1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CGDebugInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Module.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Target/TargetData.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49 };
50 
51 static bool MustVisitNullValue(const Expr *E) {
52   // If a null pointer expression's type is the C++0x nullptr_t, then
53   // it's not necessarily a simple constant and it must be evaluated
54   // for its potential side effects.
55   return E->getType()->isNullPtrType();
56 }
57 
58 class ScalarExprEmitter
59   : public StmtVisitor<ScalarExprEmitter, Value*> {
60   CodeGenFunction &CGF;
61   CGBuilderTy &Builder;
62   bool IgnoreResultAssign;
63   llvm::LLVMContext &VMContext;
64 public:
65 
66   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68       VMContext(cgf.getLLVMContext()) {
69   }
70 
71   //===--------------------------------------------------------------------===//
72   //                               Utilities
73   //===--------------------------------------------------------------------===//
74 
75   bool TestAndClearIgnoreResultAssign() {
76     bool I = IgnoreResultAssign;
77     IgnoreResultAssign = false;
78     return I;
79   }
80 
81   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83   LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84 
85   Value *EmitLoadOfLValue(LValue LV) {
86     return CGF.EmitLoadOfLValue(LV).getScalarVal();
87   }
88 
89   /// EmitLoadOfLValue - Given an expression with complex type that represents a
90   /// value l-value, this method emits the address of the l-value, then loads
91   /// and returns the result.
92   Value *EmitLoadOfLValue(const Expr *E) {
93     return EmitLoadOfLValue(EmitCheckedLValue(E));
94   }
95 
96   /// EmitConversionToBool - Convert the specified expression value to a
97   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98   Value *EmitConversionToBool(Value *Src, QualType DstTy);
99 
100   /// EmitScalarConversion - Emit a conversion from the specified type to the
101   /// specified destination type, both of which are LLVM scalar types.
102   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103 
104   /// EmitComplexToScalarConversion - Emit a conversion from the specified
105   /// complex type to the specified destination type, where the destination type
106   /// is an LLVM scalar type.
107   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                        QualType SrcTy, QualType DstTy);
109 
110   /// EmitNullValue - Emit a value that corresponds to null for the given type.
111   Value *EmitNullValue(QualType Ty);
112 
113   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114   Value *EmitFloatToBoolConversion(Value *V) {
115     // Compare against 0.0 for fp scalars.
116     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117     return Builder.CreateFCmpUNE(V, Zero, "tobool");
118   }
119 
120   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121   Value *EmitPointerToBoolConversion(Value *V) {
122     Value *Zero = llvm::ConstantPointerNull::get(
123                                       cast<llvm::PointerType>(V->getType()));
124     return Builder.CreateICmpNE(V, Zero, "tobool");
125   }
126 
127   Value *EmitIntToBoolConversion(Value *V) {
128     // Because of the type rules of C, we often end up computing a
129     // logical value, then zero extending it to int, then wanting it
130     // as a logical value again.  Optimize this common case.
131     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133         Value *Result = ZI->getOperand(0);
134         // If there aren't any more uses, zap the instruction to save space.
135         // Note that there can be more uses, for example if this
136         // is the result of an assignment.
137         if (ZI->use_empty())
138           ZI->eraseFromParent();
139         return Result;
140       }
141     }
142 
143     return Builder.CreateIsNotNull(V, "tobool");
144   }
145 
146   //===--------------------------------------------------------------------===//
147   //                            Visitor Methods
148   //===--------------------------------------------------------------------===//
149 
150   Value *Visit(Expr *E) {
151     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152   }
153 
154   Value *VisitStmt(Stmt *S) {
155     S->dump(CGF.getContext().getSourceManager());
156     assert(0 && "Stmt can't have complex result type!");
157     return 0;
158   }
159   Value *VisitExpr(Expr *S);
160 
161   Value *VisitParenExpr(ParenExpr *PE) {
162     return Visit(PE->getSubExpr());
163   }
164   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
165     return Visit(E->getReplacement());
166   }
167   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
168     return Visit(GE->getResultExpr());
169   }
170 
171   // Leaves.
172   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
173     return Builder.getInt(E->getValue());
174   }
175   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
176     return llvm::ConstantFP::get(VMContext, E->getValue());
177   }
178   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
179     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
180   }
181   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
182     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
183   }
184   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
185     return EmitNullValue(E->getType());
186   }
187   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
188     return EmitNullValue(E->getType());
189   }
190   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
191   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
192   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
193     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
194     return Builder.CreateBitCast(V, ConvertType(E->getType()));
195   }
196 
197   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
198     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
199   }
200 
201   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
202     if (E->isGLValue())
203       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
204 
205     // Otherwise, assume the mapping is the scalar directly.
206     return CGF.getOpaqueRValueMapping(E).getScalarVal();
207   }
208 
209   // l-values.
210   Value *VisitDeclRefExpr(DeclRefExpr *E) {
211     Expr::EvalResult Result;
212     if (!E->Evaluate(Result, CGF.getContext()))
213       return EmitLoadOfLValue(E);
214 
215     assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
216 
217     llvm::Constant *C;
218     if (Result.Val.isInt())
219       C = Builder.getInt(Result.Val.getInt());
220     else if (Result.Val.isFloat())
221       C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
222     else
223       return EmitLoadOfLValue(E);
224 
225     // Make sure we emit a debug reference to the global variable.
226     if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
227       if (!CGF.getContext().DeclMustBeEmitted(VD))
228         CGF.EmitDeclRefExprDbgValue(E, C);
229     } else if (isa<EnumConstantDecl>(E->getDecl())) {
230       CGF.EmitDeclRefExprDbgValue(E, C);
231     }
232 
233     return C;
234   }
235   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
236     return CGF.EmitObjCSelectorExpr(E);
237   }
238   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
239     return CGF.EmitObjCProtocolExpr(E);
240   }
241   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
242     return EmitLoadOfLValue(E);
243   }
244   Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
245     assert(E->getObjectKind() == OK_Ordinary &&
246            "reached property reference without lvalue-to-rvalue");
247     return EmitLoadOfLValue(E);
248   }
249   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
250     if (E->getMethodDecl() &&
251         E->getMethodDecl()->getResultType()->isReferenceType())
252       return EmitLoadOfLValue(E);
253     return CGF.EmitObjCMessageExpr(E).getScalarVal();
254   }
255 
256   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
257     LValue LV = CGF.EmitObjCIsaExpr(E);
258     Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
259     return V;
260   }
261 
262   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
263   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
264   Value *VisitMemberExpr(MemberExpr *E);
265   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
266   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
267     return EmitLoadOfLValue(E);
268   }
269 
270   Value *VisitInitListExpr(InitListExpr *E);
271 
272   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
273     return CGF.CGM.EmitNullConstant(E->getType());
274   }
275   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
276     if (E->getType()->isVariablyModifiedType())
277       CGF.EmitVariablyModifiedType(E->getType());
278     return VisitCastExpr(E);
279   }
280   Value *VisitCastExpr(CastExpr *E);
281 
282   Value *VisitCallExpr(const CallExpr *E) {
283     if (E->getCallReturnType()->isReferenceType())
284       return EmitLoadOfLValue(E);
285 
286     return CGF.EmitCallExpr(E).getScalarVal();
287   }
288 
289   Value *VisitStmtExpr(const StmtExpr *E);
290 
291   Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
292 
293   // Unary Operators.
294   Value *VisitUnaryPostDec(const UnaryOperator *E) {
295     LValue LV = EmitLValue(E->getSubExpr());
296     return EmitScalarPrePostIncDec(E, LV, false, false);
297   }
298   Value *VisitUnaryPostInc(const UnaryOperator *E) {
299     LValue LV = EmitLValue(E->getSubExpr());
300     return EmitScalarPrePostIncDec(E, LV, true, false);
301   }
302   Value *VisitUnaryPreDec(const UnaryOperator *E) {
303     LValue LV = EmitLValue(E->getSubExpr());
304     return EmitScalarPrePostIncDec(E, LV, false, true);
305   }
306   Value *VisitUnaryPreInc(const UnaryOperator *E) {
307     LValue LV = EmitLValue(E->getSubExpr());
308     return EmitScalarPrePostIncDec(E, LV, true, true);
309   }
310 
311   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
312                                                llvm::Value *InVal,
313                                                llvm::Value *NextVal,
314                                                bool IsInc);
315 
316   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
317                                        bool isInc, bool isPre);
318 
319 
320   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
321     if (isa<MemberPointerType>(E->getType())) // never sugared
322       return CGF.CGM.getMemberPointerConstant(E);
323 
324     return EmitLValue(E->getSubExpr()).getAddress();
325   }
326   Value *VisitUnaryDeref(const UnaryOperator *E) {
327     if (E->getType()->isVoidType())
328       return Visit(E->getSubExpr()); // the actual value should be unused
329     return EmitLoadOfLValue(E);
330   }
331   Value *VisitUnaryPlus(const UnaryOperator *E) {
332     // This differs from gcc, though, most likely due to a bug in gcc.
333     TestAndClearIgnoreResultAssign();
334     return Visit(E->getSubExpr());
335   }
336   Value *VisitUnaryMinus    (const UnaryOperator *E);
337   Value *VisitUnaryNot      (const UnaryOperator *E);
338   Value *VisitUnaryLNot     (const UnaryOperator *E);
339   Value *VisitUnaryReal     (const UnaryOperator *E);
340   Value *VisitUnaryImag     (const UnaryOperator *E);
341   Value *VisitUnaryExtension(const UnaryOperator *E) {
342     return Visit(E->getSubExpr());
343   }
344 
345   // C++
346   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
347     return EmitLoadOfLValue(E);
348   }
349 
350   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
351     return Visit(DAE->getExpr());
352   }
353   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
354     return CGF.LoadCXXThis();
355   }
356 
357   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
358     return CGF.EmitExprWithCleanups(E).getScalarVal();
359   }
360   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
361     return CGF.EmitCXXNewExpr(E);
362   }
363   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
364     CGF.EmitCXXDeleteExpr(E);
365     return 0;
366   }
367   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
368     return Builder.getInt1(E->getValue());
369   }
370 
371   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
372     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
373   }
374 
375   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
376     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
377   }
378 
379   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
380     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
381   }
382 
383   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
384     // C++ [expr.pseudo]p1:
385     //   The result shall only be used as the operand for the function call
386     //   operator (), and the result of such a call has type void. The only
387     //   effect is the evaluation of the postfix-expression before the dot or
388     //   arrow.
389     CGF.EmitScalarExpr(E->getBase());
390     return 0;
391   }
392 
393   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
394     return EmitNullValue(E->getType());
395   }
396 
397   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
398     CGF.EmitCXXThrowExpr(E);
399     return 0;
400   }
401 
402   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
403     return Builder.getInt1(E->getValue());
404   }
405 
406   // Binary Operators.
407   Value *EmitMul(const BinOpInfo &Ops) {
408     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
409       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
410       case LangOptions::SOB_Undefined:
411         return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
412       case LangOptions::SOB_Defined:
413         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
414       case LangOptions::SOB_Trapping:
415         return EmitOverflowCheckedBinOp(Ops);
416       }
417     }
418 
419     if (Ops.LHS->getType()->isFPOrFPVectorTy())
420       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
421     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
422   }
423   bool isTrapvOverflowBehavior() {
424     return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
425                == LangOptions::SOB_Trapping;
426   }
427   /// Create a binary op that checks for overflow.
428   /// Currently only supports +, - and *.
429   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
430   // Emit the overflow BB when -ftrapv option is activated.
431   void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
432     Builder.SetInsertPoint(overflowBB);
433     llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
434     Builder.CreateCall(Trap);
435     Builder.CreateUnreachable();
436   }
437   // Check for undefined division and modulus behaviors.
438   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
439                                                   llvm::Value *Zero,bool isDiv);
440   Value *EmitDiv(const BinOpInfo &Ops);
441   Value *EmitRem(const BinOpInfo &Ops);
442   Value *EmitAdd(const BinOpInfo &Ops);
443   Value *EmitSub(const BinOpInfo &Ops);
444   Value *EmitShl(const BinOpInfo &Ops);
445   Value *EmitShr(const BinOpInfo &Ops);
446   Value *EmitAnd(const BinOpInfo &Ops) {
447     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
448   }
449   Value *EmitXor(const BinOpInfo &Ops) {
450     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
451   }
452   Value *EmitOr (const BinOpInfo &Ops) {
453     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
454   }
455 
456   BinOpInfo EmitBinOps(const BinaryOperator *E);
457   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
458                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
459                                   Value *&Result);
460 
461   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
462                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
463 
464   // Binary operators and binary compound assignment operators.
465 #define HANDLEBINOP(OP) \
466   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
467     return Emit ## OP(EmitBinOps(E));                                      \
468   }                                                                        \
469   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
470     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
471   }
472   HANDLEBINOP(Mul)
473   HANDLEBINOP(Div)
474   HANDLEBINOP(Rem)
475   HANDLEBINOP(Add)
476   HANDLEBINOP(Sub)
477   HANDLEBINOP(Shl)
478   HANDLEBINOP(Shr)
479   HANDLEBINOP(And)
480   HANDLEBINOP(Xor)
481   HANDLEBINOP(Or)
482 #undef HANDLEBINOP
483 
484   // Comparisons.
485   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
486                      unsigned SICmpOpc, unsigned FCmpOpc);
487 #define VISITCOMP(CODE, UI, SI, FP) \
488     Value *VisitBin##CODE(const BinaryOperator *E) { \
489       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
490                          llvm::FCmpInst::FP); }
491   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
492   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
493   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
494   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
495   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
496   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
497 #undef VISITCOMP
498 
499   Value *VisitBinAssign     (const BinaryOperator *E);
500 
501   Value *VisitBinLAnd       (const BinaryOperator *E);
502   Value *VisitBinLOr        (const BinaryOperator *E);
503   Value *VisitBinComma      (const BinaryOperator *E);
504 
505   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
506   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
507 
508   // Other Operators.
509   Value *VisitBlockExpr(const BlockExpr *BE);
510   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
511   Value *VisitChooseExpr(ChooseExpr *CE);
512   Value *VisitVAArgExpr(VAArgExpr *VE);
513   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
514     return CGF.EmitObjCStringLiteral(E);
515   }
516   Value *VisitAsTypeExpr(AsTypeExpr *CE);
517 };
518 }  // end anonymous namespace.
519 
520 //===----------------------------------------------------------------------===//
521 //                                Utilities
522 //===----------------------------------------------------------------------===//
523 
524 /// EmitConversionToBool - Convert the specified expression value to a
525 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
526 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
527   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
528 
529   if (SrcType->isRealFloatingType())
530     return EmitFloatToBoolConversion(Src);
531 
532   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
533     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
534 
535   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
536          "Unknown scalar type to convert");
537 
538   if (isa<llvm::IntegerType>(Src->getType()))
539     return EmitIntToBoolConversion(Src);
540 
541   assert(isa<llvm::PointerType>(Src->getType()));
542   return EmitPointerToBoolConversion(Src);
543 }
544 
545 /// EmitScalarConversion - Emit a conversion from the specified type to the
546 /// specified destination type, both of which are LLVM scalar types.
547 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
548                                                QualType DstType) {
549   SrcType = CGF.getContext().getCanonicalType(SrcType);
550   DstType = CGF.getContext().getCanonicalType(DstType);
551   if (SrcType == DstType) return Src;
552 
553   if (DstType->isVoidType()) return 0;
554 
555   // Handle conversions to bool first, they are special: comparisons against 0.
556   if (DstType->isBooleanType())
557     return EmitConversionToBool(Src, SrcType);
558 
559   llvm::Type *DstTy = ConvertType(DstType);
560 
561   // Ignore conversions like int -> uint.
562   if (Src->getType() == DstTy)
563     return Src;
564 
565   // Handle pointer conversions next: pointers can only be converted to/from
566   // other pointers and integers. Check for pointer types in terms of LLVM, as
567   // some native types (like Obj-C id) may map to a pointer type.
568   if (isa<llvm::PointerType>(DstTy)) {
569     // The source value may be an integer, or a pointer.
570     if (isa<llvm::PointerType>(Src->getType()))
571       return Builder.CreateBitCast(Src, DstTy, "conv");
572 
573     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
574     // First, convert to the correct width so that we control the kind of
575     // extension.
576     llvm::Type *MiddleTy = CGF.IntPtrTy;
577     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
578     llvm::Value* IntResult =
579         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
580     // Then, cast to pointer.
581     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
582   }
583 
584   if (isa<llvm::PointerType>(Src->getType())) {
585     // Must be an ptr to int cast.
586     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
587     return Builder.CreatePtrToInt(Src, DstTy, "conv");
588   }
589 
590   // A scalar can be splatted to an extended vector of the same element type
591   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
592     // Cast the scalar to element type
593     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
594     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
595 
596     // Insert the element in element zero of an undef vector
597     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
598     llvm::Value *Idx = Builder.getInt32(0);
599     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
600 
601     // Splat the element across to all elements
602     SmallVector<llvm::Constant*, 16> Args;
603     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
604     for (unsigned i = 0; i != NumElements; ++i)
605       Args.push_back(Builder.getInt32(0));
606 
607     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
608     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
609     return Yay;
610   }
611 
612   // Allow bitcast from vector to integer/fp of the same size.
613   if (isa<llvm::VectorType>(Src->getType()) ||
614       isa<llvm::VectorType>(DstTy))
615     return Builder.CreateBitCast(Src, DstTy, "conv");
616 
617   // Finally, we have the arithmetic types: real int/float.
618   if (isa<llvm::IntegerType>(Src->getType())) {
619     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
620     if (isa<llvm::IntegerType>(DstTy))
621       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
622     else if (InputSigned)
623       return Builder.CreateSIToFP(Src, DstTy, "conv");
624     else
625       return Builder.CreateUIToFP(Src, DstTy, "conv");
626   }
627 
628   assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
629   if (isa<llvm::IntegerType>(DstTy)) {
630     if (DstType->isSignedIntegerOrEnumerationType())
631       return Builder.CreateFPToSI(Src, DstTy, "conv");
632     else
633       return Builder.CreateFPToUI(Src, DstTy, "conv");
634   }
635 
636   assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
637   if (DstTy->getTypeID() < Src->getType()->getTypeID())
638     return Builder.CreateFPTrunc(Src, DstTy, "conv");
639   else
640     return Builder.CreateFPExt(Src, DstTy, "conv");
641 }
642 
643 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
644 /// type to the specified destination type, where the destination type is an
645 /// LLVM scalar type.
646 Value *ScalarExprEmitter::
647 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
648                               QualType SrcTy, QualType DstTy) {
649   // Get the source element type.
650   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
651 
652   // Handle conversions to bool first, they are special: comparisons against 0.
653   if (DstTy->isBooleanType()) {
654     //  Complex != 0  -> (Real != 0) | (Imag != 0)
655     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
656     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
657     return Builder.CreateOr(Src.first, Src.second, "tobool");
658   }
659 
660   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
661   // the imaginary part of the complex value is discarded and the value of the
662   // real part is converted according to the conversion rules for the
663   // corresponding real type.
664   return EmitScalarConversion(Src.first, SrcTy, DstTy);
665 }
666 
667 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
668   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
669     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
670 
671   return llvm::Constant::getNullValue(ConvertType(Ty));
672 }
673 
674 //===----------------------------------------------------------------------===//
675 //                            Visitor Methods
676 //===----------------------------------------------------------------------===//
677 
678 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
679   CGF.ErrorUnsupported(E, "scalar expression");
680   if (E->getType()->isVoidType())
681     return 0;
682   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
683 }
684 
685 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
686   // Vector Mask Case
687   if (E->getNumSubExprs() == 2 ||
688       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
689     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
690     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
691     Value *Mask;
692 
693     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
694     unsigned LHSElts = LTy->getNumElements();
695 
696     if (E->getNumSubExprs() == 3) {
697       Mask = CGF.EmitScalarExpr(E->getExpr(2));
698 
699       // Shuffle LHS & RHS into one input vector.
700       SmallVector<llvm::Constant*, 32> concat;
701       for (unsigned i = 0; i != LHSElts; ++i) {
702         concat.push_back(Builder.getInt32(2*i));
703         concat.push_back(Builder.getInt32(2*i+1));
704       }
705 
706       Value* CV = llvm::ConstantVector::get(concat);
707       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
708       LHSElts *= 2;
709     } else {
710       Mask = RHS;
711     }
712 
713     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
714     llvm::Constant* EltMask;
715 
716     // Treat vec3 like vec4.
717     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
718       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
719                                        (1 << llvm::Log2_32(LHSElts+2))-1);
720     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
721       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
722                                        (1 << llvm::Log2_32(LHSElts+1))-1);
723     else
724       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
725                                        (1 << llvm::Log2_32(LHSElts))-1);
726 
727     // Mask off the high bits of each shuffle index.
728     SmallVector<llvm::Constant *, 32> MaskV;
729     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
730       MaskV.push_back(EltMask);
731 
732     Value* MaskBits = llvm::ConstantVector::get(MaskV);
733     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
734 
735     // newv = undef
736     // mask = mask & maskbits
737     // for each elt
738     //   n = extract mask i
739     //   x = extract val n
740     //   newv = insert newv, x, i
741     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
742                                                         MTy->getNumElements());
743     Value* NewV = llvm::UndefValue::get(RTy);
744     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
745       Value *Indx = Builder.getInt32(i);
746       Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
747       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
748 
749       // Handle vec3 special since the index will be off by one for the RHS.
750       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
751         Value *cmpIndx, *newIndx;
752         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
753                                         "cmp_shuf_idx");
754         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
755         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
756       }
757       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
758       NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
759     }
760     return NewV;
761   }
762 
763   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
764   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
765 
766   // Handle vec3 special since the index will be off by one for the RHS.
767   llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
768   SmallVector<llvm::Constant*, 32> indices;
769   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
770     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
771     if (VTy->getNumElements() == 3 && Idx > 3)
772       Idx -= 1;
773     indices.push_back(Builder.getInt32(Idx));
774   }
775 
776   Value *SV = llvm::ConstantVector::get(indices);
777   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
778 }
779 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
780   Expr::EvalResult Result;
781   if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
782     if (E->isArrow())
783       CGF.EmitScalarExpr(E->getBase());
784     else
785       EmitLValue(E->getBase());
786     return Builder.getInt(Result.Val.getInt());
787   }
788 
789   // Emit debug info for aggregate now, if it was delayed to reduce
790   // debug info size.
791   CGDebugInfo *DI = CGF.getDebugInfo();
792   if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
793     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
794     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
795       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
796         DI->getOrCreateRecordType(PTy->getPointeeType(),
797                                   M->getParent()->getLocation());
798   }
799   return EmitLoadOfLValue(E);
800 }
801 
802 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
803   TestAndClearIgnoreResultAssign();
804 
805   // Emit subscript expressions in rvalue context's.  For most cases, this just
806   // loads the lvalue formed by the subscript expr.  However, we have to be
807   // careful, because the base of a vector subscript is occasionally an rvalue,
808   // so we can't get it as an lvalue.
809   if (!E->getBase()->getType()->isVectorType())
810     return EmitLoadOfLValue(E);
811 
812   // Handle the vector case.  The base must be a vector, the index must be an
813   // integer value.
814   Value *Base = Visit(E->getBase());
815   Value *Idx  = Visit(E->getIdx());
816   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
817   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
818   return Builder.CreateExtractElement(Base, Idx, "vecext");
819 }
820 
821 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
822                                   unsigned Off, llvm::Type *I32Ty) {
823   int MV = SVI->getMaskValue(Idx);
824   if (MV == -1)
825     return llvm::UndefValue::get(I32Ty);
826   return llvm::ConstantInt::get(I32Ty, Off+MV);
827 }
828 
829 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
830   bool Ignore = TestAndClearIgnoreResultAssign();
831   (void)Ignore;
832   assert (Ignore == false && "init list ignored");
833   unsigned NumInitElements = E->getNumInits();
834 
835   if (E->hadArrayRangeDesignator())
836     CGF.ErrorUnsupported(E, "GNU array range designator extension");
837 
838   llvm::VectorType *VType =
839     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
840 
841   // We have a scalar in braces. Just use the first element.
842   if (!VType)
843     return Visit(E->getInit(0));
844 
845   unsigned ResElts = VType->getNumElements();
846 
847   // Loop over initializers collecting the Value for each, and remembering
848   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
849   // us to fold the shuffle for the swizzle into the shuffle for the vector
850   // initializer, since LLVM optimizers generally do not want to touch
851   // shuffles.
852   unsigned CurIdx = 0;
853   bool VIsUndefShuffle = false;
854   llvm::Value *V = llvm::UndefValue::get(VType);
855   for (unsigned i = 0; i != NumInitElements; ++i) {
856     Expr *IE = E->getInit(i);
857     Value *Init = Visit(IE);
858     SmallVector<llvm::Constant*, 16> Args;
859 
860     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
861 
862     // Handle scalar elements.  If the scalar initializer is actually one
863     // element of a different vector of the same width, use shuffle instead of
864     // extract+insert.
865     if (!VVT) {
866       if (isa<ExtVectorElementExpr>(IE)) {
867         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
868 
869         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
870           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
871           Value *LHS = 0, *RHS = 0;
872           if (CurIdx == 0) {
873             // insert into undef -> shuffle (src, undef)
874             Args.push_back(C);
875             for (unsigned j = 1; j != ResElts; ++j)
876               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
877 
878             LHS = EI->getVectorOperand();
879             RHS = V;
880             VIsUndefShuffle = true;
881           } else if (VIsUndefShuffle) {
882             // insert into undefshuffle && size match -> shuffle (v, src)
883             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
884             for (unsigned j = 0; j != CurIdx; ++j)
885               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
886             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
887             for (unsigned j = CurIdx + 1; j != ResElts; ++j)
888               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
889 
890             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
891             RHS = EI->getVectorOperand();
892             VIsUndefShuffle = false;
893           }
894           if (!Args.empty()) {
895             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
896             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
897             ++CurIdx;
898             continue;
899           }
900         }
901       }
902       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
903                                       "vecinit");
904       VIsUndefShuffle = false;
905       ++CurIdx;
906       continue;
907     }
908 
909     unsigned InitElts = VVT->getNumElements();
910 
911     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
912     // input is the same width as the vector being constructed, generate an
913     // optimized shuffle of the swizzle input into the result.
914     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
915     if (isa<ExtVectorElementExpr>(IE)) {
916       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
917       Value *SVOp = SVI->getOperand(0);
918       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
919 
920       if (OpTy->getNumElements() == ResElts) {
921         for (unsigned j = 0; j != CurIdx; ++j) {
922           // If the current vector initializer is a shuffle with undef, merge
923           // this shuffle directly into it.
924           if (VIsUndefShuffle) {
925             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
926                                       CGF.Int32Ty));
927           } else {
928             Args.push_back(Builder.getInt32(j));
929           }
930         }
931         for (unsigned j = 0, je = InitElts; j != je; ++j)
932           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
933         for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
934           Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
935 
936         if (VIsUndefShuffle)
937           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
938 
939         Init = SVOp;
940       }
941     }
942 
943     // Extend init to result vector length, and then shuffle its contribution
944     // to the vector initializer into V.
945     if (Args.empty()) {
946       for (unsigned j = 0; j != InitElts; ++j)
947         Args.push_back(Builder.getInt32(j));
948       for (unsigned j = InitElts; j != ResElts; ++j)
949         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
950       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
951       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
952                                          Mask, "vext");
953 
954       Args.clear();
955       for (unsigned j = 0; j != CurIdx; ++j)
956         Args.push_back(Builder.getInt32(j));
957       for (unsigned j = 0; j != InitElts; ++j)
958         Args.push_back(Builder.getInt32(j+Offset));
959       for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
960         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
961     }
962 
963     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
964     // merging subsequent shuffles into this one.
965     if (CurIdx == 0)
966       std::swap(V, Init);
967     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
968     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
969     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
970     CurIdx += InitElts;
971   }
972 
973   // FIXME: evaluate codegen vs. shuffling against constant null vector.
974   // Emit remaining default initializers.
975   llvm::Type *EltTy = VType->getElementType();
976 
977   // Emit remaining default initializers
978   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
979     Value *Idx = Builder.getInt32(CurIdx);
980     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
981     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
982   }
983   return V;
984 }
985 
986 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
987   const Expr *E = CE->getSubExpr();
988 
989   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
990     return false;
991 
992   if (isa<CXXThisExpr>(E)) {
993     // We always assume that 'this' is never null.
994     return false;
995   }
996 
997   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
998     // And that glvalue casts are never null.
999     if (ICE->getValueKind() != VK_RValue)
1000       return false;
1001   }
1002 
1003   return true;
1004 }
1005 
1006 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1007 // have to handle a more broad range of conversions than explicit casts, as they
1008 // handle things like function to ptr-to-function decay etc.
1009 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1010   Expr *E = CE->getSubExpr();
1011   QualType DestTy = CE->getType();
1012   CastKind Kind = CE->getCastKind();
1013 
1014   if (!DestTy->isVoidType())
1015     TestAndClearIgnoreResultAssign();
1016 
1017   // Since almost all cast kinds apply to scalars, this switch doesn't have
1018   // a default case, so the compiler will warn on a missing case.  The cases
1019   // are in the same order as in the CastKind enum.
1020   switch (Kind) {
1021   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1022 
1023   case CK_LValueBitCast:
1024   case CK_ObjCObjectLValueCast: {
1025     Value *V = EmitLValue(E).getAddress();
1026     V = Builder.CreateBitCast(V,
1027                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1028     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy));
1029   }
1030 
1031   case CK_CPointerToObjCPointerCast:
1032   case CK_BlockPointerToObjCPointerCast:
1033   case CK_AnyPointerToBlockPointerCast:
1034   case CK_BitCast: {
1035     Value *Src = Visit(const_cast<Expr*>(E));
1036     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1037   }
1038   case CK_NoOp:
1039   case CK_UserDefinedConversion:
1040     return Visit(const_cast<Expr*>(E));
1041 
1042   case CK_BaseToDerived: {
1043     const CXXRecordDecl *DerivedClassDecl =
1044       DestTy->getCXXRecordDeclForPointerType();
1045 
1046     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1047                                         CE->path_begin(), CE->path_end(),
1048                                         ShouldNullCheckClassCastValue(CE));
1049   }
1050   case CK_UncheckedDerivedToBase:
1051   case CK_DerivedToBase: {
1052     const RecordType *DerivedClassTy =
1053       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1054     CXXRecordDecl *DerivedClassDecl =
1055       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1056 
1057     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1058                                      CE->path_begin(), CE->path_end(),
1059                                      ShouldNullCheckClassCastValue(CE));
1060   }
1061   case CK_Dynamic: {
1062     Value *V = Visit(const_cast<Expr*>(E));
1063     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1064     return CGF.EmitDynamicCast(V, DCE);
1065   }
1066 
1067   case CK_ArrayToPointerDecay: {
1068     assert(E->getType()->isArrayType() &&
1069            "Array to pointer decay must have array source type!");
1070 
1071     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1072 
1073     // Note that VLA pointers are always decayed, so we don't need to do
1074     // anything here.
1075     if (!E->getType()->isVariableArrayType()) {
1076       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1077       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1078                                  ->getElementType()) &&
1079              "Expected pointer to array");
1080       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1081     }
1082 
1083     // Make sure the array decay ends up being the right type.  This matters if
1084     // the array type was of an incomplete type.
1085     return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1086   }
1087   case CK_FunctionToPointerDecay:
1088     return EmitLValue(E).getAddress();
1089 
1090   case CK_NullToPointer:
1091     if (MustVisitNullValue(E))
1092       (void) Visit(E);
1093 
1094     return llvm::ConstantPointerNull::get(
1095                                cast<llvm::PointerType>(ConvertType(DestTy)));
1096 
1097   case CK_NullToMemberPointer: {
1098     if (MustVisitNullValue(E))
1099       (void) Visit(E);
1100 
1101     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1102     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1103   }
1104 
1105   case CK_BaseToDerivedMemberPointer:
1106   case CK_DerivedToBaseMemberPointer: {
1107     Value *Src = Visit(E);
1108 
1109     // Note that the AST doesn't distinguish between checked and
1110     // unchecked member pointer conversions, so we always have to
1111     // implement checked conversions here.  This is inefficient when
1112     // actual control flow may be required in order to perform the
1113     // check, which it is for data member pointers (but not member
1114     // function pointers on Itanium and ARM).
1115     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1116   }
1117 
1118   case CK_ARCProduceObject:
1119     return CGF.EmitARCRetainScalarExpr(E);
1120   case CK_ARCConsumeObject:
1121     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1122   case CK_ARCReclaimReturnedObject: {
1123     llvm::Value *value = Visit(E);
1124     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1125     return CGF.EmitObjCConsumeObject(E->getType(), value);
1126   }
1127   case CK_ARCExtendBlockObject: {
1128     llvm::Value *value = CGF.EmitARCRetainScalarExpr(E);
1129     return CGF.EmitObjCConsumeObject(E->getType(), value);
1130   }
1131 
1132   case CK_FloatingRealToComplex:
1133   case CK_FloatingComplexCast:
1134   case CK_IntegralRealToComplex:
1135   case CK_IntegralComplexCast:
1136   case CK_IntegralComplexToFloatingComplex:
1137   case CK_FloatingComplexToIntegralComplex:
1138   case CK_ConstructorConversion:
1139   case CK_ToUnion:
1140     llvm_unreachable("scalar cast to non-scalar value");
1141     break;
1142 
1143   case CK_GetObjCProperty: {
1144     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1145     assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
1146            "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
1147     RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E));
1148     return RV.getScalarVal();
1149   }
1150 
1151   case CK_LValueToRValue:
1152     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1153     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1154     return Visit(const_cast<Expr*>(E));
1155 
1156   case CK_IntegralToPointer: {
1157     Value *Src = Visit(const_cast<Expr*>(E));
1158 
1159     // First, convert to the correct width so that we control the kind of
1160     // extension.
1161     llvm::Type *MiddleTy = CGF.IntPtrTy;
1162     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1163     llvm::Value* IntResult =
1164       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1165 
1166     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1167   }
1168   case CK_PointerToIntegral:
1169     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1170     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1171 
1172   case CK_ToVoid: {
1173     CGF.EmitIgnoredExpr(E);
1174     return 0;
1175   }
1176   case CK_VectorSplat: {
1177     llvm::Type *DstTy = ConvertType(DestTy);
1178     Value *Elt = Visit(const_cast<Expr*>(E));
1179 
1180     // Insert the element in element zero of an undef vector
1181     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1182     llvm::Value *Idx = Builder.getInt32(0);
1183     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1184 
1185     // Splat the element across to all elements
1186     SmallVector<llvm::Constant*, 16> Args;
1187     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1188     llvm::Constant *Zero = Builder.getInt32(0);
1189     for (unsigned i = 0; i < NumElements; i++)
1190       Args.push_back(Zero);
1191 
1192     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1193     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1194     return Yay;
1195   }
1196 
1197   case CK_IntegralCast:
1198   case CK_IntegralToFloating:
1199   case CK_FloatingToIntegral:
1200   case CK_FloatingCast:
1201     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1202 
1203   case CK_IntegralToBoolean:
1204     return EmitIntToBoolConversion(Visit(E));
1205   case CK_PointerToBoolean:
1206     return EmitPointerToBoolConversion(Visit(E));
1207   case CK_FloatingToBoolean:
1208     return EmitFloatToBoolConversion(Visit(E));
1209   case CK_MemberPointerToBoolean: {
1210     llvm::Value *MemPtr = Visit(E);
1211     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1212     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1213   }
1214 
1215   case CK_FloatingComplexToReal:
1216   case CK_IntegralComplexToReal:
1217     return CGF.EmitComplexExpr(E, false, true).first;
1218 
1219   case CK_FloatingComplexToBoolean:
1220   case CK_IntegralComplexToBoolean: {
1221     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1222 
1223     // TODO: kill this function off, inline appropriate case here
1224     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1225   }
1226 
1227   }
1228 
1229   llvm_unreachable("unknown scalar cast");
1230   return 0;
1231 }
1232 
1233 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1234   CodeGenFunction::StmtExprEvaluation eval(CGF);
1235   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1236     .getScalarVal();
1237 }
1238 
1239 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1240   LValue LV = CGF.EmitBlockDeclRefLValue(E);
1241   return CGF.EmitLoadOfLValue(LV).getScalarVal();
1242 }
1243 
1244 //===----------------------------------------------------------------------===//
1245 //                             Unary Operators
1246 //===----------------------------------------------------------------------===//
1247 
1248 llvm::Value *ScalarExprEmitter::
1249 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1250                                 llvm::Value *InVal,
1251                                 llvm::Value *NextVal, bool IsInc) {
1252   switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1253   case LangOptions::SOB_Undefined:
1254     return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1255     break;
1256   case LangOptions::SOB_Defined:
1257     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1258     break;
1259   case LangOptions::SOB_Trapping:
1260     BinOpInfo BinOp;
1261     BinOp.LHS = InVal;
1262     BinOp.RHS = NextVal;
1263     BinOp.Ty = E->getType();
1264     BinOp.Opcode = BO_Add;
1265     BinOp.E = E;
1266     return EmitOverflowCheckedBinOp(BinOp);
1267     break;
1268   }
1269   assert(false && "Unknown SignedOverflowBehaviorTy");
1270   return 0;
1271 }
1272 
1273 llvm::Value *
1274 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1275                                            bool isInc, bool isPre) {
1276 
1277   QualType type = E->getSubExpr()->getType();
1278   llvm::Value *value = EmitLoadOfLValue(LV);
1279   llvm::Value *input = value;
1280 
1281   int amount = (isInc ? 1 : -1);
1282 
1283   // Special case of integer increment that we have to check first: bool++.
1284   // Due to promotion rules, we get:
1285   //   bool++ -> bool = bool + 1
1286   //          -> bool = (int)bool + 1
1287   //          -> bool = ((int)bool + 1 != 0)
1288   // An interesting aspect of this is that increment is always true.
1289   // Decrement does not have this property.
1290   if (isInc && type->isBooleanType()) {
1291     value = Builder.getTrue();
1292 
1293   // Most common case by far: integer increment.
1294   } else if (type->isIntegerType()) {
1295 
1296     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1297 
1298     // Note that signed integer inc/dec with width less than int can't
1299     // overflow because of promotion rules; we're just eliding a few steps here.
1300     if (type->isSignedIntegerOrEnumerationType() &&
1301         value->getType()->getPrimitiveSizeInBits() >=
1302             CGF.IntTy->getBitWidth())
1303       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1304     else
1305       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1306 
1307   // Next most common: pointer increment.
1308   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1309     QualType type = ptr->getPointeeType();
1310 
1311     // VLA types don't have constant size.
1312     if (const VariableArrayType *vla
1313           = CGF.getContext().getAsVariableArrayType(type)) {
1314       llvm::Value *numElts = CGF.getVLASize(vla).first;
1315       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1316       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1317         value = Builder.CreateGEP(value, numElts, "vla.inc");
1318       else
1319         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1320 
1321     // Arithmetic on function pointers (!) is just +-1.
1322     } else if (type->isFunctionType()) {
1323       llvm::Value *amt = Builder.getInt32(amount);
1324 
1325       value = CGF.EmitCastToVoidPtr(value);
1326       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1327         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1328       else
1329         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1330       value = Builder.CreateBitCast(value, input->getType());
1331 
1332     // For everything else, we can just do a simple increment.
1333     } else {
1334       llvm::Value *amt = Builder.getInt32(amount);
1335       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1336         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1337       else
1338         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1339     }
1340 
1341   // Vector increment/decrement.
1342   } else if (type->isVectorType()) {
1343     if (type->hasIntegerRepresentation()) {
1344       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1345 
1346       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1347     } else {
1348       value = Builder.CreateFAdd(
1349                   value,
1350                   llvm::ConstantFP::get(value->getType(), amount),
1351                   isInc ? "inc" : "dec");
1352     }
1353 
1354   // Floating point.
1355   } else if (type->isRealFloatingType()) {
1356     // Add the inc/dec to the real part.
1357     llvm::Value *amt;
1358     if (value->getType()->isFloatTy())
1359       amt = llvm::ConstantFP::get(VMContext,
1360                                   llvm::APFloat(static_cast<float>(amount)));
1361     else if (value->getType()->isDoubleTy())
1362       amt = llvm::ConstantFP::get(VMContext,
1363                                   llvm::APFloat(static_cast<double>(amount)));
1364     else {
1365       llvm::APFloat F(static_cast<float>(amount));
1366       bool ignored;
1367       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1368                 &ignored);
1369       amt = llvm::ConstantFP::get(VMContext, F);
1370     }
1371     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1372 
1373   // Objective-C pointer types.
1374   } else {
1375     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1376     value = CGF.EmitCastToVoidPtr(value);
1377 
1378     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1379     if (!isInc) size = -size;
1380     llvm::Value *sizeValue =
1381       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1382 
1383     if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1384       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1385     else
1386       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1387     value = Builder.CreateBitCast(value, input->getType());
1388   }
1389 
1390   // Store the updated result through the lvalue.
1391   if (LV.isBitField())
1392     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1393   else
1394     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1395 
1396   // If this is a postinc, return the value read from memory, otherwise use the
1397   // updated value.
1398   return isPre ? value : input;
1399 }
1400 
1401 
1402 
1403 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1404   TestAndClearIgnoreResultAssign();
1405   // Emit unary minus with EmitSub so we handle overflow cases etc.
1406   BinOpInfo BinOp;
1407   BinOp.RHS = Visit(E->getSubExpr());
1408 
1409   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1410     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1411   else
1412     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1413   BinOp.Ty = E->getType();
1414   BinOp.Opcode = BO_Sub;
1415   BinOp.E = E;
1416   return EmitSub(BinOp);
1417 }
1418 
1419 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1420   TestAndClearIgnoreResultAssign();
1421   Value *Op = Visit(E->getSubExpr());
1422   return Builder.CreateNot(Op, "neg");
1423 }
1424 
1425 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1426   // Compare operand to zero.
1427   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1428 
1429   // Invert value.
1430   // TODO: Could dynamically modify easy computations here.  For example, if
1431   // the operand is an icmp ne, turn into icmp eq.
1432   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1433 
1434   // ZExt result to the expr type.
1435   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1436 }
1437 
1438 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1439   // Try folding the offsetof to a constant.
1440   Expr::EvalResult EvalResult;
1441   if (E->Evaluate(EvalResult, CGF.getContext()))
1442     return Builder.getInt(EvalResult.Val.getInt());
1443 
1444   // Loop over the components of the offsetof to compute the value.
1445   unsigned n = E->getNumComponents();
1446   llvm::Type* ResultType = ConvertType(E->getType());
1447   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1448   QualType CurrentType = E->getTypeSourceInfo()->getType();
1449   for (unsigned i = 0; i != n; ++i) {
1450     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1451     llvm::Value *Offset = 0;
1452     switch (ON.getKind()) {
1453     case OffsetOfExpr::OffsetOfNode::Array: {
1454       // Compute the index
1455       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1456       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1457       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1458       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1459 
1460       // Save the element type
1461       CurrentType =
1462           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1463 
1464       // Compute the element size
1465       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1466           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1467 
1468       // Multiply out to compute the result
1469       Offset = Builder.CreateMul(Idx, ElemSize);
1470       break;
1471     }
1472 
1473     case OffsetOfExpr::OffsetOfNode::Field: {
1474       FieldDecl *MemberDecl = ON.getField();
1475       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1476       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1477 
1478       // Compute the index of the field in its parent.
1479       unsigned i = 0;
1480       // FIXME: It would be nice if we didn't have to loop here!
1481       for (RecordDecl::field_iterator Field = RD->field_begin(),
1482                                       FieldEnd = RD->field_end();
1483            Field != FieldEnd; (void)++Field, ++i) {
1484         if (*Field == MemberDecl)
1485           break;
1486       }
1487       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1488 
1489       // Compute the offset to the field
1490       int64_t OffsetInt = RL.getFieldOffset(i) /
1491                           CGF.getContext().getCharWidth();
1492       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1493 
1494       // Save the element type.
1495       CurrentType = MemberDecl->getType();
1496       break;
1497     }
1498 
1499     case OffsetOfExpr::OffsetOfNode::Identifier:
1500       llvm_unreachable("dependent __builtin_offsetof");
1501 
1502     case OffsetOfExpr::OffsetOfNode::Base: {
1503       if (ON.getBase()->isVirtual()) {
1504         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1505         continue;
1506       }
1507 
1508       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1509       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1510 
1511       // Save the element type.
1512       CurrentType = ON.getBase()->getType();
1513 
1514       // Compute the offset to the base.
1515       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1516       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1517       int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1518                           CGF.getContext().getCharWidth();
1519       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1520       break;
1521     }
1522     }
1523     Result = Builder.CreateAdd(Result, Offset);
1524   }
1525   return Result;
1526 }
1527 
1528 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1529 /// argument of the sizeof expression as an integer.
1530 Value *
1531 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1532                               const UnaryExprOrTypeTraitExpr *E) {
1533   QualType TypeToSize = E->getTypeOfArgument();
1534   if (E->getKind() == UETT_SizeOf) {
1535     if (const VariableArrayType *VAT =
1536           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1537       if (E->isArgumentType()) {
1538         // sizeof(type) - make sure to emit the VLA size.
1539         CGF.EmitVariablyModifiedType(TypeToSize);
1540       } else {
1541         // C99 6.5.3.4p2: If the argument is an expression of type
1542         // VLA, it is evaluated.
1543         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1544       }
1545 
1546       QualType eltType;
1547       llvm::Value *numElts;
1548       llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1549 
1550       llvm::Value *size = numElts;
1551 
1552       // Scale the number of non-VLA elements by the non-VLA element size.
1553       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1554       if (!eltSize.isOne())
1555         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1556 
1557       return size;
1558     }
1559   }
1560 
1561   // If this isn't sizeof(vla), the result must be constant; use the constant
1562   // folding logic so we don't have to duplicate it here.
1563   Expr::EvalResult Result;
1564   E->Evaluate(Result, CGF.getContext());
1565   return Builder.getInt(Result.Val.getInt());
1566 }
1567 
1568 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1569   Expr *Op = E->getSubExpr();
1570   if (Op->getType()->isAnyComplexType()) {
1571     // If it's an l-value, load through the appropriate subobject l-value.
1572     // Note that we have to ask E because Op might be an l-value that
1573     // this won't work for, e.g. an Obj-C property.
1574     if (E->isGLValue())
1575       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1576 
1577     // Otherwise, calculate and project.
1578     return CGF.EmitComplexExpr(Op, false, true).first;
1579   }
1580 
1581   return Visit(Op);
1582 }
1583 
1584 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1585   Expr *Op = E->getSubExpr();
1586   if (Op->getType()->isAnyComplexType()) {
1587     // If it's an l-value, load through the appropriate subobject l-value.
1588     // Note that we have to ask E because Op might be an l-value that
1589     // this won't work for, e.g. an Obj-C property.
1590     if (Op->isGLValue())
1591       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1592 
1593     // Otherwise, calculate and project.
1594     return CGF.EmitComplexExpr(Op, true, false).second;
1595   }
1596 
1597   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1598   // effects are evaluated, but not the actual value.
1599   CGF.EmitScalarExpr(Op, true);
1600   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1601 }
1602 
1603 //===----------------------------------------------------------------------===//
1604 //                           Binary Operators
1605 //===----------------------------------------------------------------------===//
1606 
1607 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1608   TestAndClearIgnoreResultAssign();
1609   BinOpInfo Result;
1610   Result.LHS = Visit(E->getLHS());
1611   Result.RHS = Visit(E->getRHS());
1612   Result.Ty  = E->getType();
1613   Result.Opcode = E->getOpcode();
1614   Result.E = E;
1615   return Result;
1616 }
1617 
1618 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1619                                               const CompoundAssignOperator *E,
1620                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1621                                                    Value *&Result) {
1622   QualType LHSTy = E->getLHS()->getType();
1623   BinOpInfo OpInfo;
1624 
1625   if (E->getComputationResultType()->isAnyComplexType()) {
1626     // This needs to go through the complex expression emitter, but it's a tad
1627     // complicated to do that... I'm leaving it out for now.  (Note that we do
1628     // actually need the imaginary part of the RHS for multiplication and
1629     // division.)
1630     CGF.ErrorUnsupported(E, "complex compound assignment");
1631     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1632     return LValue();
1633   }
1634 
1635   // Emit the RHS first.  __block variables need to have the rhs evaluated
1636   // first, plus this should improve codegen a little.
1637   OpInfo.RHS = Visit(E->getRHS());
1638   OpInfo.Ty = E->getComputationResultType();
1639   OpInfo.Opcode = E->getOpcode();
1640   OpInfo.E = E;
1641   // Load/convert the LHS.
1642   LValue LHSLV = EmitCheckedLValue(E->getLHS());
1643   OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1644   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1645                                     E->getComputationLHSType());
1646 
1647   // Expand the binary operator.
1648   Result = (this->*Func)(OpInfo);
1649 
1650   // Convert the result back to the LHS type.
1651   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1652 
1653   // Store the result value into the LHS lvalue. Bit-fields are handled
1654   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1655   // 'An assignment expression has the value of the left operand after the
1656   // assignment...'.
1657   if (LHSLV.isBitField())
1658     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1659   else
1660     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1661 
1662   return LHSLV;
1663 }
1664 
1665 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1666                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1667   bool Ignore = TestAndClearIgnoreResultAssign();
1668   Value *RHS;
1669   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1670 
1671   // If the result is clearly ignored, return now.
1672   if (Ignore)
1673     return 0;
1674 
1675   // The result of an assignment in C is the assigned r-value.
1676   if (!CGF.getContext().getLangOptions().CPlusPlus)
1677     return RHS;
1678 
1679   // Objective-C property assignment never reloads the value following a store.
1680   if (LHS.isPropertyRef())
1681     return RHS;
1682 
1683   // If the lvalue is non-volatile, return the computed value of the assignment.
1684   if (!LHS.isVolatileQualified())
1685     return RHS;
1686 
1687   // Otherwise, reload the value.
1688   return EmitLoadOfLValue(LHS);
1689 }
1690 
1691 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1692      					    const BinOpInfo &Ops,
1693 				     	    llvm::Value *Zero, bool isDiv) {
1694   llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1695   llvm::BasicBlock *contBB =
1696     CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1697                          llvm::next(insertPt));
1698   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1699 
1700   llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1701 
1702   if (Ops.Ty->hasSignedIntegerRepresentation()) {
1703     llvm::Value *IntMin =
1704       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1705     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1706 
1707     llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1708     llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1709     llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1710     llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1711     Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1712                          overflowBB, contBB);
1713   } else {
1714     CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1715                              overflowBB, contBB);
1716   }
1717   EmitOverflowBB(overflowBB);
1718   Builder.SetInsertPoint(contBB);
1719 }
1720 
1721 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1722   if (isTrapvOverflowBehavior()) {
1723     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1724 
1725     if (Ops.Ty->isIntegerType())
1726       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1727     else if (Ops.Ty->isRealFloatingType()) {
1728       llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1729       llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1730                                                        llvm::next(insertPt));
1731       llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1732                                                           CGF.CurFn);
1733       CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1734                                overflowBB, DivCont);
1735       EmitOverflowBB(overflowBB);
1736       Builder.SetInsertPoint(DivCont);
1737     }
1738   }
1739   if (Ops.LHS->getType()->isFPOrFPVectorTy())
1740     return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1741   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1742     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1743   else
1744     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1745 }
1746 
1747 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1748   // Rem in C can't be a floating point type: C99 6.5.5p2.
1749   if (isTrapvOverflowBehavior()) {
1750     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1751 
1752     if (Ops.Ty->isIntegerType())
1753       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1754   }
1755 
1756   if (Ops.Ty->hasUnsignedIntegerRepresentation())
1757     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1758   else
1759     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1760 }
1761 
1762 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1763   unsigned IID;
1764   unsigned OpID = 0;
1765 
1766   switch (Ops.Opcode) {
1767   case BO_Add:
1768   case BO_AddAssign:
1769     OpID = 1;
1770     IID = llvm::Intrinsic::sadd_with_overflow;
1771     break;
1772   case BO_Sub:
1773   case BO_SubAssign:
1774     OpID = 2;
1775     IID = llvm::Intrinsic::ssub_with_overflow;
1776     break;
1777   case BO_Mul:
1778   case BO_MulAssign:
1779     OpID = 3;
1780     IID = llvm::Intrinsic::smul_with_overflow;
1781     break;
1782   default:
1783     assert(false && "Unsupported operation for overflow detection");
1784     IID = 0;
1785   }
1786   OpID <<= 1;
1787   OpID |= 1;
1788 
1789   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1790 
1791   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
1792 
1793   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1794   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1795   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1796 
1797   // Branch in case of overflow.
1798   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1799   llvm::Function::iterator insertPt = initialBB;
1800   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1801                                                       llvm::next(insertPt));
1802   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1803 
1804   Builder.CreateCondBr(overflow, overflowBB, continueBB);
1805 
1806   // Handle overflow with llvm.trap.
1807   const std::string *handlerName =
1808     &CGF.getContext().getLangOptions().OverflowHandler;
1809   if (handlerName->empty()) {
1810     EmitOverflowBB(overflowBB);
1811     Builder.SetInsertPoint(continueBB);
1812     return result;
1813   }
1814 
1815   // If an overflow handler is set, then we want to call it and then use its
1816   // result, if it returns.
1817   Builder.SetInsertPoint(overflowBB);
1818 
1819   // Get the overflow handler.
1820   llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1821   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1822   llvm::FunctionType *handlerTy =
1823       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1824   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1825 
1826   // Sign extend the args to 64-bit, so that we can use the same handler for
1827   // all types of overflow.
1828   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1829   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1830 
1831   // Call the handler with the two arguments, the operation, and the size of
1832   // the result.
1833   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1834       Builder.getInt8(OpID),
1835       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1836 
1837   // Truncate the result back to the desired size.
1838   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1839   Builder.CreateBr(continueBB);
1840 
1841   Builder.SetInsertPoint(continueBB);
1842   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1843   phi->addIncoming(result, initialBB);
1844   phi->addIncoming(handlerResult, overflowBB);
1845 
1846   return phi;
1847 }
1848 
1849 /// Emit pointer + index arithmetic.
1850 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1851                                     const BinOpInfo &op,
1852                                     bool isSubtraction) {
1853   // Must have binary (not unary) expr here.  Unary pointer
1854   // increment/decrement doesn't use this path.
1855   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1856 
1857   Value *pointer = op.LHS;
1858   Expr *pointerOperand = expr->getLHS();
1859   Value *index = op.RHS;
1860   Expr *indexOperand = expr->getRHS();
1861 
1862   // In a subtraction, the LHS is always the pointer.
1863   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1864     std::swap(pointer, index);
1865     std::swap(pointerOperand, indexOperand);
1866   }
1867 
1868   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1869   if (width != CGF.PointerWidthInBits) {
1870     // Zero-extend or sign-extend the pointer value according to
1871     // whether the index is signed or not.
1872     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1873     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1874                                       "idx.ext");
1875   }
1876 
1877   // If this is subtraction, negate the index.
1878   if (isSubtraction)
1879     index = CGF.Builder.CreateNeg(index, "idx.neg");
1880 
1881   const PointerType *pointerType
1882     = pointerOperand->getType()->getAs<PointerType>();
1883   if (!pointerType) {
1884     QualType objectType = pointerOperand->getType()
1885                                         ->castAs<ObjCObjectPointerType>()
1886                                         ->getPointeeType();
1887     llvm::Value *objectSize
1888       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1889 
1890     index = CGF.Builder.CreateMul(index, objectSize);
1891 
1892     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1893     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1894     return CGF.Builder.CreateBitCast(result, pointer->getType());
1895   }
1896 
1897   QualType elementType = pointerType->getPointeeType();
1898   if (const VariableArrayType *vla
1899         = CGF.getContext().getAsVariableArrayType(elementType)) {
1900     // The element count here is the total number of non-VLA elements.
1901     llvm::Value *numElements = CGF.getVLASize(vla).first;
1902 
1903     // Effectively, the multiply by the VLA size is part of the GEP.
1904     // GEP indexes are signed, and scaling an index isn't permitted to
1905     // signed-overflow, so we use the same semantics for our explicit
1906     // multiply.  We suppress this if overflow is not undefined behavior.
1907     if (CGF.getLangOptions().isSignedOverflowDefined()) {
1908       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
1909       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1910     } else {
1911       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
1912       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1913     }
1914     return pointer;
1915   }
1916 
1917   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1918   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1919   // future proof.
1920   if (elementType->isVoidType() || elementType->isFunctionType()) {
1921     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1922     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1923     return CGF.Builder.CreateBitCast(result, pointer->getType());
1924   }
1925 
1926   if (CGF.getLangOptions().isSignedOverflowDefined())
1927     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1928 
1929   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1930 }
1931 
1932 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
1933   if (op.LHS->getType()->isPointerTy() ||
1934       op.RHS->getType()->isPointerTy())
1935     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
1936 
1937   if (op.Ty->isSignedIntegerOrEnumerationType()) {
1938     switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1939     case LangOptions::SOB_Undefined:
1940       return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
1941     case LangOptions::SOB_Defined:
1942       return Builder.CreateAdd(op.LHS, op.RHS, "add");
1943     case LangOptions::SOB_Trapping:
1944       return EmitOverflowCheckedBinOp(op);
1945     }
1946   }
1947 
1948   if (op.LHS->getType()->isFPOrFPVectorTy())
1949     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
1950 
1951   return Builder.CreateAdd(op.LHS, op.RHS, "add");
1952 }
1953 
1954 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
1955   // The LHS is always a pointer if either side is.
1956   if (!op.LHS->getType()->isPointerTy()) {
1957     if (op.Ty->isSignedIntegerOrEnumerationType()) {
1958       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1959       case LangOptions::SOB_Undefined:
1960         return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
1961       case LangOptions::SOB_Defined:
1962         return Builder.CreateSub(op.LHS, op.RHS, "sub");
1963       case LangOptions::SOB_Trapping:
1964         return EmitOverflowCheckedBinOp(op);
1965       }
1966     }
1967 
1968     if (op.LHS->getType()->isFPOrFPVectorTy())
1969       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
1970 
1971     return Builder.CreateSub(op.LHS, op.RHS, "sub");
1972   }
1973 
1974   // If the RHS is not a pointer, then we have normal pointer
1975   // arithmetic.
1976   if (!op.RHS->getType()->isPointerTy())
1977     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
1978 
1979   // Otherwise, this is a pointer subtraction.
1980 
1981   // Do the raw subtraction part.
1982   llvm::Value *LHS
1983     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
1984   llvm::Value *RHS
1985     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
1986   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1987 
1988   // Okay, figure out the element size.
1989   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1990   QualType elementType = expr->getLHS()->getType()->getPointeeType();
1991 
1992   llvm::Value *divisor = 0;
1993 
1994   // For a variable-length array, this is going to be non-constant.
1995   if (const VariableArrayType *vla
1996         = CGF.getContext().getAsVariableArrayType(elementType)) {
1997     llvm::Value *numElements;
1998     llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
1999 
2000     divisor = numElements;
2001 
2002     // Scale the number of non-VLA elements by the non-VLA element size.
2003     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2004     if (!eltSize.isOne())
2005       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2006 
2007   // For everything elese, we can just compute it, safe in the
2008   // assumption that Sema won't let anything through that we can't
2009   // safely compute the size of.
2010   } else {
2011     CharUnits elementSize;
2012     // Handle GCC extension for pointer arithmetic on void* and
2013     // function pointer types.
2014     if (elementType->isVoidType() || elementType->isFunctionType())
2015       elementSize = CharUnits::One();
2016     else
2017       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2018 
2019     // Don't even emit the divide for element size of 1.
2020     if (elementSize.isOne())
2021       return diffInChars;
2022 
2023     divisor = CGF.CGM.getSize(elementSize);
2024   }
2025 
2026   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2027   // pointer difference in C is only defined in the case where both operands
2028   // are pointing to elements of an array.
2029   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2030 }
2031 
2032 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2033   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2034   // RHS to the same size as the LHS.
2035   Value *RHS = Ops.RHS;
2036   if (Ops.LHS->getType() != RHS->getType())
2037     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2038 
2039   if (CGF.CatchUndefined
2040       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2041     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2042     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2043     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2044                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2045                              Cont, CGF.getTrapBB());
2046     CGF.EmitBlock(Cont);
2047   }
2048 
2049   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2050 }
2051 
2052 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2053   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2054   // RHS to the same size as the LHS.
2055   Value *RHS = Ops.RHS;
2056   if (Ops.LHS->getType() != RHS->getType())
2057     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2058 
2059   if (CGF.CatchUndefined
2060       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2061     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2062     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2063     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2064                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2065                              Cont, CGF.getTrapBB());
2066     CGF.EmitBlock(Cont);
2067   }
2068 
2069   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2070     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2071   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2072 }
2073 
2074 enum IntrinsicType { VCMPEQ, VCMPGT };
2075 // return corresponding comparison intrinsic for given vector type
2076 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2077                                         BuiltinType::Kind ElemKind) {
2078   switch (ElemKind) {
2079   default: assert(0 && "unexpected element type");
2080   case BuiltinType::Char_U:
2081   case BuiltinType::UChar:
2082     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2083                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2084     break;
2085   case BuiltinType::Char_S:
2086   case BuiltinType::SChar:
2087     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2088                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2089     break;
2090   case BuiltinType::UShort:
2091     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2092                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2093     break;
2094   case BuiltinType::Short:
2095     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2096                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2097     break;
2098   case BuiltinType::UInt:
2099   case BuiltinType::ULong:
2100     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2101                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2102     break;
2103   case BuiltinType::Int:
2104   case BuiltinType::Long:
2105     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2106                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2107     break;
2108   case BuiltinType::Float:
2109     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2110                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2111     break;
2112   }
2113   return llvm::Intrinsic::not_intrinsic;
2114 }
2115 
2116 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2117                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2118   TestAndClearIgnoreResultAssign();
2119   Value *Result;
2120   QualType LHSTy = E->getLHS()->getType();
2121   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2122     assert(E->getOpcode() == BO_EQ ||
2123            E->getOpcode() == BO_NE);
2124     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2125     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2126     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2127                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2128   } else if (!LHSTy->isAnyComplexType()) {
2129     Value *LHS = Visit(E->getLHS());
2130     Value *RHS = Visit(E->getRHS());
2131 
2132     // If AltiVec, the comparison results in a numeric type, so we use
2133     // intrinsics comparing vectors and giving 0 or 1 as a result
2134     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2135       // constants for mapping CR6 register bits to predicate result
2136       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2137 
2138       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2139 
2140       // in several cases vector arguments order will be reversed
2141       Value *FirstVecArg = LHS,
2142             *SecondVecArg = RHS;
2143 
2144       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2145       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2146       BuiltinType::Kind ElementKind = BTy->getKind();
2147 
2148       switch(E->getOpcode()) {
2149       default: assert(0 && "is not a comparison operation");
2150       case BO_EQ:
2151         CR6 = CR6_LT;
2152         ID = GetIntrinsic(VCMPEQ, ElementKind);
2153         break;
2154       case BO_NE:
2155         CR6 = CR6_EQ;
2156         ID = GetIntrinsic(VCMPEQ, ElementKind);
2157         break;
2158       case BO_LT:
2159         CR6 = CR6_LT;
2160         ID = GetIntrinsic(VCMPGT, ElementKind);
2161         std::swap(FirstVecArg, SecondVecArg);
2162         break;
2163       case BO_GT:
2164         CR6 = CR6_LT;
2165         ID = GetIntrinsic(VCMPGT, ElementKind);
2166         break;
2167       case BO_LE:
2168         if (ElementKind == BuiltinType::Float) {
2169           CR6 = CR6_LT;
2170           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2171           std::swap(FirstVecArg, SecondVecArg);
2172         }
2173         else {
2174           CR6 = CR6_EQ;
2175           ID = GetIntrinsic(VCMPGT, ElementKind);
2176         }
2177         break;
2178       case BO_GE:
2179         if (ElementKind == BuiltinType::Float) {
2180           CR6 = CR6_LT;
2181           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2182         }
2183         else {
2184           CR6 = CR6_EQ;
2185           ID = GetIntrinsic(VCMPGT, ElementKind);
2186           std::swap(FirstVecArg, SecondVecArg);
2187         }
2188         break;
2189       }
2190 
2191       Value *CR6Param = Builder.getInt32(CR6);
2192       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2193       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2194       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2195     }
2196 
2197     if (LHS->getType()->isFPOrFPVectorTy()) {
2198       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2199                                   LHS, RHS, "cmp");
2200     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2201       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2202                                   LHS, RHS, "cmp");
2203     } else {
2204       // Unsigned integers and pointers.
2205       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2206                                   LHS, RHS, "cmp");
2207     }
2208 
2209     // If this is a vector comparison, sign extend the result to the appropriate
2210     // vector integer type and return it (don't convert to bool).
2211     if (LHSTy->isVectorType())
2212       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2213 
2214   } else {
2215     // Complex Comparison: can only be an equality comparison.
2216     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2217     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2218 
2219     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2220 
2221     Value *ResultR, *ResultI;
2222     if (CETy->isRealFloatingType()) {
2223       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2224                                    LHS.first, RHS.first, "cmp.r");
2225       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2226                                    LHS.second, RHS.second, "cmp.i");
2227     } else {
2228       // Complex comparisons can only be equality comparisons.  As such, signed
2229       // and unsigned opcodes are the same.
2230       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2231                                    LHS.first, RHS.first, "cmp.r");
2232       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2233                                    LHS.second, RHS.second, "cmp.i");
2234     }
2235 
2236     if (E->getOpcode() == BO_EQ) {
2237       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2238     } else {
2239       assert(E->getOpcode() == BO_NE &&
2240              "Complex comparison other than == or != ?");
2241       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2242     }
2243   }
2244 
2245   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2246 }
2247 
2248 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2249   bool Ignore = TestAndClearIgnoreResultAssign();
2250 
2251   Value *RHS;
2252   LValue LHS;
2253 
2254   switch (E->getLHS()->getType().getObjCLifetime()) {
2255   case Qualifiers::OCL_Strong:
2256     llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2257     break;
2258 
2259   case Qualifiers::OCL_Autoreleasing:
2260     llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2261     break;
2262 
2263   case Qualifiers::OCL_Weak:
2264     RHS = Visit(E->getRHS());
2265     LHS = EmitCheckedLValue(E->getLHS());
2266     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2267     break;
2268 
2269   // No reason to do any of these differently.
2270   case Qualifiers::OCL_None:
2271   case Qualifiers::OCL_ExplicitNone:
2272     // __block variables need to have the rhs evaluated first, plus
2273     // this should improve codegen just a little.
2274     RHS = Visit(E->getRHS());
2275     LHS = EmitCheckedLValue(E->getLHS());
2276 
2277     // Store the value into the LHS.  Bit-fields are handled specially
2278     // because the result is altered by the store, i.e., [C99 6.5.16p1]
2279     // 'An assignment expression has the value of the left operand after
2280     // the assignment...'.
2281     if (LHS.isBitField())
2282       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2283     else
2284       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2285   }
2286 
2287   // If the result is clearly ignored, return now.
2288   if (Ignore)
2289     return 0;
2290 
2291   // The result of an assignment in C is the assigned r-value.
2292   if (!CGF.getContext().getLangOptions().CPlusPlus)
2293     return RHS;
2294 
2295   // Objective-C property assignment never reloads the value following a store.
2296   if (LHS.isPropertyRef())
2297     return RHS;
2298 
2299   // If the lvalue is non-volatile, return the computed value of the assignment.
2300   if (!LHS.isVolatileQualified())
2301     return RHS;
2302 
2303   // Otherwise, reload the value.
2304   return EmitLoadOfLValue(LHS);
2305 }
2306 
2307 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2308   llvm::Type *ResTy = ConvertType(E->getType());
2309 
2310   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2311   // If we have 1 && X, just emit X without inserting the control flow.
2312   bool LHSCondVal;
2313   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2314     if (LHSCondVal) { // If we have 1 && X, just emit X.
2315       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2316       // ZExt result to int or bool.
2317       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2318     }
2319 
2320     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2321     if (!CGF.ContainsLabel(E->getRHS()))
2322       return llvm::Constant::getNullValue(ResTy);
2323   }
2324 
2325   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2326   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2327 
2328   CodeGenFunction::ConditionalEvaluation eval(CGF);
2329 
2330   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2331   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2332 
2333   // Any edges into the ContBlock are now from an (indeterminate number of)
2334   // edges from this first condition.  All of these values will be false.  Start
2335   // setting up the PHI node in the Cont Block for this.
2336   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2337                                             "", ContBlock);
2338   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2339        PI != PE; ++PI)
2340     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2341 
2342   eval.begin(CGF);
2343   CGF.EmitBlock(RHSBlock);
2344   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2345   eval.end(CGF);
2346 
2347   // Reaquire the RHS block, as there may be subblocks inserted.
2348   RHSBlock = Builder.GetInsertBlock();
2349 
2350   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2351   // into the phi node for the edge with the value of RHSCond.
2352   if (CGF.getDebugInfo())
2353     // There is no need to emit line number for unconditional branch.
2354     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2355   CGF.EmitBlock(ContBlock);
2356   PN->addIncoming(RHSCond, RHSBlock);
2357 
2358   // ZExt result to int.
2359   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2360 }
2361 
2362 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2363   llvm::Type *ResTy = ConvertType(E->getType());
2364 
2365   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2366   // If we have 0 || X, just emit X without inserting the control flow.
2367   bool LHSCondVal;
2368   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2369     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2370       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2371       // ZExt result to int or bool.
2372       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2373     }
2374 
2375     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2376     if (!CGF.ContainsLabel(E->getRHS()))
2377       return llvm::ConstantInt::get(ResTy, 1);
2378   }
2379 
2380   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2381   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2382 
2383   CodeGenFunction::ConditionalEvaluation eval(CGF);
2384 
2385   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2386   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2387 
2388   // Any edges into the ContBlock are now from an (indeterminate number of)
2389   // edges from this first condition.  All of these values will be true.  Start
2390   // setting up the PHI node in the Cont Block for this.
2391   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2392                                             "", ContBlock);
2393   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2394        PI != PE; ++PI)
2395     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2396 
2397   eval.begin(CGF);
2398 
2399   // Emit the RHS condition as a bool value.
2400   CGF.EmitBlock(RHSBlock);
2401   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2402 
2403   eval.end(CGF);
2404 
2405   // Reaquire the RHS block, as there may be subblocks inserted.
2406   RHSBlock = Builder.GetInsertBlock();
2407 
2408   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2409   // into the phi node for the edge with the value of RHSCond.
2410   CGF.EmitBlock(ContBlock);
2411   PN->addIncoming(RHSCond, RHSBlock);
2412 
2413   // ZExt result to int.
2414   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2415 }
2416 
2417 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2418   CGF.EmitIgnoredExpr(E->getLHS());
2419   CGF.EnsureInsertPoint();
2420   return Visit(E->getRHS());
2421 }
2422 
2423 //===----------------------------------------------------------------------===//
2424 //                             Other Operators
2425 //===----------------------------------------------------------------------===//
2426 
2427 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2428 /// expression is cheap enough and side-effect-free enough to evaluate
2429 /// unconditionally instead of conditionally.  This is used to convert control
2430 /// flow into selects in some cases.
2431 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2432                                                    CodeGenFunction &CGF) {
2433   E = E->IgnoreParens();
2434 
2435   // Anything that is an integer or floating point constant is fine.
2436   if (E->isConstantInitializer(CGF.getContext(), false))
2437     return true;
2438 
2439   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2440   // X and Y are local variables.
2441   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2442     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2443       if (VD->hasLocalStorage() && !(CGF.getContext()
2444                                      .getCanonicalType(VD->getType())
2445                                      .isVolatileQualified()))
2446         return true;
2447 
2448   return false;
2449 }
2450 
2451 
2452 Value *ScalarExprEmitter::
2453 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2454   TestAndClearIgnoreResultAssign();
2455 
2456   // Bind the common expression if necessary.
2457   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2458 
2459   Expr *condExpr = E->getCond();
2460   Expr *lhsExpr = E->getTrueExpr();
2461   Expr *rhsExpr = E->getFalseExpr();
2462 
2463   // If the condition constant folds and can be elided, try to avoid emitting
2464   // the condition and the dead arm.
2465   bool CondExprBool;
2466   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2467     Expr *live = lhsExpr, *dead = rhsExpr;
2468     if (!CondExprBool) std::swap(live, dead);
2469 
2470     // If the dead side doesn't have labels we need, and if the Live side isn't
2471     // the gnu missing ?: extension (which we could handle, but don't bother
2472     // to), just emit the Live part.
2473     if (!CGF.ContainsLabel(dead))
2474       return Visit(live);
2475   }
2476 
2477   // OpenCL: If the condition is a vector, we can treat this condition like
2478   // the select function.
2479   if (CGF.getContext().getLangOptions().OpenCL
2480       && condExpr->getType()->isVectorType()) {
2481     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2482     llvm::Value *LHS = Visit(lhsExpr);
2483     llvm::Value *RHS = Visit(rhsExpr);
2484 
2485     llvm::Type *condType = ConvertType(condExpr->getType());
2486     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2487 
2488     unsigned numElem = vecTy->getNumElements();
2489     llvm::Type *elemType = vecTy->getElementType();
2490 
2491     std::vector<llvm::Constant*> Zvals;
2492     for (unsigned i = 0; i < numElem; ++i)
2493       Zvals.push_back(llvm::ConstantInt::get(elemType, 0));
2494 
2495     llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2496     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2497     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2498                                           llvm::VectorType::get(elemType,
2499                                                                 numElem),
2500                                           "sext");
2501     llvm::Value *tmp2 = Builder.CreateNot(tmp);
2502 
2503     // Cast float to int to perform ANDs if necessary.
2504     llvm::Value *RHSTmp = RHS;
2505     llvm::Value *LHSTmp = LHS;
2506     bool wasCast = false;
2507     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2508     if (rhsVTy->getElementType()->isFloatTy()) {
2509       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2510       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2511       wasCast = true;
2512     }
2513 
2514     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2515     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2516     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2517     if (wasCast)
2518       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2519 
2520     return tmp5;
2521   }
2522 
2523   // If this is a really simple expression (like x ? 4 : 5), emit this as a
2524   // select instead of as control flow.  We can only do this if it is cheap and
2525   // safe to evaluate the LHS and RHS unconditionally.
2526   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2527       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2528     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2529     llvm::Value *LHS = Visit(lhsExpr);
2530     llvm::Value *RHS = Visit(rhsExpr);
2531     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2532   }
2533 
2534   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2535   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2536   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2537 
2538   CodeGenFunction::ConditionalEvaluation eval(CGF);
2539   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2540 
2541   CGF.EmitBlock(LHSBlock);
2542   eval.begin(CGF);
2543   Value *LHS = Visit(lhsExpr);
2544   eval.end(CGF);
2545 
2546   LHSBlock = Builder.GetInsertBlock();
2547   Builder.CreateBr(ContBlock);
2548 
2549   CGF.EmitBlock(RHSBlock);
2550   eval.begin(CGF);
2551   Value *RHS = Visit(rhsExpr);
2552   eval.end(CGF);
2553 
2554   RHSBlock = Builder.GetInsertBlock();
2555   CGF.EmitBlock(ContBlock);
2556 
2557   // If the LHS or RHS is a throw expression, it will be legitimately null.
2558   if (!LHS)
2559     return RHS;
2560   if (!RHS)
2561     return LHS;
2562 
2563   // Create a PHI node for the real part.
2564   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2565   PN->addIncoming(LHS, LHSBlock);
2566   PN->addIncoming(RHS, RHSBlock);
2567   return PN;
2568 }
2569 
2570 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2571   return Visit(E->getChosenSubExpr(CGF.getContext()));
2572 }
2573 
2574 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2575   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2576   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2577 
2578   // If EmitVAArg fails, we fall back to the LLVM instruction.
2579   if (!ArgPtr)
2580     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2581 
2582   // FIXME Volatility.
2583   return Builder.CreateLoad(ArgPtr);
2584 }
2585 
2586 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2587   return CGF.EmitBlockLiteral(block);
2588 }
2589 
2590 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2591   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2592   llvm::Type *DstTy = ConvertType(E->getType());
2593 
2594   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2595   // a shuffle vector instead of a bitcast.
2596   llvm::Type *SrcTy = Src->getType();
2597   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2598     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2599     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2600     if ((numElementsDst == 3 && numElementsSrc == 4)
2601         || (numElementsDst == 4 && numElementsSrc == 3)) {
2602 
2603 
2604       // In the case of going from int4->float3, a bitcast is needed before
2605       // doing a shuffle.
2606       llvm::Type *srcElemTy =
2607       cast<llvm::VectorType>(SrcTy)->getElementType();
2608       llvm::Type *dstElemTy =
2609       cast<llvm::VectorType>(DstTy)->getElementType();
2610 
2611       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2612           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2613         // Create a float type of the same size as the source or destination.
2614         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2615                                                                  numElementsSrc);
2616 
2617         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2618       }
2619 
2620       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2621 
2622       SmallVector<llvm::Constant*, 3> Args;
2623       Args.push_back(Builder.getInt32(0));
2624       Args.push_back(Builder.getInt32(1));
2625       Args.push_back(Builder.getInt32(2));
2626 
2627       if (numElementsDst == 4)
2628         Args.push_back(llvm::UndefValue::get(
2629                                              llvm::Type::getInt32Ty(CGF.getLLVMContext())));
2630 
2631       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2632 
2633       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2634     }
2635   }
2636 
2637   return Builder.CreateBitCast(Src, DstTy, "astype");
2638 }
2639 
2640 //===----------------------------------------------------------------------===//
2641 //                         Entry Point into this File
2642 //===----------------------------------------------------------------------===//
2643 
2644 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
2645 /// type, ignoring the result.
2646 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2647   assert(E && !hasAggregateLLVMType(E->getType()) &&
2648          "Invalid scalar expression to emit");
2649 
2650   if (isa<CXXDefaultArgExpr>(E))
2651     disableDebugInfo();
2652   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2653     .Visit(const_cast<Expr*>(E));
2654   if (isa<CXXDefaultArgExpr>(E))
2655     enableDebugInfo();
2656   return V;
2657 }
2658 
2659 /// EmitScalarConversion - Emit a conversion from the specified type to the
2660 /// specified destination type, both of which are LLVM scalar types.
2661 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2662                                              QualType DstTy) {
2663   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2664          "Invalid scalar expression to emit");
2665   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2666 }
2667 
2668 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2669 /// type to the specified destination type, where the destination type is an
2670 /// LLVM scalar type.
2671 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2672                                                       QualType SrcTy,
2673                                                       QualType DstTy) {
2674   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2675          "Invalid complex -> scalar conversion");
2676   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2677                                                                 DstTy);
2678 }
2679 
2680 
2681 llvm::Value *CodeGenFunction::
2682 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2683                         bool isInc, bool isPre) {
2684   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2685 }
2686 
2687 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2688   llvm::Value *V;
2689   // object->isa or (*object).isa
2690   // Generate code as for: *(Class*)object
2691   // build Class* type
2692   llvm::Type *ClassPtrTy = ConvertType(E->getType());
2693 
2694   Expr *BaseExpr = E->getBase();
2695   if (BaseExpr->isRValue()) {
2696     V = CreateTempAlloca(ClassPtrTy, "resval");
2697     llvm::Value *Src = EmitScalarExpr(BaseExpr);
2698     Builder.CreateStore(Src, V);
2699     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2700       MakeAddrLValue(V, E->getType()));
2701   } else {
2702     if (E->isArrow())
2703       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2704     else
2705       V = EmitLValue(BaseExpr).getAddress();
2706   }
2707 
2708   // build Class* type
2709   ClassPtrTy = ClassPtrTy->getPointerTo();
2710   V = Builder.CreateBitCast(V, ClassPtrTy);
2711   return MakeAddrLValue(V, E->getType());
2712 }
2713 
2714 
2715 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2716                                             const CompoundAssignOperator *E) {
2717   ScalarExprEmitter Scalar(*this);
2718   Value *Result = 0;
2719   switch (E->getOpcode()) {
2720 #define COMPOUND_OP(Op)                                                       \
2721     case BO_##Op##Assign:                                                     \
2722       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2723                                              Result)
2724   COMPOUND_OP(Mul);
2725   COMPOUND_OP(Div);
2726   COMPOUND_OP(Rem);
2727   COMPOUND_OP(Add);
2728   COMPOUND_OP(Sub);
2729   COMPOUND_OP(Shl);
2730   COMPOUND_OP(Shr);
2731   COMPOUND_OP(And);
2732   COMPOUND_OP(Xor);
2733   COMPOUND_OP(Or);
2734 #undef COMPOUND_OP
2735 
2736   case BO_PtrMemD:
2737   case BO_PtrMemI:
2738   case BO_Mul:
2739   case BO_Div:
2740   case BO_Rem:
2741   case BO_Add:
2742   case BO_Sub:
2743   case BO_Shl:
2744   case BO_Shr:
2745   case BO_LT:
2746   case BO_GT:
2747   case BO_LE:
2748   case BO_GE:
2749   case BO_EQ:
2750   case BO_NE:
2751   case BO_And:
2752   case BO_Xor:
2753   case BO_Or:
2754   case BO_LAnd:
2755   case BO_LOr:
2756   case BO_Assign:
2757   case BO_Comma:
2758     assert(false && "Not valid compound assignment operators");
2759     break;
2760   }
2761 
2762   llvm_unreachable("Unhandled compound assignment operator");
2763 }
2764