static_cast<Impl*>(this); } 2617 2618 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 2619 2620 public: 2621 Result visit(const Expr *e); 2622 Result visitCastExpr(const CastExpr *e); 2623 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 2624 Result visitBinaryOperator(const BinaryOperator *e); 2625 Result visitBinAssign(const BinaryOperator *e); 2626 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 2627 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 2628 Result visitBinAssignWeak(const BinaryOperator *e); 2629 Result visitBinAssignStrong(const BinaryOperator *e); 2630 2631 // Minimal implementation: 2632 // Result visitLValueToRValue(const Expr *e) 2633 // Result visitConsumeObject(const Expr *e) 2634 // Result visitExtendBlockObject(const Expr *e) 2635 // Result visitReclaimReturnedObject(const Expr *e) 2636 // Result visitCall(const Expr *e) 2637 // Result visitExpr(const Expr *e) 2638 // 2639 // Result emitBitCast(Result result, llvm::Type *resultType) 2640 // llvm::Value *getValueOfResult(Result result) 2641 }; 2642 } 2643 2644 /// Try to emit a PseudoObjectExpr under special ARC rules. 2645 /// 2646 /// This massively duplicates emitPseudoObjectRValue. 2647 template <typename Impl, typename Result> 2648 Result 2649 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 2650 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2651 2652 // Find the result expression. 2653 const Expr *resultExpr = E->getResultExpr(); 2654 assert(resultExpr); 2655 Result result; 2656 2657 for (PseudoObjectExpr::const_semantics_iterator 2658 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2659 const Expr *semantic = *i; 2660 2661 // If this semantic expression is an opaque value, bind it 2662 // to the result of its source expression. 2663 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2664 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2665 OVMA opaqueData; 2666 2667 // If this semantic is the result of the pseudo-object 2668 // expression, try to evaluate the source as +1. 2669 if (ov == resultExpr) { 2670 assert(!OVMA::shouldBindAsLValue(ov)); 2671 result = asImpl().visit(ov->getSourceExpr()); 2672 opaqueData = OVMA::bind(CGF, ov, 2673 RValue::get(asImpl().getValueOfResult(result))); 2674 2675 // Otherwise, just bind it. 2676 } else { 2677 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2678 } 2679 opaques.push_back(opaqueData); 2680 2681 // Otherwise, if the expression is the result, evaluate it 2682 // and remember the result. 2683 } else if (semantic == resultExpr) { 2684 result = asImpl().visit(semantic); 2685 2686 // Otherwise, evaluate the expression in an ignored context. 2687 } else { 2688 CGF.EmitIgnoredExpr(semantic); 2689 } 2690 } 2691 2692 // Unbind all the opaques now. 2693 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2694 opaques[i].unbind(CGF); 2695 2696 return result; 2697 } 2698 2699 template <typename Impl, typename Result> 2700 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 2701 switch (e->getCastKind()) { 2702 2703 // No-op casts don't change the type, so we just ignore them. 2704 case CK_NoOp: 2705 return asImpl().visit(e->getSubExpr()); 2706 2707 // These casts can change the type. 2708 case CK_CPointerToObjCPointerCast: 2709 case CK_BlockPointerToObjCPointerCast: 2710 case CK_AnyPointerToBlockPointerCast: 2711 case CK_BitCast: { 2712 llvm::Type *resultType = CGF.ConvertType(e->getType()); 2713 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 2714 Result result = asImpl().visit(e->getSubExpr()); 2715 return asImpl().emitBitCast(result, resultType); 2716 } 2717 2718 // Handle some casts specially. 2719 case CK_LValueToRValue: 2720 return asImpl().visitLValueToRValue(e->getSubExpr()); 2721 case CK_ARCConsumeObject: 2722 return asImpl().visitConsumeObject(e->getSubExpr()); 2723 case CK_ARCExtendBlockObject: 2724 return asImpl().visitExtendBlockObject(e->getSubExpr()); 2725 case CK_ARCReclaimReturnedObject: 2726 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 2727 2728 // Otherwise, use the default logic. 2729 default: 2730 return asImpl().visitExpr(e); 2731 } 2732 } 2733 2734 template <typename Impl, typename Result> 2735 Result 2736 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 2737 switch (e->getOpcode()) { 2738 case BO_Comma: 2739 CGF.EmitIgnoredExpr(e->getLHS()); 2740 CGF.EnsureInsertPoint(); 2741 return asImpl().visit(e->getRHS()); 2742 2743 case BO_Assign: 2744 return asImpl().visitBinAssign(e); 2745 2746 default: 2747 return asImpl().visitExpr(e); 2748 } 2749 } 2750 2751 template <typename Impl, typename Result> 2752 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 2753 switch (e->getLHS()->getType().getObjCLifetime()) { 2754 case Qualifiers::OCL_ExplicitNone: 2755 return asImpl().visitBinAssignUnsafeUnretained(e); 2756 2757 case Qualifiers::OCL_Weak: 2758 return asImpl().visitBinAssignWeak(e); 2759 2760 case Qualifiers::OCL_Autoreleasing: 2761 return asImpl().visitBinAssignAutoreleasing(e); 2762 2763 case Qualifiers::OCL_Strong: 2764 return asImpl().visitBinAssignStrong(e); 2765 2766 case Qualifiers::OCL_None: 2767 return asImpl().visitExpr(e); 2768 } 2769 llvm_unreachable("bad ObjC ownership qualifier"); 2770 } 2771 2772 /// The default rule for __unsafe_unretained emits the RHS recursively, 2773 /// stores into the unsafe variable, and propagates the result outward. 2774 template <typename Impl, typename Result> 2775 Result ARCExprEmitter<Impl,Result>:: 2776 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 2777 // Recursively emit the RHS. 2778 // For __block safety, do this before emitting the LHS. 2779 Result result = asImpl().visit(e->getRHS()); 2780 2781 // Perform the store. 2782 LValue lvalue = 2783 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 2784 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 2785 lvalue); 2786 2787 return result; 2788 } 2789 2790 template <typename Impl, typename Result> 2791 Result 2792 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 2793 return asImpl().visitExpr(e); 2794 } 2795 2796 template <typename Impl, typename Result> 2797 Result 2798 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 2799 return asImpl().visitExpr(e); 2800 } 2801 2802 template <typename Impl, typename Result> 2803 Result 2804 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 2805 return asImpl().visitExpr(e); 2806 } 2807 2808 /// The general expression-emission logic. 2809 template <typename Impl, typename Result> 2810 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 2811 // We should *never* see a nested full-expression here, because if 2812 // we fail to emit at +1, our caller must not retain after we close 2813 // out the full-expression. This isn't as important in the unsafe 2814 // emitter. 2815 assert(!isa<ExprWithCleanups>(e)); 2816 2817 // Look through parens, __extension__, generic selection, etc. 2818 e = e->IgnoreParens(); 2819 2820 // Handle certain kinds of casts. 2821 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 2822 return asImpl().visitCastExpr(ce); 2823 2824 // Handle the comma operator. 2825 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 2826 return asImpl().visitBinaryOperator(op); 2827 2828 // TODO: handle conditional operators here 2829 2830 // For calls and message sends, use the retained-call logic. 2831 // Delegate inits are a special case in that they're the only 2832 // returns-retained expression that *isn't* surrounded by 2833 // a consume. 2834 } else if (isa<CallExpr>(e) || 2835 (isa<ObjCMessageExpr>(e) && 2836 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 2837 return asImpl().visitCall(e); 2838 2839 // Look through pseudo-object expressions. 2840 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 2841 return asImpl().visitPseudoObjectExpr(pseudo); 2842 } 2843 2844 return asImpl().visitExpr(e); 2845 } 2846 2847 namespace { 2848 2849 /// An emitter for +1 results. 2850 struct ARCRetainExprEmitter : 2851 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 2852 2853 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 2854 2855 llvm::Value *getValueOfResult(TryEmitResult result) { 2856 return result.getPointer(); 2857 } 2858 2859 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 2860 llvm::Value *value = result.getPointer(); 2861 value = CGF.Builder.CreateBitCast(value, resultType); 2862 result.setPointer(value); 2863 return result; 2864 } 2865 2866 TryEmitResult visitLValueToRValue(const Expr *e) { 2867 return tryEmitARCRetainLoadOfScalar(CGF, e); 2868 } 2869 2870 /// For consumptions, just emit the subexpression and thus elide 2871 /// the retain/release pair. 2872 TryEmitResult visitConsumeObject(const Expr *e) { 2873 llvm::Value *result = CGF.EmitScalarExpr(e); 2874 return TryEmitResult(result, true); 2875 } 2876 2877 /// Block extends are net +0. Naively, we could just recurse on 2878 /// the subexpression, but actually we need to ensure that the 2879 /// value is copied as a block, so there's a little filter here. 2880 TryEmitResult visitExtendBlockObject(const Expr *e) { 2881 llvm::Value *result; // will be a +0 value 2882 2883 // If we can't safely assume the sub-expression will produce a 2884 // block-copied value, emit the sub-expression at +0. 2885 if (shouldEmitSeparateBlockRetain(e)) { 2886 result = CGF.EmitScalarExpr(e); 2887 2888 // Otherwise, try to emit the sub-expression at +1 recursively. 2889 } else { 2890 TryEmitResult subresult = asImpl().visit(e); 2891 2892 // If that produced a retained value, just use that. 2893 if (subresult.getInt()) { 2894 return subresult; 2895 } 2896 2897 // Otherwise it's +0. 2898 result = subresult.getPointer(); 2899 } 2900 2901 // Retain the object as a block. 2902 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 2903 return TryEmitResult(result, true); 2904 } 2905 2906 /// For reclaims, emit the subexpression as a retained call and 2907 /// skip the consumption. 2908 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 2909 llvm::Value *result = emitARCRetainCallResult(CGF, e); 2910 return TryEmitResult(result, true); 2911 } 2912 2913 /// When we have an undecorated call, retroactively do a claim. 2914 TryEmitResult visitCall(const Expr *e) { 2915 llvm::Value *result = emitARCRetainCallResult(CGF, e); 2916 return TryEmitResult(result, true); 2917 } 2918 2919 // TODO: maybe special-case visitBinAssignWeak? 2920 2921 TryEmitResult visitExpr(const Expr *e) { 2922 // We didn't find an obvious production, so emit what we've got and 2923 // tell the caller that we didn't manage to retain. 2924 llvm::Value *result = CGF.EmitScalarExpr(e); 2925 return TryEmitResult(result, false); 2926 } 2927 }; 2928 } 2929 2930 static TryEmitResult 2931 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 2932 return ARCRetainExprEmitter(CGF).visit(e); 2933 } 2934 2935 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2936 LValue lvalue, 2937 QualType type) { 2938 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 2939 llvm::Value *value = result.getPointer(); 2940 if (!result.getInt()) 2941 value = CGF.EmitARCRetain(type, value); 2942 return value; 2943 } 2944 2945 /// EmitARCRetainScalarExpr - Semantically equivalent to 2946 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 2947 /// best-effort attempt to peephole expressions that naturally produce 2948 /// retained objects. 2949 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 2950 // The retain needs to happen within the full-expression. 2951 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2952 enterFullExpression(cleanups); 2953 RunCleanupsScope scope(*this); 2954 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 2955 } 2956 2957 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2958 llvm::Value *value = result.getPointer(); 2959 if (!result.getInt()) 2960 value = EmitARCRetain(e->getType(), value); 2961 return value; 2962 } 2963 2964 llvm::Value * 2965 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 2966 // The retain needs to happen within the full-expression. 2967 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 2968 enterFullExpression(cleanups); 2969 RunCleanupsScope scope(*this); 2970 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 2971 } 2972 2973 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 2974 llvm::Value *value = result.getPointer(); 2975 if (result.getInt()) 2976 value = EmitARCAutorelease(value); 2977 else 2978 value = EmitARCRetainAutorelease(e->getType(), value); 2979 return value; 2980 } 2981 2982 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 2983 llvm::Value *result; 2984 bool doRetain; 2985 2986 if (shouldEmitSeparateBlockRetain(e)) { 2987 result = EmitScalarExpr(e); 2988 doRetain = true; 2989 } else { 2990 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 2991 result = subresult.getPointer(); 2992 doRetain = !subresult.getInt(); 2993 } 2994 2995 if (doRetain) 2996 result = EmitARCRetainBlock(result, /*mandatory*/ true); 2997 return EmitObjCConsumeObject(e->getType(), result); 2998 } 2999 3000 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3001 // In ARC, retain and autorelease the expression. 3002 if (getLangOpts().ObjCAutoRefCount) { 3003 // Do so before running any cleanups for the full-expression. 3004 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3005 return EmitARCRetainAutoreleaseScalarExpr(expr); 3006 } 3007 3008 // Otherwise, use the normal scalar-expression emission. The 3009 // exception machinery doesn't do anything special with the 3010 // exception like retaining it, so there's no safety associated with 3011 // only running cleanups after the throw has started, and when it 3012 // matters it tends to be substantially inferior code. 3013 return EmitScalarExpr(expr); 3014 } 3015 3016 namespace { 3017 3018 /// An emitter for assigning into an __unsafe_unretained context. 3019 struct ARCUnsafeUnretainedExprEmitter : 3020 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3021 3022 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3023 3024 llvm::Value *getValueOfResult(llvm::Value *value) { 3025 return value; 3026 } 3027 3028 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3029 return CGF.Builder.CreateBitCast(value, resultType); 3030 } 3031 3032 llvm::Value *visitLValueToRValue(const Expr *e) { 3033 return CGF.EmitScalarExpr(e); 3034 } 3035 3036 /// For consumptions, just emit the subexpression and perform the 3037 /// consumption like normal. 3038 llvm::Value *visitConsumeObject(const Expr *e) { 3039 llvm::Value *value = CGF.EmitScalarExpr(e); 3040 return CGF.EmitObjCConsumeObject(e->getType(), value); 3041 } 3042 3043 /// No special logic for block extensions. (This probably can't 3044 /// actually happen in this emitter, though.) 3045 llvm::Value *visitExtendBlockObject(const Expr *e) { 3046 return CGF.EmitARCExtendBlockObject(e); 3047 } 3048 3049 /// For reclaims, perform an unsafeClaim if that's enabled. 3050 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3051 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3052 } 3053 3054 /// When we have an undecorated call, just emit it without adding 3055 /// the unsafeClaim. 3056 llvm::Value *visitCall(const Expr *e) { 3057 return CGF.EmitScalarExpr(e); 3058 } 3059 3060 /// Just do normal scalar emission in the default case. 3061 llvm::Value *visitExpr(const Expr *e) { 3062 return CGF.EmitScalarExpr(e); 3063 } 3064 }; 3065 } 3066 3067 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3068 const Expr *e) { 3069 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3070 } 3071 3072 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3073 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3074 /// avoiding any spurious retains, including by performing reclaims 3075 /// with objc_unsafeClaimAutoreleasedReturnValue. 3076 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3077 // Look through full-expressions. 3078 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3079 enterFullExpression(cleanups); 3080 RunCleanupsScope scope(*this); 3081 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3082 } 3083 3084 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3085 } 3086 3087 std::pair<LValue,llvm::Value*> 3088 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3089 bool ignored) { 3090 // Evaluate the RHS first. If we're ignoring the result, assume 3091 // that we can emit at an unsafe +0. 3092 llvm::Value *value; 3093 if (ignored) { 3094 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3095 } else { 3096 value = EmitScalarExpr(e->getRHS()); 3097 } 3098 3099 // Emit the LHS and perform the store. 3100 LValue lvalue = EmitLValue(e->getLHS()); 3101 EmitStoreOfScalar(value, lvalue); 3102 3103 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3104 } 3105 3106 std::pair<LValue,llvm::Value*> 3107 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3108 bool ignored) { 3109 // Evaluate the RHS first. 3110 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3111 llvm::Value *value = result.getPointer(); 3112 3113 bool hasImmediateRetain = result.getInt(); 3114 3115 // If we didn't emit a retained object, and the l-value is of block 3116 // type, then we need to emit the block-retain immediately in case 3117 // it invalidates the l-value. 3118 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3119 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3120 hasImmediateRetain = true; 3121 } 3122 3123 LValue lvalue = EmitLValue(e->getLHS()); 3124 3125 // If the RHS was emitted retained, expand this. 3126 if (hasImmediateRetain) { 3127 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3128 EmitStoreOfScalar(value, lvalue); 3129 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3130 } else { 3131 value = EmitARCStoreStrong(lvalue, value, ignored); 3132 } 3133 3134 return std::pair<LValue,llvm::Value*>(lvalue, value); 3135 } 3136 3137 std::pair<LValue,llvm::Value*> 3138 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3139 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3140 LValue lvalue = EmitLValue(e->getLHS()); 3141 3142 EmitStoreOfScalar(value, lvalue); 3143 3144 return std::pair<LValue,llvm::Value*>(lvalue, value); 3145 } 3146 3147 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3148 const ObjCAutoreleasePoolStmt &ARPS) { 3149 const Stmt *subStmt = ARPS.getSubStmt(); 3150 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3151 3152 CGDebugInfo *DI = getDebugInfo(); 3153 if (DI) 3154 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3155 3156 // Keep track of the current cleanup stack depth. 3157 RunCleanupsScope Scope(*this); 3158 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3159 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3160 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3161 } else { 3162 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3163 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3164 } 3165 3166 for (const auto *I : S.body()) 3167 EmitStmt(I); 3168 3169 if (DI) 3170 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3171 } 3172 3173 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3174 /// make sure it survives garbage collection until this point. 3175 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3176 // We just use an inline assembly. 3177 llvm::FunctionType *extenderType 3178 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3179 llvm::Value *extender 3180 = llvm::InlineAsm::get(extenderType, 3181 /* assembly */ "", 3182 /* constraints */ "r", 3183 /* side effects */ true); 3184 3185 object = Builder.CreateBitCast(object, VoidPtrTy); 3186 EmitNounwindRuntimeCall(extender, object); 3187 } 3188 3189 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3190 /// non-trivial copy assignment function, produce following helper function. 3191 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3192 /// 3193 llvm::Constant * 3194 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3195 const ObjCPropertyImplDecl *PID) { 3196 if (!getLangOpts().CPlusPlus || 3197 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3198 return nullptr; 3199 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3200 if (!Ty->isRecordType()) 3201 return nullptr; 3202 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3203 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3204 return nullptr; 3205 llvm::Constant *HelperFn = nullptr; 3206 if (hasTrivialSetExpr(PID)) 3207 return nullptr; 3208 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3209 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3210 return HelperFn; 3211 3212 ASTContext &C = getContext(); 3213 IdentifierInfo *II 3214 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3215 FunctionDecl *FD = FunctionDecl::Create(C, 3216 C.getTranslationUnitDecl(), 3217 SourceLocation(), 3218 SourceLocation(), II, C.VoidTy, 3219 nullptr, SC_Static, 3220 false, 3221 false); 3222 3223 QualType DestTy = C.getPointerType(Ty); 3224 QualType SrcTy = Ty; 3225 SrcTy.addConst(); 3226 SrcTy = C.getPointerType(SrcTy); 3227 3228 FunctionArgList args; 3229 ImplicitParamDecl DstDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr, 3230 DestTy, ImplicitParamDecl::Other); 3231 args.push_back(&DstDecl); 3232 ImplicitParamDecl SrcDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr, 3233 SrcTy, ImplicitParamDecl::Other); 3234 args.push_back(&SrcDecl); 3235 3236 const CGFunctionInfo &FI = 3237 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); 3238 3239 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3240 3241 llvm::Function *Fn = 3242 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3243 "__assign_helper_atomic_property_", 3244 &CGM.getModule()); 3245 3246 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3247 3248 StartFunction(FD, C.VoidTy, Fn, FI, args); 3249 3250 DeclRefExpr DstExpr(&DstDecl, false, DestTy, 3251 VK_RValue, SourceLocation()); 3252 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), 3253 VK_LValue, OK_Ordinary, SourceLocation(), false); 3254 3255 DeclRefExpr SrcExpr(&SrcDecl, false, SrcTy, 3256 VK_RValue, SourceLocation()); 3257 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3258 VK_LValue, OK_Ordinary, SourceLocation(), false); 3259 3260 Expr *Args[2] = { &DST, &SRC }; 3261 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3262 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), 3263 Args, DestTy->getPointeeType(), 3264 VK_LValue, SourceLocation(), FPOptions()); 3265 3266 EmitStmt(&TheCall); 3267 3268 FinishFunction(); 3269 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3270 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3271 return HelperFn; 3272 } 3273 3274 llvm::Constant * 3275 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3276 const ObjCPropertyImplDecl *PID) { 3277 if (!getLangOpts().CPlusPlus || 3278 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3279 return nullptr; 3280 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3281 QualType Ty = PD->getType(); 3282 if (!Ty->isRecordType()) 3283 return nullptr; 3284 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) 3285 return nullptr; 3286 llvm::Constant *HelperFn = nullptr; 3287 3288 if (hasTrivialGetExpr(PID)) 3289 return nullptr; 3290 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3291 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3292 return HelperFn; 3293 3294 3295 ASTContext &C = getContext(); 3296 IdentifierInfo *II 3297 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3298 FunctionDecl *FD = FunctionDecl::Create(C, 3299 C.getTranslationUnitDecl(), 3300 SourceLocation(), 3301 SourceLocation(), II, C.VoidTy, 3302 nullptr, SC_Static, 3303 false, 3304 false); 3305 3306 QualType DestTy = C.getPointerType(Ty); 3307 QualType SrcTy = Ty; 3308 SrcTy.addConst(); 3309 SrcTy = C.getPointerType(SrcTy); 3310 3311 FunctionArgList args; 3312 ImplicitParamDecl DstDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr, 3313 DestTy, ImplicitParamDecl::Other); 3314 args.push_back(&DstDecl); 3315 ImplicitParamDecl SrcDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr, 3316 SrcTy, ImplicitParamDecl::Other); 3317 args.push_back(&SrcDecl); 3318 3319 const CGFunctionInfo &FI = 3320 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); 3321 3322 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3323 3324 llvm::Function *Fn = 3325 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3326 "__copy_helper_atomic_property_", &CGM.getModule()); 3327 3328 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3329 3330 StartFunction(FD, C.VoidTy, Fn, FI, args); 3331 3332 DeclRefExpr SrcExpr(&SrcDecl, false, SrcTy, 3333 VK_RValue, SourceLocation()); 3334 3335 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), 3336 VK_LValue, OK_Ordinary, SourceLocation(), false); 3337 3338 CXXConstructExpr *CXXConstExpr = 3339 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3340 3341 SmallVector<Expr*, 4> ConstructorArgs; 3342 ConstructorArgs.push_back(&SRC); 3343 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3344 CXXConstExpr->arg_end()); 3345 3346 CXXConstructExpr *TheCXXConstructExpr = 3347 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3348 CXXConstExpr->getConstructor(), 3349 CXXConstExpr->isElidable(), 3350 ConstructorArgs, 3351 CXXConstExpr->hadMultipleCandidates(), 3352 CXXConstExpr->isListInitialization(), 3353 CXXConstExpr->isStdInitListInitialization(), 3354 CXXConstExpr->requiresZeroInitialization(), 3355 CXXConstExpr->getConstructionKind(), 3356 SourceRange()); 3357 3358 DeclRefExpr DstExpr(&DstDecl, false, DestTy, 3359 VK_RValue, SourceLocation()); 3360 3361 RValue DV = EmitAnyExpr(&DstExpr); 3362 CharUnits Alignment 3363 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3364 EmitAggExpr(TheCXXConstructExpr, 3365 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), 3366 Qualifiers(), 3367 AggValueSlot::IsDestructed, 3368 AggValueSlot::DoesNotNeedGCBarriers, 3369 AggValueSlot::IsNotAliased)); 3370 3371 FinishFunction(); 3372 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3373 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3374 return HelperFn; 3375 } 3376 3377 llvm::Value * 3378 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3379 // Get selectors for retain/autorelease. 3380 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3381 Selector CopySelector = 3382 getContext().Selectors.getNullarySelector(CopyID); 3383 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3384 Selector AutoreleaseSelector = 3385 getContext().Selectors.getNullarySelector(AutoreleaseID); 3386 3387 // Emit calls to retain/autorelease. 3388 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3389 llvm::Value *Val = Block; 3390 RValue Result; 3391 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3392 Ty, CopySelector, 3393 Val, CallArgList(), nullptr, nullptr); 3394 Val = Result.getScalarVal(); 3395 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3396 Ty, AutoreleaseSelector, 3397 Val, CallArgList(), nullptr, nullptr); 3398 Val = Result.getScalarVal(); 3399 return Val; 3400 } 3401 3402 llvm::Value * 3403 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) { 3404 assert(Args.size() == 3 && "Expected 3 argument here!"); 3405 3406 if (!CGM.IsOSVersionAtLeastFn) { 3407 llvm::FunctionType *FTy = 3408 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 3409 CGM.IsOSVersionAtLeastFn = 3410 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 3411 } 3412 3413 llvm::Value *CallRes = 3414 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 3415 3416 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 3417 } 3418 3419 void CodeGenModule::emitAtAvailableLinkGuard() { 3420 if (!IsOSVersionAtLeastFn) 3421 return; 3422 // @available requires CoreFoundation only on Darwin. 3423 if (!Target.getTriple().isOSDarwin()) 3424 return; 3425 // Add -framework CoreFoundation to the linker commands. We still want to 3426 // emit the core foundation reference down below because otherwise if 3427 // CoreFoundation is not used in the code, the linker won't link the 3428 // framework. 3429 auto &Context = getLLVMContext(); 3430 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3431 llvm::MDString::get(Context, "CoreFoundation")}; 3432 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 3433 // Emit a reference to a symbol from CoreFoundation to ensure that 3434 // CoreFoundation is linked into the final binary. 3435 llvm::FunctionType *FTy = 3436 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 3437 llvm::Constant *CFFunc = 3438 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 3439 3440 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 3441 llvm::Function *CFLinkCheckFunc = cast<llvm::Function>(CreateBuiltinFunction( 3442 CheckFTy, "__clang_at_available_requires_core_foundation_framework")); 3443 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 3444 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 3445 CodeGenFunction CGF(*this); 3446 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 3447 CGF.EmitNounwindRuntimeCall(CFFunc, llvm::Constant::getNullValue(VoidPtrTy)); 3448 CGF.Builder.CreateUnreachable(); 3449 addCompilerUsedGlobal(CFLinkCheckFunc); 3450 } 3451 3452 CGObjCRuntime::~CGObjCRuntime() {} 3453