1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include <cstdarg> 33 34 using namespace clang; 35 using namespace CodeGen; 36 using llvm::Value; 37 38 //===----------------------------------------------------------------------===// 39 // Scalar Expression Emitter 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 struct BinOpInfo { 44 Value *LHS; 45 Value *RHS; 46 QualType Ty; // Computation Type. 47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 48 bool FPContractable; 49 const Expr *E; // Entire expr, for error unsupported. May not be binop. 50 }; 51 52 static bool MustVisitNullValue(const Expr *E) { 53 // If a null pointer expression's type is the C++0x nullptr_t, then 54 // it's not necessarily a simple constant and it must be evaluated 55 // for its potential side effects. 56 return E->getType()->isNullPtrType(); 57 } 58 59 class ScalarExprEmitter 60 : public StmtVisitor<ScalarExprEmitter, Value*> { 61 CodeGenFunction &CGF; 62 CGBuilderTy &Builder; 63 bool IgnoreResultAssign; 64 llvm::LLVMContext &VMContext; 65 public: 66 67 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 68 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 69 VMContext(cgf.getLLVMContext()) { 70 } 71 72 //===--------------------------------------------------------------------===// 73 // Utilities 74 //===--------------------------------------------------------------------===// 75 76 bool TestAndClearIgnoreResultAssign() { 77 bool I = IgnoreResultAssign; 78 IgnoreResultAssign = false; 79 return I; 80 } 81 82 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 83 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 84 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 85 return CGF.EmitCheckedLValue(E, TCK); 86 } 87 88 void EmitBinOpCheck(Value *Check, const BinOpInfo &Info); 89 90 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 91 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 92 } 93 94 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 95 const AlignValueAttr *AVAttr = nullptr; 96 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 97 const ValueDecl *VD = DRE->getDecl(); 98 99 if (VD->getType()->isReferenceType()) { 100 if (const auto *TTy = 101 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 102 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 103 } else { 104 // Assumptions for function parameters are emitted at the start of the 105 // function, so there is no need to repeat that here. 106 if (isa<ParmVarDecl>(VD)) 107 return; 108 109 AVAttr = VD->getAttr<AlignValueAttr>(); 110 } 111 } 112 113 if (!AVAttr) 114 if (const auto *TTy = 115 dyn_cast<TypedefType>(E->getType())) 116 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 117 118 if (!AVAttr) 119 return; 120 121 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 122 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 123 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 124 } 125 126 /// EmitLoadOfLValue - Given an expression with complex type that represents a 127 /// value l-value, this method emits the address of the l-value, then loads 128 /// and returns the result. 129 Value *EmitLoadOfLValue(const Expr *E) { 130 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 131 E->getExprLoc()); 132 133 EmitLValueAlignmentAssumption(E, V); 134 return V; 135 } 136 137 /// EmitConversionToBool - Convert the specified expression value to a 138 /// boolean (i1) truth value. This is equivalent to "Val != 0". 139 Value *EmitConversionToBool(Value *Src, QualType DstTy); 140 141 /// \brief Emit a check that a conversion to or from a floating-point type 142 /// does not overflow. 143 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 144 Value *Src, QualType SrcType, 145 QualType DstType, llvm::Type *DstTy); 146 147 /// EmitScalarConversion - Emit a conversion from the specified type to the 148 /// specified destination type, both of which are LLVM scalar types. 149 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 150 151 /// EmitComplexToScalarConversion - Emit a conversion from the specified 152 /// complex type to the specified destination type, where the destination type 153 /// is an LLVM scalar type. 154 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 155 QualType SrcTy, QualType DstTy); 156 157 /// EmitNullValue - Emit a value that corresponds to null for the given type. 158 Value *EmitNullValue(QualType Ty); 159 160 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 161 Value *EmitFloatToBoolConversion(Value *V) { 162 // Compare against 0.0 for fp scalars. 163 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 164 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 165 } 166 167 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 168 Value *EmitPointerToBoolConversion(Value *V) { 169 Value *Zero = llvm::ConstantPointerNull::get( 170 cast<llvm::PointerType>(V->getType())); 171 return Builder.CreateICmpNE(V, Zero, "tobool"); 172 } 173 174 Value *EmitIntToBoolConversion(Value *V) { 175 // Because of the type rules of C, we often end up computing a 176 // logical value, then zero extending it to int, then wanting it 177 // as a logical value again. Optimize this common case. 178 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 179 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 180 Value *Result = ZI->getOperand(0); 181 // If there aren't any more uses, zap the instruction to save space. 182 // Note that there can be more uses, for example if this 183 // is the result of an assignment. 184 if (ZI->use_empty()) 185 ZI->eraseFromParent(); 186 return Result; 187 } 188 } 189 190 return Builder.CreateIsNotNull(V, "tobool"); 191 } 192 193 //===--------------------------------------------------------------------===// 194 // Visitor Methods 195 //===--------------------------------------------------------------------===// 196 197 Value *Visit(Expr *E) { 198 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 199 } 200 201 Value *VisitStmt(Stmt *S) { 202 S->dump(CGF.getContext().getSourceManager()); 203 llvm_unreachable("Stmt can't have complex result type!"); 204 } 205 Value *VisitExpr(Expr *S); 206 207 Value *VisitParenExpr(ParenExpr *PE) { 208 return Visit(PE->getSubExpr()); 209 } 210 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 211 return Visit(E->getReplacement()); 212 } 213 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 214 return Visit(GE->getResultExpr()); 215 } 216 217 // Leaves. 218 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 219 return Builder.getInt(E->getValue()); 220 } 221 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 222 return llvm::ConstantFP::get(VMContext, E->getValue()); 223 } 224 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 225 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 226 } 227 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 228 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 229 } 230 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 231 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 232 } 233 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 234 return EmitNullValue(E->getType()); 235 } 236 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 237 return EmitNullValue(E->getType()); 238 } 239 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 240 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 241 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 242 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 243 return Builder.CreateBitCast(V, ConvertType(E->getType())); 244 } 245 246 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 247 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 248 } 249 250 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 251 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 252 } 253 254 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 255 if (E->isGLValue()) 256 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 257 258 // Otherwise, assume the mapping is the scalar directly. 259 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 260 } 261 262 // l-values. 263 Value *VisitDeclRefExpr(DeclRefExpr *E) { 264 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 265 if (result.isReference()) 266 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 267 E->getExprLoc()); 268 return result.getValue(); 269 } 270 return EmitLoadOfLValue(E); 271 } 272 273 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 274 return CGF.EmitObjCSelectorExpr(E); 275 } 276 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 277 return CGF.EmitObjCProtocolExpr(E); 278 } 279 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 280 return EmitLoadOfLValue(E); 281 } 282 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 283 if (E->getMethodDecl() && 284 E->getMethodDecl()->getReturnType()->isReferenceType()) 285 return EmitLoadOfLValue(E); 286 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 287 } 288 289 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 290 LValue LV = CGF.EmitObjCIsaExpr(E); 291 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 292 return V; 293 } 294 295 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 296 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 297 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 298 Value *VisitMemberExpr(MemberExpr *E); 299 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 300 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 301 return EmitLoadOfLValue(E); 302 } 303 304 Value *VisitInitListExpr(InitListExpr *E); 305 306 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 307 return EmitNullValue(E->getType()); 308 } 309 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 310 if (E->getType()->isVariablyModifiedType()) 311 CGF.EmitVariablyModifiedType(E->getType()); 312 313 if (CGDebugInfo *DI = CGF.getDebugInfo()) 314 DI->EmitExplicitCastType(E->getType()); 315 316 return VisitCastExpr(E); 317 } 318 Value *VisitCastExpr(CastExpr *E); 319 320 Value *VisitCallExpr(const CallExpr *E) { 321 if (E->getCallReturnType()->isReferenceType()) 322 return EmitLoadOfLValue(E); 323 324 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 325 326 EmitLValueAlignmentAssumption(E, V); 327 return V; 328 } 329 330 Value *VisitStmtExpr(const StmtExpr *E); 331 332 // Unary Operators. 333 Value *VisitUnaryPostDec(const UnaryOperator *E) { 334 LValue LV = EmitLValue(E->getSubExpr()); 335 return EmitScalarPrePostIncDec(E, LV, false, false); 336 } 337 Value *VisitUnaryPostInc(const UnaryOperator *E) { 338 LValue LV = EmitLValue(E->getSubExpr()); 339 return EmitScalarPrePostIncDec(E, LV, true, false); 340 } 341 Value *VisitUnaryPreDec(const UnaryOperator *E) { 342 LValue LV = EmitLValue(E->getSubExpr()); 343 return EmitScalarPrePostIncDec(E, LV, false, true); 344 } 345 Value *VisitUnaryPreInc(const UnaryOperator *E) { 346 LValue LV = EmitLValue(E->getSubExpr()); 347 return EmitScalarPrePostIncDec(E, LV, true, true); 348 } 349 350 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 351 llvm::Value *InVal, 352 llvm::Value *NextVal, 353 bool IsInc); 354 355 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 356 bool isInc, bool isPre); 357 358 359 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 360 if (isa<MemberPointerType>(E->getType())) // never sugared 361 return CGF.CGM.getMemberPointerConstant(E); 362 363 return EmitLValue(E->getSubExpr()).getAddress(); 364 } 365 Value *VisitUnaryDeref(const UnaryOperator *E) { 366 if (E->getType()->isVoidType()) 367 return Visit(E->getSubExpr()); // the actual value should be unused 368 return EmitLoadOfLValue(E); 369 } 370 Value *VisitUnaryPlus(const UnaryOperator *E) { 371 // This differs from gcc, though, most likely due to a bug in gcc. 372 TestAndClearIgnoreResultAssign(); 373 return Visit(E->getSubExpr()); 374 } 375 Value *VisitUnaryMinus (const UnaryOperator *E); 376 Value *VisitUnaryNot (const UnaryOperator *E); 377 Value *VisitUnaryLNot (const UnaryOperator *E); 378 Value *VisitUnaryReal (const UnaryOperator *E); 379 Value *VisitUnaryImag (const UnaryOperator *E); 380 Value *VisitUnaryExtension(const UnaryOperator *E) { 381 return Visit(E->getSubExpr()); 382 } 383 384 // C++ 385 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 386 return EmitLoadOfLValue(E); 387 } 388 389 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 390 return Visit(DAE->getExpr()); 391 } 392 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 393 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 394 return Visit(DIE->getExpr()); 395 } 396 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 397 return CGF.LoadCXXThis(); 398 } 399 400 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 401 CGF.enterFullExpression(E); 402 CodeGenFunction::RunCleanupsScope Scope(CGF); 403 return Visit(E->getSubExpr()); 404 } 405 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 406 return CGF.EmitCXXNewExpr(E); 407 } 408 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 409 CGF.EmitCXXDeleteExpr(E); 410 return nullptr; 411 } 412 413 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 414 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 415 } 416 417 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 418 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 419 } 420 421 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 422 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 423 } 424 425 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 426 // C++ [expr.pseudo]p1: 427 // The result shall only be used as the operand for the function call 428 // operator (), and the result of such a call has type void. The only 429 // effect is the evaluation of the postfix-expression before the dot or 430 // arrow. 431 CGF.EmitScalarExpr(E->getBase()); 432 return nullptr; 433 } 434 435 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 436 return EmitNullValue(E->getType()); 437 } 438 439 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 440 CGF.EmitCXXThrowExpr(E); 441 return nullptr; 442 } 443 444 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 445 return Builder.getInt1(E->getValue()); 446 } 447 448 // Binary Operators. 449 Value *EmitMul(const BinOpInfo &Ops) { 450 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 451 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 452 case LangOptions::SOB_Defined: 453 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 454 case LangOptions::SOB_Undefined: 455 if (!CGF.SanOpts->SignedIntegerOverflow) 456 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 457 // Fall through. 458 case LangOptions::SOB_Trapping: 459 return EmitOverflowCheckedBinOp(Ops); 460 } 461 } 462 463 if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 464 return EmitOverflowCheckedBinOp(Ops); 465 466 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 467 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 468 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 469 } 470 /// Create a binary op that checks for overflow. 471 /// Currently only supports +, - and *. 472 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 473 474 // Check for undefined division and modulus behaviors. 475 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 476 llvm::Value *Zero,bool isDiv); 477 // Common helper for getting how wide LHS of shift is. 478 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 479 Value *EmitDiv(const BinOpInfo &Ops); 480 Value *EmitRem(const BinOpInfo &Ops); 481 Value *EmitAdd(const BinOpInfo &Ops); 482 Value *EmitSub(const BinOpInfo &Ops); 483 Value *EmitShl(const BinOpInfo &Ops); 484 Value *EmitShr(const BinOpInfo &Ops); 485 Value *EmitAnd(const BinOpInfo &Ops) { 486 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 487 } 488 Value *EmitXor(const BinOpInfo &Ops) { 489 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 490 } 491 Value *EmitOr (const BinOpInfo &Ops) { 492 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 493 } 494 495 BinOpInfo EmitBinOps(const BinaryOperator *E); 496 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 497 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 498 Value *&Result); 499 500 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 501 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 502 503 // Binary operators and binary compound assignment operators. 504 #define HANDLEBINOP(OP) \ 505 Value *VisitBin ## OP(const BinaryOperator *E) { \ 506 return Emit ## OP(EmitBinOps(E)); \ 507 } \ 508 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 509 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 510 } 511 HANDLEBINOP(Mul) 512 HANDLEBINOP(Div) 513 HANDLEBINOP(Rem) 514 HANDLEBINOP(Add) 515 HANDLEBINOP(Sub) 516 HANDLEBINOP(Shl) 517 HANDLEBINOP(Shr) 518 HANDLEBINOP(And) 519 HANDLEBINOP(Xor) 520 HANDLEBINOP(Or) 521 #undef HANDLEBINOP 522 523 // Comparisons. 524 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 525 unsigned SICmpOpc, unsigned FCmpOpc); 526 #define VISITCOMP(CODE, UI, SI, FP) \ 527 Value *VisitBin##CODE(const BinaryOperator *E) { \ 528 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 529 llvm::FCmpInst::FP); } 530 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 531 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 532 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 533 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 534 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 535 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 536 #undef VISITCOMP 537 538 Value *VisitBinAssign (const BinaryOperator *E); 539 540 Value *VisitBinLAnd (const BinaryOperator *E); 541 Value *VisitBinLOr (const BinaryOperator *E); 542 Value *VisitBinComma (const BinaryOperator *E); 543 544 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 545 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 546 547 // Other Operators. 548 Value *VisitBlockExpr(const BlockExpr *BE); 549 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 550 Value *VisitChooseExpr(ChooseExpr *CE); 551 Value *VisitVAArgExpr(VAArgExpr *VE); 552 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 553 return CGF.EmitObjCStringLiteral(E); 554 } 555 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 556 return CGF.EmitObjCBoxedExpr(E); 557 } 558 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 559 return CGF.EmitObjCArrayLiteral(E); 560 } 561 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 562 return CGF.EmitObjCDictionaryLiteral(E); 563 } 564 Value *VisitAsTypeExpr(AsTypeExpr *CE); 565 Value *VisitAtomicExpr(AtomicExpr *AE); 566 }; 567 } // end anonymous namespace. 568 569 //===----------------------------------------------------------------------===// 570 // Utilities 571 //===----------------------------------------------------------------------===// 572 573 /// EmitConversionToBool - Convert the specified expression value to a 574 /// boolean (i1) truth value. This is equivalent to "Val != 0". 575 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 576 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 577 578 if (SrcType->isRealFloatingType()) 579 return EmitFloatToBoolConversion(Src); 580 581 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 582 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 583 584 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 585 "Unknown scalar type to convert"); 586 587 if (isa<llvm::IntegerType>(Src->getType())) 588 return EmitIntToBoolConversion(Src); 589 590 assert(isa<llvm::PointerType>(Src->getType())); 591 return EmitPointerToBoolConversion(Src); 592 } 593 594 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc, 595 QualType OrigSrcType, 596 Value *Src, QualType SrcType, 597 QualType DstType, 598 llvm::Type *DstTy) { 599 CodeGenFunction::SanitizerScope SanScope(&CGF); 600 using llvm::APFloat; 601 using llvm::APSInt; 602 603 llvm::Type *SrcTy = Src->getType(); 604 605 llvm::Value *Check = nullptr; 606 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 607 // Integer to floating-point. This can fail for unsigned short -> __half 608 // or unsigned __int128 -> float. 609 assert(DstType->isFloatingType()); 610 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 611 612 APFloat LargestFloat = 613 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 614 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 615 616 bool IsExact; 617 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 618 &IsExact) != APFloat::opOK) 619 // The range of representable values of this floating point type includes 620 // all values of this integer type. Don't need an overflow check. 621 return; 622 623 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 624 if (SrcIsUnsigned) 625 Check = Builder.CreateICmpULE(Src, Max); 626 else { 627 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 628 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 629 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 630 Check = Builder.CreateAnd(GE, LE); 631 } 632 } else { 633 const llvm::fltSemantics &SrcSema = 634 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 635 if (isa<llvm::IntegerType>(DstTy)) { 636 // Floating-point to integer. This has undefined behavior if the source is 637 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 638 // to an integer). 639 unsigned Width = CGF.getContext().getIntWidth(DstType); 640 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 641 642 APSInt Min = APSInt::getMinValue(Width, Unsigned); 643 APFloat MinSrc(SrcSema, APFloat::uninitialized); 644 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 645 APFloat::opOverflow) 646 // Don't need an overflow check for lower bound. Just check for 647 // -Inf/NaN. 648 MinSrc = APFloat::getInf(SrcSema, true); 649 else 650 // Find the largest value which is too small to represent (before 651 // truncation toward zero). 652 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 653 654 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 655 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 656 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 657 APFloat::opOverflow) 658 // Don't need an overflow check for upper bound. Just check for 659 // +Inf/NaN. 660 MaxSrc = APFloat::getInf(SrcSema, false); 661 else 662 // Find the smallest value which is too large to represent (before 663 // truncation toward zero). 664 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 665 666 // If we're converting from __half, convert the range to float to match 667 // the type of src. 668 if (OrigSrcType->isHalfType()) { 669 const llvm::fltSemantics &Sema = 670 CGF.getContext().getFloatTypeSemantics(SrcType); 671 bool IsInexact; 672 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 673 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 674 } 675 676 llvm::Value *GE = 677 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 678 llvm::Value *LE = 679 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 680 Check = Builder.CreateAnd(GE, LE); 681 } else { 682 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 683 // 684 // Floating-point to floating-point. This has undefined behavior if the 685 // source is not in the range of representable values of the destination 686 // type. The C and C++ standards are spectacularly unclear here. We 687 // diagnose finite out-of-range conversions, but allow infinities and NaNs 688 // to convert to the corresponding value in the smaller type. 689 // 690 // C11 Annex F gives all such conversions defined behavior for IEC 60559 691 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 692 // does not. 693 694 // Converting from a lower rank to a higher rank can never have 695 // undefined behavior, since higher-rank types must have a superset 696 // of values of lower-rank types. 697 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 698 return; 699 700 assert(!OrigSrcType->isHalfType() && 701 "should not check conversion from __half, it has the lowest rank"); 702 703 const llvm::fltSemantics &DstSema = 704 CGF.getContext().getFloatTypeSemantics(DstType); 705 APFloat MinBad = APFloat::getLargest(DstSema, false); 706 APFloat MaxBad = APFloat::getInf(DstSema, false); 707 708 bool IsInexact; 709 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 710 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 711 712 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 713 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 714 llvm::Value *GE = 715 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 716 llvm::Value *LE = 717 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 718 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 719 } 720 } 721 722 // FIXME: Provide a SourceLocation. 723 llvm::Constant *StaticArgs[] = { 724 CGF.EmitCheckTypeDescriptor(OrigSrcType), 725 CGF.EmitCheckTypeDescriptor(DstType) 726 }; 727 CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc, 728 CodeGenFunction::CRK_Recoverable); 729 } 730 731 /// EmitScalarConversion - Emit a conversion from the specified type to the 732 /// specified destination type, both of which are LLVM scalar types. 733 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 734 QualType DstType) { 735 SrcType = CGF.getContext().getCanonicalType(SrcType); 736 DstType = CGF.getContext().getCanonicalType(DstType); 737 if (SrcType == DstType) return Src; 738 739 if (DstType->isVoidType()) return nullptr; 740 741 llvm::Value *OrigSrc = Src; 742 QualType OrigSrcType = SrcType; 743 llvm::Type *SrcTy = Src->getType(); 744 745 // If casting to/from storage-only half FP, use special intrinsics. 746 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType && 747 !CGF.getContext().getLangOpts().HalfArgsAndReturns) { 748 Src = Builder.CreateCall( 749 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 750 CGF.CGM.FloatTy), 751 Src); 752 SrcType = CGF.getContext().FloatTy; 753 SrcTy = CGF.FloatTy; 754 } 755 756 // Handle conversions to bool first, they are special: comparisons against 0. 757 if (DstType->isBooleanType()) 758 return EmitConversionToBool(Src, SrcType); 759 760 llvm::Type *DstTy = ConvertType(DstType); 761 762 // Ignore conversions like int -> uint. 763 if (SrcTy == DstTy) 764 return Src; 765 766 // Handle pointer conversions next: pointers can only be converted to/from 767 // other pointers and integers. Check for pointer types in terms of LLVM, as 768 // some native types (like Obj-C id) may map to a pointer type. 769 if (isa<llvm::PointerType>(DstTy)) { 770 // The source value may be an integer, or a pointer. 771 if (isa<llvm::PointerType>(SrcTy)) 772 return Builder.CreateBitCast(Src, DstTy, "conv"); 773 774 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 775 // First, convert to the correct width so that we control the kind of 776 // extension. 777 llvm::Type *MiddleTy = CGF.IntPtrTy; 778 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 779 llvm::Value* IntResult = 780 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 781 // Then, cast to pointer. 782 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 783 } 784 785 if (isa<llvm::PointerType>(SrcTy)) { 786 // Must be an ptr to int cast. 787 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 788 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 789 } 790 791 // A scalar can be splatted to an extended vector of the same element type 792 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 793 // Cast the scalar to element type 794 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 795 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 796 797 // Splat the element across to all elements 798 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 799 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 800 } 801 802 // Allow bitcast from vector to integer/fp of the same size. 803 if (isa<llvm::VectorType>(SrcTy) || 804 isa<llvm::VectorType>(DstTy)) 805 return Builder.CreateBitCast(Src, DstTy, "conv"); 806 807 // Finally, we have the arithmetic types: real int/float. 808 Value *Res = nullptr; 809 llvm::Type *ResTy = DstTy; 810 811 // An overflowing conversion has undefined behavior if either the source type 812 // or the destination type is a floating-point type. 813 if (CGF.SanOpts->FloatCastOverflow && 814 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 815 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, 816 DstTy); 817 818 // Cast to half via float 819 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType && 820 !CGF.getContext().getLangOpts().HalfArgsAndReturns) 821 DstTy = CGF.FloatTy; 822 823 if (isa<llvm::IntegerType>(SrcTy)) { 824 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 825 if (isa<llvm::IntegerType>(DstTy)) 826 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 827 else if (InputSigned) 828 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 829 else 830 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 831 } else if (isa<llvm::IntegerType>(DstTy)) { 832 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 833 if (DstType->isSignedIntegerOrEnumerationType()) 834 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 835 else 836 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 837 } else { 838 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 839 "Unknown real conversion"); 840 if (DstTy->getTypeID() < SrcTy->getTypeID()) 841 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 842 else 843 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 844 } 845 846 if (DstTy != ResTy) { 847 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 848 Res = Builder.CreateCall( 849 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 850 Res); 851 } 852 853 return Res; 854 } 855 856 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 857 /// type to the specified destination type, where the destination type is an 858 /// LLVM scalar type. 859 Value *ScalarExprEmitter:: 860 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 861 QualType SrcTy, QualType DstTy) { 862 // Get the source element type. 863 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 864 865 // Handle conversions to bool first, they are special: comparisons against 0. 866 if (DstTy->isBooleanType()) { 867 // Complex != 0 -> (Real != 0) | (Imag != 0) 868 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 869 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 870 return Builder.CreateOr(Src.first, Src.second, "tobool"); 871 } 872 873 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 874 // the imaginary part of the complex value is discarded and the value of the 875 // real part is converted according to the conversion rules for the 876 // corresponding real type. 877 return EmitScalarConversion(Src.first, SrcTy, DstTy); 878 } 879 880 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 881 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 882 } 883 884 /// \brief Emit a sanitization check for the given "binary" operation (which 885 /// might actually be a unary increment which has been lowered to a binary 886 /// operation). The check passes if \p Check, which is an \c i1, is \c true. 887 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) { 888 assert(CGF.IsSanitizerScope); 889 StringRef CheckName; 890 SmallVector<llvm::Constant *, 4> StaticData; 891 SmallVector<llvm::Value *, 2> DynamicData; 892 893 BinaryOperatorKind Opcode = Info.Opcode; 894 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 895 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 896 897 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 898 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 899 if (UO && UO->getOpcode() == UO_Minus) { 900 CheckName = "negate_overflow"; 901 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 902 DynamicData.push_back(Info.RHS); 903 } else { 904 if (BinaryOperator::isShiftOp(Opcode)) { 905 // Shift LHS negative or too large, or RHS out of bounds. 906 CheckName = "shift_out_of_bounds"; 907 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 908 StaticData.push_back( 909 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 910 StaticData.push_back( 911 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 912 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 913 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 914 CheckName = "divrem_overflow"; 915 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 916 } else { 917 // Signed arithmetic overflow (+, -, *). 918 switch (Opcode) { 919 case BO_Add: CheckName = "add_overflow"; break; 920 case BO_Sub: CheckName = "sub_overflow"; break; 921 case BO_Mul: CheckName = "mul_overflow"; break; 922 default: llvm_unreachable("unexpected opcode for bin op check"); 923 } 924 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 925 } 926 DynamicData.push_back(Info.LHS); 927 DynamicData.push_back(Info.RHS); 928 } 929 930 CGF.EmitCheck(Check, CheckName, StaticData, DynamicData, 931 CodeGenFunction::CRK_Recoverable); 932 } 933 934 //===----------------------------------------------------------------------===// 935 // Visitor Methods 936 //===----------------------------------------------------------------------===// 937 938 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 939 CGF.ErrorUnsupported(E, "scalar expression"); 940 if (E->getType()->isVoidType()) 941 return nullptr; 942 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 943 } 944 945 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 946 // Vector Mask Case 947 if (E->getNumSubExprs() == 2 || 948 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 949 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 950 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 951 Value *Mask; 952 953 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 954 unsigned LHSElts = LTy->getNumElements(); 955 956 if (E->getNumSubExprs() == 3) { 957 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 958 959 // Shuffle LHS & RHS into one input vector. 960 SmallVector<llvm::Constant*, 32> concat; 961 for (unsigned i = 0; i != LHSElts; ++i) { 962 concat.push_back(Builder.getInt32(2*i)); 963 concat.push_back(Builder.getInt32(2*i+1)); 964 } 965 966 Value* CV = llvm::ConstantVector::get(concat); 967 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 968 LHSElts *= 2; 969 } else { 970 Mask = RHS; 971 } 972 973 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 974 llvm::Constant* EltMask; 975 976 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 977 llvm::NextPowerOf2(LHSElts-1)-1); 978 979 // Mask off the high bits of each shuffle index. 980 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(), 981 EltMask); 982 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 983 984 // newv = undef 985 // mask = mask & maskbits 986 // for each elt 987 // n = extract mask i 988 // x = extract val n 989 // newv = insert newv, x, i 990 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 991 MTy->getNumElements()); 992 Value* NewV = llvm::UndefValue::get(RTy); 993 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 994 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 995 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 996 997 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 998 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 999 } 1000 return NewV; 1001 } 1002 1003 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1004 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1005 1006 SmallVector<llvm::Constant*, 32> indices; 1007 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1008 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1009 // Check for -1 and output it as undef in the IR. 1010 if (Idx.isSigned() && Idx.isAllOnesValue()) 1011 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1012 else 1013 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1014 } 1015 1016 Value *SV = llvm::ConstantVector::get(indices); 1017 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1018 } 1019 1020 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1021 QualType SrcType = E->getSrcExpr()->getType(), 1022 DstType = E->getType(); 1023 1024 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1025 1026 SrcType = CGF.getContext().getCanonicalType(SrcType); 1027 DstType = CGF.getContext().getCanonicalType(DstType); 1028 if (SrcType == DstType) return Src; 1029 1030 assert(SrcType->isVectorType() && 1031 "ConvertVector source type must be a vector"); 1032 assert(DstType->isVectorType() && 1033 "ConvertVector destination type must be a vector"); 1034 1035 llvm::Type *SrcTy = Src->getType(); 1036 llvm::Type *DstTy = ConvertType(DstType); 1037 1038 // Ignore conversions like int -> uint. 1039 if (SrcTy == DstTy) 1040 return Src; 1041 1042 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1043 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1044 1045 assert(SrcTy->isVectorTy() && 1046 "ConvertVector source IR type must be a vector"); 1047 assert(DstTy->isVectorTy() && 1048 "ConvertVector destination IR type must be a vector"); 1049 1050 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1051 *DstEltTy = DstTy->getVectorElementType(); 1052 1053 if (DstEltType->isBooleanType()) { 1054 assert((SrcEltTy->isFloatingPointTy() || 1055 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1056 1057 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1058 if (SrcEltTy->isFloatingPointTy()) { 1059 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1060 } else { 1061 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1062 } 1063 } 1064 1065 // We have the arithmetic types: real int/float. 1066 Value *Res = nullptr; 1067 1068 if (isa<llvm::IntegerType>(SrcEltTy)) { 1069 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1070 if (isa<llvm::IntegerType>(DstEltTy)) 1071 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1072 else if (InputSigned) 1073 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1074 else 1075 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1076 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1077 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1078 if (DstEltType->isSignedIntegerOrEnumerationType()) 1079 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1080 else 1081 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1082 } else { 1083 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1084 "Unknown real conversion"); 1085 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1086 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1087 else 1088 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1089 } 1090 1091 return Res; 1092 } 1093 1094 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1095 llvm::APSInt Value; 1096 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1097 if (E->isArrow()) 1098 CGF.EmitScalarExpr(E->getBase()); 1099 else 1100 EmitLValue(E->getBase()); 1101 return Builder.getInt(Value); 1102 } 1103 1104 return EmitLoadOfLValue(E); 1105 } 1106 1107 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1108 TestAndClearIgnoreResultAssign(); 1109 1110 // Emit subscript expressions in rvalue context's. For most cases, this just 1111 // loads the lvalue formed by the subscript expr. However, we have to be 1112 // careful, because the base of a vector subscript is occasionally an rvalue, 1113 // so we can't get it as an lvalue. 1114 if (!E->getBase()->getType()->isVectorType()) 1115 return EmitLoadOfLValue(E); 1116 1117 // Handle the vector case. The base must be a vector, the index must be an 1118 // integer value. 1119 Value *Base = Visit(E->getBase()); 1120 Value *Idx = Visit(E->getIdx()); 1121 QualType IdxTy = E->getIdx()->getType(); 1122 1123 if (CGF.SanOpts->ArrayBounds) 1124 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1125 1126 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1127 } 1128 1129 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1130 unsigned Off, llvm::Type *I32Ty) { 1131 int MV = SVI->getMaskValue(Idx); 1132 if (MV == -1) 1133 return llvm::UndefValue::get(I32Ty); 1134 return llvm::ConstantInt::get(I32Ty, Off+MV); 1135 } 1136 1137 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1138 bool Ignore = TestAndClearIgnoreResultAssign(); 1139 (void)Ignore; 1140 assert (Ignore == false && "init list ignored"); 1141 unsigned NumInitElements = E->getNumInits(); 1142 1143 if (E->hadArrayRangeDesignator()) 1144 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1145 1146 llvm::VectorType *VType = 1147 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1148 1149 if (!VType) { 1150 if (NumInitElements == 0) { 1151 // C++11 value-initialization for the scalar. 1152 return EmitNullValue(E->getType()); 1153 } 1154 // We have a scalar in braces. Just use the first element. 1155 return Visit(E->getInit(0)); 1156 } 1157 1158 unsigned ResElts = VType->getNumElements(); 1159 1160 // Loop over initializers collecting the Value for each, and remembering 1161 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1162 // us to fold the shuffle for the swizzle into the shuffle for the vector 1163 // initializer, since LLVM optimizers generally do not want to touch 1164 // shuffles. 1165 unsigned CurIdx = 0; 1166 bool VIsUndefShuffle = false; 1167 llvm::Value *V = llvm::UndefValue::get(VType); 1168 for (unsigned i = 0; i != NumInitElements; ++i) { 1169 Expr *IE = E->getInit(i); 1170 Value *Init = Visit(IE); 1171 SmallVector<llvm::Constant*, 16> Args; 1172 1173 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1174 1175 // Handle scalar elements. If the scalar initializer is actually one 1176 // element of a different vector of the same width, use shuffle instead of 1177 // extract+insert. 1178 if (!VVT) { 1179 if (isa<ExtVectorElementExpr>(IE)) { 1180 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1181 1182 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1183 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1184 Value *LHS = nullptr, *RHS = nullptr; 1185 if (CurIdx == 0) { 1186 // insert into undef -> shuffle (src, undef) 1187 Args.push_back(C); 1188 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1189 1190 LHS = EI->getVectorOperand(); 1191 RHS = V; 1192 VIsUndefShuffle = true; 1193 } else if (VIsUndefShuffle) { 1194 // insert into undefshuffle && size match -> shuffle (v, src) 1195 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1196 for (unsigned j = 0; j != CurIdx; ++j) 1197 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1198 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1199 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1200 1201 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1202 RHS = EI->getVectorOperand(); 1203 VIsUndefShuffle = false; 1204 } 1205 if (!Args.empty()) { 1206 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1207 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1208 ++CurIdx; 1209 continue; 1210 } 1211 } 1212 } 1213 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1214 "vecinit"); 1215 VIsUndefShuffle = false; 1216 ++CurIdx; 1217 continue; 1218 } 1219 1220 unsigned InitElts = VVT->getNumElements(); 1221 1222 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1223 // input is the same width as the vector being constructed, generate an 1224 // optimized shuffle of the swizzle input into the result. 1225 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1226 if (isa<ExtVectorElementExpr>(IE)) { 1227 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1228 Value *SVOp = SVI->getOperand(0); 1229 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1230 1231 if (OpTy->getNumElements() == ResElts) { 1232 for (unsigned j = 0; j != CurIdx; ++j) { 1233 // If the current vector initializer is a shuffle with undef, merge 1234 // this shuffle directly into it. 1235 if (VIsUndefShuffle) { 1236 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1237 CGF.Int32Ty)); 1238 } else { 1239 Args.push_back(Builder.getInt32(j)); 1240 } 1241 } 1242 for (unsigned j = 0, je = InitElts; j != je; ++j) 1243 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1244 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1245 1246 if (VIsUndefShuffle) 1247 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1248 1249 Init = SVOp; 1250 } 1251 } 1252 1253 // Extend init to result vector length, and then shuffle its contribution 1254 // to the vector initializer into V. 1255 if (Args.empty()) { 1256 for (unsigned j = 0; j != InitElts; ++j) 1257 Args.push_back(Builder.getInt32(j)); 1258 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1259 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1260 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1261 Mask, "vext"); 1262 1263 Args.clear(); 1264 for (unsigned j = 0; j != CurIdx; ++j) 1265 Args.push_back(Builder.getInt32(j)); 1266 for (unsigned j = 0; j != InitElts; ++j) 1267 Args.push_back(Builder.getInt32(j+Offset)); 1268 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1269 } 1270 1271 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1272 // merging subsequent shuffles into this one. 1273 if (CurIdx == 0) 1274 std::swap(V, Init); 1275 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1276 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1277 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1278 CurIdx += InitElts; 1279 } 1280 1281 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1282 // Emit remaining default initializers. 1283 llvm::Type *EltTy = VType->getElementType(); 1284 1285 // Emit remaining default initializers 1286 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1287 Value *Idx = Builder.getInt32(CurIdx); 1288 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1289 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1290 } 1291 return V; 1292 } 1293 1294 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 1295 const Expr *E = CE->getSubExpr(); 1296 1297 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1298 return false; 1299 1300 if (isa<CXXThisExpr>(E)) { 1301 // We always assume that 'this' is never null. 1302 return false; 1303 } 1304 1305 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1306 // And that glvalue casts are never null. 1307 if (ICE->getValueKind() != VK_RValue) 1308 return false; 1309 } 1310 1311 return true; 1312 } 1313 1314 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1315 // have to handle a more broad range of conversions than explicit casts, as they 1316 // handle things like function to ptr-to-function decay etc. 1317 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1318 Expr *E = CE->getSubExpr(); 1319 QualType DestTy = CE->getType(); 1320 CastKind Kind = CE->getCastKind(); 1321 1322 if (!DestTy->isVoidType()) 1323 TestAndClearIgnoreResultAssign(); 1324 1325 // Since almost all cast kinds apply to scalars, this switch doesn't have 1326 // a default case, so the compiler will warn on a missing case. The cases 1327 // are in the same order as in the CastKind enum. 1328 switch (Kind) { 1329 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1330 case CK_BuiltinFnToFnPtr: 1331 llvm_unreachable("builtin functions are handled elsewhere"); 1332 1333 case CK_LValueBitCast: 1334 case CK_ObjCObjectLValueCast: { 1335 Value *V = EmitLValue(E).getAddress(); 1336 V = Builder.CreateBitCast(V, 1337 ConvertType(CGF.getContext().getPointerType(DestTy))); 1338 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy), 1339 CE->getExprLoc()); 1340 } 1341 1342 case CK_CPointerToObjCPointerCast: 1343 case CK_BlockPointerToObjCPointerCast: 1344 case CK_AnyPointerToBlockPointerCast: 1345 case CK_BitCast: { 1346 Value *Src = Visit(const_cast<Expr*>(E)); 1347 llvm::Type *SrcTy = Src->getType(); 1348 llvm::Type *DstTy = ConvertType(DestTy); 1349 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1350 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1351 llvm::Type *MidTy = CGF.CGM.getDataLayout().getIntPtrType(SrcTy); 1352 return Builder.CreateIntToPtr(Builder.CreatePtrToInt(Src, MidTy), DstTy); 1353 } 1354 return Builder.CreateBitCast(Src, DstTy); 1355 } 1356 case CK_AddressSpaceConversion: { 1357 Value *Src = Visit(const_cast<Expr*>(E)); 1358 return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy)); 1359 } 1360 case CK_AtomicToNonAtomic: 1361 case CK_NonAtomicToAtomic: 1362 case CK_NoOp: 1363 case CK_UserDefinedConversion: 1364 return Visit(const_cast<Expr*>(E)); 1365 1366 case CK_BaseToDerived: { 1367 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1368 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1369 1370 llvm::Value *V = Visit(E); 1371 1372 llvm::Value *Derived = 1373 CGF.GetAddressOfDerivedClass(V, DerivedClassDecl, 1374 CE->path_begin(), CE->path_end(), 1375 ShouldNullCheckClassCastValue(CE)); 1376 1377 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1378 // performed and the object is not of the derived type. 1379 if (CGF.sanitizePerformTypeCheck()) 1380 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1381 Derived, DestTy->getPointeeType()); 1382 1383 return Derived; 1384 } 1385 case CK_UncheckedDerivedToBase: 1386 case CK_DerivedToBase: { 1387 const CXXRecordDecl *DerivedClassDecl = 1388 E->getType()->getPointeeCXXRecordDecl(); 1389 assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!"); 1390 1391 return CGF.GetAddressOfBaseClass( 1392 Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(), 1393 ShouldNullCheckClassCastValue(CE), CE->getExprLoc()); 1394 } 1395 case CK_Dynamic: { 1396 Value *V = Visit(const_cast<Expr*>(E)); 1397 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1398 return CGF.EmitDynamicCast(V, DCE); 1399 } 1400 1401 case CK_ArrayToPointerDecay: { 1402 assert(E->getType()->isArrayType() && 1403 "Array to pointer decay must have array source type!"); 1404 1405 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 1406 1407 // Note that VLA pointers are always decayed, so we don't need to do 1408 // anything here. 1409 if (!E->getType()->isVariableArrayType()) { 1410 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 1411 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) 1412 ->getElementType()) && 1413 "Expected pointer to array"); 1414 V = Builder.CreateStructGEP(V, 0, "arraydecay"); 1415 } 1416 1417 // Make sure the array decay ends up being the right type. This matters if 1418 // the array type was of an incomplete type. 1419 return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType())); 1420 } 1421 case CK_FunctionToPointerDecay: 1422 return EmitLValue(E).getAddress(); 1423 1424 case CK_NullToPointer: 1425 if (MustVisitNullValue(E)) 1426 (void) Visit(E); 1427 1428 return llvm::ConstantPointerNull::get( 1429 cast<llvm::PointerType>(ConvertType(DestTy))); 1430 1431 case CK_NullToMemberPointer: { 1432 if (MustVisitNullValue(E)) 1433 (void) Visit(E); 1434 1435 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1436 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1437 } 1438 1439 case CK_ReinterpretMemberPointer: 1440 case CK_BaseToDerivedMemberPointer: 1441 case CK_DerivedToBaseMemberPointer: { 1442 Value *Src = Visit(E); 1443 1444 // Note that the AST doesn't distinguish between checked and 1445 // unchecked member pointer conversions, so we always have to 1446 // implement checked conversions here. This is inefficient when 1447 // actual control flow may be required in order to perform the 1448 // check, which it is for data member pointers (but not member 1449 // function pointers on Itanium and ARM). 1450 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1451 } 1452 1453 case CK_ARCProduceObject: 1454 return CGF.EmitARCRetainScalarExpr(E); 1455 case CK_ARCConsumeObject: 1456 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1457 case CK_ARCReclaimReturnedObject: { 1458 llvm::Value *value = Visit(E); 1459 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1460 return CGF.EmitObjCConsumeObject(E->getType(), value); 1461 } 1462 case CK_ARCExtendBlockObject: 1463 return CGF.EmitARCExtendBlockObject(E); 1464 1465 case CK_CopyAndAutoreleaseBlockObject: 1466 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1467 1468 case CK_FloatingRealToComplex: 1469 case CK_FloatingComplexCast: 1470 case CK_IntegralRealToComplex: 1471 case CK_IntegralComplexCast: 1472 case CK_IntegralComplexToFloatingComplex: 1473 case CK_FloatingComplexToIntegralComplex: 1474 case CK_ConstructorConversion: 1475 case CK_ToUnion: 1476 llvm_unreachable("scalar cast to non-scalar value"); 1477 1478 case CK_LValueToRValue: 1479 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1480 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1481 return Visit(const_cast<Expr*>(E)); 1482 1483 case CK_IntegralToPointer: { 1484 Value *Src = Visit(const_cast<Expr*>(E)); 1485 1486 // First, convert to the correct width so that we control the kind of 1487 // extension. 1488 llvm::Type *MiddleTy = CGF.IntPtrTy; 1489 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1490 llvm::Value* IntResult = 1491 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1492 1493 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1494 } 1495 case CK_PointerToIntegral: 1496 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1497 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1498 1499 case CK_ToVoid: { 1500 CGF.EmitIgnoredExpr(E); 1501 return nullptr; 1502 } 1503 case CK_VectorSplat: { 1504 llvm::Type *DstTy = ConvertType(DestTy); 1505 Value *Elt = Visit(const_cast<Expr*>(E)); 1506 Elt = EmitScalarConversion(Elt, E->getType(), 1507 DestTy->getAs<VectorType>()->getElementType()); 1508 1509 // Splat the element across to all elements 1510 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1511 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1512 } 1513 1514 case CK_IntegralCast: 1515 case CK_IntegralToFloating: 1516 case CK_FloatingToIntegral: 1517 case CK_FloatingCast: 1518 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 1519 case CK_IntegralToBoolean: 1520 return EmitIntToBoolConversion(Visit(E)); 1521 case CK_PointerToBoolean: 1522 return EmitPointerToBoolConversion(Visit(E)); 1523 case CK_FloatingToBoolean: 1524 return EmitFloatToBoolConversion(Visit(E)); 1525 case CK_MemberPointerToBoolean: { 1526 llvm::Value *MemPtr = Visit(E); 1527 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1528 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1529 } 1530 1531 case CK_FloatingComplexToReal: 1532 case CK_IntegralComplexToReal: 1533 return CGF.EmitComplexExpr(E, false, true).first; 1534 1535 case CK_FloatingComplexToBoolean: 1536 case CK_IntegralComplexToBoolean: { 1537 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1538 1539 // TODO: kill this function off, inline appropriate case here 1540 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 1541 } 1542 1543 case CK_ZeroToOCLEvent: { 1544 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1545 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1546 } 1547 1548 } 1549 1550 llvm_unreachable("unknown scalar cast"); 1551 } 1552 1553 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1554 CodeGenFunction::StmtExprEvaluation eval(CGF); 1555 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1556 !E->getType()->isVoidType()); 1557 if (!RetAlloca) 1558 return nullptr; 1559 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1560 E->getExprLoc()); 1561 } 1562 1563 //===----------------------------------------------------------------------===// 1564 // Unary Operators 1565 //===----------------------------------------------------------------------===// 1566 1567 llvm::Value *ScalarExprEmitter:: 1568 EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 1569 llvm::Value *InVal, 1570 llvm::Value *NextVal, bool IsInc) { 1571 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1572 case LangOptions::SOB_Defined: 1573 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1574 case LangOptions::SOB_Undefined: 1575 if (!CGF.SanOpts->SignedIntegerOverflow) 1576 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1577 // Fall through. 1578 case LangOptions::SOB_Trapping: 1579 BinOpInfo BinOp; 1580 BinOp.LHS = InVal; 1581 BinOp.RHS = NextVal; 1582 BinOp.Ty = E->getType(); 1583 BinOp.Opcode = BO_Add; 1584 BinOp.FPContractable = false; 1585 BinOp.E = E; 1586 return EmitOverflowCheckedBinOp(BinOp); 1587 } 1588 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1589 } 1590 1591 llvm::Value * 1592 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1593 bool isInc, bool isPre) { 1594 1595 QualType type = E->getSubExpr()->getType(); 1596 llvm::PHINode *atomicPHI = nullptr; 1597 llvm::Value *value; 1598 llvm::Value *input; 1599 1600 int amount = (isInc ? 1 : -1); 1601 1602 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1603 type = atomicTy->getValueType(); 1604 if (isInc && type->isBooleanType()) { 1605 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1606 if (isPre) { 1607 Builder.Insert(new llvm::StoreInst(True, 1608 LV.getAddress(), LV.isVolatileQualified(), 1609 LV.getAlignment().getQuantity(), 1610 llvm::SequentiallyConsistent)); 1611 return Builder.getTrue(); 1612 } 1613 // For atomic bool increment, we just store true and return it for 1614 // preincrement, do an atomic swap with true for postincrement 1615 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1616 LV.getAddress(), True, llvm::SequentiallyConsistent); 1617 } 1618 // Special case for atomic increment / decrement on integers, emit 1619 // atomicrmw instructions. We skip this if we want to be doing overflow 1620 // checking, and fall into the slow path with the atomic cmpxchg loop. 1621 if (!type->isBooleanType() && type->isIntegerType() && 1622 !(type->isUnsignedIntegerType() && 1623 CGF.SanOpts->UnsignedIntegerOverflow) && 1624 CGF.getLangOpts().getSignedOverflowBehavior() != 1625 LangOptions::SOB_Trapping) { 1626 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1627 llvm::AtomicRMWInst::Sub; 1628 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1629 llvm::Instruction::Sub; 1630 llvm::Value *amt = CGF.EmitToMemory( 1631 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1632 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1633 LV.getAddress(), amt, llvm::SequentiallyConsistent); 1634 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1635 } 1636 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1637 input = value; 1638 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1639 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1640 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1641 value = CGF.EmitToMemory(value, type); 1642 Builder.CreateBr(opBB); 1643 Builder.SetInsertPoint(opBB); 1644 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1645 atomicPHI->addIncoming(value, startBB); 1646 value = atomicPHI; 1647 } else { 1648 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1649 input = value; 1650 } 1651 1652 // Special case of integer increment that we have to check first: bool++. 1653 // Due to promotion rules, we get: 1654 // bool++ -> bool = bool + 1 1655 // -> bool = (int)bool + 1 1656 // -> bool = ((int)bool + 1 != 0) 1657 // An interesting aspect of this is that increment is always true. 1658 // Decrement does not have this property. 1659 if (isInc && type->isBooleanType()) { 1660 value = Builder.getTrue(); 1661 1662 // Most common case by far: integer increment. 1663 } else if (type->isIntegerType()) { 1664 1665 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1666 1667 // Note that signed integer inc/dec with width less than int can't 1668 // overflow because of promotion rules; we're just eliding a few steps here. 1669 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1670 CGF.IntTy->getIntegerBitWidth(); 1671 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1672 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc); 1673 } else if (CanOverflow && type->isUnsignedIntegerType() && 1674 CGF.SanOpts->UnsignedIntegerOverflow) { 1675 BinOpInfo BinOp; 1676 BinOp.LHS = value; 1677 BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 1678 BinOp.Ty = E->getType(); 1679 BinOp.Opcode = isInc ? BO_Add : BO_Sub; 1680 BinOp.FPContractable = false; 1681 BinOp.E = E; 1682 value = EmitOverflowCheckedBinOp(BinOp); 1683 } else 1684 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1685 1686 // Next most common: pointer increment. 1687 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1688 QualType type = ptr->getPointeeType(); 1689 1690 // VLA types don't have constant size. 1691 if (const VariableArrayType *vla 1692 = CGF.getContext().getAsVariableArrayType(type)) { 1693 llvm::Value *numElts = CGF.getVLASize(vla).first; 1694 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1695 if (CGF.getLangOpts().isSignedOverflowDefined()) 1696 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1697 else 1698 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1699 1700 // Arithmetic on function pointers (!) is just +-1. 1701 } else if (type->isFunctionType()) { 1702 llvm::Value *amt = Builder.getInt32(amount); 1703 1704 value = CGF.EmitCastToVoidPtr(value); 1705 if (CGF.getLangOpts().isSignedOverflowDefined()) 1706 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1707 else 1708 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1709 value = Builder.CreateBitCast(value, input->getType()); 1710 1711 // For everything else, we can just do a simple increment. 1712 } else { 1713 llvm::Value *amt = Builder.getInt32(amount); 1714 if (CGF.getLangOpts().isSignedOverflowDefined()) 1715 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1716 else 1717 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1718 } 1719 1720 // Vector increment/decrement. 1721 } else if (type->isVectorType()) { 1722 if (type->hasIntegerRepresentation()) { 1723 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1724 1725 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1726 } else { 1727 value = Builder.CreateFAdd( 1728 value, 1729 llvm::ConstantFP::get(value->getType(), amount), 1730 isInc ? "inc" : "dec"); 1731 } 1732 1733 // Floating point. 1734 } else if (type->isRealFloatingType()) { 1735 // Add the inc/dec to the real part. 1736 llvm::Value *amt; 1737 1738 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType && 1739 !CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1740 // Another special case: half FP increment should be done via float 1741 value = Builder.CreateCall( 1742 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1743 CGF.CGM.FloatTy), 1744 input); 1745 } 1746 1747 if (value->getType()->isFloatTy()) 1748 amt = llvm::ConstantFP::get(VMContext, 1749 llvm::APFloat(static_cast<float>(amount))); 1750 else if (value->getType()->isDoubleTy()) 1751 amt = llvm::ConstantFP::get(VMContext, 1752 llvm::APFloat(static_cast<double>(amount))); 1753 else { 1754 llvm::APFloat F(static_cast<float>(amount)); 1755 bool ignored; 1756 F.convert(CGF.getTarget().getLongDoubleFormat(), 1757 llvm::APFloat::rmTowardZero, &ignored); 1758 amt = llvm::ConstantFP::get(VMContext, F); 1759 } 1760 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1761 1762 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType && 1763 !CGF.getContext().getLangOpts().HalfArgsAndReturns) 1764 value = Builder.CreateCall( 1765 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 1766 CGF.CGM.FloatTy), 1767 value); 1768 1769 // Objective-C pointer types. 1770 } else { 1771 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1772 value = CGF.EmitCastToVoidPtr(value); 1773 1774 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1775 if (!isInc) size = -size; 1776 llvm::Value *sizeValue = 1777 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1778 1779 if (CGF.getLangOpts().isSignedOverflowDefined()) 1780 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1781 else 1782 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1783 value = Builder.CreateBitCast(value, input->getType()); 1784 } 1785 1786 if (atomicPHI) { 1787 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1788 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1789 llvm::Value *pair = Builder.CreateAtomicCmpXchg( 1790 LV.getAddress(), atomicPHI, CGF.EmitToMemory(value, type), 1791 llvm::SequentiallyConsistent, llvm::SequentiallyConsistent); 1792 llvm::Value *old = Builder.CreateExtractValue(pair, 0); 1793 llvm::Value *success = Builder.CreateExtractValue(pair, 1); 1794 atomicPHI->addIncoming(old, opBB); 1795 Builder.CreateCondBr(success, contBB, opBB); 1796 Builder.SetInsertPoint(contBB); 1797 return isPre ? value : input; 1798 } 1799 1800 // Store the updated result through the lvalue. 1801 if (LV.isBitField()) 1802 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1803 else 1804 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1805 1806 // If this is a postinc, return the value read from memory, otherwise use the 1807 // updated value. 1808 return isPre ? value : input; 1809 } 1810 1811 1812 1813 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1814 TestAndClearIgnoreResultAssign(); 1815 // Emit unary minus with EmitSub so we handle overflow cases etc. 1816 BinOpInfo BinOp; 1817 BinOp.RHS = Visit(E->getSubExpr()); 1818 1819 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1820 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1821 else 1822 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1823 BinOp.Ty = E->getType(); 1824 BinOp.Opcode = BO_Sub; 1825 BinOp.FPContractable = false; 1826 BinOp.E = E; 1827 return EmitSub(BinOp); 1828 } 1829 1830 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1831 TestAndClearIgnoreResultAssign(); 1832 Value *Op = Visit(E->getSubExpr()); 1833 return Builder.CreateNot(Op, "neg"); 1834 } 1835 1836 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1837 // Perform vector logical not on comparison with zero vector. 1838 if (E->getType()->isExtVectorType()) { 1839 Value *Oper = Visit(E->getSubExpr()); 1840 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1841 Value *Result; 1842 if (Oper->getType()->isFPOrFPVectorTy()) 1843 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1844 else 1845 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1846 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1847 } 1848 1849 // Compare operand to zero. 1850 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1851 1852 // Invert value. 1853 // TODO: Could dynamically modify easy computations here. For example, if 1854 // the operand is an icmp ne, turn into icmp eq. 1855 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1856 1857 // ZExt result to the expr type. 1858 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1859 } 1860 1861 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1862 // Try folding the offsetof to a constant. 1863 llvm::APSInt Value; 1864 if (E->EvaluateAsInt(Value, CGF.getContext())) 1865 return Builder.getInt(Value); 1866 1867 // Loop over the components of the offsetof to compute the value. 1868 unsigned n = E->getNumComponents(); 1869 llvm::Type* ResultType = ConvertType(E->getType()); 1870 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1871 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1872 for (unsigned i = 0; i != n; ++i) { 1873 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1874 llvm::Value *Offset = nullptr; 1875 switch (ON.getKind()) { 1876 case OffsetOfExpr::OffsetOfNode::Array: { 1877 // Compute the index 1878 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1879 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1880 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1881 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1882 1883 // Save the element type 1884 CurrentType = 1885 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1886 1887 // Compute the element size 1888 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1889 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1890 1891 // Multiply out to compute the result 1892 Offset = Builder.CreateMul(Idx, ElemSize); 1893 break; 1894 } 1895 1896 case OffsetOfExpr::OffsetOfNode::Field: { 1897 FieldDecl *MemberDecl = ON.getField(); 1898 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1899 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1900 1901 // Compute the index of the field in its parent. 1902 unsigned i = 0; 1903 // FIXME: It would be nice if we didn't have to loop here! 1904 for (RecordDecl::field_iterator Field = RD->field_begin(), 1905 FieldEnd = RD->field_end(); 1906 Field != FieldEnd; ++Field, ++i) { 1907 if (*Field == MemberDecl) 1908 break; 1909 } 1910 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1911 1912 // Compute the offset to the field 1913 int64_t OffsetInt = RL.getFieldOffset(i) / 1914 CGF.getContext().getCharWidth(); 1915 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1916 1917 // Save the element type. 1918 CurrentType = MemberDecl->getType(); 1919 break; 1920 } 1921 1922 case OffsetOfExpr::OffsetOfNode::Identifier: 1923 llvm_unreachable("dependent __builtin_offsetof"); 1924 1925 case OffsetOfExpr::OffsetOfNode::Base: { 1926 if (ON.getBase()->isVirtual()) { 1927 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1928 continue; 1929 } 1930 1931 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1932 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1933 1934 // Save the element type. 1935 CurrentType = ON.getBase()->getType(); 1936 1937 // Compute the offset to the base. 1938 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1939 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1940 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1941 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1942 break; 1943 } 1944 } 1945 Result = Builder.CreateAdd(Result, Offset); 1946 } 1947 return Result; 1948 } 1949 1950 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 1951 /// argument of the sizeof expression as an integer. 1952 Value * 1953 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 1954 const UnaryExprOrTypeTraitExpr *E) { 1955 QualType TypeToSize = E->getTypeOfArgument(); 1956 if (E->getKind() == UETT_SizeOf) { 1957 if (const VariableArrayType *VAT = 1958 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 1959 if (E->isArgumentType()) { 1960 // sizeof(type) - make sure to emit the VLA size. 1961 CGF.EmitVariablyModifiedType(TypeToSize); 1962 } else { 1963 // C99 6.5.3.4p2: If the argument is an expression of type 1964 // VLA, it is evaluated. 1965 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 1966 } 1967 1968 QualType eltType; 1969 llvm::Value *numElts; 1970 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 1971 1972 llvm::Value *size = numElts; 1973 1974 // Scale the number of non-VLA elements by the non-VLA element size. 1975 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 1976 if (!eltSize.isOne()) 1977 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 1978 1979 return size; 1980 } 1981 } 1982 1983 // If this isn't sizeof(vla), the result must be constant; use the constant 1984 // folding logic so we don't have to duplicate it here. 1985 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 1986 } 1987 1988 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 1989 Expr *Op = E->getSubExpr(); 1990 if (Op->getType()->isAnyComplexType()) { 1991 // If it's an l-value, load through the appropriate subobject l-value. 1992 // Note that we have to ask E because Op might be an l-value that 1993 // this won't work for, e.g. an Obj-C property. 1994 if (E->isGLValue()) 1995 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 1996 E->getExprLoc()).getScalarVal(); 1997 1998 // Otherwise, calculate and project. 1999 return CGF.EmitComplexExpr(Op, false, true).first; 2000 } 2001 2002 return Visit(Op); 2003 } 2004 2005 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2006 Expr *Op = E->getSubExpr(); 2007 if (Op->getType()->isAnyComplexType()) { 2008 // If it's an l-value, load through the appropriate subobject l-value. 2009 // Note that we have to ask E because Op might be an l-value that 2010 // this won't work for, e.g. an Obj-C property. 2011 if (Op->isGLValue()) 2012 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2013 E->getExprLoc()).getScalarVal(); 2014 2015 // Otherwise, calculate and project. 2016 return CGF.EmitComplexExpr(Op, true, false).second; 2017 } 2018 2019 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2020 // effects are evaluated, but not the actual value. 2021 if (Op->isGLValue()) 2022 CGF.EmitLValue(Op); 2023 else 2024 CGF.EmitScalarExpr(Op, true); 2025 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2026 } 2027 2028 //===----------------------------------------------------------------------===// 2029 // Binary Operators 2030 //===----------------------------------------------------------------------===// 2031 2032 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2033 TestAndClearIgnoreResultAssign(); 2034 BinOpInfo Result; 2035 Result.LHS = Visit(E->getLHS()); 2036 Result.RHS = Visit(E->getRHS()); 2037 Result.Ty = E->getType(); 2038 Result.Opcode = E->getOpcode(); 2039 Result.FPContractable = E->isFPContractable(); 2040 Result.E = E; 2041 return Result; 2042 } 2043 2044 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2045 const CompoundAssignOperator *E, 2046 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2047 Value *&Result) { 2048 QualType LHSTy = E->getLHS()->getType(); 2049 BinOpInfo OpInfo; 2050 2051 if (E->getComputationResultType()->isAnyComplexType()) 2052 return CGF.EmitScalarCompooundAssignWithComplex(E, Result); 2053 2054 // Emit the RHS first. __block variables need to have the rhs evaluated 2055 // first, plus this should improve codegen a little. 2056 OpInfo.RHS = Visit(E->getRHS()); 2057 OpInfo.Ty = E->getComputationResultType(); 2058 OpInfo.Opcode = E->getOpcode(); 2059 OpInfo.FPContractable = false; 2060 OpInfo.E = E; 2061 // Load/convert the LHS. 2062 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2063 2064 llvm::PHINode *atomicPHI = nullptr; 2065 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2066 QualType type = atomicTy->getValueType(); 2067 if (!type->isBooleanType() && type->isIntegerType() && 2068 !(type->isUnsignedIntegerType() && 2069 CGF.SanOpts->UnsignedIntegerOverflow) && 2070 CGF.getLangOpts().getSignedOverflowBehavior() != 2071 LangOptions::SOB_Trapping) { 2072 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2073 switch (OpInfo.Opcode) { 2074 // We don't have atomicrmw operands for *, %, /, <<, >> 2075 case BO_MulAssign: case BO_DivAssign: 2076 case BO_RemAssign: 2077 case BO_ShlAssign: 2078 case BO_ShrAssign: 2079 break; 2080 case BO_AddAssign: 2081 aop = llvm::AtomicRMWInst::Add; 2082 break; 2083 case BO_SubAssign: 2084 aop = llvm::AtomicRMWInst::Sub; 2085 break; 2086 case BO_AndAssign: 2087 aop = llvm::AtomicRMWInst::And; 2088 break; 2089 case BO_XorAssign: 2090 aop = llvm::AtomicRMWInst::Xor; 2091 break; 2092 case BO_OrAssign: 2093 aop = llvm::AtomicRMWInst::Or; 2094 break; 2095 default: 2096 llvm_unreachable("Invalid compound assignment type"); 2097 } 2098 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2099 llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS, 2100 E->getRHS()->getType(), LHSTy), LHSTy); 2101 Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt, 2102 llvm::SequentiallyConsistent); 2103 return LHSLV; 2104 } 2105 } 2106 // FIXME: For floating point types, we should be saving and restoring the 2107 // floating point environment in the loop. 2108 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2109 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2110 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2111 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2112 Builder.CreateBr(opBB); 2113 Builder.SetInsertPoint(opBB); 2114 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2115 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2116 OpInfo.LHS = atomicPHI; 2117 } 2118 else 2119 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2120 2121 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 2122 E->getComputationLHSType()); 2123 2124 // Expand the binary operator. 2125 Result = (this->*Func)(OpInfo); 2126 2127 // Convert the result back to the LHS type. 2128 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 2129 2130 if (atomicPHI) { 2131 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2132 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2133 llvm::Value *pair = Builder.CreateAtomicCmpXchg( 2134 LHSLV.getAddress(), atomicPHI, CGF.EmitToMemory(Result, LHSTy), 2135 llvm::SequentiallyConsistent, llvm::SequentiallyConsistent); 2136 llvm::Value *old = Builder.CreateExtractValue(pair, 0); 2137 llvm::Value *success = Builder.CreateExtractValue(pair, 1); 2138 atomicPHI->addIncoming(old, opBB); 2139 Builder.CreateCondBr(success, contBB, opBB); 2140 Builder.SetInsertPoint(contBB); 2141 return LHSLV; 2142 } 2143 2144 // Store the result value into the LHS lvalue. Bit-fields are handled 2145 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2146 // 'An assignment expression has the value of the left operand after the 2147 // assignment...'. 2148 if (LHSLV.isBitField()) 2149 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2150 else 2151 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2152 2153 return LHSLV; 2154 } 2155 2156 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2157 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2158 bool Ignore = TestAndClearIgnoreResultAssign(); 2159 Value *RHS; 2160 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2161 2162 // If the result is clearly ignored, return now. 2163 if (Ignore) 2164 return nullptr; 2165 2166 // The result of an assignment in C is the assigned r-value. 2167 if (!CGF.getLangOpts().CPlusPlus) 2168 return RHS; 2169 2170 // If the lvalue is non-volatile, return the computed value of the assignment. 2171 if (!LHS.isVolatileQualified()) 2172 return RHS; 2173 2174 // Otherwise, reload the value. 2175 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2176 } 2177 2178 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2179 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2180 llvm::Value *Cond = nullptr; 2181 2182 if (CGF.SanOpts->IntegerDivideByZero) 2183 Cond = Builder.CreateICmpNE(Ops.RHS, Zero); 2184 2185 if (CGF.SanOpts->SignedIntegerOverflow && 2186 Ops.Ty->hasSignedIntegerRepresentation()) { 2187 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2188 2189 llvm::Value *IntMin = 2190 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2191 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2192 2193 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2194 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2195 llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2196 Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow; 2197 } 2198 2199 if (Cond) 2200 EmitBinOpCheck(Cond, Ops); 2201 } 2202 2203 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2204 { 2205 CodeGenFunction::SanitizerScope SanScope(&CGF); 2206 if ((CGF.SanOpts->IntegerDivideByZero || 2207 CGF.SanOpts->SignedIntegerOverflow) && 2208 Ops.Ty->isIntegerType()) { 2209 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2210 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2211 } else if (CGF.SanOpts->FloatDivideByZero && 2212 Ops.Ty->isRealFloatingType()) { 2213 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2214 EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops); 2215 } 2216 } 2217 2218 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2219 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2220 if (CGF.getLangOpts().OpenCL) { 2221 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2222 llvm::Type *ValTy = Val->getType(); 2223 if (ValTy->isFloatTy() || 2224 (isa<llvm::VectorType>(ValTy) && 2225 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2226 CGF.SetFPAccuracy(Val, 2.5); 2227 } 2228 return Val; 2229 } 2230 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2231 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2232 else 2233 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2234 } 2235 2236 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2237 // Rem in C can't be a floating point type: C99 6.5.5p2. 2238 if (CGF.SanOpts->IntegerDivideByZero) { 2239 CodeGenFunction::SanitizerScope SanScope(&CGF); 2240 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2241 2242 if (Ops.Ty->isIntegerType()) 2243 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2244 } 2245 2246 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2247 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2248 else 2249 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2250 } 2251 2252 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2253 unsigned IID; 2254 unsigned OpID = 0; 2255 2256 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2257 switch (Ops.Opcode) { 2258 case BO_Add: 2259 case BO_AddAssign: 2260 OpID = 1; 2261 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2262 llvm::Intrinsic::uadd_with_overflow; 2263 break; 2264 case BO_Sub: 2265 case BO_SubAssign: 2266 OpID = 2; 2267 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2268 llvm::Intrinsic::usub_with_overflow; 2269 break; 2270 case BO_Mul: 2271 case BO_MulAssign: 2272 OpID = 3; 2273 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2274 llvm::Intrinsic::umul_with_overflow; 2275 break; 2276 default: 2277 llvm_unreachable("Unsupported operation for overflow detection"); 2278 } 2279 OpID <<= 1; 2280 if (isSigned) 2281 OpID |= 1; 2282 2283 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2284 2285 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2286 2287 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); 2288 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2289 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2290 2291 // Handle overflow with llvm.trap if no custom handler has been specified. 2292 const std::string *handlerName = 2293 &CGF.getLangOpts().OverflowHandler; 2294 if (handlerName->empty()) { 2295 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2296 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2297 if (!isSigned || CGF.SanOpts->SignedIntegerOverflow) { 2298 CodeGenFunction::SanitizerScope SanScope(&CGF); 2299 EmitBinOpCheck(Builder.CreateNot(overflow), Ops); 2300 } else 2301 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2302 return result; 2303 } 2304 2305 // Branch in case of overflow. 2306 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2307 llvm::Function::iterator insertPt = initialBB; 2308 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2309 std::next(insertPt)); 2310 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2311 2312 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2313 2314 // If an overflow handler is set, then we want to call it and then use its 2315 // result, if it returns. 2316 Builder.SetInsertPoint(overflowBB); 2317 2318 // Get the overflow handler. 2319 llvm::Type *Int8Ty = CGF.Int8Ty; 2320 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2321 llvm::FunctionType *handlerTy = 2322 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2323 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2324 2325 // Sign extend the args to 64-bit, so that we can use the same handler for 2326 // all types of overflow. 2327 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2328 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2329 2330 // Call the handler with the two arguments, the operation, and the size of 2331 // the result. 2332 llvm::Value *handlerArgs[] = { 2333 lhs, 2334 rhs, 2335 Builder.getInt8(OpID), 2336 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2337 }; 2338 llvm::Value *handlerResult = 2339 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2340 2341 // Truncate the result back to the desired size. 2342 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2343 Builder.CreateBr(continueBB); 2344 2345 Builder.SetInsertPoint(continueBB); 2346 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2347 phi->addIncoming(result, initialBB); 2348 phi->addIncoming(handlerResult, overflowBB); 2349 2350 return phi; 2351 } 2352 2353 /// Emit pointer + index arithmetic. 2354 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2355 const BinOpInfo &op, 2356 bool isSubtraction) { 2357 // Must have binary (not unary) expr here. Unary pointer 2358 // increment/decrement doesn't use this path. 2359 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2360 2361 Value *pointer = op.LHS; 2362 Expr *pointerOperand = expr->getLHS(); 2363 Value *index = op.RHS; 2364 Expr *indexOperand = expr->getRHS(); 2365 2366 // In a subtraction, the LHS is always the pointer. 2367 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2368 std::swap(pointer, index); 2369 std::swap(pointerOperand, indexOperand); 2370 } 2371 2372 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2373 if (width != CGF.PointerWidthInBits) { 2374 // Zero-extend or sign-extend the pointer value according to 2375 // whether the index is signed or not. 2376 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2377 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2378 "idx.ext"); 2379 } 2380 2381 // If this is subtraction, negate the index. 2382 if (isSubtraction) 2383 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2384 2385 if (CGF.SanOpts->ArrayBounds) 2386 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2387 /*Accessed*/ false); 2388 2389 const PointerType *pointerType 2390 = pointerOperand->getType()->getAs<PointerType>(); 2391 if (!pointerType) { 2392 QualType objectType = pointerOperand->getType() 2393 ->castAs<ObjCObjectPointerType>() 2394 ->getPointeeType(); 2395 llvm::Value *objectSize 2396 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2397 2398 index = CGF.Builder.CreateMul(index, objectSize); 2399 2400 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2401 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2402 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2403 } 2404 2405 QualType elementType = pointerType->getPointeeType(); 2406 if (const VariableArrayType *vla 2407 = CGF.getContext().getAsVariableArrayType(elementType)) { 2408 // The element count here is the total number of non-VLA elements. 2409 llvm::Value *numElements = CGF.getVLASize(vla).first; 2410 2411 // Effectively, the multiply by the VLA size is part of the GEP. 2412 // GEP indexes are signed, and scaling an index isn't permitted to 2413 // signed-overflow, so we use the same semantics for our explicit 2414 // multiply. We suppress this if overflow is not undefined behavior. 2415 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2416 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2417 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2418 } else { 2419 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2420 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2421 } 2422 return pointer; 2423 } 2424 2425 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2426 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2427 // future proof. 2428 if (elementType->isVoidType() || elementType->isFunctionType()) { 2429 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2430 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2431 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2432 } 2433 2434 if (CGF.getLangOpts().isSignedOverflowDefined()) 2435 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2436 2437 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2438 } 2439 2440 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2441 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2442 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2443 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2444 // efficient operations. 2445 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2446 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2447 bool negMul, bool negAdd) { 2448 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2449 2450 Value *MulOp0 = MulOp->getOperand(0); 2451 Value *MulOp1 = MulOp->getOperand(1); 2452 if (negMul) { 2453 MulOp0 = 2454 Builder.CreateFSub( 2455 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2456 "neg"); 2457 } else if (negAdd) { 2458 Addend = 2459 Builder.CreateFSub( 2460 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2461 "neg"); 2462 } 2463 2464 Value *FMulAdd = 2465 Builder.CreateCall3( 2466 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2467 MulOp0, MulOp1, Addend); 2468 MulOp->eraseFromParent(); 2469 2470 return FMulAdd; 2471 } 2472 2473 // Check whether it would be legal to emit an fmuladd intrinsic call to 2474 // represent op and if so, build the fmuladd. 2475 // 2476 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2477 // Does NOT check the type of the operation - it's assumed that this function 2478 // will be called from contexts where it's known that the type is contractable. 2479 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2480 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2481 bool isSub=false) { 2482 2483 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2484 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2485 "Only fadd/fsub can be the root of an fmuladd."); 2486 2487 // Check whether this op is marked as fusable. 2488 if (!op.FPContractable) 2489 return nullptr; 2490 2491 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2492 // either disabled, or handled entirely by the LLVM backend). 2493 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2494 return nullptr; 2495 2496 // We have a potentially fusable op. Look for a mul on one of the operands. 2497 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2498 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2499 assert(LHSBinOp->getNumUses() == 0 && 2500 "Operations with multiple uses shouldn't be contracted."); 2501 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2502 } 2503 } else if (llvm::BinaryOperator* RHSBinOp = 2504 dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2505 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2506 assert(RHSBinOp->getNumUses() == 0 && 2507 "Operations with multiple uses shouldn't be contracted."); 2508 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2509 } 2510 } 2511 2512 return nullptr; 2513 } 2514 2515 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2516 if (op.LHS->getType()->isPointerTy() || 2517 op.RHS->getType()->isPointerTy()) 2518 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2519 2520 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2521 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2522 case LangOptions::SOB_Defined: 2523 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2524 case LangOptions::SOB_Undefined: 2525 if (!CGF.SanOpts->SignedIntegerOverflow) 2526 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2527 // Fall through. 2528 case LangOptions::SOB_Trapping: 2529 return EmitOverflowCheckedBinOp(op); 2530 } 2531 } 2532 2533 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2534 return EmitOverflowCheckedBinOp(op); 2535 2536 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2537 // Try to form an fmuladd. 2538 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2539 return FMulAdd; 2540 2541 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2542 } 2543 2544 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2545 } 2546 2547 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2548 // The LHS is always a pointer if either side is. 2549 if (!op.LHS->getType()->isPointerTy()) { 2550 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2551 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2552 case LangOptions::SOB_Defined: 2553 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2554 case LangOptions::SOB_Undefined: 2555 if (!CGF.SanOpts->SignedIntegerOverflow) 2556 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2557 // Fall through. 2558 case LangOptions::SOB_Trapping: 2559 return EmitOverflowCheckedBinOp(op); 2560 } 2561 } 2562 2563 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2564 return EmitOverflowCheckedBinOp(op); 2565 2566 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2567 // Try to form an fmuladd. 2568 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2569 return FMulAdd; 2570 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2571 } 2572 2573 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2574 } 2575 2576 // If the RHS is not a pointer, then we have normal pointer 2577 // arithmetic. 2578 if (!op.RHS->getType()->isPointerTy()) 2579 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2580 2581 // Otherwise, this is a pointer subtraction. 2582 2583 // Do the raw subtraction part. 2584 llvm::Value *LHS 2585 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2586 llvm::Value *RHS 2587 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2588 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2589 2590 // Okay, figure out the element size. 2591 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2592 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2593 2594 llvm::Value *divisor = nullptr; 2595 2596 // For a variable-length array, this is going to be non-constant. 2597 if (const VariableArrayType *vla 2598 = CGF.getContext().getAsVariableArrayType(elementType)) { 2599 llvm::Value *numElements; 2600 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2601 2602 divisor = numElements; 2603 2604 // Scale the number of non-VLA elements by the non-VLA element size. 2605 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2606 if (!eltSize.isOne()) 2607 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2608 2609 // For everything elese, we can just compute it, safe in the 2610 // assumption that Sema won't let anything through that we can't 2611 // safely compute the size of. 2612 } else { 2613 CharUnits elementSize; 2614 // Handle GCC extension for pointer arithmetic on void* and 2615 // function pointer types. 2616 if (elementType->isVoidType() || elementType->isFunctionType()) 2617 elementSize = CharUnits::One(); 2618 else 2619 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2620 2621 // Don't even emit the divide for element size of 1. 2622 if (elementSize.isOne()) 2623 return diffInChars; 2624 2625 divisor = CGF.CGM.getSize(elementSize); 2626 } 2627 2628 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2629 // pointer difference in C is only defined in the case where both operands 2630 // are pointing to elements of an array. 2631 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2632 } 2633 2634 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2635 llvm::IntegerType *Ty; 2636 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2637 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2638 else 2639 Ty = cast<llvm::IntegerType>(LHS->getType()); 2640 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2641 } 2642 2643 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2644 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2645 // RHS to the same size as the LHS. 2646 Value *RHS = Ops.RHS; 2647 if (Ops.LHS->getType() != RHS->getType()) 2648 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2649 2650 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2651 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2652 CodeGenFunction::SanitizerScope SanScope(&CGF); 2653 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2654 llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne); 2655 2656 if (Ops.Ty->hasSignedIntegerRepresentation()) { 2657 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2658 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2659 llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check"); 2660 Builder.CreateCondBr(Valid, CheckBitsShifted, Cont); 2661 2662 // Check whether we are shifting any non-zero bits off the top of the 2663 // integer. 2664 CGF.EmitBlock(CheckBitsShifted); 2665 llvm::Value *BitsShiftedOff = 2666 Builder.CreateLShr(Ops.LHS, 2667 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2668 /*NUW*/true, /*NSW*/true), 2669 "shl.check"); 2670 if (CGF.getLangOpts().CPlusPlus) { 2671 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2672 // Under C++11's rules, shifting a 1 bit into the sign bit is 2673 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2674 // define signed left shifts, so we use the C99 and C++11 rules there). 2675 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2676 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2677 } 2678 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2679 llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2680 CGF.EmitBlock(Cont); 2681 llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2); 2682 P->addIncoming(Valid, Orig); 2683 P->addIncoming(SecondCheck, CheckBitsShifted); 2684 Valid = P; 2685 } 2686 2687 EmitBinOpCheck(Valid, Ops); 2688 } 2689 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2690 if (CGF.getLangOpts().OpenCL) 2691 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2692 2693 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2694 } 2695 2696 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2697 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2698 // RHS to the same size as the LHS. 2699 Value *RHS = Ops.RHS; 2700 if (Ops.LHS->getType() != RHS->getType()) 2701 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2702 2703 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2704 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2705 CodeGenFunction::SanitizerScope SanScope(&CGF); 2706 EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops); 2707 } 2708 2709 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2710 if (CGF.getLangOpts().OpenCL) 2711 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2712 2713 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2714 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2715 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2716 } 2717 2718 enum IntrinsicType { VCMPEQ, VCMPGT }; 2719 // return corresponding comparison intrinsic for given vector type 2720 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2721 BuiltinType::Kind ElemKind) { 2722 switch (ElemKind) { 2723 default: llvm_unreachable("unexpected element type"); 2724 case BuiltinType::Char_U: 2725 case BuiltinType::UChar: 2726 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2727 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2728 case BuiltinType::Char_S: 2729 case BuiltinType::SChar: 2730 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2731 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2732 case BuiltinType::UShort: 2733 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2734 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2735 case BuiltinType::Short: 2736 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2737 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2738 case BuiltinType::UInt: 2739 case BuiltinType::ULong: 2740 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2741 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2742 case BuiltinType::Int: 2743 case BuiltinType::Long: 2744 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2745 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2746 case BuiltinType::Float: 2747 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2748 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2749 } 2750 } 2751 2752 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2753 unsigned SICmpOpc, unsigned FCmpOpc) { 2754 TestAndClearIgnoreResultAssign(); 2755 Value *Result; 2756 QualType LHSTy = E->getLHS()->getType(); 2757 QualType RHSTy = E->getRHS()->getType(); 2758 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2759 assert(E->getOpcode() == BO_EQ || 2760 E->getOpcode() == BO_NE); 2761 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2762 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2763 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2764 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2765 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 2766 Value *LHS = Visit(E->getLHS()); 2767 Value *RHS = Visit(E->getRHS()); 2768 2769 // If AltiVec, the comparison results in a numeric type, so we use 2770 // intrinsics comparing vectors and giving 0 or 1 as a result 2771 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2772 // constants for mapping CR6 register bits to predicate result 2773 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2774 2775 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2776 2777 // in several cases vector arguments order will be reversed 2778 Value *FirstVecArg = LHS, 2779 *SecondVecArg = RHS; 2780 2781 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2782 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2783 BuiltinType::Kind ElementKind = BTy->getKind(); 2784 2785 switch(E->getOpcode()) { 2786 default: llvm_unreachable("is not a comparison operation"); 2787 case BO_EQ: 2788 CR6 = CR6_LT; 2789 ID = GetIntrinsic(VCMPEQ, ElementKind); 2790 break; 2791 case BO_NE: 2792 CR6 = CR6_EQ; 2793 ID = GetIntrinsic(VCMPEQ, ElementKind); 2794 break; 2795 case BO_LT: 2796 CR6 = CR6_LT; 2797 ID = GetIntrinsic(VCMPGT, ElementKind); 2798 std::swap(FirstVecArg, SecondVecArg); 2799 break; 2800 case BO_GT: 2801 CR6 = CR6_LT; 2802 ID = GetIntrinsic(VCMPGT, ElementKind); 2803 break; 2804 case BO_LE: 2805 if (ElementKind == BuiltinType::Float) { 2806 CR6 = CR6_LT; 2807 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2808 std::swap(FirstVecArg, SecondVecArg); 2809 } 2810 else { 2811 CR6 = CR6_EQ; 2812 ID = GetIntrinsic(VCMPGT, ElementKind); 2813 } 2814 break; 2815 case BO_GE: 2816 if (ElementKind == BuiltinType::Float) { 2817 CR6 = CR6_LT; 2818 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2819 } 2820 else { 2821 CR6 = CR6_EQ; 2822 ID = GetIntrinsic(VCMPGT, ElementKind); 2823 std::swap(FirstVecArg, SecondVecArg); 2824 } 2825 break; 2826 } 2827 2828 Value *CR6Param = Builder.getInt32(CR6); 2829 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2830 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, ""); 2831 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2832 } 2833 2834 if (LHS->getType()->isFPOrFPVectorTy()) { 2835 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2836 LHS, RHS, "cmp"); 2837 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2838 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2839 LHS, RHS, "cmp"); 2840 } else { 2841 // Unsigned integers and pointers. 2842 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2843 LHS, RHS, "cmp"); 2844 } 2845 2846 // If this is a vector comparison, sign extend the result to the appropriate 2847 // vector integer type and return it (don't convert to bool). 2848 if (LHSTy->isVectorType()) 2849 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2850 2851 } else { 2852 // Complex Comparison: can only be an equality comparison. 2853 CodeGenFunction::ComplexPairTy LHS, RHS; 2854 QualType CETy; 2855 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 2856 LHS = CGF.EmitComplexExpr(E->getLHS()); 2857 CETy = CTy->getElementType(); 2858 } else { 2859 LHS.first = Visit(E->getLHS()); 2860 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 2861 CETy = LHSTy; 2862 } 2863 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 2864 RHS = CGF.EmitComplexExpr(E->getRHS()); 2865 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 2866 CTy->getElementType()) && 2867 "The element types must always match."); 2868 (void)CTy; 2869 } else { 2870 RHS.first = Visit(E->getRHS()); 2871 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 2872 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 2873 "The element types must always match."); 2874 } 2875 2876 Value *ResultR, *ResultI; 2877 if (CETy->isRealFloatingType()) { 2878 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2879 LHS.first, RHS.first, "cmp.r"); 2880 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2881 LHS.second, RHS.second, "cmp.i"); 2882 } else { 2883 // Complex comparisons can only be equality comparisons. As such, signed 2884 // and unsigned opcodes are the same. 2885 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2886 LHS.first, RHS.first, "cmp.r"); 2887 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2888 LHS.second, RHS.second, "cmp.i"); 2889 } 2890 2891 if (E->getOpcode() == BO_EQ) { 2892 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2893 } else { 2894 assert(E->getOpcode() == BO_NE && 2895 "Complex comparison other than == or != ?"); 2896 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2897 } 2898 } 2899 2900 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2901 } 2902 2903 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2904 bool Ignore = TestAndClearIgnoreResultAssign(); 2905 2906 Value *RHS; 2907 LValue LHS; 2908 2909 switch (E->getLHS()->getType().getObjCLifetime()) { 2910 case Qualifiers::OCL_Strong: 2911 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2912 break; 2913 2914 case Qualifiers::OCL_Autoreleasing: 2915 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 2916 break; 2917 2918 case Qualifiers::OCL_Weak: 2919 RHS = Visit(E->getRHS()); 2920 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2921 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 2922 break; 2923 2924 // No reason to do any of these differently. 2925 case Qualifiers::OCL_None: 2926 case Qualifiers::OCL_ExplicitNone: 2927 // __block variables need to have the rhs evaluated first, plus 2928 // this should improve codegen just a little. 2929 RHS = Visit(E->getRHS()); 2930 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2931 2932 // Store the value into the LHS. Bit-fields are handled specially 2933 // because the result is altered by the store, i.e., [C99 6.5.16p1] 2934 // 'An assignment expression has the value of the left operand after 2935 // the assignment...'. 2936 if (LHS.isBitField()) 2937 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 2938 else 2939 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 2940 } 2941 2942 // If the result is clearly ignored, return now. 2943 if (Ignore) 2944 return nullptr; 2945 2946 // The result of an assignment in C is the assigned r-value. 2947 if (!CGF.getLangOpts().CPlusPlus) 2948 return RHS; 2949 2950 // If the lvalue is non-volatile, return the computed value of the assignment. 2951 if (!LHS.isVolatileQualified()) 2952 return RHS; 2953 2954 // Otherwise, reload the value. 2955 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2956 } 2957 2958 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 2959 RegionCounter Cnt = CGF.getPGORegionCounter(E); 2960 2961 // Perform vector logical and on comparisons with zero vectors. 2962 if (E->getType()->isVectorType()) { 2963 Cnt.beginRegion(Builder); 2964 2965 Value *LHS = Visit(E->getLHS()); 2966 Value *RHS = Visit(E->getRHS()); 2967 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2968 if (LHS->getType()->isFPOrFPVectorTy()) { 2969 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 2970 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 2971 } else { 2972 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2973 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2974 } 2975 Value *And = Builder.CreateAnd(LHS, RHS); 2976 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 2977 } 2978 2979 llvm::Type *ResTy = ConvertType(E->getType()); 2980 2981 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 2982 // If we have 1 && X, just emit X without inserting the control flow. 2983 bool LHSCondVal; 2984 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2985 if (LHSCondVal) { // If we have 1 && X, just emit X. 2986 Cnt.beginRegion(Builder); 2987 2988 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2989 // ZExt result to int or bool. 2990 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 2991 } 2992 2993 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 2994 if (!CGF.ContainsLabel(E->getRHS())) 2995 return llvm::Constant::getNullValue(ResTy); 2996 } 2997 2998 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 2999 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3000 3001 CodeGenFunction::ConditionalEvaluation eval(CGF); 3002 3003 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3004 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, Cnt.getCount()); 3005 3006 // Any edges into the ContBlock are now from an (indeterminate number of) 3007 // edges from this first condition. All of these values will be false. Start 3008 // setting up the PHI node in the Cont Block for this. 3009 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3010 "", ContBlock); 3011 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3012 PI != PE; ++PI) 3013 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3014 3015 eval.begin(CGF); 3016 CGF.EmitBlock(RHSBlock); 3017 Cnt.beginRegion(Builder); 3018 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3019 eval.end(CGF); 3020 3021 // Reaquire the RHS block, as there may be subblocks inserted. 3022 RHSBlock = Builder.GetInsertBlock(); 3023 3024 // Emit an unconditional branch from this block to ContBlock. 3025 { 3026 // There is no need to emit line number for unconditional branch. 3027 SuppressDebugLocation S(Builder); 3028 CGF.EmitBlock(ContBlock); 3029 } 3030 // Insert an entry into the phi node for the edge with the value of RHSCond. 3031 PN->addIncoming(RHSCond, RHSBlock); 3032 3033 // ZExt result to int. 3034 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3035 } 3036 3037 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3038 RegionCounter Cnt = CGF.getPGORegionCounter(E); 3039 3040 // Perform vector logical or on comparisons with zero vectors. 3041 if (E->getType()->isVectorType()) { 3042 Cnt.beginRegion(Builder); 3043 3044 Value *LHS = Visit(E->getLHS()); 3045 Value *RHS = Visit(E->getRHS()); 3046 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3047 if (LHS->getType()->isFPOrFPVectorTy()) { 3048 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3049 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3050 } else { 3051 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3052 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3053 } 3054 Value *Or = Builder.CreateOr(LHS, RHS); 3055 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3056 } 3057 3058 llvm::Type *ResTy = ConvertType(E->getType()); 3059 3060 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3061 // If we have 0 || X, just emit X without inserting the control flow. 3062 bool LHSCondVal; 3063 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3064 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3065 Cnt.beginRegion(Builder); 3066 3067 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3068 // ZExt result to int or bool. 3069 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3070 } 3071 3072 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3073 if (!CGF.ContainsLabel(E->getRHS())) 3074 return llvm::ConstantInt::get(ResTy, 1); 3075 } 3076 3077 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3078 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3079 3080 CodeGenFunction::ConditionalEvaluation eval(CGF); 3081 3082 // Branch on the LHS first. If it is true, go to the success (cont) block. 3083 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3084 Cnt.getParentCount() - Cnt.getCount()); 3085 3086 // Any edges into the ContBlock are now from an (indeterminate number of) 3087 // edges from this first condition. All of these values will be true. Start 3088 // setting up the PHI node in the Cont Block for this. 3089 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3090 "", ContBlock); 3091 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3092 PI != PE; ++PI) 3093 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3094 3095 eval.begin(CGF); 3096 3097 // Emit the RHS condition as a bool value. 3098 CGF.EmitBlock(RHSBlock); 3099 Cnt.beginRegion(Builder); 3100 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3101 3102 eval.end(CGF); 3103 3104 // Reaquire the RHS block, as there may be subblocks inserted. 3105 RHSBlock = Builder.GetInsertBlock(); 3106 3107 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3108 // into the phi node for the edge with the value of RHSCond. 3109 CGF.EmitBlock(ContBlock); 3110 PN->addIncoming(RHSCond, RHSBlock); 3111 3112 // ZExt result to int. 3113 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3114 } 3115 3116 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3117 CGF.EmitIgnoredExpr(E->getLHS()); 3118 CGF.EnsureInsertPoint(); 3119 return Visit(E->getRHS()); 3120 } 3121 3122 //===----------------------------------------------------------------------===// 3123 // Other Operators 3124 //===----------------------------------------------------------------------===// 3125 3126 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3127 /// expression is cheap enough and side-effect-free enough to evaluate 3128 /// unconditionally instead of conditionally. This is used to convert control 3129 /// flow into selects in some cases. 3130 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3131 CodeGenFunction &CGF) { 3132 // Anything that is an integer or floating point constant is fine. 3133 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3134 3135 // Even non-volatile automatic variables can't be evaluated unconditionally. 3136 // Referencing a thread_local may cause non-trivial initialization work to 3137 // occur. If we're inside a lambda and one of the variables is from the scope 3138 // outside the lambda, that function may have returned already. Reading its 3139 // locals is a bad idea. Also, these reads may introduce races there didn't 3140 // exist in the source-level program. 3141 } 3142 3143 3144 Value *ScalarExprEmitter:: 3145 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3146 TestAndClearIgnoreResultAssign(); 3147 3148 // Bind the common expression if necessary. 3149 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3150 RegionCounter Cnt = CGF.getPGORegionCounter(E); 3151 3152 Expr *condExpr = E->getCond(); 3153 Expr *lhsExpr = E->getTrueExpr(); 3154 Expr *rhsExpr = E->getFalseExpr(); 3155 3156 // If the condition constant folds and can be elided, try to avoid emitting 3157 // the condition and the dead arm. 3158 bool CondExprBool; 3159 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3160 Expr *live = lhsExpr, *dead = rhsExpr; 3161 if (!CondExprBool) std::swap(live, dead); 3162 3163 // If the dead side doesn't have labels we need, just emit the Live part. 3164 if (!CGF.ContainsLabel(dead)) { 3165 if (CondExprBool) 3166 Cnt.beginRegion(Builder); 3167 Value *Result = Visit(live); 3168 3169 // If the live part is a throw expression, it acts like it has a void 3170 // type, so evaluating it returns a null Value*. However, a conditional 3171 // with non-void type must return a non-null Value*. 3172 if (!Result && !E->getType()->isVoidType()) 3173 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3174 3175 return Result; 3176 } 3177 } 3178 3179 // OpenCL: If the condition is a vector, we can treat this condition like 3180 // the select function. 3181 if (CGF.getLangOpts().OpenCL 3182 && condExpr->getType()->isVectorType()) { 3183 Cnt.beginRegion(Builder); 3184 3185 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3186 llvm::Value *LHS = Visit(lhsExpr); 3187 llvm::Value *RHS = Visit(rhsExpr); 3188 3189 llvm::Type *condType = ConvertType(condExpr->getType()); 3190 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3191 3192 unsigned numElem = vecTy->getNumElements(); 3193 llvm::Type *elemType = vecTy->getElementType(); 3194 3195 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3196 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3197 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3198 llvm::VectorType::get(elemType, 3199 numElem), 3200 "sext"); 3201 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3202 3203 // Cast float to int to perform ANDs if necessary. 3204 llvm::Value *RHSTmp = RHS; 3205 llvm::Value *LHSTmp = LHS; 3206 bool wasCast = false; 3207 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3208 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3209 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3210 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3211 wasCast = true; 3212 } 3213 3214 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3215 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3216 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3217 if (wasCast) 3218 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3219 3220 return tmp5; 3221 } 3222 3223 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3224 // select instead of as control flow. We can only do this if it is cheap and 3225 // safe to evaluate the LHS and RHS unconditionally. 3226 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3227 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3228 Cnt.beginRegion(Builder); 3229 3230 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3231 llvm::Value *LHS = Visit(lhsExpr); 3232 llvm::Value *RHS = Visit(rhsExpr); 3233 if (!LHS) { 3234 // If the conditional has void type, make sure we return a null Value*. 3235 assert(!RHS && "LHS and RHS types must match"); 3236 return nullptr; 3237 } 3238 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3239 } 3240 3241 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3242 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3243 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3244 3245 CodeGenFunction::ConditionalEvaluation eval(CGF); 3246 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, Cnt.getCount()); 3247 3248 CGF.EmitBlock(LHSBlock); 3249 Cnt.beginRegion(Builder); 3250 eval.begin(CGF); 3251 Value *LHS = Visit(lhsExpr); 3252 eval.end(CGF); 3253 3254 LHSBlock = Builder.GetInsertBlock(); 3255 Builder.CreateBr(ContBlock); 3256 3257 CGF.EmitBlock(RHSBlock); 3258 eval.begin(CGF); 3259 Value *RHS = Visit(rhsExpr); 3260 eval.end(CGF); 3261 3262 RHSBlock = Builder.GetInsertBlock(); 3263 CGF.EmitBlock(ContBlock); 3264 3265 // If the LHS or RHS is a throw expression, it will be legitimately null. 3266 if (!LHS) 3267 return RHS; 3268 if (!RHS) 3269 return LHS; 3270 3271 // Create a PHI node for the real part. 3272 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3273 PN->addIncoming(LHS, LHSBlock); 3274 PN->addIncoming(RHS, RHSBlock); 3275 return PN; 3276 } 3277 3278 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3279 return Visit(E->getChosenSubExpr()); 3280 } 3281 3282 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3283 QualType Ty = VE->getType(); 3284 if (Ty->isVariablyModifiedType()) 3285 CGF.EmitVariablyModifiedType(Ty); 3286 3287 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 3288 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 3289 3290 // If EmitVAArg fails, we fall back to the LLVM instruction. 3291 if (!ArgPtr) 3292 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); 3293 3294 // FIXME Volatility. 3295 return Builder.CreateLoad(ArgPtr); 3296 } 3297 3298 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3299 return CGF.EmitBlockLiteral(block); 3300 } 3301 3302 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3303 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3304 llvm::Type *DstTy = ConvertType(E->getType()); 3305 3306 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3307 // a shuffle vector instead of a bitcast. 3308 llvm::Type *SrcTy = Src->getType(); 3309 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3310 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3311 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3312 if ((numElementsDst == 3 && numElementsSrc == 4) 3313 || (numElementsDst == 4 && numElementsSrc == 3)) { 3314 3315 3316 // In the case of going from int4->float3, a bitcast is needed before 3317 // doing a shuffle. 3318 llvm::Type *srcElemTy = 3319 cast<llvm::VectorType>(SrcTy)->getElementType(); 3320 llvm::Type *dstElemTy = 3321 cast<llvm::VectorType>(DstTy)->getElementType(); 3322 3323 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3324 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3325 // Create a float type of the same size as the source or destination. 3326 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3327 numElementsSrc); 3328 3329 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3330 } 3331 3332 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3333 3334 SmallVector<llvm::Constant*, 3> Args; 3335 Args.push_back(Builder.getInt32(0)); 3336 Args.push_back(Builder.getInt32(1)); 3337 Args.push_back(Builder.getInt32(2)); 3338 3339 if (numElementsDst == 4) 3340 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3341 3342 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3343 3344 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3345 } 3346 } 3347 3348 return Builder.CreateBitCast(Src, DstTy, "astype"); 3349 } 3350 3351 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3352 return CGF.EmitAtomicExpr(E).getScalarVal(); 3353 } 3354 3355 //===----------------------------------------------------------------------===// 3356 // Entry Point into this File 3357 //===----------------------------------------------------------------------===// 3358 3359 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 3360 /// type, ignoring the result. 3361 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3362 assert(E && hasScalarEvaluationKind(E->getType()) && 3363 "Invalid scalar expression to emit"); 3364 3365 if (isa<CXXDefaultArgExpr>(E)) 3366 disableDebugInfo(); 3367 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign) 3368 .Visit(const_cast<Expr*>(E)); 3369 if (isa<CXXDefaultArgExpr>(E)) 3370 enableDebugInfo(); 3371 return V; 3372 } 3373 3374 /// EmitScalarConversion - Emit a conversion from the specified type to the 3375 /// specified destination type, both of which are LLVM scalar types. 3376 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3377 QualType DstTy) { 3378 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3379 "Invalid scalar expression to emit"); 3380 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 3381 } 3382 3383 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 3384 /// type to the specified destination type, where the destination type is an 3385 /// LLVM scalar type. 3386 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3387 QualType SrcTy, 3388 QualType DstTy) { 3389 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3390 "Invalid complex -> scalar conversion"); 3391 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 3392 DstTy); 3393 } 3394 3395 3396 llvm::Value *CodeGenFunction:: 3397 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3398 bool isInc, bool isPre) { 3399 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3400 } 3401 3402 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3403 llvm::Value *V; 3404 // object->isa or (*object).isa 3405 // Generate code as for: *(Class*)object 3406 // build Class* type 3407 llvm::Type *ClassPtrTy = ConvertType(E->getType()); 3408 3409 Expr *BaseExpr = E->getBase(); 3410 if (BaseExpr->isRValue()) { 3411 V = CreateMemTemp(E->getType(), "resval"); 3412 llvm::Value *Src = EmitScalarExpr(BaseExpr); 3413 Builder.CreateStore(Src, V); 3414 V = ScalarExprEmitter(*this).EmitLoadOfLValue( 3415 MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc()); 3416 } else { 3417 if (E->isArrow()) 3418 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 3419 else 3420 V = EmitLValue(BaseExpr).getAddress(); 3421 } 3422 3423 // build Class* type 3424 ClassPtrTy = ClassPtrTy->getPointerTo(); 3425 V = Builder.CreateBitCast(V, ClassPtrTy); 3426 return MakeNaturalAlignAddrLValue(V, E->getType()); 3427 } 3428 3429 3430 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3431 const CompoundAssignOperator *E) { 3432 ScalarExprEmitter Scalar(*this); 3433 Value *Result = nullptr; 3434 switch (E->getOpcode()) { 3435 #define COMPOUND_OP(Op) \ 3436 case BO_##Op##Assign: \ 3437 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3438 Result) 3439 COMPOUND_OP(Mul); 3440 COMPOUND_OP(Div); 3441 COMPOUND_OP(Rem); 3442 COMPOUND_OP(Add); 3443 COMPOUND_OP(Sub); 3444 COMPOUND_OP(Shl); 3445 COMPOUND_OP(Shr); 3446 COMPOUND_OP(And); 3447 COMPOUND_OP(Xor); 3448 COMPOUND_OP(Or); 3449 #undef COMPOUND_OP 3450 3451 case BO_PtrMemD: 3452 case BO_PtrMemI: 3453 case BO_Mul: 3454 case BO_Div: 3455 case BO_Rem: 3456 case BO_Add: 3457 case BO_Sub: 3458 case BO_Shl: 3459 case BO_Shr: 3460 case BO_LT: 3461 case BO_GT: 3462 case BO_LE: 3463 case BO_GE: 3464 case BO_EQ: 3465 case BO_NE: 3466 case BO_And: 3467 case BO_Xor: 3468 case BO_Or: 3469 case BO_LAnd: 3470 case BO_LOr: 3471 case BO_Assign: 3472 case BO_Comma: 3473 llvm_unreachable("Not valid compound assignment operators"); 3474 } 3475 3476 llvm_unreachable("Unhandled compound assignment operator"); 3477 } 3478