1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CGDebugInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Module.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Target/TargetData.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49 };
50 
51 static bool MustVisitNullValue(const Expr *E) {
52   // If a null pointer expression's type is the C++0x nullptr_t, then
53   // it's not necessarily a simple constant and it must be evaluated
54   // for its potential side effects.
55   return E->getType()->isNullPtrType();
56 }
57 
58 class ScalarExprEmitter
59   : public StmtVisitor<ScalarExprEmitter, Value*> {
60   CodeGenFunction &CGF;
61   CGBuilderTy &Builder;
62   bool IgnoreResultAssign;
63   llvm::LLVMContext &VMContext;
64 public:
65 
66   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68       VMContext(cgf.getLLVMContext()) {
69   }
70 
71   //===--------------------------------------------------------------------===//
72   //                               Utilities
73   //===--------------------------------------------------------------------===//
74 
75   bool TestAndClearIgnoreResultAssign() {
76     bool I = IgnoreResultAssign;
77     IgnoreResultAssign = false;
78     return I;
79   }
80 
81   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83   LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84 
85   Value *EmitLoadOfLValue(LValue LV) {
86     return CGF.EmitLoadOfLValue(LV).getScalarVal();
87   }
88 
89   /// EmitLoadOfLValue - Given an expression with complex type that represents a
90   /// value l-value, this method emits the address of the l-value, then loads
91   /// and returns the result.
92   Value *EmitLoadOfLValue(const Expr *E) {
93     return EmitLoadOfLValue(EmitCheckedLValue(E));
94   }
95 
96   /// EmitConversionToBool - Convert the specified expression value to a
97   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98   Value *EmitConversionToBool(Value *Src, QualType DstTy);
99 
100   /// EmitScalarConversion - Emit a conversion from the specified type to the
101   /// specified destination type, both of which are LLVM scalar types.
102   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103 
104   /// EmitComplexToScalarConversion - Emit a conversion from the specified
105   /// complex type to the specified destination type, where the destination type
106   /// is an LLVM scalar type.
107   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                        QualType SrcTy, QualType DstTy);
109 
110   /// EmitNullValue - Emit a value that corresponds to null for the given type.
111   Value *EmitNullValue(QualType Ty);
112 
113   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114   Value *EmitFloatToBoolConversion(Value *V) {
115     // Compare against 0.0 for fp scalars.
116     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117     return Builder.CreateFCmpUNE(V, Zero, "tobool");
118   }
119 
120   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121   Value *EmitPointerToBoolConversion(Value *V) {
122     Value *Zero = llvm::ConstantPointerNull::get(
123                                       cast<llvm::PointerType>(V->getType()));
124     return Builder.CreateICmpNE(V, Zero, "tobool");
125   }
126 
127   Value *EmitIntToBoolConversion(Value *V) {
128     // Because of the type rules of C, we often end up computing a
129     // logical value, then zero extending it to int, then wanting it
130     // as a logical value again.  Optimize this common case.
131     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133         Value *Result = ZI->getOperand(0);
134         // If there aren't any more uses, zap the instruction to save space.
135         // Note that there can be more uses, for example if this
136         // is the result of an assignment.
137         if (ZI->use_empty())
138           ZI->eraseFromParent();
139         return Result;
140       }
141     }
142 
143     return Builder.CreateIsNotNull(V, "tobool");
144   }
145 
146   //===--------------------------------------------------------------------===//
147   //                            Visitor Methods
148   //===--------------------------------------------------------------------===//
149 
150   Value *Visit(Expr *E) {
151     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152   }
153 
154   Value *VisitStmt(Stmt *S) {
155     S->dump(CGF.getContext().getSourceManager());
156     llvm_unreachable("Stmt can't have complex result type!");
157   }
158   Value *VisitExpr(Expr *S);
159 
160   Value *VisitParenExpr(ParenExpr *PE) {
161     return Visit(PE->getSubExpr());
162   }
163   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
164     return Visit(E->getReplacement());
165   }
166   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
167     return Visit(GE->getResultExpr());
168   }
169 
170   // Leaves.
171   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
172     return Builder.getInt(E->getValue());
173   }
174   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
175     return llvm::ConstantFP::get(VMContext, E->getValue());
176   }
177   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
178     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
179   }
180   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
181     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
182   }
183   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
184     return EmitNullValue(E->getType());
185   }
186   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
187     return EmitNullValue(E->getType());
188   }
189   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
190   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
191   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
192     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
193     return Builder.CreateBitCast(V, ConvertType(E->getType()));
194   }
195 
196   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
197     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
198   }
199 
200   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
201     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
202   }
203 
204   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
205     if (E->isGLValue())
206       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
207 
208     // Otherwise, assume the mapping is the scalar directly.
209     return CGF.getOpaqueRValueMapping(E).getScalarVal();
210   }
211 
212   // l-values.
213   Value *VisitDeclRefExpr(DeclRefExpr *E) {
214     Expr::EvalResult Result;
215     if (!E->EvaluateAsRValue(Result, CGF.getContext()))
216       return EmitLoadOfLValue(E);
217 
218     assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
219 
220     llvm::Constant *C;
221     if (Result.Val.isInt())
222       C = Builder.getInt(Result.Val.getInt());
223     else if (Result.Val.isFloat())
224       C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
225     else
226       return EmitLoadOfLValue(E);
227 
228     // Make sure we emit a debug reference to the global variable.
229     if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
230       if (!CGF.getContext().DeclMustBeEmitted(VD))
231         CGF.EmitDeclRefExprDbgValue(E, C);
232     } else if (isa<EnumConstantDecl>(E->getDecl())) {
233       CGF.EmitDeclRefExprDbgValue(E, C);
234     }
235 
236     return C;
237   }
238   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
239     return CGF.EmitObjCSelectorExpr(E);
240   }
241   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
242     return CGF.EmitObjCProtocolExpr(E);
243   }
244   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
245     return EmitLoadOfLValue(E);
246   }
247   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
248     if (E->getMethodDecl() &&
249         E->getMethodDecl()->getResultType()->isReferenceType())
250       return EmitLoadOfLValue(E);
251     return CGF.EmitObjCMessageExpr(E).getScalarVal();
252   }
253 
254   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
255     LValue LV = CGF.EmitObjCIsaExpr(E);
256     Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
257     return V;
258   }
259 
260   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
261   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
262   Value *VisitMemberExpr(MemberExpr *E);
263   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
264   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
265     return EmitLoadOfLValue(E);
266   }
267 
268   Value *VisitInitListExpr(InitListExpr *E);
269 
270   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
271     return CGF.CGM.EmitNullConstant(E->getType());
272   }
273   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
274     if (E->getType()->isVariablyModifiedType())
275       CGF.EmitVariablyModifiedType(E->getType());
276     return VisitCastExpr(E);
277   }
278   Value *VisitCastExpr(CastExpr *E);
279 
280   Value *VisitCallExpr(const CallExpr *E) {
281     if (E->getCallReturnType()->isReferenceType())
282       return EmitLoadOfLValue(E);
283 
284     return CGF.EmitCallExpr(E).getScalarVal();
285   }
286 
287   Value *VisitStmtExpr(const StmtExpr *E);
288 
289   Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
290 
291   // Unary Operators.
292   Value *VisitUnaryPostDec(const UnaryOperator *E) {
293     LValue LV = EmitLValue(E->getSubExpr());
294     return EmitScalarPrePostIncDec(E, LV, false, false);
295   }
296   Value *VisitUnaryPostInc(const UnaryOperator *E) {
297     LValue LV = EmitLValue(E->getSubExpr());
298     return EmitScalarPrePostIncDec(E, LV, true, false);
299   }
300   Value *VisitUnaryPreDec(const UnaryOperator *E) {
301     LValue LV = EmitLValue(E->getSubExpr());
302     return EmitScalarPrePostIncDec(E, LV, false, true);
303   }
304   Value *VisitUnaryPreInc(const UnaryOperator *E) {
305     LValue LV = EmitLValue(E->getSubExpr());
306     return EmitScalarPrePostIncDec(E, LV, true, true);
307   }
308 
309   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
310                                                llvm::Value *InVal,
311                                                llvm::Value *NextVal,
312                                                bool IsInc);
313 
314   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
315                                        bool isInc, bool isPre);
316 
317 
318   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
319     if (isa<MemberPointerType>(E->getType())) // never sugared
320       return CGF.CGM.getMemberPointerConstant(E);
321 
322     return EmitLValue(E->getSubExpr()).getAddress();
323   }
324   Value *VisitUnaryDeref(const UnaryOperator *E) {
325     if (E->getType()->isVoidType())
326       return Visit(E->getSubExpr()); // the actual value should be unused
327     return EmitLoadOfLValue(E);
328   }
329   Value *VisitUnaryPlus(const UnaryOperator *E) {
330     // This differs from gcc, though, most likely due to a bug in gcc.
331     TestAndClearIgnoreResultAssign();
332     return Visit(E->getSubExpr());
333   }
334   Value *VisitUnaryMinus    (const UnaryOperator *E);
335   Value *VisitUnaryNot      (const UnaryOperator *E);
336   Value *VisitUnaryLNot     (const UnaryOperator *E);
337   Value *VisitUnaryReal     (const UnaryOperator *E);
338   Value *VisitUnaryImag     (const UnaryOperator *E);
339   Value *VisitUnaryExtension(const UnaryOperator *E) {
340     return Visit(E->getSubExpr());
341   }
342 
343   // C++
344   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
345     return EmitLoadOfLValue(E);
346   }
347 
348   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
349     return Visit(DAE->getExpr());
350   }
351   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
352     return CGF.LoadCXXThis();
353   }
354 
355   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
356     CGF.enterFullExpression(E);
357     CodeGenFunction::RunCleanupsScope Scope(CGF);
358     return Visit(E->getSubExpr());
359   }
360   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
361     return CGF.EmitCXXNewExpr(E);
362   }
363   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
364     CGF.EmitCXXDeleteExpr(E);
365     return 0;
366   }
367   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
368     return Builder.getInt1(E->getValue());
369   }
370 
371   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
372     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
373   }
374 
375   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
376     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
377   }
378 
379   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
380     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
381   }
382 
383   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
384     // C++ [expr.pseudo]p1:
385     //   The result shall only be used as the operand for the function call
386     //   operator (), and the result of such a call has type void. The only
387     //   effect is the evaluation of the postfix-expression before the dot or
388     //   arrow.
389     CGF.EmitScalarExpr(E->getBase());
390     return 0;
391   }
392 
393   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
394     return EmitNullValue(E->getType());
395   }
396 
397   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
398     CGF.EmitCXXThrowExpr(E);
399     return 0;
400   }
401 
402   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
403     return Builder.getInt1(E->getValue());
404   }
405 
406   // Binary Operators.
407   Value *EmitMul(const BinOpInfo &Ops) {
408     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
409       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
410       case LangOptions::SOB_Undefined:
411         return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
412       case LangOptions::SOB_Defined:
413         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
414       case LangOptions::SOB_Trapping:
415         return EmitOverflowCheckedBinOp(Ops);
416       }
417     }
418 
419     if (Ops.LHS->getType()->isFPOrFPVectorTy())
420       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
421     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
422   }
423   bool isTrapvOverflowBehavior() {
424     return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
425                == LangOptions::SOB_Trapping;
426   }
427   /// Create a binary op that checks for overflow.
428   /// Currently only supports +, - and *.
429   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
430   // Emit the overflow BB when -ftrapv option is activated.
431   void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
432     Builder.SetInsertPoint(overflowBB);
433     llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
434     Builder.CreateCall(Trap);
435     Builder.CreateUnreachable();
436   }
437   // Check for undefined division and modulus behaviors.
438   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
439                                                   llvm::Value *Zero,bool isDiv);
440   Value *EmitDiv(const BinOpInfo &Ops);
441   Value *EmitRem(const BinOpInfo &Ops);
442   Value *EmitAdd(const BinOpInfo &Ops);
443   Value *EmitSub(const BinOpInfo &Ops);
444   Value *EmitShl(const BinOpInfo &Ops);
445   Value *EmitShr(const BinOpInfo &Ops);
446   Value *EmitAnd(const BinOpInfo &Ops) {
447     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
448   }
449   Value *EmitXor(const BinOpInfo &Ops) {
450     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
451   }
452   Value *EmitOr (const BinOpInfo &Ops) {
453     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
454   }
455 
456   BinOpInfo EmitBinOps(const BinaryOperator *E);
457   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
458                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
459                                   Value *&Result);
460 
461   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
462                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
463 
464   // Binary operators and binary compound assignment operators.
465 #define HANDLEBINOP(OP) \
466   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
467     return Emit ## OP(EmitBinOps(E));                                      \
468   }                                                                        \
469   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
470     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
471   }
472   HANDLEBINOP(Mul)
473   HANDLEBINOP(Div)
474   HANDLEBINOP(Rem)
475   HANDLEBINOP(Add)
476   HANDLEBINOP(Sub)
477   HANDLEBINOP(Shl)
478   HANDLEBINOP(Shr)
479   HANDLEBINOP(And)
480   HANDLEBINOP(Xor)
481   HANDLEBINOP(Or)
482 #undef HANDLEBINOP
483 
484   // Comparisons.
485   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
486                      unsigned SICmpOpc, unsigned FCmpOpc);
487 #define VISITCOMP(CODE, UI, SI, FP) \
488     Value *VisitBin##CODE(const BinaryOperator *E) { \
489       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
490                          llvm::FCmpInst::FP); }
491   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
492   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
493   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
494   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
495   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
496   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
497 #undef VISITCOMP
498 
499   Value *VisitBinAssign     (const BinaryOperator *E);
500 
501   Value *VisitBinLAnd       (const BinaryOperator *E);
502   Value *VisitBinLOr        (const BinaryOperator *E);
503   Value *VisitBinComma      (const BinaryOperator *E);
504 
505   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
506   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
507 
508   // Other Operators.
509   Value *VisitBlockExpr(const BlockExpr *BE);
510   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
511   Value *VisitChooseExpr(ChooseExpr *CE);
512   Value *VisitVAArgExpr(VAArgExpr *VE);
513   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
514     return CGF.EmitObjCStringLiteral(E);
515   }
516   Value *VisitAsTypeExpr(AsTypeExpr *CE);
517   Value *VisitAtomicExpr(AtomicExpr *AE);
518 };
519 }  // end anonymous namespace.
520 
521 //===----------------------------------------------------------------------===//
522 //                                Utilities
523 //===----------------------------------------------------------------------===//
524 
525 /// EmitConversionToBool - Convert the specified expression value to a
526 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
527 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
528   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
529 
530   if (SrcType->isRealFloatingType())
531     return EmitFloatToBoolConversion(Src);
532 
533   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
534     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
535 
536   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
537          "Unknown scalar type to convert");
538 
539   if (isa<llvm::IntegerType>(Src->getType()))
540     return EmitIntToBoolConversion(Src);
541 
542   assert(isa<llvm::PointerType>(Src->getType()));
543   return EmitPointerToBoolConversion(Src);
544 }
545 
546 /// EmitScalarConversion - Emit a conversion from the specified type to the
547 /// specified destination type, both of which are LLVM scalar types.
548 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
549                                                QualType DstType) {
550   SrcType = CGF.getContext().getCanonicalType(SrcType);
551   DstType = CGF.getContext().getCanonicalType(DstType);
552   if (SrcType == DstType) return Src;
553 
554   if (DstType->isVoidType()) return 0;
555 
556   llvm::Type *SrcTy = Src->getType();
557 
558   // Floating casts might be a bit special: if we're doing casts to / from half
559   // FP, we should go via special intrinsics.
560   if (SrcType->isHalfType()) {
561     Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
562     SrcType = CGF.getContext().FloatTy;
563     SrcTy = CGF.FloatTy;
564   }
565 
566   // Handle conversions to bool first, they are special: comparisons against 0.
567   if (DstType->isBooleanType())
568     return EmitConversionToBool(Src, SrcType);
569 
570   llvm::Type *DstTy = ConvertType(DstType);
571 
572   // Ignore conversions like int -> uint.
573   if (SrcTy == DstTy)
574     return Src;
575 
576   // Handle pointer conversions next: pointers can only be converted to/from
577   // other pointers and integers. Check for pointer types in terms of LLVM, as
578   // some native types (like Obj-C id) may map to a pointer type.
579   if (isa<llvm::PointerType>(DstTy)) {
580     // The source value may be an integer, or a pointer.
581     if (isa<llvm::PointerType>(SrcTy))
582       return Builder.CreateBitCast(Src, DstTy, "conv");
583 
584     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
585     // First, convert to the correct width so that we control the kind of
586     // extension.
587     llvm::Type *MiddleTy = CGF.IntPtrTy;
588     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
589     llvm::Value* IntResult =
590         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
591     // Then, cast to pointer.
592     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
593   }
594 
595   if (isa<llvm::PointerType>(SrcTy)) {
596     // Must be an ptr to int cast.
597     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
598     return Builder.CreatePtrToInt(Src, DstTy, "conv");
599   }
600 
601   // A scalar can be splatted to an extended vector of the same element type
602   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
603     // Cast the scalar to element type
604     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
605     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
606 
607     // Insert the element in element zero of an undef vector
608     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
609     llvm::Value *Idx = Builder.getInt32(0);
610     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
611 
612     // Splat the element across to all elements
613     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
614     llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements,
615                                                           Builder.getInt32(0));
616     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
617     return Yay;
618   }
619 
620   // Allow bitcast from vector to integer/fp of the same size.
621   if (isa<llvm::VectorType>(SrcTy) ||
622       isa<llvm::VectorType>(DstTy))
623     return Builder.CreateBitCast(Src, DstTy, "conv");
624 
625   // Finally, we have the arithmetic types: real int/float.
626   Value *Res = NULL;
627   llvm::Type *ResTy = DstTy;
628 
629   // Cast to half via float
630   if (DstType->isHalfType())
631     DstTy = CGF.FloatTy;
632 
633   if (isa<llvm::IntegerType>(SrcTy)) {
634     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
635     if (isa<llvm::IntegerType>(DstTy))
636       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
637     else if (InputSigned)
638       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
639     else
640       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
641   } else if (isa<llvm::IntegerType>(DstTy)) {
642     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
643     if (DstType->isSignedIntegerOrEnumerationType())
644       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
645     else
646       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
647   } else {
648     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
649            "Unknown real conversion");
650     if (DstTy->getTypeID() < SrcTy->getTypeID())
651       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
652     else
653       Res = Builder.CreateFPExt(Src, DstTy, "conv");
654   }
655 
656   if (DstTy != ResTy) {
657     assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
658     Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
659   }
660 
661   return Res;
662 }
663 
664 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
665 /// type to the specified destination type, where the destination type is an
666 /// LLVM scalar type.
667 Value *ScalarExprEmitter::
668 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
669                               QualType SrcTy, QualType DstTy) {
670   // Get the source element type.
671   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
672 
673   // Handle conversions to bool first, they are special: comparisons against 0.
674   if (DstTy->isBooleanType()) {
675     //  Complex != 0  -> (Real != 0) | (Imag != 0)
676     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
677     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
678     return Builder.CreateOr(Src.first, Src.second, "tobool");
679   }
680 
681   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
682   // the imaginary part of the complex value is discarded and the value of the
683   // real part is converted according to the conversion rules for the
684   // corresponding real type.
685   return EmitScalarConversion(Src.first, SrcTy, DstTy);
686 }
687 
688 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
689   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
690     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
691 
692   return llvm::Constant::getNullValue(ConvertType(Ty));
693 }
694 
695 //===----------------------------------------------------------------------===//
696 //                            Visitor Methods
697 //===----------------------------------------------------------------------===//
698 
699 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
700   CGF.ErrorUnsupported(E, "scalar expression");
701   if (E->getType()->isVoidType())
702     return 0;
703   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
704 }
705 
706 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
707   // Vector Mask Case
708   if (E->getNumSubExprs() == 2 ||
709       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
710     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
711     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
712     Value *Mask;
713 
714     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
715     unsigned LHSElts = LTy->getNumElements();
716 
717     if (E->getNumSubExprs() == 3) {
718       Mask = CGF.EmitScalarExpr(E->getExpr(2));
719 
720       // Shuffle LHS & RHS into one input vector.
721       SmallVector<llvm::Constant*, 32> concat;
722       for (unsigned i = 0; i != LHSElts; ++i) {
723         concat.push_back(Builder.getInt32(2*i));
724         concat.push_back(Builder.getInt32(2*i+1));
725       }
726 
727       Value* CV = llvm::ConstantVector::get(concat);
728       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
729       LHSElts *= 2;
730     } else {
731       Mask = RHS;
732     }
733 
734     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
735     llvm::Constant* EltMask;
736 
737     // Treat vec3 like vec4.
738     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
739       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
740                                        (1 << llvm::Log2_32(LHSElts+2))-1);
741     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
742       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
743                                        (1 << llvm::Log2_32(LHSElts+1))-1);
744     else
745       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
746                                        (1 << llvm::Log2_32(LHSElts))-1);
747 
748     // Mask off the high bits of each shuffle index.
749     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
750                                                      EltMask);
751     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
752 
753     // newv = undef
754     // mask = mask & maskbits
755     // for each elt
756     //   n = extract mask i
757     //   x = extract val n
758     //   newv = insert newv, x, i
759     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
760                                                         MTy->getNumElements());
761     Value* NewV = llvm::UndefValue::get(RTy);
762     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
763       Value *Indx = Builder.getInt32(i);
764       Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
765       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
766 
767       // Handle vec3 special since the index will be off by one for the RHS.
768       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
769         Value *cmpIndx, *newIndx;
770         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
771                                         "cmp_shuf_idx");
772         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
773         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
774       }
775       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
776       NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
777     }
778     return NewV;
779   }
780 
781   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
782   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
783 
784   // Handle vec3 special since the index will be off by one for the RHS.
785   llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
786   SmallVector<llvm::Constant*, 32> indices;
787   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
788     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
789     if (VTy->getNumElements() == 3 && Idx > 3)
790       Idx -= 1;
791     indices.push_back(Builder.getInt32(Idx));
792   }
793 
794   Value *SV = llvm::ConstantVector::get(indices);
795   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
796 }
797 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
798   llvm::APSInt Value;
799   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
800     if (E->isArrow())
801       CGF.EmitScalarExpr(E->getBase());
802     else
803       EmitLValue(E->getBase());
804     return Builder.getInt(Value);
805   }
806 
807   // Emit debug info for aggregate now, if it was delayed to reduce
808   // debug info size.
809   CGDebugInfo *DI = CGF.getDebugInfo();
810   if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
811     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
812     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
813       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
814         DI->getOrCreateRecordType(PTy->getPointeeType(),
815                                   M->getParent()->getLocation());
816   }
817   return EmitLoadOfLValue(E);
818 }
819 
820 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
821   TestAndClearIgnoreResultAssign();
822 
823   // Emit subscript expressions in rvalue context's.  For most cases, this just
824   // loads the lvalue formed by the subscript expr.  However, we have to be
825   // careful, because the base of a vector subscript is occasionally an rvalue,
826   // so we can't get it as an lvalue.
827   if (!E->getBase()->getType()->isVectorType())
828     return EmitLoadOfLValue(E);
829 
830   // Handle the vector case.  The base must be a vector, the index must be an
831   // integer value.
832   Value *Base = Visit(E->getBase());
833   Value *Idx  = Visit(E->getIdx());
834   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
835   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
836   return Builder.CreateExtractElement(Base, Idx, "vecext");
837 }
838 
839 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
840                                   unsigned Off, llvm::Type *I32Ty) {
841   int MV = SVI->getMaskValue(Idx);
842   if (MV == -1)
843     return llvm::UndefValue::get(I32Ty);
844   return llvm::ConstantInt::get(I32Ty, Off+MV);
845 }
846 
847 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
848   bool Ignore = TestAndClearIgnoreResultAssign();
849   (void)Ignore;
850   assert (Ignore == false && "init list ignored");
851   unsigned NumInitElements = E->getNumInits();
852 
853   if (E->hadArrayRangeDesignator())
854     CGF.ErrorUnsupported(E, "GNU array range designator extension");
855 
856   llvm::VectorType *VType =
857     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
858 
859   if (!VType) {
860     if (NumInitElements == 0) {
861       // C++11 value-initialization for the scalar.
862       return EmitNullValue(E->getType());
863     }
864     // We have a scalar in braces. Just use the first element.
865     return Visit(E->getInit(0));
866   }
867 
868   unsigned ResElts = VType->getNumElements();
869 
870   // Loop over initializers collecting the Value for each, and remembering
871   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
872   // us to fold the shuffle for the swizzle into the shuffle for the vector
873   // initializer, since LLVM optimizers generally do not want to touch
874   // shuffles.
875   unsigned CurIdx = 0;
876   bool VIsUndefShuffle = false;
877   llvm::Value *V = llvm::UndefValue::get(VType);
878   for (unsigned i = 0; i != NumInitElements; ++i) {
879     Expr *IE = E->getInit(i);
880     Value *Init = Visit(IE);
881     SmallVector<llvm::Constant*, 16> Args;
882 
883     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
884 
885     // Handle scalar elements.  If the scalar initializer is actually one
886     // element of a different vector of the same width, use shuffle instead of
887     // extract+insert.
888     if (!VVT) {
889       if (isa<ExtVectorElementExpr>(IE)) {
890         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
891 
892         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
893           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
894           Value *LHS = 0, *RHS = 0;
895           if (CurIdx == 0) {
896             // insert into undef -> shuffle (src, undef)
897             Args.push_back(C);
898             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
899 
900             LHS = EI->getVectorOperand();
901             RHS = V;
902             VIsUndefShuffle = true;
903           } else if (VIsUndefShuffle) {
904             // insert into undefshuffle && size match -> shuffle (v, src)
905             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
906             for (unsigned j = 0; j != CurIdx; ++j)
907               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
908             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
909             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
910 
911             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
912             RHS = EI->getVectorOperand();
913             VIsUndefShuffle = false;
914           }
915           if (!Args.empty()) {
916             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
917             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
918             ++CurIdx;
919             continue;
920           }
921         }
922       }
923       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
924                                       "vecinit");
925       VIsUndefShuffle = false;
926       ++CurIdx;
927       continue;
928     }
929 
930     unsigned InitElts = VVT->getNumElements();
931 
932     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
933     // input is the same width as the vector being constructed, generate an
934     // optimized shuffle of the swizzle input into the result.
935     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
936     if (isa<ExtVectorElementExpr>(IE)) {
937       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
938       Value *SVOp = SVI->getOperand(0);
939       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
940 
941       if (OpTy->getNumElements() == ResElts) {
942         for (unsigned j = 0; j != CurIdx; ++j) {
943           // If the current vector initializer is a shuffle with undef, merge
944           // this shuffle directly into it.
945           if (VIsUndefShuffle) {
946             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
947                                       CGF.Int32Ty));
948           } else {
949             Args.push_back(Builder.getInt32(j));
950           }
951         }
952         for (unsigned j = 0, je = InitElts; j != je; ++j)
953           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
954         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
955 
956         if (VIsUndefShuffle)
957           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
958 
959         Init = SVOp;
960       }
961     }
962 
963     // Extend init to result vector length, and then shuffle its contribution
964     // to the vector initializer into V.
965     if (Args.empty()) {
966       for (unsigned j = 0; j != InitElts; ++j)
967         Args.push_back(Builder.getInt32(j));
968       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
969       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
970       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
971                                          Mask, "vext");
972 
973       Args.clear();
974       for (unsigned j = 0; j != CurIdx; ++j)
975         Args.push_back(Builder.getInt32(j));
976       for (unsigned j = 0; j != InitElts; ++j)
977         Args.push_back(Builder.getInt32(j+Offset));
978       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
979     }
980 
981     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
982     // merging subsequent shuffles into this one.
983     if (CurIdx == 0)
984       std::swap(V, Init);
985     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
986     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
987     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
988     CurIdx += InitElts;
989   }
990 
991   // FIXME: evaluate codegen vs. shuffling against constant null vector.
992   // Emit remaining default initializers.
993   llvm::Type *EltTy = VType->getElementType();
994 
995   // Emit remaining default initializers
996   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
997     Value *Idx = Builder.getInt32(CurIdx);
998     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
999     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1000   }
1001   return V;
1002 }
1003 
1004 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1005   const Expr *E = CE->getSubExpr();
1006 
1007   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1008     return false;
1009 
1010   if (isa<CXXThisExpr>(E)) {
1011     // We always assume that 'this' is never null.
1012     return false;
1013   }
1014 
1015   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1016     // And that glvalue casts are never null.
1017     if (ICE->getValueKind() != VK_RValue)
1018       return false;
1019   }
1020 
1021   return true;
1022 }
1023 
1024 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1025 // have to handle a more broad range of conversions than explicit casts, as they
1026 // handle things like function to ptr-to-function decay etc.
1027 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1028   Expr *E = CE->getSubExpr();
1029   QualType DestTy = CE->getType();
1030   CastKind Kind = CE->getCastKind();
1031 
1032   if (!DestTy->isVoidType())
1033     TestAndClearIgnoreResultAssign();
1034 
1035   // Since almost all cast kinds apply to scalars, this switch doesn't have
1036   // a default case, so the compiler will warn on a missing case.  The cases
1037   // are in the same order as in the CastKind enum.
1038   switch (Kind) {
1039   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1040 
1041   case CK_LValueBitCast:
1042   case CK_ObjCObjectLValueCast: {
1043     Value *V = EmitLValue(E).getAddress();
1044     V = Builder.CreateBitCast(V,
1045                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1046     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
1047   }
1048 
1049   case CK_CPointerToObjCPointerCast:
1050   case CK_BlockPointerToObjCPointerCast:
1051   case CK_AnyPointerToBlockPointerCast:
1052   case CK_BitCast: {
1053     Value *Src = Visit(const_cast<Expr*>(E));
1054     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1055   }
1056   case CK_AtomicToNonAtomic:
1057   case CK_NonAtomicToAtomic:
1058   case CK_NoOp:
1059   case CK_UserDefinedConversion:
1060     return Visit(const_cast<Expr*>(E));
1061 
1062   case CK_BaseToDerived: {
1063     const CXXRecordDecl *DerivedClassDecl =
1064       DestTy->getCXXRecordDeclForPointerType();
1065 
1066     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1067                                         CE->path_begin(), CE->path_end(),
1068                                         ShouldNullCheckClassCastValue(CE));
1069   }
1070   case CK_UncheckedDerivedToBase:
1071   case CK_DerivedToBase: {
1072     const RecordType *DerivedClassTy =
1073       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1074     CXXRecordDecl *DerivedClassDecl =
1075       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1076 
1077     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1078                                      CE->path_begin(), CE->path_end(),
1079                                      ShouldNullCheckClassCastValue(CE));
1080   }
1081   case CK_Dynamic: {
1082     Value *V = Visit(const_cast<Expr*>(E));
1083     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1084     return CGF.EmitDynamicCast(V, DCE);
1085   }
1086 
1087   case CK_ArrayToPointerDecay: {
1088     assert(E->getType()->isArrayType() &&
1089            "Array to pointer decay must have array source type!");
1090 
1091     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1092 
1093     // Note that VLA pointers are always decayed, so we don't need to do
1094     // anything here.
1095     if (!E->getType()->isVariableArrayType()) {
1096       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1097       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1098                                  ->getElementType()) &&
1099              "Expected pointer to array");
1100       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1101     }
1102 
1103     // Make sure the array decay ends up being the right type.  This matters if
1104     // the array type was of an incomplete type.
1105     return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1106   }
1107   case CK_FunctionToPointerDecay:
1108     return EmitLValue(E).getAddress();
1109 
1110   case CK_NullToPointer:
1111     if (MustVisitNullValue(E))
1112       (void) Visit(E);
1113 
1114     return llvm::ConstantPointerNull::get(
1115                                cast<llvm::PointerType>(ConvertType(DestTy)));
1116 
1117   case CK_NullToMemberPointer: {
1118     if (MustVisitNullValue(E))
1119       (void) Visit(E);
1120 
1121     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1122     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1123   }
1124 
1125   case CK_ReinterpretMemberPointer:
1126   case CK_BaseToDerivedMemberPointer:
1127   case CK_DerivedToBaseMemberPointer: {
1128     Value *Src = Visit(E);
1129 
1130     // Note that the AST doesn't distinguish between checked and
1131     // unchecked member pointer conversions, so we always have to
1132     // implement checked conversions here.  This is inefficient when
1133     // actual control flow may be required in order to perform the
1134     // check, which it is for data member pointers (but not member
1135     // function pointers on Itanium and ARM).
1136     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1137   }
1138 
1139   case CK_ARCProduceObject:
1140     return CGF.EmitARCRetainScalarExpr(E);
1141   case CK_ARCConsumeObject:
1142     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1143   case CK_ARCReclaimReturnedObject: {
1144     llvm::Value *value = Visit(E);
1145     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1146     return CGF.EmitObjCConsumeObject(E->getType(), value);
1147   }
1148   case CK_ARCExtendBlockObject:
1149     return CGF.EmitARCExtendBlockObject(E);
1150 
1151   case CK_FloatingRealToComplex:
1152   case CK_FloatingComplexCast:
1153   case CK_IntegralRealToComplex:
1154   case CK_IntegralComplexCast:
1155   case CK_IntegralComplexToFloatingComplex:
1156   case CK_FloatingComplexToIntegralComplex:
1157   case CK_ConstructorConversion:
1158   case CK_ToUnion:
1159     llvm_unreachable("scalar cast to non-scalar value");
1160 
1161   case CK_LValueToRValue:
1162     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1163     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1164     return Visit(const_cast<Expr*>(E));
1165 
1166   case CK_IntegralToPointer: {
1167     Value *Src = Visit(const_cast<Expr*>(E));
1168 
1169     // First, convert to the correct width so that we control the kind of
1170     // extension.
1171     llvm::Type *MiddleTy = CGF.IntPtrTy;
1172     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1173     llvm::Value* IntResult =
1174       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1175 
1176     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1177   }
1178   case CK_PointerToIntegral:
1179     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1180     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1181 
1182   case CK_ToVoid: {
1183     CGF.EmitIgnoredExpr(E);
1184     return 0;
1185   }
1186   case CK_VectorSplat: {
1187     llvm::Type *DstTy = ConvertType(DestTy);
1188     Value *Elt = Visit(const_cast<Expr*>(E));
1189     Elt = EmitScalarConversion(Elt, E->getType(),
1190                                DestTy->getAs<VectorType>()->getElementType());
1191 
1192     // Insert the element in element zero of an undef vector
1193     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1194     llvm::Value *Idx = Builder.getInt32(0);
1195     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
1196 
1197     // Splat the element across to all elements
1198     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1199     llvm::Constant *Zero = Builder.getInt32(0);
1200     llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements, Zero);
1201     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1202     return Yay;
1203   }
1204 
1205   case CK_IntegralCast:
1206   case CK_IntegralToFloating:
1207   case CK_FloatingToIntegral:
1208   case CK_FloatingCast:
1209     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1210   case CK_IntegralToBoolean:
1211     return EmitIntToBoolConversion(Visit(E));
1212   case CK_PointerToBoolean:
1213     return EmitPointerToBoolConversion(Visit(E));
1214   case CK_FloatingToBoolean:
1215     return EmitFloatToBoolConversion(Visit(E));
1216   case CK_MemberPointerToBoolean: {
1217     llvm::Value *MemPtr = Visit(E);
1218     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1219     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1220   }
1221 
1222   case CK_FloatingComplexToReal:
1223   case CK_IntegralComplexToReal:
1224     return CGF.EmitComplexExpr(E, false, true).first;
1225 
1226   case CK_FloatingComplexToBoolean:
1227   case CK_IntegralComplexToBoolean: {
1228     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1229 
1230     // TODO: kill this function off, inline appropriate case here
1231     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1232   }
1233 
1234   }
1235 
1236   llvm_unreachable("unknown scalar cast");
1237 }
1238 
1239 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1240   CodeGenFunction::StmtExprEvaluation eval(CGF);
1241   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1242     .getScalarVal();
1243 }
1244 
1245 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1246   LValue LV = CGF.EmitBlockDeclRefLValue(E);
1247   return CGF.EmitLoadOfLValue(LV).getScalarVal();
1248 }
1249 
1250 //===----------------------------------------------------------------------===//
1251 //                             Unary Operators
1252 //===----------------------------------------------------------------------===//
1253 
1254 llvm::Value *ScalarExprEmitter::
1255 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1256                                 llvm::Value *InVal,
1257                                 llvm::Value *NextVal, bool IsInc) {
1258   switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1259   case LangOptions::SOB_Undefined:
1260     return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1261   case LangOptions::SOB_Defined:
1262     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1263   case LangOptions::SOB_Trapping:
1264     BinOpInfo BinOp;
1265     BinOp.LHS = InVal;
1266     BinOp.RHS = NextVal;
1267     BinOp.Ty = E->getType();
1268     BinOp.Opcode = BO_Add;
1269     BinOp.E = E;
1270     return EmitOverflowCheckedBinOp(BinOp);
1271   }
1272   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1273 }
1274 
1275 llvm::Value *
1276 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1277                                            bool isInc, bool isPre) {
1278 
1279   QualType type = E->getSubExpr()->getType();
1280   llvm::Value *value = EmitLoadOfLValue(LV);
1281   llvm::Value *input = value;
1282   llvm::PHINode *atomicPHI = 0;
1283 
1284   int amount = (isInc ? 1 : -1);
1285 
1286   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1287     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1288     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1289     Builder.CreateBr(opBB);
1290     Builder.SetInsertPoint(opBB);
1291     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1292     atomicPHI->addIncoming(value, startBB);
1293     type = atomicTy->getValueType();
1294     value = atomicPHI;
1295   }
1296 
1297   // Special case of integer increment that we have to check first: bool++.
1298   // Due to promotion rules, we get:
1299   //   bool++ -> bool = bool + 1
1300   //          -> bool = (int)bool + 1
1301   //          -> bool = ((int)bool + 1 != 0)
1302   // An interesting aspect of this is that increment is always true.
1303   // Decrement does not have this property.
1304   if (isInc && type->isBooleanType()) {
1305     value = Builder.getTrue();
1306 
1307   // Most common case by far: integer increment.
1308   } else if (type->isIntegerType()) {
1309 
1310     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1311 
1312     // Note that signed integer inc/dec with width less than int can't
1313     // overflow because of promotion rules; we're just eliding a few steps here.
1314     if (type->isSignedIntegerOrEnumerationType() &&
1315         value->getType()->getPrimitiveSizeInBits() >=
1316             CGF.IntTy->getBitWidth())
1317       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1318     else
1319       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1320 
1321   // Next most common: pointer increment.
1322   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1323     QualType type = ptr->getPointeeType();
1324 
1325     // VLA types don't have constant size.
1326     if (const VariableArrayType *vla
1327           = CGF.getContext().getAsVariableArrayType(type)) {
1328       llvm::Value *numElts = CGF.getVLASize(vla).first;
1329       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1330       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1331         value = Builder.CreateGEP(value, numElts, "vla.inc");
1332       else
1333         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1334 
1335     // Arithmetic on function pointers (!) is just +-1.
1336     } else if (type->isFunctionType()) {
1337       llvm::Value *amt = Builder.getInt32(amount);
1338 
1339       value = CGF.EmitCastToVoidPtr(value);
1340       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1341         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1342       else
1343         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1344       value = Builder.CreateBitCast(value, input->getType());
1345 
1346     // For everything else, we can just do a simple increment.
1347     } else {
1348       llvm::Value *amt = Builder.getInt32(amount);
1349       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1350         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1351       else
1352         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1353     }
1354 
1355   // Vector increment/decrement.
1356   } else if (type->isVectorType()) {
1357     if (type->hasIntegerRepresentation()) {
1358       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1359 
1360       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1361     } else {
1362       value = Builder.CreateFAdd(
1363                   value,
1364                   llvm::ConstantFP::get(value->getType(), amount),
1365                   isInc ? "inc" : "dec");
1366     }
1367 
1368   // Floating point.
1369   } else if (type->isRealFloatingType()) {
1370     // Add the inc/dec to the real part.
1371     llvm::Value *amt;
1372 
1373     if (type->isHalfType()) {
1374       // Another special case: half FP increment should be done via float
1375       value =
1376     Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1377                        input);
1378     }
1379 
1380     if (value->getType()->isFloatTy())
1381       amt = llvm::ConstantFP::get(VMContext,
1382                                   llvm::APFloat(static_cast<float>(amount)));
1383     else if (value->getType()->isDoubleTy())
1384       amt = llvm::ConstantFP::get(VMContext,
1385                                   llvm::APFloat(static_cast<double>(amount)));
1386     else {
1387       llvm::APFloat F(static_cast<float>(amount));
1388       bool ignored;
1389       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1390                 &ignored);
1391       amt = llvm::ConstantFP::get(VMContext, F);
1392     }
1393     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1394 
1395     if (type->isHalfType())
1396       value =
1397        Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1398                           value);
1399 
1400   // Objective-C pointer types.
1401   } else {
1402     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1403     value = CGF.EmitCastToVoidPtr(value);
1404 
1405     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1406     if (!isInc) size = -size;
1407     llvm::Value *sizeValue =
1408       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1409 
1410     if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1411       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1412     else
1413       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1414     value = Builder.CreateBitCast(value, input->getType());
1415   }
1416 
1417   if (atomicPHI) {
1418     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1419     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1420     llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
1421         value, llvm::SequentiallyConsistent);
1422     atomicPHI->addIncoming(old, opBB);
1423     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1424     Builder.CreateCondBr(success, contBB, opBB);
1425     Builder.SetInsertPoint(contBB);
1426     return isPre ? value : input;
1427   }
1428 
1429   // Store the updated result through the lvalue.
1430   if (LV.isBitField())
1431     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1432   else
1433     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1434 
1435   // If this is a postinc, return the value read from memory, otherwise use the
1436   // updated value.
1437   return isPre ? value : input;
1438 }
1439 
1440 
1441 
1442 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1443   TestAndClearIgnoreResultAssign();
1444   // Emit unary minus with EmitSub so we handle overflow cases etc.
1445   BinOpInfo BinOp;
1446   BinOp.RHS = Visit(E->getSubExpr());
1447 
1448   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1449     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1450   else
1451     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1452   BinOp.Ty = E->getType();
1453   BinOp.Opcode = BO_Sub;
1454   BinOp.E = E;
1455   return EmitSub(BinOp);
1456 }
1457 
1458 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1459   TestAndClearIgnoreResultAssign();
1460   Value *Op = Visit(E->getSubExpr());
1461   return Builder.CreateNot(Op, "neg");
1462 }
1463 
1464 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1465 
1466   // Perform vector logical not on comparison with zero vector.
1467   if (E->getType()->isExtVectorType()) {
1468     Value *Oper = Visit(E->getSubExpr());
1469     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1470     Value *Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1471     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1472   }
1473 
1474   // Compare operand to zero.
1475   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1476 
1477   // Invert value.
1478   // TODO: Could dynamically modify easy computations here.  For example, if
1479   // the operand is an icmp ne, turn into icmp eq.
1480   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1481 
1482   // ZExt result to the expr type.
1483   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1484 }
1485 
1486 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1487   // Try folding the offsetof to a constant.
1488   llvm::APSInt Value;
1489   if (E->EvaluateAsInt(Value, CGF.getContext()))
1490     return Builder.getInt(Value);
1491 
1492   // Loop over the components of the offsetof to compute the value.
1493   unsigned n = E->getNumComponents();
1494   llvm::Type* ResultType = ConvertType(E->getType());
1495   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1496   QualType CurrentType = E->getTypeSourceInfo()->getType();
1497   for (unsigned i = 0; i != n; ++i) {
1498     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1499     llvm::Value *Offset = 0;
1500     switch (ON.getKind()) {
1501     case OffsetOfExpr::OffsetOfNode::Array: {
1502       // Compute the index
1503       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1504       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1505       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1506       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1507 
1508       // Save the element type
1509       CurrentType =
1510           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1511 
1512       // Compute the element size
1513       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1514           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1515 
1516       // Multiply out to compute the result
1517       Offset = Builder.CreateMul(Idx, ElemSize);
1518       break;
1519     }
1520 
1521     case OffsetOfExpr::OffsetOfNode::Field: {
1522       FieldDecl *MemberDecl = ON.getField();
1523       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1524       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1525 
1526       // Compute the index of the field in its parent.
1527       unsigned i = 0;
1528       // FIXME: It would be nice if we didn't have to loop here!
1529       for (RecordDecl::field_iterator Field = RD->field_begin(),
1530                                       FieldEnd = RD->field_end();
1531            Field != FieldEnd; (void)++Field, ++i) {
1532         if (*Field == MemberDecl)
1533           break;
1534       }
1535       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1536 
1537       // Compute the offset to the field
1538       int64_t OffsetInt = RL.getFieldOffset(i) /
1539                           CGF.getContext().getCharWidth();
1540       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1541 
1542       // Save the element type.
1543       CurrentType = MemberDecl->getType();
1544       break;
1545     }
1546 
1547     case OffsetOfExpr::OffsetOfNode::Identifier:
1548       llvm_unreachable("dependent __builtin_offsetof");
1549 
1550     case OffsetOfExpr::OffsetOfNode::Base: {
1551       if (ON.getBase()->isVirtual()) {
1552         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1553         continue;
1554       }
1555 
1556       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1557       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1558 
1559       // Save the element type.
1560       CurrentType = ON.getBase()->getType();
1561 
1562       // Compute the offset to the base.
1563       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1564       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1565       int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1566                           CGF.getContext().getCharWidth();
1567       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1568       break;
1569     }
1570     }
1571     Result = Builder.CreateAdd(Result, Offset);
1572   }
1573   return Result;
1574 }
1575 
1576 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1577 /// argument of the sizeof expression as an integer.
1578 Value *
1579 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1580                               const UnaryExprOrTypeTraitExpr *E) {
1581   QualType TypeToSize = E->getTypeOfArgument();
1582   if (E->getKind() == UETT_SizeOf) {
1583     if (const VariableArrayType *VAT =
1584           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1585       if (E->isArgumentType()) {
1586         // sizeof(type) - make sure to emit the VLA size.
1587         CGF.EmitVariablyModifiedType(TypeToSize);
1588       } else {
1589         // C99 6.5.3.4p2: If the argument is an expression of type
1590         // VLA, it is evaluated.
1591         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1592       }
1593 
1594       QualType eltType;
1595       llvm::Value *numElts;
1596       llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1597 
1598       llvm::Value *size = numElts;
1599 
1600       // Scale the number of non-VLA elements by the non-VLA element size.
1601       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1602       if (!eltSize.isOne())
1603         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1604 
1605       return size;
1606     }
1607   }
1608 
1609   // If this isn't sizeof(vla), the result must be constant; use the constant
1610   // folding logic so we don't have to duplicate it here.
1611   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1612 }
1613 
1614 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1615   Expr *Op = E->getSubExpr();
1616   if (Op->getType()->isAnyComplexType()) {
1617     // If it's an l-value, load through the appropriate subobject l-value.
1618     // Note that we have to ask E because Op might be an l-value that
1619     // this won't work for, e.g. an Obj-C property.
1620     if (E->isGLValue())
1621       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1622 
1623     // Otherwise, calculate and project.
1624     return CGF.EmitComplexExpr(Op, false, true).first;
1625   }
1626 
1627   return Visit(Op);
1628 }
1629 
1630 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1631   Expr *Op = E->getSubExpr();
1632   if (Op->getType()->isAnyComplexType()) {
1633     // If it's an l-value, load through the appropriate subobject l-value.
1634     // Note that we have to ask E because Op might be an l-value that
1635     // this won't work for, e.g. an Obj-C property.
1636     if (Op->isGLValue())
1637       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1638 
1639     // Otherwise, calculate and project.
1640     return CGF.EmitComplexExpr(Op, true, false).second;
1641   }
1642 
1643   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1644   // effects are evaluated, but not the actual value.
1645   if (Op->isGLValue())
1646     CGF.EmitLValue(Op);
1647   else
1648     CGF.EmitScalarExpr(Op, true);
1649   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1650 }
1651 
1652 //===----------------------------------------------------------------------===//
1653 //                           Binary Operators
1654 //===----------------------------------------------------------------------===//
1655 
1656 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1657   TestAndClearIgnoreResultAssign();
1658   BinOpInfo Result;
1659   Result.LHS = Visit(E->getLHS());
1660   Result.RHS = Visit(E->getRHS());
1661   Result.Ty  = E->getType();
1662   Result.Opcode = E->getOpcode();
1663   Result.E = E;
1664   return Result;
1665 }
1666 
1667 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1668                                               const CompoundAssignOperator *E,
1669                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1670                                                    Value *&Result) {
1671   QualType LHSTy = E->getLHS()->getType();
1672   BinOpInfo OpInfo;
1673 
1674   if (E->getComputationResultType()->isAnyComplexType()) {
1675     // This needs to go through the complex expression emitter, but it's a tad
1676     // complicated to do that... I'm leaving it out for now.  (Note that we do
1677     // actually need the imaginary part of the RHS for multiplication and
1678     // division.)
1679     CGF.ErrorUnsupported(E, "complex compound assignment");
1680     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1681     return LValue();
1682   }
1683 
1684   // Emit the RHS first.  __block variables need to have the rhs evaluated
1685   // first, plus this should improve codegen a little.
1686   OpInfo.RHS = Visit(E->getRHS());
1687   OpInfo.Ty = E->getComputationResultType();
1688   OpInfo.Opcode = E->getOpcode();
1689   OpInfo.E = E;
1690   // Load/convert the LHS.
1691   LValue LHSLV = EmitCheckedLValue(E->getLHS());
1692   OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1693   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1694                                     E->getComputationLHSType());
1695 
1696   llvm::PHINode *atomicPHI = 0;
1697   if (const AtomicType *atomicTy = OpInfo.Ty->getAs<AtomicType>()) {
1698     // FIXME: For floating point types, we should be saving and restoring the
1699     // floating point environment in the loop.
1700     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1701     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1702     Builder.CreateBr(opBB);
1703     Builder.SetInsertPoint(opBB);
1704     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
1705     atomicPHI->addIncoming(OpInfo.LHS, startBB);
1706     OpInfo.Ty = atomicTy->getValueType();
1707     OpInfo.LHS = atomicPHI;
1708   }
1709 
1710   // Expand the binary operator.
1711   Result = (this->*Func)(OpInfo);
1712 
1713   // Convert the result back to the LHS type.
1714   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1715 
1716   if (atomicPHI) {
1717     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1718     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1719     llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
1720         Result, llvm::SequentiallyConsistent);
1721     atomicPHI->addIncoming(old, opBB);
1722     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1723     Builder.CreateCondBr(success, contBB, opBB);
1724     Builder.SetInsertPoint(contBB);
1725     return LHSLV;
1726   }
1727 
1728   // Store the result value into the LHS lvalue. Bit-fields are handled
1729   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1730   // 'An assignment expression has the value of the left operand after the
1731   // assignment...'.
1732   if (LHSLV.isBitField())
1733     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1734   else
1735     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1736 
1737   return LHSLV;
1738 }
1739 
1740 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1741                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1742   bool Ignore = TestAndClearIgnoreResultAssign();
1743   Value *RHS;
1744   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1745 
1746   // If the result is clearly ignored, return now.
1747   if (Ignore)
1748     return 0;
1749 
1750   // The result of an assignment in C is the assigned r-value.
1751   if (!CGF.getContext().getLangOptions().CPlusPlus)
1752     return RHS;
1753 
1754   // If the lvalue is non-volatile, return the computed value of the assignment.
1755   if (!LHS.isVolatileQualified())
1756     return RHS;
1757 
1758   // Otherwise, reload the value.
1759   return EmitLoadOfLValue(LHS);
1760 }
1761 
1762 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1763      					    const BinOpInfo &Ops,
1764 				     	    llvm::Value *Zero, bool isDiv) {
1765   llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1766   llvm::BasicBlock *contBB =
1767     CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1768                          llvm::next(insertPt));
1769   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1770 
1771   llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1772 
1773   if (Ops.Ty->hasSignedIntegerRepresentation()) {
1774     llvm::Value *IntMin =
1775       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1776     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1777 
1778     llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1779     llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1780     llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1781     llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1782     Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1783                          overflowBB, contBB);
1784   } else {
1785     CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1786                              overflowBB, contBB);
1787   }
1788   EmitOverflowBB(overflowBB);
1789   Builder.SetInsertPoint(contBB);
1790 }
1791 
1792 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1793   if (isTrapvOverflowBehavior()) {
1794     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1795 
1796     if (Ops.Ty->isIntegerType())
1797       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1798     else if (Ops.Ty->isRealFloatingType()) {
1799       llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1800       llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1801                                                        llvm::next(insertPt));
1802       llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1803                                                           CGF.CurFn);
1804       CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1805                                overflowBB, DivCont);
1806       EmitOverflowBB(overflowBB);
1807       Builder.SetInsertPoint(DivCont);
1808     }
1809   }
1810   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
1811     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1812     if (CGF.getContext().getLangOptions().OpenCL) {
1813       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
1814       llvm::Type *ValTy = Val->getType();
1815       if (ValTy->isFloatTy() ||
1816           (isa<llvm::VectorType>(ValTy) &&
1817            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
1818         CGF.SetFPAccuracy(Val, 5, 2);
1819     }
1820     return Val;
1821   }
1822   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1823     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1824   else
1825     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1826 }
1827 
1828 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1829   // Rem in C can't be a floating point type: C99 6.5.5p2.
1830   if (isTrapvOverflowBehavior()) {
1831     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1832 
1833     if (Ops.Ty->isIntegerType())
1834       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1835   }
1836 
1837   if (Ops.Ty->hasUnsignedIntegerRepresentation())
1838     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1839   else
1840     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1841 }
1842 
1843 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1844   unsigned IID;
1845   unsigned OpID = 0;
1846 
1847   switch (Ops.Opcode) {
1848   case BO_Add:
1849   case BO_AddAssign:
1850     OpID = 1;
1851     IID = llvm::Intrinsic::sadd_with_overflow;
1852     break;
1853   case BO_Sub:
1854   case BO_SubAssign:
1855     OpID = 2;
1856     IID = llvm::Intrinsic::ssub_with_overflow;
1857     break;
1858   case BO_Mul:
1859   case BO_MulAssign:
1860     OpID = 3;
1861     IID = llvm::Intrinsic::smul_with_overflow;
1862     break;
1863   default:
1864     llvm_unreachable("Unsupported operation for overflow detection");
1865   }
1866   OpID <<= 1;
1867   OpID |= 1;
1868 
1869   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1870 
1871   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
1872 
1873   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1874   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1875   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1876 
1877   // Branch in case of overflow.
1878   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1879   llvm::Function::iterator insertPt = initialBB;
1880   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1881                                                       llvm::next(insertPt));
1882   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1883 
1884   Builder.CreateCondBr(overflow, overflowBB, continueBB);
1885 
1886   // Handle overflow with llvm.trap.
1887   const std::string *handlerName =
1888     &CGF.getContext().getLangOptions().OverflowHandler;
1889   if (handlerName->empty()) {
1890     EmitOverflowBB(overflowBB);
1891     Builder.SetInsertPoint(continueBB);
1892     return result;
1893   }
1894 
1895   // If an overflow handler is set, then we want to call it and then use its
1896   // result, if it returns.
1897   Builder.SetInsertPoint(overflowBB);
1898 
1899   // Get the overflow handler.
1900   llvm::Type *Int8Ty = CGF.Int8Ty;
1901   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1902   llvm::FunctionType *handlerTy =
1903       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1904   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1905 
1906   // Sign extend the args to 64-bit, so that we can use the same handler for
1907   // all types of overflow.
1908   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1909   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1910 
1911   // Call the handler with the two arguments, the operation, and the size of
1912   // the result.
1913   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1914       Builder.getInt8(OpID),
1915       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1916 
1917   // Truncate the result back to the desired size.
1918   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1919   Builder.CreateBr(continueBB);
1920 
1921   Builder.SetInsertPoint(continueBB);
1922   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1923   phi->addIncoming(result, initialBB);
1924   phi->addIncoming(handlerResult, overflowBB);
1925 
1926   return phi;
1927 }
1928 
1929 /// Emit pointer + index arithmetic.
1930 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1931                                     const BinOpInfo &op,
1932                                     bool isSubtraction) {
1933   // Must have binary (not unary) expr here.  Unary pointer
1934   // increment/decrement doesn't use this path.
1935   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1936 
1937   Value *pointer = op.LHS;
1938   Expr *pointerOperand = expr->getLHS();
1939   Value *index = op.RHS;
1940   Expr *indexOperand = expr->getRHS();
1941 
1942   // In a subtraction, the LHS is always the pointer.
1943   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1944     std::swap(pointer, index);
1945     std::swap(pointerOperand, indexOperand);
1946   }
1947 
1948   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1949   if (width != CGF.PointerWidthInBits) {
1950     // Zero-extend or sign-extend the pointer value according to
1951     // whether the index is signed or not.
1952     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1953     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1954                                       "idx.ext");
1955   }
1956 
1957   // If this is subtraction, negate the index.
1958   if (isSubtraction)
1959     index = CGF.Builder.CreateNeg(index, "idx.neg");
1960 
1961   const PointerType *pointerType
1962     = pointerOperand->getType()->getAs<PointerType>();
1963   if (!pointerType) {
1964     QualType objectType = pointerOperand->getType()
1965                                         ->castAs<ObjCObjectPointerType>()
1966                                         ->getPointeeType();
1967     llvm::Value *objectSize
1968       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1969 
1970     index = CGF.Builder.CreateMul(index, objectSize);
1971 
1972     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1973     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1974     return CGF.Builder.CreateBitCast(result, pointer->getType());
1975   }
1976 
1977   QualType elementType = pointerType->getPointeeType();
1978   if (const VariableArrayType *vla
1979         = CGF.getContext().getAsVariableArrayType(elementType)) {
1980     // The element count here is the total number of non-VLA elements.
1981     llvm::Value *numElements = CGF.getVLASize(vla).first;
1982 
1983     // Effectively, the multiply by the VLA size is part of the GEP.
1984     // GEP indexes are signed, and scaling an index isn't permitted to
1985     // signed-overflow, so we use the same semantics for our explicit
1986     // multiply.  We suppress this if overflow is not undefined behavior.
1987     if (CGF.getLangOptions().isSignedOverflowDefined()) {
1988       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
1989       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1990     } else {
1991       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
1992       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1993     }
1994     return pointer;
1995   }
1996 
1997   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1998   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1999   // future proof.
2000   if (elementType->isVoidType() || elementType->isFunctionType()) {
2001     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2002     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2003     return CGF.Builder.CreateBitCast(result, pointer->getType());
2004   }
2005 
2006   if (CGF.getLangOptions().isSignedOverflowDefined())
2007     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2008 
2009   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2010 }
2011 
2012 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2013   if (op.LHS->getType()->isPointerTy() ||
2014       op.RHS->getType()->isPointerTy())
2015     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2016 
2017   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2018     switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
2019     case LangOptions::SOB_Undefined:
2020       return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2021     case LangOptions::SOB_Defined:
2022       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2023     case LangOptions::SOB_Trapping:
2024       return EmitOverflowCheckedBinOp(op);
2025     }
2026   }
2027 
2028   if (op.LHS->getType()->isFPOrFPVectorTy())
2029     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2030 
2031   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2032 }
2033 
2034 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2035   // The LHS is always a pointer if either side is.
2036   if (!op.LHS->getType()->isPointerTy()) {
2037     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2038       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
2039       case LangOptions::SOB_Undefined:
2040         return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2041       case LangOptions::SOB_Defined:
2042         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2043       case LangOptions::SOB_Trapping:
2044         return EmitOverflowCheckedBinOp(op);
2045       }
2046     }
2047 
2048     if (op.LHS->getType()->isFPOrFPVectorTy())
2049       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2050 
2051     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2052   }
2053 
2054   // If the RHS is not a pointer, then we have normal pointer
2055   // arithmetic.
2056   if (!op.RHS->getType()->isPointerTy())
2057     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2058 
2059   // Otherwise, this is a pointer subtraction.
2060 
2061   // Do the raw subtraction part.
2062   llvm::Value *LHS
2063     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2064   llvm::Value *RHS
2065     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2066   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2067 
2068   // Okay, figure out the element size.
2069   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2070   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2071 
2072   llvm::Value *divisor = 0;
2073 
2074   // For a variable-length array, this is going to be non-constant.
2075   if (const VariableArrayType *vla
2076         = CGF.getContext().getAsVariableArrayType(elementType)) {
2077     llvm::Value *numElements;
2078     llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2079 
2080     divisor = numElements;
2081 
2082     // Scale the number of non-VLA elements by the non-VLA element size.
2083     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2084     if (!eltSize.isOne())
2085       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2086 
2087   // For everything elese, we can just compute it, safe in the
2088   // assumption that Sema won't let anything through that we can't
2089   // safely compute the size of.
2090   } else {
2091     CharUnits elementSize;
2092     // Handle GCC extension for pointer arithmetic on void* and
2093     // function pointer types.
2094     if (elementType->isVoidType() || elementType->isFunctionType())
2095       elementSize = CharUnits::One();
2096     else
2097       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2098 
2099     // Don't even emit the divide for element size of 1.
2100     if (elementSize.isOne())
2101       return diffInChars;
2102 
2103     divisor = CGF.CGM.getSize(elementSize);
2104   }
2105 
2106   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2107   // pointer difference in C is only defined in the case where both operands
2108   // are pointing to elements of an array.
2109   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2110 }
2111 
2112 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2113   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2114   // RHS to the same size as the LHS.
2115   Value *RHS = Ops.RHS;
2116   if (Ops.LHS->getType() != RHS->getType())
2117     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2118 
2119   if (CGF.CatchUndefined
2120       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2121     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2122     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2123     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2124                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2125                              Cont, CGF.getTrapBB());
2126     CGF.EmitBlock(Cont);
2127   }
2128 
2129   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2130 }
2131 
2132 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2133   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2134   // RHS to the same size as the LHS.
2135   Value *RHS = Ops.RHS;
2136   if (Ops.LHS->getType() != RHS->getType())
2137     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2138 
2139   if (CGF.CatchUndefined
2140       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2141     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2142     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2143     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2144                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2145                              Cont, CGF.getTrapBB());
2146     CGF.EmitBlock(Cont);
2147   }
2148 
2149   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2150     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2151   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2152 }
2153 
2154 enum IntrinsicType { VCMPEQ, VCMPGT };
2155 // return corresponding comparison intrinsic for given vector type
2156 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2157                                         BuiltinType::Kind ElemKind) {
2158   switch (ElemKind) {
2159   default: llvm_unreachable("unexpected element type");
2160   case BuiltinType::Char_U:
2161   case BuiltinType::UChar:
2162     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2163                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2164   case BuiltinType::Char_S:
2165   case BuiltinType::SChar:
2166     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2167                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2168   case BuiltinType::UShort:
2169     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2170                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2171   case BuiltinType::Short:
2172     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2173                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2174   case BuiltinType::UInt:
2175   case BuiltinType::ULong:
2176     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2177                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2178   case BuiltinType::Int:
2179   case BuiltinType::Long:
2180     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2181                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2182   case BuiltinType::Float:
2183     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2184                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2185   }
2186 }
2187 
2188 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2189                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2190   TestAndClearIgnoreResultAssign();
2191   Value *Result;
2192   QualType LHSTy = E->getLHS()->getType();
2193   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2194     assert(E->getOpcode() == BO_EQ ||
2195            E->getOpcode() == BO_NE);
2196     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2197     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2198     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2199                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2200   } else if (!LHSTy->isAnyComplexType()) {
2201     Value *LHS = Visit(E->getLHS());
2202     Value *RHS = Visit(E->getRHS());
2203 
2204     // If AltiVec, the comparison results in a numeric type, so we use
2205     // intrinsics comparing vectors and giving 0 or 1 as a result
2206     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2207       // constants for mapping CR6 register bits to predicate result
2208       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2209 
2210       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2211 
2212       // in several cases vector arguments order will be reversed
2213       Value *FirstVecArg = LHS,
2214             *SecondVecArg = RHS;
2215 
2216       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2217       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2218       BuiltinType::Kind ElementKind = BTy->getKind();
2219 
2220       switch(E->getOpcode()) {
2221       default: llvm_unreachable("is not a comparison operation");
2222       case BO_EQ:
2223         CR6 = CR6_LT;
2224         ID = GetIntrinsic(VCMPEQ, ElementKind);
2225         break;
2226       case BO_NE:
2227         CR6 = CR6_EQ;
2228         ID = GetIntrinsic(VCMPEQ, ElementKind);
2229         break;
2230       case BO_LT:
2231         CR6 = CR6_LT;
2232         ID = GetIntrinsic(VCMPGT, ElementKind);
2233         std::swap(FirstVecArg, SecondVecArg);
2234         break;
2235       case BO_GT:
2236         CR6 = CR6_LT;
2237         ID = GetIntrinsic(VCMPGT, ElementKind);
2238         break;
2239       case BO_LE:
2240         if (ElementKind == BuiltinType::Float) {
2241           CR6 = CR6_LT;
2242           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2243           std::swap(FirstVecArg, SecondVecArg);
2244         }
2245         else {
2246           CR6 = CR6_EQ;
2247           ID = GetIntrinsic(VCMPGT, ElementKind);
2248         }
2249         break;
2250       case BO_GE:
2251         if (ElementKind == BuiltinType::Float) {
2252           CR6 = CR6_LT;
2253           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2254         }
2255         else {
2256           CR6 = CR6_EQ;
2257           ID = GetIntrinsic(VCMPGT, ElementKind);
2258           std::swap(FirstVecArg, SecondVecArg);
2259         }
2260         break;
2261       }
2262 
2263       Value *CR6Param = Builder.getInt32(CR6);
2264       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2265       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2266       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2267     }
2268 
2269     if (LHS->getType()->isFPOrFPVectorTy()) {
2270       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2271                                   LHS, RHS, "cmp");
2272     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2273       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2274                                   LHS, RHS, "cmp");
2275     } else {
2276       // Unsigned integers and pointers.
2277       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2278                                   LHS, RHS, "cmp");
2279     }
2280 
2281     // If this is a vector comparison, sign extend the result to the appropriate
2282     // vector integer type and return it (don't convert to bool).
2283     if (LHSTy->isVectorType())
2284       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2285 
2286   } else {
2287     // Complex Comparison: can only be an equality comparison.
2288     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2289     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2290 
2291     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2292 
2293     Value *ResultR, *ResultI;
2294     if (CETy->isRealFloatingType()) {
2295       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2296                                    LHS.first, RHS.first, "cmp.r");
2297       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2298                                    LHS.second, RHS.second, "cmp.i");
2299     } else {
2300       // Complex comparisons can only be equality comparisons.  As such, signed
2301       // and unsigned opcodes are the same.
2302       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2303                                    LHS.first, RHS.first, "cmp.r");
2304       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2305                                    LHS.second, RHS.second, "cmp.i");
2306     }
2307 
2308     if (E->getOpcode() == BO_EQ) {
2309       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2310     } else {
2311       assert(E->getOpcode() == BO_NE &&
2312              "Complex comparison other than == or != ?");
2313       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2314     }
2315   }
2316 
2317   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2318 }
2319 
2320 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2321   bool Ignore = TestAndClearIgnoreResultAssign();
2322 
2323   Value *RHS;
2324   LValue LHS;
2325 
2326   switch (E->getLHS()->getType().getObjCLifetime()) {
2327   case Qualifiers::OCL_Strong:
2328     llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2329     break;
2330 
2331   case Qualifiers::OCL_Autoreleasing:
2332     llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2333     break;
2334 
2335   case Qualifiers::OCL_Weak:
2336     RHS = Visit(E->getRHS());
2337     LHS = EmitCheckedLValue(E->getLHS());
2338     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2339     break;
2340 
2341   // No reason to do any of these differently.
2342   case Qualifiers::OCL_None:
2343   case Qualifiers::OCL_ExplicitNone:
2344     // __block variables need to have the rhs evaluated first, plus
2345     // this should improve codegen just a little.
2346     RHS = Visit(E->getRHS());
2347     LHS = EmitCheckedLValue(E->getLHS());
2348 
2349     // Store the value into the LHS.  Bit-fields are handled specially
2350     // because the result is altered by the store, i.e., [C99 6.5.16p1]
2351     // 'An assignment expression has the value of the left operand after
2352     // the assignment...'.
2353     if (LHS.isBitField())
2354       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2355     else
2356       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2357   }
2358 
2359   // If the result is clearly ignored, return now.
2360   if (Ignore)
2361     return 0;
2362 
2363   // The result of an assignment in C is the assigned r-value.
2364   if (!CGF.getContext().getLangOptions().CPlusPlus)
2365     return RHS;
2366 
2367   // If the lvalue is non-volatile, return the computed value of the assignment.
2368   if (!LHS.isVolatileQualified())
2369     return RHS;
2370 
2371   // Otherwise, reload the value.
2372   return EmitLoadOfLValue(LHS);
2373 }
2374 
2375 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2376 
2377   // Perform vector logical and on comparisons with zero vectors.
2378   if (E->getType()->isVectorType()) {
2379     Value *LHS = Visit(E->getLHS());
2380     Value *RHS = Visit(E->getRHS());
2381     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2382     LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2383     RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2384     Value *And = Builder.CreateAnd(LHS, RHS);
2385     return Builder.CreateSExt(And, Zero->getType(), "sext");
2386   }
2387 
2388   llvm::Type *ResTy = ConvertType(E->getType());
2389 
2390   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2391   // If we have 1 && X, just emit X without inserting the control flow.
2392   bool LHSCondVal;
2393   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2394     if (LHSCondVal) { // If we have 1 && X, just emit X.
2395       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2396       // ZExt result to int or bool.
2397       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2398     }
2399 
2400     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2401     if (!CGF.ContainsLabel(E->getRHS()))
2402       return llvm::Constant::getNullValue(ResTy);
2403   }
2404 
2405   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2406   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2407 
2408   CodeGenFunction::ConditionalEvaluation eval(CGF);
2409 
2410   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2411   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2412 
2413   // Any edges into the ContBlock are now from an (indeterminate number of)
2414   // edges from this first condition.  All of these values will be false.  Start
2415   // setting up the PHI node in the Cont Block for this.
2416   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2417                                             "", ContBlock);
2418   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2419        PI != PE; ++PI)
2420     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2421 
2422   eval.begin(CGF);
2423   CGF.EmitBlock(RHSBlock);
2424   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2425   eval.end(CGF);
2426 
2427   // Reaquire the RHS block, as there may be subblocks inserted.
2428   RHSBlock = Builder.GetInsertBlock();
2429 
2430   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2431   // into the phi node for the edge with the value of RHSCond.
2432   if (CGF.getDebugInfo())
2433     // There is no need to emit line number for unconditional branch.
2434     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2435   CGF.EmitBlock(ContBlock);
2436   PN->addIncoming(RHSCond, RHSBlock);
2437 
2438   // ZExt result to int.
2439   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2440 }
2441 
2442 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2443 
2444   // Perform vector logical or on comparisons with zero vectors.
2445   if (E->getType()->isVectorType()) {
2446     Value *LHS = Visit(E->getLHS());
2447     Value *RHS = Visit(E->getRHS());
2448     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2449     LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2450     RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2451     Value *Or = Builder.CreateOr(LHS, RHS);
2452     return Builder.CreateSExt(Or, Zero->getType(), "sext");
2453   }
2454 
2455   llvm::Type *ResTy = ConvertType(E->getType());
2456 
2457   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2458   // If we have 0 || X, just emit X without inserting the control flow.
2459   bool LHSCondVal;
2460   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2461     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2462       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2463       // ZExt result to int or bool.
2464       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2465     }
2466 
2467     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2468     if (!CGF.ContainsLabel(E->getRHS()))
2469       return llvm::ConstantInt::get(ResTy, 1);
2470   }
2471 
2472   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2473   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2474 
2475   CodeGenFunction::ConditionalEvaluation eval(CGF);
2476 
2477   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2478   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2479 
2480   // Any edges into the ContBlock are now from an (indeterminate number of)
2481   // edges from this first condition.  All of these values will be true.  Start
2482   // setting up the PHI node in the Cont Block for this.
2483   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2484                                             "", ContBlock);
2485   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2486        PI != PE; ++PI)
2487     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2488 
2489   eval.begin(CGF);
2490 
2491   // Emit the RHS condition as a bool value.
2492   CGF.EmitBlock(RHSBlock);
2493   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2494 
2495   eval.end(CGF);
2496 
2497   // Reaquire the RHS block, as there may be subblocks inserted.
2498   RHSBlock = Builder.GetInsertBlock();
2499 
2500   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2501   // into the phi node for the edge with the value of RHSCond.
2502   CGF.EmitBlock(ContBlock);
2503   PN->addIncoming(RHSCond, RHSBlock);
2504 
2505   // ZExt result to int.
2506   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2507 }
2508 
2509 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2510   CGF.EmitIgnoredExpr(E->getLHS());
2511   CGF.EnsureInsertPoint();
2512   return Visit(E->getRHS());
2513 }
2514 
2515 //===----------------------------------------------------------------------===//
2516 //                             Other Operators
2517 //===----------------------------------------------------------------------===//
2518 
2519 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2520 /// expression is cheap enough and side-effect-free enough to evaluate
2521 /// unconditionally instead of conditionally.  This is used to convert control
2522 /// flow into selects in some cases.
2523 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2524                                                    CodeGenFunction &CGF) {
2525   E = E->IgnoreParens();
2526 
2527   // Anything that is an integer or floating point constant is fine.
2528   if (E->isConstantInitializer(CGF.getContext(), false))
2529     return true;
2530 
2531   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2532   // X and Y are local variables.
2533   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2534     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2535       if (VD->hasLocalStorage() && !(CGF.getContext()
2536                                      .getCanonicalType(VD->getType())
2537                                      .isVolatileQualified()))
2538         return true;
2539 
2540   return false;
2541 }
2542 
2543 
2544 Value *ScalarExprEmitter::
2545 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2546   TestAndClearIgnoreResultAssign();
2547 
2548   // Bind the common expression if necessary.
2549   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2550 
2551   Expr *condExpr = E->getCond();
2552   Expr *lhsExpr = E->getTrueExpr();
2553   Expr *rhsExpr = E->getFalseExpr();
2554 
2555   // If the condition constant folds and can be elided, try to avoid emitting
2556   // the condition and the dead arm.
2557   bool CondExprBool;
2558   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2559     Expr *live = lhsExpr, *dead = rhsExpr;
2560     if (!CondExprBool) std::swap(live, dead);
2561 
2562     // If the dead side doesn't have labels we need, just emit the Live part.
2563     if (!CGF.ContainsLabel(dead)) {
2564       Value *Result = Visit(live);
2565 
2566       // If the live part is a throw expression, it acts like it has a void
2567       // type, so evaluating it returns a null Value*.  However, a conditional
2568       // with non-void type must return a non-null Value*.
2569       if (!Result && !E->getType()->isVoidType())
2570         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
2571 
2572       return Result;
2573     }
2574   }
2575 
2576   // OpenCL: If the condition is a vector, we can treat this condition like
2577   // the select function.
2578   if (CGF.getContext().getLangOptions().OpenCL
2579       && condExpr->getType()->isVectorType()) {
2580     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2581     llvm::Value *LHS = Visit(lhsExpr);
2582     llvm::Value *RHS = Visit(rhsExpr);
2583 
2584     llvm::Type *condType = ConvertType(condExpr->getType());
2585     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2586 
2587     unsigned numElem = vecTy->getNumElements();
2588     llvm::Type *elemType = vecTy->getElementType();
2589 
2590     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
2591     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2592     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2593                                           llvm::VectorType::get(elemType,
2594                                                                 numElem),
2595                                           "sext");
2596     llvm::Value *tmp2 = Builder.CreateNot(tmp);
2597 
2598     // Cast float to int to perform ANDs if necessary.
2599     llvm::Value *RHSTmp = RHS;
2600     llvm::Value *LHSTmp = LHS;
2601     bool wasCast = false;
2602     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2603     if (rhsVTy->getElementType()->isFloatTy()) {
2604       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2605       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2606       wasCast = true;
2607     }
2608 
2609     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2610     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2611     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2612     if (wasCast)
2613       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2614 
2615     return tmp5;
2616   }
2617 
2618   // If this is a really simple expression (like x ? 4 : 5), emit this as a
2619   // select instead of as control flow.  We can only do this if it is cheap and
2620   // safe to evaluate the LHS and RHS unconditionally.
2621   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2622       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2623     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2624     llvm::Value *LHS = Visit(lhsExpr);
2625     llvm::Value *RHS = Visit(rhsExpr);
2626     if (!LHS) {
2627       // If the conditional has void type, make sure we return a null Value*.
2628       assert(!RHS && "LHS and RHS types must match");
2629       return 0;
2630     }
2631     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2632   }
2633 
2634   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2635   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2636   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2637 
2638   CodeGenFunction::ConditionalEvaluation eval(CGF);
2639   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2640 
2641   CGF.EmitBlock(LHSBlock);
2642   eval.begin(CGF);
2643   Value *LHS = Visit(lhsExpr);
2644   eval.end(CGF);
2645 
2646   LHSBlock = Builder.GetInsertBlock();
2647   Builder.CreateBr(ContBlock);
2648 
2649   CGF.EmitBlock(RHSBlock);
2650   eval.begin(CGF);
2651   Value *RHS = Visit(rhsExpr);
2652   eval.end(CGF);
2653 
2654   RHSBlock = Builder.GetInsertBlock();
2655   CGF.EmitBlock(ContBlock);
2656 
2657   // If the LHS or RHS is a throw expression, it will be legitimately null.
2658   if (!LHS)
2659     return RHS;
2660   if (!RHS)
2661     return LHS;
2662 
2663   // Create a PHI node for the real part.
2664   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2665   PN->addIncoming(LHS, LHSBlock);
2666   PN->addIncoming(RHS, RHSBlock);
2667   return PN;
2668 }
2669 
2670 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2671   return Visit(E->getChosenSubExpr(CGF.getContext()));
2672 }
2673 
2674 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2675   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2676   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2677 
2678   // If EmitVAArg fails, we fall back to the LLVM instruction.
2679   if (!ArgPtr)
2680     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2681 
2682   // FIXME Volatility.
2683   return Builder.CreateLoad(ArgPtr);
2684 }
2685 
2686 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2687   return CGF.EmitBlockLiteral(block);
2688 }
2689 
2690 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2691   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2692   llvm::Type *DstTy = ConvertType(E->getType());
2693 
2694   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2695   // a shuffle vector instead of a bitcast.
2696   llvm::Type *SrcTy = Src->getType();
2697   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2698     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2699     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2700     if ((numElementsDst == 3 && numElementsSrc == 4)
2701         || (numElementsDst == 4 && numElementsSrc == 3)) {
2702 
2703 
2704       // In the case of going from int4->float3, a bitcast is needed before
2705       // doing a shuffle.
2706       llvm::Type *srcElemTy =
2707       cast<llvm::VectorType>(SrcTy)->getElementType();
2708       llvm::Type *dstElemTy =
2709       cast<llvm::VectorType>(DstTy)->getElementType();
2710 
2711       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2712           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2713         // Create a float type of the same size as the source or destination.
2714         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2715                                                                  numElementsSrc);
2716 
2717         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2718       }
2719 
2720       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2721 
2722       SmallVector<llvm::Constant*, 3> Args;
2723       Args.push_back(Builder.getInt32(0));
2724       Args.push_back(Builder.getInt32(1));
2725       Args.push_back(Builder.getInt32(2));
2726 
2727       if (numElementsDst == 4)
2728         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
2729 
2730       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2731 
2732       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2733     }
2734   }
2735 
2736   return Builder.CreateBitCast(Src, DstTy, "astype");
2737 }
2738 
2739 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
2740   return CGF.EmitAtomicExpr(E).getScalarVal();
2741 }
2742 
2743 //===----------------------------------------------------------------------===//
2744 //                         Entry Point into this File
2745 //===----------------------------------------------------------------------===//
2746 
2747 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
2748 /// type, ignoring the result.
2749 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2750   assert(E && !hasAggregateLLVMType(E->getType()) &&
2751          "Invalid scalar expression to emit");
2752 
2753   if (isa<CXXDefaultArgExpr>(E))
2754     disableDebugInfo();
2755   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2756     .Visit(const_cast<Expr*>(E));
2757   if (isa<CXXDefaultArgExpr>(E))
2758     enableDebugInfo();
2759   return V;
2760 }
2761 
2762 /// EmitScalarConversion - Emit a conversion from the specified type to the
2763 /// specified destination type, both of which are LLVM scalar types.
2764 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2765                                              QualType DstTy) {
2766   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2767          "Invalid scalar expression to emit");
2768   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2769 }
2770 
2771 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2772 /// type to the specified destination type, where the destination type is an
2773 /// LLVM scalar type.
2774 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2775                                                       QualType SrcTy,
2776                                                       QualType DstTy) {
2777   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2778          "Invalid complex -> scalar conversion");
2779   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2780                                                                 DstTy);
2781 }
2782 
2783 
2784 llvm::Value *CodeGenFunction::
2785 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2786                         bool isInc, bool isPre) {
2787   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2788 }
2789 
2790 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2791   llvm::Value *V;
2792   // object->isa or (*object).isa
2793   // Generate code as for: *(Class*)object
2794   // build Class* type
2795   llvm::Type *ClassPtrTy = ConvertType(E->getType());
2796 
2797   Expr *BaseExpr = E->getBase();
2798   if (BaseExpr->isRValue()) {
2799     V = CreateMemTemp(E->getType(), "resval");
2800     llvm::Value *Src = EmitScalarExpr(BaseExpr);
2801     Builder.CreateStore(Src, V);
2802     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2803       MakeNaturalAlignAddrLValue(V, E->getType()));
2804   } else {
2805     if (E->isArrow())
2806       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2807     else
2808       V = EmitLValue(BaseExpr).getAddress();
2809   }
2810 
2811   // build Class* type
2812   ClassPtrTy = ClassPtrTy->getPointerTo();
2813   V = Builder.CreateBitCast(V, ClassPtrTy);
2814   return MakeNaturalAlignAddrLValue(V, E->getType());
2815 }
2816 
2817 
2818 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2819                                             const CompoundAssignOperator *E) {
2820   ScalarExprEmitter Scalar(*this);
2821   Value *Result = 0;
2822   switch (E->getOpcode()) {
2823 #define COMPOUND_OP(Op)                                                       \
2824     case BO_##Op##Assign:                                                     \
2825       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2826                                              Result)
2827   COMPOUND_OP(Mul);
2828   COMPOUND_OP(Div);
2829   COMPOUND_OP(Rem);
2830   COMPOUND_OP(Add);
2831   COMPOUND_OP(Sub);
2832   COMPOUND_OP(Shl);
2833   COMPOUND_OP(Shr);
2834   COMPOUND_OP(And);
2835   COMPOUND_OP(Xor);
2836   COMPOUND_OP(Or);
2837 #undef COMPOUND_OP
2838 
2839   case BO_PtrMemD:
2840   case BO_PtrMemI:
2841   case BO_Mul:
2842   case BO_Div:
2843   case BO_Rem:
2844   case BO_Add:
2845   case BO_Sub:
2846   case BO_Shl:
2847   case BO_Shr:
2848   case BO_LT:
2849   case BO_GT:
2850   case BO_LE:
2851   case BO_GE:
2852   case BO_EQ:
2853   case BO_NE:
2854   case BO_And:
2855   case BO_Xor:
2856   case BO_Or:
2857   case BO_LAnd:
2858   case BO_LOr:
2859   case BO_Assign:
2860   case BO_Comma:
2861     llvm_unreachable("Not valid compound assignment operators");
2862   }
2863 
2864   llvm_unreachable("Unhandled compound assignment operator");
2865 }
2866