1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCleanup.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CGOpenMPRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/FixedPoint.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/IntrinsicsPowerPC.h" 40 #include "llvm/IR/Module.h" 41 #include <cstdarg> 42 43 using namespace clang; 44 using namespace CodeGen; 45 using llvm::Value; 46 47 //===----------------------------------------------------------------------===// 48 // Scalar Expression Emitter 49 //===----------------------------------------------------------------------===// 50 51 namespace { 52 53 /// Determine whether the given binary operation may overflow. 54 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 55 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 56 /// the returned overflow check is precise. The returned value is 'true' for 57 /// all other opcodes, to be conservative. 58 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 59 BinaryOperator::Opcode Opcode, bool Signed, 60 llvm::APInt &Result) { 61 // Assume overflow is possible, unless we can prove otherwise. 62 bool Overflow = true; 63 const auto &LHSAP = LHS->getValue(); 64 const auto &RHSAP = RHS->getValue(); 65 if (Opcode == BO_Add) { 66 if (Signed) 67 Result = LHSAP.sadd_ov(RHSAP, Overflow); 68 else 69 Result = LHSAP.uadd_ov(RHSAP, Overflow); 70 } else if (Opcode == BO_Sub) { 71 if (Signed) 72 Result = LHSAP.ssub_ov(RHSAP, Overflow); 73 else 74 Result = LHSAP.usub_ov(RHSAP, Overflow); 75 } else if (Opcode == BO_Mul) { 76 if (Signed) 77 Result = LHSAP.smul_ov(RHSAP, Overflow); 78 else 79 Result = LHSAP.umul_ov(RHSAP, Overflow); 80 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 81 if (Signed && !RHS->isZero()) 82 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 83 else 84 return false; 85 } 86 return Overflow; 87 } 88 89 struct BinOpInfo { 90 Value *LHS; 91 Value *RHS; 92 QualType Ty; // Computation Type. 93 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 94 FPOptions FPFeatures; 95 const Expr *E; // Entire expr, for error unsupported. May not be binop. 96 97 /// Check if the binop can result in integer overflow. 98 bool mayHaveIntegerOverflow() const { 99 // Without constant input, we can't rule out overflow. 100 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 101 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 102 if (!LHSCI || !RHSCI) 103 return true; 104 105 llvm::APInt Result; 106 return ::mayHaveIntegerOverflow( 107 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 108 } 109 110 /// Check if the binop computes a division or a remainder. 111 bool isDivremOp() const { 112 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 113 Opcode == BO_RemAssign; 114 } 115 116 /// Check if the binop can result in an integer division by zero. 117 bool mayHaveIntegerDivisionByZero() const { 118 if (isDivremOp()) 119 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 120 return CI->isZero(); 121 return true; 122 } 123 124 /// Check if the binop can result in a float division by zero. 125 bool mayHaveFloatDivisionByZero() const { 126 if (isDivremOp()) 127 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 128 return CFP->isZero(); 129 return true; 130 } 131 132 /// Check if either operand is a fixed point type or integer type, with at 133 /// least one being a fixed point type. In any case, this 134 /// operation did not follow usual arithmetic conversion and both operands may 135 /// not be the same. 136 bool isFixedPointBinOp() const { 137 // We cannot simply check the result type since comparison operations return 138 // an int. 139 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { 140 QualType LHSType = BinOp->getLHS()->getType(); 141 QualType RHSType = BinOp->getRHS()->getType(); 142 return LHSType->isFixedPointType() || RHSType->isFixedPointType(); 143 } 144 return false; 145 } 146 }; 147 148 static bool MustVisitNullValue(const Expr *E) { 149 // If a null pointer expression's type is the C++0x nullptr_t, then 150 // it's not necessarily a simple constant and it must be evaluated 151 // for its potential side effects. 152 return E->getType()->isNullPtrType(); 153 } 154 155 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 156 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 157 const Expr *E) { 158 const Expr *Base = E->IgnoreImpCasts(); 159 if (E == Base) 160 return llvm::None; 161 162 QualType BaseTy = Base->getType(); 163 if (!BaseTy->isPromotableIntegerType() || 164 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 165 return llvm::None; 166 167 return BaseTy; 168 } 169 170 /// Check if \p E is a widened promoted integer. 171 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 172 return getUnwidenedIntegerType(Ctx, E).hasValue(); 173 } 174 175 /// Check if we can skip the overflow check for \p Op. 176 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 177 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 178 "Expected a unary or binary operator"); 179 180 // If the binop has constant inputs and we can prove there is no overflow, 181 // we can elide the overflow check. 182 if (!Op.mayHaveIntegerOverflow()) 183 return true; 184 185 // If a unary op has a widened operand, the op cannot overflow. 186 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 187 return !UO->canOverflow(); 188 189 // We usually don't need overflow checks for binops with widened operands. 190 // Multiplication with promoted unsigned operands is a special case. 191 const auto *BO = cast<BinaryOperator>(Op.E); 192 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 193 if (!OptionalLHSTy) 194 return false; 195 196 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 197 if (!OptionalRHSTy) 198 return false; 199 200 QualType LHSTy = *OptionalLHSTy; 201 QualType RHSTy = *OptionalRHSTy; 202 203 // This is the simple case: binops without unsigned multiplication, and with 204 // widened operands. No overflow check is needed here. 205 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 206 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 207 return true; 208 209 // For unsigned multiplication the overflow check can be elided if either one 210 // of the unpromoted types are less than half the size of the promoted type. 211 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 212 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 213 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 214 } 215 216 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 217 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 218 FPOptions FPFeatures) { 219 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 220 } 221 222 /// Propagate fast-math flags from \p Op to the instruction in \p V. 223 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 224 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 225 llvm::FastMathFlags FMF = I->getFastMathFlags(); 226 updateFastMathFlags(FMF, Op.FPFeatures); 227 I->setFastMathFlags(FMF); 228 } 229 return V; 230 } 231 232 class ScalarExprEmitter 233 : public StmtVisitor<ScalarExprEmitter, Value*> { 234 CodeGenFunction &CGF; 235 CGBuilderTy &Builder; 236 bool IgnoreResultAssign; 237 llvm::LLVMContext &VMContext; 238 public: 239 240 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 241 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 242 VMContext(cgf.getLLVMContext()) { 243 } 244 245 //===--------------------------------------------------------------------===// 246 // Utilities 247 //===--------------------------------------------------------------------===// 248 249 bool TestAndClearIgnoreResultAssign() { 250 bool I = IgnoreResultAssign; 251 IgnoreResultAssign = false; 252 return I; 253 } 254 255 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 256 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 257 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 258 return CGF.EmitCheckedLValue(E, TCK); 259 } 260 261 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 262 const BinOpInfo &Info); 263 264 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 265 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 266 } 267 268 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 269 const AlignValueAttr *AVAttr = nullptr; 270 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 271 const ValueDecl *VD = DRE->getDecl(); 272 273 if (VD->getType()->isReferenceType()) { 274 if (const auto *TTy = 275 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 276 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 277 } else { 278 // Assumptions for function parameters are emitted at the start of the 279 // function, so there is no need to repeat that here, 280 // unless the alignment-assumption sanitizer is enabled, 281 // then we prefer the assumption over alignment attribute 282 // on IR function param. 283 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 284 return; 285 286 AVAttr = VD->getAttr<AlignValueAttr>(); 287 } 288 } 289 290 if (!AVAttr) 291 if (const auto *TTy = 292 dyn_cast<TypedefType>(E->getType())) 293 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 294 295 if (!AVAttr) 296 return; 297 298 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 299 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 300 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); 301 } 302 303 /// EmitLoadOfLValue - Given an expression with complex type that represents a 304 /// value l-value, this method emits the address of the l-value, then loads 305 /// and returns the result. 306 Value *EmitLoadOfLValue(const Expr *E) { 307 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 308 E->getExprLoc()); 309 310 EmitLValueAlignmentAssumption(E, V); 311 return V; 312 } 313 314 /// EmitConversionToBool - Convert the specified expression value to a 315 /// boolean (i1) truth value. This is equivalent to "Val != 0". 316 Value *EmitConversionToBool(Value *Src, QualType DstTy); 317 318 /// Emit a check that a conversion from a floating-point type does not 319 /// overflow. 320 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 321 Value *Src, QualType SrcType, QualType DstType, 322 llvm::Type *DstTy, SourceLocation Loc); 323 324 /// Known implicit conversion check kinds. 325 /// Keep in sync with the enum of the same name in ubsan_handlers.h 326 enum ImplicitConversionCheckKind : unsigned char { 327 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 328 ICCK_UnsignedIntegerTruncation = 1, 329 ICCK_SignedIntegerTruncation = 2, 330 ICCK_IntegerSignChange = 3, 331 ICCK_SignedIntegerTruncationOrSignChange = 4, 332 }; 333 334 /// Emit a check that an [implicit] truncation of an integer does not 335 /// discard any bits. It is not UB, so we use the value after truncation. 336 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 337 QualType DstType, SourceLocation Loc); 338 339 /// Emit a check that an [implicit] conversion of an integer does not change 340 /// the sign of the value. It is not UB, so we use the value after conversion. 341 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 342 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 343 QualType DstType, SourceLocation Loc); 344 345 /// Emit a conversion from the specified type to the specified destination 346 /// type, both of which are LLVM scalar types. 347 struct ScalarConversionOpts { 348 bool TreatBooleanAsSigned; 349 bool EmitImplicitIntegerTruncationChecks; 350 bool EmitImplicitIntegerSignChangeChecks; 351 352 ScalarConversionOpts() 353 : TreatBooleanAsSigned(false), 354 EmitImplicitIntegerTruncationChecks(false), 355 EmitImplicitIntegerSignChangeChecks(false) {} 356 357 ScalarConversionOpts(clang::SanitizerSet SanOpts) 358 : TreatBooleanAsSigned(false), 359 EmitImplicitIntegerTruncationChecks( 360 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 361 EmitImplicitIntegerSignChangeChecks( 362 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 363 }; 364 Value * 365 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 366 SourceLocation Loc, 367 ScalarConversionOpts Opts = ScalarConversionOpts()); 368 369 /// Convert between either a fixed point and other fixed point or fixed point 370 /// and an integer. 371 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 372 SourceLocation Loc); 373 Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema, 374 FixedPointSemantics &DstFixedSema, 375 SourceLocation Loc, 376 bool DstIsInteger = false); 377 378 /// Emit a conversion from the specified complex type to the specified 379 /// destination type, where the destination type is an LLVM scalar type. 380 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 381 QualType SrcTy, QualType DstTy, 382 SourceLocation Loc); 383 384 /// EmitNullValue - Emit a value that corresponds to null for the given type. 385 Value *EmitNullValue(QualType Ty); 386 387 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 388 Value *EmitFloatToBoolConversion(Value *V) { 389 // Compare against 0.0 for fp scalars. 390 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 391 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 392 } 393 394 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 395 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 396 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 397 398 return Builder.CreateICmpNE(V, Zero, "tobool"); 399 } 400 401 Value *EmitIntToBoolConversion(Value *V) { 402 // Because of the type rules of C, we often end up computing a 403 // logical value, then zero extending it to int, then wanting it 404 // as a logical value again. Optimize this common case. 405 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 406 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 407 Value *Result = ZI->getOperand(0); 408 // If there aren't any more uses, zap the instruction to save space. 409 // Note that there can be more uses, for example if this 410 // is the result of an assignment. 411 if (ZI->use_empty()) 412 ZI->eraseFromParent(); 413 return Result; 414 } 415 } 416 417 return Builder.CreateIsNotNull(V, "tobool"); 418 } 419 420 //===--------------------------------------------------------------------===// 421 // Visitor Methods 422 //===--------------------------------------------------------------------===// 423 424 Value *Visit(Expr *E) { 425 ApplyDebugLocation DL(CGF, E); 426 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 427 } 428 429 Value *VisitStmt(Stmt *S) { 430 S->dump(CGF.getContext().getSourceManager()); 431 llvm_unreachable("Stmt can't have complex result type!"); 432 } 433 Value *VisitExpr(Expr *S); 434 435 Value *VisitConstantExpr(ConstantExpr *E) { 436 return Visit(E->getSubExpr()); 437 } 438 Value *VisitParenExpr(ParenExpr *PE) { 439 return Visit(PE->getSubExpr()); 440 } 441 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 442 return Visit(E->getReplacement()); 443 } 444 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 445 return Visit(GE->getResultExpr()); 446 } 447 Value *VisitCoawaitExpr(CoawaitExpr *S) { 448 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 449 } 450 Value *VisitCoyieldExpr(CoyieldExpr *S) { 451 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 452 } 453 Value *VisitUnaryCoawait(const UnaryOperator *E) { 454 return Visit(E->getSubExpr()); 455 } 456 457 // Leaves. 458 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 459 return Builder.getInt(E->getValue()); 460 } 461 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 462 return Builder.getInt(E->getValue()); 463 } 464 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 465 return llvm::ConstantFP::get(VMContext, E->getValue()); 466 } 467 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 468 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 469 } 470 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 471 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 472 } 473 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 474 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 475 } 476 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 477 return EmitNullValue(E->getType()); 478 } 479 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 480 return EmitNullValue(E->getType()); 481 } 482 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 483 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 484 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 485 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 486 return Builder.CreateBitCast(V, ConvertType(E->getType())); 487 } 488 489 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 490 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 491 } 492 493 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 494 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 495 } 496 497 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 498 if (E->isGLValue()) 499 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 500 E->getExprLoc()); 501 502 // Otherwise, assume the mapping is the scalar directly. 503 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 504 } 505 506 // l-values. 507 Value *VisitDeclRefExpr(DeclRefExpr *E) { 508 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 509 return CGF.emitScalarConstant(Constant, E); 510 return EmitLoadOfLValue(E); 511 } 512 513 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 514 return CGF.EmitObjCSelectorExpr(E); 515 } 516 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 517 return CGF.EmitObjCProtocolExpr(E); 518 } 519 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 520 return EmitLoadOfLValue(E); 521 } 522 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 523 if (E->getMethodDecl() && 524 E->getMethodDecl()->getReturnType()->isReferenceType()) 525 return EmitLoadOfLValue(E); 526 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 527 } 528 529 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 530 LValue LV = CGF.EmitObjCIsaExpr(E); 531 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 532 return V; 533 } 534 535 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 536 VersionTuple Version = E->getVersion(); 537 538 // If we're checking for a platform older than our minimum deployment 539 // target, we can fold the check away. 540 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 541 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 542 543 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 544 llvm::Value *Args[] = { 545 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 546 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 547 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 548 }; 549 550 return CGF.EmitBuiltinAvailable(Args); 551 } 552 553 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 554 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 555 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 556 Value *VisitMemberExpr(MemberExpr *E); 557 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 558 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 559 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which 560 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound 561 // literals aren't l-values in C++. We do so simply because that's the 562 // cleanest way to handle compound literals in C++. 563 // See the discussion here: https://reviews.llvm.org/D64464 564 return EmitLoadOfLValue(E); 565 } 566 567 Value *VisitInitListExpr(InitListExpr *E); 568 569 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 570 assert(CGF.getArrayInitIndex() && 571 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 572 return CGF.getArrayInitIndex(); 573 } 574 575 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 576 return EmitNullValue(E->getType()); 577 } 578 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 579 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 580 return VisitCastExpr(E); 581 } 582 Value *VisitCastExpr(CastExpr *E); 583 584 Value *VisitCallExpr(const CallExpr *E) { 585 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 586 return EmitLoadOfLValue(E); 587 588 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 589 590 EmitLValueAlignmentAssumption(E, V); 591 return V; 592 } 593 594 Value *VisitStmtExpr(const StmtExpr *E); 595 596 // Unary Operators. 597 Value *VisitUnaryPostDec(const UnaryOperator *E) { 598 LValue LV = EmitLValue(E->getSubExpr()); 599 return EmitScalarPrePostIncDec(E, LV, false, false); 600 } 601 Value *VisitUnaryPostInc(const UnaryOperator *E) { 602 LValue LV = EmitLValue(E->getSubExpr()); 603 return EmitScalarPrePostIncDec(E, LV, true, false); 604 } 605 Value *VisitUnaryPreDec(const UnaryOperator *E) { 606 LValue LV = EmitLValue(E->getSubExpr()); 607 return EmitScalarPrePostIncDec(E, LV, false, true); 608 } 609 Value *VisitUnaryPreInc(const UnaryOperator *E) { 610 LValue LV = EmitLValue(E->getSubExpr()); 611 return EmitScalarPrePostIncDec(E, LV, true, true); 612 } 613 614 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 615 llvm::Value *InVal, 616 bool IsInc); 617 618 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 619 bool isInc, bool isPre); 620 621 622 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 623 if (isa<MemberPointerType>(E->getType())) // never sugared 624 return CGF.CGM.getMemberPointerConstant(E); 625 626 return EmitLValue(E->getSubExpr()).getPointer(CGF); 627 } 628 Value *VisitUnaryDeref(const UnaryOperator *E) { 629 if (E->getType()->isVoidType()) 630 return Visit(E->getSubExpr()); // the actual value should be unused 631 return EmitLoadOfLValue(E); 632 } 633 Value *VisitUnaryPlus(const UnaryOperator *E) { 634 // This differs from gcc, though, most likely due to a bug in gcc. 635 TestAndClearIgnoreResultAssign(); 636 return Visit(E->getSubExpr()); 637 } 638 Value *VisitUnaryMinus (const UnaryOperator *E); 639 Value *VisitUnaryNot (const UnaryOperator *E); 640 Value *VisitUnaryLNot (const UnaryOperator *E); 641 Value *VisitUnaryReal (const UnaryOperator *E); 642 Value *VisitUnaryImag (const UnaryOperator *E); 643 Value *VisitUnaryExtension(const UnaryOperator *E) { 644 return Visit(E->getSubExpr()); 645 } 646 647 // C++ 648 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 649 return EmitLoadOfLValue(E); 650 } 651 Value *VisitSourceLocExpr(SourceLocExpr *SLE) { 652 auto &Ctx = CGF.getContext(); 653 APValue Evaluated = 654 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); 655 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, 656 SLE->getType()); 657 } 658 659 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 660 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 661 return Visit(DAE->getExpr()); 662 } 663 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 664 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 665 return Visit(DIE->getExpr()); 666 } 667 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 668 return CGF.LoadCXXThis(); 669 } 670 671 Value *VisitExprWithCleanups(ExprWithCleanups *E); 672 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 673 return CGF.EmitCXXNewExpr(E); 674 } 675 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 676 CGF.EmitCXXDeleteExpr(E); 677 return nullptr; 678 } 679 680 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 681 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 682 } 683 684 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { 685 return Builder.getInt1(E->isSatisfied()); 686 } 687 688 Value *VisitRequiresExpr(const RequiresExpr *E) { 689 return Builder.getInt1(E->isSatisfied()); 690 } 691 692 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 693 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 694 } 695 696 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 697 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 698 } 699 700 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 701 // C++ [expr.pseudo]p1: 702 // The result shall only be used as the operand for the function call 703 // operator (), and the result of such a call has type void. The only 704 // effect is the evaluation of the postfix-expression before the dot or 705 // arrow. 706 CGF.EmitScalarExpr(E->getBase()); 707 return nullptr; 708 } 709 710 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 711 return EmitNullValue(E->getType()); 712 } 713 714 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 715 CGF.EmitCXXThrowExpr(E); 716 return nullptr; 717 } 718 719 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 720 return Builder.getInt1(E->getValue()); 721 } 722 723 // Binary Operators. 724 Value *EmitMul(const BinOpInfo &Ops) { 725 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 726 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 727 case LangOptions::SOB_Defined: 728 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 729 case LangOptions::SOB_Undefined: 730 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 731 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 732 LLVM_FALLTHROUGH; 733 case LangOptions::SOB_Trapping: 734 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 735 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 736 return EmitOverflowCheckedBinOp(Ops); 737 } 738 } 739 740 if (Ops.Ty->isUnsignedIntegerType() && 741 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 742 !CanElideOverflowCheck(CGF.getContext(), Ops)) 743 return EmitOverflowCheckedBinOp(Ops); 744 745 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 746 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 747 return propagateFMFlags(V, Ops); 748 } 749 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 750 } 751 /// Create a binary op that checks for overflow. 752 /// Currently only supports +, - and *. 753 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 754 755 // Check for undefined division and modulus behaviors. 756 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 757 llvm::Value *Zero,bool isDiv); 758 // Common helper for getting how wide LHS of shift is. 759 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 760 Value *EmitDiv(const BinOpInfo &Ops); 761 Value *EmitRem(const BinOpInfo &Ops); 762 Value *EmitAdd(const BinOpInfo &Ops); 763 Value *EmitSub(const BinOpInfo &Ops); 764 Value *EmitShl(const BinOpInfo &Ops); 765 Value *EmitShr(const BinOpInfo &Ops); 766 Value *EmitAnd(const BinOpInfo &Ops) { 767 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 768 } 769 Value *EmitXor(const BinOpInfo &Ops) { 770 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 771 } 772 Value *EmitOr (const BinOpInfo &Ops) { 773 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 774 } 775 776 // Helper functions for fixed point binary operations. 777 Value *EmitFixedPointBinOp(const BinOpInfo &Ops); 778 779 BinOpInfo EmitBinOps(const BinaryOperator *E); 780 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 781 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 782 Value *&Result); 783 784 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 785 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 786 787 // Binary operators and binary compound assignment operators. 788 #define HANDLEBINOP(OP) \ 789 Value *VisitBin ## OP(const BinaryOperator *E) { \ 790 return Emit ## OP(EmitBinOps(E)); \ 791 } \ 792 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 793 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 794 } 795 HANDLEBINOP(Mul) 796 HANDLEBINOP(Div) 797 HANDLEBINOP(Rem) 798 HANDLEBINOP(Add) 799 HANDLEBINOP(Sub) 800 HANDLEBINOP(Shl) 801 HANDLEBINOP(Shr) 802 HANDLEBINOP(And) 803 HANDLEBINOP(Xor) 804 HANDLEBINOP(Or) 805 #undef HANDLEBINOP 806 807 // Comparisons. 808 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 809 llvm::CmpInst::Predicate SICmpOpc, 810 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); 811 #define VISITCOMP(CODE, UI, SI, FP, SIG) \ 812 Value *VisitBin##CODE(const BinaryOperator *E) { \ 813 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 814 llvm::FCmpInst::FP, SIG); } 815 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) 816 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) 817 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) 818 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) 819 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) 820 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) 821 #undef VISITCOMP 822 823 Value *VisitBinAssign (const BinaryOperator *E); 824 825 Value *VisitBinLAnd (const BinaryOperator *E); 826 Value *VisitBinLOr (const BinaryOperator *E); 827 Value *VisitBinComma (const BinaryOperator *E); 828 829 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 830 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 831 832 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 833 return Visit(E->getSemanticForm()); 834 } 835 836 // Other Operators. 837 Value *VisitBlockExpr(const BlockExpr *BE); 838 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 839 Value *VisitChooseExpr(ChooseExpr *CE); 840 Value *VisitVAArgExpr(VAArgExpr *VE); 841 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 842 return CGF.EmitObjCStringLiteral(E); 843 } 844 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 845 return CGF.EmitObjCBoxedExpr(E); 846 } 847 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 848 return CGF.EmitObjCArrayLiteral(E); 849 } 850 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 851 return CGF.EmitObjCDictionaryLiteral(E); 852 } 853 Value *VisitAsTypeExpr(AsTypeExpr *CE); 854 Value *VisitAtomicExpr(AtomicExpr *AE); 855 }; 856 } // end anonymous namespace. 857 858 //===----------------------------------------------------------------------===// 859 // Utilities 860 //===----------------------------------------------------------------------===// 861 862 /// EmitConversionToBool - Convert the specified expression value to a 863 /// boolean (i1) truth value. This is equivalent to "Val != 0". 864 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 865 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 866 867 if (SrcType->isRealFloatingType()) 868 return EmitFloatToBoolConversion(Src); 869 870 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 871 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 872 873 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 874 "Unknown scalar type to convert"); 875 876 if (isa<llvm::IntegerType>(Src->getType())) 877 return EmitIntToBoolConversion(Src); 878 879 assert(isa<llvm::PointerType>(Src->getType())); 880 return EmitPointerToBoolConversion(Src, SrcType); 881 } 882 883 void ScalarExprEmitter::EmitFloatConversionCheck( 884 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 885 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 886 assert(SrcType->isFloatingType() && "not a conversion from floating point"); 887 if (!isa<llvm::IntegerType>(DstTy)) 888 return; 889 890 CodeGenFunction::SanitizerScope SanScope(&CGF); 891 using llvm::APFloat; 892 using llvm::APSInt; 893 894 llvm::Value *Check = nullptr; 895 const llvm::fltSemantics &SrcSema = 896 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 897 898 // Floating-point to integer. This has undefined behavior if the source is 899 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 900 // to an integer). 901 unsigned Width = CGF.getContext().getIntWidth(DstType); 902 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 903 904 APSInt Min = APSInt::getMinValue(Width, Unsigned); 905 APFloat MinSrc(SrcSema, APFloat::uninitialized); 906 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 907 APFloat::opOverflow) 908 // Don't need an overflow check for lower bound. Just check for 909 // -Inf/NaN. 910 MinSrc = APFloat::getInf(SrcSema, true); 911 else 912 // Find the largest value which is too small to represent (before 913 // truncation toward zero). 914 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 915 916 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 917 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 918 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 919 APFloat::opOverflow) 920 // Don't need an overflow check for upper bound. Just check for 921 // +Inf/NaN. 922 MaxSrc = APFloat::getInf(SrcSema, false); 923 else 924 // Find the smallest value which is too large to represent (before 925 // truncation toward zero). 926 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 927 928 // If we're converting from __half, convert the range to float to match 929 // the type of src. 930 if (OrigSrcType->isHalfType()) { 931 const llvm::fltSemantics &Sema = 932 CGF.getContext().getFloatTypeSemantics(SrcType); 933 bool IsInexact; 934 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 935 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 936 } 937 938 llvm::Value *GE = 939 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 940 llvm::Value *LE = 941 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 942 Check = Builder.CreateAnd(GE, LE); 943 944 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 945 CGF.EmitCheckTypeDescriptor(OrigSrcType), 946 CGF.EmitCheckTypeDescriptor(DstType)}; 947 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 948 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 949 } 950 951 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 952 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 953 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 954 std::pair<llvm::Value *, SanitizerMask>> 955 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 956 QualType DstType, CGBuilderTy &Builder) { 957 llvm::Type *SrcTy = Src->getType(); 958 llvm::Type *DstTy = Dst->getType(); 959 (void)DstTy; // Only used in assert() 960 961 // This should be truncation of integral types. 962 assert(Src != Dst); 963 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 964 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 965 "non-integer llvm type"); 966 967 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 968 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 969 970 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 971 // Else, it is a signed truncation. 972 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 973 SanitizerMask Mask; 974 if (!SrcSigned && !DstSigned) { 975 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 976 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 977 } else { 978 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 979 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 980 } 981 982 llvm::Value *Check = nullptr; 983 // 1. Extend the truncated value back to the same width as the Src. 984 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 985 // 2. Equality-compare with the original source value 986 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 987 // If the comparison result is 'i1 false', then the truncation was lossy. 988 return std::make_pair(Kind, std::make_pair(Check, Mask)); 989 } 990 991 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 992 QualType SrcType, QualType DstType) { 993 return SrcType->isIntegerType() && DstType->isIntegerType(); 994 } 995 996 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 997 Value *Dst, QualType DstType, 998 SourceLocation Loc) { 999 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1000 return; 1001 1002 // We only care about int->int conversions here. 1003 // We ignore conversions to/from pointer and/or bool. 1004 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1005 DstType)) 1006 return; 1007 1008 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1009 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1010 // This must be truncation. Else we do not care. 1011 if (SrcBits <= DstBits) 1012 return; 1013 1014 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1015 1016 // If the integer sign change sanitizer is enabled, 1017 // and we are truncating from larger unsigned type to smaller signed type, 1018 // let that next sanitizer deal with it. 1019 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1020 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1021 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1022 (!SrcSigned && DstSigned)) 1023 return; 1024 1025 CodeGenFunction::SanitizerScope SanScope(&CGF); 1026 1027 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1028 std::pair<llvm::Value *, SanitizerMask>> 1029 Check = 1030 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1031 // If the comparison result is 'i1 false', then the truncation was lossy. 1032 1033 // Do we care about this type of truncation? 1034 if (!CGF.SanOpts.has(Check.second.second)) 1035 return; 1036 1037 llvm::Constant *StaticArgs[] = { 1038 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1039 CGF.EmitCheckTypeDescriptor(DstType), 1040 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1041 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1042 {Src, Dst}); 1043 } 1044 1045 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1046 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1047 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1048 std::pair<llvm::Value *, SanitizerMask>> 1049 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1050 QualType DstType, CGBuilderTy &Builder) { 1051 llvm::Type *SrcTy = Src->getType(); 1052 llvm::Type *DstTy = Dst->getType(); 1053 1054 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1055 "non-integer llvm type"); 1056 1057 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1058 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1059 (void)SrcSigned; // Only used in assert() 1060 (void)DstSigned; // Only used in assert() 1061 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1062 unsigned DstBits = DstTy->getScalarSizeInBits(); 1063 (void)SrcBits; // Only used in assert() 1064 (void)DstBits; // Only used in assert() 1065 1066 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1067 "either the widths should be different, or the signednesses."); 1068 1069 // NOTE: zero value is considered to be non-negative. 1070 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1071 const char *Name) -> Value * { 1072 // Is this value a signed type? 1073 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1074 llvm::Type *VTy = V->getType(); 1075 if (!VSigned) { 1076 // If the value is unsigned, then it is never negative. 1077 // FIXME: can we encounter non-scalar VTy here? 1078 return llvm::ConstantInt::getFalse(VTy->getContext()); 1079 } 1080 // Get the zero of the same type with which we will be comparing. 1081 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1082 // %V.isnegative = icmp slt %V, 0 1083 // I.e is %V *strictly* less than zero, does it have negative value? 1084 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1085 llvm::Twine(Name) + "." + V->getName() + 1086 ".negativitycheck"); 1087 }; 1088 1089 // 1. Was the old Value negative? 1090 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1091 // 2. Is the new Value negative? 1092 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1093 // 3. Now, was the 'negativity status' preserved during the conversion? 1094 // NOTE: conversion from negative to zero is considered to change the sign. 1095 // (We want to get 'false' when the conversion changed the sign) 1096 // So we should just equality-compare the negativity statuses. 1097 llvm::Value *Check = nullptr; 1098 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1099 // If the comparison result is 'false', then the conversion changed the sign. 1100 return std::make_pair( 1101 ScalarExprEmitter::ICCK_IntegerSignChange, 1102 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1103 } 1104 1105 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1106 Value *Dst, QualType DstType, 1107 SourceLocation Loc) { 1108 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1109 return; 1110 1111 llvm::Type *SrcTy = Src->getType(); 1112 llvm::Type *DstTy = Dst->getType(); 1113 1114 // We only care about int->int conversions here. 1115 // We ignore conversions to/from pointer and/or bool. 1116 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, 1117 DstType)) 1118 return; 1119 1120 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1121 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1122 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1123 unsigned DstBits = DstTy->getScalarSizeInBits(); 1124 1125 // Now, we do not need to emit the check in *all* of the cases. 1126 // We can avoid emitting it in some obvious cases where it would have been 1127 // dropped by the opt passes (instcombine) always anyways. 1128 // If it's a cast between effectively the same type, no check. 1129 // NOTE: this is *not* equivalent to checking the canonical types. 1130 if (SrcSigned == DstSigned && SrcBits == DstBits) 1131 return; 1132 // At least one of the values needs to have signed type. 1133 // If both are unsigned, then obviously, neither of them can be negative. 1134 if (!SrcSigned && !DstSigned) 1135 return; 1136 // If the conversion is to *larger* *signed* type, then no check is needed. 1137 // Because either sign-extension happens (so the sign will remain), 1138 // or zero-extension will happen (the sign bit will be zero.) 1139 if ((DstBits > SrcBits) && DstSigned) 1140 return; 1141 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1142 (SrcBits > DstBits) && SrcSigned) { 1143 // If the signed integer truncation sanitizer is enabled, 1144 // and this is a truncation from signed type, then no check is needed. 1145 // Because here sign change check is interchangeable with truncation check. 1146 return; 1147 } 1148 // That's it. We can't rule out any more cases with the data we have. 1149 1150 CodeGenFunction::SanitizerScope SanScope(&CGF); 1151 1152 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1153 std::pair<llvm::Value *, SanitizerMask>> 1154 Check; 1155 1156 // Each of these checks needs to return 'false' when an issue was detected. 1157 ImplicitConversionCheckKind CheckKind; 1158 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1159 // So we can 'and' all the checks together, and still get 'false', 1160 // if at least one of the checks detected an issue. 1161 1162 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1163 CheckKind = Check.first; 1164 Checks.emplace_back(Check.second); 1165 1166 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1167 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1168 // If the signed integer truncation sanitizer was enabled, 1169 // and we are truncating from larger unsigned type to smaller signed type, 1170 // let's handle the case we skipped in that check. 1171 Check = 1172 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1173 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1174 Checks.emplace_back(Check.second); 1175 // If the comparison result is 'i1 false', then the truncation was lossy. 1176 } 1177 1178 llvm::Constant *StaticArgs[] = { 1179 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1180 CGF.EmitCheckTypeDescriptor(DstType), 1181 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1182 // EmitCheck() will 'and' all the checks together. 1183 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1184 {Src, Dst}); 1185 } 1186 1187 /// Emit a conversion from the specified type to the specified destination type, 1188 /// both of which are LLVM scalar types. 1189 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1190 QualType DstType, 1191 SourceLocation Loc, 1192 ScalarConversionOpts Opts) { 1193 // All conversions involving fixed point types should be handled by the 1194 // EmitFixedPoint family functions. This is done to prevent bloating up this 1195 // function more, and although fixed point numbers are represented by 1196 // integers, we do not want to follow any logic that assumes they should be 1197 // treated as integers. 1198 // TODO(leonardchan): When necessary, add another if statement checking for 1199 // conversions to fixed point types from other types. 1200 if (SrcType->isFixedPointType()) { 1201 if (DstType->isBooleanType()) 1202 // It is important that we check this before checking if the dest type is 1203 // an integer because booleans are technically integer types. 1204 // We do not need to check the padding bit on unsigned types if unsigned 1205 // padding is enabled because overflow into this bit is undefined 1206 // behavior. 1207 return Builder.CreateIsNotNull(Src, "tobool"); 1208 if (DstType->isFixedPointType() || DstType->isIntegerType()) 1209 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1210 1211 llvm_unreachable( 1212 "Unhandled scalar conversion from a fixed point type to another type."); 1213 } else if (DstType->isFixedPointType()) { 1214 if (SrcType->isIntegerType()) 1215 // This also includes converting booleans and enums to fixed point types. 1216 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1217 1218 llvm_unreachable( 1219 "Unhandled scalar conversion to a fixed point type from another type."); 1220 } 1221 1222 QualType NoncanonicalSrcType = SrcType; 1223 QualType NoncanonicalDstType = DstType; 1224 1225 SrcType = CGF.getContext().getCanonicalType(SrcType); 1226 DstType = CGF.getContext().getCanonicalType(DstType); 1227 if (SrcType == DstType) return Src; 1228 1229 if (DstType->isVoidType()) return nullptr; 1230 1231 llvm::Value *OrigSrc = Src; 1232 QualType OrigSrcType = SrcType; 1233 llvm::Type *SrcTy = Src->getType(); 1234 1235 // Handle conversions to bool first, they are special: comparisons against 0. 1236 if (DstType->isBooleanType()) 1237 return EmitConversionToBool(Src, SrcType); 1238 1239 llvm::Type *DstTy = ConvertType(DstType); 1240 1241 // Cast from half through float if half isn't a native type. 1242 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1243 // Cast to FP using the intrinsic if the half type itself isn't supported. 1244 if (DstTy->isFloatingPointTy()) { 1245 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1246 return Builder.CreateCall( 1247 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1248 Src); 1249 } else { 1250 // Cast to other types through float, using either the intrinsic or FPExt, 1251 // depending on whether the half type itself is supported 1252 // (as opposed to operations on half, available with NativeHalfType). 1253 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1254 Src = Builder.CreateCall( 1255 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1256 CGF.CGM.FloatTy), 1257 Src); 1258 } else { 1259 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1260 } 1261 SrcType = CGF.getContext().FloatTy; 1262 SrcTy = CGF.FloatTy; 1263 } 1264 } 1265 1266 // Ignore conversions like int -> uint. 1267 if (SrcTy == DstTy) { 1268 if (Opts.EmitImplicitIntegerSignChangeChecks) 1269 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1270 NoncanonicalDstType, Loc); 1271 1272 return Src; 1273 } 1274 1275 // Handle pointer conversions next: pointers can only be converted to/from 1276 // other pointers and integers. Check for pointer types in terms of LLVM, as 1277 // some native types (like Obj-C id) may map to a pointer type. 1278 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1279 // The source value may be an integer, or a pointer. 1280 if (isa<llvm::PointerType>(SrcTy)) 1281 return Builder.CreateBitCast(Src, DstTy, "conv"); 1282 1283 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1284 // First, convert to the correct width so that we control the kind of 1285 // extension. 1286 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1287 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1288 llvm::Value* IntResult = 1289 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1290 // Then, cast to pointer. 1291 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1292 } 1293 1294 if (isa<llvm::PointerType>(SrcTy)) { 1295 // Must be an ptr to int cast. 1296 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1297 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1298 } 1299 1300 // A scalar can be splatted to an extended vector of the same element type 1301 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1302 // Sema should add casts to make sure that the source expression's type is 1303 // the same as the vector's element type (sans qualifiers) 1304 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1305 SrcType.getTypePtr() && 1306 "Splatted expr doesn't match with vector element type?"); 1307 1308 // Splat the element across to all elements 1309 unsigned NumElements = DstTy->getVectorNumElements(); 1310 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1311 } 1312 1313 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1314 // Allow bitcast from vector to integer/fp of the same size. 1315 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1316 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1317 if (SrcSize == DstSize) 1318 return Builder.CreateBitCast(Src, DstTy, "conv"); 1319 1320 // Conversions between vectors of different sizes are not allowed except 1321 // when vectors of half are involved. Operations on storage-only half 1322 // vectors require promoting half vector operands to float vectors and 1323 // truncating the result, which is either an int or float vector, to a 1324 // short or half vector. 1325 1326 // Source and destination are both expected to be vectors. 1327 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1328 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1329 (void)DstElementTy; 1330 1331 assert(((SrcElementTy->isIntegerTy() && 1332 DstElementTy->isIntegerTy()) || 1333 (SrcElementTy->isFloatingPointTy() && 1334 DstElementTy->isFloatingPointTy())) && 1335 "unexpected conversion between a floating-point vector and an " 1336 "integer vector"); 1337 1338 // Truncate an i32 vector to an i16 vector. 1339 if (SrcElementTy->isIntegerTy()) 1340 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1341 1342 // Truncate a float vector to a half vector. 1343 if (SrcSize > DstSize) 1344 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1345 1346 // Promote a half vector to a float vector. 1347 return Builder.CreateFPExt(Src, DstTy, "conv"); 1348 } 1349 1350 // Finally, we have the arithmetic types: real int/float. 1351 Value *Res = nullptr; 1352 llvm::Type *ResTy = DstTy; 1353 1354 // An overflowing conversion has undefined behavior if either the source type 1355 // or the destination type is a floating-point type. However, we consider the 1356 // range of representable values for all floating-point types to be 1357 // [-inf,+inf], so no overflow can ever happen when the destination type is a 1358 // floating-point type. 1359 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1360 OrigSrcType->isFloatingType()) 1361 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1362 Loc); 1363 1364 // Cast to half through float if half isn't a native type. 1365 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1366 // Make sure we cast in a single step if from another FP type. 1367 if (SrcTy->isFloatingPointTy()) { 1368 // Use the intrinsic if the half type itself isn't supported 1369 // (as opposed to operations on half, available with NativeHalfType). 1370 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1371 return Builder.CreateCall( 1372 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1373 // If the half type is supported, just use an fptrunc. 1374 return Builder.CreateFPTrunc(Src, DstTy); 1375 } 1376 DstTy = CGF.FloatTy; 1377 } 1378 1379 if (isa<llvm::IntegerType>(SrcTy)) { 1380 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1381 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1382 InputSigned = true; 1383 } 1384 if (isa<llvm::IntegerType>(DstTy)) 1385 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1386 else if (InputSigned) 1387 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1388 else 1389 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1390 } else if (isa<llvm::IntegerType>(DstTy)) { 1391 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1392 if (DstType->isSignedIntegerOrEnumerationType()) 1393 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1394 else 1395 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1396 } else { 1397 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1398 "Unknown real conversion"); 1399 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1400 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1401 else 1402 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1403 } 1404 1405 if (DstTy != ResTy) { 1406 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1407 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1408 Res = Builder.CreateCall( 1409 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1410 Res); 1411 } else { 1412 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1413 } 1414 } 1415 1416 if (Opts.EmitImplicitIntegerTruncationChecks) 1417 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1418 NoncanonicalDstType, Loc); 1419 1420 if (Opts.EmitImplicitIntegerSignChangeChecks) 1421 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1422 NoncanonicalDstType, Loc); 1423 1424 return Res; 1425 } 1426 1427 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1428 QualType DstTy, 1429 SourceLocation Loc) { 1430 FixedPointSemantics SrcFPSema = 1431 CGF.getContext().getFixedPointSemantics(SrcTy); 1432 FixedPointSemantics DstFPSema = 1433 CGF.getContext().getFixedPointSemantics(DstTy); 1434 return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc, 1435 DstTy->isIntegerType()); 1436 } 1437 1438 Value *ScalarExprEmitter::EmitFixedPointConversion( 1439 Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema, 1440 SourceLocation Loc, bool DstIsInteger) { 1441 using llvm::APInt; 1442 using llvm::ConstantInt; 1443 using llvm::Value; 1444 1445 unsigned SrcWidth = SrcFPSema.getWidth(); 1446 unsigned DstWidth = DstFPSema.getWidth(); 1447 unsigned SrcScale = SrcFPSema.getScale(); 1448 unsigned DstScale = DstFPSema.getScale(); 1449 bool SrcIsSigned = SrcFPSema.isSigned(); 1450 bool DstIsSigned = DstFPSema.isSigned(); 1451 1452 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1453 1454 Value *Result = Src; 1455 unsigned ResultWidth = SrcWidth; 1456 1457 // Downscale. 1458 if (DstScale < SrcScale) { 1459 // When converting to integers, we round towards zero. For negative numbers, 1460 // right shifting rounds towards negative infinity. In this case, we can 1461 // just round up before shifting. 1462 if (DstIsInteger && SrcIsSigned) { 1463 Value *Zero = llvm::Constant::getNullValue(Result->getType()); 1464 Value *IsNegative = Builder.CreateICmpSLT(Result, Zero); 1465 Value *LowBits = ConstantInt::get( 1466 CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale)); 1467 Value *Rounded = Builder.CreateAdd(Result, LowBits); 1468 Result = Builder.CreateSelect(IsNegative, Rounded, Result); 1469 } 1470 1471 Result = SrcIsSigned 1472 ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") 1473 : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1474 } 1475 1476 if (!DstFPSema.isSaturated()) { 1477 // Resize. 1478 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1479 1480 // Upscale. 1481 if (DstScale > SrcScale) 1482 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1483 } else { 1484 // Adjust the number of fractional bits. 1485 if (DstScale > SrcScale) { 1486 // Compare to DstWidth to prevent resizing twice. 1487 ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth); 1488 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1489 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1490 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1491 } 1492 1493 // Handle saturation. 1494 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1495 if (LessIntBits) { 1496 Value *Max = ConstantInt::get( 1497 CGF.getLLVMContext(), 1498 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1499 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1500 : Builder.CreateICmpUGT(Result, Max); 1501 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1502 } 1503 // Cannot overflow min to dest type if src is unsigned since all fixed 1504 // point types can cover the unsigned min of 0. 1505 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1506 Value *Min = ConstantInt::get( 1507 CGF.getLLVMContext(), 1508 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1509 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1510 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1511 } 1512 1513 // Resize the integer part to get the final destination size. 1514 if (ResultWidth != DstWidth) 1515 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1516 } 1517 return Result; 1518 } 1519 1520 /// Emit a conversion from the specified complex type to the specified 1521 /// destination type, where the destination type is an LLVM scalar type. 1522 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1523 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1524 SourceLocation Loc) { 1525 // Get the source element type. 1526 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1527 1528 // Handle conversions to bool first, they are special: comparisons against 0. 1529 if (DstTy->isBooleanType()) { 1530 // Complex != 0 -> (Real != 0) | (Imag != 0) 1531 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1532 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1533 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1534 } 1535 1536 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1537 // the imaginary part of the complex value is discarded and the value of the 1538 // real part is converted according to the conversion rules for the 1539 // corresponding real type. 1540 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1541 } 1542 1543 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1544 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1545 } 1546 1547 /// Emit a sanitization check for the given "binary" operation (which 1548 /// might actually be a unary increment which has been lowered to a binary 1549 /// operation). The check passes if all values in \p Checks (which are \c i1), 1550 /// are \c true. 1551 void ScalarExprEmitter::EmitBinOpCheck( 1552 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1553 assert(CGF.IsSanitizerScope); 1554 SanitizerHandler Check; 1555 SmallVector<llvm::Constant *, 4> StaticData; 1556 SmallVector<llvm::Value *, 2> DynamicData; 1557 1558 BinaryOperatorKind Opcode = Info.Opcode; 1559 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1560 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1561 1562 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1563 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1564 if (UO && UO->getOpcode() == UO_Minus) { 1565 Check = SanitizerHandler::NegateOverflow; 1566 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1567 DynamicData.push_back(Info.RHS); 1568 } else { 1569 if (BinaryOperator::isShiftOp(Opcode)) { 1570 // Shift LHS negative or too large, or RHS out of bounds. 1571 Check = SanitizerHandler::ShiftOutOfBounds; 1572 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1573 StaticData.push_back( 1574 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1575 StaticData.push_back( 1576 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1577 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1578 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1579 Check = SanitizerHandler::DivremOverflow; 1580 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1581 } else { 1582 // Arithmetic overflow (+, -, *). 1583 switch (Opcode) { 1584 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1585 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1586 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1587 default: llvm_unreachable("unexpected opcode for bin op check"); 1588 } 1589 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1590 } 1591 DynamicData.push_back(Info.LHS); 1592 DynamicData.push_back(Info.RHS); 1593 } 1594 1595 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1596 } 1597 1598 //===----------------------------------------------------------------------===// 1599 // Visitor Methods 1600 //===----------------------------------------------------------------------===// 1601 1602 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1603 CGF.ErrorUnsupported(E, "scalar expression"); 1604 if (E->getType()->isVoidType()) 1605 return nullptr; 1606 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1607 } 1608 1609 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1610 // Vector Mask Case 1611 if (E->getNumSubExprs() == 2) { 1612 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1613 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1614 Value *Mask; 1615 1616 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1617 unsigned LHSElts = LTy->getNumElements(); 1618 1619 Mask = RHS; 1620 1621 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1622 1623 // Mask off the high bits of each shuffle index. 1624 Value *MaskBits = 1625 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1626 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1627 1628 // newv = undef 1629 // mask = mask & maskbits 1630 // for each elt 1631 // n = extract mask i 1632 // x = extract val n 1633 // newv = insert newv, x, i 1634 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1635 MTy->getNumElements()); 1636 Value* NewV = llvm::UndefValue::get(RTy); 1637 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1638 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1639 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1640 1641 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1642 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1643 } 1644 return NewV; 1645 } 1646 1647 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1648 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1649 1650 SmallVector<llvm::Constant*, 32> indices; 1651 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1652 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1653 // Check for -1 and output it as undef in the IR. 1654 if (Idx.isSigned() && Idx.isAllOnesValue()) 1655 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1656 else 1657 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1658 } 1659 1660 Value *SV = llvm::ConstantVector::get(indices); 1661 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1662 } 1663 1664 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1665 QualType SrcType = E->getSrcExpr()->getType(), 1666 DstType = E->getType(); 1667 1668 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1669 1670 SrcType = CGF.getContext().getCanonicalType(SrcType); 1671 DstType = CGF.getContext().getCanonicalType(DstType); 1672 if (SrcType == DstType) return Src; 1673 1674 assert(SrcType->isVectorType() && 1675 "ConvertVector source type must be a vector"); 1676 assert(DstType->isVectorType() && 1677 "ConvertVector destination type must be a vector"); 1678 1679 llvm::Type *SrcTy = Src->getType(); 1680 llvm::Type *DstTy = ConvertType(DstType); 1681 1682 // Ignore conversions like int -> uint. 1683 if (SrcTy == DstTy) 1684 return Src; 1685 1686 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), 1687 DstEltType = DstType->castAs<VectorType>()->getElementType(); 1688 1689 assert(SrcTy->isVectorTy() && 1690 "ConvertVector source IR type must be a vector"); 1691 assert(DstTy->isVectorTy() && 1692 "ConvertVector destination IR type must be a vector"); 1693 1694 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1695 *DstEltTy = DstTy->getVectorElementType(); 1696 1697 if (DstEltType->isBooleanType()) { 1698 assert((SrcEltTy->isFloatingPointTy() || 1699 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1700 1701 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1702 if (SrcEltTy->isFloatingPointTy()) { 1703 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1704 } else { 1705 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1706 } 1707 } 1708 1709 // We have the arithmetic types: real int/float. 1710 Value *Res = nullptr; 1711 1712 if (isa<llvm::IntegerType>(SrcEltTy)) { 1713 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1714 if (isa<llvm::IntegerType>(DstEltTy)) 1715 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1716 else if (InputSigned) 1717 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1718 else 1719 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1720 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1721 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1722 if (DstEltType->isSignedIntegerOrEnumerationType()) 1723 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1724 else 1725 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1726 } else { 1727 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1728 "Unknown real conversion"); 1729 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1730 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1731 else 1732 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1733 } 1734 1735 return Res; 1736 } 1737 1738 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1739 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1740 CGF.EmitIgnoredExpr(E->getBase()); 1741 return CGF.emitScalarConstant(Constant, E); 1742 } else { 1743 Expr::EvalResult Result; 1744 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1745 llvm::APSInt Value = Result.Val.getInt(); 1746 CGF.EmitIgnoredExpr(E->getBase()); 1747 return Builder.getInt(Value); 1748 } 1749 } 1750 1751 return EmitLoadOfLValue(E); 1752 } 1753 1754 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1755 TestAndClearIgnoreResultAssign(); 1756 1757 // Emit subscript expressions in rvalue context's. For most cases, this just 1758 // loads the lvalue formed by the subscript expr. However, we have to be 1759 // careful, because the base of a vector subscript is occasionally an rvalue, 1760 // so we can't get it as an lvalue. 1761 if (!E->getBase()->getType()->isVectorType()) 1762 return EmitLoadOfLValue(E); 1763 1764 // Handle the vector case. The base must be a vector, the index must be an 1765 // integer value. 1766 Value *Base = Visit(E->getBase()); 1767 Value *Idx = Visit(E->getIdx()); 1768 QualType IdxTy = E->getIdx()->getType(); 1769 1770 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1771 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1772 1773 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1774 } 1775 1776 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1777 unsigned Off, llvm::Type *I32Ty) { 1778 int MV = SVI->getMaskValue(Idx); 1779 if (MV == -1) 1780 return llvm::UndefValue::get(I32Ty); 1781 return llvm::ConstantInt::get(I32Ty, Off+MV); 1782 } 1783 1784 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1785 if (C->getBitWidth() != 32) { 1786 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1787 C->getZExtValue()) && 1788 "Index operand too large for shufflevector mask!"); 1789 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1790 } 1791 return C; 1792 } 1793 1794 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1795 bool Ignore = TestAndClearIgnoreResultAssign(); 1796 (void)Ignore; 1797 assert (Ignore == false && "init list ignored"); 1798 unsigned NumInitElements = E->getNumInits(); 1799 1800 if (E->hadArrayRangeDesignator()) 1801 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1802 1803 llvm::VectorType *VType = 1804 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1805 1806 if (!VType) { 1807 if (NumInitElements == 0) { 1808 // C++11 value-initialization for the scalar. 1809 return EmitNullValue(E->getType()); 1810 } 1811 // We have a scalar in braces. Just use the first element. 1812 return Visit(E->getInit(0)); 1813 } 1814 1815 unsigned ResElts = VType->getNumElements(); 1816 1817 // Loop over initializers collecting the Value for each, and remembering 1818 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1819 // us to fold the shuffle for the swizzle into the shuffle for the vector 1820 // initializer, since LLVM optimizers generally do not want to touch 1821 // shuffles. 1822 unsigned CurIdx = 0; 1823 bool VIsUndefShuffle = false; 1824 llvm::Value *V = llvm::UndefValue::get(VType); 1825 for (unsigned i = 0; i != NumInitElements; ++i) { 1826 Expr *IE = E->getInit(i); 1827 Value *Init = Visit(IE); 1828 SmallVector<llvm::Constant*, 16> Args; 1829 1830 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1831 1832 // Handle scalar elements. If the scalar initializer is actually one 1833 // element of a different vector of the same width, use shuffle instead of 1834 // extract+insert. 1835 if (!VVT) { 1836 if (isa<ExtVectorElementExpr>(IE)) { 1837 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1838 1839 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1840 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1841 Value *LHS = nullptr, *RHS = nullptr; 1842 if (CurIdx == 0) { 1843 // insert into undef -> shuffle (src, undef) 1844 // shufflemask must use an i32 1845 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1846 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1847 1848 LHS = EI->getVectorOperand(); 1849 RHS = V; 1850 VIsUndefShuffle = true; 1851 } else if (VIsUndefShuffle) { 1852 // insert into undefshuffle && size match -> shuffle (v, src) 1853 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1854 for (unsigned j = 0; j != CurIdx; ++j) 1855 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1856 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1857 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1858 1859 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1860 RHS = EI->getVectorOperand(); 1861 VIsUndefShuffle = false; 1862 } 1863 if (!Args.empty()) { 1864 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1865 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1866 ++CurIdx; 1867 continue; 1868 } 1869 } 1870 } 1871 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1872 "vecinit"); 1873 VIsUndefShuffle = false; 1874 ++CurIdx; 1875 continue; 1876 } 1877 1878 unsigned InitElts = VVT->getNumElements(); 1879 1880 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1881 // input is the same width as the vector being constructed, generate an 1882 // optimized shuffle of the swizzle input into the result. 1883 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1884 if (isa<ExtVectorElementExpr>(IE)) { 1885 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1886 Value *SVOp = SVI->getOperand(0); 1887 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1888 1889 if (OpTy->getNumElements() == ResElts) { 1890 for (unsigned j = 0; j != CurIdx; ++j) { 1891 // If the current vector initializer is a shuffle with undef, merge 1892 // this shuffle directly into it. 1893 if (VIsUndefShuffle) { 1894 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1895 CGF.Int32Ty)); 1896 } else { 1897 Args.push_back(Builder.getInt32(j)); 1898 } 1899 } 1900 for (unsigned j = 0, je = InitElts; j != je; ++j) 1901 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1902 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1903 1904 if (VIsUndefShuffle) 1905 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1906 1907 Init = SVOp; 1908 } 1909 } 1910 1911 // Extend init to result vector length, and then shuffle its contribution 1912 // to the vector initializer into V. 1913 if (Args.empty()) { 1914 for (unsigned j = 0; j != InitElts; ++j) 1915 Args.push_back(Builder.getInt32(j)); 1916 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1917 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1918 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1919 Mask, "vext"); 1920 1921 Args.clear(); 1922 for (unsigned j = 0; j != CurIdx; ++j) 1923 Args.push_back(Builder.getInt32(j)); 1924 for (unsigned j = 0; j != InitElts; ++j) 1925 Args.push_back(Builder.getInt32(j+Offset)); 1926 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1927 } 1928 1929 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1930 // merging subsequent shuffles into this one. 1931 if (CurIdx == 0) 1932 std::swap(V, Init); 1933 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1934 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1935 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1936 CurIdx += InitElts; 1937 } 1938 1939 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1940 // Emit remaining default initializers. 1941 llvm::Type *EltTy = VType->getElementType(); 1942 1943 // Emit remaining default initializers 1944 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1945 Value *Idx = Builder.getInt32(CurIdx); 1946 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1947 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1948 } 1949 return V; 1950 } 1951 1952 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1953 const Expr *E = CE->getSubExpr(); 1954 1955 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1956 return false; 1957 1958 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1959 // We always assume that 'this' is never null. 1960 return false; 1961 } 1962 1963 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1964 // And that glvalue casts are never null. 1965 if (ICE->getValueKind() != VK_RValue) 1966 return false; 1967 } 1968 1969 return true; 1970 } 1971 1972 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1973 // have to handle a more broad range of conversions than explicit casts, as they 1974 // handle things like function to ptr-to-function decay etc. 1975 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1976 Expr *E = CE->getSubExpr(); 1977 QualType DestTy = CE->getType(); 1978 CastKind Kind = CE->getCastKind(); 1979 1980 // These cases are generally not written to ignore the result of 1981 // evaluating their sub-expressions, so we clear this now. 1982 bool Ignored = TestAndClearIgnoreResultAssign(); 1983 1984 // Since almost all cast kinds apply to scalars, this switch doesn't have 1985 // a default case, so the compiler will warn on a missing case. The cases 1986 // are in the same order as in the CastKind enum. 1987 switch (Kind) { 1988 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1989 case CK_BuiltinFnToFnPtr: 1990 llvm_unreachable("builtin functions are handled elsewhere"); 1991 1992 case CK_LValueBitCast: 1993 case CK_ObjCObjectLValueCast: { 1994 Address Addr = EmitLValue(E).getAddress(CGF); 1995 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1996 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1997 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1998 } 1999 2000 case CK_LValueToRValueBitCast: { 2001 LValue SourceLVal = CGF.EmitLValue(E); 2002 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), 2003 CGF.ConvertTypeForMem(DestTy)); 2004 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 2005 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 2006 return EmitLoadOfLValue(DestLV, CE->getExprLoc()); 2007 } 2008 2009 case CK_CPointerToObjCPointerCast: 2010 case CK_BlockPointerToObjCPointerCast: 2011 case CK_AnyPointerToBlockPointerCast: 2012 case CK_BitCast: { 2013 Value *Src = Visit(const_cast<Expr*>(E)); 2014 llvm::Type *SrcTy = Src->getType(); 2015 llvm::Type *DstTy = ConvertType(DestTy); 2016 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 2017 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 2018 llvm_unreachable("wrong cast for pointers in different address spaces" 2019 "(must be an address space cast)!"); 2020 } 2021 2022 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 2023 if (auto PT = DestTy->getAs<PointerType>()) 2024 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 2025 /*MayBeNull=*/true, 2026 CodeGenFunction::CFITCK_UnrelatedCast, 2027 CE->getBeginLoc()); 2028 } 2029 2030 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2031 const QualType SrcType = E->getType(); 2032 2033 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2034 // Casting to pointer that could carry dynamic information (provided by 2035 // invariant.group) requires launder. 2036 Src = Builder.CreateLaunderInvariantGroup(Src); 2037 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2038 // Casting to pointer that does not carry dynamic information (provided 2039 // by invariant.group) requires stripping it. Note that we don't do it 2040 // if the source could not be dynamic type and destination could be 2041 // dynamic because dynamic information is already laundered. It is 2042 // because launder(strip(src)) == launder(src), so there is no need to 2043 // add extra strip before launder. 2044 Src = Builder.CreateStripInvariantGroup(Src); 2045 } 2046 } 2047 2048 // Update heapallocsite metadata when there is an explicit cast. 2049 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src)) 2050 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) 2051 CGF.getDebugInfo()-> 2052 addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc()); 2053 2054 return Builder.CreateBitCast(Src, DstTy); 2055 } 2056 case CK_AddressSpaceConversion: { 2057 Expr::EvalResult Result; 2058 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2059 Result.Val.isNullPointer()) { 2060 // If E has side effect, it is emitted even if its final result is a 2061 // null pointer. In that case, a DCE pass should be able to 2062 // eliminate the useless instructions emitted during translating E. 2063 if (Result.HasSideEffects) 2064 Visit(E); 2065 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2066 ConvertType(DestTy)), DestTy); 2067 } 2068 // Since target may map different address spaces in AST to the same address 2069 // space, an address space conversion may end up as a bitcast. 2070 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2071 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2072 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2073 } 2074 case CK_AtomicToNonAtomic: 2075 case CK_NonAtomicToAtomic: 2076 case CK_NoOp: 2077 case CK_UserDefinedConversion: 2078 return Visit(const_cast<Expr*>(E)); 2079 2080 case CK_BaseToDerived: { 2081 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2082 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2083 2084 Address Base = CGF.EmitPointerWithAlignment(E); 2085 Address Derived = 2086 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2087 CE->path_begin(), CE->path_end(), 2088 CGF.ShouldNullCheckClassCastValue(CE)); 2089 2090 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2091 // performed and the object is not of the derived type. 2092 if (CGF.sanitizePerformTypeCheck()) 2093 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2094 Derived.getPointer(), DestTy->getPointeeType()); 2095 2096 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2097 CGF.EmitVTablePtrCheckForCast( 2098 DestTy->getPointeeType(), Derived.getPointer(), 2099 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2100 CE->getBeginLoc()); 2101 2102 return Derived.getPointer(); 2103 } 2104 case CK_UncheckedDerivedToBase: 2105 case CK_DerivedToBase: { 2106 // The EmitPointerWithAlignment path does this fine; just discard 2107 // the alignment. 2108 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2109 } 2110 2111 case CK_Dynamic: { 2112 Address V = CGF.EmitPointerWithAlignment(E); 2113 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2114 return CGF.EmitDynamicCast(V, DCE); 2115 } 2116 2117 case CK_ArrayToPointerDecay: 2118 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2119 case CK_FunctionToPointerDecay: 2120 return EmitLValue(E).getPointer(CGF); 2121 2122 case CK_NullToPointer: 2123 if (MustVisitNullValue(E)) 2124 CGF.EmitIgnoredExpr(E); 2125 2126 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2127 DestTy); 2128 2129 case CK_NullToMemberPointer: { 2130 if (MustVisitNullValue(E)) 2131 CGF.EmitIgnoredExpr(E); 2132 2133 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2134 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2135 } 2136 2137 case CK_ReinterpretMemberPointer: 2138 case CK_BaseToDerivedMemberPointer: 2139 case CK_DerivedToBaseMemberPointer: { 2140 Value *Src = Visit(E); 2141 2142 // Note that the AST doesn't distinguish between checked and 2143 // unchecked member pointer conversions, so we always have to 2144 // implement checked conversions here. This is inefficient when 2145 // actual control flow may be required in order to perform the 2146 // check, which it is for data member pointers (but not member 2147 // function pointers on Itanium and ARM). 2148 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2149 } 2150 2151 case CK_ARCProduceObject: 2152 return CGF.EmitARCRetainScalarExpr(E); 2153 case CK_ARCConsumeObject: 2154 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2155 case CK_ARCReclaimReturnedObject: 2156 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2157 case CK_ARCExtendBlockObject: 2158 return CGF.EmitARCExtendBlockObject(E); 2159 2160 case CK_CopyAndAutoreleaseBlockObject: 2161 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2162 2163 case CK_FloatingRealToComplex: 2164 case CK_FloatingComplexCast: 2165 case CK_IntegralRealToComplex: 2166 case CK_IntegralComplexCast: 2167 case CK_IntegralComplexToFloatingComplex: 2168 case CK_FloatingComplexToIntegralComplex: 2169 case CK_ConstructorConversion: 2170 case CK_ToUnion: 2171 llvm_unreachable("scalar cast to non-scalar value"); 2172 2173 case CK_LValueToRValue: 2174 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2175 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2176 return Visit(const_cast<Expr*>(E)); 2177 2178 case CK_IntegralToPointer: { 2179 Value *Src = Visit(const_cast<Expr*>(E)); 2180 2181 // First, convert to the correct width so that we control the kind of 2182 // extension. 2183 auto DestLLVMTy = ConvertType(DestTy); 2184 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2185 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2186 llvm::Value* IntResult = 2187 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2188 2189 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2190 2191 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2192 // Going from integer to pointer that could be dynamic requires reloading 2193 // dynamic information from invariant.group. 2194 if (DestTy.mayBeDynamicClass()) 2195 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2196 } 2197 return IntToPtr; 2198 } 2199 case CK_PointerToIntegral: { 2200 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2201 auto *PtrExpr = Visit(E); 2202 2203 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2204 const QualType SrcType = E->getType(); 2205 2206 // Casting to integer requires stripping dynamic information as it does 2207 // not carries it. 2208 if (SrcType.mayBeDynamicClass()) 2209 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2210 } 2211 2212 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2213 } 2214 case CK_ToVoid: { 2215 CGF.EmitIgnoredExpr(E); 2216 return nullptr; 2217 } 2218 case CK_VectorSplat: { 2219 llvm::Type *DstTy = ConvertType(DestTy); 2220 Value *Elt = Visit(const_cast<Expr*>(E)); 2221 // Splat the element across to all elements 2222 unsigned NumElements = DstTy->getVectorNumElements(); 2223 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2224 } 2225 2226 case CK_FixedPointCast: 2227 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2228 CE->getExprLoc()); 2229 2230 case CK_FixedPointToBoolean: 2231 assert(E->getType()->isFixedPointType() && 2232 "Expected src type to be fixed point type"); 2233 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2234 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2235 CE->getExprLoc()); 2236 2237 case CK_FixedPointToIntegral: 2238 assert(E->getType()->isFixedPointType() && 2239 "Expected src type to be fixed point type"); 2240 assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); 2241 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2242 CE->getExprLoc()); 2243 2244 case CK_IntegralToFixedPoint: 2245 assert(E->getType()->isIntegerType() && 2246 "Expected src type to be an integer"); 2247 assert(DestTy->isFixedPointType() && 2248 "Expected dest type to be fixed point type"); 2249 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2250 CE->getExprLoc()); 2251 2252 case CK_IntegralCast: { 2253 ScalarConversionOpts Opts; 2254 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2255 if (!ICE->isPartOfExplicitCast()) 2256 Opts = ScalarConversionOpts(CGF.SanOpts); 2257 } 2258 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2259 CE->getExprLoc(), Opts); 2260 } 2261 case CK_IntegralToFloating: 2262 case CK_FloatingToIntegral: 2263 case CK_FloatingCast: 2264 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2265 CE->getExprLoc()); 2266 case CK_BooleanToSignedIntegral: { 2267 ScalarConversionOpts Opts; 2268 Opts.TreatBooleanAsSigned = true; 2269 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2270 CE->getExprLoc(), Opts); 2271 } 2272 case CK_IntegralToBoolean: 2273 return EmitIntToBoolConversion(Visit(E)); 2274 case CK_PointerToBoolean: 2275 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2276 case CK_FloatingToBoolean: 2277 return EmitFloatToBoolConversion(Visit(E)); 2278 case CK_MemberPointerToBoolean: { 2279 llvm::Value *MemPtr = Visit(E); 2280 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2281 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2282 } 2283 2284 case CK_FloatingComplexToReal: 2285 case CK_IntegralComplexToReal: 2286 return CGF.EmitComplexExpr(E, false, true).first; 2287 2288 case CK_FloatingComplexToBoolean: 2289 case CK_IntegralComplexToBoolean: { 2290 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2291 2292 // TODO: kill this function off, inline appropriate case here 2293 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2294 CE->getExprLoc()); 2295 } 2296 2297 case CK_ZeroToOCLOpaqueType: { 2298 assert((DestTy->isEventT() || DestTy->isQueueT() || 2299 DestTy->isOCLIntelSubgroupAVCType()) && 2300 "CK_ZeroToOCLEvent cast on non-event type"); 2301 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2302 } 2303 2304 case CK_IntToOCLSampler: 2305 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2306 2307 } // end of switch 2308 2309 llvm_unreachable("unknown scalar cast"); 2310 } 2311 2312 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2313 CodeGenFunction::StmtExprEvaluation eval(CGF); 2314 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2315 !E->getType()->isVoidType()); 2316 if (!RetAlloca.isValid()) 2317 return nullptr; 2318 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2319 E->getExprLoc()); 2320 } 2321 2322 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2323 CGF.enterFullExpression(E); 2324 CodeGenFunction::RunCleanupsScope Scope(CGF); 2325 Value *V = Visit(E->getSubExpr()); 2326 // Defend against dominance problems caused by jumps out of expression 2327 // evaluation through the shared cleanup block. 2328 Scope.ForceCleanup({&V}); 2329 return V; 2330 } 2331 2332 //===----------------------------------------------------------------------===// 2333 // Unary Operators 2334 //===----------------------------------------------------------------------===// 2335 2336 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2337 llvm::Value *InVal, bool IsInc) { 2338 BinOpInfo BinOp; 2339 BinOp.LHS = InVal; 2340 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2341 BinOp.Ty = E->getType(); 2342 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2343 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2344 BinOp.E = E; 2345 return BinOp; 2346 } 2347 2348 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2349 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2350 llvm::Value *Amount = 2351 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2352 StringRef Name = IsInc ? "inc" : "dec"; 2353 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2354 case LangOptions::SOB_Defined: 2355 return Builder.CreateAdd(InVal, Amount, Name); 2356 case LangOptions::SOB_Undefined: 2357 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2358 return Builder.CreateNSWAdd(InVal, Amount, Name); 2359 LLVM_FALLTHROUGH; 2360 case LangOptions::SOB_Trapping: 2361 if (!E->canOverflow()) 2362 return Builder.CreateNSWAdd(InVal, Amount, Name); 2363 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 2364 } 2365 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2366 } 2367 2368 namespace { 2369 /// Handles check and update for lastprivate conditional variables. 2370 class OMPLastprivateConditionalUpdateRAII { 2371 private: 2372 CodeGenFunction &CGF; 2373 const UnaryOperator *E; 2374 2375 public: 2376 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, 2377 const UnaryOperator *E) 2378 : CGF(CGF), E(E) {} 2379 ~OMPLastprivateConditionalUpdateRAII() { 2380 if (CGF.getLangOpts().OpenMP) 2381 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( 2382 CGF, E->getSubExpr()); 2383 } 2384 }; 2385 } // namespace 2386 2387 llvm::Value * 2388 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2389 bool isInc, bool isPre) { 2390 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); 2391 QualType type = E->getSubExpr()->getType(); 2392 llvm::PHINode *atomicPHI = nullptr; 2393 llvm::Value *value; 2394 llvm::Value *input; 2395 2396 int amount = (isInc ? 1 : -1); 2397 bool isSubtraction = !isInc; 2398 2399 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2400 type = atomicTy->getValueType(); 2401 if (isInc && type->isBooleanType()) { 2402 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2403 if (isPre) { 2404 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) 2405 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2406 return Builder.getTrue(); 2407 } 2408 // For atomic bool increment, we just store true and return it for 2409 // preincrement, do an atomic swap with true for postincrement 2410 return Builder.CreateAtomicRMW( 2411 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, 2412 llvm::AtomicOrdering::SequentiallyConsistent); 2413 } 2414 // Special case for atomic increment / decrement on integers, emit 2415 // atomicrmw instructions. We skip this if we want to be doing overflow 2416 // checking, and fall into the slow path with the atomic cmpxchg loop. 2417 if (!type->isBooleanType() && type->isIntegerType() && 2418 !(type->isUnsignedIntegerType() && 2419 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2420 CGF.getLangOpts().getSignedOverflowBehavior() != 2421 LangOptions::SOB_Trapping) { 2422 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2423 llvm::AtomicRMWInst::Sub; 2424 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2425 llvm::Instruction::Sub; 2426 llvm::Value *amt = CGF.EmitToMemory( 2427 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2428 llvm::Value *old = 2429 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, 2430 llvm::AtomicOrdering::SequentiallyConsistent); 2431 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2432 } 2433 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2434 input = value; 2435 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2436 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2437 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2438 value = CGF.EmitToMemory(value, type); 2439 Builder.CreateBr(opBB); 2440 Builder.SetInsertPoint(opBB); 2441 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2442 atomicPHI->addIncoming(value, startBB); 2443 value = atomicPHI; 2444 } else { 2445 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2446 input = value; 2447 } 2448 2449 // Special case of integer increment that we have to check first: bool++. 2450 // Due to promotion rules, we get: 2451 // bool++ -> bool = bool + 1 2452 // -> bool = (int)bool + 1 2453 // -> bool = ((int)bool + 1 != 0) 2454 // An interesting aspect of this is that increment is always true. 2455 // Decrement does not have this property. 2456 if (isInc && type->isBooleanType()) { 2457 value = Builder.getTrue(); 2458 2459 // Most common case by far: integer increment. 2460 } else if (type->isIntegerType()) { 2461 QualType promotedType; 2462 bool canPerformLossyDemotionCheck = false; 2463 if (type->isPromotableIntegerType()) { 2464 promotedType = CGF.getContext().getPromotedIntegerType(type); 2465 assert(promotedType != type && "Shouldn't promote to the same type."); 2466 canPerformLossyDemotionCheck = true; 2467 canPerformLossyDemotionCheck &= 2468 CGF.getContext().getCanonicalType(type) != 2469 CGF.getContext().getCanonicalType(promotedType); 2470 canPerformLossyDemotionCheck &= 2471 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( 2472 type, promotedType); 2473 assert((!canPerformLossyDemotionCheck || 2474 type->isSignedIntegerOrEnumerationType() || 2475 promotedType->isSignedIntegerOrEnumerationType() || 2476 ConvertType(type)->getScalarSizeInBits() == 2477 ConvertType(promotedType)->getScalarSizeInBits()) && 2478 "The following check expects that if we do promotion to different " 2479 "underlying canonical type, at least one of the types (either " 2480 "base or promoted) will be signed, or the bitwidths will match."); 2481 } 2482 if (CGF.SanOpts.hasOneOf( 2483 SanitizerKind::ImplicitIntegerArithmeticValueChange) && 2484 canPerformLossyDemotionCheck) { 2485 // While `x += 1` (for `x` with width less than int) is modeled as 2486 // promotion+arithmetics+demotion, and we can catch lossy demotion with 2487 // ease; inc/dec with width less than int can't overflow because of 2488 // promotion rules, so we omit promotion+demotion, which means that we can 2489 // not catch lossy "demotion". Because we still want to catch these cases 2490 // when the sanitizer is enabled, we perform the promotion, then perform 2491 // the increment/decrement in the wider type, and finally 2492 // perform the demotion. This will catch lossy demotions. 2493 2494 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); 2495 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2496 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2497 // Do pass non-default ScalarConversionOpts so that sanitizer check is 2498 // emitted. 2499 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), 2500 ScalarConversionOpts(CGF.SanOpts)); 2501 2502 // Note that signed integer inc/dec with width less than int can't 2503 // overflow because of promotion rules; we're just eliding a few steps 2504 // here. 2505 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2506 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2507 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2508 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2509 value = 2510 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2511 } else { 2512 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2513 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2514 } 2515 2516 // Next most common: pointer increment. 2517 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2518 QualType type = ptr->getPointeeType(); 2519 2520 // VLA types don't have constant size. 2521 if (const VariableArrayType *vla 2522 = CGF.getContext().getAsVariableArrayType(type)) { 2523 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2524 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2525 if (CGF.getLangOpts().isSignedOverflowDefined()) 2526 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2527 else 2528 value = CGF.EmitCheckedInBoundsGEP( 2529 value, numElts, /*SignedIndices=*/false, isSubtraction, 2530 E->getExprLoc(), "vla.inc"); 2531 2532 // Arithmetic on function pointers (!) is just +-1. 2533 } else if (type->isFunctionType()) { 2534 llvm::Value *amt = Builder.getInt32(amount); 2535 2536 value = CGF.EmitCastToVoidPtr(value); 2537 if (CGF.getLangOpts().isSignedOverflowDefined()) 2538 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2539 else 2540 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2541 isSubtraction, E->getExprLoc(), 2542 "incdec.funcptr"); 2543 value = Builder.CreateBitCast(value, input->getType()); 2544 2545 // For everything else, we can just do a simple increment. 2546 } else { 2547 llvm::Value *amt = Builder.getInt32(amount); 2548 if (CGF.getLangOpts().isSignedOverflowDefined()) 2549 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2550 else 2551 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2552 isSubtraction, E->getExprLoc(), 2553 "incdec.ptr"); 2554 } 2555 2556 // Vector increment/decrement. 2557 } else if (type->isVectorType()) { 2558 if (type->hasIntegerRepresentation()) { 2559 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2560 2561 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2562 } else { 2563 value = Builder.CreateFAdd( 2564 value, 2565 llvm::ConstantFP::get(value->getType(), amount), 2566 isInc ? "inc" : "dec"); 2567 } 2568 2569 // Floating point. 2570 } else if (type->isRealFloatingType()) { 2571 // Add the inc/dec to the real part. 2572 llvm::Value *amt; 2573 2574 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2575 // Another special case: half FP increment should be done via float 2576 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2577 value = Builder.CreateCall( 2578 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2579 CGF.CGM.FloatTy), 2580 input, "incdec.conv"); 2581 } else { 2582 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2583 } 2584 } 2585 2586 if (value->getType()->isFloatTy()) 2587 amt = llvm::ConstantFP::get(VMContext, 2588 llvm::APFloat(static_cast<float>(amount))); 2589 else if (value->getType()->isDoubleTy()) 2590 amt = llvm::ConstantFP::get(VMContext, 2591 llvm::APFloat(static_cast<double>(amount))); 2592 else { 2593 // Remaining types are Half, LongDouble or __float128. Convert from float. 2594 llvm::APFloat F(static_cast<float>(amount)); 2595 bool ignored; 2596 const llvm::fltSemantics *FS; 2597 // Don't use getFloatTypeSemantics because Half isn't 2598 // necessarily represented using the "half" LLVM type. 2599 if (value->getType()->isFP128Ty()) 2600 FS = &CGF.getTarget().getFloat128Format(); 2601 else if (value->getType()->isHalfTy()) 2602 FS = &CGF.getTarget().getHalfFormat(); 2603 else 2604 FS = &CGF.getTarget().getLongDoubleFormat(); 2605 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2606 amt = llvm::ConstantFP::get(VMContext, F); 2607 } 2608 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2609 2610 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2611 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2612 value = Builder.CreateCall( 2613 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2614 CGF.CGM.FloatTy), 2615 value, "incdec.conv"); 2616 } else { 2617 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2618 } 2619 } 2620 2621 // Objective-C pointer types. 2622 } else { 2623 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2624 value = CGF.EmitCastToVoidPtr(value); 2625 2626 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2627 if (!isInc) size = -size; 2628 llvm::Value *sizeValue = 2629 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2630 2631 if (CGF.getLangOpts().isSignedOverflowDefined()) 2632 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2633 else 2634 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2635 /*SignedIndices=*/false, isSubtraction, 2636 E->getExprLoc(), "incdec.objptr"); 2637 value = Builder.CreateBitCast(value, input->getType()); 2638 } 2639 2640 if (atomicPHI) { 2641 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 2642 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2643 auto Pair = CGF.EmitAtomicCompareExchange( 2644 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2645 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2646 llvm::Value *success = Pair.second; 2647 atomicPHI->addIncoming(old, curBlock); 2648 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 2649 Builder.SetInsertPoint(contBB); 2650 return isPre ? value : input; 2651 } 2652 2653 // Store the updated result through the lvalue. 2654 if (LV.isBitField()) 2655 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2656 else 2657 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2658 2659 // If this is a postinc, return the value read from memory, otherwise use the 2660 // updated value. 2661 return isPre ? value : input; 2662 } 2663 2664 2665 2666 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2667 TestAndClearIgnoreResultAssign(); 2668 Value *Op = Visit(E->getSubExpr()); 2669 2670 // Generate a unary FNeg for FP ops. 2671 if (Op->getType()->isFPOrFPVectorTy()) 2672 return Builder.CreateFNeg(Op, "fneg"); 2673 2674 // Emit unary minus with EmitSub so we handle overflow cases etc. 2675 BinOpInfo BinOp; 2676 BinOp.RHS = Op; 2677 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2678 BinOp.Ty = E->getType(); 2679 BinOp.Opcode = BO_Sub; 2680 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2681 BinOp.E = E; 2682 return EmitSub(BinOp); 2683 } 2684 2685 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2686 TestAndClearIgnoreResultAssign(); 2687 Value *Op = Visit(E->getSubExpr()); 2688 return Builder.CreateNot(Op, "neg"); 2689 } 2690 2691 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2692 // Perform vector logical not on comparison with zero vector. 2693 if (E->getType()->isExtVectorType()) { 2694 Value *Oper = Visit(E->getSubExpr()); 2695 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2696 Value *Result; 2697 if (Oper->getType()->isFPOrFPVectorTy()) 2698 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2699 else 2700 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2701 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2702 } 2703 2704 // Compare operand to zero. 2705 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2706 2707 // Invert value. 2708 // TODO: Could dynamically modify easy computations here. For example, if 2709 // the operand is an icmp ne, turn into icmp eq. 2710 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2711 2712 // ZExt result to the expr type. 2713 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2714 } 2715 2716 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2717 // Try folding the offsetof to a constant. 2718 Expr::EvalResult EVResult; 2719 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2720 llvm::APSInt Value = EVResult.Val.getInt(); 2721 return Builder.getInt(Value); 2722 } 2723 2724 // Loop over the components of the offsetof to compute the value. 2725 unsigned n = E->getNumComponents(); 2726 llvm::Type* ResultType = ConvertType(E->getType()); 2727 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2728 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2729 for (unsigned i = 0; i != n; ++i) { 2730 OffsetOfNode ON = E->getComponent(i); 2731 llvm::Value *Offset = nullptr; 2732 switch (ON.getKind()) { 2733 case OffsetOfNode::Array: { 2734 // Compute the index 2735 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2736 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2737 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2738 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2739 2740 // Save the element type 2741 CurrentType = 2742 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2743 2744 // Compute the element size 2745 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2746 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2747 2748 // Multiply out to compute the result 2749 Offset = Builder.CreateMul(Idx, ElemSize); 2750 break; 2751 } 2752 2753 case OffsetOfNode::Field: { 2754 FieldDecl *MemberDecl = ON.getField(); 2755 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2756 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2757 2758 // Compute the index of the field in its parent. 2759 unsigned i = 0; 2760 // FIXME: It would be nice if we didn't have to loop here! 2761 for (RecordDecl::field_iterator Field = RD->field_begin(), 2762 FieldEnd = RD->field_end(); 2763 Field != FieldEnd; ++Field, ++i) { 2764 if (*Field == MemberDecl) 2765 break; 2766 } 2767 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2768 2769 // Compute the offset to the field 2770 int64_t OffsetInt = RL.getFieldOffset(i) / 2771 CGF.getContext().getCharWidth(); 2772 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2773 2774 // Save the element type. 2775 CurrentType = MemberDecl->getType(); 2776 break; 2777 } 2778 2779 case OffsetOfNode::Identifier: 2780 llvm_unreachable("dependent __builtin_offsetof"); 2781 2782 case OffsetOfNode::Base: { 2783 if (ON.getBase()->isVirtual()) { 2784 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2785 continue; 2786 } 2787 2788 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); 2789 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2790 2791 // Save the element type. 2792 CurrentType = ON.getBase()->getType(); 2793 2794 // Compute the offset to the base. 2795 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2796 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2797 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2798 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2799 break; 2800 } 2801 } 2802 Result = Builder.CreateAdd(Result, Offset); 2803 } 2804 return Result; 2805 } 2806 2807 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2808 /// argument of the sizeof expression as an integer. 2809 Value * 2810 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2811 const UnaryExprOrTypeTraitExpr *E) { 2812 QualType TypeToSize = E->getTypeOfArgument(); 2813 if (E->getKind() == UETT_SizeOf) { 2814 if (const VariableArrayType *VAT = 2815 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2816 if (E->isArgumentType()) { 2817 // sizeof(type) - make sure to emit the VLA size. 2818 CGF.EmitVariablyModifiedType(TypeToSize); 2819 } else { 2820 // C99 6.5.3.4p2: If the argument is an expression of type 2821 // VLA, it is evaluated. 2822 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2823 } 2824 2825 auto VlaSize = CGF.getVLASize(VAT); 2826 llvm::Value *size = VlaSize.NumElts; 2827 2828 // Scale the number of non-VLA elements by the non-VLA element size. 2829 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2830 if (!eltSize.isOne()) 2831 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2832 2833 return size; 2834 } 2835 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2836 auto Alignment = 2837 CGF.getContext() 2838 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2839 E->getTypeOfArgument()->getPointeeType())) 2840 .getQuantity(); 2841 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2842 } 2843 2844 // If this isn't sizeof(vla), the result must be constant; use the constant 2845 // folding logic so we don't have to duplicate it here. 2846 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2847 } 2848 2849 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2850 Expr *Op = E->getSubExpr(); 2851 if (Op->getType()->isAnyComplexType()) { 2852 // If it's an l-value, load through the appropriate subobject l-value. 2853 // Note that we have to ask E because Op might be an l-value that 2854 // this won't work for, e.g. an Obj-C property. 2855 if (E->isGLValue()) 2856 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2857 E->getExprLoc()).getScalarVal(); 2858 2859 // Otherwise, calculate and project. 2860 return CGF.EmitComplexExpr(Op, false, true).first; 2861 } 2862 2863 return Visit(Op); 2864 } 2865 2866 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2867 Expr *Op = E->getSubExpr(); 2868 if (Op->getType()->isAnyComplexType()) { 2869 // If it's an l-value, load through the appropriate subobject l-value. 2870 // Note that we have to ask E because Op might be an l-value that 2871 // this won't work for, e.g. an Obj-C property. 2872 if (Op->isGLValue()) 2873 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2874 E->getExprLoc()).getScalarVal(); 2875 2876 // Otherwise, calculate and project. 2877 return CGF.EmitComplexExpr(Op, true, false).second; 2878 } 2879 2880 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2881 // effects are evaluated, but not the actual value. 2882 if (Op->isGLValue()) 2883 CGF.EmitLValue(Op); 2884 else 2885 CGF.EmitScalarExpr(Op, true); 2886 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2887 } 2888 2889 //===----------------------------------------------------------------------===// 2890 // Binary Operators 2891 //===----------------------------------------------------------------------===// 2892 2893 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2894 TestAndClearIgnoreResultAssign(); 2895 BinOpInfo Result; 2896 Result.LHS = Visit(E->getLHS()); 2897 Result.RHS = Visit(E->getRHS()); 2898 Result.Ty = E->getType(); 2899 Result.Opcode = E->getOpcode(); 2900 Result.FPFeatures = E->getFPFeatures(); 2901 Result.E = E; 2902 return Result; 2903 } 2904 2905 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2906 const CompoundAssignOperator *E, 2907 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2908 Value *&Result) { 2909 QualType LHSTy = E->getLHS()->getType(); 2910 BinOpInfo OpInfo; 2911 2912 if (E->getComputationResultType()->isAnyComplexType()) 2913 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2914 2915 // Emit the RHS first. __block variables need to have the rhs evaluated 2916 // first, plus this should improve codegen a little. 2917 OpInfo.RHS = Visit(E->getRHS()); 2918 OpInfo.Ty = E->getComputationResultType(); 2919 OpInfo.Opcode = E->getOpcode(); 2920 OpInfo.FPFeatures = E->getFPFeatures(); 2921 OpInfo.E = E; 2922 // Load/convert the LHS. 2923 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2924 2925 llvm::PHINode *atomicPHI = nullptr; 2926 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2927 QualType type = atomicTy->getValueType(); 2928 if (!type->isBooleanType() && type->isIntegerType() && 2929 !(type->isUnsignedIntegerType() && 2930 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2931 CGF.getLangOpts().getSignedOverflowBehavior() != 2932 LangOptions::SOB_Trapping) { 2933 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; 2934 llvm::Instruction::BinaryOps Op; 2935 switch (OpInfo.Opcode) { 2936 // We don't have atomicrmw operands for *, %, /, <<, >> 2937 case BO_MulAssign: case BO_DivAssign: 2938 case BO_RemAssign: 2939 case BO_ShlAssign: 2940 case BO_ShrAssign: 2941 break; 2942 case BO_AddAssign: 2943 AtomicOp = llvm::AtomicRMWInst::Add; 2944 Op = llvm::Instruction::Add; 2945 break; 2946 case BO_SubAssign: 2947 AtomicOp = llvm::AtomicRMWInst::Sub; 2948 Op = llvm::Instruction::Sub; 2949 break; 2950 case BO_AndAssign: 2951 AtomicOp = llvm::AtomicRMWInst::And; 2952 Op = llvm::Instruction::And; 2953 break; 2954 case BO_XorAssign: 2955 AtomicOp = llvm::AtomicRMWInst::Xor; 2956 Op = llvm::Instruction::Xor; 2957 break; 2958 case BO_OrAssign: 2959 AtomicOp = llvm::AtomicRMWInst::Or; 2960 Op = llvm::Instruction::Or; 2961 break; 2962 default: 2963 llvm_unreachable("Invalid compound assignment type"); 2964 } 2965 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { 2966 llvm::Value *Amt = CGF.EmitToMemory( 2967 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2968 E->getExprLoc()), 2969 LHSTy); 2970 Value *OldVal = Builder.CreateAtomicRMW( 2971 AtomicOp, LHSLV.getPointer(CGF), Amt, 2972 llvm::AtomicOrdering::SequentiallyConsistent); 2973 2974 // Since operation is atomic, the result type is guaranteed to be the 2975 // same as the input in LLVM terms. 2976 Result = Builder.CreateBinOp(Op, OldVal, Amt); 2977 return LHSLV; 2978 } 2979 } 2980 // FIXME: For floating point types, we should be saving and restoring the 2981 // floating point environment in the loop. 2982 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2983 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2984 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2985 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2986 Builder.CreateBr(opBB); 2987 Builder.SetInsertPoint(opBB); 2988 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2989 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2990 OpInfo.LHS = atomicPHI; 2991 } 2992 else 2993 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2994 2995 SourceLocation Loc = E->getExprLoc(); 2996 OpInfo.LHS = 2997 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2998 2999 // Expand the binary operator. 3000 Result = (this->*Func)(OpInfo); 3001 3002 // Convert the result back to the LHS type, 3003 // potentially with Implicit Conversion sanitizer check. 3004 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 3005 Loc, ScalarConversionOpts(CGF.SanOpts)); 3006 3007 if (atomicPHI) { 3008 llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); 3009 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 3010 auto Pair = CGF.EmitAtomicCompareExchange( 3011 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 3012 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 3013 llvm::Value *success = Pair.second; 3014 atomicPHI->addIncoming(old, curBlock); 3015 Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); 3016 Builder.SetInsertPoint(contBB); 3017 return LHSLV; 3018 } 3019 3020 // Store the result value into the LHS lvalue. Bit-fields are handled 3021 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 3022 // 'An assignment expression has the value of the left operand after the 3023 // assignment...'. 3024 if (LHSLV.isBitField()) 3025 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 3026 else 3027 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 3028 3029 if (CGF.getLangOpts().OpenMP) 3030 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, 3031 E->getLHS()); 3032 return LHSLV; 3033 } 3034 3035 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 3036 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 3037 bool Ignore = TestAndClearIgnoreResultAssign(); 3038 Value *RHS = nullptr; 3039 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 3040 3041 // If the result is clearly ignored, return now. 3042 if (Ignore) 3043 return nullptr; 3044 3045 // The result of an assignment in C is the assigned r-value. 3046 if (!CGF.getLangOpts().CPlusPlus) 3047 return RHS; 3048 3049 // If the lvalue is non-volatile, return the computed value of the assignment. 3050 if (!LHS.isVolatileQualified()) 3051 return RHS; 3052 3053 // Otherwise, reload the value. 3054 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3055 } 3056 3057 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 3058 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 3059 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 3060 3061 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 3062 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 3063 SanitizerKind::IntegerDivideByZero)); 3064 } 3065 3066 const auto *BO = cast<BinaryOperator>(Ops.E); 3067 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 3068 Ops.Ty->hasSignedIntegerRepresentation() && 3069 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 3070 Ops.mayHaveIntegerOverflow()) { 3071 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 3072 3073 llvm::Value *IntMin = 3074 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 3075 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 3076 3077 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 3078 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 3079 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 3080 Checks.push_back( 3081 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 3082 } 3083 3084 if (Checks.size() > 0) 3085 EmitBinOpCheck(Checks, Ops); 3086 } 3087 3088 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 3089 { 3090 CodeGenFunction::SanitizerScope SanScope(&CGF); 3091 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3092 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3093 Ops.Ty->isIntegerType() && 3094 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3095 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3096 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 3097 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 3098 Ops.Ty->isRealFloatingType() && 3099 Ops.mayHaveFloatDivisionByZero()) { 3100 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3101 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 3102 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 3103 Ops); 3104 } 3105 } 3106 3107 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 3108 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 3109 if (CGF.getLangOpts().OpenCL && 3110 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 3111 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 3112 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 3113 // build option allows an application to specify that single precision 3114 // floating-point divide (x/y and 1/x) and sqrt used in the program 3115 // source are correctly rounded. 3116 llvm::Type *ValTy = Val->getType(); 3117 if (ValTy->isFloatTy() || 3118 (isa<llvm::VectorType>(ValTy) && 3119 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 3120 CGF.SetFPAccuracy(Val, 2.5); 3121 } 3122 return Val; 3123 } 3124 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3125 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 3126 else 3127 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3128 } 3129 3130 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3131 // Rem in C can't be a floating point type: C99 6.5.5p2. 3132 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3133 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3134 Ops.Ty->isIntegerType() && 3135 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3136 CodeGenFunction::SanitizerScope SanScope(&CGF); 3137 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3138 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3139 } 3140 3141 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3142 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3143 else 3144 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3145 } 3146 3147 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3148 unsigned IID; 3149 unsigned OpID = 0; 3150 3151 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3152 switch (Ops.Opcode) { 3153 case BO_Add: 3154 case BO_AddAssign: 3155 OpID = 1; 3156 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3157 llvm::Intrinsic::uadd_with_overflow; 3158 break; 3159 case BO_Sub: 3160 case BO_SubAssign: 3161 OpID = 2; 3162 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3163 llvm::Intrinsic::usub_with_overflow; 3164 break; 3165 case BO_Mul: 3166 case BO_MulAssign: 3167 OpID = 3; 3168 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3169 llvm::Intrinsic::umul_with_overflow; 3170 break; 3171 default: 3172 llvm_unreachable("Unsupported operation for overflow detection"); 3173 } 3174 OpID <<= 1; 3175 if (isSigned) 3176 OpID |= 1; 3177 3178 CodeGenFunction::SanitizerScope SanScope(&CGF); 3179 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3180 3181 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3182 3183 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3184 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3185 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3186 3187 // Handle overflow with llvm.trap if no custom handler has been specified. 3188 const std::string *handlerName = 3189 &CGF.getLangOpts().OverflowHandler; 3190 if (handlerName->empty()) { 3191 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3192 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3193 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3194 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3195 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3196 : SanitizerKind::UnsignedIntegerOverflow; 3197 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3198 } else 3199 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3200 return result; 3201 } 3202 3203 // Branch in case of overflow. 3204 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3205 llvm::BasicBlock *continueBB = 3206 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3207 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3208 3209 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3210 3211 // If an overflow handler is set, then we want to call it and then use its 3212 // result, if it returns. 3213 Builder.SetInsertPoint(overflowBB); 3214 3215 // Get the overflow handler. 3216 llvm::Type *Int8Ty = CGF.Int8Ty; 3217 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3218 llvm::FunctionType *handlerTy = 3219 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3220 llvm::FunctionCallee handler = 3221 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3222 3223 // Sign extend the args to 64-bit, so that we can use the same handler for 3224 // all types of overflow. 3225 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3226 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3227 3228 // Call the handler with the two arguments, the operation, and the size of 3229 // the result. 3230 llvm::Value *handlerArgs[] = { 3231 lhs, 3232 rhs, 3233 Builder.getInt8(OpID), 3234 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3235 }; 3236 llvm::Value *handlerResult = 3237 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3238 3239 // Truncate the result back to the desired size. 3240 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3241 Builder.CreateBr(continueBB); 3242 3243 Builder.SetInsertPoint(continueBB); 3244 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3245 phi->addIncoming(result, initialBB); 3246 phi->addIncoming(handlerResult, overflowBB); 3247 3248 return phi; 3249 } 3250 3251 /// Emit pointer + index arithmetic. 3252 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3253 const BinOpInfo &op, 3254 bool isSubtraction) { 3255 // Must have binary (not unary) expr here. Unary pointer 3256 // increment/decrement doesn't use this path. 3257 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3258 3259 Value *pointer = op.LHS; 3260 Expr *pointerOperand = expr->getLHS(); 3261 Value *index = op.RHS; 3262 Expr *indexOperand = expr->getRHS(); 3263 3264 // In a subtraction, the LHS is always the pointer. 3265 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3266 std::swap(pointer, index); 3267 std::swap(pointerOperand, indexOperand); 3268 } 3269 3270 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3271 3272 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3273 auto &DL = CGF.CGM.getDataLayout(); 3274 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3275 3276 // Some versions of glibc and gcc use idioms (particularly in their malloc 3277 // routines) that add a pointer-sized integer (known to be a pointer value) 3278 // to a null pointer in order to cast the value back to an integer or as 3279 // part of a pointer alignment algorithm. This is undefined behavior, but 3280 // we'd like to be able to compile programs that use it. 3281 // 3282 // Normally, we'd generate a GEP with a null-pointer base here in response 3283 // to that code, but it's also UB to dereference a pointer created that 3284 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3285 // generate a direct cast of the integer value to a pointer. 3286 // 3287 // The idiom (p = nullptr + N) is not met if any of the following are true: 3288 // 3289 // The operation is subtraction. 3290 // The index is not pointer-sized. 3291 // The pointer type is not byte-sized. 3292 // 3293 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3294 op.Opcode, 3295 expr->getLHS(), 3296 expr->getRHS())) 3297 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3298 3299 if (width != DL.getIndexTypeSizeInBits(PtrTy)) { 3300 // Zero-extend or sign-extend the pointer value according to 3301 // whether the index is signed or not. 3302 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, 3303 "idx.ext"); 3304 } 3305 3306 // If this is subtraction, negate the index. 3307 if (isSubtraction) 3308 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3309 3310 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3311 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3312 /*Accessed*/ false); 3313 3314 const PointerType *pointerType 3315 = pointerOperand->getType()->getAs<PointerType>(); 3316 if (!pointerType) { 3317 QualType objectType = pointerOperand->getType() 3318 ->castAs<ObjCObjectPointerType>() 3319 ->getPointeeType(); 3320 llvm::Value *objectSize 3321 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3322 3323 index = CGF.Builder.CreateMul(index, objectSize); 3324 3325 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3326 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3327 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3328 } 3329 3330 QualType elementType = pointerType->getPointeeType(); 3331 if (const VariableArrayType *vla 3332 = CGF.getContext().getAsVariableArrayType(elementType)) { 3333 // The element count here is the total number of non-VLA elements. 3334 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3335 3336 // Effectively, the multiply by the VLA size is part of the GEP. 3337 // GEP indexes are signed, and scaling an index isn't permitted to 3338 // signed-overflow, so we use the same semantics for our explicit 3339 // multiply. We suppress this if overflow is not undefined behavior. 3340 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3341 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3342 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3343 } else { 3344 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3345 pointer = 3346 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3347 op.E->getExprLoc(), "add.ptr"); 3348 } 3349 return pointer; 3350 } 3351 3352 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3353 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3354 // future proof. 3355 if (elementType->isVoidType() || elementType->isFunctionType()) { 3356 Value *result = CGF.EmitCastToVoidPtr(pointer); 3357 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3358 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3359 } 3360 3361 if (CGF.getLangOpts().isSignedOverflowDefined()) 3362 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3363 3364 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3365 op.E->getExprLoc(), "add.ptr"); 3366 } 3367 3368 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3369 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3370 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3371 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3372 // efficient operations. 3373 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, 3374 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3375 bool negMul, bool negAdd) { 3376 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3377 3378 Value *MulOp0 = MulOp->getOperand(0); 3379 Value *MulOp1 = MulOp->getOperand(1); 3380 if (negMul) 3381 MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); 3382 if (negAdd) 3383 Addend = Builder.CreateFNeg(Addend, "neg"); 3384 3385 Value *FMulAdd = nullptr; 3386 if (Builder.getIsFPConstrained()) { 3387 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && 3388 "Only constrained operation should be created when Builder is in FP " 3389 "constrained mode"); 3390 FMulAdd = Builder.CreateConstrainedFPCall( 3391 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd, 3392 Addend->getType()), 3393 {MulOp0, MulOp1, Addend}); 3394 } else { 3395 FMulAdd = Builder.CreateCall( 3396 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3397 {MulOp0, MulOp1, Addend}); 3398 } 3399 MulOp->eraseFromParent(); 3400 3401 return FMulAdd; 3402 } 3403 3404 // Check whether it would be legal to emit an fmuladd intrinsic call to 3405 // represent op and if so, build the fmuladd. 3406 // 3407 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3408 // Does NOT check the type of the operation - it's assumed that this function 3409 // will be called from contexts where it's known that the type is contractable. 3410 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3411 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3412 bool isSub=false) { 3413 3414 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3415 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3416 "Only fadd/fsub can be the root of an fmuladd."); 3417 3418 // Check whether this op is marked as fusable. 3419 if (!op.FPFeatures.allowFPContractWithinStatement()) 3420 return nullptr; 3421 3422 // We have a potentially fusable op. Look for a mul on one of the operands. 3423 // Also, make sure that the mul result isn't used directly. In that case, 3424 // there's no point creating a muladd operation. 3425 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3426 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3427 LHSBinOp->use_empty()) 3428 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3429 } 3430 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3431 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3432 RHSBinOp->use_empty()) 3433 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3434 } 3435 3436 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) { 3437 if (LHSBinOp->getIntrinsicID() == 3438 llvm::Intrinsic::experimental_constrained_fmul && 3439 LHSBinOp->use_empty()) 3440 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3441 } 3442 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) { 3443 if (RHSBinOp->getIntrinsicID() == 3444 llvm::Intrinsic::experimental_constrained_fmul && 3445 RHSBinOp->use_empty()) 3446 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3447 } 3448 3449 return nullptr; 3450 } 3451 3452 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3453 if (op.LHS->getType()->isPointerTy() || 3454 op.RHS->getType()->isPointerTy()) 3455 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3456 3457 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3458 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3459 case LangOptions::SOB_Defined: 3460 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3461 case LangOptions::SOB_Undefined: 3462 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3463 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3464 LLVM_FALLTHROUGH; 3465 case LangOptions::SOB_Trapping: 3466 if (CanElideOverflowCheck(CGF.getContext(), op)) 3467 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3468 return EmitOverflowCheckedBinOp(op); 3469 } 3470 } 3471 3472 if (op.Ty->isUnsignedIntegerType() && 3473 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3474 !CanElideOverflowCheck(CGF.getContext(), op)) 3475 return EmitOverflowCheckedBinOp(op); 3476 3477 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3478 // Try to form an fmuladd. 3479 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3480 return FMulAdd; 3481 3482 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3483 return propagateFMFlags(V, op); 3484 } 3485 3486 if (op.isFixedPointBinOp()) 3487 return EmitFixedPointBinOp(op); 3488 3489 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3490 } 3491 3492 /// The resulting value must be calculated with exact precision, so the operands 3493 /// may not be the same type. 3494 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { 3495 using llvm::APSInt; 3496 using llvm::ConstantInt; 3497 3498 const auto *BinOp = cast<BinaryOperator>(op.E); 3499 3500 // The result is a fixed point type and at least one of the operands is fixed 3501 // point while the other is either fixed point or an int. This resulting type 3502 // should be determined by Sema::handleFixedPointConversions(). 3503 QualType ResultTy = op.Ty; 3504 QualType LHSTy = BinOp->getLHS()->getType(); 3505 QualType RHSTy = BinOp->getRHS()->getType(); 3506 ASTContext &Ctx = CGF.getContext(); 3507 Value *LHS = op.LHS; 3508 Value *RHS = op.RHS; 3509 3510 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); 3511 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); 3512 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); 3513 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); 3514 3515 // Convert the operands to the full precision type. 3516 Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema, 3517 BinOp->getExprLoc()); 3518 Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema, 3519 BinOp->getExprLoc()); 3520 3521 // Perform the actual addition. 3522 Value *Result; 3523 switch (BinOp->getOpcode()) { 3524 case BO_Add: { 3525 if (ResultFixedSema.isSaturated()) { 3526 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3527 ? llvm::Intrinsic::sadd_sat 3528 : llvm::Intrinsic::uadd_sat; 3529 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3530 } else { 3531 Result = Builder.CreateAdd(FullLHS, FullRHS); 3532 } 3533 break; 3534 } 3535 case BO_Sub: { 3536 if (ResultFixedSema.isSaturated()) { 3537 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned() 3538 ? llvm::Intrinsic::ssub_sat 3539 : llvm::Intrinsic::usub_sat; 3540 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS); 3541 } else { 3542 Result = Builder.CreateSub(FullLHS, FullRHS); 3543 } 3544 break; 3545 } 3546 case BO_LT: 3547 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS) 3548 : Builder.CreateICmpULT(FullLHS, FullRHS); 3549 case BO_GT: 3550 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS) 3551 : Builder.CreateICmpUGT(FullLHS, FullRHS); 3552 case BO_LE: 3553 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS) 3554 : Builder.CreateICmpULE(FullLHS, FullRHS); 3555 case BO_GE: 3556 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS) 3557 : Builder.CreateICmpUGE(FullLHS, FullRHS); 3558 case BO_EQ: 3559 // For equality operations, we assume any padding bits on unsigned types are 3560 // zero'd out. They could be overwritten through non-saturating operations 3561 // that cause overflow, but this leads to undefined behavior. 3562 return Builder.CreateICmpEQ(FullLHS, FullRHS); 3563 case BO_NE: 3564 return Builder.CreateICmpNE(FullLHS, FullRHS); 3565 case BO_Mul: 3566 case BO_Div: 3567 case BO_Shl: 3568 case BO_Shr: 3569 case BO_Cmp: 3570 case BO_LAnd: 3571 case BO_LOr: 3572 case BO_MulAssign: 3573 case BO_DivAssign: 3574 case BO_AddAssign: 3575 case BO_SubAssign: 3576 case BO_ShlAssign: 3577 case BO_ShrAssign: 3578 llvm_unreachable("Found unimplemented fixed point binary operation"); 3579 case BO_PtrMemD: 3580 case BO_PtrMemI: 3581 case BO_Rem: 3582 case BO_Xor: 3583 case BO_And: 3584 case BO_Or: 3585 case BO_Assign: 3586 case BO_RemAssign: 3587 case BO_AndAssign: 3588 case BO_XorAssign: 3589 case BO_OrAssign: 3590 case BO_Comma: 3591 llvm_unreachable("Found unsupported binary operation for fixed point types."); 3592 } 3593 3594 // Convert to the result type. 3595 return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema, 3596 BinOp->getExprLoc()); 3597 } 3598 3599 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3600 // The LHS is always a pointer if either side is. 3601 if (!op.LHS->getType()->isPointerTy()) { 3602 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3603 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3604 case LangOptions::SOB_Defined: 3605 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3606 case LangOptions::SOB_Undefined: 3607 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3608 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3609 LLVM_FALLTHROUGH; 3610 case LangOptions::SOB_Trapping: 3611 if (CanElideOverflowCheck(CGF.getContext(), op)) 3612 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3613 return EmitOverflowCheckedBinOp(op); 3614 } 3615 } 3616 3617 if (op.Ty->isUnsignedIntegerType() && 3618 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3619 !CanElideOverflowCheck(CGF.getContext(), op)) 3620 return EmitOverflowCheckedBinOp(op); 3621 3622 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3623 // Try to form an fmuladd. 3624 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3625 return FMulAdd; 3626 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3627 return propagateFMFlags(V, op); 3628 } 3629 3630 if (op.isFixedPointBinOp()) 3631 return EmitFixedPointBinOp(op); 3632 3633 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3634 } 3635 3636 // If the RHS is not a pointer, then we have normal pointer 3637 // arithmetic. 3638 if (!op.RHS->getType()->isPointerTy()) 3639 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3640 3641 // Otherwise, this is a pointer subtraction. 3642 3643 // Do the raw subtraction part. 3644 llvm::Value *LHS 3645 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3646 llvm::Value *RHS 3647 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3648 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3649 3650 // Okay, figure out the element size. 3651 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3652 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3653 3654 llvm::Value *divisor = nullptr; 3655 3656 // For a variable-length array, this is going to be non-constant. 3657 if (const VariableArrayType *vla 3658 = CGF.getContext().getAsVariableArrayType(elementType)) { 3659 auto VlaSize = CGF.getVLASize(vla); 3660 elementType = VlaSize.Type; 3661 divisor = VlaSize.NumElts; 3662 3663 // Scale the number of non-VLA elements by the non-VLA element size. 3664 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3665 if (!eltSize.isOne()) 3666 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3667 3668 // For everything elese, we can just compute it, safe in the 3669 // assumption that Sema won't let anything through that we can't 3670 // safely compute the size of. 3671 } else { 3672 CharUnits elementSize; 3673 // Handle GCC extension for pointer arithmetic on void* and 3674 // function pointer types. 3675 if (elementType->isVoidType() || elementType->isFunctionType()) 3676 elementSize = CharUnits::One(); 3677 else 3678 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3679 3680 // Don't even emit the divide for element size of 1. 3681 if (elementSize.isOne()) 3682 return diffInChars; 3683 3684 divisor = CGF.CGM.getSize(elementSize); 3685 } 3686 3687 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3688 // pointer difference in C is only defined in the case where both operands 3689 // are pointing to elements of an array. 3690 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3691 } 3692 3693 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3694 llvm::IntegerType *Ty; 3695 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3696 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3697 else 3698 Ty = cast<llvm::IntegerType>(LHS->getType()); 3699 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3700 } 3701 3702 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3703 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3704 // RHS to the same size as the LHS. 3705 Value *RHS = Ops.RHS; 3706 if (Ops.LHS->getType() != RHS->getType()) 3707 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3708 3709 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3710 Ops.Ty->hasSignedIntegerRepresentation() && 3711 !CGF.getLangOpts().isSignedOverflowDefined() && 3712 !CGF.getLangOpts().CPlusPlus2a; 3713 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3714 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3715 if (CGF.getLangOpts().OpenCL) 3716 RHS = 3717 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3718 else if ((SanitizeBase || SanitizeExponent) && 3719 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3720 CodeGenFunction::SanitizerScope SanScope(&CGF); 3721 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3722 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3723 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3724 3725 if (SanitizeExponent) { 3726 Checks.push_back( 3727 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3728 } 3729 3730 if (SanitizeBase) { 3731 // Check whether we are shifting any non-zero bits off the top of the 3732 // integer. We only emit this check if exponent is valid - otherwise 3733 // instructions below will have undefined behavior themselves. 3734 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3735 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3736 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3737 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3738 llvm::Value *PromotedWidthMinusOne = 3739 (RHS == Ops.RHS) ? WidthMinusOne 3740 : GetWidthMinusOneValue(Ops.LHS, RHS); 3741 CGF.EmitBlock(CheckShiftBase); 3742 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3743 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3744 /*NUW*/ true, /*NSW*/ true), 3745 "shl.check"); 3746 if (CGF.getLangOpts().CPlusPlus) { 3747 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3748 // Under C++11's rules, shifting a 1 bit into the sign bit is 3749 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3750 // define signed left shifts, so we use the C99 and C++11 rules there). 3751 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3752 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3753 } 3754 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3755 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3756 CGF.EmitBlock(Cont); 3757 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3758 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3759 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3760 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3761 } 3762 3763 assert(!Checks.empty()); 3764 EmitBinOpCheck(Checks, Ops); 3765 } 3766 3767 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3768 } 3769 3770 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3771 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3772 // RHS to the same size as the LHS. 3773 Value *RHS = Ops.RHS; 3774 if (Ops.LHS->getType() != RHS->getType()) 3775 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3776 3777 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3778 if (CGF.getLangOpts().OpenCL) 3779 RHS = 3780 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3781 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3782 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3783 CodeGenFunction::SanitizerScope SanScope(&CGF); 3784 llvm::Value *Valid = 3785 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3786 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3787 } 3788 3789 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3790 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3791 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3792 } 3793 3794 enum IntrinsicType { VCMPEQ, VCMPGT }; 3795 // return corresponding comparison intrinsic for given vector type 3796 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3797 BuiltinType::Kind ElemKind) { 3798 switch (ElemKind) { 3799 default: llvm_unreachable("unexpected element type"); 3800 case BuiltinType::Char_U: 3801 case BuiltinType::UChar: 3802 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3803 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3804 case BuiltinType::Char_S: 3805 case BuiltinType::SChar: 3806 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3807 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3808 case BuiltinType::UShort: 3809 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3810 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3811 case BuiltinType::Short: 3812 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3813 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3814 case BuiltinType::UInt: 3815 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3816 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3817 case BuiltinType::Int: 3818 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3819 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3820 case BuiltinType::ULong: 3821 case BuiltinType::ULongLong: 3822 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3823 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3824 case BuiltinType::Long: 3825 case BuiltinType::LongLong: 3826 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3827 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3828 case BuiltinType::Float: 3829 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3830 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3831 case BuiltinType::Double: 3832 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3833 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3834 } 3835 } 3836 3837 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3838 llvm::CmpInst::Predicate UICmpOpc, 3839 llvm::CmpInst::Predicate SICmpOpc, 3840 llvm::CmpInst::Predicate FCmpOpc, 3841 bool IsSignaling) { 3842 TestAndClearIgnoreResultAssign(); 3843 Value *Result; 3844 QualType LHSTy = E->getLHS()->getType(); 3845 QualType RHSTy = E->getRHS()->getType(); 3846 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3847 assert(E->getOpcode() == BO_EQ || 3848 E->getOpcode() == BO_NE); 3849 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3850 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3851 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3852 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3853 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3854 BinOpInfo BOInfo = EmitBinOps(E); 3855 Value *LHS = BOInfo.LHS; 3856 Value *RHS = BOInfo.RHS; 3857 3858 // If AltiVec, the comparison results in a numeric type, so we use 3859 // intrinsics comparing vectors and giving 0 or 1 as a result 3860 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3861 // constants for mapping CR6 register bits to predicate result 3862 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3863 3864 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3865 3866 // in several cases vector arguments order will be reversed 3867 Value *FirstVecArg = LHS, 3868 *SecondVecArg = RHS; 3869 3870 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); 3871 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); 3872 3873 switch(E->getOpcode()) { 3874 default: llvm_unreachable("is not a comparison operation"); 3875 case BO_EQ: 3876 CR6 = CR6_LT; 3877 ID = GetIntrinsic(VCMPEQ, ElementKind); 3878 break; 3879 case BO_NE: 3880 CR6 = CR6_EQ; 3881 ID = GetIntrinsic(VCMPEQ, ElementKind); 3882 break; 3883 case BO_LT: 3884 CR6 = CR6_LT; 3885 ID = GetIntrinsic(VCMPGT, ElementKind); 3886 std::swap(FirstVecArg, SecondVecArg); 3887 break; 3888 case BO_GT: 3889 CR6 = CR6_LT; 3890 ID = GetIntrinsic(VCMPGT, ElementKind); 3891 break; 3892 case BO_LE: 3893 if (ElementKind == BuiltinType::Float) { 3894 CR6 = CR6_LT; 3895 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3896 std::swap(FirstVecArg, SecondVecArg); 3897 } 3898 else { 3899 CR6 = CR6_EQ; 3900 ID = GetIntrinsic(VCMPGT, ElementKind); 3901 } 3902 break; 3903 case BO_GE: 3904 if (ElementKind == BuiltinType::Float) { 3905 CR6 = CR6_LT; 3906 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3907 } 3908 else { 3909 CR6 = CR6_EQ; 3910 ID = GetIntrinsic(VCMPGT, ElementKind); 3911 std::swap(FirstVecArg, SecondVecArg); 3912 } 3913 break; 3914 } 3915 3916 Value *CR6Param = Builder.getInt32(CR6); 3917 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3918 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3919 3920 // The result type of intrinsic may not be same as E->getType(). 3921 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3922 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3923 // do nothing, if ResultTy is not i1 at the same time, it will cause 3924 // crash later. 3925 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3926 if (ResultTy->getBitWidth() > 1 && 3927 E->getType() == CGF.getContext().BoolTy) 3928 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3929 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3930 E->getExprLoc()); 3931 } 3932 3933 if (BOInfo.isFixedPointBinOp()) { 3934 Result = EmitFixedPointBinOp(BOInfo); 3935 } else if (LHS->getType()->isFPOrFPVectorTy()) { 3936 if (!IsSignaling) 3937 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3938 else 3939 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); 3940 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3941 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3942 } else { 3943 // Unsigned integers and pointers. 3944 3945 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3946 !isa<llvm::ConstantPointerNull>(LHS) && 3947 !isa<llvm::ConstantPointerNull>(RHS)) { 3948 3949 // Dynamic information is required to be stripped for comparisons, 3950 // because it could leak the dynamic information. Based on comparisons 3951 // of pointers to dynamic objects, the optimizer can replace one pointer 3952 // with another, which might be incorrect in presence of invariant 3953 // groups. Comparison with null is safe because null does not carry any 3954 // dynamic information. 3955 if (LHSTy.mayBeDynamicClass()) 3956 LHS = Builder.CreateStripInvariantGroup(LHS); 3957 if (RHSTy.mayBeDynamicClass()) 3958 RHS = Builder.CreateStripInvariantGroup(RHS); 3959 } 3960 3961 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3962 } 3963 3964 // If this is a vector comparison, sign extend the result to the appropriate 3965 // vector integer type and return it (don't convert to bool). 3966 if (LHSTy->isVectorType()) 3967 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3968 3969 } else { 3970 // Complex Comparison: can only be an equality comparison. 3971 CodeGenFunction::ComplexPairTy LHS, RHS; 3972 QualType CETy; 3973 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3974 LHS = CGF.EmitComplexExpr(E->getLHS()); 3975 CETy = CTy->getElementType(); 3976 } else { 3977 LHS.first = Visit(E->getLHS()); 3978 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3979 CETy = LHSTy; 3980 } 3981 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3982 RHS = CGF.EmitComplexExpr(E->getRHS()); 3983 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3984 CTy->getElementType()) && 3985 "The element types must always match."); 3986 (void)CTy; 3987 } else { 3988 RHS.first = Visit(E->getRHS()); 3989 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3990 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3991 "The element types must always match."); 3992 } 3993 3994 Value *ResultR, *ResultI; 3995 if (CETy->isRealFloatingType()) { 3996 // As complex comparisons can only be equality comparisons, they 3997 // are never signaling comparisons. 3998 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3999 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 4000 } else { 4001 // Complex comparisons can only be equality comparisons. As such, signed 4002 // and unsigned opcodes are the same. 4003 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 4004 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 4005 } 4006 4007 if (E->getOpcode() == BO_EQ) { 4008 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 4009 } else { 4010 assert(E->getOpcode() == BO_NE && 4011 "Complex comparison other than == or != ?"); 4012 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 4013 } 4014 } 4015 4016 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 4017 E->getExprLoc()); 4018 } 4019 4020 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 4021 bool Ignore = TestAndClearIgnoreResultAssign(); 4022 4023 Value *RHS; 4024 LValue LHS; 4025 4026 switch (E->getLHS()->getType().getObjCLifetime()) { 4027 case Qualifiers::OCL_Strong: 4028 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 4029 break; 4030 4031 case Qualifiers::OCL_Autoreleasing: 4032 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 4033 break; 4034 4035 case Qualifiers::OCL_ExplicitNone: 4036 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 4037 break; 4038 4039 case Qualifiers::OCL_Weak: 4040 RHS = Visit(E->getRHS()); 4041 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4042 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); 4043 break; 4044 4045 case Qualifiers::OCL_None: 4046 // __block variables need to have the rhs evaluated first, plus 4047 // this should improve codegen just a little. 4048 RHS = Visit(E->getRHS()); 4049 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 4050 4051 // Store the value into the LHS. Bit-fields are handled specially 4052 // because the result is altered by the store, i.e., [C99 6.5.16p1] 4053 // 'An assignment expression has the value of the left operand after 4054 // the assignment...'. 4055 if (LHS.isBitField()) { 4056 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 4057 } else { 4058 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 4059 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 4060 } 4061 } 4062 4063 // If the result is clearly ignored, return now. 4064 if (Ignore) 4065 return nullptr; 4066 4067 // The result of an assignment in C is the assigned r-value. 4068 if (!CGF.getLangOpts().CPlusPlus) 4069 return RHS; 4070 4071 // If the lvalue is non-volatile, return the computed value of the assignment. 4072 if (!LHS.isVolatileQualified()) 4073 return RHS; 4074 4075 // Otherwise, reload the value. 4076 return EmitLoadOfLValue(LHS, E->getExprLoc()); 4077 } 4078 4079 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 4080 // Perform vector logical and on comparisons with zero vectors. 4081 if (E->getType()->isVectorType()) { 4082 CGF.incrementProfileCounter(E); 4083 4084 Value *LHS = Visit(E->getLHS()); 4085 Value *RHS = Visit(E->getRHS()); 4086 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4087 if (LHS->getType()->isFPOrFPVectorTy()) { 4088 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4089 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4090 } else { 4091 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4092 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4093 } 4094 Value *And = Builder.CreateAnd(LHS, RHS); 4095 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 4096 } 4097 4098 llvm::Type *ResTy = ConvertType(E->getType()); 4099 4100 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 4101 // If we have 1 && X, just emit X without inserting the control flow. 4102 bool LHSCondVal; 4103 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4104 if (LHSCondVal) { // If we have 1 && X, just emit X. 4105 CGF.incrementProfileCounter(E); 4106 4107 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4108 // ZExt result to int or bool. 4109 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 4110 } 4111 4112 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 4113 if (!CGF.ContainsLabel(E->getRHS())) 4114 return llvm::Constant::getNullValue(ResTy); 4115 } 4116 4117 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 4118 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 4119 4120 CodeGenFunction::ConditionalEvaluation eval(CGF); 4121 4122 // Branch on the LHS first. If it is false, go to the failure (cont) block. 4123 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 4124 CGF.getProfileCount(E->getRHS())); 4125 4126 // Any edges into the ContBlock are now from an (indeterminate number of) 4127 // edges from this first condition. All of these values will be false. Start 4128 // setting up the PHI node in the Cont Block for this. 4129 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4130 "", ContBlock); 4131 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4132 PI != PE; ++PI) 4133 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 4134 4135 eval.begin(CGF); 4136 CGF.EmitBlock(RHSBlock); 4137 CGF.incrementProfileCounter(E); 4138 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4139 eval.end(CGF); 4140 4141 // Reaquire the RHS block, as there may be subblocks inserted. 4142 RHSBlock = Builder.GetInsertBlock(); 4143 4144 // Emit an unconditional branch from this block to ContBlock. 4145 { 4146 // There is no need to emit line number for unconditional branch. 4147 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4148 CGF.EmitBlock(ContBlock); 4149 } 4150 // Insert an entry into the phi node for the edge with the value of RHSCond. 4151 PN->addIncoming(RHSCond, RHSBlock); 4152 4153 // Artificial location to preserve the scope information 4154 { 4155 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 4156 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 4157 } 4158 4159 // ZExt result to int. 4160 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 4161 } 4162 4163 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 4164 // Perform vector logical or on comparisons with zero vectors. 4165 if (E->getType()->isVectorType()) { 4166 CGF.incrementProfileCounter(E); 4167 4168 Value *LHS = Visit(E->getLHS()); 4169 Value *RHS = Visit(E->getRHS()); 4170 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 4171 if (LHS->getType()->isFPOrFPVectorTy()) { 4172 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 4173 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 4174 } else { 4175 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 4176 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 4177 } 4178 Value *Or = Builder.CreateOr(LHS, RHS); 4179 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 4180 } 4181 4182 llvm::Type *ResTy = ConvertType(E->getType()); 4183 4184 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 4185 // If we have 0 || X, just emit X without inserting the control flow. 4186 bool LHSCondVal; 4187 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 4188 if (!LHSCondVal) { // If we have 0 || X, just emit X. 4189 CGF.incrementProfileCounter(E); 4190 4191 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4192 // ZExt result to int or bool. 4193 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 4194 } 4195 4196 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 4197 if (!CGF.ContainsLabel(E->getRHS())) 4198 return llvm::ConstantInt::get(ResTy, 1); 4199 } 4200 4201 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 4202 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 4203 4204 CodeGenFunction::ConditionalEvaluation eval(CGF); 4205 4206 // Branch on the LHS first. If it is true, go to the success (cont) block. 4207 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 4208 CGF.getCurrentProfileCount() - 4209 CGF.getProfileCount(E->getRHS())); 4210 4211 // Any edges into the ContBlock are now from an (indeterminate number of) 4212 // edges from this first condition. All of these values will be true. Start 4213 // setting up the PHI node in the Cont Block for this. 4214 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 4215 "", ContBlock); 4216 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 4217 PI != PE; ++PI) 4218 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 4219 4220 eval.begin(CGF); 4221 4222 // Emit the RHS condition as a bool value. 4223 CGF.EmitBlock(RHSBlock); 4224 CGF.incrementProfileCounter(E); 4225 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 4226 4227 eval.end(CGF); 4228 4229 // Reaquire the RHS block, as there may be subblocks inserted. 4230 RHSBlock = Builder.GetInsertBlock(); 4231 4232 // Emit an unconditional branch from this block to ContBlock. Insert an entry 4233 // into the phi node for the edge with the value of RHSCond. 4234 CGF.EmitBlock(ContBlock); 4235 PN->addIncoming(RHSCond, RHSBlock); 4236 4237 // ZExt result to int. 4238 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 4239 } 4240 4241 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 4242 CGF.EmitIgnoredExpr(E->getLHS()); 4243 CGF.EnsureInsertPoint(); 4244 return Visit(E->getRHS()); 4245 } 4246 4247 //===----------------------------------------------------------------------===// 4248 // Other Operators 4249 //===----------------------------------------------------------------------===// 4250 4251 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 4252 /// expression is cheap enough and side-effect-free enough to evaluate 4253 /// unconditionally instead of conditionally. This is used to convert control 4254 /// flow into selects in some cases. 4255 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 4256 CodeGenFunction &CGF) { 4257 // Anything that is an integer or floating point constant is fine. 4258 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 4259 4260 // Even non-volatile automatic variables can't be evaluated unconditionally. 4261 // Referencing a thread_local may cause non-trivial initialization work to 4262 // occur. If we're inside a lambda and one of the variables is from the scope 4263 // outside the lambda, that function may have returned already. Reading its 4264 // locals is a bad idea. Also, these reads may introduce races there didn't 4265 // exist in the source-level program. 4266 } 4267 4268 4269 Value *ScalarExprEmitter:: 4270 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4271 TestAndClearIgnoreResultAssign(); 4272 4273 // Bind the common expression if necessary. 4274 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4275 4276 Expr *condExpr = E->getCond(); 4277 Expr *lhsExpr = E->getTrueExpr(); 4278 Expr *rhsExpr = E->getFalseExpr(); 4279 4280 // If the condition constant folds and can be elided, try to avoid emitting 4281 // the condition and the dead arm. 4282 bool CondExprBool; 4283 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4284 Expr *live = lhsExpr, *dead = rhsExpr; 4285 if (!CondExprBool) std::swap(live, dead); 4286 4287 // If the dead side doesn't have labels we need, just emit the Live part. 4288 if (!CGF.ContainsLabel(dead)) { 4289 if (CondExprBool) 4290 CGF.incrementProfileCounter(E); 4291 Value *Result = Visit(live); 4292 4293 // If the live part is a throw expression, it acts like it has a void 4294 // type, so evaluating it returns a null Value*. However, a conditional 4295 // with non-void type must return a non-null Value*. 4296 if (!Result && !E->getType()->isVoidType()) 4297 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4298 4299 return Result; 4300 } 4301 } 4302 4303 // OpenCL: If the condition is a vector, we can treat this condition like 4304 // the select function. 4305 if (CGF.getLangOpts().OpenCL 4306 && condExpr->getType()->isVectorType()) { 4307 CGF.incrementProfileCounter(E); 4308 4309 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4310 llvm::Value *LHS = Visit(lhsExpr); 4311 llvm::Value *RHS = Visit(rhsExpr); 4312 4313 llvm::Type *condType = ConvertType(condExpr->getType()); 4314 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4315 4316 unsigned numElem = vecTy->getNumElements(); 4317 llvm::Type *elemType = vecTy->getElementType(); 4318 4319 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4320 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4321 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 4322 llvm::VectorType::get(elemType, 4323 numElem), 4324 "sext"); 4325 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4326 4327 // Cast float to int to perform ANDs if necessary. 4328 llvm::Value *RHSTmp = RHS; 4329 llvm::Value *LHSTmp = LHS; 4330 bool wasCast = false; 4331 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4332 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4333 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4334 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4335 wasCast = true; 4336 } 4337 4338 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4339 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4340 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4341 if (wasCast) 4342 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4343 4344 return tmp5; 4345 } 4346 4347 if (condExpr->getType()->isVectorType()) { 4348 CGF.incrementProfileCounter(E); 4349 4350 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4351 llvm::Value *LHS = Visit(lhsExpr); 4352 llvm::Value *RHS = Visit(rhsExpr); 4353 4354 llvm::Type *CondType = ConvertType(condExpr->getType()); 4355 auto *VecTy = cast<llvm::VectorType>(CondType); 4356 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); 4357 4358 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); 4359 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); 4360 } 4361 4362 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4363 // select instead of as control flow. We can only do this if it is cheap and 4364 // safe to evaluate the LHS and RHS unconditionally. 4365 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4366 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4367 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4368 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4369 4370 CGF.incrementProfileCounter(E, StepV); 4371 4372 llvm::Value *LHS = Visit(lhsExpr); 4373 llvm::Value *RHS = Visit(rhsExpr); 4374 if (!LHS) { 4375 // If the conditional has void type, make sure we return a null Value*. 4376 assert(!RHS && "LHS and RHS types must match"); 4377 return nullptr; 4378 } 4379 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4380 } 4381 4382 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4383 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4384 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4385 4386 CodeGenFunction::ConditionalEvaluation eval(CGF); 4387 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4388 CGF.getProfileCount(lhsExpr)); 4389 4390 CGF.EmitBlock(LHSBlock); 4391 CGF.incrementProfileCounter(E); 4392 eval.begin(CGF); 4393 Value *LHS = Visit(lhsExpr); 4394 eval.end(CGF); 4395 4396 LHSBlock = Builder.GetInsertBlock(); 4397 Builder.CreateBr(ContBlock); 4398 4399 CGF.EmitBlock(RHSBlock); 4400 eval.begin(CGF); 4401 Value *RHS = Visit(rhsExpr); 4402 eval.end(CGF); 4403 4404 RHSBlock = Builder.GetInsertBlock(); 4405 CGF.EmitBlock(ContBlock); 4406 4407 // If the LHS or RHS is a throw expression, it will be legitimately null. 4408 if (!LHS) 4409 return RHS; 4410 if (!RHS) 4411 return LHS; 4412 4413 // Create a PHI node for the real part. 4414 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4415 PN->addIncoming(LHS, LHSBlock); 4416 PN->addIncoming(RHS, RHSBlock); 4417 return PN; 4418 } 4419 4420 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4421 return Visit(E->getChosenSubExpr()); 4422 } 4423 4424 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4425 QualType Ty = VE->getType(); 4426 4427 if (Ty->isVariablyModifiedType()) 4428 CGF.EmitVariablyModifiedType(Ty); 4429 4430 Address ArgValue = Address::invalid(); 4431 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4432 4433 llvm::Type *ArgTy = ConvertType(VE->getType()); 4434 4435 // If EmitVAArg fails, emit an error. 4436 if (!ArgPtr.isValid()) { 4437 CGF.ErrorUnsupported(VE, "va_arg expression"); 4438 return llvm::UndefValue::get(ArgTy); 4439 } 4440 4441 // FIXME Volatility. 4442 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4443 4444 // If EmitVAArg promoted the type, we must truncate it. 4445 if (ArgTy != Val->getType()) { 4446 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4447 Val = Builder.CreateIntToPtr(Val, ArgTy); 4448 else 4449 Val = Builder.CreateTrunc(Val, ArgTy); 4450 } 4451 4452 return Val; 4453 } 4454 4455 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4456 return CGF.EmitBlockLiteral(block); 4457 } 4458 4459 // Convert a vec3 to vec4, or vice versa. 4460 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4461 Value *Src, unsigned NumElementsDst) { 4462 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4463 SmallVector<llvm::Constant*, 4> Args; 4464 Args.push_back(Builder.getInt32(0)); 4465 Args.push_back(Builder.getInt32(1)); 4466 Args.push_back(Builder.getInt32(2)); 4467 if (NumElementsDst == 4) 4468 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 4469 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 4470 return Builder.CreateShuffleVector(Src, UnV, Mask); 4471 } 4472 4473 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4474 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4475 // but could be scalar or vectors of different lengths, and either can be 4476 // pointer. 4477 // There are 4 cases: 4478 // 1. non-pointer -> non-pointer : needs 1 bitcast 4479 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4480 // 3. pointer -> non-pointer 4481 // a) pointer -> intptr_t : needs 1 ptrtoint 4482 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4483 // 4. non-pointer -> pointer 4484 // a) intptr_t -> pointer : needs 1 inttoptr 4485 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4486 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4487 // allow casting directly between pointer types and non-integer non-pointer 4488 // types. 4489 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4490 const llvm::DataLayout &DL, 4491 Value *Src, llvm::Type *DstTy, 4492 StringRef Name = "") { 4493 auto SrcTy = Src->getType(); 4494 4495 // Case 1. 4496 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4497 return Builder.CreateBitCast(Src, DstTy, Name); 4498 4499 // Case 2. 4500 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4501 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4502 4503 // Case 3. 4504 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4505 // Case 3b. 4506 if (!DstTy->isIntegerTy()) 4507 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4508 // Cases 3a and 3b. 4509 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4510 } 4511 4512 // Case 4b. 4513 if (!SrcTy->isIntegerTy()) 4514 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4515 // Cases 4a and 4b. 4516 return Builder.CreateIntToPtr(Src, DstTy, Name); 4517 } 4518 4519 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4520 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4521 llvm::Type *DstTy = ConvertType(E->getType()); 4522 4523 llvm::Type *SrcTy = Src->getType(); 4524 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4525 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4526 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4527 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4528 4529 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4530 // vector to get a vec4, then a bitcast if the target type is different. 4531 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4532 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4533 4534 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4535 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4536 DstTy); 4537 } 4538 4539 Src->setName("astype"); 4540 return Src; 4541 } 4542 4543 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4544 // to vec4 if the original type is not vec4, then a shuffle vector to 4545 // get a vec3. 4546 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4547 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4548 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 4549 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4550 Vec4Ty); 4551 } 4552 4553 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4554 Src->setName("astype"); 4555 return Src; 4556 } 4557 4558 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4559 Src, DstTy, "astype"); 4560 } 4561 4562 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4563 return CGF.EmitAtomicExpr(E).getScalarVal(); 4564 } 4565 4566 //===----------------------------------------------------------------------===// 4567 // Entry Point into this File 4568 //===----------------------------------------------------------------------===// 4569 4570 /// Emit the computation of the specified expression of scalar type, ignoring 4571 /// the result. 4572 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4573 assert(E && hasScalarEvaluationKind(E->getType()) && 4574 "Invalid scalar expression to emit"); 4575 4576 return ScalarExprEmitter(*this, IgnoreResultAssign) 4577 .Visit(const_cast<Expr *>(E)); 4578 } 4579 4580 /// Emit a conversion from the specified type to the specified destination type, 4581 /// both of which are LLVM scalar types. 4582 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4583 QualType DstTy, 4584 SourceLocation Loc) { 4585 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4586 "Invalid scalar expression to emit"); 4587 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4588 } 4589 4590 /// Emit a conversion from the specified complex type to the specified 4591 /// destination type, where the destination type is an LLVM scalar type. 4592 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4593 QualType SrcTy, 4594 QualType DstTy, 4595 SourceLocation Loc) { 4596 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4597 "Invalid complex -> scalar conversion"); 4598 return ScalarExprEmitter(*this) 4599 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4600 } 4601 4602 4603 llvm::Value *CodeGenFunction:: 4604 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4605 bool isInc, bool isPre) { 4606 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4607 } 4608 4609 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4610 // object->isa or (*object).isa 4611 // Generate code as for: *(Class*)object 4612 4613 Expr *BaseExpr = E->getBase(); 4614 Address Addr = Address::invalid(); 4615 if (BaseExpr->isRValue()) { 4616 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4617 } else { 4618 Addr = EmitLValue(BaseExpr).getAddress(*this); 4619 } 4620 4621 // Cast the address to Class*. 4622 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4623 return MakeAddrLValue(Addr, E->getType()); 4624 } 4625 4626 4627 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4628 const CompoundAssignOperator *E) { 4629 ScalarExprEmitter Scalar(*this); 4630 Value *Result = nullptr; 4631 switch (E->getOpcode()) { 4632 #define COMPOUND_OP(Op) \ 4633 case BO_##Op##Assign: \ 4634 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4635 Result) 4636 COMPOUND_OP(Mul); 4637 COMPOUND_OP(Div); 4638 COMPOUND_OP(Rem); 4639 COMPOUND_OP(Add); 4640 COMPOUND_OP(Sub); 4641 COMPOUND_OP(Shl); 4642 COMPOUND_OP(Shr); 4643 COMPOUND_OP(And); 4644 COMPOUND_OP(Xor); 4645 COMPOUND_OP(Or); 4646 #undef COMPOUND_OP 4647 4648 case BO_PtrMemD: 4649 case BO_PtrMemI: 4650 case BO_Mul: 4651 case BO_Div: 4652 case BO_Rem: 4653 case BO_Add: 4654 case BO_Sub: 4655 case BO_Shl: 4656 case BO_Shr: 4657 case BO_LT: 4658 case BO_GT: 4659 case BO_LE: 4660 case BO_GE: 4661 case BO_EQ: 4662 case BO_NE: 4663 case BO_Cmp: 4664 case BO_And: 4665 case BO_Xor: 4666 case BO_Or: 4667 case BO_LAnd: 4668 case BO_LOr: 4669 case BO_Assign: 4670 case BO_Comma: 4671 llvm_unreachable("Not valid compound assignment operators"); 4672 } 4673 4674 llvm_unreachable("Unhandled compound assignment operator"); 4675 } 4676 4677 struct GEPOffsetAndOverflow { 4678 // The total (signed) byte offset for the GEP. 4679 llvm::Value *TotalOffset; 4680 // The offset overflow flag - true if the total offset overflows. 4681 llvm::Value *OffsetOverflows; 4682 }; 4683 4684 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, 4685 /// and compute the total offset it applies from it's base pointer BasePtr. 4686 /// Returns offset in bytes and a boolean flag whether an overflow happened 4687 /// during evaluation. 4688 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, 4689 llvm::LLVMContext &VMContext, 4690 CodeGenModule &CGM, 4691 CGBuilderTy &Builder) { 4692 const auto &DL = CGM.getDataLayout(); 4693 4694 // The total (signed) byte offset for the GEP. 4695 llvm::Value *TotalOffset = nullptr; 4696 4697 // Was the GEP already reduced to a constant? 4698 if (isa<llvm::Constant>(GEPVal)) { 4699 // Compute the offset by casting both pointers to integers and subtracting: 4700 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) 4701 Value *BasePtr_int = 4702 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); 4703 Value *GEPVal_int = 4704 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); 4705 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); 4706 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; 4707 } 4708 4709 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4710 assert(GEP->getPointerOperand() == BasePtr && 4711 "BasePtr must be the the base of the GEP."); 4712 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4713 4714 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4715 4716 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4717 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4718 auto *SAddIntrinsic = 4719 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4720 auto *SMulIntrinsic = 4721 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4722 4723 // The offset overflow flag - true if the total offset overflows. 4724 llvm::Value *OffsetOverflows = Builder.getFalse(); 4725 4726 /// Return the result of the given binary operation. 4727 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4728 llvm::Value *RHS) -> llvm::Value * { 4729 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4730 4731 // If the operands are constants, return a constant result. 4732 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4733 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4734 llvm::APInt N; 4735 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4736 /*Signed=*/true, N); 4737 if (HasOverflow) 4738 OffsetOverflows = Builder.getTrue(); 4739 return llvm::ConstantInt::get(VMContext, N); 4740 } 4741 } 4742 4743 // Otherwise, compute the result with checked arithmetic. 4744 auto *ResultAndOverflow = Builder.CreateCall( 4745 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4746 OffsetOverflows = Builder.CreateOr( 4747 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4748 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4749 }; 4750 4751 // Determine the total byte offset by looking at each GEP operand. 4752 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4753 GTI != GTE; ++GTI) { 4754 llvm::Value *LocalOffset; 4755 auto *Index = GTI.getOperand(); 4756 // Compute the local offset contributed by this indexing step: 4757 if (auto *STy = GTI.getStructTypeOrNull()) { 4758 // For struct indexing, the local offset is the byte position of the 4759 // specified field. 4760 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4761 LocalOffset = llvm::ConstantInt::get( 4762 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4763 } else { 4764 // Otherwise this is array-like indexing. The local offset is the index 4765 // multiplied by the element size. 4766 auto *ElementSize = llvm::ConstantInt::get( 4767 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4768 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4769 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4770 } 4771 4772 // If this is the first offset, set it as the total offset. Otherwise, add 4773 // the local offset into the running total. 4774 if (!TotalOffset || TotalOffset == Zero) 4775 TotalOffset = LocalOffset; 4776 else 4777 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4778 } 4779 4780 return {TotalOffset, OffsetOverflows}; 4781 } 4782 4783 Value * 4784 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, 4785 bool SignedIndices, bool IsSubtraction, 4786 SourceLocation Loc, const Twine &Name) { 4787 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4788 4789 // If the pointer overflow sanitizer isn't enabled, do nothing. 4790 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4791 return GEPVal; 4792 4793 llvm::Type *PtrTy = Ptr->getType(); 4794 4795 // Perform nullptr-and-offset check unless the nullptr is defined. 4796 bool PerformNullCheck = !NullPointerIsDefined( 4797 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); 4798 // Check for overflows unless the GEP got constant-folded, 4799 // and only in the default address space 4800 bool PerformOverflowCheck = 4801 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; 4802 4803 if (!(PerformNullCheck || PerformOverflowCheck)) 4804 return GEPVal; 4805 4806 const auto &DL = CGM.getDataLayout(); 4807 4808 SanitizerScope SanScope(this); 4809 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); 4810 4811 GEPOffsetAndOverflow EvaluatedGEP = 4812 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); 4813 4814 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || 4815 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && 4816 "If the offset got constant-folded, we don't expect that there was an " 4817 "overflow."); 4818 4819 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4820 4821 // Common case: if the total offset is zero, and we are using C++ semantics, 4822 // where nullptr+0 is defined, don't emit a check. 4823 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) 4824 return GEPVal; 4825 4826 // Now that we've computed the total offset, add it to the base pointer (with 4827 // wrapping semantics). 4828 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); 4829 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); 4830 4831 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 4832 4833 if (PerformNullCheck) { 4834 // In C++, if the base pointer evaluates to a null pointer value, 4835 // the only valid pointer this inbounds GEP can produce is also 4836 // a null pointer, so the offset must also evaluate to zero. 4837 // Likewise, if we have non-zero base pointer, we can not get null pointer 4838 // as a result, so the offset can not be -intptr_t(BasePtr). 4839 // In other words, both pointers are either null, or both are non-null, 4840 // or the behaviour is undefined. 4841 // 4842 // C, however, is more strict in this regard, and gives more 4843 // optimization opportunities: in C, additionally, nullptr+0 is undefined. 4844 // So both the input to the 'gep inbounds' AND the output must not be null. 4845 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); 4846 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); 4847 auto *Valid = 4848 CGM.getLangOpts().CPlusPlus 4849 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) 4850 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); 4851 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); 4852 } 4853 4854 if (PerformOverflowCheck) { 4855 // The GEP is valid if: 4856 // 1) The total offset doesn't overflow, and 4857 // 2) The sign of the difference between the computed address and the base 4858 // pointer matches the sign of the total offset. 4859 llvm::Value *ValidGEP; 4860 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); 4861 if (SignedIndices) { 4862 // GEP is computed as `unsigned base + signed offset`, therefore: 4863 // * If offset was positive, then the computed pointer can not be 4864 // [unsigned] less than the base pointer, unless it overflowed. 4865 // * If offset was negative, then the computed pointer can not be 4866 // [unsigned] greater than the bas pointere, unless it overflowed. 4867 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4868 auto *PosOrZeroOffset = 4869 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); 4870 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4871 ValidGEP = 4872 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); 4873 } else if (!IsSubtraction) { 4874 // GEP is computed as `unsigned base + unsigned offset`, therefore the 4875 // computed pointer can not be [unsigned] less than base pointer, 4876 // unless there was an overflow. 4877 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. 4878 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4879 } else { 4880 // GEP is computed as `unsigned base - unsigned offset`, therefore the 4881 // computed pointer can not be [unsigned] greater than base pointer, 4882 // unless there was an overflow. 4883 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. 4884 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4885 } 4886 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); 4887 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); 4888 } 4889 4890 assert(!Checks.empty() && "Should have produced some checks."); 4891 4892 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4893 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4894 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4895 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4896 4897 return GEPVal; 4898 } 4899