1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include <cstdarg> 33 34 using namespace clang; 35 using namespace CodeGen; 36 using llvm::Value; 37 38 //===----------------------------------------------------------------------===// 39 // Scalar Expression Emitter 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 struct BinOpInfo { 44 Value *LHS; 45 Value *RHS; 46 QualType Ty; // Computation Type. 47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 48 bool FPContractable; 49 const Expr *E; // Entire expr, for error unsupported. May not be binop. 50 }; 51 52 static bool MustVisitNullValue(const Expr *E) { 53 // If a null pointer expression's type is the C++0x nullptr_t, then 54 // it's not necessarily a simple constant and it must be evaluated 55 // for its potential side effects. 56 return E->getType()->isNullPtrType(); 57 } 58 59 class ScalarExprEmitter 60 : public StmtVisitor<ScalarExprEmitter, Value*> { 61 CodeGenFunction &CGF; 62 CGBuilderTy &Builder; 63 bool IgnoreResultAssign; 64 llvm::LLVMContext &VMContext; 65 public: 66 67 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 68 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 69 VMContext(cgf.getLLVMContext()) { 70 } 71 72 //===--------------------------------------------------------------------===// 73 // Utilities 74 //===--------------------------------------------------------------------===// 75 76 bool TestAndClearIgnoreResultAssign() { 77 bool I = IgnoreResultAssign; 78 IgnoreResultAssign = false; 79 return I; 80 } 81 82 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 83 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 84 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 85 return CGF.EmitCheckedLValue(E, TCK); 86 } 87 88 void EmitBinOpCheck(Value *Check, const BinOpInfo &Info); 89 90 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 91 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 92 } 93 94 /// EmitLoadOfLValue - Given an expression with complex type that represents a 95 /// value l-value, this method emits the address of the l-value, then loads 96 /// and returns the result. 97 Value *EmitLoadOfLValue(const Expr *E) { 98 return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 99 E->getExprLoc()); 100 } 101 102 /// EmitConversionToBool - Convert the specified expression value to a 103 /// boolean (i1) truth value. This is equivalent to "Val != 0". 104 Value *EmitConversionToBool(Value *Src, QualType DstTy); 105 106 /// \brief Emit a check that a conversion to or from a floating-point type 107 /// does not overflow. 108 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 109 Value *Src, QualType SrcType, 110 QualType DstType, llvm::Type *DstTy); 111 112 /// EmitScalarConversion - Emit a conversion from the specified type to the 113 /// specified destination type, both of which are LLVM scalar types. 114 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 115 116 /// EmitComplexToScalarConversion - Emit a conversion from the specified 117 /// complex type to the specified destination type, where the destination type 118 /// is an LLVM scalar type. 119 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 120 QualType SrcTy, QualType DstTy); 121 122 /// EmitNullValue - Emit a value that corresponds to null for the given type. 123 Value *EmitNullValue(QualType Ty); 124 125 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 126 Value *EmitFloatToBoolConversion(Value *V) { 127 // Compare against 0.0 for fp scalars. 128 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 129 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 130 } 131 132 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 133 Value *EmitPointerToBoolConversion(Value *V) { 134 Value *Zero = llvm::ConstantPointerNull::get( 135 cast<llvm::PointerType>(V->getType())); 136 return Builder.CreateICmpNE(V, Zero, "tobool"); 137 } 138 139 Value *EmitIntToBoolConversion(Value *V) { 140 // Because of the type rules of C, we often end up computing a 141 // logical value, then zero extending it to int, then wanting it 142 // as a logical value again. Optimize this common case. 143 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 144 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 145 Value *Result = ZI->getOperand(0); 146 // If there aren't any more uses, zap the instruction to save space. 147 // Note that there can be more uses, for example if this 148 // is the result of an assignment. 149 if (ZI->use_empty()) 150 ZI->eraseFromParent(); 151 return Result; 152 } 153 } 154 155 return Builder.CreateIsNotNull(V, "tobool"); 156 } 157 158 //===--------------------------------------------------------------------===// 159 // Visitor Methods 160 //===--------------------------------------------------------------------===// 161 162 Value *Visit(Expr *E) { 163 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 164 } 165 166 Value *VisitStmt(Stmt *S) { 167 S->dump(CGF.getContext().getSourceManager()); 168 llvm_unreachable("Stmt can't have complex result type!"); 169 } 170 Value *VisitExpr(Expr *S); 171 172 Value *VisitParenExpr(ParenExpr *PE) { 173 return Visit(PE->getSubExpr()); 174 } 175 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 176 return Visit(E->getReplacement()); 177 } 178 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 179 return Visit(GE->getResultExpr()); 180 } 181 182 // Leaves. 183 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 184 return Builder.getInt(E->getValue()); 185 } 186 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 187 return llvm::ConstantFP::get(VMContext, E->getValue()); 188 } 189 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 190 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 191 } 192 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 193 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 194 } 195 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 196 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 197 } 198 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 199 return EmitNullValue(E->getType()); 200 } 201 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 202 return EmitNullValue(E->getType()); 203 } 204 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 205 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 206 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 207 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 208 return Builder.CreateBitCast(V, ConvertType(E->getType())); 209 } 210 211 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 212 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 213 } 214 215 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 216 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 217 } 218 219 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 220 if (E->isGLValue()) 221 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 222 223 // Otherwise, assume the mapping is the scalar directly. 224 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 225 } 226 227 // l-values. 228 Value *VisitDeclRefExpr(DeclRefExpr *E) { 229 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 230 if (result.isReference()) 231 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 232 E->getExprLoc()); 233 return result.getValue(); 234 } 235 return EmitLoadOfLValue(E); 236 } 237 238 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 239 return CGF.EmitObjCSelectorExpr(E); 240 } 241 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 242 return CGF.EmitObjCProtocolExpr(E); 243 } 244 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 245 return EmitLoadOfLValue(E); 246 } 247 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 248 if (E->getMethodDecl() && 249 E->getMethodDecl()->getReturnType()->isReferenceType()) 250 return EmitLoadOfLValue(E); 251 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 252 } 253 254 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 255 LValue LV = CGF.EmitObjCIsaExpr(E); 256 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 257 return V; 258 } 259 260 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 261 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 262 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 263 Value *VisitMemberExpr(MemberExpr *E); 264 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 265 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 266 return EmitLoadOfLValue(E); 267 } 268 269 Value *VisitInitListExpr(InitListExpr *E); 270 271 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 272 return EmitNullValue(E->getType()); 273 } 274 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 275 if (E->getType()->isVariablyModifiedType()) 276 CGF.EmitVariablyModifiedType(E->getType()); 277 return VisitCastExpr(E); 278 } 279 Value *VisitCastExpr(CastExpr *E); 280 281 Value *VisitCallExpr(const CallExpr *E) { 282 if (E->getCallReturnType()->isReferenceType()) 283 return EmitLoadOfLValue(E); 284 285 return CGF.EmitCallExpr(E).getScalarVal(); 286 } 287 288 Value *VisitStmtExpr(const StmtExpr *E); 289 290 // Unary Operators. 291 Value *VisitUnaryPostDec(const UnaryOperator *E) { 292 LValue LV = EmitLValue(E->getSubExpr()); 293 return EmitScalarPrePostIncDec(E, LV, false, false); 294 } 295 Value *VisitUnaryPostInc(const UnaryOperator *E) { 296 LValue LV = EmitLValue(E->getSubExpr()); 297 return EmitScalarPrePostIncDec(E, LV, true, false); 298 } 299 Value *VisitUnaryPreDec(const UnaryOperator *E) { 300 LValue LV = EmitLValue(E->getSubExpr()); 301 return EmitScalarPrePostIncDec(E, LV, false, true); 302 } 303 Value *VisitUnaryPreInc(const UnaryOperator *E) { 304 LValue LV = EmitLValue(E->getSubExpr()); 305 return EmitScalarPrePostIncDec(E, LV, true, true); 306 } 307 308 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 309 llvm::Value *InVal, 310 llvm::Value *NextVal, 311 bool IsInc); 312 313 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 314 bool isInc, bool isPre); 315 316 317 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 318 if (isa<MemberPointerType>(E->getType())) // never sugared 319 return CGF.CGM.getMemberPointerConstant(E); 320 321 return EmitLValue(E->getSubExpr()).getAddress(); 322 } 323 Value *VisitUnaryDeref(const UnaryOperator *E) { 324 if (E->getType()->isVoidType()) 325 return Visit(E->getSubExpr()); // the actual value should be unused 326 return EmitLoadOfLValue(E); 327 } 328 Value *VisitUnaryPlus(const UnaryOperator *E) { 329 // This differs from gcc, though, most likely due to a bug in gcc. 330 TestAndClearIgnoreResultAssign(); 331 return Visit(E->getSubExpr()); 332 } 333 Value *VisitUnaryMinus (const UnaryOperator *E); 334 Value *VisitUnaryNot (const UnaryOperator *E); 335 Value *VisitUnaryLNot (const UnaryOperator *E); 336 Value *VisitUnaryReal (const UnaryOperator *E); 337 Value *VisitUnaryImag (const UnaryOperator *E); 338 Value *VisitUnaryExtension(const UnaryOperator *E) { 339 return Visit(E->getSubExpr()); 340 } 341 342 // C++ 343 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 344 return EmitLoadOfLValue(E); 345 } 346 347 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 348 return Visit(DAE->getExpr()); 349 } 350 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 351 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 352 return Visit(DIE->getExpr()); 353 } 354 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 355 return CGF.LoadCXXThis(); 356 } 357 358 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 359 CGF.enterFullExpression(E); 360 CodeGenFunction::RunCleanupsScope Scope(CGF); 361 return Visit(E->getSubExpr()); 362 } 363 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 364 return CGF.EmitCXXNewExpr(E); 365 } 366 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 367 CGF.EmitCXXDeleteExpr(E); 368 return nullptr; 369 } 370 371 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 372 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 373 } 374 375 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 376 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 377 } 378 379 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 380 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 381 } 382 383 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 384 // C++ [expr.pseudo]p1: 385 // The result shall only be used as the operand for the function call 386 // operator (), and the result of such a call has type void. The only 387 // effect is the evaluation of the postfix-expression before the dot or 388 // arrow. 389 CGF.EmitScalarExpr(E->getBase()); 390 return nullptr; 391 } 392 393 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 394 return EmitNullValue(E->getType()); 395 } 396 397 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 398 CGF.EmitCXXThrowExpr(E); 399 return nullptr; 400 } 401 402 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 403 return Builder.getInt1(E->getValue()); 404 } 405 406 // Binary Operators. 407 Value *EmitMul(const BinOpInfo &Ops) { 408 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 409 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 410 case LangOptions::SOB_Defined: 411 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 412 case LangOptions::SOB_Undefined: 413 if (!CGF.SanOpts->SignedIntegerOverflow) 414 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 415 // Fall through. 416 case LangOptions::SOB_Trapping: 417 return EmitOverflowCheckedBinOp(Ops); 418 } 419 } 420 421 if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 422 return EmitOverflowCheckedBinOp(Ops); 423 424 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 425 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 426 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 427 } 428 /// Create a binary op that checks for overflow. 429 /// Currently only supports +, - and *. 430 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 431 432 // Check for undefined division and modulus behaviors. 433 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 434 llvm::Value *Zero,bool isDiv); 435 // Common helper for getting how wide LHS of shift is. 436 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 437 Value *EmitDiv(const BinOpInfo &Ops); 438 Value *EmitRem(const BinOpInfo &Ops); 439 Value *EmitAdd(const BinOpInfo &Ops); 440 Value *EmitSub(const BinOpInfo &Ops); 441 Value *EmitShl(const BinOpInfo &Ops); 442 Value *EmitShr(const BinOpInfo &Ops); 443 Value *EmitAnd(const BinOpInfo &Ops) { 444 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 445 } 446 Value *EmitXor(const BinOpInfo &Ops) { 447 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 448 } 449 Value *EmitOr (const BinOpInfo &Ops) { 450 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 451 } 452 453 BinOpInfo EmitBinOps(const BinaryOperator *E); 454 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 455 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 456 Value *&Result); 457 458 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 459 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 460 461 // Binary operators and binary compound assignment operators. 462 #define HANDLEBINOP(OP) \ 463 Value *VisitBin ## OP(const BinaryOperator *E) { \ 464 return Emit ## OP(EmitBinOps(E)); \ 465 } \ 466 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 467 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 468 } 469 HANDLEBINOP(Mul) 470 HANDLEBINOP(Div) 471 HANDLEBINOP(Rem) 472 HANDLEBINOP(Add) 473 HANDLEBINOP(Sub) 474 HANDLEBINOP(Shl) 475 HANDLEBINOP(Shr) 476 HANDLEBINOP(And) 477 HANDLEBINOP(Xor) 478 HANDLEBINOP(Or) 479 #undef HANDLEBINOP 480 481 // Comparisons. 482 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 483 unsigned SICmpOpc, unsigned FCmpOpc); 484 #define VISITCOMP(CODE, UI, SI, FP) \ 485 Value *VisitBin##CODE(const BinaryOperator *E) { \ 486 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 487 llvm::FCmpInst::FP); } 488 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 489 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 490 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 491 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 492 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 493 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 494 #undef VISITCOMP 495 496 Value *VisitBinAssign (const BinaryOperator *E); 497 498 Value *VisitBinLAnd (const BinaryOperator *E); 499 Value *VisitBinLOr (const BinaryOperator *E); 500 Value *VisitBinComma (const BinaryOperator *E); 501 502 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 503 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 504 505 // Other Operators. 506 Value *VisitBlockExpr(const BlockExpr *BE); 507 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 508 Value *VisitChooseExpr(ChooseExpr *CE); 509 Value *VisitVAArgExpr(VAArgExpr *VE); 510 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 511 return CGF.EmitObjCStringLiteral(E); 512 } 513 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 514 return CGF.EmitObjCBoxedExpr(E); 515 } 516 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 517 return CGF.EmitObjCArrayLiteral(E); 518 } 519 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 520 return CGF.EmitObjCDictionaryLiteral(E); 521 } 522 Value *VisitAsTypeExpr(AsTypeExpr *CE); 523 Value *VisitAtomicExpr(AtomicExpr *AE); 524 }; 525 } // end anonymous namespace. 526 527 //===----------------------------------------------------------------------===// 528 // Utilities 529 //===----------------------------------------------------------------------===// 530 531 /// EmitConversionToBool - Convert the specified expression value to a 532 /// boolean (i1) truth value. This is equivalent to "Val != 0". 533 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 534 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 535 536 if (SrcType->isRealFloatingType()) 537 return EmitFloatToBoolConversion(Src); 538 539 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 540 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 541 542 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 543 "Unknown scalar type to convert"); 544 545 if (isa<llvm::IntegerType>(Src->getType())) 546 return EmitIntToBoolConversion(Src); 547 548 assert(isa<llvm::PointerType>(Src->getType())); 549 return EmitPointerToBoolConversion(Src); 550 } 551 552 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc, 553 QualType OrigSrcType, 554 Value *Src, QualType SrcType, 555 QualType DstType, 556 llvm::Type *DstTy) { 557 CodeGenFunction::SanitizerScope SanScope(&CGF); 558 using llvm::APFloat; 559 using llvm::APSInt; 560 561 llvm::Type *SrcTy = Src->getType(); 562 563 llvm::Value *Check = nullptr; 564 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 565 // Integer to floating-point. This can fail for unsigned short -> __half 566 // or unsigned __int128 -> float. 567 assert(DstType->isFloatingType()); 568 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 569 570 APFloat LargestFloat = 571 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 572 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 573 574 bool IsExact; 575 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 576 &IsExact) != APFloat::opOK) 577 // The range of representable values of this floating point type includes 578 // all values of this integer type. Don't need an overflow check. 579 return; 580 581 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 582 if (SrcIsUnsigned) 583 Check = Builder.CreateICmpULE(Src, Max); 584 else { 585 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 586 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 587 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 588 Check = Builder.CreateAnd(GE, LE); 589 } 590 } else { 591 const llvm::fltSemantics &SrcSema = 592 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 593 if (isa<llvm::IntegerType>(DstTy)) { 594 // Floating-point to integer. This has undefined behavior if the source is 595 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 596 // to an integer). 597 unsigned Width = CGF.getContext().getIntWidth(DstType); 598 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 599 600 APSInt Min = APSInt::getMinValue(Width, Unsigned); 601 APFloat MinSrc(SrcSema, APFloat::uninitialized); 602 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 603 APFloat::opOverflow) 604 // Don't need an overflow check for lower bound. Just check for 605 // -Inf/NaN. 606 MinSrc = APFloat::getInf(SrcSema, true); 607 else 608 // Find the largest value which is too small to represent (before 609 // truncation toward zero). 610 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 611 612 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 613 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 614 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 615 APFloat::opOverflow) 616 // Don't need an overflow check for upper bound. Just check for 617 // +Inf/NaN. 618 MaxSrc = APFloat::getInf(SrcSema, false); 619 else 620 // Find the smallest value which is too large to represent (before 621 // truncation toward zero). 622 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 623 624 // If we're converting from __half, convert the range to float to match 625 // the type of src. 626 if (OrigSrcType->isHalfType()) { 627 const llvm::fltSemantics &Sema = 628 CGF.getContext().getFloatTypeSemantics(SrcType); 629 bool IsInexact; 630 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 631 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 632 } 633 634 llvm::Value *GE = 635 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 636 llvm::Value *LE = 637 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 638 Check = Builder.CreateAnd(GE, LE); 639 } else { 640 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 641 // 642 // Floating-point to floating-point. This has undefined behavior if the 643 // source is not in the range of representable values of the destination 644 // type. The C and C++ standards are spectacularly unclear here. We 645 // diagnose finite out-of-range conversions, but allow infinities and NaNs 646 // to convert to the corresponding value in the smaller type. 647 // 648 // C11 Annex F gives all such conversions defined behavior for IEC 60559 649 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 650 // does not. 651 652 // Converting from a lower rank to a higher rank can never have 653 // undefined behavior, since higher-rank types must have a superset 654 // of values of lower-rank types. 655 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 656 return; 657 658 assert(!OrigSrcType->isHalfType() && 659 "should not check conversion from __half, it has the lowest rank"); 660 661 const llvm::fltSemantics &DstSema = 662 CGF.getContext().getFloatTypeSemantics(DstType); 663 APFloat MinBad = APFloat::getLargest(DstSema, false); 664 APFloat MaxBad = APFloat::getInf(DstSema, false); 665 666 bool IsInexact; 667 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 668 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 669 670 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 671 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 672 llvm::Value *GE = 673 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 674 llvm::Value *LE = 675 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 676 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 677 } 678 } 679 680 // FIXME: Provide a SourceLocation. 681 llvm::Constant *StaticArgs[] = { 682 CGF.EmitCheckTypeDescriptor(OrigSrcType), 683 CGF.EmitCheckTypeDescriptor(DstType) 684 }; 685 CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc, 686 CodeGenFunction::CRK_Recoverable); 687 } 688 689 /// EmitScalarConversion - Emit a conversion from the specified type to the 690 /// specified destination type, both of which are LLVM scalar types. 691 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 692 QualType DstType) { 693 SrcType = CGF.getContext().getCanonicalType(SrcType); 694 DstType = CGF.getContext().getCanonicalType(DstType); 695 if (SrcType == DstType) return Src; 696 697 if (DstType->isVoidType()) return nullptr; 698 699 llvm::Value *OrigSrc = Src; 700 QualType OrigSrcType = SrcType; 701 llvm::Type *SrcTy = Src->getType(); 702 703 // If casting to/from storage-only half FP, use special intrinsics. 704 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType && 705 !CGF.getContext().getLangOpts().HalfArgsAndReturns) { 706 Src = Builder.CreateCall( 707 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 708 CGF.CGM.FloatTy), 709 Src); 710 SrcType = CGF.getContext().FloatTy; 711 SrcTy = CGF.FloatTy; 712 } 713 714 // Handle conversions to bool first, they are special: comparisons against 0. 715 if (DstType->isBooleanType()) 716 return EmitConversionToBool(Src, SrcType); 717 718 llvm::Type *DstTy = ConvertType(DstType); 719 720 // Ignore conversions like int -> uint. 721 if (SrcTy == DstTy) 722 return Src; 723 724 // Handle pointer conversions next: pointers can only be converted to/from 725 // other pointers and integers. Check for pointer types in terms of LLVM, as 726 // some native types (like Obj-C id) may map to a pointer type. 727 if (isa<llvm::PointerType>(DstTy)) { 728 // The source value may be an integer, or a pointer. 729 if (isa<llvm::PointerType>(SrcTy)) 730 return Builder.CreateBitCast(Src, DstTy, "conv"); 731 732 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 733 // First, convert to the correct width so that we control the kind of 734 // extension. 735 llvm::Type *MiddleTy = CGF.IntPtrTy; 736 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 737 llvm::Value* IntResult = 738 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 739 // Then, cast to pointer. 740 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 741 } 742 743 if (isa<llvm::PointerType>(SrcTy)) { 744 // Must be an ptr to int cast. 745 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 746 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 747 } 748 749 // A scalar can be splatted to an extended vector of the same element type 750 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 751 // Cast the scalar to element type 752 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 753 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 754 755 // Splat the element across to all elements 756 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 757 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 758 } 759 760 // Allow bitcast from vector to integer/fp of the same size. 761 if (isa<llvm::VectorType>(SrcTy) || 762 isa<llvm::VectorType>(DstTy)) 763 return Builder.CreateBitCast(Src, DstTy, "conv"); 764 765 // Finally, we have the arithmetic types: real int/float. 766 Value *Res = nullptr; 767 llvm::Type *ResTy = DstTy; 768 769 // An overflowing conversion has undefined behavior if either the source type 770 // or the destination type is a floating-point type. 771 if (CGF.SanOpts->FloatCastOverflow && 772 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 773 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, 774 DstTy); 775 776 // Cast to half via float 777 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType && 778 !CGF.getContext().getLangOpts().HalfArgsAndReturns) 779 DstTy = CGF.FloatTy; 780 781 if (isa<llvm::IntegerType>(SrcTy)) { 782 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 783 if (isa<llvm::IntegerType>(DstTy)) 784 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 785 else if (InputSigned) 786 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 787 else 788 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 789 } else if (isa<llvm::IntegerType>(DstTy)) { 790 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 791 if (DstType->isSignedIntegerOrEnumerationType()) 792 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 793 else 794 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 795 } else { 796 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 797 "Unknown real conversion"); 798 if (DstTy->getTypeID() < SrcTy->getTypeID()) 799 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 800 else 801 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 802 } 803 804 if (DstTy != ResTy) { 805 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 806 Res = Builder.CreateCall( 807 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 808 Res); 809 } 810 811 return Res; 812 } 813 814 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 815 /// type to the specified destination type, where the destination type is an 816 /// LLVM scalar type. 817 Value *ScalarExprEmitter:: 818 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 819 QualType SrcTy, QualType DstTy) { 820 // Get the source element type. 821 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 822 823 // Handle conversions to bool first, they are special: comparisons against 0. 824 if (DstTy->isBooleanType()) { 825 // Complex != 0 -> (Real != 0) | (Imag != 0) 826 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 827 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 828 return Builder.CreateOr(Src.first, Src.second, "tobool"); 829 } 830 831 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 832 // the imaginary part of the complex value is discarded and the value of the 833 // real part is converted according to the conversion rules for the 834 // corresponding real type. 835 return EmitScalarConversion(Src.first, SrcTy, DstTy); 836 } 837 838 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 839 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 840 } 841 842 /// \brief Emit a sanitization check for the given "binary" operation (which 843 /// might actually be a unary increment which has been lowered to a binary 844 /// operation). The check passes if \p Check, which is an \c i1, is \c true. 845 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) { 846 assert(CGF.IsSanitizerScope); 847 StringRef CheckName; 848 SmallVector<llvm::Constant *, 4> StaticData; 849 SmallVector<llvm::Value *, 2> DynamicData; 850 851 BinaryOperatorKind Opcode = Info.Opcode; 852 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 853 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 854 855 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 856 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 857 if (UO && UO->getOpcode() == UO_Minus) { 858 CheckName = "negate_overflow"; 859 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 860 DynamicData.push_back(Info.RHS); 861 } else { 862 if (BinaryOperator::isShiftOp(Opcode)) { 863 // Shift LHS negative or too large, or RHS out of bounds. 864 CheckName = "shift_out_of_bounds"; 865 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 866 StaticData.push_back( 867 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 868 StaticData.push_back( 869 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 870 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 871 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 872 CheckName = "divrem_overflow"; 873 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 874 } else { 875 // Signed arithmetic overflow (+, -, *). 876 switch (Opcode) { 877 case BO_Add: CheckName = "add_overflow"; break; 878 case BO_Sub: CheckName = "sub_overflow"; break; 879 case BO_Mul: CheckName = "mul_overflow"; break; 880 default: llvm_unreachable("unexpected opcode for bin op check"); 881 } 882 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 883 } 884 DynamicData.push_back(Info.LHS); 885 DynamicData.push_back(Info.RHS); 886 } 887 888 CGF.EmitCheck(Check, CheckName, StaticData, DynamicData, 889 CodeGenFunction::CRK_Recoverable); 890 } 891 892 //===----------------------------------------------------------------------===// 893 // Visitor Methods 894 //===----------------------------------------------------------------------===// 895 896 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 897 CGF.ErrorUnsupported(E, "scalar expression"); 898 if (E->getType()->isVoidType()) 899 return nullptr; 900 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 901 } 902 903 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 904 // Vector Mask Case 905 if (E->getNumSubExprs() == 2 || 906 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 907 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 908 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 909 Value *Mask; 910 911 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 912 unsigned LHSElts = LTy->getNumElements(); 913 914 if (E->getNumSubExprs() == 3) { 915 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 916 917 // Shuffle LHS & RHS into one input vector. 918 SmallVector<llvm::Constant*, 32> concat; 919 for (unsigned i = 0; i != LHSElts; ++i) { 920 concat.push_back(Builder.getInt32(2*i)); 921 concat.push_back(Builder.getInt32(2*i+1)); 922 } 923 924 Value* CV = llvm::ConstantVector::get(concat); 925 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 926 LHSElts *= 2; 927 } else { 928 Mask = RHS; 929 } 930 931 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 932 llvm::Constant* EltMask; 933 934 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 935 llvm::NextPowerOf2(LHSElts-1)-1); 936 937 // Mask off the high bits of each shuffle index. 938 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(), 939 EltMask); 940 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 941 942 // newv = undef 943 // mask = mask & maskbits 944 // for each elt 945 // n = extract mask i 946 // x = extract val n 947 // newv = insert newv, x, i 948 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 949 MTy->getNumElements()); 950 Value* NewV = llvm::UndefValue::get(RTy); 951 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 952 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 953 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 954 955 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 956 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 957 } 958 return NewV; 959 } 960 961 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 962 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 963 964 SmallVector<llvm::Constant*, 32> indices; 965 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 966 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 967 // Check for -1 and output it as undef in the IR. 968 if (Idx.isSigned() && Idx.isAllOnesValue()) 969 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 970 else 971 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 972 } 973 974 Value *SV = llvm::ConstantVector::get(indices); 975 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 976 } 977 978 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 979 QualType SrcType = E->getSrcExpr()->getType(), 980 DstType = E->getType(); 981 982 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 983 984 SrcType = CGF.getContext().getCanonicalType(SrcType); 985 DstType = CGF.getContext().getCanonicalType(DstType); 986 if (SrcType == DstType) return Src; 987 988 assert(SrcType->isVectorType() && 989 "ConvertVector source type must be a vector"); 990 assert(DstType->isVectorType() && 991 "ConvertVector destination type must be a vector"); 992 993 llvm::Type *SrcTy = Src->getType(); 994 llvm::Type *DstTy = ConvertType(DstType); 995 996 // Ignore conversions like int -> uint. 997 if (SrcTy == DstTy) 998 return Src; 999 1000 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1001 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1002 1003 assert(SrcTy->isVectorTy() && 1004 "ConvertVector source IR type must be a vector"); 1005 assert(DstTy->isVectorTy() && 1006 "ConvertVector destination IR type must be a vector"); 1007 1008 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1009 *DstEltTy = DstTy->getVectorElementType(); 1010 1011 if (DstEltType->isBooleanType()) { 1012 assert((SrcEltTy->isFloatingPointTy() || 1013 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1014 1015 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1016 if (SrcEltTy->isFloatingPointTy()) { 1017 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1018 } else { 1019 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1020 } 1021 } 1022 1023 // We have the arithmetic types: real int/float. 1024 Value *Res = nullptr; 1025 1026 if (isa<llvm::IntegerType>(SrcEltTy)) { 1027 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1028 if (isa<llvm::IntegerType>(DstEltTy)) 1029 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1030 else if (InputSigned) 1031 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1032 else 1033 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1034 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1035 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1036 if (DstEltType->isSignedIntegerOrEnumerationType()) 1037 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1038 else 1039 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1040 } else { 1041 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1042 "Unknown real conversion"); 1043 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1044 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1045 else 1046 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1047 } 1048 1049 return Res; 1050 } 1051 1052 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1053 llvm::APSInt Value; 1054 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1055 if (E->isArrow()) 1056 CGF.EmitScalarExpr(E->getBase()); 1057 else 1058 EmitLValue(E->getBase()); 1059 return Builder.getInt(Value); 1060 } 1061 1062 return EmitLoadOfLValue(E); 1063 } 1064 1065 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1066 TestAndClearIgnoreResultAssign(); 1067 1068 // Emit subscript expressions in rvalue context's. For most cases, this just 1069 // loads the lvalue formed by the subscript expr. However, we have to be 1070 // careful, because the base of a vector subscript is occasionally an rvalue, 1071 // so we can't get it as an lvalue. 1072 if (!E->getBase()->getType()->isVectorType()) 1073 return EmitLoadOfLValue(E); 1074 1075 // Handle the vector case. The base must be a vector, the index must be an 1076 // integer value. 1077 Value *Base = Visit(E->getBase()); 1078 Value *Idx = Visit(E->getIdx()); 1079 QualType IdxTy = E->getIdx()->getType(); 1080 1081 if (CGF.SanOpts->ArrayBounds) 1082 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1083 1084 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1085 } 1086 1087 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1088 unsigned Off, llvm::Type *I32Ty) { 1089 int MV = SVI->getMaskValue(Idx); 1090 if (MV == -1) 1091 return llvm::UndefValue::get(I32Ty); 1092 return llvm::ConstantInt::get(I32Ty, Off+MV); 1093 } 1094 1095 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1096 bool Ignore = TestAndClearIgnoreResultAssign(); 1097 (void)Ignore; 1098 assert (Ignore == false && "init list ignored"); 1099 unsigned NumInitElements = E->getNumInits(); 1100 1101 if (E->hadArrayRangeDesignator()) 1102 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1103 1104 llvm::VectorType *VType = 1105 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1106 1107 if (!VType) { 1108 if (NumInitElements == 0) { 1109 // C++11 value-initialization for the scalar. 1110 return EmitNullValue(E->getType()); 1111 } 1112 // We have a scalar in braces. Just use the first element. 1113 return Visit(E->getInit(0)); 1114 } 1115 1116 unsigned ResElts = VType->getNumElements(); 1117 1118 // Loop over initializers collecting the Value for each, and remembering 1119 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1120 // us to fold the shuffle for the swizzle into the shuffle for the vector 1121 // initializer, since LLVM optimizers generally do not want to touch 1122 // shuffles. 1123 unsigned CurIdx = 0; 1124 bool VIsUndefShuffle = false; 1125 llvm::Value *V = llvm::UndefValue::get(VType); 1126 for (unsigned i = 0; i != NumInitElements; ++i) { 1127 Expr *IE = E->getInit(i); 1128 Value *Init = Visit(IE); 1129 SmallVector<llvm::Constant*, 16> Args; 1130 1131 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1132 1133 // Handle scalar elements. If the scalar initializer is actually one 1134 // element of a different vector of the same width, use shuffle instead of 1135 // extract+insert. 1136 if (!VVT) { 1137 if (isa<ExtVectorElementExpr>(IE)) { 1138 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1139 1140 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1141 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1142 Value *LHS = nullptr, *RHS = nullptr; 1143 if (CurIdx == 0) { 1144 // insert into undef -> shuffle (src, undef) 1145 Args.push_back(C); 1146 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1147 1148 LHS = EI->getVectorOperand(); 1149 RHS = V; 1150 VIsUndefShuffle = true; 1151 } else if (VIsUndefShuffle) { 1152 // insert into undefshuffle && size match -> shuffle (v, src) 1153 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1154 for (unsigned j = 0; j != CurIdx; ++j) 1155 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1156 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1157 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1158 1159 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1160 RHS = EI->getVectorOperand(); 1161 VIsUndefShuffle = false; 1162 } 1163 if (!Args.empty()) { 1164 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1165 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1166 ++CurIdx; 1167 continue; 1168 } 1169 } 1170 } 1171 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1172 "vecinit"); 1173 VIsUndefShuffle = false; 1174 ++CurIdx; 1175 continue; 1176 } 1177 1178 unsigned InitElts = VVT->getNumElements(); 1179 1180 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1181 // input is the same width as the vector being constructed, generate an 1182 // optimized shuffle of the swizzle input into the result. 1183 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1184 if (isa<ExtVectorElementExpr>(IE)) { 1185 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1186 Value *SVOp = SVI->getOperand(0); 1187 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1188 1189 if (OpTy->getNumElements() == ResElts) { 1190 for (unsigned j = 0; j != CurIdx; ++j) { 1191 // If the current vector initializer is a shuffle with undef, merge 1192 // this shuffle directly into it. 1193 if (VIsUndefShuffle) { 1194 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1195 CGF.Int32Ty)); 1196 } else { 1197 Args.push_back(Builder.getInt32(j)); 1198 } 1199 } 1200 for (unsigned j = 0, je = InitElts; j != je; ++j) 1201 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1202 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1203 1204 if (VIsUndefShuffle) 1205 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1206 1207 Init = SVOp; 1208 } 1209 } 1210 1211 // Extend init to result vector length, and then shuffle its contribution 1212 // to the vector initializer into V. 1213 if (Args.empty()) { 1214 for (unsigned j = 0; j != InitElts; ++j) 1215 Args.push_back(Builder.getInt32(j)); 1216 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1217 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1218 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1219 Mask, "vext"); 1220 1221 Args.clear(); 1222 for (unsigned j = 0; j != CurIdx; ++j) 1223 Args.push_back(Builder.getInt32(j)); 1224 for (unsigned j = 0; j != InitElts; ++j) 1225 Args.push_back(Builder.getInt32(j+Offset)); 1226 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1227 } 1228 1229 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1230 // merging subsequent shuffles into this one. 1231 if (CurIdx == 0) 1232 std::swap(V, Init); 1233 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1234 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1235 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1236 CurIdx += InitElts; 1237 } 1238 1239 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1240 // Emit remaining default initializers. 1241 llvm::Type *EltTy = VType->getElementType(); 1242 1243 // Emit remaining default initializers 1244 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1245 Value *Idx = Builder.getInt32(CurIdx); 1246 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1247 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1248 } 1249 return V; 1250 } 1251 1252 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 1253 const Expr *E = CE->getSubExpr(); 1254 1255 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1256 return false; 1257 1258 if (isa<CXXThisExpr>(E)) { 1259 // We always assume that 'this' is never null. 1260 return false; 1261 } 1262 1263 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1264 // And that glvalue casts are never null. 1265 if (ICE->getValueKind() != VK_RValue) 1266 return false; 1267 } 1268 1269 return true; 1270 } 1271 1272 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1273 // have to handle a more broad range of conversions than explicit casts, as they 1274 // handle things like function to ptr-to-function decay etc. 1275 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1276 Expr *E = CE->getSubExpr(); 1277 QualType DestTy = CE->getType(); 1278 CastKind Kind = CE->getCastKind(); 1279 1280 if (!DestTy->isVoidType()) 1281 TestAndClearIgnoreResultAssign(); 1282 1283 // Since almost all cast kinds apply to scalars, this switch doesn't have 1284 // a default case, so the compiler will warn on a missing case. The cases 1285 // are in the same order as in the CastKind enum. 1286 switch (Kind) { 1287 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1288 case CK_BuiltinFnToFnPtr: 1289 llvm_unreachable("builtin functions are handled elsewhere"); 1290 1291 case CK_LValueBitCast: 1292 case CK_ObjCObjectLValueCast: { 1293 Value *V = EmitLValue(E).getAddress(); 1294 V = Builder.CreateBitCast(V, 1295 ConvertType(CGF.getContext().getPointerType(DestTy))); 1296 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy), 1297 CE->getExprLoc()); 1298 } 1299 1300 case CK_CPointerToObjCPointerCast: 1301 case CK_BlockPointerToObjCPointerCast: 1302 case CK_AnyPointerToBlockPointerCast: 1303 case CK_BitCast: { 1304 Value *Src = Visit(const_cast<Expr*>(E)); 1305 llvm::Type *SrcTy = Src->getType(); 1306 llvm::Type *DstTy = ConvertType(DestTy); 1307 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1308 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1309 llvm::Type *MidTy = CGF.CGM.getDataLayout().getIntPtrType(SrcTy); 1310 return Builder.CreateIntToPtr(Builder.CreatePtrToInt(Src, MidTy), DstTy); 1311 } 1312 return Builder.CreateBitCast(Src, DstTy); 1313 } 1314 case CK_AddressSpaceConversion: { 1315 Value *Src = Visit(const_cast<Expr*>(E)); 1316 return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy)); 1317 } 1318 case CK_AtomicToNonAtomic: 1319 case CK_NonAtomicToAtomic: 1320 case CK_NoOp: 1321 case CK_UserDefinedConversion: 1322 return Visit(const_cast<Expr*>(E)); 1323 1324 case CK_BaseToDerived: { 1325 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1326 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1327 1328 llvm::Value *V = Visit(E); 1329 1330 llvm::Value *Derived = 1331 CGF.GetAddressOfDerivedClass(V, DerivedClassDecl, 1332 CE->path_begin(), CE->path_end(), 1333 ShouldNullCheckClassCastValue(CE)); 1334 1335 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1336 // performed and the object is not of the derived type. 1337 if (CGF.sanitizePerformTypeCheck()) 1338 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1339 Derived, DestTy->getPointeeType()); 1340 1341 return Derived; 1342 } 1343 case CK_UncheckedDerivedToBase: 1344 case CK_DerivedToBase: { 1345 const CXXRecordDecl *DerivedClassDecl = 1346 E->getType()->getPointeeCXXRecordDecl(); 1347 assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!"); 1348 1349 return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl, 1350 CE->path_begin(), CE->path_end(), 1351 ShouldNullCheckClassCastValue(CE)); 1352 } 1353 case CK_Dynamic: { 1354 Value *V = Visit(const_cast<Expr*>(E)); 1355 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1356 return CGF.EmitDynamicCast(V, DCE); 1357 } 1358 1359 case CK_ArrayToPointerDecay: { 1360 assert(E->getType()->isArrayType() && 1361 "Array to pointer decay must have array source type!"); 1362 1363 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 1364 1365 // Note that VLA pointers are always decayed, so we don't need to do 1366 // anything here. 1367 if (!E->getType()->isVariableArrayType()) { 1368 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 1369 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) 1370 ->getElementType()) && 1371 "Expected pointer to array"); 1372 V = Builder.CreateStructGEP(V, 0, "arraydecay"); 1373 } 1374 1375 // Make sure the array decay ends up being the right type. This matters if 1376 // the array type was of an incomplete type. 1377 return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType())); 1378 } 1379 case CK_FunctionToPointerDecay: 1380 return EmitLValue(E).getAddress(); 1381 1382 case CK_NullToPointer: 1383 if (MustVisitNullValue(E)) 1384 (void) Visit(E); 1385 1386 return llvm::ConstantPointerNull::get( 1387 cast<llvm::PointerType>(ConvertType(DestTy))); 1388 1389 case CK_NullToMemberPointer: { 1390 if (MustVisitNullValue(E)) 1391 (void) Visit(E); 1392 1393 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1394 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1395 } 1396 1397 case CK_ReinterpretMemberPointer: 1398 case CK_BaseToDerivedMemberPointer: 1399 case CK_DerivedToBaseMemberPointer: { 1400 Value *Src = Visit(E); 1401 1402 // Note that the AST doesn't distinguish between checked and 1403 // unchecked member pointer conversions, so we always have to 1404 // implement checked conversions here. This is inefficient when 1405 // actual control flow may be required in order to perform the 1406 // check, which it is for data member pointers (but not member 1407 // function pointers on Itanium and ARM). 1408 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1409 } 1410 1411 case CK_ARCProduceObject: 1412 return CGF.EmitARCRetainScalarExpr(E); 1413 case CK_ARCConsumeObject: 1414 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1415 case CK_ARCReclaimReturnedObject: { 1416 llvm::Value *value = Visit(E); 1417 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1418 return CGF.EmitObjCConsumeObject(E->getType(), value); 1419 } 1420 case CK_ARCExtendBlockObject: 1421 return CGF.EmitARCExtendBlockObject(E); 1422 1423 case CK_CopyAndAutoreleaseBlockObject: 1424 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1425 1426 case CK_FloatingRealToComplex: 1427 case CK_FloatingComplexCast: 1428 case CK_IntegralRealToComplex: 1429 case CK_IntegralComplexCast: 1430 case CK_IntegralComplexToFloatingComplex: 1431 case CK_FloatingComplexToIntegralComplex: 1432 case CK_ConstructorConversion: 1433 case CK_ToUnion: 1434 llvm_unreachable("scalar cast to non-scalar value"); 1435 1436 case CK_LValueToRValue: 1437 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1438 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1439 return Visit(const_cast<Expr*>(E)); 1440 1441 case CK_IntegralToPointer: { 1442 Value *Src = Visit(const_cast<Expr*>(E)); 1443 1444 // First, convert to the correct width so that we control the kind of 1445 // extension. 1446 llvm::Type *MiddleTy = CGF.IntPtrTy; 1447 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1448 llvm::Value* IntResult = 1449 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1450 1451 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1452 } 1453 case CK_PointerToIntegral: 1454 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1455 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1456 1457 case CK_ToVoid: { 1458 CGF.EmitIgnoredExpr(E); 1459 return nullptr; 1460 } 1461 case CK_VectorSplat: { 1462 llvm::Type *DstTy = ConvertType(DestTy); 1463 Value *Elt = Visit(const_cast<Expr*>(E)); 1464 Elt = EmitScalarConversion(Elt, E->getType(), 1465 DestTy->getAs<VectorType>()->getElementType()); 1466 1467 // Splat the element across to all elements 1468 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1469 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1470 } 1471 1472 case CK_IntegralCast: 1473 case CK_IntegralToFloating: 1474 case CK_FloatingToIntegral: 1475 case CK_FloatingCast: 1476 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 1477 case CK_IntegralToBoolean: 1478 return EmitIntToBoolConversion(Visit(E)); 1479 case CK_PointerToBoolean: 1480 return EmitPointerToBoolConversion(Visit(E)); 1481 case CK_FloatingToBoolean: 1482 return EmitFloatToBoolConversion(Visit(E)); 1483 case CK_MemberPointerToBoolean: { 1484 llvm::Value *MemPtr = Visit(E); 1485 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1486 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1487 } 1488 1489 case CK_FloatingComplexToReal: 1490 case CK_IntegralComplexToReal: 1491 return CGF.EmitComplexExpr(E, false, true).first; 1492 1493 case CK_FloatingComplexToBoolean: 1494 case CK_IntegralComplexToBoolean: { 1495 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1496 1497 // TODO: kill this function off, inline appropriate case here 1498 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 1499 } 1500 1501 case CK_ZeroToOCLEvent: { 1502 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1503 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1504 } 1505 1506 } 1507 1508 llvm_unreachable("unknown scalar cast"); 1509 } 1510 1511 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1512 CodeGenFunction::StmtExprEvaluation eval(CGF); 1513 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1514 !E->getType()->isVoidType()); 1515 if (!RetAlloca) 1516 return nullptr; 1517 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1518 E->getExprLoc()); 1519 } 1520 1521 //===----------------------------------------------------------------------===// 1522 // Unary Operators 1523 //===----------------------------------------------------------------------===// 1524 1525 llvm::Value *ScalarExprEmitter:: 1526 EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 1527 llvm::Value *InVal, 1528 llvm::Value *NextVal, bool IsInc) { 1529 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1530 case LangOptions::SOB_Defined: 1531 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1532 case LangOptions::SOB_Undefined: 1533 if (!CGF.SanOpts->SignedIntegerOverflow) 1534 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1535 // Fall through. 1536 case LangOptions::SOB_Trapping: 1537 BinOpInfo BinOp; 1538 BinOp.LHS = InVal; 1539 BinOp.RHS = NextVal; 1540 BinOp.Ty = E->getType(); 1541 BinOp.Opcode = BO_Add; 1542 BinOp.FPContractable = false; 1543 BinOp.E = E; 1544 return EmitOverflowCheckedBinOp(BinOp); 1545 } 1546 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1547 } 1548 1549 llvm::Value * 1550 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1551 bool isInc, bool isPre) { 1552 1553 QualType type = E->getSubExpr()->getType(); 1554 llvm::PHINode *atomicPHI = nullptr; 1555 llvm::Value *value; 1556 llvm::Value *input; 1557 1558 int amount = (isInc ? 1 : -1); 1559 1560 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1561 type = atomicTy->getValueType(); 1562 if (isInc && type->isBooleanType()) { 1563 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1564 if (isPre) { 1565 Builder.Insert(new llvm::StoreInst(True, 1566 LV.getAddress(), LV.isVolatileQualified(), 1567 LV.getAlignment().getQuantity(), 1568 llvm::SequentiallyConsistent)); 1569 return Builder.getTrue(); 1570 } 1571 // For atomic bool increment, we just store true and return it for 1572 // preincrement, do an atomic swap with true for postincrement 1573 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1574 LV.getAddress(), True, llvm::SequentiallyConsistent); 1575 } 1576 // Special case for atomic increment / decrement on integers, emit 1577 // atomicrmw instructions. We skip this if we want to be doing overflow 1578 // checking, and fall into the slow path with the atomic cmpxchg loop. 1579 if (!type->isBooleanType() && type->isIntegerType() && 1580 !(type->isUnsignedIntegerType() && 1581 CGF.SanOpts->UnsignedIntegerOverflow) && 1582 CGF.getLangOpts().getSignedOverflowBehavior() != 1583 LangOptions::SOB_Trapping) { 1584 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1585 llvm::AtomicRMWInst::Sub; 1586 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1587 llvm::Instruction::Sub; 1588 llvm::Value *amt = CGF.EmitToMemory( 1589 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1590 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1591 LV.getAddress(), amt, llvm::SequentiallyConsistent); 1592 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1593 } 1594 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1595 input = value; 1596 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1597 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1598 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1599 value = CGF.EmitToMemory(value, type); 1600 Builder.CreateBr(opBB); 1601 Builder.SetInsertPoint(opBB); 1602 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1603 atomicPHI->addIncoming(value, startBB); 1604 value = atomicPHI; 1605 } else { 1606 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1607 input = value; 1608 } 1609 1610 // Special case of integer increment that we have to check first: bool++. 1611 // Due to promotion rules, we get: 1612 // bool++ -> bool = bool + 1 1613 // -> bool = (int)bool + 1 1614 // -> bool = ((int)bool + 1 != 0) 1615 // An interesting aspect of this is that increment is always true. 1616 // Decrement does not have this property. 1617 if (isInc && type->isBooleanType()) { 1618 value = Builder.getTrue(); 1619 1620 // Most common case by far: integer increment. 1621 } else if (type->isIntegerType()) { 1622 1623 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1624 1625 // Note that signed integer inc/dec with width less than int can't 1626 // overflow because of promotion rules; we're just eliding a few steps here. 1627 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1628 CGF.IntTy->getIntegerBitWidth(); 1629 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1630 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc); 1631 } else if (CanOverflow && type->isUnsignedIntegerType() && 1632 CGF.SanOpts->UnsignedIntegerOverflow) { 1633 BinOpInfo BinOp; 1634 BinOp.LHS = value; 1635 BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 1636 BinOp.Ty = E->getType(); 1637 BinOp.Opcode = isInc ? BO_Add : BO_Sub; 1638 BinOp.FPContractable = false; 1639 BinOp.E = E; 1640 value = EmitOverflowCheckedBinOp(BinOp); 1641 } else 1642 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1643 1644 // Next most common: pointer increment. 1645 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1646 QualType type = ptr->getPointeeType(); 1647 1648 // VLA types don't have constant size. 1649 if (const VariableArrayType *vla 1650 = CGF.getContext().getAsVariableArrayType(type)) { 1651 llvm::Value *numElts = CGF.getVLASize(vla).first; 1652 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1653 if (CGF.getLangOpts().isSignedOverflowDefined()) 1654 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1655 else 1656 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1657 1658 // Arithmetic on function pointers (!) is just +-1. 1659 } else if (type->isFunctionType()) { 1660 llvm::Value *amt = Builder.getInt32(amount); 1661 1662 value = CGF.EmitCastToVoidPtr(value); 1663 if (CGF.getLangOpts().isSignedOverflowDefined()) 1664 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1665 else 1666 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1667 value = Builder.CreateBitCast(value, input->getType()); 1668 1669 // For everything else, we can just do a simple increment. 1670 } else { 1671 llvm::Value *amt = Builder.getInt32(amount); 1672 if (CGF.getLangOpts().isSignedOverflowDefined()) 1673 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1674 else 1675 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1676 } 1677 1678 // Vector increment/decrement. 1679 } else if (type->isVectorType()) { 1680 if (type->hasIntegerRepresentation()) { 1681 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1682 1683 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1684 } else { 1685 value = Builder.CreateFAdd( 1686 value, 1687 llvm::ConstantFP::get(value->getType(), amount), 1688 isInc ? "inc" : "dec"); 1689 } 1690 1691 // Floating point. 1692 } else if (type->isRealFloatingType()) { 1693 // Add the inc/dec to the real part. 1694 llvm::Value *amt; 1695 1696 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType && 1697 !CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1698 // Another special case: half FP increment should be done via float 1699 value = Builder.CreateCall( 1700 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1701 CGF.CGM.FloatTy), 1702 input); 1703 } 1704 1705 if (value->getType()->isFloatTy()) 1706 amt = llvm::ConstantFP::get(VMContext, 1707 llvm::APFloat(static_cast<float>(amount))); 1708 else if (value->getType()->isDoubleTy()) 1709 amt = llvm::ConstantFP::get(VMContext, 1710 llvm::APFloat(static_cast<double>(amount))); 1711 else { 1712 llvm::APFloat F(static_cast<float>(amount)); 1713 bool ignored; 1714 F.convert(CGF.getTarget().getLongDoubleFormat(), 1715 llvm::APFloat::rmTowardZero, &ignored); 1716 amt = llvm::ConstantFP::get(VMContext, F); 1717 } 1718 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1719 1720 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType && 1721 !CGF.getContext().getLangOpts().HalfArgsAndReturns) 1722 value = Builder.CreateCall( 1723 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 1724 CGF.CGM.FloatTy), 1725 value); 1726 1727 // Objective-C pointer types. 1728 } else { 1729 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1730 value = CGF.EmitCastToVoidPtr(value); 1731 1732 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1733 if (!isInc) size = -size; 1734 llvm::Value *sizeValue = 1735 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1736 1737 if (CGF.getLangOpts().isSignedOverflowDefined()) 1738 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1739 else 1740 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1741 value = Builder.CreateBitCast(value, input->getType()); 1742 } 1743 1744 if (atomicPHI) { 1745 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1746 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1747 llvm::Value *pair = Builder.CreateAtomicCmpXchg( 1748 LV.getAddress(), atomicPHI, CGF.EmitToMemory(value, type), 1749 llvm::SequentiallyConsistent, llvm::SequentiallyConsistent); 1750 llvm::Value *old = Builder.CreateExtractValue(pair, 0); 1751 llvm::Value *success = Builder.CreateExtractValue(pair, 1); 1752 atomicPHI->addIncoming(old, opBB); 1753 Builder.CreateCondBr(success, contBB, opBB); 1754 Builder.SetInsertPoint(contBB); 1755 return isPre ? value : input; 1756 } 1757 1758 // Store the updated result through the lvalue. 1759 if (LV.isBitField()) 1760 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1761 else 1762 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1763 1764 // If this is a postinc, return the value read from memory, otherwise use the 1765 // updated value. 1766 return isPre ? value : input; 1767 } 1768 1769 1770 1771 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1772 TestAndClearIgnoreResultAssign(); 1773 // Emit unary minus with EmitSub so we handle overflow cases etc. 1774 BinOpInfo BinOp; 1775 BinOp.RHS = Visit(E->getSubExpr()); 1776 1777 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1778 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1779 else 1780 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1781 BinOp.Ty = E->getType(); 1782 BinOp.Opcode = BO_Sub; 1783 BinOp.FPContractable = false; 1784 BinOp.E = E; 1785 return EmitSub(BinOp); 1786 } 1787 1788 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1789 TestAndClearIgnoreResultAssign(); 1790 Value *Op = Visit(E->getSubExpr()); 1791 return Builder.CreateNot(Op, "neg"); 1792 } 1793 1794 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1795 // Perform vector logical not on comparison with zero vector. 1796 if (E->getType()->isExtVectorType()) { 1797 Value *Oper = Visit(E->getSubExpr()); 1798 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1799 Value *Result; 1800 if (Oper->getType()->isFPOrFPVectorTy()) 1801 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1802 else 1803 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1804 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1805 } 1806 1807 // Compare operand to zero. 1808 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1809 1810 // Invert value. 1811 // TODO: Could dynamically modify easy computations here. For example, if 1812 // the operand is an icmp ne, turn into icmp eq. 1813 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1814 1815 // ZExt result to the expr type. 1816 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1817 } 1818 1819 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1820 // Try folding the offsetof to a constant. 1821 llvm::APSInt Value; 1822 if (E->EvaluateAsInt(Value, CGF.getContext())) 1823 return Builder.getInt(Value); 1824 1825 // Loop over the components of the offsetof to compute the value. 1826 unsigned n = E->getNumComponents(); 1827 llvm::Type* ResultType = ConvertType(E->getType()); 1828 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1829 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1830 for (unsigned i = 0; i != n; ++i) { 1831 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1832 llvm::Value *Offset = nullptr; 1833 switch (ON.getKind()) { 1834 case OffsetOfExpr::OffsetOfNode::Array: { 1835 // Compute the index 1836 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1837 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1838 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1839 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1840 1841 // Save the element type 1842 CurrentType = 1843 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1844 1845 // Compute the element size 1846 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1847 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1848 1849 // Multiply out to compute the result 1850 Offset = Builder.CreateMul(Idx, ElemSize); 1851 break; 1852 } 1853 1854 case OffsetOfExpr::OffsetOfNode::Field: { 1855 FieldDecl *MemberDecl = ON.getField(); 1856 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1857 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1858 1859 // Compute the index of the field in its parent. 1860 unsigned i = 0; 1861 // FIXME: It would be nice if we didn't have to loop here! 1862 for (RecordDecl::field_iterator Field = RD->field_begin(), 1863 FieldEnd = RD->field_end(); 1864 Field != FieldEnd; ++Field, ++i) { 1865 if (*Field == MemberDecl) 1866 break; 1867 } 1868 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1869 1870 // Compute the offset to the field 1871 int64_t OffsetInt = RL.getFieldOffset(i) / 1872 CGF.getContext().getCharWidth(); 1873 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1874 1875 // Save the element type. 1876 CurrentType = MemberDecl->getType(); 1877 break; 1878 } 1879 1880 case OffsetOfExpr::OffsetOfNode::Identifier: 1881 llvm_unreachable("dependent __builtin_offsetof"); 1882 1883 case OffsetOfExpr::OffsetOfNode::Base: { 1884 if (ON.getBase()->isVirtual()) { 1885 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1886 continue; 1887 } 1888 1889 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1890 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1891 1892 // Save the element type. 1893 CurrentType = ON.getBase()->getType(); 1894 1895 // Compute the offset to the base. 1896 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1897 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1898 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1899 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1900 break; 1901 } 1902 } 1903 Result = Builder.CreateAdd(Result, Offset); 1904 } 1905 return Result; 1906 } 1907 1908 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 1909 /// argument of the sizeof expression as an integer. 1910 Value * 1911 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 1912 const UnaryExprOrTypeTraitExpr *E) { 1913 QualType TypeToSize = E->getTypeOfArgument(); 1914 if (E->getKind() == UETT_SizeOf) { 1915 if (const VariableArrayType *VAT = 1916 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 1917 if (E->isArgumentType()) { 1918 // sizeof(type) - make sure to emit the VLA size. 1919 CGF.EmitVariablyModifiedType(TypeToSize); 1920 } else { 1921 // C99 6.5.3.4p2: If the argument is an expression of type 1922 // VLA, it is evaluated. 1923 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 1924 } 1925 1926 QualType eltType; 1927 llvm::Value *numElts; 1928 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 1929 1930 llvm::Value *size = numElts; 1931 1932 // Scale the number of non-VLA elements by the non-VLA element size. 1933 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 1934 if (!eltSize.isOne()) 1935 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 1936 1937 return size; 1938 } 1939 } 1940 1941 // If this isn't sizeof(vla), the result must be constant; use the constant 1942 // folding logic so we don't have to duplicate it here. 1943 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 1944 } 1945 1946 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 1947 Expr *Op = E->getSubExpr(); 1948 if (Op->getType()->isAnyComplexType()) { 1949 // If it's an l-value, load through the appropriate subobject l-value. 1950 // Note that we have to ask E because Op might be an l-value that 1951 // this won't work for, e.g. an Obj-C property. 1952 if (E->isGLValue()) 1953 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 1954 E->getExprLoc()).getScalarVal(); 1955 1956 // Otherwise, calculate and project. 1957 return CGF.EmitComplexExpr(Op, false, true).first; 1958 } 1959 1960 return Visit(Op); 1961 } 1962 1963 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 1964 Expr *Op = E->getSubExpr(); 1965 if (Op->getType()->isAnyComplexType()) { 1966 // If it's an l-value, load through the appropriate subobject l-value. 1967 // Note that we have to ask E because Op might be an l-value that 1968 // this won't work for, e.g. an Obj-C property. 1969 if (Op->isGLValue()) 1970 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 1971 E->getExprLoc()).getScalarVal(); 1972 1973 // Otherwise, calculate and project. 1974 return CGF.EmitComplexExpr(Op, true, false).second; 1975 } 1976 1977 // __imag on a scalar returns zero. Emit the subexpr to ensure side 1978 // effects are evaluated, but not the actual value. 1979 if (Op->isGLValue()) 1980 CGF.EmitLValue(Op); 1981 else 1982 CGF.EmitScalarExpr(Op, true); 1983 return llvm::Constant::getNullValue(ConvertType(E->getType())); 1984 } 1985 1986 //===----------------------------------------------------------------------===// 1987 // Binary Operators 1988 //===----------------------------------------------------------------------===// 1989 1990 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 1991 TestAndClearIgnoreResultAssign(); 1992 BinOpInfo Result; 1993 Result.LHS = Visit(E->getLHS()); 1994 Result.RHS = Visit(E->getRHS()); 1995 Result.Ty = E->getType(); 1996 Result.Opcode = E->getOpcode(); 1997 Result.FPContractable = E->isFPContractable(); 1998 Result.E = E; 1999 return Result; 2000 } 2001 2002 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2003 const CompoundAssignOperator *E, 2004 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2005 Value *&Result) { 2006 QualType LHSTy = E->getLHS()->getType(); 2007 BinOpInfo OpInfo; 2008 2009 if (E->getComputationResultType()->isAnyComplexType()) 2010 return CGF.EmitScalarCompooundAssignWithComplex(E, Result); 2011 2012 // Emit the RHS first. __block variables need to have the rhs evaluated 2013 // first, plus this should improve codegen a little. 2014 OpInfo.RHS = Visit(E->getRHS()); 2015 OpInfo.Ty = E->getComputationResultType(); 2016 OpInfo.Opcode = E->getOpcode(); 2017 OpInfo.FPContractable = false; 2018 OpInfo.E = E; 2019 // Load/convert the LHS. 2020 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2021 2022 llvm::PHINode *atomicPHI = nullptr; 2023 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2024 QualType type = atomicTy->getValueType(); 2025 if (!type->isBooleanType() && type->isIntegerType() && 2026 !(type->isUnsignedIntegerType() && 2027 CGF.SanOpts->UnsignedIntegerOverflow) && 2028 CGF.getLangOpts().getSignedOverflowBehavior() != 2029 LangOptions::SOB_Trapping) { 2030 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2031 switch (OpInfo.Opcode) { 2032 // We don't have atomicrmw operands for *, %, /, <<, >> 2033 case BO_MulAssign: case BO_DivAssign: 2034 case BO_RemAssign: 2035 case BO_ShlAssign: 2036 case BO_ShrAssign: 2037 break; 2038 case BO_AddAssign: 2039 aop = llvm::AtomicRMWInst::Add; 2040 break; 2041 case BO_SubAssign: 2042 aop = llvm::AtomicRMWInst::Sub; 2043 break; 2044 case BO_AndAssign: 2045 aop = llvm::AtomicRMWInst::And; 2046 break; 2047 case BO_XorAssign: 2048 aop = llvm::AtomicRMWInst::Xor; 2049 break; 2050 case BO_OrAssign: 2051 aop = llvm::AtomicRMWInst::Or; 2052 break; 2053 default: 2054 llvm_unreachable("Invalid compound assignment type"); 2055 } 2056 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2057 llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS, 2058 E->getRHS()->getType(), LHSTy), LHSTy); 2059 Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt, 2060 llvm::SequentiallyConsistent); 2061 return LHSLV; 2062 } 2063 } 2064 // FIXME: For floating point types, we should be saving and restoring the 2065 // floating point environment in the loop. 2066 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2067 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2068 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2069 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2070 Builder.CreateBr(opBB); 2071 Builder.SetInsertPoint(opBB); 2072 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2073 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2074 OpInfo.LHS = atomicPHI; 2075 } 2076 else 2077 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2078 2079 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 2080 E->getComputationLHSType()); 2081 2082 // Expand the binary operator. 2083 Result = (this->*Func)(OpInfo); 2084 2085 // Convert the result back to the LHS type. 2086 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 2087 2088 if (atomicPHI) { 2089 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2090 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2091 llvm::Value *pair = Builder.CreateAtomicCmpXchg( 2092 LHSLV.getAddress(), atomicPHI, CGF.EmitToMemory(Result, LHSTy), 2093 llvm::SequentiallyConsistent, llvm::SequentiallyConsistent); 2094 llvm::Value *old = Builder.CreateExtractValue(pair, 0); 2095 llvm::Value *success = Builder.CreateExtractValue(pair, 1); 2096 atomicPHI->addIncoming(old, opBB); 2097 Builder.CreateCondBr(success, contBB, opBB); 2098 Builder.SetInsertPoint(contBB); 2099 return LHSLV; 2100 } 2101 2102 // Store the result value into the LHS lvalue. Bit-fields are handled 2103 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2104 // 'An assignment expression has the value of the left operand after the 2105 // assignment...'. 2106 if (LHSLV.isBitField()) 2107 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2108 else 2109 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2110 2111 return LHSLV; 2112 } 2113 2114 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2115 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2116 bool Ignore = TestAndClearIgnoreResultAssign(); 2117 Value *RHS; 2118 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2119 2120 // If the result is clearly ignored, return now. 2121 if (Ignore) 2122 return nullptr; 2123 2124 // The result of an assignment in C is the assigned r-value. 2125 if (!CGF.getLangOpts().CPlusPlus) 2126 return RHS; 2127 2128 // If the lvalue is non-volatile, return the computed value of the assignment. 2129 if (!LHS.isVolatileQualified()) 2130 return RHS; 2131 2132 // Otherwise, reload the value. 2133 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2134 } 2135 2136 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2137 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2138 llvm::Value *Cond = nullptr; 2139 2140 if (CGF.SanOpts->IntegerDivideByZero) 2141 Cond = Builder.CreateICmpNE(Ops.RHS, Zero); 2142 2143 if (CGF.SanOpts->SignedIntegerOverflow && 2144 Ops.Ty->hasSignedIntegerRepresentation()) { 2145 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2146 2147 llvm::Value *IntMin = 2148 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2149 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2150 2151 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2152 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2153 llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2154 Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow; 2155 } 2156 2157 if (Cond) 2158 EmitBinOpCheck(Cond, Ops); 2159 } 2160 2161 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2162 { 2163 CodeGenFunction::SanitizerScope SanScope(&CGF); 2164 if ((CGF.SanOpts->IntegerDivideByZero || 2165 CGF.SanOpts->SignedIntegerOverflow) && 2166 Ops.Ty->isIntegerType()) { 2167 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2168 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2169 } else if (CGF.SanOpts->FloatDivideByZero && 2170 Ops.Ty->isRealFloatingType()) { 2171 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2172 EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops); 2173 } 2174 } 2175 2176 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2177 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2178 if (CGF.getLangOpts().OpenCL) { 2179 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2180 llvm::Type *ValTy = Val->getType(); 2181 if (ValTy->isFloatTy() || 2182 (isa<llvm::VectorType>(ValTy) && 2183 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2184 CGF.SetFPAccuracy(Val, 2.5); 2185 } 2186 return Val; 2187 } 2188 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2189 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2190 else 2191 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2192 } 2193 2194 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2195 // Rem in C can't be a floating point type: C99 6.5.5p2. 2196 if (CGF.SanOpts->IntegerDivideByZero) { 2197 CodeGenFunction::SanitizerScope SanScope(&CGF); 2198 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2199 2200 if (Ops.Ty->isIntegerType()) 2201 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2202 } 2203 2204 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2205 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2206 else 2207 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2208 } 2209 2210 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2211 unsigned IID; 2212 unsigned OpID = 0; 2213 2214 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2215 switch (Ops.Opcode) { 2216 case BO_Add: 2217 case BO_AddAssign: 2218 OpID = 1; 2219 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2220 llvm::Intrinsic::uadd_with_overflow; 2221 break; 2222 case BO_Sub: 2223 case BO_SubAssign: 2224 OpID = 2; 2225 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2226 llvm::Intrinsic::usub_with_overflow; 2227 break; 2228 case BO_Mul: 2229 case BO_MulAssign: 2230 OpID = 3; 2231 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2232 llvm::Intrinsic::umul_with_overflow; 2233 break; 2234 default: 2235 llvm_unreachable("Unsupported operation for overflow detection"); 2236 } 2237 OpID <<= 1; 2238 if (isSigned) 2239 OpID |= 1; 2240 2241 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2242 2243 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2244 2245 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); 2246 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2247 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2248 2249 // Handle overflow with llvm.trap if no custom handler has been specified. 2250 const std::string *handlerName = 2251 &CGF.getLangOpts().OverflowHandler; 2252 if (handlerName->empty()) { 2253 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2254 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2255 if (!isSigned || CGF.SanOpts->SignedIntegerOverflow) { 2256 CodeGenFunction::SanitizerScope SanScope(&CGF); 2257 EmitBinOpCheck(Builder.CreateNot(overflow), Ops); 2258 } else 2259 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2260 return result; 2261 } 2262 2263 // Branch in case of overflow. 2264 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2265 llvm::Function::iterator insertPt = initialBB; 2266 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2267 std::next(insertPt)); 2268 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2269 2270 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2271 2272 // If an overflow handler is set, then we want to call it and then use its 2273 // result, if it returns. 2274 Builder.SetInsertPoint(overflowBB); 2275 2276 // Get the overflow handler. 2277 llvm::Type *Int8Ty = CGF.Int8Ty; 2278 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2279 llvm::FunctionType *handlerTy = 2280 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2281 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2282 2283 // Sign extend the args to 64-bit, so that we can use the same handler for 2284 // all types of overflow. 2285 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2286 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2287 2288 // Call the handler with the two arguments, the operation, and the size of 2289 // the result. 2290 llvm::Value *handlerArgs[] = { 2291 lhs, 2292 rhs, 2293 Builder.getInt8(OpID), 2294 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2295 }; 2296 llvm::Value *handlerResult = 2297 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2298 2299 // Truncate the result back to the desired size. 2300 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2301 Builder.CreateBr(continueBB); 2302 2303 Builder.SetInsertPoint(continueBB); 2304 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2305 phi->addIncoming(result, initialBB); 2306 phi->addIncoming(handlerResult, overflowBB); 2307 2308 return phi; 2309 } 2310 2311 /// Emit pointer + index arithmetic. 2312 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2313 const BinOpInfo &op, 2314 bool isSubtraction) { 2315 // Must have binary (not unary) expr here. Unary pointer 2316 // increment/decrement doesn't use this path. 2317 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2318 2319 Value *pointer = op.LHS; 2320 Expr *pointerOperand = expr->getLHS(); 2321 Value *index = op.RHS; 2322 Expr *indexOperand = expr->getRHS(); 2323 2324 // In a subtraction, the LHS is always the pointer. 2325 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2326 std::swap(pointer, index); 2327 std::swap(pointerOperand, indexOperand); 2328 } 2329 2330 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2331 if (width != CGF.PointerWidthInBits) { 2332 // Zero-extend or sign-extend the pointer value according to 2333 // whether the index is signed or not. 2334 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2335 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2336 "idx.ext"); 2337 } 2338 2339 // If this is subtraction, negate the index. 2340 if (isSubtraction) 2341 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2342 2343 if (CGF.SanOpts->ArrayBounds) 2344 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2345 /*Accessed*/ false); 2346 2347 const PointerType *pointerType 2348 = pointerOperand->getType()->getAs<PointerType>(); 2349 if (!pointerType) { 2350 QualType objectType = pointerOperand->getType() 2351 ->castAs<ObjCObjectPointerType>() 2352 ->getPointeeType(); 2353 llvm::Value *objectSize 2354 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2355 2356 index = CGF.Builder.CreateMul(index, objectSize); 2357 2358 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2359 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2360 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2361 } 2362 2363 QualType elementType = pointerType->getPointeeType(); 2364 if (const VariableArrayType *vla 2365 = CGF.getContext().getAsVariableArrayType(elementType)) { 2366 // The element count here is the total number of non-VLA elements. 2367 llvm::Value *numElements = CGF.getVLASize(vla).first; 2368 2369 // Effectively, the multiply by the VLA size is part of the GEP. 2370 // GEP indexes are signed, and scaling an index isn't permitted to 2371 // signed-overflow, so we use the same semantics for our explicit 2372 // multiply. We suppress this if overflow is not undefined behavior. 2373 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2374 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2375 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2376 } else { 2377 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2378 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2379 } 2380 return pointer; 2381 } 2382 2383 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2384 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2385 // future proof. 2386 if (elementType->isVoidType() || elementType->isFunctionType()) { 2387 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2388 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2389 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2390 } 2391 2392 if (CGF.getLangOpts().isSignedOverflowDefined()) 2393 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2394 2395 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2396 } 2397 2398 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2399 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2400 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2401 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2402 // efficient operations. 2403 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2404 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2405 bool negMul, bool negAdd) { 2406 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2407 2408 Value *MulOp0 = MulOp->getOperand(0); 2409 Value *MulOp1 = MulOp->getOperand(1); 2410 if (negMul) { 2411 MulOp0 = 2412 Builder.CreateFSub( 2413 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2414 "neg"); 2415 } else if (negAdd) { 2416 Addend = 2417 Builder.CreateFSub( 2418 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2419 "neg"); 2420 } 2421 2422 Value *FMulAdd = 2423 Builder.CreateCall3( 2424 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2425 MulOp0, MulOp1, Addend); 2426 MulOp->eraseFromParent(); 2427 2428 return FMulAdd; 2429 } 2430 2431 // Check whether it would be legal to emit an fmuladd intrinsic call to 2432 // represent op and if so, build the fmuladd. 2433 // 2434 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2435 // Does NOT check the type of the operation - it's assumed that this function 2436 // will be called from contexts where it's known that the type is contractable. 2437 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2438 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2439 bool isSub=false) { 2440 2441 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2442 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2443 "Only fadd/fsub can be the root of an fmuladd."); 2444 2445 // Check whether this op is marked as fusable. 2446 if (!op.FPContractable) 2447 return nullptr; 2448 2449 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2450 // either disabled, or handled entirely by the LLVM backend). 2451 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2452 return nullptr; 2453 2454 // We have a potentially fusable op. Look for a mul on one of the operands. 2455 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2456 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2457 assert(LHSBinOp->getNumUses() == 0 && 2458 "Operations with multiple uses shouldn't be contracted."); 2459 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2460 } 2461 } else if (llvm::BinaryOperator* RHSBinOp = 2462 dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2463 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2464 assert(RHSBinOp->getNumUses() == 0 && 2465 "Operations with multiple uses shouldn't be contracted."); 2466 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2467 } 2468 } 2469 2470 return nullptr; 2471 } 2472 2473 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2474 if (op.LHS->getType()->isPointerTy() || 2475 op.RHS->getType()->isPointerTy()) 2476 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2477 2478 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2479 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2480 case LangOptions::SOB_Defined: 2481 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2482 case LangOptions::SOB_Undefined: 2483 if (!CGF.SanOpts->SignedIntegerOverflow) 2484 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2485 // Fall through. 2486 case LangOptions::SOB_Trapping: 2487 return EmitOverflowCheckedBinOp(op); 2488 } 2489 } 2490 2491 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2492 return EmitOverflowCheckedBinOp(op); 2493 2494 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2495 // Try to form an fmuladd. 2496 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2497 return FMulAdd; 2498 2499 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2500 } 2501 2502 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2503 } 2504 2505 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2506 // The LHS is always a pointer if either side is. 2507 if (!op.LHS->getType()->isPointerTy()) { 2508 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2509 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2510 case LangOptions::SOB_Defined: 2511 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2512 case LangOptions::SOB_Undefined: 2513 if (!CGF.SanOpts->SignedIntegerOverflow) 2514 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2515 // Fall through. 2516 case LangOptions::SOB_Trapping: 2517 return EmitOverflowCheckedBinOp(op); 2518 } 2519 } 2520 2521 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2522 return EmitOverflowCheckedBinOp(op); 2523 2524 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2525 // Try to form an fmuladd. 2526 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2527 return FMulAdd; 2528 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2529 } 2530 2531 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2532 } 2533 2534 // If the RHS is not a pointer, then we have normal pointer 2535 // arithmetic. 2536 if (!op.RHS->getType()->isPointerTy()) 2537 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2538 2539 // Otherwise, this is a pointer subtraction. 2540 2541 // Do the raw subtraction part. 2542 llvm::Value *LHS 2543 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2544 llvm::Value *RHS 2545 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2546 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2547 2548 // Okay, figure out the element size. 2549 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2550 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2551 2552 llvm::Value *divisor = nullptr; 2553 2554 // For a variable-length array, this is going to be non-constant. 2555 if (const VariableArrayType *vla 2556 = CGF.getContext().getAsVariableArrayType(elementType)) { 2557 llvm::Value *numElements; 2558 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2559 2560 divisor = numElements; 2561 2562 // Scale the number of non-VLA elements by the non-VLA element size. 2563 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2564 if (!eltSize.isOne()) 2565 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2566 2567 // For everything elese, we can just compute it, safe in the 2568 // assumption that Sema won't let anything through that we can't 2569 // safely compute the size of. 2570 } else { 2571 CharUnits elementSize; 2572 // Handle GCC extension for pointer arithmetic on void* and 2573 // function pointer types. 2574 if (elementType->isVoidType() || elementType->isFunctionType()) 2575 elementSize = CharUnits::One(); 2576 else 2577 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2578 2579 // Don't even emit the divide for element size of 1. 2580 if (elementSize.isOne()) 2581 return diffInChars; 2582 2583 divisor = CGF.CGM.getSize(elementSize); 2584 } 2585 2586 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2587 // pointer difference in C is only defined in the case where both operands 2588 // are pointing to elements of an array. 2589 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2590 } 2591 2592 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2593 llvm::IntegerType *Ty; 2594 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2595 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2596 else 2597 Ty = cast<llvm::IntegerType>(LHS->getType()); 2598 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2599 } 2600 2601 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2602 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2603 // RHS to the same size as the LHS. 2604 Value *RHS = Ops.RHS; 2605 if (Ops.LHS->getType() != RHS->getType()) 2606 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2607 2608 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2609 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2610 CodeGenFunction::SanitizerScope SanScope(&CGF); 2611 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2612 llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne); 2613 2614 if (Ops.Ty->hasSignedIntegerRepresentation()) { 2615 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2616 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2617 llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check"); 2618 Builder.CreateCondBr(Valid, CheckBitsShifted, Cont); 2619 2620 // Check whether we are shifting any non-zero bits off the top of the 2621 // integer. 2622 CGF.EmitBlock(CheckBitsShifted); 2623 llvm::Value *BitsShiftedOff = 2624 Builder.CreateLShr(Ops.LHS, 2625 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2626 /*NUW*/true, /*NSW*/true), 2627 "shl.check"); 2628 if (CGF.getLangOpts().CPlusPlus) { 2629 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2630 // Under C++11's rules, shifting a 1 bit into the sign bit is 2631 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2632 // define signed left shifts, so we use the C99 and C++11 rules there). 2633 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2634 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2635 } 2636 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2637 llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2638 CGF.EmitBlock(Cont); 2639 llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2); 2640 P->addIncoming(Valid, Orig); 2641 P->addIncoming(SecondCheck, CheckBitsShifted); 2642 Valid = P; 2643 } 2644 2645 EmitBinOpCheck(Valid, Ops); 2646 } 2647 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2648 if (CGF.getLangOpts().OpenCL) 2649 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2650 2651 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2652 } 2653 2654 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2655 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2656 // RHS to the same size as the LHS. 2657 Value *RHS = Ops.RHS; 2658 if (Ops.LHS->getType() != RHS->getType()) 2659 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2660 2661 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2662 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2663 CodeGenFunction::SanitizerScope SanScope(&CGF); 2664 EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops); 2665 } 2666 2667 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2668 if (CGF.getLangOpts().OpenCL) 2669 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2670 2671 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2672 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2673 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2674 } 2675 2676 enum IntrinsicType { VCMPEQ, VCMPGT }; 2677 // return corresponding comparison intrinsic for given vector type 2678 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2679 BuiltinType::Kind ElemKind) { 2680 switch (ElemKind) { 2681 default: llvm_unreachable("unexpected element type"); 2682 case BuiltinType::Char_U: 2683 case BuiltinType::UChar: 2684 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2685 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2686 case BuiltinType::Char_S: 2687 case BuiltinType::SChar: 2688 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2689 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2690 case BuiltinType::UShort: 2691 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2692 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2693 case BuiltinType::Short: 2694 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2695 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2696 case BuiltinType::UInt: 2697 case BuiltinType::ULong: 2698 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2699 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2700 case BuiltinType::Int: 2701 case BuiltinType::Long: 2702 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2703 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2704 case BuiltinType::Float: 2705 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2706 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2707 } 2708 } 2709 2710 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2711 unsigned SICmpOpc, unsigned FCmpOpc) { 2712 TestAndClearIgnoreResultAssign(); 2713 Value *Result; 2714 QualType LHSTy = E->getLHS()->getType(); 2715 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2716 assert(E->getOpcode() == BO_EQ || 2717 E->getOpcode() == BO_NE); 2718 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2719 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2720 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2721 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2722 } else if (!LHSTy->isAnyComplexType()) { 2723 Value *LHS = Visit(E->getLHS()); 2724 Value *RHS = Visit(E->getRHS()); 2725 2726 // If AltiVec, the comparison results in a numeric type, so we use 2727 // intrinsics comparing vectors and giving 0 or 1 as a result 2728 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2729 // constants for mapping CR6 register bits to predicate result 2730 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2731 2732 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2733 2734 // in several cases vector arguments order will be reversed 2735 Value *FirstVecArg = LHS, 2736 *SecondVecArg = RHS; 2737 2738 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2739 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2740 BuiltinType::Kind ElementKind = BTy->getKind(); 2741 2742 switch(E->getOpcode()) { 2743 default: llvm_unreachable("is not a comparison operation"); 2744 case BO_EQ: 2745 CR6 = CR6_LT; 2746 ID = GetIntrinsic(VCMPEQ, ElementKind); 2747 break; 2748 case BO_NE: 2749 CR6 = CR6_EQ; 2750 ID = GetIntrinsic(VCMPEQ, ElementKind); 2751 break; 2752 case BO_LT: 2753 CR6 = CR6_LT; 2754 ID = GetIntrinsic(VCMPGT, ElementKind); 2755 std::swap(FirstVecArg, SecondVecArg); 2756 break; 2757 case BO_GT: 2758 CR6 = CR6_LT; 2759 ID = GetIntrinsic(VCMPGT, ElementKind); 2760 break; 2761 case BO_LE: 2762 if (ElementKind == BuiltinType::Float) { 2763 CR6 = CR6_LT; 2764 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2765 std::swap(FirstVecArg, SecondVecArg); 2766 } 2767 else { 2768 CR6 = CR6_EQ; 2769 ID = GetIntrinsic(VCMPGT, ElementKind); 2770 } 2771 break; 2772 case BO_GE: 2773 if (ElementKind == BuiltinType::Float) { 2774 CR6 = CR6_LT; 2775 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2776 } 2777 else { 2778 CR6 = CR6_EQ; 2779 ID = GetIntrinsic(VCMPGT, ElementKind); 2780 std::swap(FirstVecArg, SecondVecArg); 2781 } 2782 break; 2783 } 2784 2785 Value *CR6Param = Builder.getInt32(CR6); 2786 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2787 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, ""); 2788 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2789 } 2790 2791 if (LHS->getType()->isFPOrFPVectorTy()) { 2792 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2793 LHS, RHS, "cmp"); 2794 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2795 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2796 LHS, RHS, "cmp"); 2797 } else { 2798 // Unsigned integers and pointers. 2799 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2800 LHS, RHS, "cmp"); 2801 } 2802 2803 // If this is a vector comparison, sign extend the result to the appropriate 2804 // vector integer type and return it (don't convert to bool). 2805 if (LHSTy->isVectorType()) 2806 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2807 2808 } else { 2809 // Complex Comparison: can only be an equality comparison. 2810 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); 2811 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); 2812 2813 QualType CETy = LHSTy->getAs<ComplexType>()->getElementType(); 2814 2815 Value *ResultR, *ResultI; 2816 if (CETy->isRealFloatingType()) { 2817 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2818 LHS.first, RHS.first, "cmp.r"); 2819 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2820 LHS.second, RHS.second, "cmp.i"); 2821 } else { 2822 // Complex comparisons can only be equality comparisons. As such, signed 2823 // and unsigned opcodes are the same. 2824 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2825 LHS.first, RHS.first, "cmp.r"); 2826 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2827 LHS.second, RHS.second, "cmp.i"); 2828 } 2829 2830 if (E->getOpcode() == BO_EQ) { 2831 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2832 } else { 2833 assert(E->getOpcode() == BO_NE && 2834 "Complex comparison other than == or != ?"); 2835 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2836 } 2837 } 2838 2839 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2840 } 2841 2842 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2843 bool Ignore = TestAndClearIgnoreResultAssign(); 2844 2845 Value *RHS; 2846 LValue LHS; 2847 2848 switch (E->getLHS()->getType().getObjCLifetime()) { 2849 case Qualifiers::OCL_Strong: 2850 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2851 break; 2852 2853 case Qualifiers::OCL_Autoreleasing: 2854 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 2855 break; 2856 2857 case Qualifiers::OCL_Weak: 2858 RHS = Visit(E->getRHS()); 2859 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2860 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 2861 break; 2862 2863 // No reason to do any of these differently. 2864 case Qualifiers::OCL_None: 2865 case Qualifiers::OCL_ExplicitNone: 2866 // __block variables need to have the rhs evaluated first, plus 2867 // this should improve codegen just a little. 2868 RHS = Visit(E->getRHS()); 2869 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2870 2871 // Store the value into the LHS. Bit-fields are handled specially 2872 // because the result is altered by the store, i.e., [C99 6.5.16p1] 2873 // 'An assignment expression has the value of the left operand after 2874 // the assignment...'. 2875 if (LHS.isBitField()) 2876 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 2877 else 2878 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 2879 } 2880 2881 // If the result is clearly ignored, return now. 2882 if (Ignore) 2883 return nullptr; 2884 2885 // The result of an assignment in C is the assigned r-value. 2886 if (!CGF.getLangOpts().CPlusPlus) 2887 return RHS; 2888 2889 // If the lvalue is non-volatile, return the computed value of the assignment. 2890 if (!LHS.isVolatileQualified()) 2891 return RHS; 2892 2893 // Otherwise, reload the value. 2894 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2895 } 2896 2897 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 2898 RegionCounter Cnt = CGF.getPGORegionCounter(E); 2899 2900 // Perform vector logical and on comparisons with zero vectors. 2901 if (E->getType()->isVectorType()) { 2902 Cnt.beginRegion(Builder); 2903 2904 Value *LHS = Visit(E->getLHS()); 2905 Value *RHS = Visit(E->getRHS()); 2906 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2907 if (LHS->getType()->isFPOrFPVectorTy()) { 2908 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 2909 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 2910 } else { 2911 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2912 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2913 } 2914 Value *And = Builder.CreateAnd(LHS, RHS); 2915 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 2916 } 2917 2918 llvm::Type *ResTy = ConvertType(E->getType()); 2919 2920 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 2921 // If we have 1 && X, just emit X without inserting the control flow. 2922 bool LHSCondVal; 2923 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2924 if (LHSCondVal) { // If we have 1 && X, just emit X. 2925 Cnt.beginRegion(Builder); 2926 2927 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2928 // ZExt result to int or bool. 2929 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 2930 } 2931 2932 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 2933 if (!CGF.ContainsLabel(E->getRHS())) 2934 return llvm::Constant::getNullValue(ResTy); 2935 } 2936 2937 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 2938 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 2939 2940 CodeGenFunction::ConditionalEvaluation eval(CGF); 2941 2942 // Branch on the LHS first. If it is false, go to the failure (cont) block. 2943 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, Cnt.getCount()); 2944 2945 // Any edges into the ContBlock are now from an (indeterminate number of) 2946 // edges from this first condition. All of these values will be false. Start 2947 // setting up the PHI node in the Cont Block for this. 2948 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2949 "", ContBlock); 2950 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2951 PI != PE; ++PI) 2952 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 2953 2954 eval.begin(CGF); 2955 CGF.EmitBlock(RHSBlock); 2956 Cnt.beginRegion(Builder); 2957 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2958 eval.end(CGF); 2959 2960 // Reaquire the RHS block, as there may be subblocks inserted. 2961 RHSBlock = Builder.GetInsertBlock(); 2962 2963 // Emit an unconditional branch from this block to ContBlock. 2964 { 2965 // There is no need to emit line number for unconditional branch. 2966 SuppressDebugLocation S(Builder); 2967 CGF.EmitBlock(ContBlock); 2968 } 2969 // Insert an entry into the phi node for the edge with the value of RHSCond. 2970 PN->addIncoming(RHSCond, RHSBlock); 2971 2972 // ZExt result to int. 2973 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 2974 } 2975 2976 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 2977 RegionCounter Cnt = CGF.getPGORegionCounter(E); 2978 2979 // Perform vector logical or on comparisons with zero vectors. 2980 if (E->getType()->isVectorType()) { 2981 Cnt.beginRegion(Builder); 2982 2983 Value *LHS = Visit(E->getLHS()); 2984 Value *RHS = Visit(E->getRHS()); 2985 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2986 if (LHS->getType()->isFPOrFPVectorTy()) { 2987 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 2988 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 2989 } else { 2990 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2991 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2992 } 2993 Value *Or = Builder.CreateOr(LHS, RHS); 2994 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 2995 } 2996 2997 llvm::Type *ResTy = ConvertType(E->getType()); 2998 2999 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3000 // If we have 0 || X, just emit X without inserting the control flow. 3001 bool LHSCondVal; 3002 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3003 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3004 Cnt.beginRegion(Builder); 3005 3006 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3007 // ZExt result to int or bool. 3008 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3009 } 3010 3011 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3012 if (!CGF.ContainsLabel(E->getRHS())) 3013 return llvm::ConstantInt::get(ResTy, 1); 3014 } 3015 3016 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3017 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3018 3019 CodeGenFunction::ConditionalEvaluation eval(CGF); 3020 3021 // Branch on the LHS first. If it is true, go to the success (cont) block. 3022 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3023 Cnt.getParentCount() - Cnt.getCount()); 3024 3025 // Any edges into the ContBlock are now from an (indeterminate number of) 3026 // edges from this first condition. All of these values will be true. Start 3027 // setting up the PHI node in the Cont Block for this. 3028 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3029 "", ContBlock); 3030 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3031 PI != PE; ++PI) 3032 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3033 3034 eval.begin(CGF); 3035 3036 // Emit the RHS condition as a bool value. 3037 CGF.EmitBlock(RHSBlock); 3038 Cnt.beginRegion(Builder); 3039 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3040 3041 eval.end(CGF); 3042 3043 // Reaquire the RHS block, as there may be subblocks inserted. 3044 RHSBlock = Builder.GetInsertBlock(); 3045 3046 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3047 // into the phi node for the edge with the value of RHSCond. 3048 CGF.EmitBlock(ContBlock); 3049 PN->addIncoming(RHSCond, RHSBlock); 3050 3051 // ZExt result to int. 3052 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3053 } 3054 3055 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3056 CGF.EmitIgnoredExpr(E->getLHS()); 3057 CGF.EnsureInsertPoint(); 3058 return Visit(E->getRHS()); 3059 } 3060 3061 //===----------------------------------------------------------------------===// 3062 // Other Operators 3063 //===----------------------------------------------------------------------===// 3064 3065 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3066 /// expression is cheap enough and side-effect-free enough to evaluate 3067 /// unconditionally instead of conditionally. This is used to convert control 3068 /// flow into selects in some cases. 3069 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3070 CodeGenFunction &CGF) { 3071 // Anything that is an integer or floating point constant is fine. 3072 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3073 3074 // Even non-volatile automatic variables can't be evaluated unconditionally. 3075 // Referencing a thread_local may cause non-trivial initialization work to 3076 // occur. If we're inside a lambda and one of the variables is from the scope 3077 // outside the lambda, that function may have returned already. Reading its 3078 // locals is a bad idea. Also, these reads may introduce races there didn't 3079 // exist in the source-level program. 3080 } 3081 3082 3083 Value *ScalarExprEmitter:: 3084 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3085 TestAndClearIgnoreResultAssign(); 3086 3087 // Bind the common expression if necessary. 3088 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3089 RegionCounter Cnt = CGF.getPGORegionCounter(E); 3090 3091 Expr *condExpr = E->getCond(); 3092 Expr *lhsExpr = E->getTrueExpr(); 3093 Expr *rhsExpr = E->getFalseExpr(); 3094 3095 // If the condition constant folds and can be elided, try to avoid emitting 3096 // the condition and the dead arm. 3097 bool CondExprBool; 3098 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3099 Expr *live = lhsExpr, *dead = rhsExpr; 3100 if (!CondExprBool) std::swap(live, dead); 3101 3102 // If the dead side doesn't have labels we need, just emit the Live part. 3103 if (!CGF.ContainsLabel(dead)) { 3104 if (CondExprBool) 3105 Cnt.beginRegion(Builder); 3106 Value *Result = Visit(live); 3107 3108 // If the live part is a throw expression, it acts like it has a void 3109 // type, so evaluating it returns a null Value*. However, a conditional 3110 // with non-void type must return a non-null Value*. 3111 if (!Result && !E->getType()->isVoidType()) 3112 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3113 3114 return Result; 3115 } 3116 } 3117 3118 // OpenCL: If the condition is a vector, we can treat this condition like 3119 // the select function. 3120 if (CGF.getLangOpts().OpenCL 3121 && condExpr->getType()->isVectorType()) { 3122 Cnt.beginRegion(Builder); 3123 3124 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3125 llvm::Value *LHS = Visit(lhsExpr); 3126 llvm::Value *RHS = Visit(rhsExpr); 3127 3128 llvm::Type *condType = ConvertType(condExpr->getType()); 3129 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3130 3131 unsigned numElem = vecTy->getNumElements(); 3132 llvm::Type *elemType = vecTy->getElementType(); 3133 3134 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3135 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3136 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3137 llvm::VectorType::get(elemType, 3138 numElem), 3139 "sext"); 3140 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3141 3142 // Cast float to int to perform ANDs if necessary. 3143 llvm::Value *RHSTmp = RHS; 3144 llvm::Value *LHSTmp = LHS; 3145 bool wasCast = false; 3146 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3147 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3148 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3149 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3150 wasCast = true; 3151 } 3152 3153 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3154 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3155 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3156 if (wasCast) 3157 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3158 3159 return tmp5; 3160 } 3161 3162 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3163 // select instead of as control flow. We can only do this if it is cheap and 3164 // safe to evaluate the LHS and RHS unconditionally. 3165 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3166 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3167 Cnt.beginRegion(Builder); 3168 3169 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3170 llvm::Value *LHS = Visit(lhsExpr); 3171 llvm::Value *RHS = Visit(rhsExpr); 3172 if (!LHS) { 3173 // If the conditional has void type, make sure we return a null Value*. 3174 assert(!RHS && "LHS and RHS types must match"); 3175 return nullptr; 3176 } 3177 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3178 } 3179 3180 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3181 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3182 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3183 3184 CodeGenFunction::ConditionalEvaluation eval(CGF); 3185 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, Cnt.getCount()); 3186 3187 CGF.EmitBlock(LHSBlock); 3188 Cnt.beginRegion(Builder); 3189 eval.begin(CGF); 3190 Value *LHS = Visit(lhsExpr); 3191 eval.end(CGF); 3192 3193 LHSBlock = Builder.GetInsertBlock(); 3194 Builder.CreateBr(ContBlock); 3195 3196 CGF.EmitBlock(RHSBlock); 3197 eval.begin(CGF); 3198 Value *RHS = Visit(rhsExpr); 3199 eval.end(CGF); 3200 3201 RHSBlock = Builder.GetInsertBlock(); 3202 CGF.EmitBlock(ContBlock); 3203 3204 // If the LHS or RHS is a throw expression, it will be legitimately null. 3205 if (!LHS) 3206 return RHS; 3207 if (!RHS) 3208 return LHS; 3209 3210 // Create a PHI node for the real part. 3211 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3212 PN->addIncoming(LHS, LHSBlock); 3213 PN->addIncoming(RHS, RHSBlock); 3214 return PN; 3215 } 3216 3217 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3218 return Visit(E->getChosenSubExpr()); 3219 } 3220 3221 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3222 QualType Ty = VE->getType(); 3223 if (Ty->isVariablyModifiedType()) 3224 CGF.EmitVariablyModifiedType(Ty); 3225 3226 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 3227 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 3228 3229 // If EmitVAArg fails, we fall back to the LLVM instruction. 3230 if (!ArgPtr) 3231 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); 3232 3233 // FIXME Volatility. 3234 return Builder.CreateLoad(ArgPtr); 3235 } 3236 3237 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3238 return CGF.EmitBlockLiteral(block); 3239 } 3240 3241 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3242 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3243 llvm::Type *DstTy = ConvertType(E->getType()); 3244 3245 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3246 // a shuffle vector instead of a bitcast. 3247 llvm::Type *SrcTy = Src->getType(); 3248 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3249 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3250 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3251 if ((numElementsDst == 3 && numElementsSrc == 4) 3252 || (numElementsDst == 4 && numElementsSrc == 3)) { 3253 3254 3255 // In the case of going from int4->float3, a bitcast is needed before 3256 // doing a shuffle. 3257 llvm::Type *srcElemTy = 3258 cast<llvm::VectorType>(SrcTy)->getElementType(); 3259 llvm::Type *dstElemTy = 3260 cast<llvm::VectorType>(DstTy)->getElementType(); 3261 3262 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3263 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3264 // Create a float type of the same size as the source or destination. 3265 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3266 numElementsSrc); 3267 3268 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3269 } 3270 3271 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3272 3273 SmallVector<llvm::Constant*, 3> Args; 3274 Args.push_back(Builder.getInt32(0)); 3275 Args.push_back(Builder.getInt32(1)); 3276 Args.push_back(Builder.getInt32(2)); 3277 3278 if (numElementsDst == 4) 3279 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3280 3281 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3282 3283 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3284 } 3285 } 3286 3287 return Builder.CreateBitCast(Src, DstTy, "astype"); 3288 } 3289 3290 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3291 return CGF.EmitAtomicExpr(E).getScalarVal(); 3292 } 3293 3294 //===----------------------------------------------------------------------===// 3295 // Entry Point into this File 3296 //===----------------------------------------------------------------------===// 3297 3298 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 3299 /// type, ignoring the result. 3300 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3301 assert(E && hasScalarEvaluationKind(E->getType()) && 3302 "Invalid scalar expression to emit"); 3303 3304 if (isa<CXXDefaultArgExpr>(E)) 3305 disableDebugInfo(); 3306 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign) 3307 .Visit(const_cast<Expr*>(E)); 3308 if (isa<CXXDefaultArgExpr>(E)) 3309 enableDebugInfo(); 3310 return V; 3311 } 3312 3313 /// EmitScalarConversion - Emit a conversion from the specified type to the 3314 /// specified destination type, both of which are LLVM scalar types. 3315 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3316 QualType DstTy) { 3317 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3318 "Invalid scalar expression to emit"); 3319 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 3320 } 3321 3322 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 3323 /// type to the specified destination type, where the destination type is an 3324 /// LLVM scalar type. 3325 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3326 QualType SrcTy, 3327 QualType DstTy) { 3328 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3329 "Invalid complex -> scalar conversion"); 3330 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 3331 DstTy); 3332 } 3333 3334 3335 llvm::Value *CodeGenFunction:: 3336 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3337 bool isInc, bool isPre) { 3338 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3339 } 3340 3341 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3342 llvm::Value *V; 3343 // object->isa or (*object).isa 3344 // Generate code as for: *(Class*)object 3345 // build Class* type 3346 llvm::Type *ClassPtrTy = ConvertType(E->getType()); 3347 3348 Expr *BaseExpr = E->getBase(); 3349 if (BaseExpr->isRValue()) { 3350 V = CreateMemTemp(E->getType(), "resval"); 3351 llvm::Value *Src = EmitScalarExpr(BaseExpr); 3352 Builder.CreateStore(Src, V); 3353 V = ScalarExprEmitter(*this).EmitLoadOfLValue( 3354 MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc()); 3355 } else { 3356 if (E->isArrow()) 3357 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 3358 else 3359 V = EmitLValue(BaseExpr).getAddress(); 3360 } 3361 3362 // build Class* type 3363 ClassPtrTy = ClassPtrTy->getPointerTo(); 3364 V = Builder.CreateBitCast(V, ClassPtrTy); 3365 return MakeNaturalAlignAddrLValue(V, E->getType()); 3366 } 3367 3368 3369 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3370 const CompoundAssignOperator *E) { 3371 ScalarExprEmitter Scalar(*this); 3372 Value *Result = nullptr; 3373 switch (E->getOpcode()) { 3374 #define COMPOUND_OP(Op) \ 3375 case BO_##Op##Assign: \ 3376 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3377 Result) 3378 COMPOUND_OP(Mul); 3379 COMPOUND_OP(Div); 3380 COMPOUND_OP(Rem); 3381 COMPOUND_OP(Add); 3382 COMPOUND_OP(Sub); 3383 COMPOUND_OP(Shl); 3384 COMPOUND_OP(Shr); 3385 COMPOUND_OP(And); 3386 COMPOUND_OP(Xor); 3387 COMPOUND_OP(Or); 3388 #undef COMPOUND_OP 3389 3390 case BO_PtrMemD: 3391 case BO_PtrMemI: 3392 case BO_Mul: 3393 case BO_Div: 3394 case BO_Rem: 3395 case BO_Add: 3396 case BO_Sub: 3397 case BO_Shl: 3398 case BO_Shr: 3399 case BO_LT: 3400 case BO_GT: 3401 case BO_LE: 3402 case BO_GE: 3403 case BO_EQ: 3404 case BO_NE: 3405 case BO_And: 3406 case BO_Xor: 3407 case BO_Or: 3408 case BO_LAnd: 3409 case BO_LOr: 3410 case BO_Assign: 3411 case BO_Comma: 3412 llvm_unreachable("Not valid compound assignment operators"); 3413 } 3414 3415 llvm_unreachable("Unhandled compound assignment operator"); 3416 } 3417