1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "CodeGenModule.h" 19 #include "ConstantEmitter.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/FixedPoint.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "llvm/ADT/Optional.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Module.h" 38 #include <cstdarg> 39 40 using namespace clang; 41 using namespace CodeGen; 42 using llvm::Value; 43 44 //===----------------------------------------------------------------------===// 45 // Scalar Expression Emitter 46 //===----------------------------------------------------------------------===// 47 48 namespace { 49 50 /// Determine whether the given binary operation may overflow. 51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 53 /// the returned overflow check is precise. The returned value is 'true' for 54 /// all other opcodes, to be conservative. 55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 56 BinaryOperator::Opcode Opcode, bool Signed, 57 llvm::APInt &Result) { 58 // Assume overflow is possible, unless we can prove otherwise. 59 bool Overflow = true; 60 const auto &LHSAP = LHS->getValue(); 61 const auto &RHSAP = RHS->getValue(); 62 if (Opcode == BO_Add) { 63 if (Signed) 64 Result = LHSAP.sadd_ov(RHSAP, Overflow); 65 else 66 Result = LHSAP.uadd_ov(RHSAP, Overflow); 67 } else if (Opcode == BO_Sub) { 68 if (Signed) 69 Result = LHSAP.ssub_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.usub_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Mul) { 73 if (Signed) 74 Result = LHSAP.smul_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.umul_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 78 if (Signed && !RHS->isZero()) 79 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 80 else 81 return false; 82 } 83 return Overflow; 84 } 85 86 struct BinOpInfo { 87 Value *LHS; 88 Value *RHS; 89 QualType Ty; // Computation Type. 90 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 91 FPOptions FPFeatures; 92 const Expr *E; // Entire expr, for error unsupported. May not be binop. 93 94 /// Check if the binop can result in integer overflow. 95 bool mayHaveIntegerOverflow() const { 96 // Without constant input, we can't rule out overflow. 97 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 98 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 99 if (!LHSCI || !RHSCI) 100 return true; 101 102 llvm::APInt Result; 103 return ::mayHaveIntegerOverflow( 104 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 105 } 106 107 /// Check if the binop computes a division or a remainder. 108 bool isDivremOp() const { 109 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 110 Opcode == BO_RemAssign; 111 } 112 113 /// Check if the binop can result in an integer division by zero. 114 bool mayHaveIntegerDivisionByZero() const { 115 if (isDivremOp()) 116 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 117 return CI->isZero(); 118 return true; 119 } 120 121 /// Check if the binop can result in a float division by zero. 122 bool mayHaveFloatDivisionByZero() const { 123 if (isDivremOp()) 124 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 125 return CFP->isZero(); 126 return true; 127 } 128 129 /// Check if either operand is a fixed point type or integer type, with at 130 /// least one being a fixed point type. In any case, this 131 /// operation did not follow usual arithmetic conversion and both operands may 132 /// not be the same. 133 bool isFixedPointBinOp() const { 134 // We cannot simply check the result type since comparison operations return 135 // an int. 136 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 137 QualType LHSType = BinOp->getLHS()->getType(); 138 QualType RHSType = BinOp->getRHS()->getType(); 139 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 140 } 141 return false; 142 } 143 }; 144 145 static bool MustVisitNullValue(const Expr *E) { 146 // If a null pointer expression's type is the C++0x nullptr_t, then 147 // it's not necessarily a simple constant and it must be evaluated 148 // for its potential side effects. 149 return E->getType()->isNullPtrType(); 150 } 151 152 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 153 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 154 const Expr *E) { 155 const Expr *Base = E->IgnoreImpCasts(); 156 if (E == Base) 157 return llvm::None; 158 159 QualType BaseTy = Base->getType(); 160 if (!BaseTy->isPromotableIntegerType() || 161 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 162 return llvm::None; 163 164 return BaseTy; 165 } 166 167 /// Check if \p E is a widened promoted integer. 168 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 169 return getUnwidenedIntegerType(Ctx, E).hasValue(); 170 } 171 172 /// Check if we can skip the overflow check for \p Op. 173 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 174 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 175 "Expected a unary or binary operator"); 176 177 // If the binop has constant inputs and we can prove there is no overflow, 178 // we can elide the overflow check. 179 if (!Op.mayHaveIntegerOverflow()) 180 return true; 181 182 // If a unary op has a widened operand, the op cannot overflow. 183 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 184 return !UO->canOverflow(); 185 186 // We usually don't need overflow checks for binops with widened operands. 187 // Multiplication with promoted unsigned operands is a special case. 188 const auto *BO = cast<BinaryOperator>(Op.E); 189 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 190 if (!OptionalLHSTy) 191 return false; 192 193 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 194 if (!OptionalRHSTy) 195 return false; 196 197 QualType LHSTy = *OptionalLHSTy; 198 QualType RHSTy = *OptionalRHSTy; 199 200 // This is the simple case: binops without unsigned multiplication, and with 201 // widened operands. No overflow check is needed here. 202 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 203 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 204 return true; 205 206 // For unsigned multiplication the overflow check can be elided if either one 207 // of the unpromoted types are less than half the size of the promoted type. 208 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 209 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 210 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 211 } 212 213 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 214 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 215 FPOptions FPFeatures) { 216 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 217 } 218 219 /// Propagate fast-math flags from \p Op to the instruction in \p V. 220 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 221 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 222 llvm::FastMathFlags FMF = I->getFastMathFlags(); 223 updateFastMathFlags(FMF, Op.FPFeatures); 224 I->setFastMathFlags(FMF); 225 } 226 return V; 227 } 228 229 class ScalarExprEmitter 230 : public StmtVisitor<ScalarExprEmitter, Value*> { 231 CodeGenFunction &CGF; 232 CGBuilderTy &Builder; 233 bool IgnoreResultAssign; 234 llvm::LLVMContext &VMContext; 235 public: 236 237 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 238 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 239 VMContext(cgf.getLLVMContext()) { 240 } 241 242 //===--------------------------------------------------------------------===// 243 // Utilities 244 //===--------------------------------------------------------------------===// 245 246 bool TestAndClearIgnoreResultAssign() { 247 bool I = IgnoreResultAssign; 248 IgnoreResultAssign = false; 249 return I; 250 } 251 252 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 253 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 254 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 255 return CGF.EmitCheckedLValue(E, TCK); 256 } 257 258 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 259 const BinOpInfo &Info); 260 261 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 262 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 263 } 264 265 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 266 const AlignValueAttr *AVAttr = nullptr; 267 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 268 const ValueDecl *VD = DRE->getDecl(); 269 270 if (VD->getType()->isReferenceType()) { 271 if (const auto *TTy = 272 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 273 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 274 } else { 275 // Assumptions for function parameters are emitted at the start of the 276 // function, so there is no need to repeat that here, 277 // unless the alignment-assumption sanitizer is enabled, 278 // then we prefer the assumption over alignment attribute 279 // on IR function param. 280 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 281 return; 282 283 AVAttr = VD->getAttr<AlignValueAttr>(); 284 } 285 } 286 287 if (!AVAttr) 288 if (const auto *TTy = 289 dyn_cast<TypedefType>(E->getType())) 290 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 291 292 if (!AVAttr) 293 return; 294 295 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 296 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 297 CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 298 } 299 300 /// EmitLoadOfLValue - Given an expression with complex type that represents a 301 /// value l-value, this method emits the address of the l-value, then loads 302 /// and returns the result. 303 Value *EmitLoadOfLValue(const Expr *E) { 304 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 305 E->getExprLoc()); 306 307 EmitLValueAlignmentAssumption(E, V); 308 return V; 309 } 310 311 /// EmitConversionToBool - Convert the specified expression value to a 312 /// boolean (i1) truth value. This is equivalent to "Val != 0". 313 Value *EmitConversionToBool(Value *Src, QualType DstTy); 314 315 /// Emit a check that a conversion from a floating-point type does not 316 /// overflow. 317 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 318 Value *Src, QualType SrcType, QualType DstType, 319 llvm::Type *DstTy, SourceLocation Loc); 320 321 /// Known implicit conversion check kinds. 322 /// Keep in sync with the enum of the same name in ubsan_handlers.h 323 enum ImplicitConversionCheckKind : unsigned char { 324 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 325 ICCK_UnsignedIntegerTruncation = 1, 326 ICCK_SignedIntegerTruncation = 2, 327 ICCK_IntegerSignChange = 3, 328 ICCK_SignedIntegerTruncationOrSignChange = 4, 329 }; 330 331 /// Emit a check that an [implicit] truncation of an integer does not 332 /// discard any bits. It is not UB, so we use the value after truncation. 333 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 334 QualType DstType, SourceLocation Loc); 335 336 /// Emit a check that an [implicit] conversion of an integer does not change 337 /// the sign of the value. It is not UB, so we use the value after conversion. 338 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 339 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 340 QualType DstType, SourceLocation Loc); 341 342 /// Emit a conversion from the specified type to the specified destination 343 /// type, both of which are LLVM scalar types. 344 struct ScalarConversionOpts { 345 bool TreatBooleanAsSigned; 346 bool EmitImplicitIntegerTruncationChecks; 347 bool EmitImplicitIntegerSignChangeChecks; 348 349 ScalarConversionOpts() 350 : TreatBooleanAsSigned(false), 351 EmitImplicitIntegerTruncationChecks(false), 352 EmitImplicitIntegerSignChangeChecks(false) {} 353 354 ScalarConversionOpts(clang::SanitizerSet SanOpts) 355 : TreatBooleanAsSigned(false), 356 EmitImplicitIntegerTruncationChecks( 357 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 358 EmitImplicitIntegerSignChangeChecks( 359 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 360 }; 361 Value * 362 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 363 SourceLocation Loc, 364 ScalarConversionOpts Opts = ScalarConversionOpts()); 365 366 /// Convert between either a fixed point and other fixed point or fixed point 367 /// and an integer. 368 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 369 SourceLocation Loc); 370 Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema, 371 FixedPointSemantics &DstFixedSema, 372 SourceLocation Loc, 373 bool DstIsInteger = false); 374 375 /// Emit a conversion from the specified complex type to the specified 376 /// destination type, where the destination type is an LLVM scalar type. 377 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 378 QualType SrcTy, QualType DstTy, 379 SourceLocation Loc); 380 381 /// EmitNullValue - Emit a value that corresponds to null for the given type. 382 Value *EmitNullValue(QualType Ty); 383 384 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 385 Value *EmitFloatToBoolConversion(Value *V) { 386 // Compare against 0.0 for fp scalars. 387 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 388 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 389 } 390 391 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 392 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 393 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 394 395 return Builder.CreateICmpNE(V, Zero, "tobool"); 396 } 397 398 Value *EmitIntToBoolConversion(Value *V) { 399 // Because of the type rules of C, we often end up computing a 400 // logical value, then zero extending it to int, then wanting it 401 // as a logical value again. Optimize this common case. 402 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 403 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 404 Value *Result = ZI->getOperand(0); 405 // If there aren't any more uses, zap the instruction to save space. 406 // Note that there can be more uses, for example if this 407 // is the result of an assignment. 408 if (ZI->use_empty()) 409 ZI->eraseFromParent(); 410 return Result; 411 } 412 } 413 414 return Builder.CreateIsNotNull(V, "tobool"); 415 } 416 417 //===--------------------------------------------------------------------===// 418 // Visitor Methods 419 //===--------------------------------------------------------------------===// 420 421 Value *Visit(Expr *E) { 422 ApplyDebugLocation DL(CGF, E); 423 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 424 } 425 426 Value *VisitStmt(Stmt *S) { 427 S->dump(CGF.getContext().getSourceManager()); 428 llvm_unreachable("Stmt can't have complex result type!"); 429 } 430 Value *VisitExpr(Expr *S); 431 432 Value *VisitConstantExpr(ConstantExpr *E) { 433 return Visit(E->getSubExpr()); 434 } 435 Value *VisitParenExpr(ParenExpr *PE) { 436 return Visit(PE->getSubExpr()); 437 } 438 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 439 return Visit(E->getReplacement()); 440 } 441 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 442 return Visit(GE->getResultExpr()); 443 } 444 Value *VisitCoawaitExpr(CoawaitExpr *S) { 445 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 446 } 447 Value *VisitCoyieldExpr(CoyieldExpr *S) { 448 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 449 } 450 Value *VisitUnaryCoawait(const UnaryOperator *E) { 451 return Visit(E->getSubExpr()); 452 } 453 454 // Leaves. 455 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 456 return Builder.getInt(E->getValue()); 457 } 458 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 459 return Builder.getInt(E->getValue()); 460 } 461 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 462 return llvm::ConstantFP::get(VMContext, E->getValue()); 463 } 464 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 465 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 466 } 467 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 468 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 469 } 470 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 471 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 472 } 473 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 474 return EmitNullValue(E->getType()); 475 } 476 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 477 return EmitNullValue(E->getType()); 478 } 479 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 480 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 481 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 482 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 483 return Builder.CreateBitCast(V, ConvertType(E->getType())); 484 } 485 486 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 487 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 488 } 489 490 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 491 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 492 } 493 494 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 495 if (E->isGLValue()) 496 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 497 E->getExprLoc()); 498 499 // Otherwise, assume the mapping is the scalar directly. 500 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 501 } 502 503 // l-values. 504 Value *VisitDeclRefExpr(DeclRefExpr *E) { 505 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 506 return CGF.emitScalarConstant(Constant, E); 507 return EmitLoadOfLValue(E); 508 } 509 510 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 511 return CGF.EmitObjCSelectorExpr(E); 512 } 513 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 514 return CGF.EmitObjCProtocolExpr(E); 515 } 516 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 517 return EmitLoadOfLValue(E); 518 } 519 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 520 if (E->getMethodDecl() && 521 E->getMethodDecl()->getReturnType()->isReferenceType()) 522 return EmitLoadOfLValue(E); 523 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 524 } 525 526 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 527 LValue LV = CGF.EmitObjCIsaExpr(E); 528 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 529 return V; 530 } 531 532 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 533 VersionTuple Version = E->getVersion(); 534 535 // If we're checking for a platform older than our minimum deployment 536 // target, we can fold the check away. 537 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 538 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 539 540 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 541 llvm::Value *Args[] = { 542 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 543 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 544 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 545 }; 546 547 return CGF.EmitBuiltinAvailable(Args); 548 } 549 550 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 551 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 552 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 553 Value *VisitMemberExpr(MemberExpr *E); 554 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 555 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 556 return EmitLoadOfLValue(E); 557 } 558 559 Value *VisitInitListExpr(InitListExpr *E); 560 561 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 562 assert(CGF.getArrayInitIndex() && 563 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 564 return CGF.getArrayInitIndex(); 565 } 566 567 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 568 return EmitNullValue(E->getType()); 569 } 570 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 571 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 572 return VisitCastExpr(E); 573 } 574 Value *VisitCastExpr(CastExpr *E); 575 576 Value *VisitCallExpr(const CallExpr *E) { 577 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 578 return EmitLoadOfLValue(E); 579 580 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 581 582 EmitLValueAlignmentAssumption(E, V); 583 return V; 584 } 585 586 Value *VisitStmtExpr(const StmtExpr *E); 587 588 // Unary Operators. 589 Value *VisitUnaryPostDec(const UnaryOperator *E) { 590 LValue LV = EmitLValue(E->getSubExpr()); 591 return EmitScalarPrePostIncDec(E, LV, false, false); 592 } 593 Value *VisitUnaryPostInc(const UnaryOperator *E) { 594 LValue LV = EmitLValue(E->getSubExpr()); 595 return EmitScalarPrePostIncDec(E, LV, true, false); 596 } 597 Value *VisitUnaryPreDec(const UnaryOperator *E) { 598 LValue LV = EmitLValue(E->getSubExpr()); 599 return EmitScalarPrePostIncDec(E, LV, false, true); 600 } 601 Value *VisitUnaryPreInc(const UnaryOperator *E) { 602 LValue LV = EmitLValue(E->getSubExpr()); 603 return EmitScalarPrePostIncDec(E, LV, true, true); 604 } 605 606 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 607 llvm::Value *InVal, 608 bool IsInc); 609 610 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 611 bool isInc, bool isPre); 612 613 614 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 615 if (isa<MemberPointerType>(E->getType())) // never sugared 616 return CGF.CGM.getMemberPointerConstant(E); 617 618 return EmitLValue(E->getSubExpr()).getPointer(); 619 } 620 Value *VisitUnaryDeref(const UnaryOperator *E) { 621 if (E->getType()->isVoidType()) 622 return Visit(E->getSubExpr()); // the actual value should be unused 623 return EmitLoadOfLValue(E); 624 } 625 Value *VisitUnaryPlus(const UnaryOperator *E) { 626 // This differs from gcc, though, most likely due to a bug in gcc. 627 TestAndClearIgnoreResultAssign(); 628 return Visit(E->getSubExpr()); 629 } 630 Value *VisitUnaryMinus (const UnaryOperator *E); 631 Value *VisitUnaryNot (const UnaryOperator *E); 632 Value *VisitUnaryLNot (const UnaryOperator *E); 633 Value *VisitUnaryReal (const UnaryOperator *E); 634 Value *VisitUnaryImag (const UnaryOperator *E); 635 Value *VisitUnaryExtension(const UnaryOperator *E) { 636 return Visit(E->getSubExpr()); 637 } 638 639 // C++ 640 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 641 return EmitLoadOfLValue(E); 642 } 643 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 644 auto &Ctx = CGF.getContext(); 645 APValue Evaluated = 646 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 647 return ConstantEmitter(CGF.CGM, &CGF) 648 .emitAbstract(SLE->getLocation(), Evaluated, SLE->getType()); 649 } 650 651 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 652 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 653 return Visit(DAE->getExpr()); 654 } 655 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 656 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 657 return Visit(DIE->getExpr()); 658 } 659 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 660 return CGF.LoadCXXThis(); 661 } 662 663 Value *VisitExprWithCleanups(ExprWithCleanups *E); 664 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 665 return CGF.EmitCXXNewExpr(E); 666 } 667 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 668 CGF.EmitCXXDeleteExpr(E); 669 return nullptr; 670 } 671 672 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 673 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 674 } 675 676 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 677 return Builder.getInt1(E->isSatisfied()); 678 } 679 680 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 681 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 682 } 683 684 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 685 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 686 } 687 688 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 689 // C++ [expr.pseudo]p1: 690 // The result shall only be used as the operand for the function call 691 // operator (), and the result of such a call has type void. The only 692 // effect is the evaluation of the postfix-expression before the dot or 693 // arrow. 694 CGF.EmitScalarExpr(E->getBase()); 695 return nullptr; 696 } 697 698 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 699 return EmitNullValue(E->getType()); 700 } 701 702 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 703 CGF.EmitCXXThrowExpr(E); 704 return nullptr; 705 } 706 707 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 708 return Builder.getInt1(E->getValue()); 709 } 710 711 // Binary Operators. 712 Value *EmitMul(const BinOpInfo &Ops) { 713 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 714 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 715 case LangOptions::SOB_Defined: 716 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 717 case LangOptions::SOB_Undefined: 718 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 719 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 720 LLVM_FALLTHROUGH; 721 case LangOptions::SOB_Trapping: 722 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 723 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 724 return EmitOverflowCheckedBinOp(Ops); 725 } 726 } 727 728 if (Ops.Ty->isUnsignedIntegerType() && 729 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 730 !CanElideOverflowCheck(CGF.getContext(), Ops)) 731 return EmitOverflowCheckedBinOp(Ops); 732 733 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 734 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 735 return propagateFMFlags(V, Ops); 736 } 737 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 738 } 739 /// Create a binary op that checks for overflow. 740 /// Currently only supports +, - and *. 741 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 742 743 // Check for undefined division and modulus behaviors. 744 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 745 llvm::Value *Zero,bool isDiv); 746 // Common helper for getting how wide LHS of shift is. 747 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 748 Value *EmitDiv(const BinOpInfo &Ops); 749 Value *EmitRem(const BinOpInfo &Ops); 750 Value *EmitAdd(const BinOpInfo &Ops); 751 Value *EmitSub(const BinOpInfo &Ops); 752 Value *EmitShl(const BinOpInfo &Ops); 753 Value *EmitShr(const BinOpInfo &Ops); 754 Value *EmitAnd(const BinOpInfo &Ops) { 755 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 756 } 757 Value *EmitXor(const BinOpInfo &Ops) { 758 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 759 } 760 Value *EmitOr (const BinOpInfo &Ops) { 761 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 762 } 763 764 // Helper functions for fixed point binary operations. 765 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 766 767 BinOpInfo EmitBinOps(const BinaryOperator *E); 768 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 769 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 770 Value *&Result); 771 772 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 773 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 774 775 // Binary operators and binary compound assignment operators. 776 #define HANDLEBINOP(OP) \ 777 Value *VisitBin ## OP(const BinaryOperator *E) { \ 778 return Emit ## OP(EmitBinOps(E)); \ 779 } \ 780 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 781 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 782 } 783 HANDLEBINOP(Mul) 784 HANDLEBINOP(Div) 785 HANDLEBINOP(Rem) 786 HANDLEBINOP(Add) 787 HANDLEBINOP(Sub) 788 HANDLEBINOP(Shl) 789 HANDLEBINOP(Shr) 790 HANDLEBINOP(And) 791 HANDLEBINOP(Xor) 792 HANDLEBINOP(Or) 793 #undef HANDLEBINOP 794 795 // Comparisons. 796 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 797 llvm::CmpInst::Predicate SICmpOpc, 798 llvm::CmpInst::Predicate FCmpOpc); 799 #define VISITCOMP(CODE, UI, SI, FP) \ 800 Value *VisitBin##CODE(const BinaryOperator *E) { \ 801 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 802 llvm::FCmpInst::FP); } 803 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 804 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 805 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 806 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 807 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 808 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 809 #undef VISITCOMP 810 811 Value *VisitBinAssign (const BinaryOperator *E); 812 813 Value *VisitBinLAnd (const BinaryOperator *E); 814 Value *VisitBinLOr (const BinaryOperator *E); 815 Value *VisitBinComma (const BinaryOperator *E); 816 817 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 818 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 819 820 // Other Operators. 821 Value *VisitBlockExpr(const BlockExpr *BE); 822 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 823 Value *VisitChooseExpr(ChooseExpr *CE); 824 Value *VisitVAArgExpr(VAArgExpr *VE); 825 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 826 return CGF.EmitObjCStringLiteral(E); 827 } 828 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 829 return CGF.EmitObjCBoxedExpr(E); 830 } 831 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 832 return CGF.EmitObjCArrayLiteral(E); 833 } 834 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 835 return CGF.EmitObjCDictionaryLiteral(E); 836 } 837 Value *VisitAsTypeExpr(AsTypeExpr *CE); 838 Value *VisitAtomicExpr(AtomicExpr *AE); 839 }; 840 } // end anonymous namespace. 841 842 //===----------------------------------------------------------------------===// 843 // Utilities 844 //===----------------------------------------------------------------------===// 845 846 /// EmitConversionToBool - Convert the specified expression value to a 847 /// boolean (i1) truth value. This is equivalent to "Val != 0". 848 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 849 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 850 851 if (SrcType->isRealFloatingType()) 852 return EmitFloatToBoolConversion(Src); 853 854 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 855 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 856 857 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 858 "Unknown scalar type to convert"); 859 860 if (isa<llvm::IntegerType>(Src->getType())) 861 return EmitIntToBoolConversion(Src); 862 863 assert(isa<llvm::PointerType>(Src->getType())); 864 return EmitPointerToBoolConversion(Src, SrcType); 865 } 866 867 void ScalarExprEmitter::EmitFloatConversionCheck( 868 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 869 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 870 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 871 if (!isa<llvm::IntegerType>(DstTy)) 872 return; 873 874 CodeGenFunction::SanitizerScope SanScope(&CGF); 875 using llvm::APFloat; 876 using llvm::APSInt; 877 878 llvm::Value *Check = nullptr; 879 const llvm::fltSemantics &SrcSema = 880 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 881 882 // Floating-point to integer. This has undefined behavior if the source is 883 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 884 // to an integer). 885 unsigned Width = CGF.getContext().getIntWidth(DstType); 886 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 887 888 APSInt Min = APSInt::getMinValue(Width, Unsigned); 889 APFloat MinSrc(SrcSema, APFloat::uninitialized); 890 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 891 APFloat::opOverflow) 892 // Don't need an overflow check for lower bound. Just check for 893 // -Inf/NaN. 894 MinSrc = APFloat::getInf(SrcSema, true); 895 else 896 // Find the largest value which is too small to represent (before 897 // truncation toward zero). 898 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 899 900 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 901 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 902 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 903 APFloat::opOverflow) 904 // Don't need an overflow check for upper bound. Just check for 905 // +Inf/NaN. 906 MaxSrc = APFloat::getInf(SrcSema, false); 907 else 908 // Find the smallest value which is too large to represent (before 909 // truncation toward zero). 910 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 911 912 // If we're converting from __half, convert the range to float to match 913 // the type of src. 914 if (OrigSrcType->isHalfType()) { 915 const llvm::fltSemantics &Sema = 916 CGF.getContext().getFloatTypeSemantics(SrcType); 917 bool IsInexact; 918 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 919 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 920 } 921 922 llvm::Value *GE = 923 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 924 llvm::Value *LE = 925 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 926 Check = Builder.CreateAnd(GE, LE); 927 928 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 929 CGF.EmitCheckTypeDescriptor(OrigSrcType), 930 CGF.EmitCheckTypeDescriptor(DstType)}; 931 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 932 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 933 } 934 935 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 936 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 937 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 938 std::pair<llvm::Value *, SanitizerMask>> 939 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 940 QualType DstType, CGBuilderTy &Builder) { 941 llvm::Type *SrcTy = Src->getType(); 942 llvm::Type *DstTy = Dst->getType(); 943 (void)DstTy; // Only used in assert() 944 945 // This should be truncation of integral types. 946 assert(Src != Dst); 947 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 948 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 949 "non-integer llvm type"); 950 951 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 952 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 953 954 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 955 // Else, it is a signed truncation. 956 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 957 SanitizerMask Mask; 958 if (!SrcSigned && !DstSigned) { 959 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 960 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 961 } else { 962 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 963 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 964 } 965 966 llvm::Value *Check = nullptr; 967 // 1. Extend the truncated value back to the same width as the Src. 968 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 969 // 2. Equality-compare with the original source value 970 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 971 // If the comparison result is 'i1 false', then the truncation was lossy. 972 return std::make_pair(Kind, std::make_pair(Check, Mask)); 973 } 974 975 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 976 Value *Dst, QualType DstType, 977 SourceLocation Loc) { 978 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 979 return; 980 981 // We only care about int->int conversions here. 982 // We ignore conversions to/from pointer and/or bool. 983 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 984 return; 985 986 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 987 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 988 // This must be truncation. Else we do not care. 989 if (SrcBits <= DstBits) 990 return; 991 992 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 993 994 // If the integer sign change sanitizer is enabled, 995 // and we are truncating from larger unsigned type to smaller signed type, 996 // let that next sanitizer deal with it. 997 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 998 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 999 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1000 (!SrcSigned && DstSigned)) 1001 return; 1002 1003 CodeGenFunction::SanitizerScope SanScope(&CGF); 1004 1005 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1006 std::pair<llvm::Value *, SanitizerMask>> 1007 Check = 1008 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1009 // If the comparison result is 'i1 false', then the truncation was lossy. 1010 1011 // Do we care about this type of truncation? 1012 if (!CGF.SanOpts.has(Check.second.second)) 1013 return; 1014 1015 llvm::Constant *StaticArgs[] = { 1016 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1017 CGF.EmitCheckTypeDescriptor(DstType), 1018 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1019 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1020 {Src, Dst}); 1021 } 1022 1023 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1024 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1025 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1026 std::pair<llvm::Value *, SanitizerMask>> 1027 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1028 QualType DstType, CGBuilderTy &Builder) { 1029 llvm::Type *SrcTy = Src->getType(); 1030 llvm::Type *DstTy = Dst->getType(); 1031 1032 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1033 "non-integer llvm type"); 1034 1035 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1036 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1037 (void)SrcSigned; // Only used in assert() 1038 (void)DstSigned; // Only used in assert() 1039 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1040 unsigned DstBits = DstTy->getScalarSizeInBits(); 1041 (void)SrcBits; // Only used in assert() 1042 (void)DstBits; // Only used in assert() 1043 1044 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1045 "either the widths should be different, or the signednesses."); 1046 1047 // NOTE: zero value is considered to be non-negative. 1048 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1049 const char *Name) -> Value * { 1050 // Is this value a signed type? 1051 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1052 llvm::Type *VTy = V->getType(); 1053 if (!VSigned) { 1054 // If the value is unsigned, then it is never negative. 1055 // FIXME: can we encounter non-scalar VTy here? 1056 return llvm::ConstantInt::getFalse(VTy->getContext()); 1057 } 1058 // Get the zero of the same type with which we will be comparing. 1059 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1060 // %V.isnegative = icmp slt %V, 0 1061 // I.e is %V *strictly* less than zero, does it have negative value? 1062 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1063 llvm::Twine(Name) + "." + V->getName() + 1064 ".negativitycheck"); 1065 }; 1066 1067 // 1. Was the old Value negative? 1068 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1069 // 2. Is the new Value negative? 1070 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1071 // 3. Now, was the 'negativity status' preserved during the conversion? 1072 // NOTE: conversion from negative to zero is considered to change the sign. 1073 // (We want to get 'false' when the conversion changed the sign) 1074 // So we should just equality-compare the negativity statuses. 1075 llvm::Value *Check = nullptr; 1076 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1077 // If the comparison result is 'false', then the conversion changed the sign. 1078 return std::make_pair( 1079 ScalarExprEmitter::ICCK_IntegerSignChange, 1080 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1081 } 1082 1083 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1084 Value *Dst, QualType DstType, 1085 SourceLocation Loc) { 1086 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1087 return; 1088 1089 llvm::Type *SrcTy = Src->getType(); 1090 llvm::Type *DstTy = Dst->getType(); 1091 1092 // We only care about int->int conversions here. 1093 // We ignore conversions to/from pointer and/or bool. 1094 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1095 return; 1096 1097 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1098 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1099 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1100 unsigned DstBits = DstTy->getScalarSizeInBits(); 1101 1102 // Now, we do not need to emit the check in *all* of the cases. 1103 // We can avoid emitting it in some obvious cases where it would have been 1104 // dropped by the opt passes (instcombine) always anyways. 1105 // If it's a cast between effectively the same type, no check. 1106 // NOTE: this is *not* equivalent to checking the canonical types. 1107 if (SrcSigned == DstSigned && SrcBits == DstBits) 1108 return; 1109 // At least one of the values needs to have signed type. 1110 // If both are unsigned, then obviously, neither of them can be negative. 1111 if (!SrcSigned && !DstSigned) 1112 return; 1113 // If the conversion is to *larger* *signed* type, then no check is needed. 1114 // Because either sign-extension happens (so the sign will remain), 1115 // or zero-extension will happen (the sign bit will be zero.) 1116 if ((DstBits > SrcBits) && DstSigned) 1117 return; 1118 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1119 (SrcBits > DstBits) && SrcSigned) { 1120 // If the signed integer truncation sanitizer is enabled, 1121 // and this is a truncation from signed type, then no check is needed. 1122 // Because here sign change check is interchangeable with truncation check. 1123 return; 1124 } 1125 // That's it. We can't rule out any more cases with the data we have. 1126 1127 CodeGenFunction::SanitizerScope SanScope(&CGF); 1128 1129 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1130 std::pair<llvm::Value *, SanitizerMask>> 1131 Check; 1132 1133 // Each of these checks needs to return 'false' when an issue was detected. 1134 ImplicitConversionCheckKind CheckKind; 1135 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1136 // So we can 'and' all the checks together, and still get 'false', 1137 // if at least one of the checks detected an issue. 1138 1139 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1140 CheckKind = Check.first; 1141 Checks.emplace_back(Check.second); 1142 1143 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1144 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1145 // If the signed integer truncation sanitizer was enabled, 1146 // and we are truncating from larger unsigned type to smaller signed type, 1147 // let's handle the case we skipped in that check. 1148 Check = 1149 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1150 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1151 Checks.emplace_back(Check.second); 1152 // If the comparison result is 'i1 false', then the truncation was lossy. 1153 } 1154 1155 llvm::Constant *StaticArgs[] = { 1156 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1157 CGF.EmitCheckTypeDescriptor(DstType), 1158 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1159 // EmitCheck() will 'and' all the checks together. 1160 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1161 {Src, Dst}); 1162 } 1163 1164 /// Emit a conversion from the specified type to the specified destination type, 1165 /// both of which are LLVM scalar types. 1166 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1167 QualType DstType, 1168 SourceLocation Loc, 1169 ScalarConversionOpts Opts) { 1170 // All conversions involving fixed point types should be handled by the 1171 // EmitFixedPoint family functions. This is done to prevent bloating up this 1172 // function more, and although fixed point numbers are represented by 1173 // integers, we do not want to follow any logic that assumes they should be 1174 // treated as integers. 1175 // TODO(leonardchan): When necessary, add another if statement checking for 1176 // conversions to fixed point types from other types. 1177 if (SrcType->isFixedPointType()) { 1178 if (DstType->isBooleanType()) 1179 // It is important that we check this before checking if the dest type is 1180 // an integer because booleans are technically integer types. 1181 // We do not need to check the padding bit on unsigned types if unsigned 1182 // padding is enabled because overflow into this bit is undefined 1183 // behavior. 1184 return Builder.CreateIsNotNull(Src, "tobool"); 1185 if (DstType->isFixedPointType() || DstType->isIntegerType()) 1186 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1187 1188 llvm_unreachable( 1189 "Unhandled scalar conversion from a fixed point type to another type."); 1190 } else if (DstType->isFixedPointType()) { 1191 if (SrcType->isIntegerType()) 1192 // This also includes converting booleans and enums to fixed point types. 1193 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1194 1195 llvm_unreachable( 1196 "Unhandled scalar conversion to a fixed point type from another type."); 1197 } 1198 1199 QualType NoncanonicalSrcType = SrcType; 1200 QualType NoncanonicalDstType = DstType; 1201 1202 SrcType = CGF.getContext().getCanonicalType(SrcType); 1203 DstType = CGF.getContext().getCanonicalType(DstType); 1204 if (SrcType == DstType) return Src; 1205 1206 if (DstType->isVoidType()) return nullptr; 1207 1208 llvm::Value *OrigSrc = Src; 1209 QualType OrigSrcType = SrcType; 1210 llvm::Type *SrcTy = Src->getType(); 1211 1212 // Handle conversions to bool first, they are special: comparisons against 0. 1213 if (DstType->isBooleanType()) 1214 return EmitConversionToBool(Src, SrcType); 1215 1216 llvm::Type *DstTy = ConvertType(DstType); 1217 1218 // Cast from half through float if half isn't a native type. 1219 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1220 // Cast to FP using the intrinsic if the half type itself isn't supported. 1221 if (DstTy->isFloatingPointTy()) { 1222 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1223 return Builder.CreateCall( 1224 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1225 Src); 1226 } else { 1227 // Cast to other types through float, using either the intrinsic or FPExt, 1228 // depending on whether the half type itself is supported 1229 // (as opposed to operations on half, available with NativeHalfType). 1230 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1231 Src = Builder.CreateCall( 1232 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1233 CGF.CGM.FloatTy), 1234 Src); 1235 } else { 1236 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1237 } 1238 SrcType = CGF.getContext().FloatTy; 1239 SrcTy = CGF.FloatTy; 1240 } 1241 } 1242 1243 // Ignore conversions like int -> uint. 1244 if (SrcTy == DstTy) { 1245 if (Opts.EmitImplicitIntegerSignChangeChecks) 1246 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1247 NoncanonicalDstType, Loc); 1248 1249 return Src; 1250 } 1251 1252 // Handle pointer conversions next: pointers can only be converted to/from 1253 // other pointers and integers. Check for pointer types in terms of LLVM, as 1254 // some native types (like Obj-C id) may map to a pointer type. 1255 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1256 // The source value may be an integer, or a pointer. 1257 if (isa<llvm::PointerType>(SrcTy)) 1258 return Builder.CreateBitCast(Src, DstTy, "conv"); 1259 1260 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1261 // First, convert to the correct width so that we control the kind of 1262 // extension. 1263 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1264 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1265 llvm::Value* IntResult = 1266 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1267 // Then, cast to pointer. 1268 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1269 } 1270 1271 if (isa<llvm::PointerType>(SrcTy)) { 1272 // Must be an ptr to int cast. 1273 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1274 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1275 } 1276 1277 // A scalar can be splatted to an extended vector of the same element type 1278 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1279 // Sema should add casts to make sure that the source expression's type is 1280 // the same as the vector's element type (sans qualifiers) 1281 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1282 SrcType.getTypePtr() && 1283 "Splatted expr doesn't match with vector element type?"); 1284 1285 // Splat the element across to all elements 1286 unsigned NumElements = DstTy->getVectorNumElements(); 1287 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1288 } 1289 1290 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1291 // Allow bitcast from vector to integer/fp of the same size. 1292 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1293 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1294 if (SrcSize == DstSize) 1295 return Builder.CreateBitCast(Src, DstTy, "conv"); 1296 1297 // Conversions between vectors of different sizes are not allowed except 1298 // when vectors of half are involved. Operations on storage-only half 1299 // vectors require promoting half vector operands to float vectors and 1300 // truncating the result, which is either an int or float vector, to a 1301 // short or half vector. 1302 1303 // Source and destination are both expected to be vectors. 1304 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1305 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1306 (void)DstElementTy; 1307 1308 assert(((SrcElementTy->isIntegerTy() && 1309 DstElementTy->isIntegerTy()) || 1310 (SrcElementTy->isFloatingPointTy() && 1311 DstElementTy->isFloatingPointTy())) && 1312 "unexpected conversion between a floating-point vector and an " 1313 "integer vector"); 1314 1315 // Truncate an i32 vector to an i16 vector. 1316 if (SrcElementTy->isIntegerTy()) 1317 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1318 1319 // Truncate a float vector to a half vector. 1320 if (SrcSize > DstSize) 1321 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1322 1323 // Promote a half vector to a float vector. 1324 return Builder.CreateFPExt(Src, DstTy, "conv"); 1325 } 1326 1327 // Finally, we have the arithmetic types: real int/float. 1328 Value *Res = nullptr; 1329 llvm::Type *ResTy = DstTy; 1330 1331 // An overflowing conversion has undefined behavior if either the source type 1332 // or the destination type is a floating-point type. However, we consider the 1333 // range of representable values for all floating-point types to be 1334 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1335 // floating-point type. 1336 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1337 OrigSrcType->isFloatingType()) 1338 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1339 Loc); 1340 1341 // Cast to half through float if half isn't a native type. 1342 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1343 // Make sure we cast in a single step if from another FP type. 1344 if (SrcTy->isFloatingPointTy()) { 1345 // Use the intrinsic if the half type itself isn't supported 1346 // (as opposed to operations on half, available with NativeHalfType). 1347 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1348 return Builder.CreateCall( 1349 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1350 // If the half type is supported, just use an fptrunc. 1351 return Builder.CreateFPTrunc(Src, DstTy); 1352 } 1353 DstTy = CGF.FloatTy; 1354 } 1355 1356 if (isa<llvm::IntegerType>(SrcTy)) { 1357 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1358 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1359 InputSigned = true; 1360 } 1361 if (isa<llvm::IntegerType>(DstTy)) 1362 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1363 else if (InputSigned) 1364 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1365 else 1366 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1367 } else if (isa<llvm::IntegerType>(DstTy)) { 1368 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1369 if (DstType->isSignedIntegerOrEnumerationType()) 1370 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1371 else 1372 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1373 } else { 1374 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1375 "Unknown real conversion"); 1376 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1377 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1378 else 1379 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1380 } 1381 1382 if (DstTy != ResTy) { 1383 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1384 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1385 Res = Builder.CreateCall( 1386 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1387 Res); 1388 } else { 1389 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1390 } 1391 } 1392 1393 if (Opts.EmitImplicitIntegerTruncationChecks) 1394 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1395 NoncanonicalDstType, Loc); 1396 1397 if (Opts.EmitImplicitIntegerSignChangeChecks) 1398 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1399 NoncanonicalDstType, Loc); 1400 1401 return Res; 1402 } 1403 1404 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1405 QualType DstTy, 1406 SourceLocation Loc) { 1407 FixedPointSemantics SrcFPSema = 1408 CGF.getContext().getFixedPointSemantics(SrcTy); 1409 FixedPointSemantics DstFPSema = 1410 CGF.getContext().getFixedPointSemantics(DstTy); 1411 return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc, 1412 DstTy->isIntegerType()); 1413 } 1414 1415 Value *ScalarExprEmitter::EmitFixedPointConversion( 1416 Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema, 1417 SourceLocation Loc, bool DstIsInteger) { 1418 using llvm::APInt; 1419 using llvm::ConstantInt; 1420 using llvm::Value; 1421 1422 unsigned SrcWidth = SrcFPSema.getWidth(); 1423 unsigned DstWidth = DstFPSema.getWidth(); 1424 unsigned SrcScale = SrcFPSema.getScale(); 1425 unsigned DstScale = DstFPSema.getScale(); 1426 bool SrcIsSigned = SrcFPSema.isSigned(); 1427 bool DstIsSigned = DstFPSema.isSigned(); 1428 1429 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1430 1431 Value *Result = Src; 1432 unsigned ResultWidth = SrcWidth; 1433 1434 // Downscale. 1435 if (DstScale < SrcScale) { 1436 // When converting to integers, we round towards zero. For negative numbers, 1437 // right shifting rounds towards negative infinity. In this case, we can 1438 // just round up before shifting. 1439 if (DstIsInteger && SrcIsSigned) { 1440 Value *Zero = llvm::Constant::getNullValue(Result->getType()); 1441 Value *IsNegative = Builder.CreateICmpSLT(Result, Zero); 1442 Value *LowBits = ConstantInt::get( 1443 CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale)); 1444 Value *Rounded = Builder.CreateAdd(Result, LowBits); 1445 Result = Builder.CreateSelect(IsNegative, Rounded, Result); 1446 } 1447 1448 Result = SrcIsSigned 1449 ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") 1450 : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1451 } 1452 1453 if (!DstFPSema.isSaturated()) { 1454 // Resize. 1455 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1456 1457 // Upscale. 1458 if (DstScale > SrcScale) 1459 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1460 } else { 1461 // Adjust the number of fractional bits. 1462 if (DstScale > SrcScale) { 1463 // Compare to DstWidth to prevent resizing twice. 1464 ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth); 1465 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1466 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1467 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1468 } 1469 1470 // Handle saturation. 1471 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1472 if (LessIntBits) { 1473 Value *Max = ConstantInt::get( 1474 CGF.getLLVMContext(), 1475 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1476 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1477 : Builder.CreateICmpUGT(Result, Max); 1478 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1479 } 1480 // Cannot overflow min to dest type if src is unsigned since all fixed 1481 // point types can cover the unsigned min of 0. 1482 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1483 Value *Min = ConstantInt::get( 1484 CGF.getLLVMContext(), 1485 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1486 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1487 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1488 } 1489 1490 // Resize the integer part to get the final destination size. 1491 if (ResultWidth != DstWidth) 1492 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1493 } 1494 return Result; 1495 } 1496 1497 /// Emit a conversion from the specified complex type to the specified 1498 /// destination type, where the destination type is an LLVM scalar type. 1499 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1500 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1501 SourceLocation Loc) { 1502 // Get the source element type. 1503 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1504 1505 // Handle conversions to bool first, they are special: comparisons against 0. 1506 if (DstTy->isBooleanType()) { 1507 // Complex != 0 -> (Real != 0) | (Imag != 0) 1508 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1509 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1510 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1511 } 1512 1513 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1514 // the imaginary part of the complex value is discarded and the value of the 1515 // real part is converted according to the conversion rules for the 1516 // corresponding real type. 1517 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1518 } 1519 1520 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1521 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1522 } 1523 1524 /// Emit a sanitization check for the given "binary" operation (which 1525 /// might actually be a unary increment which has been lowered to a binary 1526 /// operation). The check passes if all values in \p Checks (which are \c i1), 1527 /// are \c true. 1528 void ScalarExprEmitter::EmitBinOpCheck( 1529 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1530 assert(CGF.IsSanitizerScope); 1531 SanitizerHandler Check; 1532 SmallVector<llvm::Constant *, 4> StaticData; 1533 SmallVector<llvm::Value *, 2> DynamicData; 1534 1535 BinaryOperatorKind Opcode = Info.Opcode; 1536 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1537 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1538 1539 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1540 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1541 if (UO && UO->getOpcode() == UO_Minus) { 1542 Check = SanitizerHandler::NegateOverflow; 1543 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1544 DynamicData.push_back(Info.RHS); 1545 } else { 1546 if (BinaryOperator::isShiftOp(Opcode)) { 1547 // Shift LHS negative or too large, or RHS out of bounds. 1548 Check = SanitizerHandler::ShiftOutOfBounds; 1549 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1550 StaticData.push_back( 1551 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1552 StaticData.push_back( 1553 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1554 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1555 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1556 Check = SanitizerHandler::DivremOverflow; 1557 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1558 } else { 1559 // Arithmetic overflow (+, -, *). 1560 switch (Opcode) { 1561 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1562 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1563 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1564 default: llvm_unreachable("unexpected opcode for bin op check"); 1565 } 1566 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1567 } 1568 DynamicData.push_back(Info.LHS); 1569 DynamicData.push_back(Info.RHS); 1570 } 1571 1572 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1573 } 1574 1575 //===----------------------------------------------------------------------===// 1576 // Visitor Methods 1577 //===----------------------------------------------------------------------===// 1578 1579 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1580 CGF.ErrorUnsupported(E, "scalar expression"); 1581 if (E->getType()->isVoidType()) 1582 return nullptr; 1583 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1584 } 1585 1586 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1587 // Vector Mask Case 1588 if (E->getNumSubExprs() == 2) { 1589 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1590 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1591 Value *Mask; 1592 1593 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1594 unsigned LHSElts = LTy->getNumElements(); 1595 1596 Mask = RHS; 1597 1598 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1599 1600 // Mask off the high bits of each shuffle index. 1601 Value *MaskBits = 1602 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1603 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1604 1605 // newv = undef 1606 // mask = mask & maskbits 1607 // for each elt 1608 // n = extract mask i 1609 // x = extract val n 1610 // newv = insert newv, x, i 1611 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1612 MTy->getNumElements()); 1613 Value* NewV = llvm::UndefValue::get(RTy); 1614 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1615 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1616 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1617 1618 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1619 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1620 } 1621 return NewV; 1622 } 1623 1624 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1625 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1626 1627 SmallVector<llvm::Constant*, 32> indices; 1628 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1629 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1630 // Check for -1 and output it as undef in the IR. 1631 if (Idx.isSigned() && Idx.isAllOnesValue()) 1632 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1633 else 1634 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1635 } 1636 1637 Value *SV = llvm::ConstantVector::get(indices); 1638 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1639 } 1640 1641 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1642 QualType SrcType = E->getSrcExpr()->getType(), 1643 DstType = E->getType(); 1644 1645 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1646 1647 SrcType = CGF.getContext().getCanonicalType(SrcType); 1648 DstType = CGF.getContext().getCanonicalType(DstType); 1649 if (SrcType == DstType) return Src; 1650 1651 assert(SrcType->isVectorType() && 1652 "ConvertVector source type must be a vector"); 1653 assert(DstType->isVectorType() && 1654 "ConvertVector destination type must be a vector"); 1655 1656 llvm::Type *SrcTy = Src->getType(); 1657 llvm::Type *DstTy = ConvertType(DstType); 1658 1659 // Ignore conversions like int -> uint. 1660 if (SrcTy == DstTy) 1661 return Src; 1662 1663 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1664 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1665 1666 assert(SrcTy->isVectorTy() && 1667 "ConvertVector source IR type must be a vector"); 1668 assert(DstTy->isVectorTy() && 1669 "ConvertVector destination IR type must be a vector"); 1670 1671 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1672 *DstEltTy = DstTy->getVectorElementType(); 1673 1674 if (DstEltType->isBooleanType()) { 1675 assert((SrcEltTy->isFloatingPointTy() || 1676 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1677 1678 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1679 if (SrcEltTy->isFloatingPointTy()) { 1680 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1681 } else { 1682 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1683 } 1684 } 1685 1686 // We have the arithmetic types: real int/float. 1687 Value *Res = nullptr; 1688 1689 if (isa<llvm::IntegerType>(SrcEltTy)) { 1690 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1691 if (isa<llvm::IntegerType>(DstEltTy)) 1692 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1693 else if (InputSigned) 1694 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1695 else 1696 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1697 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1698 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1699 if (DstEltType->isSignedIntegerOrEnumerationType()) 1700 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1701 else 1702 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1703 } else { 1704 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1705 "Unknown real conversion"); 1706 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1707 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1708 else 1709 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1710 } 1711 1712 return Res; 1713 } 1714 1715 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1716 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1717 CGF.EmitIgnoredExpr(E->getBase()); 1718 return CGF.emitScalarConstant(Constant, E); 1719 } else { 1720 Expr::EvalResult Result; 1721 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1722 llvm::APSInt Value = Result.Val.getInt(); 1723 CGF.EmitIgnoredExpr(E->getBase()); 1724 return Builder.getInt(Value); 1725 } 1726 } 1727 1728 return EmitLoadOfLValue(E); 1729 } 1730 1731 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1732 TestAndClearIgnoreResultAssign(); 1733 1734 // Emit subscript expressions in rvalue context's. For most cases, this just 1735 // loads the lvalue formed by the subscript expr. However, we have to be 1736 // careful, because the base of a vector subscript is occasionally an rvalue, 1737 // so we can't get it as an lvalue. 1738 if (!E->getBase()->getType()->isVectorType()) 1739 return EmitLoadOfLValue(E); 1740 1741 // Handle the vector case. The base must be a vector, the index must be an 1742 // integer value. 1743 Value *Base = Visit(E->getBase()); 1744 Value *Idx = Visit(E->getIdx()); 1745 QualType IdxTy = E->getIdx()->getType(); 1746 1747 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1748 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1749 1750 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1751 } 1752 1753 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1754 unsigned Off, llvm::Type *I32Ty) { 1755 int MV = SVI->getMaskValue(Idx); 1756 if (MV == -1) 1757 return llvm::UndefValue::get(I32Ty); 1758 return llvm::ConstantInt::get(I32Ty, Off+MV); 1759 } 1760 1761 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1762 if (C->getBitWidth() != 32) { 1763 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1764 C->getZExtValue()) && 1765 "Index operand too large for shufflevector mask!"); 1766 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1767 } 1768 return C; 1769 } 1770 1771 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1772 bool Ignore = TestAndClearIgnoreResultAssign(); 1773 (void)Ignore; 1774 assert (Ignore == false && "init list ignored"); 1775 unsigned NumInitElements = E->getNumInits(); 1776 1777 if (E->hadArrayRangeDesignator()) 1778 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1779 1780 llvm::VectorType *VType = 1781 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1782 1783 if (!VType) { 1784 if (NumInitElements == 0) { 1785 // C++11 value-initialization for the scalar. 1786 return EmitNullValue(E->getType()); 1787 } 1788 // We have a scalar in braces. Just use the first element. 1789 return Visit(E->getInit(0)); 1790 } 1791 1792 unsigned ResElts = VType->getNumElements(); 1793 1794 // Loop over initializers collecting the Value for each, and remembering 1795 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1796 // us to fold the shuffle for the swizzle into the shuffle for the vector 1797 // initializer, since LLVM optimizers generally do not want to touch 1798 // shuffles. 1799 unsigned CurIdx = 0; 1800 bool VIsUndefShuffle = false; 1801 llvm::Value *V = llvm::UndefValue::get(VType); 1802 for (unsigned i = 0; i != NumInitElements; ++i) { 1803 Expr *IE = E->getInit(i); 1804 Value *Init = Visit(IE); 1805 SmallVector<llvm::Constant*, 16> Args; 1806 1807 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1808 1809 // Handle scalar elements. If the scalar initializer is actually one 1810 // element of a different vector of the same width, use shuffle instead of 1811 // extract+insert. 1812 if (!VVT) { 1813 if (isa<ExtVectorElementExpr>(IE)) { 1814 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1815 1816 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1817 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1818 Value *LHS = nullptr, *RHS = nullptr; 1819 if (CurIdx == 0) { 1820 // insert into undef -> shuffle (src, undef) 1821 // shufflemask must use an i32 1822 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1823 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1824 1825 LHS = EI->getVectorOperand(); 1826 RHS = V; 1827 VIsUndefShuffle = true; 1828 } else if (VIsUndefShuffle) { 1829 // insert into undefshuffle && size match -> shuffle (v, src) 1830 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1831 for (unsigned j = 0; j != CurIdx; ++j) 1832 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1833 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1834 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1835 1836 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1837 RHS = EI->getVectorOperand(); 1838 VIsUndefShuffle = false; 1839 } 1840 if (!Args.empty()) { 1841 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1842 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1843 ++CurIdx; 1844 continue; 1845 } 1846 } 1847 } 1848 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1849 "vecinit"); 1850 VIsUndefShuffle = false; 1851 ++CurIdx; 1852 continue; 1853 } 1854 1855 unsigned InitElts = VVT->getNumElements(); 1856 1857 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1858 // input is the same width as the vector being constructed, generate an 1859 // optimized shuffle of the swizzle input into the result. 1860 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1861 if (isa<ExtVectorElementExpr>(IE)) { 1862 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1863 Value *SVOp = SVI->getOperand(0); 1864 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1865 1866 if (OpTy->getNumElements() == ResElts) { 1867 for (unsigned j = 0; j != CurIdx; ++j) { 1868 // If the current vector initializer is a shuffle with undef, merge 1869 // this shuffle directly into it. 1870 if (VIsUndefShuffle) { 1871 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1872 CGF.Int32Ty)); 1873 } else { 1874 Args.push_back(Builder.getInt32(j)); 1875 } 1876 } 1877 for (unsigned j = 0, je = InitElts; j != je; ++j) 1878 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1879 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1880 1881 if (VIsUndefShuffle) 1882 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1883 1884 Init = SVOp; 1885 } 1886 } 1887 1888 // Extend init to result vector length, and then shuffle its contribution 1889 // to the vector initializer into V. 1890 if (Args.empty()) { 1891 for (unsigned j = 0; j != InitElts; ++j) 1892 Args.push_back(Builder.getInt32(j)); 1893 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1894 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1895 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1896 Mask, "vext"); 1897 1898 Args.clear(); 1899 for (unsigned j = 0; j != CurIdx; ++j) 1900 Args.push_back(Builder.getInt32(j)); 1901 for (unsigned j = 0; j != InitElts; ++j) 1902 Args.push_back(Builder.getInt32(j+Offset)); 1903 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1904 } 1905 1906 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1907 // merging subsequent shuffles into this one. 1908 if (CurIdx == 0) 1909 std::swap(V, Init); 1910 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1911 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1912 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1913 CurIdx += InitElts; 1914 } 1915 1916 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1917 // Emit remaining default initializers. 1918 llvm::Type *EltTy = VType->getElementType(); 1919 1920 // Emit remaining default initializers 1921 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1922 Value *Idx = Builder.getInt32(CurIdx); 1923 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1924 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1925 } 1926 return V; 1927 } 1928 1929 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1930 const Expr *E = CE->getSubExpr(); 1931 1932 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1933 return false; 1934 1935 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1936 // We always assume that 'this' is never null. 1937 return false; 1938 } 1939 1940 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1941 // And that glvalue casts are never null. 1942 if (ICE->getValueKind() != VK_RValue) 1943 return false; 1944 } 1945 1946 return true; 1947 } 1948 1949 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1950 // have to handle a more broad range of conversions than explicit casts, as they 1951 // handle things like function to ptr-to-function decay etc. 1952 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1953 Expr *E = CE->getSubExpr(); 1954 QualType DestTy = CE->getType(); 1955 CastKind Kind = CE->getCastKind(); 1956 1957 // These cases are generally not written to ignore the result of 1958 // evaluating their sub-expressions, so we clear this now. 1959 bool Ignored = TestAndClearIgnoreResultAssign(); 1960 1961 // Since almost all cast kinds apply to scalars, this switch doesn't have 1962 // a default case, so the compiler will warn on a missing case. The cases 1963 // are in the same order as in the CastKind enum. 1964 switch (Kind) { 1965 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1966 case CK_BuiltinFnToFnPtr: 1967 llvm_unreachable("builtin functions are handled elsewhere"); 1968 1969 case CK_LValueBitCast: 1970 case CK_ObjCObjectLValueCast: { 1971 Address Addr = EmitLValue(E).getAddress(); 1972 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1973 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1974 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1975 } 1976 1977 case CK_LValueToRValueBitCast: { 1978 LValue SourceLVal = CGF.EmitLValue(E); 1979 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(), 1980 CGF.ConvertTypeForMem(DestTy)); 1981 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 1982 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 1983 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 1984 } 1985 1986 case CK_CPointerToObjCPointerCast: 1987 case CK_BlockPointerToObjCPointerCast: 1988 case CK_AnyPointerToBlockPointerCast: 1989 case CK_BitCast: { 1990 Value *Src = Visit(const_cast<Expr*>(E)); 1991 llvm::Type *SrcTy = Src->getType(); 1992 llvm::Type *DstTy = ConvertType(DestTy); 1993 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1994 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1995 llvm_unreachable("wrong cast for pointers in different address spaces" 1996 "(must be an address space cast)!"); 1997 } 1998 1999 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2000 if (auto PT = DestTy->getAs<PointerType>()) 2001 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 2002 /*MayBeNull=*/true, 2003 CodeGenFunction::CFITCK_UnrelatedCast, 2004 CE->getBeginLoc()); 2005 } 2006 2007 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2008 const QualType SrcType = E->getType(); 2009 2010 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2011 // Casting to pointer that could carry dynamic information (provided by 2012 // invariant.group) requires launder. 2013 Src = Builder.CreateLaunderInvariantGroup(Src); 2014 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2015 // Casting to pointer that does not carry dynamic information (provided 2016 // by invariant.group) requires stripping it. Note that we don't do it 2017 // if the source could not be dynamic type and destination could be 2018 // dynamic because dynamic information is already laundered. It is 2019 // because launder(strip(src)) == launder(src), so there is no need to 2020 // add extra strip before launder. 2021 Src = Builder.CreateStripInvariantGroup(Src); 2022 } 2023 } 2024 2025 // Update heapallocsite metadata when there is an explicit cast. 2026 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src)) 2027 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) 2028 CGF.getDebugInfo()-> 2029 addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc()); 2030 2031 return Builder.CreateBitCast(Src, DstTy); 2032 } 2033 case CK_AddressSpaceConversion: { 2034 Expr::EvalResult Result; 2035 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2036 Result.Val.isNullPointer()) { 2037 // If E has side effect, it is emitted even if its final result is a 2038 // null pointer. In that case, a DCE pass should be able to 2039 // eliminate the useless instructions emitted during translating E. 2040 if (Result.HasSideEffects) 2041 Visit(E); 2042 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2043 ConvertType(DestTy)), DestTy); 2044 } 2045 // Since target may map different address spaces in AST to the same address 2046 // space, an address space conversion may end up as a bitcast. 2047 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2048 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2049 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2050 } 2051 case CK_AtomicToNonAtomic: 2052 case CK_NonAtomicToAtomic: 2053 case CK_NoOp: 2054 case CK_UserDefinedConversion: 2055 return Visit(const_cast<Expr*>(E)); 2056 2057 case CK_BaseToDerived: { 2058 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2059 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2060 2061 Address Base = CGF.EmitPointerWithAlignment(E); 2062 Address Derived = 2063 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2064 CE->path_begin(), CE->path_end(), 2065 CGF.ShouldNullCheckClassCastValue(CE)); 2066 2067 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2068 // performed and the object is not of the derived type. 2069 if (CGF.sanitizePerformTypeCheck()) 2070 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2071 Derived.getPointer(), DestTy->getPointeeType()); 2072 2073 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2074 CGF.EmitVTablePtrCheckForCast( 2075 DestTy->getPointeeType(), Derived.getPointer(), 2076 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2077 CE->getBeginLoc()); 2078 2079 return Derived.getPointer(); 2080 } 2081 case CK_UncheckedDerivedToBase: 2082 case CK_DerivedToBase: { 2083 // The EmitPointerWithAlignment path does this fine; just discard 2084 // the alignment. 2085 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2086 } 2087 2088 case CK_Dynamic: { 2089 Address V = CGF.EmitPointerWithAlignment(E); 2090 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2091 return CGF.EmitDynamicCast(V, DCE); 2092 } 2093 2094 case CK_ArrayToPointerDecay: 2095 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2096 case CK_FunctionToPointerDecay: 2097 return EmitLValue(E).getPointer(); 2098 2099 case CK_NullToPointer: 2100 if (MustVisitNullValue(E)) 2101 CGF.EmitIgnoredExpr(E); 2102 2103 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2104 DestTy); 2105 2106 case CK_NullToMemberPointer: { 2107 if (MustVisitNullValue(E)) 2108 CGF.EmitIgnoredExpr(E); 2109 2110 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2111 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2112 } 2113 2114 case CK_ReinterpretMemberPointer: 2115 case CK_BaseToDerivedMemberPointer: 2116 case CK_DerivedToBaseMemberPointer: { 2117 Value *Src = Visit(E); 2118 2119 // Note that the AST doesn't distinguish between checked and 2120 // unchecked member pointer conversions, so we always have to 2121 // implement checked conversions here. This is inefficient when 2122 // actual control flow may be required in order to perform the 2123 // check, which it is for data member pointers (but not member 2124 // function pointers on Itanium and ARM). 2125 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2126 } 2127 2128 case CK_ARCProduceObject: 2129 return CGF.EmitARCRetainScalarExpr(E); 2130 case CK_ARCConsumeObject: 2131 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2132 case CK_ARCReclaimReturnedObject: 2133 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2134 case CK_ARCExtendBlockObject: 2135 return CGF.EmitARCExtendBlockObject(E); 2136 2137 case CK_CopyAndAutoreleaseBlockObject: 2138 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2139 2140 case CK_FloatingRealToComplex: 2141 case CK_FloatingComplexCast: 2142 case CK_IntegralRealToComplex: 2143 case CK_IntegralComplexCast: 2144 case CK_IntegralComplexToFloatingComplex: 2145 case CK_FloatingComplexToIntegralComplex: 2146 case CK_ConstructorConversion: 2147 case CK_ToUnion: 2148 llvm_unreachable("scalar cast to non-scalar value"); 2149 2150 case CK_LValueToRValue: 2151 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2152 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2153 return Visit(const_cast<Expr*>(E)); 2154 2155 case CK_IntegralToPointer: { 2156 Value *Src = Visit(const_cast<Expr*>(E)); 2157 2158 // First, convert to the correct width so that we control the kind of 2159 // extension. 2160 auto DestLLVMTy = ConvertType(DestTy); 2161 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2162 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2163 llvm::Value* IntResult = 2164 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2165 2166 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2167 2168 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2169 // Going from integer to pointer that could be dynamic requires reloading 2170 // dynamic information from invariant.group. 2171 if (DestTy.mayBeDynamicClass()) 2172 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2173 } 2174 return IntToPtr; 2175 } 2176 case CK_PointerToIntegral: { 2177 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2178 auto *PtrExpr = Visit(E); 2179 2180 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2181 const QualType SrcType = E->getType(); 2182 2183 // Casting to integer requires stripping dynamic information as it does 2184 // not carries it. 2185 if (SrcType.mayBeDynamicClass()) 2186 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2187 } 2188 2189 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2190 } 2191 case CK_ToVoid: { 2192 CGF.EmitIgnoredExpr(E); 2193 return nullptr; 2194 } 2195 case CK_VectorSplat: { 2196 llvm::Type *DstTy = ConvertType(DestTy); 2197 Value *Elt = Visit(const_cast<Expr*>(E)); 2198 // Splat the element across to all elements 2199 unsigned NumElements = DstTy->getVectorNumElements(); 2200 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2201 } 2202 2203 case CK_FixedPointCast: 2204 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2205 CE->getExprLoc()); 2206 2207 case CK_FixedPointToBoolean: 2208 assert(E->getType()->isFixedPointType() && 2209 "Expected src type to be fixed point type"); 2210 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2211 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2212 CE->getExprLoc()); 2213 2214 case CK_FixedPointToIntegral: 2215 assert(E->getType()->isFixedPointType() && 2216 "Expected src type to be fixed point type"); 2217 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2218 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2219 CE->getExprLoc()); 2220 2221 case CK_IntegralToFixedPoint: 2222 assert(E->getType()->isIntegerType() && 2223 "Expected src type to be an integer"); 2224 assert(DestTy->isFixedPointType() && 2225 "Expected dest type to be fixed point type"); 2226 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2227 CE->getExprLoc()); 2228 2229 case CK_IntegralCast: { 2230 ScalarConversionOpts Opts; 2231 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2232 if (!ICE->isPartOfExplicitCast()) 2233 Opts = ScalarConversionOpts(CGF.SanOpts); 2234 } 2235 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2236 CE->getExprLoc(), Opts); 2237 } 2238 case CK_IntegralToFloating: 2239 case CK_FloatingToIntegral: 2240 case CK_FloatingCast: 2241 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2242 CE->getExprLoc()); 2243 case CK_BooleanToSignedIntegral: { 2244 ScalarConversionOpts Opts; 2245 Opts.TreatBooleanAsSigned = true; 2246 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2247 CE->getExprLoc(), Opts); 2248 } 2249 case CK_IntegralToBoolean: 2250 return EmitIntToBoolConversion(Visit(E)); 2251 case CK_PointerToBoolean: 2252 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2253 case CK_FloatingToBoolean: 2254 return EmitFloatToBoolConversion(Visit(E)); 2255 case CK_MemberPointerToBoolean: { 2256 llvm::Value *MemPtr = Visit(E); 2257 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2258 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2259 } 2260 2261 case CK_FloatingComplexToReal: 2262 case CK_IntegralComplexToReal: 2263 return CGF.EmitComplexExpr(E, false, true).first; 2264 2265 case CK_FloatingComplexToBoolean: 2266 case CK_IntegralComplexToBoolean: { 2267 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2268 2269 // TODO: kill this function off, inline appropriate case here 2270 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2271 CE->getExprLoc()); 2272 } 2273 2274 case CK_ZeroToOCLOpaqueType: { 2275 assert((DestTy->isEventT() || DestTy->isQueueT() || 2276 DestTy->isOCLIntelSubgroupAVCType()) && 2277 "CK_ZeroToOCLEvent cast on non-event type"); 2278 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2279 } 2280 2281 case CK_IntToOCLSampler: 2282 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2283 2284 } // end of switch 2285 2286 llvm_unreachable("unknown scalar cast"); 2287 } 2288 2289 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2290 CodeGenFunction::StmtExprEvaluation eval(CGF); 2291 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2292 !E->getType()->isVoidType()); 2293 if (!RetAlloca.isValid()) 2294 return nullptr; 2295 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2296 E->getExprLoc()); 2297 } 2298 2299 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2300 CGF.enterFullExpression(E); 2301 CodeGenFunction::RunCleanupsScope Scope(CGF); 2302 Value *V = Visit(E->getSubExpr()); 2303 // Defend against dominance problems caused by jumps out of expression 2304 // evaluation through the shared cleanup block. 2305 Scope.ForceCleanup({&V}); 2306 return V; 2307 } 2308 2309 //===----------------------------------------------------------------------===// 2310 // Unary Operators 2311 //===----------------------------------------------------------------------===// 2312 2313 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2314 llvm::Value *InVal, bool IsInc) { 2315 BinOpInfo BinOp; 2316 BinOp.LHS = InVal; 2317 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2318 BinOp.Ty = E->getType(); 2319 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2320 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2321 BinOp.E = E; 2322 return BinOp; 2323 } 2324 2325 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2326 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2327 llvm::Value *Amount = 2328 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2329 StringRef Name = IsInc ? "inc" : "dec"; 2330 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2331 case LangOptions::SOB_Defined: 2332 return Builder.CreateAdd(InVal, Amount, Name); 2333 case LangOptions::SOB_Undefined: 2334 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2335 return Builder.CreateNSWAdd(InVal, Amount, Name); 2336 LLVM_FALLTHROUGH; 2337 case LangOptions::SOB_Trapping: 2338 if (!E->canOverflow()) 2339 return Builder.CreateNSWAdd(InVal, Amount, Name); 2340 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 2341 } 2342 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2343 } 2344 2345 llvm::Value * 2346 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2347 bool isInc, bool isPre) { 2348 2349 QualType type = E->getSubExpr()->getType(); 2350 llvm::PHINode *atomicPHI = nullptr; 2351 llvm::Value *value; 2352 llvm::Value *input; 2353 2354 int amount = (isInc ? 1 : -1); 2355 bool isSubtraction = !isInc; 2356 2357 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2358 type = atomicTy->getValueType(); 2359 if (isInc && type->isBooleanType()) { 2360 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2361 if (isPre) { 2362 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 2363 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2364 return Builder.getTrue(); 2365 } 2366 // For atomic bool increment, we just store true and return it for 2367 // preincrement, do an atomic swap with true for postincrement 2368 return Builder.CreateAtomicRMW( 2369 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 2370 llvm::AtomicOrdering::SequentiallyConsistent); 2371 } 2372 // Special case for atomic increment / decrement on integers, emit 2373 // atomicrmw instructions. We skip this if we want to be doing overflow 2374 // checking, and fall into the slow path with the atomic cmpxchg loop. 2375 if (!type->isBooleanType() && type->isIntegerType() && 2376 !(type->isUnsignedIntegerType() && 2377 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2378 CGF.getLangOpts().getSignedOverflowBehavior() != 2379 LangOptions::SOB_Trapping) { 2380 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2381 llvm::AtomicRMWInst::Sub; 2382 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2383 llvm::Instruction::Sub; 2384 llvm::Value *amt = CGF.EmitToMemory( 2385 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2386 llvm::Value *old = Builder.CreateAtomicRMW(aop, 2387 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 2388 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2389 } 2390 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2391 input = value; 2392 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2393 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2394 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2395 value = CGF.EmitToMemory(value, type); 2396 Builder.CreateBr(opBB); 2397 Builder.SetInsertPoint(opBB); 2398 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2399 atomicPHI->addIncoming(value, startBB); 2400 value = atomicPHI; 2401 } else { 2402 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2403 input = value; 2404 } 2405 2406 // Special case of integer increment that we have to check first: bool++. 2407 // Due to promotion rules, we get: 2408 // bool++ -> bool = bool + 1 2409 // -> bool = (int)bool + 1 2410 // -> bool = ((int)bool + 1 != 0) 2411 // An interesting aspect of this is that increment is always true. 2412 // Decrement does not have this property. 2413 if (isInc && type->isBooleanType()) { 2414 value = Builder.getTrue(); 2415 2416 // Most common case by far: integer increment. 2417 } else if (type->isIntegerType()) { 2418 // Note that signed integer inc/dec with width less than int can't 2419 // overflow because of promotion rules; we're just eliding a few steps here. 2420 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2421 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2422 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2423 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2424 value = 2425 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2426 } else { 2427 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2428 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2429 } 2430 2431 // Next most common: pointer increment. 2432 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2433 QualType type = ptr->getPointeeType(); 2434 2435 // VLA types don't have constant size. 2436 if (const VariableArrayType *vla 2437 = CGF.getContext().getAsVariableArrayType(type)) { 2438 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2439 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2440 if (CGF.getLangOpts().isSignedOverflowDefined()) 2441 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2442 else 2443 value = CGF.EmitCheckedInBoundsGEP( 2444 value, numElts, /*SignedIndices=*/false, isSubtraction, 2445 E->getExprLoc(), "vla.inc"); 2446 2447 // Arithmetic on function pointers (!) is just +-1. 2448 } else if (type->isFunctionType()) { 2449 llvm::Value *amt = Builder.getInt32(amount); 2450 2451 value = CGF.EmitCastToVoidPtr(value); 2452 if (CGF.getLangOpts().isSignedOverflowDefined()) 2453 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2454 else 2455 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2456 isSubtraction, E->getExprLoc(), 2457 "incdec.funcptr"); 2458 value = Builder.CreateBitCast(value, input->getType()); 2459 2460 // For everything else, we can just do a simple increment. 2461 } else { 2462 llvm::Value *amt = Builder.getInt32(amount); 2463 if (CGF.getLangOpts().isSignedOverflowDefined()) 2464 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2465 else 2466 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2467 isSubtraction, E->getExprLoc(), 2468 "incdec.ptr"); 2469 } 2470 2471 // Vector increment/decrement. 2472 } else if (type->isVectorType()) { 2473 if (type->hasIntegerRepresentation()) { 2474 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2475 2476 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2477 } else { 2478 value = Builder.CreateFAdd( 2479 value, 2480 llvm::ConstantFP::get(value->getType(), amount), 2481 isInc ? "inc" : "dec"); 2482 } 2483 2484 // Floating point. 2485 } else if (type->isRealFloatingType()) { 2486 // Add the inc/dec to the real part. 2487 llvm::Value *amt; 2488 2489 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2490 // Another special case: half FP increment should be done via float 2491 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2492 value = Builder.CreateCall( 2493 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2494 CGF.CGM.FloatTy), 2495 input, "incdec.conv"); 2496 } else { 2497 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2498 } 2499 } 2500 2501 if (value->getType()->isFloatTy()) 2502 amt = llvm::ConstantFP::get(VMContext, 2503 llvm::APFloat(static_cast<float>(amount))); 2504 else if (value->getType()->isDoubleTy()) 2505 amt = llvm::ConstantFP::get(VMContext, 2506 llvm::APFloat(static_cast<double>(amount))); 2507 else { 2508 // Remaining types are Half, LongDouble or __float128. Convert from float. 2509 llvm::APFloat F(static_cast<float>(amount)); 2510 bool ignored; 2511 const llvm::fltSemantics *FS; 2512 // Don't use getFloatTypeSemantics because Half isn't 2513 // necessarily represented using the "half" LLVM type. 2514 if (value->getType()->isFP128Ty()) 2515 FS = &CGF.getTarget().getFloat128Format(); 2516 else if (value->getType()->isHalfTy()) 2517 FS = &CGF.getTarget().getHalfFormat(); 2518 else 2519 FS = &CGF.getTarget().getLongDoubleFormat(); 2520 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2521 amt = llvm::ConstantFP::get(VMContext, F); 2522 } 2523 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2524 2525 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2526 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2527 value = Builder.CreateCall( 2528 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2529 CGF.CGM.FloatTy), 2530 value, "incdec.conv"); 2531 } else { 2532 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2533 } 2534 } 2535 2536 // Objective-C pointer types. 2537 } else { 2538 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2539 value = CGF.EmitCastToVoidPtr(value); 2540 2541 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2542 if (!isInc) size = -size; 2543 llvm::Value *sizeValue = 2544 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2545 2546 if (CGF.getLangOpts().isSignedOverflowDefined()) 2547 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2548 else 2549 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2550 /*SignedIndices=*/false, isSubtraction, 2551 E->getExprLoc(), "incdec.objptr"); 2552 value = Builder.CreateBitCast(value, input->getType()); 2553 } 2554 2555 if (atomicPHI) { 2556 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2557 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2558 auto Pair = CGF.EmitAtomicCompareExchange( 2559 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2560 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2561 llvm::Value *success = Pair.second; 2562 atomicPHI->addIncoming(old, curBlock); 2563 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2564 Builder.SetInsertPoint(contBB); 2565 return isPre ? value : input; 2566 } 2567 2568 // Store the updated result through the lvalue. 2569 if (LV.isBitField()) 2570 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2571 else 2572 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2573 2574 // If this is a postinc, return the value read from memory, otherwise use the 2575 // updated value. 2576 return isPre ? value : input; 2577 } 2578 2579 2580 2581 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2582 TestAndClearIgnoreResultAssign(); 2583 Value *Op = Visit(E->getSubExpr()); 2584 2585 // Generate a unary FNeg for FP ops. 2586 if (Op->getType()->isFPOrFPVectorTy()) 2587 return Builder.CreateFNeg(Op, "fneg"); 2588 2589 // Emit unary minus with EmitSub so we handle overflow cases etc. 2590 BinOpInfo BinOp; 2591 BinOp.RHS = Op; 2592 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2593 BinOp.Ty = E->getType(); 2594 BinOp.Opcode = BO_Sub; 2595 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2596 BinOp.E = E; 2597 return EmitSub(BinOp); 2598 } 2599 2600 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2601 TestAndClearIgnoreResultAssign(); 2602 Value *Op = Visit(E->getSubExpr()); 2603 return Builder.CreateNot(Op, "neg"); 2604 } 2605 2606 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2607 // Perform vector logical not on comparison with zero vector. 2608 if (E->getType()->isExtVectorType()) { 2609 Value *Oper = Visit(E->getSubExpr()); 2610 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2611 Value *Result; 2612 if (Oper->getType()->isFPOrFPVectorTy()) 2613 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2614 else 2615 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2616 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2617 } 2618 2619 // Compare operand to zero. 2620 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2621 2622 // Invert value. 2623 // TODO: Could dynamically modify easy computations here. For example, if 2624 // the operand is an icmp ne, turn into icmp eq. 2625 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2626 2627 // ZExt result to the expr type. 2628 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2629 } 2630 2631 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2632 // Try folding the offsetof to a constant. 2633 Expr::EvalResult EVResult; 2634 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2635 llvm::APSInt Value = EVResult.Val.getInt(); 2636 return Builder.getInt(Value); 2637 } 2638 2639 // Loop over the components of the offsetof to compute the value. 2640 unsigned n = E->getNumComponents(); 2641 llvm::Type* ResultType = ConvertType(E->getType()); 2642 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2643 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2644 for (unsigned i = 0; i != n; ++i) { 2645 OffsetOfNode ON = E->getComponent(i); 2646 llvm::Value *Offset = nullptr; 2647 switch (ON.getKind()) { 2648 case OffsetOfNode::Array: { 2649 // Compute the index 2650 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2651 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2652 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2653 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2654 2655 // Save the element type 2656 CurrentType = 2657 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2658 2659 // Compute the element size 2660 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2661 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2662 2663 // Multiply out to compute the result 2664 Offset = Builder.CreateMul(Idx, ElemSize); 2665 break; 2666 } 2667 2668 case OffsetOfNode::Field: { 2669 FieldDecl *MemberDecl = ON.getField(); 2670 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2671 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2672 2673 // Compute the index of the field in its parent. 2674 unsigned i = 0; 2675 // FIXME: It would be nice if we didn't have to loop here! 2676 for (RecordDecl::field_iterator Field = RD->field_begin(), 2677 FieldEnd = RD->field_end(); 2678 Field != FieldEnd; ++Field, ++i) { 2679 if (*Field == MemberDecl) 2680 break; 2681 } 2682 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2683 2684 // Compute the offset to the field 2685 int64_t OffsetInt = RL.getFieldOffset(i) / 2686 CGF.getContext().getCharWidth(); 2687 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2688 2689 // Save the element type. 2690 CurrentType = MemberDecl->getType(); 2691 break; 2692 } 2693 2694 case OffsetOfNode::Identifier: 2695 llvm_unreachable("dependent __builtin_offsetof"); 2696 2697 case OffsetOfNode::Base: { 2698 if (ON.getBase()->isVirtual()) { 2699 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2700 continue; 2701 } 2702 2703 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2704 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2705 2706 // Save the element type. 2707 CurrentType = ON.getBase()->getType(); 2708 2709 // Compute the offset to the base. 2710 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2711 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2712 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2713 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2714 break; 2715 } 2716 } 2717 Result = Builder.CreateAdd(Result, Offset); 2718 } 2719 return Result; 2720 } 2721 2722 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2723 /// argument of the sizeof expression as an integer. 2724 Value * 2725 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2726 const UnaryExprOrTypeTraitExpr *E) { 2727 QualType TypeToSize = E->getTypeOfArgument(); 2728 if (E->getKind() == UETT_SizeOf) { 2729 if (const VariableArrayType *VAT = 2730 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2731 if (E->isArgumentType()) { 2732 // sizeof(type) - make sure to emit the VLA size. 2733 CGF.EmitVariablyModifiedType(TypeToSize); 2734 } else { 2735 // C99 6.5.3.4p2: If the argument is an expression of type 2736 // VLA, it is evaluated. 2737 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2738 } 2739 2740 auto VlaSize = CGF.getVLASize(VAT); 2741 llvm::Value *size = VlaSize.NumElts; 2742 2743 // Scale the number of non-VLA elements by the non-VLA element size. 2744 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2745 if (!eltSize.isOne()) 2746 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2747 2748 return size; 2749 } 2750 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2751 auto Alignment = 2752 CGF.getContext() 2753 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2754 E->getTypeOfArgument()->getPointeeType())) 2755 .getQuantity(); 2756 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2757 } 2758 2759 // If this isn't sizeof(vla), the result must be constant; use the constant 2760 // folding logic so we don't have to duplicate it here. 2761 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2762 } 2763 2764 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2765 Expr *Op = E->getSubExpr(); 2766 if (Op->getType()->isAnyComplexType()) { 2767 // If it's an l-value, load through the appropriate subobject l-value. 2768 // Note that we have to ask E because Op might be an l-value that 2769 // this won't work for, e.g. an Obj-C property. 2770 if (E->isGLValue()) 2771 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2772 E->getExprLoc()).getScalarVal(); 2773 2774 // Otherwise, calculate and project. 2775 return CGF.EmitComplexExpr(Op, false, true).first; 2776 } 2777 2778 return Visit(Op); 2779 } 2780 2781 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2782 Expr *Op = E->getSubExpr(); 2783 if (Op->getType()->isAnyComplexType()) { 2784 // If it's an l-value, load through the appropriate subobject l-value. 2785 // Note that we have to ask E because Op might be an l-value that 2786 // this won't work for, e.g. an Obj-C property. 2787 if (Op->isGLValue()) 2788 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2789 E->getExprLoc()).getScalarVal(); 2790 2791 // Otherwise, calculate and project. 2792 return CGF.EmitComplexExpr(Op, true, false).second; 2793 } 2794 2795 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2796 // effects are evaluated, but not the actual value. 2797 if (Op->isGLValue()) 2798 CGF.EmitLValue(Op); 2799 else 2800 CGF.EmitScalarExpr(Op, true); 2801 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2802 } 2803 2804 //===----------------------------------------------------------------------===// 2805 // Binary Operators 2806 //===----------------------------------------------------------------------===// 2807 2808 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2809 TestAndClearIgnoreResultAssign(); 2810 BinOpInfo Result; 2811 Result.LHS = Visit(E->getLHS()); 2812 Result.RHS = Visit(E->getRHS()); 2813 Result.Ty = E->getType(); 2814 Result.Opcode = E->getOpcode(); 2815 Result.FPFeatures = E->getFPFeatures(); 2816 Result.E = E; 2817 return Result; 2818 } 2819 2820 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2821 const CompoundAssignOperator *E, 2822 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2823 Value *&Result) { 2824 QualType LHSTy = E->getLHS()->getType(); 2825 BinOpInfo OpInfo; 2826 2827 if (E->getComputationResultType()->isAnyComplexType()) 2828 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2829 2830 // Emit the RHS first. __block variables need to have the rhs evaluated 2831 // first, plus this should improve codegen a little. 2832 OpInfo.RHS = Visit(E->getRHS()); 2833 OpInfo.Ty = E->getComputationResultType(); 2834 OpInfo.Opcode = E->getOpcode(); 2835 OpInfo.FPFeatures = E->getFPFeatures(); 2836 OpInfo.E = E; 2837 // Load/convert the LHS. 2838 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2839 2840 llvm::PHINode *atomicPHI = nullptr; 2841 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2842 QualType type = atomicTy->getValueType(); 2843 if (!type->isBooleanType() && type->isIntegerType() && 2844 !(type->isUnsignedIntegerType() && 2845 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2846 CGF.getLangOpts().getSignedOverflowBehavior() != 2847 LangOptions::SOB_Trapping) { 2848 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2849 switch (OpInfo.Opcode) { 2850 // We don't have atomicrmw operands for *, %, /, <<, >> 2851 case BO_MulAssign: case BO_DivAssign: 2852 case BO_RemAssign: 2853 case BO_ShlAssign: 2854 case BO_ShrAssign: 2855 break; 2856 case BO_AddAssign: 2857 aop = llvm::AtomicRMWInst::Add; 2858 break; 2859 case BO_SubAssign: 2860 aop = llvm::AtomicRMWInst::Sub; 2861 break; 2862 case BO_AndAssign: 2863 aop = llvm::AtomicRMWInst::And; 2864 break; 2865 case BO_XorAssign: 2866 aop = llvm::AtomicRMWInst::Xor; 2867 break; 2868 case BO_OrAssign: 2869 aop = llvm::AtomicRMWInst::Or; 2870 break; 2871 default: 2872 llvm_unreachable("Invalid compound assignment type"); 2873 } 2874 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2875 llvm::Value *amt = CGF.EmitToMemory( 2876 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2877 E->getExprLoc()), 2878 LHSTy); 2879 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2880 llvm::AtomicOrdering::SequentiallyConsistent); 2881 return LHSLV; 2882 } 2883 } 2884 // FIXME: For floating point types, we should be saving and restoring the 2885 // floating point environment in the loop. 2886 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2887 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2888 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2889 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2890 Builder.CreateBr(opBB); 2891 Builder.SetInsertPoint(opBB); 2892 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2893 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2894 OpInfo.LHS = atomicPHI; 2895 } 2896 else 2897 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2898 2899 SourceLocation Loc = E->getExprLoc(); 2900 OpInfo.LHS = 2901 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2902 2903 // Expand the binary operator. 2904 Result = (this->*Func)(OpInfo); 2905 2906 // Convert the result back to the LHS type, 2907 // potentially with Implicit Conversion sanitizer check. 2908 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 2909 Loc, ScalarConversionOpts(CGF.SanOpts)); 2910 2911 if (atomicPHI) { 2912 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2913 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2914 auto Pair = CGF.EmitAtomicCompareExchange( 2915 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2916 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2917 llvm::Value *success = Pair.second; 2918 atomicPHI->addIncoming(old, curBlock); 2919 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2920 Builder.SetInsertPoint(contBB); 2921 return LHSLV; 2922 } 2923 2924 // Store the result value into the LHS lvalue. Bit-fields are handled 2925 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2926 // 'An assignment expression has the value of the left operand after the 2927 // assignment...'. 2928 if (LHSLV.isBitField()) 2929 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2930 else 2931 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2932 2933 return LHSLV; 2934 } 2935 2936 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2937 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2938 bool Ignore = TestAndClearIgnoreResultAssign(); 2939 Value *RHS = nullptr; 2940 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2941 2942 // If the result is clearly ignored, return now. 2943 if (Ignore) 2944 return nullptr; 2945 2946 // The result of an assignment in C is the assigned r-value. 2947 if (!CGF.getLangOpts().CPlusPlus) 2948 return RHS; 2949 2950 // If the lvalue is non-volatile, return the computed value of the assignment. 2951 if (!LHS.isVolatileQualified()) 2952 return RHS; 2953 2954 // Otherwise, reload the value. 2955 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2956 } 2957 2958 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2959 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2960 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2961 2962 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2963 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2964 SanitizerKind::IntegerDivideByZero)); 2965 } 2966 2967 const auto *BO = cast<BinaryOperator>(Ops.E); 2968 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2969 Ops.Ty->hasSignedIntegerRepresentation() && 2970 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2971 Ops.mayHaveIntegerOverflow()) { 2972 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2973 2974 llvm::Value *IntMin = 2975 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2976 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2977 2978 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2979 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2980 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2981 Checks.push_back( 2982 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2983 } 2984 2985 if (Checks.size() > 0) 2986 EmitBinOpCheck(Checks, Ops); 2987 } 2988 2989 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2990 { 2991 CodeGenFunction::SanitizerScope SanScope(&CGF); 2992 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2993 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2994 Ops.Ty->isIntegerType() && 2995 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2996 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2997 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2998 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2999 Ops.Ty->isRealFloatingType() && 3000 Ops.mayHaveFloatDivisionByZero()) { 3001 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3002 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3003 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3004 Ops); 3005 } 3006 } 3007 3008 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3009 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3010 if (CGF.getLangOpts().OpenCL && 3011 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 3012 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3013 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3014 // build option allows an application to specify that single precision 3015 // floating-point divide (x/y and 1/x) and sqrt used in the program 3016 // source are correctly rounded. 3017 llvm::Type *ValTy = Val->getType(); 3018 if (ValTy->isFloatTy() || 3019 (isa<llvm::VectorType>(ValTy) && 3020 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3021 CGF.SetFPAccuracy(Val, 2.5); 3022 } 3023 return Val; 3024 } 3025 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3026 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3027 else 3028 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3029 } 3030 3031 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3032 // Rem in C can't be a floating point type: C99 6.5.5p2. 3033 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3034 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3035 Ops.Ty->isIntegerType() && 3036 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3037 CodeGenFunction::SanitizerScope SanScope(&CGF); 3038 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3039 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3040 } 3041 3042 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3043 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3044 else 3045 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3046 } 3047 3048 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3049 unsigned IID; 3050 unsigned OpID = 0; 3051 3052 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3053 switch (Ops.Opcode) { 3054 case BO_Add: 3055 case BO_AddAssign: 3056 OpID = 1; 3057 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3058 llvm::Intrinsic::uadd_with_overflow; 3059 break; 3060 case BO_Sub: 3061 case BO_SubAssign: 3062 OpID = 2; 3063 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3064 llvm::Intrinsic::usub_with_overflow; 3065 break; 3066 case BO_Mul: 3067 case BO_MulAssign: 3068 OpID = 3; 3069 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3070 llvm::Intrinsic::umul_with_overflow; 3071 break; 3072 default: 3073 llvm_unreachable("Unsupported operation for overflow detection"); 3074 } 3075 OpID <<= 1; 3076 if (isSigned) 3077 OpID |= 1; 3078 3079 CodeGenFunction::SanitizerScope SanScope(&CGF); 3080 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3081 3082 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3083 3084 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3085 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3086 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3087 3088 // Handle overflow with llvm.trap if no custom handler has been specified. 3089 const std::string *handlerName = 3090 &CGF.getLangOpts().OverflowHandler; 3091 if (handlerName->empty()) { 3092 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3093 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3094 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3095 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3096 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3097 : SanitizerKind::UnsignedIntegerOverflow; 3098 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3099 } else 3100 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3101 return result; 3102 } 3103 3104 // Branch in case of overflow. 3105 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3106 llvm::BasicBlock *continueBB = 3107 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3108 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3109 3110 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3111 3112 // If an overflow handler is set, then we want to call it and then use its 3113 // result, if it returns. 3114 Builder.SetInsertPoint(overflowBB); 3115 3116 // Get the overflow handler. 3117 llvm::Type *Int8Ty = CGF.Int8Ty; 3118 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3119 llvm::FunctionType *handlerTy = 3120 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3121 llvm::FunctionCallee handler = 3122 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3123 3124 // Sign extend the args to 64-bit, so that we can use the same handler for 3125 // all types of overflow. 3126 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3127 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3128 3129 // Call the handler with the two arguments, the operation, and the size of 3130 // the result. 3131 llvm::Value *handlerArgs[] = { 3132 lhs, 3133 rhs, 3134 Builder.getInt8(OpID), 3135 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3136 }; 3137 llvm::Value *handlerResult = 3138 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3139 3140 // Truncate the result back to the desired size. 3141 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3142 Builder.CreateBr(continueBB); 3143 3144 Builder.SetInsertPoint(continueBB); 3145 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3146 phi->addIncoming(result, initialBB); 3147 phi->addIncoming(handlerResult, overflowBB); 3148 3149 return phi; 3150 } 3151 3152 /// Emit pointer + index arithmetic. 3153 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3154 const BinOpInfo &op, 3155 bool isSubtraction) { 3156 // Must have binary (not unary) expr here. Unary pointer 3157 // increment/decrement doesn't use this path. 3158 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3159 3160 Value *pointer = op.LHS; 3161 Expr *pointerOperand = expr->getLHS(); 3162 Value *index = op.RHS; 3163 Expr *indexOperand = expr->getRHS(); 3164 3165 // In a subtraction, the LHS is always the pointer. 3166 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3167 std::swap(pointer, index); 3168 std::swap(pointerOperand, indexOperand); 3169 } 3170 3171 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3172 3173 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3174 auto &DL = CGF.CGM.getDataLayout(); 3175 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3176 3177 // Some versions of glibc and gcc use idioms (particularly in their malloc 3178 // routines) that add a pointer-sized integer (known to be a pointer value) 3179 // to a null pointer in order to cast the value back to an integer or as 3180 // part of a pointer alignment algorithm. This is undefined behavior, but 3181 // we'd like to be able to compile programs that use it. 3182 // 3183 // Normally, we'd generate a GEP with a null-pointer base here in response 3184 // to that code, but it's also UB to dereference a pointer created that 3185 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3186 // generate a direct cast of the integer value to a pointer. 3187 // 3188 // The idiom (p = nullptr + N) is not met if any of the following are true: 3189 // 3190 // The operation is subtraction. 3191 // The index is not pointer-sized. 3192 // The pointer type is not byte-sized. 3193 // 3194 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3195 op.Opcode, 3196 expr->getLHS(), 3197 expr->getRHS())) 3198 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3199 3200 if (width != DL.getTypeSizeInBits(PtrTy)) { 3201 // Zero-extend or sign-extend the pointer value according to 3202 // whether the index is signed or not. 3203 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 3204 "idx.ext"); 3205 } 3206 3207 // If this is subtraction, negate the index. 3208 if (isSubtraction) 3209 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3210 3211 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3212 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3213 /*Accessed*/ false); 3214 3215 const PointerType *pointerType 3216 = pointerOperand->getType()->getAs<PointerType>(); 3217 if (!pointerType) { 3218 QualType objectType = pointerOperand->getType() 3219 ->castAs<ObjCObjectPointerType>() 3220 ->getPointeeType(); 3221 llvm::Value *objectSize 3222 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3223 3224 index = CGF.Builder.CreateMul(index, objectSize); 3225 3226 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3227 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3228 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3229 } 3230 3231 QualType elementType = pointerType->getPointeeType(); 3232 if (const VariableArrayType *vla 3233 = CGF.getContext().getAsVariableArrayType(elementType)) { 3234 // The element count here is the total number of non-VLA elements. 3235 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3236 3237 // Effectively, the multiply by the VLA size is part of the GEP. 3238 // GEP indexes are signed, and scaling an index isn't permitted to 3239 // signed-overflow, so we use the same semantics for our explicit 3240 // multiply. We suppress this if overflow is not undefined behavior. 3241 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3242 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3243 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3244 } else { 3245 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3246 pointer = 3247 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3248 op.E->getExprLoc(), "add.ptr"); 3249 } 3250 return pointer; 3251 } 3252 3253 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3254 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3255 // future proof. 3256 if (elementType->isVoidType() || elementType->isFunctionType()) { 3257 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3258 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3259 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3260 } 3261 3262 if (CGF.getLangOpts().isSignedOverflowDefined()) 3263 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3264 3265 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3266 op.E->getExprLoc(), "add.ptr"); 3267 } 3268 3269 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3270 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3271 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3272 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3273 // efficient operations. 3274 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 3275 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3276 bool negMul, bool negAdd) { 3277 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3278 3279 Value *MulOp0 = MulOp->getOperand(0); 3280 Value *MulOp1 = MulOp->getOperand(1); 3281 if (negMul) { 3282 MulOp0 = 3283 Builder.CreateFSub( 3284 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 3285 "neg"); 3286 } else if (negAdd) { 3287 Addend = 3288 Builder.CreateFSub( 3289 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 3290 "neg"); 3291 } 3292 3293 Value *FMulAdd = Builder.CreateCall( 3294 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3295 {MulOp0, MulOp1, Addend}); 3296 MulOp->eraseFromParent(); 3297 3298 return FMulAdd; 3299 } 3300 3301 // Check whether it would be legal to emit an fmuladd intrinsic call to 3302 // represent op and if so, build the fmuladd. 3303 // 3304 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3305 // Does NOT check the type of the operation - it's assumed that this function 3306 // will be called from contexts where it's known that the type is contractable. 3307 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3308 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3309 bool isSub=false) { 3310 3311 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3312 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3313 "Only fadd/fsub can be the root of an fmuladd."); 3314 3315 // Check whether this op is marked as fusable. 3316 if (!op.FPFeatures.allowFPContractWithinStatement()) 3317 return nullptr; 3318 3319 // We have a potentially fusable op. Look for a mul on one of the operands. 3320 // Also, make sure that the mul result isn't used directly. In that case, 3321 // there's no point creating a muladd operation. 3322 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3323 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3324 LHSBinOp->use_empty()) 3325 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3326 } 3327 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3328 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3329 RHSBinOp->use_empty()) 3330 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3331 } 3332 3333 return nullptr; 3334 } 3335 3336 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3337 if (op.LHS->getType()->isPointerTy() || 3338 op.RHS->getType()->isPointerTy()) 3339 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3340 3341 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3342 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3343 case LangOptions::SOB_Defined: 3344 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3345 case LangOptions::SOB_Undefined: 3346 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3347 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3348 LLVM_FALLTHROUGH; 3349 case LangOptions::SOB_Trapping: 3350 if (CanElideOverflowCheck(CGF.getContext(), op)) 3351 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3352 return EmitOverflowCheckedBinOp(op); 3353 } 3354 } 3355 3356 if (op.Ty->isUnsignedIntegerType() && 3357 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3358 !CanElideOverflowCheck(CGF.getContext(), op)) 3359 return EmitOverflowCheckedBinOp(op); 3360 3361 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3362 // Try to form an fmuladd. 3363 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3364 return FMulAdd; 3365 3366 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3367 return propagateFMFlags(V, op); 3368 } 3369 3370 if (op.isFixedPointBinOp()) 3371 return EmitFixedPointBinOp(op); 3372 3373 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3374 } 3375 3376 /// The resulting value must be calculated with exact precision, so the operands 3377 /// may not be the same type. 3378 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3379 using llvm::APSInt; 3380 using llvm::ConstantInt; 3381 3382 const auto *BinOp = cast<BinaryOperator>(op.E); 3383 3384 // The result is a fixed point type and at least one of the operands is fixed 3385 // point while the other is either fixed point or an int. This resulting type 3386 // should be determined by Sema::handleFixedPointConversions(). 3387 QualType ResultTy = op.Ty; 3388 QualType LHSTy = BinOp->getLHS()->getType(); 3389 QualType RHSTy = BinOp->getRHS()->getType(); 3390 ASTContext &Ctx = CGF.getContext(); 3391 Value *LHS = op.LHS; 3392 Value *RHS = op.RHS; 3393 3394 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3395 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3396 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3397 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3398 3399 // Convert the operands to the full precision type. 3400 Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema, 3401 BinOp->getExprLoc()); 3402 Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema, 3403 BinOp->getExprLoc()); 3404 3405 // Perform the actual addition. 3406 Value *Result; 3407 switch (BinOp->getOpcode()) { 3408 case BO_Add: { 3409 if (ResultFixedSema.isSaturated()) { 3410 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3411 ? llvm::Intrinsic::sadd_sat 3412 : llvm::Intrinsic::uadd_sat; 3413 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3414 } else { 3415 Result = Builder.CreateAdd(FullLHS, FullRHS); 3416 } 3417 break; 3418 } 3419 case BO_Sub: { 3420 if (ResultFixedSema.isSaturated()) { 3421 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3422 ? llvm::Intrinsic::ssub_sat 3423 : llvm::Intrinsic::usub_sat; 3424 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3425 } else { 3426 Result = Builder.CreateSub(FullLHS, FullRHS); 3427 } 3428 break; 3429 } 3430 case BO_LT: 3431 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS) 3432 : Builder.CreateICmpULT(FullLHS, FullRHS); 3433 case BO_GT: 3434 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS) 3435 : Builder.CreateICmpUGT(FullLHS, FullRHS); 3436 case BO_LE: 3437 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS) 3438 : Builder.CreateICmpULE(FullLHS, FullRHS); 3439 case BO_GE: 3440 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS) 3441 : Builder.CreateICmpUGE(FullLHS, FullRHS); 3442 case BO_EQ: 3443 // For equality operations, we assume any padding bits on unsigned types are 3444 // zero'd out. They could be overwritten through non-saturating operations 3445 // that cause overflow, but this leads to undefined behavior. 3446 return Builder.CreateICmpEQ(FullLHS, FullRHS); 3447 case BO_NE: 3448 return Builder.CreateICmpNE(FullLHS, FullRHS); 3449 case BO_Mul: 3450 case BO_Div: 3451 case BO_Shl: 3452 case BO_Shr: 3453 case BO_Cmp: 3454 case BO_LAnd: 3455 case BO_LOr: 3456 case BO_MulAssign: 3457 case BO_DivAssign: 3458 case BO_AddAssign: 3459 case BO_SubAssign: 3460 case BO_ShlAssign: 3461 case BO_ShrAssign: 3462 llvm_unreachable("Found unimplemented fixed point binary operation"); 3463 case BO_PtrMemD: 3464 case BO_PtrMemI: 3465 case BO_Rem: 3466 case BO_Xor: 3467 case BO_And: 3468 case BO_Or: 3469 case BO_Assign: 3470 case BO_RemAssign: 3471 case BO_AndAssign: 3472 case BO_XorAssign: 3473 case BO_OrAssign: 3474 case BO_Comma: 3475 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3476 } 3477 3478 // Convert to the result type. 3479 return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema, 3480 BinOp->getExprLoc()); 3481 } 3482 3483 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3484 // The LHS is always a pointer if either side is. 3485 if (!op.LHS->getType()->isPointerTy()) { 3486 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3487 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3488 case LangOptions::SOB_Defined: 3489 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3490 case LangOptions::SOB_Undefined: 3491 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3492 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3493 LLVM_FALLTHROUGH; 3494 case LangOptions::SOB_Trapping: 3495 if (CanElideOverflowCheck(CGF.getContext(), op)) 3496 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3497 return EmitOverflowCheckedBinOp(op); 3498 } 3499 } 3500 3501 if (op.Ty->isUnsignedIntegerType() && 3502 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3503 !CanElideOverflowCheck(CGF.getContext(), op)) 3504 return EmitOverflowCheckedBinOp(op); 3505 3506 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3507 // Try to form an fmuladd. 3508 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3509 return FMulAdd; 3510 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3511 return propagateFMFlags(V, op); 3512 } 3513 3514 if (op.isFixedPointBinOp()) 3515 return EmitFixedPointBinOp(op); 3516 3517 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3518 } 3519 3520 // If the RHS is not a pointer, then we have normal pointer 3521 // arithmetic. 3522 if (!op.RHS->getType()->isPointerTy()) 3523 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3524 3525 // Otherwise, this is a pointer subtraction. 3526 3527 // Do the raw subtraction part. 3528 llvm::Value *LHS 3529 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3530 llvm::Value *RHS 3531 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3532 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3533 3534 // Okay, figure out the element size. 3535 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3536 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3537 3538 llvm::Value *divisor = nullptr; 3539 3540 // For a variable-length array, this is going to be non-constant. 3541 if (const VariableArrayType *vla 3542 = CGF.getContext().getAsVariableArrayType(elementType)) { 3543 auto VlaSize = CGF.getVLASize(vla); 3544 elementType = VlaSize.Type; 3545 divisor = VlaSize.NumElts; 3546 3547 // Scale the number of non-VLA elements by the non-VLA element size. 3548 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3549 if (!eltSize.isOne()) 3550 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3551 3552 // For everything elese, we can just compute it, safe in the 3553 // assumption that Sema won't let anything through that we can't 3554 // safely compute the size of. 3555 } else { 3556 CharUnits elementSize; 3557 // Handle GCC extension for pointer arithmetic on void* and 3558 // function pointer types. 3559 if (elementType->isVoidType() || elementType->isFunctionType()) 3560 elementSize = CharUnits::One(); 3561 else 3562 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3563 3564 // Don't even emit the divide for element size of 1. 3565 if (elementSize.isOne()) 3566 return diffInChars; 3567 3568 divisor = CGF.CGM.getSize(elementSize); 3569 } 3570 3571 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3572 // pointer difference in C is only defined in the case where both operands 3573 // are pointing to elements of an array. 3574 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3575 } 3576 3577 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3578 llvm::IntegerType *Ty; 3579 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3580 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3581 else 3582 Ty = cast<llvm::IntegerType>(LHS->getType()); 3583 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3584 } 3585 3586 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3587 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3588 // RHS to the same size as the LHS. 3589 Value *RHS = Ops.RHS; 3590 if (Ops.LHS->getType() != RHS->getType()) 3591 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3592 3593 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3594 Ops.Ty->hasSignedIntegerRepresentation() && 3595 !CGF.getLangOpts().isSignedOverflowDefined() && 3596 !CGF.getLangOpts().CPlusPlus2a; 3597 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3598 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3599 if (CGF.getLangOpts().OpenCL) 3600 RHS = 3601 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3602 else if ((SanitizeBase || SanitizeExponent) && 3603 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3604 CodeGenFunction::SanitizerScope SanScope(&CGF); 3605 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3606 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3607 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3608 3609 if (SanitizeExponent) { 3610 Checks.push_back( 3611 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3612 } 3613 3614 if (SanitizeBase) { 3615 // Check whether we are shifting any non-zero bits off the top of the 3616 // integer. We only emit this check if exponent is valid - otherwise 3617 // instructions below will have undefined behavior themselves. 3618 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3619 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3620 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3621 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3622 llvm::Value *PromotedWidthMinusOne = 3623 (RHS == Ops.RHS) ? WidthMinusOne 3624 : GetWidthMinusOneValue(Ops.LHS, RHS); 3625 CGF.EmitBlock(CheckShiftBase); 3626 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3627 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3628 /*NUW*/ true, /*NSW*/ true), 3629 "shl.check"); 3630 if (CGF.getLangOpts().CPlusPlus) { 3631 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3632 // Under C++11's rules, shifting a 1 bit into the sign bit is 3633 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3634 // define signed left shifts, so we use the C99 and C++11 rules there). 3635 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3636 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3637 } 3638 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3639 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3640 CGF.EmitBlock(Cont); 3641 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3642 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3643 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3644 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3645 } 3646 3647 assert(!Checks.empty()); 3648 EmitBinOpCheck(Checks, Ops); 3649 } 3650 3651 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3652 } 3653 3654 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3655 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3656 // RHS to the same size as the LHS. 3657 Value *RHS = Ops.RHS; 3658 if (Ops.LHS->getType() != RHS->getType()) 3659 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3660 3661 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3662 if (CGF.getLangOpts().OpenCL) 3663 RHS = 3664 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3665 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3666 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3667 CodeGenFunction::SanitizerScope SanScope(&CGF); 3668 llvm::Value *Valid = 3669 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3670 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3671 } 3672 3673 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3674 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3675 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3676 } 3677 3678 enum IntrinsicType { VCMPEQ, VCMPGT }; 3679 // return corresponding comparison intrinsic for given vector type 3680 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3681 BuiltinType::Kind ElemKind) { 3682 switch (ElemKind) { 3683 default: llvm_unreachable("unexpected element type"); 3684 case BuiltinType::Char_U: 3685 case BuiltinType::UChar: 3686 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3687 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3688 case BuiltinType::Char_S: 3689 case BuiltinType::SChar: 3690 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3691 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3692 case BuiltinType::UShort: 3693 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3694 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3695 case BuiltinType::Short: 3696 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3697 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3698 case BuiltinType::UInt: 3699 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3700 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3701 case BuiltinType::Int: 3702 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3703 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3704 case BuiltinType::ULong: 3705 case BuiltinType::ULongLong: 3706 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3707 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3708 case BuiltinType::Long: 3709 case BuiltinType::LongLong: 3710 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3711 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3712 case BuiltinType::Float: 3713 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3714 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3715 case BuiltinType::Double: 3716 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3717 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3718 } 3719 } 3720 3721 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3722 llvm::CmpInst::Predicate UICmpOpc, 3723 llvm::CmpInst::Predicate SICmpOpc, 3724 llvm::CmpInst::Predicate FCmpOpc) { 3725 TestAndClearIgnoreResultAssign(); 3726 Value *Result; 3727 QualType LHSTy = E->getLHS()->getType(); 3728 QualType RHSTy = E->getRHS()->getType(); 3729 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3730 assert(E->getOpcode() == BO_EQ || 3731 E->getOpcode() == BO_NE); 3732 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3733 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3734 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3735 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3736 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3737 BinOpInfo BOInfo = EmitBinOps(E); 3738 Value *LHS = BOInfo.LHS; 3739 Value *RHS = BOInfo.RHS; 3740 3741 // If AltiVec, the comparison results in a numeric type, so we use 3742 // intrinsics comparing vectors and giving 0 or 1 as a result 3743 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3744 // constants for mapping CR6 register bits to predicate result 3745 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3746 3747 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3748 3749 // in several cases vector arguments order will be reversed 3750 Value *FirstVecArg = LHS, 3751 *SecondVecArg = RHS; 3752 3753 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 3754 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3755 BuiltinType::Kind ElementKind = BTy->getKind(); 3756 3757 switch(E->getOpcode()) { 3758 default: llvm_unreachable("is not a comparison operation"); 3759 case BO_EQ: 3760 CR6 = CR6_LT; 3761 ID = GetIntrinsic(VCMPEQ, ElementKind); 3762 break; 3763 case BO_NE: 3764 CR6 = CR6_EQ; 3765 ID = GetIntrinsic(VCMPEQ, ElementKind); 3766 break; 3767 case BO_LT: 3768 CR6 = CR6_LT; 3769 ID = GetIntrinsic(VCMPGT, ElementKind); 3770 std::swap(FirstVecArg, SecondVecArg); 3771 break; 3772 case BO_GT: 3773 CR6 = CR6_LT; 3774 ID = GetIntrinsic(VCMPGT, ElementKind); 3775 break; 3776 case BO_LE: 3777 if (ElementKind == BuiltinType::Float) { 3778 CR6 = CR6_LT; 3779 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3780 std::swap(FirstVecArg, SecondVecArg); 3781 } 3782 else { 3783 CR6 = CR6_EQ; 3784 ID = GetIntrinsic(VCMPGT, ElementKind); 3785 } 3786 break; 3787 case BO_GE: 3788 if (ElementKind == BuiltinType::Float) { 3789 CR6 = CR6_LT; 3790 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3791 } 3792 else { 3793 CR6 = CR6_EQ; 3794 ID = GetIntrinsic(VCMPGT, ElementKind); 3795 std::swap(FirstVecArg, SecondVecArg); 3796 } 3797 break; 3798 } 3799 3800 Value *CR6Param = Builder.getInt32(CR6); 3801 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3802 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3803 3804 // The result type of intrinsic may not be same as E->getType(). 3805 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3806 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3807 // do nothing, if ResultTy is not i1 at the same time, it will cause 3808 // crash later. 3809 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3810 if (ResultTy->getBitWidth() > 1 && 3811 E->getType() == CGF.getContext().BoolTy) 3812 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3813 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3814 E->getExprLoc()); 3815 } 3816 3817 if (BOInfo.isFixedPointBinOp()) { 3818 Result = EmitFixedPointBinOp(BOInfo); 3819 } else if (LHS->getType()->isFPOrFPVectorTy()) { 3820 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3821 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3822 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3823 } else { 3824 // Unsigned integers and pointers. 3825 3826 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3827 !isa<llvm::ConstantPointerNull>(LHS) && 3828 !isa<llvm::ConstantPointerNull>(RHS)) { 3829 3830 // Dynamic information is required to be stripped for comparisons, 3831 // because it could leak the dynamic information. Based on comparisons 3832 // of pointers to dynamic objects, the optimizer can replace one pointer 3833 // with another, which might be incorrect in presence of invariant 3834 // groups. Comparison with null is safe because null does not carry any 3835 // dynamic information. 3836 if (LHSTy.mayBeDynamicClass()) 3837 LHS = Builder.CreateStripInvariantGroup(LHS); 3838 if (RHSTy.mayBeDynamicClass()) 3839 RHS = Builder.CreateStripInvariantGroup(RHS); 3840 } 3841 3842 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3843 } 3844 3845 // If this is a vector comparison, sign extend the result to the appropriate 3846 // vector integer type and return it (don't convert to bool). 3847 if (LHSTy->isVectorType()) 3848 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3849 3850 } else { 3851 // Complex Comparison: can only be an equality comparison. 3852 CodeGenFunction::ComplexPairTy LHS, RHS; 3853 QualType CETy; 3854 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3855 LHS = CGF.EmitComplexExpr(E->getLHS()); 3856 CETy = CTy->getElementType(); 3857 } else { 3858 LHS.first = Visit(E->getLHS()); 3859 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3860 CETy = LHSTy; 3861 } 3862 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3863 RHS = CGF.EmitComplexExpr(E->getRHS()); 3864 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3865 CTy->getElementType()) && 3866 "The element types must always match."); 3867 (void)CTy; 3868 } else { 3869 RHS.first = Visit(E->getRHS()); 3870 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3871 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3872 "The element types must always match."); 3873 } 3874 3875 Value *ResultR, *ResultI; 3876 if (CETy->isRealFloatingType()) { 3877 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3878 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3879 } else { 3880 // Complex comparisons can only be equality comparisons. As such, signed 3881 // and unsigned opcodes are the same. 3882 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3883 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3884 } 3885 3886 if (E->getOpcode() == BO_EQ) { 3887 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3888 } else { 3889 assert(E->getOpcode() == BO_NE && 3890 "Complex comparison other than == or != ?"); 3891 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3892 } 3893 } 3894 3895 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3896 E->getExprLoc()); 3897 } 3898 3899 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3900 bool Ignore = TestAndClearIgnoreResultAssign(); 3901 3902 Value *RHS; 3903 LValue LHS; 3904 3905 switch (E->getLHS()->getType().getObjCLifetime()) { 3906 case Qualifiers::OCL_Strong: 3907 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3908 break; 3909 3910 case Qualifiers::OCL_Autoreleasing: 3911 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3912 break; 3913 3914 case Qualifiers::OCL_ExplicitNone: 3915 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3916 break; 3917 3918 case Qualifiers::OCL_Weak: 3919 RHS = Visit(E->getRHS()); 3920 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3921 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3922 break; 3923 3924 case Qualifiers::OCL_None: 3925 // __block variables need to have the rhs evaluated first, plus 3926 // this should improve codegen just a little. 3927 RHS = Visit(E->getRHS()); 3928 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3929 3930 // Store the value into the LHS. Bit-fields are handled specially 3931 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3932 // 'An assignment expression has the value of the left operand after 3933 // the assignment...'. 3934 if (LHS.isBitField()) { 3935 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3936 } else { 3937 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3938 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3939 } 3940 } 3941 3942 // If the result is clearly ignored, return now. 3943 if (Ignore) 3944 return nullptr; 3945 3946 // The result of an assignment in C is the assigned r-value. 3947 if (!CGF.getLangOpts().CPlusPlus) 3948 return RHS; 3949 3950 // If the lvalue is non-volatile, return the computed value of the assignment. 3951 if (!LHS.isVolatileQualified()) 3952 return RHS; 3953 3954 // Otherwise, reload the value. 3955 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3956 } 3957 3958 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3959 // Perform vector logical and on comparisons with zero vectors. 3960 if (E->getType()->isVectorType()) { 3961 CGF.incrementProfileCounter(E); 3962 3963 Value *LHS = Visit(E->getLHS()); 3964 Value *RHS = Visit(E->getRHS()); 3965 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3966 if (LHS->getType()->isFPOrFPVectorTy()) { 3967 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3968 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3969 } else { 3970 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3971 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3972 } 3973 Value *And = Builder.CreateAnd(LHS, RHS); 3974 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3975 } 3976 3977 llvm::Type *ResTy = ConvertType(E->getType()); 3978 3979 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3980 // If we have 1 && X, just emit X without inserting the control flow. 3981 bool LHSCondVal; 3982 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3983 if (LHSCondVal) { // If we have 1 && X, just emit X. 3984 CGF.incrementProfileCounter(E); 3985 3986 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3987 // ZExt result to int or bool. 3988 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3989 } 3990 3991 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3992 if (!CGF.ContainsLabel(E->getRHS())) 3993 return llvm::Constant::getNullValue(ResTy); 3994 } 3995 3996 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3997 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3998 3999 CodeGenFunction::ConditionalEvaluation eval(CGF); 4000 4001 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4002 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4003 CGF.getProfileCount(E->getRHS())); 4004 4005 // Any edges into the ContBlock are now from an (indeterminate number of) 4006 // edges from this first condition. All of these values will be false. Start 4007 // setting up the PHI node in the Cont Block for this. 4008 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4009 "", ContBlock); 4010 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4011 PI != PE; ++PI) 4012 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4013 4014 eval.begin(CGF); 4015 CGF.EmitBlock(RHSBlock); 4016 CGF.incrementProfileCounter(E); 4017 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4018 eval.end(CGF); 4019 4020 // Reaquire the RHS block, as there may be subblocks inserted. 4021 RHSBlock = Builder.GetInsertBlock(); 4022 4023 // Emit an unconditional branch from this block to ContBlock. 4024 { 4025 // There is no need to emit line number for unconditional branch. 4026 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4027 CGF.EmitBlock(ContBlock); 4028 } 4029 // Insert an entry into the phi node for the edge with the value of RHSCond. 4030 PN->addIncoming(RHSCond, RHSBlock); 4031 4032 // Artificial location to preserve the scope information 4033 { 4034 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4035 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4036 } 4037 4038 // ZExt result to int. 4039 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4040 } 4041 4042 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4043 // Perform vector logical or on comparisons with zero vectors. 4044 if (E->getType()->isVectorType()) { 4045 CGF.incrementProfileCounter(E); 4046 4047 Value *LHS = Visit(E->getLHS()); 4048 Value *RHS = Visit(E->getRHS()); 4049 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4050 if (LHS->getType()->isFPOrFPVectorTy()) { 4051 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4052 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4053 } else { 4054 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4055 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4056 } 4057 Value *Or = Builder.CreateOr(LHS, RHS); 4058 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4059 } 4060 4061 llvm::Type *ResTy = ConvertType(E->getType()); 4062 4063 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4064 // If we have 0 || X, just emit X without inserting the control flow. 4065 bool LHSCondVal; 4066 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4067 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4068 CGF.incrementProfileCounter(E); 4069 4070 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4071 // ZExt result to int or bool. 4072 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4073 } 4074 4075 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4076 if (!CGF.ContainsLabel(E->getRHS())) 4077 return llvm::ConstantInt::get(ResTy, 1); 4078 } 4079 4080 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4081 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4082 4083 CodeGenFunction::ConditionalEvaluation eval(CGF); 4084 4085 // Branch on the LHS first. If it is true, go to the success (cont) block. 4086 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4087 CGF.getCurrentProfileCount() - 4088 CGF.getProfileCount(E->getRHS())); 4089 4090 // Any edges into the ContBlock are now from an (indeterminate number of) 4091 // edges from this first condition. All of these values will be true. Start 4092 // setting up the PHI node in the Cont Block for this. 4093 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4094 "", ContBlock); 4095 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4096 PI != PE; ++PI) 4097 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4098 4099 eval.begin(CGF); 4100 4101 // Emit the RHS condition as a bool value. 4102 CGF.EmitBlock(RHSBlock); 4103 CGF.incrementProfileCounter(E); 4104 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4105 4106 eval.end(CGF); 4107 4108 // Reaquire the RHS block, as there may be subblocks inserted. 4109 RHSBlock = Builder.GetInsertBlock(); 4110 4111 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4112 // into the phi node for the edge with the value of RHSCond. 4113 CGF.EmitBlock(ContBlock); 4114 PN->addIncoming(RHSCond, RHSBlock); 4115 4116 // ZExt result to int. 4117 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4118 } 4119 4120 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4121 CGF.EmitIgnoredExpr(E->getLHS()); 4122 CGF.EnsureInsertPoint(); 4123 return Visit(E->getRHS()); 4124 } 4125 4126 //===----------------------------------------------------------------------===// 4127 // Other Operators 4128 //===----------------------------------------------------------------------===// 4129 4130 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4131 /// expression is cheap enough and side-effect-free enough to evaluate 4132 /// unconditionally instead of conditionally. This is used to convert control 4133 /// flow into selects in some cases. 4134 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4135 CodeGenFunction &CGF) { 4136 // Anything that is an integer or floating point constant is fine. 4137 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4138 4139 // Even non-volatile automatic variables can't be evaluated unconditionally. 4140 // Referencing a thread_local may cause non-trivial initialization work to 4141 // occur. If we're inside a lambda and one of the variables is from the scope 4142 // outside the lambda, that function may have returned already. Reading its 4143 // locals is a bad idea. Also, these reads may introduce races there didn't 4144 // exist in the source-level program. 4145 } 4146 4147 4148 Value *ScalarExprEmitter:: 4149 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4150 TestAndClearIgnoreResultAssign(); 4151 4152 // Bind the common expression if necessary. 4153 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4154 4155 Expr *condExpr = E->getCond(); 4156 Expr *lhsExpr = E->getTrueExpr(); 4157 Expr *rhsExpr = E->getFalseExpr(); 4158 4159 // If the condition constant folds and can be elided, try to avoid emitting 4160 // the condition and the dead arm. 4161 bool CondExprBool; 4162 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4163 Expr *live = lhsExpr, *dead = rhsExpr; 4164 if (!CondExprBool) std::swap(live, dead); 4165 4166 // If the dead side doesn't have labels we need, just emit the Live part. 4167 if (!CGF.ContainsLabel(dead)) { 4168 if (CondExprBool) 4169 CGF.incrementProfileCounter(E); 4170 Value *Result = Visit(live); 4171 4172 // If the live part is a throw expression, it acts like it has a void 4173 // type, so evaluating it returns a null Value*. However, a conditional 4174 // with non-void type must return a non-null Value*. 4175 if (!Result && !E->getType()->isVoidType()) 4176 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4177 4178 return Result; 4179 } 4180 } 4181 4182 // OpenCL: If the condition is a vector, we can treat this condition like 4183 // the select function. 4184 if (CGF.getLangOpts().OpenCL 4185 && condExpr->getType()->isVectorType()) { 4186 CGF.incrementProfileCounter(E); 4187 4188 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4189 llvm::Value *LHS = Visit(lhsExpr); 4190 llvm::Value *RHS = Visit(rhsExpr); 4191 4192 llvm::Type *condType = ConvertType(condExpr->getType()); 4193 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4194 4195 unsigned numElem = vecTy->getNumElements(); 4196 llvm::Type *elemType = vecTy->getElementType(); 4197 4198 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4199 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4200 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 4201 llvm::VectorType::get(elemType, 4202 numElem), 4203 "sext"); 4204 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4205 4206 // Cast float to int to perform ANDs if necessary. 4207 llvm::Value *RHSTmp = RHS; 4208 llvm::Value *LHSTmp = LHS; 4209 bool wasCast = false; 4210 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4211 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4212 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4213 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4214 wasCast = true; 4215 } 4216 4217 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4218 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4219 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4220 if (wasCast) 4221 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4222 4223 return tmp5; 4224 } 4225 4226 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4227 // select instead of as control flow. We can only do this if it is cheap and 4228 // safe to evaluate the LHS and RHS unconditionally. 4229 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4230 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4231 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4232 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4233 4234 CGF.incrementProfileCounter(E, StepV); 4235 4236 llvm::Value *LHS = Visit(lhsExpr); 4237 llvm::Value *RHS = Visit(rhsExpr); 4238 if (!LHS) { 4239 // If the conditional has void type, make sure we return a null Value*. 4240 assert(!RHS && "LHS and RHS types must match"); 4241 return nullptr; 4242 } 4243 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4244 } 4245 4246 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4247 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4248 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4249 4250 CodeGenFunction::ConditionalEvaluation eval(CGF); 4251 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4252 CGF.getProfileCount(lhsExpr)); 4253 4254 CGF.EmitBlock(LHSBlock); 4255 CGF.incrementProfileCounter(E); 4256 eval.begin(CGF); 4257 Value *LHS = Visit(lhsExpr); 4258 eval.end(CGF); 4259 4260 LHSBlock = Builder.GetInsertBlock(); 4261 Builder.CreateBr(ContBlock); 4262 4263 CGF.EmitBlock(RHSBlock); 4264 eval.begin(CGF); 4265 Value *RHS = Visit(rhsExpr); 4266 eval.end(CGF); 4267 4268 RHSBlock = Builder.GetInsertBlock(); 4269 CGF.EmitBlock(ContBlock); 4270 4271 // If the LHS or RHS is a throw expression, it will be legitimately null. 4272 if (!LHS) 4273 return RHS; 4274 if (!RHS) 4275 return LHS; 4276 4277 // Create a PHI node for the real part. 4278 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4279 PN->addIncoming(LHS, LHSBlock); 4280 PN->addIncoming(RHS, RHSBlock); 4281 return PN; 4282 } 4283 4284 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4285 return Visit(E->getChosenSubExpr()); 4286 } 4287 4288 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4289 QualType Ty = VE->getType(); 4290 4291 if (Ty->isVariablyModifiedType()) 4292 CGF.EmitVariablyModifiedType(Ty); 4293 4294 Address ArgValue = Address::invalid(); 4295 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4296 4297 llvm::Type *ArgTy = ConvertType(VE->getType()); 4298 4299 // If EmitVAArg fails, emit an error. 4300 if (!ArgPtr.isValid()) { 4301 CGF.ErrorUnsupported(VE, "va_arg expression"); 4302 return llvm::UndefValue::get(ArgTy); 4303 } 4304 4305 // FIXME Volatility. 4306 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4307 4308 // If EmitVAArg promoted the type, we must truncate it. 4309 if (ArgTy != Val->getType()) { 4310 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4311 Val = Builder.CreateIntToPtr(Val, ArgTy); 4312 else 4313 Val = Builder.CreateTrunc(Val, ArgTy); 4314 } 4315 4316 return Val; 4317 } 4318 4319 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4320 return CGF.EmitBlockLiteral(block); 4321 } 4322 4323 // Convert a vec3 to vec4, or vice versa. 4324 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4325 Value *Src, unsigned NumElementsDst) { 4326 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4327 SmallVector<llvm::Constant*, 4> Args; 4328 Args.push_back(Builder.getInt32(0)); 4329 Args.push_back(Builder.getInt32(1)); 4330 Args.push_back(Builder.getInt32(2)); 4331 if (NumElementsDst == 4) 4332 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 4333 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 4334 return Builder.CreateShuffleVector(Src, UnV, Mask); 4335 } 4336 4337 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4338 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4339 // but could be scalar or vectors of different lengths, and either can be 4340 // pointer. 4341 // There are 4 cases: 4342 // 1. non-pointer -> non-pointer : needs 1 bitcast 4343 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4344 // 3. pointer -> non-pointer 4345 // a) pointer -> intptr_t : needs 1 ptrtoint 4346 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4347 // 4. non-pointer -> pointer 4348 // a) intptr_t -> pointer : needs 1 inttoptr 4349 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4350 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4351 // allow casting directly between pointer types and non-integer non-pointer 4352 // types. 4353 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4354 const llvm::DataLayout &DL, 4355 Value *Src, llvm::Type *DstTy, 4356 StringRef Name = "") { 4357 auto SrcTy = Src->getType(); 4358 4359 // Case 1. 4360 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4361 return Builder.CreateBitCast(Src, DstTy, Name); 4362 4363 // Case 2. 4364 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4365 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4366 4367 // Case 3. 4368 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4369 // Case 3b. 4370 if (!DstTy->isIntegerTy()) 4371 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4372 // Cases 3a and 3b. 4373 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4374 } 4375 4376 // Case 4b. 4377 if (!SrcTy->isIntegerTy()) 4378 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4379 // Cases 4a and 4b. 4380 return Builder.CreateIntToPtr(Src, DstTy, Name); 4381 } 4382 4383 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4384 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4385 llvm::Type *DstTy = ConvertType(E->getType()); 4386 4387 llvm::Type *SrcTy = Src->getType(); 4388 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4389 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4390 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4391 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4392 4393 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4394 // vector to get a vec4, then a bitcast if the target type is different. 4395 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4396 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4397 4398 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4399 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4400 DstTy); 4401 } 4402 4403 Src->setName("astype"); 4404 return Src; 4405 } 4406 4407 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4408 // to vec4 if the original type is not vec4, then a shuffle vector to 4409 // get a vec3. 4410 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4411 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4412 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 4413 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4414 Vec4Ty); 4415 } 4416 4417 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4418 Src->setName("astype"); 4419 return Src; 4420 } 4421 4422 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4423 Src, DstTy, "astype"); 4424 } 4425 4426 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4427 return CGF.EmitAtomicExpr(E).getScalarVal(); 4428 } 4429 4430 //===----------------------------------------------------------------------===// 4431 // Entry Point into this File 4432 //===----------------------------------------------------------------------===// 4433 4434 /// Emit the computation of the specified expression of scalar type, ignoring 4435 /// the result. 4436 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4437 assert(E && hasScalarEvaluationKind(E->getType()) && 4438 "Invalid scalar expression to emit"); 4439 4440 return ScalarExprEmitter(*this, IgnoreResultAssign) 4441 .Visit(const_cast<Expr *>(E)); 4442 } 4443 4444 /// Emit a conversion from the specified type to the specified destination type, 4445 /// both of which are LLVM scalar types. 4446 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4447 QualType DstTy, 4448 SourceLocation Loc) { 4449 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4450 "Invalid scalar expression to emit"); 4451 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4452 } 4453 4454 /// Emit a conversion from the specified complex type to the specified 4455 /// destination type, where the destination type is an LLVM scalar type. 4456 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4457 QualType SrcTy, 4458 QualType DstTy, 4459 SourceLocation Loc) { 4460 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4461 "Invalid complex -> scalar conversion"); 4462 return ScalarExprEmitter(*this) 4463 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4464 } 4465 4466 4467 llvm::Value *CodeGenFunction:: 4468 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4469 bool isInc, bool isPre) { 4470 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4471 } 4472 4473 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4474 // object->isa or (*object).isa 4475 // Generate code as for: *(Class*)object 4476 4477 Expr *BaseExpr = E->getBase(); 4478 Address Addr = Address::invalid(); 4479 if (BaseExpr->isRValue()) { 4480 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4481 } else { 4482 Addr = EmitLValue(BaseExpr).getAddress(); 4483 } 4484 4485 // Cast the address to Class*. 4486 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4487 return MakeAddrLValue(Addr, E->getType()); 4488 } 4489 4490 4491 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4492 const CompoundAssignOperator *E) { 4493 ScalarExprEmitter Scalar(*this); 4494 Value *Result = nullptr; 4495 switch (E->getOpcode()) { 4496 #define COMPOUND_OP(Op) \ 4497 case BO_##Op##Assign: \ 4498 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4499 Result) 4500 COMPOUND_OP(Mul); 4501 COMPOUND_OP(Div); 4502 COMPOUND_OP(Rem); 4503 COMPOUND_OP(Add); 4504 COMPOUND_OP(Sub); 4505 COMPOUND_OP(Shl); 4506 COMPOUND_OP(Shr); 4507 COMPOUND_OP(And); 4508 COMPOUND_OP(Xor); 4509 COMPOUND_OP(Or); 4510 #undef COMPOUND_OP 4511 4512 case BO_PtrMemD: 4513 case BO_PtrMemI: 4514 case BO_Mul: 4515 case BO_Div: 4516 case BO_Rem: 4517 case BO_Add: 4518 case BO_Sub: 4519 case BO_Shl: 4520 case BO_Shr: 4521 case BO_LT: 4522 case BO_GT: 4523 case BO_LE: 4524 case BO_GE: 4525 case BO_EQ: 4526 case BO_NE: 4527 case BO_Cmp: 4528 case BO_And: 4529 case BO_Xor: 4530 case BO_Or: 4531 case BO_LAnd: 4532 case BO_LOr: 4533 case BO_Assign: 4534 case BO_Comma: 4535 llvm_unreachable("Not valid compound assignment operators"); 4536 } 4537 4538 llvm_unreachable("Unhandled compound assignment operator"); 4539 } 4540 4541 struct GEPOffsetAndOverflow { 4542 // The total (signed) byte offset for the GEP. 4543 llvm::Value *TotalOffset; 4544 // The offset overflow flag - true if the total offset overflows. 4545 llvm::Value *OffsetOverflows; 4546 }; 4547 4548 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4549 /// and compute the total offset it applies from it's base pointer BasePtr. 4550 /// Returns offset in bytes and a boolean flag whether an overflow happened 4551 /// during evaluation. 4552 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4553 llvm::LLVMContext &VMContext, 4554 CodeGenModule &CGM, 4555 CGBuilderTy Builder) { 4556 const auto &DL = CGM.getDataLayout(); 4557 4558 // The total (signed) byte offset for the GEP. 4559 llvm::Value *TotalOffset = nullptr; 4560 4561 // Was the GEP already reduced to a constant? 4562 if (isa<llvm::Constant>(GEPVal)) { 4563 // Compute the offset by casting both pointers to integers and subtracting: 4564 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4565 Value *BasePtr_int = 4566 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4567 Value *GEPVal_int = 4568 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4569 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4570 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4571 } 4572 4573 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4574 assert(GEP->getPointerOperand() == BasePtr && 4575 "BasePtr must be the the base of the GEP."); 4576 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4577 4578 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4579 4580 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4581 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4582 auto *SAddIntrinsic = 4583 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4584 auto *SMulIntrinsic = 4585 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4586 4587 // The offset overflow flag - true if the total offset overflows. 4588 llvm::Value *OffsetOverflows = Builder.getFalse(); 4589 4590 /// Return the result of the given binary operation. 4591 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4592 llvm::Value *RHS) -> llvm::Value * { 4593 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4594 4595 // If the operands are constants, return a constant result. 4596 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4597 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4598 llvm::APInt N; 4599 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4600 /*Signed=*/true, N); 4601 if (HasOverflow) 4602 OffsetOverflows = Builder.getTrue(); 4603 return llvm::ConstantInt::get(VMContext, N); 4604 } 4605 } 4606 4607 // Otherwise, compute the result with checked arithmetic. 4608 auto *ResultAndOverflow = Builder.CreateCall( 4609 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4610 OffsetOverflows = Builder.CreateOr( 4611 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4612 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4613 }; 4614 4615 // Determine the total byte offset by looking at each GEP operand. 4616 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4617 GTI != GTE; ++GTI) { 4618 llvm::Value *LocalOffset; 4619 auto *Index = GTI.getOperand(); 4620 // Compute the local offset contributed by this indexing step: 4621 if (auto *STy = GTI.getStructTypeOrNull()) { 4622 // For struct indexing, the local offset is the byte position of the 4623 // specified field. 4624 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4625 LocalOffset = llvm::ConstantInt::get( 4626 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4627 } else { 4628 // Otherwise this is array-like indexing. The local offset is the index 4629 // multiplied by the element size. 4630 auto *ElementSize = llvm::ConstantInt::get( 4631 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4632 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4633 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4634 } 4635 4636 // If this is the first offset, set it as the total offset. Otherwise, add 4637 // the local offset into the running total. 4638 if (!TotalOffset || TotalOffset == Zero) 4639 TotalOffset = LocalOffset; 4640 else 4641 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4642 } 4643 4644 return {TotalOffset, OffsetOverflows}; 4645 } 4646 4647 Value * 4648 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, 4649 bool SignedIndices, bool IsSubtraction, 4650 SourceLocation Loc, const Twine &Name) { 4651 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4652 4653 // If the pointer overflow sanitizer isn't enabled, do nothing. 4654 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4655 return GEPVal; 4656 4657 llvm::Type *PtrTy = Ptr->getType(); 4658 4659 // Perform nullptr-and-offset check unless the nullptr is defined. 4660 bool PerformNullCheck = !NullPointerIsDefined( 4661 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 4662 // Check for overflows unless the GEP got constant-folded, 4663 // and only in the default address space 4664 bool PerformOverflowCheck = 4665 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 4666 4667 if (!(PerformNullCheck || PerformOverflowCheck)) 4668 return GEPVal; 4669 4670 const auto &DL = CGM.getDataLayout(); 4671 4672 SanitizerScope SanScope(this); 4673 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 4674 4675 GEPOffsetAndOverflow EvaluatedGEP = 4676 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 4677 4678 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 4679 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 4680 "If the offset got constant-folded, we don't expect that there was an " 4681 "overflow."); 4682 4683 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4684 4685 // Common case: if the total offset is zero, and we are using C++ semantics, 4686 // where nullptr+0 is defined, don't emit a check. 4687 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 4688 return GEPVal; 4689 4690 // Now that we've computed the total offset, add it to the base pointer (with 4691 // wrapping semantics). 4692 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 4693 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 4694 4695 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 4696 4697 if (PerformNullCheck) { 4698 // In C++, if the base pointer evaluates to a null pointer value, 4699 // the only valid pointer this inbounds GEP can produce is also 4700 // a null pointer, so the offset must also evaluate to zero. 4701 // Likewise, if we have non-zero base pointer, we can not get null pointer 4702 // as a result, so the offset can not be -intptr_t(BasePtr). 4703 // In other words, both pointers are either null, or both are non-null, 4704 // or the behaviour is undefined. 4705 // 4706 // C, however, is more strict in this regard, and gives more 4707 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 4708 // So both the input to the 'gep inbounds' AND the output must not be null. 4709 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 4710 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 4711 auto *Valid = 4712 CGM.getLangOpts().CPlusPlus 4713 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 4714 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 4715 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 4716 } 4717 4718 if (PerformOverflowCheck) { 4719 // The GEP is valid if: 4720 // 1) The total offset doesn't overflow, and 4721 // 2) The sign of the difference between the computed address and the base 4722 // pointer matches the sign of the total offset. 4723 llvm::Value *ValidGEP; 4724 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 4725 if (SignedIndices) { 4726 // GEP is computed as `unsigned base + signed offset`, therefore: 4727 // * If offset was positive, then the computed pointer can not be 4728 // [unsigned] less than the base pointer, unless it overflowed. 4729 // * If offset was negative, then the computed pointer can not be 4730 // [unsigned] greater than the bas pointere, unless it overflowed. 4731 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4732 auto *PosOrZeroOffset = 4733 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 4734 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4735 ValidGEP = 4736 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 4737 } else if (!IsSubtraction) { 4738 // GEP is computed as `unsigned base + unsigned offset`, therefore the 4739 // computed pointer can not be [unsigned] less than base pointer, 4740 // unless there was an overflow. 4741 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 4742 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4743 } else { 4744 // GEP is computed as `unsigned base - unsigned offset`, therefore the 4745 // computed pointer can not be [unsigned] greater than base pointer, 4746 // unless there was an overflow. 4747 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 4748 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4749 } 4750 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 4751 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 4752 } 4753 4754 assert(!Checks.empty() && "Should have produced some checks."); 4755 4756 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4757 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4758 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4759 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4760 4761 return GEPVal; 4762 } 4763