1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/Support/CFG.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   bool FPContractable;
49   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
50 };
51 
52 static bool MustVisitNullValue(const Expr *E) {
53   // If a null pointer expression's type is the C++0x nullptr_t, then
54   // it's not necessarily a simple constant and it must be evaluated
55   // for its potential side effects.
56   return E->getType()->isNullPtrType();
57 }
58 
59 class ScalarExprEmitter
60   : public StmtVisitor<ScalarExprEmitter, Value*> {
61   CodeGenFunction &CGF;
62   CGBuilderTy &Builder;
63   bool IgnoreResultAssign;
64   llvm::LLVMContext &VMContext;
65 public:
66 
67   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
68     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
69       VMContext(cgf.getLLVMContext()) {
70   }
71 
72   //===--------------------------------------------------------------------===//
73   //                               Utilities
74   //===--------------------------------------------------------------------===//
75 
76   bool TestAndClearIgnoreResultAssign() {
77     bool I = IgnoreResultAssign;
78     IgnoreResultAssign = false;
79     return I;
80   }
81 
82   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
83   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
84   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
85     return CGF.EmitCheckedLValue(E, TCK);
86   }
87 
88   void EmitBinOpCheck(Value *Check, const BinOpInfo &Info);
89 
90   Value *EmitLoadOfLValue(LValue LV) {
91     return CGF.EmitLoadOfLValue(LV).getScalarVal();
92   }
93 
94   /// EmitLoadOfLValue - Given an expression with complex type that represents a
95   /// value l-value, this method emits the address of the l-value, then loads
96   /// and returns the result.
97   Value *EmitLoadOfLValue(const Expr *E) {
98     return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load));
99   }
100 
101   /// EmitConversionToBool - Convert the specified expression value to a
102   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
103   Value *EmitConversionToBool(Value *Src, QualType DstTy);
104 
105   /// \brief Emit a check that a conversion to or from a floating-point type
106   /// does not overflow.
107   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
108                                 Value *Src, QualType SrcType,
109                                 QualType DstType, llvm::Type *DstTy);
110 
111   /// EmitScalarConversion - Emit a conversion from the specified type to the
112   /// specified destination type, both of which are LLVM scalar types.
113   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
114 
115   /// EmitComplexToScalarConversion - Emit a conversion from the specified
116   /// complex type to the specified destination type, where the destination type
117   /// is an LLVM scalar type.
118   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
119                                        QualType SrcTy, QualType DstTy);
120 
121   /// EmitNullValue - Emit a value that corresponds to null for the given type.
122   Value *EmitNullValue(QualType Ty);
123 
124   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
125   Value *EmitFloatToBoolConversion(Value *V) {
126     // Compare against 0.0 for fp scalars.
127     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
128     return Builder.CreateFCmpUNE(V, Zero, "tobool");
129   }
130 
131   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
132   Value *EmitPointerToBoolConversion(Value *V) {
133     Value *Zero = llvm::ConstantPointerNull::get(
134                                       cast<llvm::PointerType>(V->getType()));
135     return Builder.CreateICmpNE(V, Zero, "tobool");
136   }
137 
138   Value *EmitIntToBoolConversion(Value *V) {
139     // Because of the type rules of C, we often end up computing a
140     // logical value, then zero extending it to int, then wanting it
141     // as a logical value again.  Optimize this common case.
142     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
143       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
144         Value *Result = ZI->getOperand(0);
145         // If there aren't any more uses, zap the instruction to save space.
146         // Note that there can be more uses, for example if this
147         // is the result of an assignment.
148         if (ZI->use_empty())
149           ZI->eraseFromParent();
150         return Result;
151       }
152     }
153 
154     return Builder.CreateIsNotNull(V, "tobool");
155   }
156 
157   //===--------------------------------------------------------------------===//
158   //                            Visitor Methods
159   //===--------------------------------------------------------------------===//
160 
161   Value *Visit(Expr *E) {
162     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
163   }
164 
165   Value *VisitStmt(Stmt *S) {
166     S->dump(CGF.getContext().getSourceManager());
167     llvm_unreachable("Stmt can't have complex result type!");
168   }
169   Value *VisitExpr(Expr *S);
170 
171   Value *VisitParenExpr(ParenExpr *PE) {
172     return Visit(PE->getSubExpr());
173   }
174   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
175     return Visit(E->getReplacement());
176   }
177   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
178     return Visit(GE->getResultExpr());
179   }
180 
181   // Leaves.
182   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
183     return Builder.getInt(E->getValue());
184   }
185   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
186     return llvm::ConstantFP::get(VMContext, E->getValue());
187   }
188   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
189     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
190   }
191   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
192     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
193   }
194   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
195     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
196   }
197   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
198     return EmitNullValue(E->getType());
199   }
200   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
201     return EmitNullValue(E->getType());
202   }
203   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
204   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
205   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
206     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
207     return Builder.CreateBitCast(V, ConvertType(E->getType()));
208   }
209 
210   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
211     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
212   }
213 
214   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
215     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
216   }
217 
218   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
219     if (E->isGLValue())
220       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
221 
222     // Otherwise, assume the mapping is the scalar directly.
223     return CGF.getOpaqueRValueMapping(E).getScalarVal();
224   }
225 
226   // l-values.
227   Value *VisitDeclRefExpr(DeclRefExpr *E) {
228     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
229       if (result.isReference())
230         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E));
231       return result.getValue();
232     }
233     return EmitLoadOfLValue(E);
234   }
235 
236   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
237     return CGF.EmitObjCSelectorExpr(E);
238   }
239   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
240     return CGF.EmitObjCProtocolExpr(E);
241   }
242   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
243     return EmitLoadOfLValue(E);
244   }
245   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
246     if (E->getMethodDecl() &&
247         E->getMethodDecl()->getResultType()->isReferenceType())
248       return EmitLoadOfLValue(E);
249     return CGF.EmitObjCMessageExpr(E).getScalarVal();
250   }
251 
252   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
253     LValue LV = CGF.EmitObjCIsaExpr(E);
254     Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
255     return V;
256   }
257 
258   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
259   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
260   Value *VisitMemberExpr(MemberExpr *E);
261   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
262   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
263     return EmitLoadOfLValue(E);
264   }
265 
266   Value *VisitInitListExpr(InitListExpr *E);
267 
268   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
269     return EmitNullValue(E->getType());
270   }
271   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
272     if (E->getType()->isVariablyModifiedType())
273       CGF.EmitVariablyModifiedType(E->getType());
274     return VisitCastExpr(E);
275   }
276   Value *VisitCastExpr(CastExpr *E);
277 
278   Value *VisitCallExpr(const CallExpr *E) {
279     if (E->getCallReturnType()->isReferenceType())
280       return EmitLoadOfLValue(E);
281 
282     return CGF.EmitCallExpr(E).getScalarVal();
283   }
284 
285   Value *VisitStmtExpr(const StmtExpr *E);
286 
287   // Unary Operators.
288   Value *VisitUnaryPostDec(const UnaryOperator *E) {
289     LValue LV = EmitLValue(E->getSubExpr());
290     return EmitScalarPrePostIncDec(E, LV, false, false);
291   }
292   Value *VisitUnaryPostInc(const UnaryOperator *E) {
293     LValue LV = EmitLValue(E->getSubExpr());
294     return EmitScalarPrePostIncDec(E, LV, true, false);
295   }
296   Value *VisitUnaryPreDec(const UnaryOperator *E) {
297     LValue LV = EmitLValue(E->getSubExpr());
298     return EmitScalarPrePostIncDec(E, LV, false, true);
299   }
300   Value *VisitUnaryPreInc(const UnaryOperator *E) {
301     LValue LV = EmitLValue(E->getSubExpr());
302     return EmitScalarPrePostIncDec(E, LV, true, true);
303   }
304 
305   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
306                                                llvm::Value *InVal,
307                                                llvm::Value *NextVal,
308                                                bool IsInc);
309 
310   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
311                                        bool isInc, bool isPre);
312 
313 
314   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
315     if (isa<MemberPointerType>(E->getType())) // never sugared
316       return CGF.CGM.getMemberPointerConstant(E);
317 
318     return EmitLValue(E->getSubExpr()).getAddress();
319   }
320   Value *VisitUnaryDeref(const UnaryOperator *E) {
321     if (E->getType()->isVoidType())
322       return Visit(E->getSubExpr()); // the actual value should be unused
323     return EmitLoadOfLValue(E);
324   }
325   Value *VisitUnaryPlus(const UnaryOperator *E) {
326     // This differs from gcc, though, most likely due to a bug in gcc.
327     TestAndClearIgnoreResultAssign();
328     return Visit(E->getSubExpr());
329   }
330   Value *VisitUnaryMinus    (const UnaryOperator *E);
331   Value *VisitUnaryNot      (const UnaryOperator *E);
332   Value *VisitUnaryLNot     (const UnaryOperator *E);
333   Value *VisitUnaryReal     (const UnaryOperator *E);
334   Value *VisitUnaryImag     (const UnaryOperator *E);
335   Value *VisitUnaryExtension(const UnaryOperator *E) {
336     return Visit(E->getSubExpr());
337   }
338 
339   // C++
340   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
341     return EmitLoadOfLValue(E);
342   }
343 
344   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
345     return Visit(DAE->getExpr());
346   }
347   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
348     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
349     return Visit(DIE->getExpr());
350   }
351   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
352     return CGF.LoadCXXThis();
353   }
354 
355   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
356     CGF.enterFullExpression(E);
357     CodeGenFunction::RunCleanupsScope Scope(CGF);
358     return Visit(E->getSubExpr());
359   }
360   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
361     return CGF.EmitCXXNewExpr(E);
362   }
363   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
364     CGF.EmitCXXDeleteExpr(E);
365     return 0;
366   }
367   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
368     return Builder.getInt1(E->getValue());
369   }
370 
371   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
372     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
373   }
374 
375   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
376     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
377   }
378 
379   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
380     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
381   }
382 
383   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
384     // C++ [expr.pseudo]p1:
385     //   The result shall only be used as the operand for the function call
386     //   operator (), and the result of such a call has type void. The only
387     //   effect is the evaluation of the postfix-expression before the dot or
388     //   arrow.
389     CGF.EmitScalarExpr(E->getBase());
390     return 0;
391   }
392 
393   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
394     return EmitNullValue(E->getType());
395   }
396 
397   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
398     CGF.EmitCXXThrowExpr(E);
399     return 0;
400   }
401 
402   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
403     return Builder.getInt1(E->getValue());
404   }
405 
406   // Binary Operators.
407   Value *EmitMul(const BinOpInfo &Ops) {
408     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
409       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
410       case LangOptions::SOB_Defined:
411         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
412       case LangOptions::SOB_Undefined:
413         if (!CGF.SanOpts->SignedIntegerOverflow)
414           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
415         // Fall through.
416       case LangOptions::SOB_Trapping:
417         return EmitOverflowCheckedBinOp(Ops);
418       }
419     }
420 
421     if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
422       return EmitOverflowCheckedBinOp(Ops);
423 
424     if (Ops.LHS->getType()->isFPOrFPVectorTy())
425       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
426     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
427   }
428   /// Create a binary op that checks for overflow.
429   /// Currently only supports +, - and *.
430   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
431 
432   // Check for undefined division and modulus behaviors.
433   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
434                                                   llvm::Value *Zero,bool isDiv);
435   // Common helper for getting how wide LHS of shift is.
436   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
437   Value *EmitDiv(const BinOpInfo &Ops);
438   Value *EmitRem(const BinOpInfo &Ops);
439   Value *EmitAdd(const BinOpInfo &Ops);
440   Value *EmitSub(const BinOpInfo &Ops);
441   Value *EmitShl(const BinOpInfo &Ops);
442   Value *EmitShr(const BinOpInfo &Ops);
443   Value *EmitAnd(const BinOpInfo &Ops) {
444     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
445   }
446   Value *EmitXor(const BinOpInfo &Ops) {
447     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
448   }
449   Value *EmitOr (const BinOpInfo &Ops) {
450     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
451   }
452 
453   BinOpInfo EmitBinOps(const BinaryOperator *E);
454   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
455                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
456                                   Value *&Result);
457 
458   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
459                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
460 
461   // Binary operators and binary compound assignment operators.
462 #define HANDLEBINOP(OP) \
463   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
464     return Emit ## OP(EmitBinOps(E));                                      \
465   }                                                                        \
466   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
467     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
468   }
469   HANDLEBINOP(Mul)
470   HANDLEBINOP(Div)
471   HANDLEBINOP(Rem)
472   HANDLEBINOP(Add)
473   HANDLEBINOP(Sub)
474   HANDLEBINOP(Shl)
475   HANDLEBINOP(Shr)
476   HANDLEBINOP(And)
477   HANDLEBINOP(Xor)
478   HANDLEBINOP(Or)
479 #undef HANDLEBINOP
480 
481   // Comparisons.
482   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
483                      unsigned SICmpOpc, unsigned FCmpOpc);
484 #define VISITCOMP(CODE, UI, SI, FP) \
485     Value *VisitBin##CODE(const BinaryOperator *E) { \
486       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
487                          llvm::FCmpInst::FP); }
488   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
489   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
490   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
491   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
492   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
493   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
494 #undef VISITCOMP
495 
496   Value *VisitBinAssign     (const BinaryOperator *E);
497 
498   Value *VisitBinLAnd       (const BinaryOperator *E);
499   Value *VisitBinLOr        (const BinaryOperator *E);
500   Value *VisitBinComma      (const BinaryOperator *E);
501 
502   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
503   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
504 
505   // Other Operators.
506   Value *VisitBlockExpr(const BlockExpr *BE);
507   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
508   Value *VisitChooseExpr(ChooseExpr *CE);
509   Value *VisitVAArgExpr(VAArgExpr *VE);
510   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
511     return CGF.EmitObjCStringLiteral(E);
512   }
513   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
514     return CGF.EmitObjCBoxedExpr(E);
515   }
516   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
517     return CGF.EmitObjCArrayLiteral(E);
518   }
519   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
520     return CGF.EmitObjCDictionaryLiteral(E);
521   }
522   Value *VisitAsTypeExpr(AsTypeExpr *CE);
523   Value *VisitAtomicExpr(AtomicExpr *AE);
524 };
525 }  // end anonymous namespace.
526 
527 //===----------------------------------------------------------------------===//
528 //                                Utilities
529 //===----------------------------------------------------------------------===//
530 
531 /// EmitConversionToBool - Convert the specified expression value to a
532 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
533 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
534   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
535 
536   if (SrcType->isRealFloatingType())
537     return EmitFloatToBoolConversion(Src);
538 
539   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
540     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
541 
542   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
543          "Unknown scalar type to convert");
544 
545   if (isa<llvm::IntegerType>(Src->getType()))
546     return EmitIntToBoolConversion(Src);
547 
548   assert(isa<llvm::PointerType>(Src->getType()));
549   return EmitPointerToBoolConversion(Src);
550 }
551 
552 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
553                                                  QualType OrigSrcType,
554                                                  Value *Src, QualType SrcType,
555                                                  QualType DstType,
556                                                  llvm::Type *DstTy) {
557   using llvm::APFloat;
558   using llvm::APSInt;
559 
560   llvm::Type *SrcTy = Src->getType();
561 
562   llvm::Value *Check = 0;
563   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
564     // Integer to floating-point. This can fail for unsigned short -> __half
565     // or unsigned __int128 -> float.
566     assert(DstType->isFloatingType());
567     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
568 
569     APFloat LargestFloat =
570       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
571     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
572 
573     bool IsExact;
574     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
575                                       &IsExact) != APFloat::opOK)
576       // The range of representable values of this floating point type includes
577       // all values of this integer type. Don't need an overflow check.
578       return;
579 
580     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
581     if (SrcIsUnsigned)
582       Check = Builder.CreateICmpULE(Src, Max);
583     else {
584       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
585       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
586       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
587       Check = Builder.CreateAnd(GE, LE);
588     }
589   } else {
590     const llvm::fltSemantics &SrcSema =
591       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
592     if (isa<llvm::IntegerType>(DstTy)) {
593       // Floating-point to integer. This has undefined behavior if the source is
594       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
595       // to an integer).
596       unsigned Width = CGF.getContext().getIntWidth(DstType);
597       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
598 
599       APSInt Min = APSInt::getMinValue(Width, Unsigned);
600       APFloat MinSrc(SrcSema, APFloat::uninitialized);
601       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
602           APFloat::opOverflow)
603         // Don't need an overflow check for lower bound. Just check for
604         // -Inf/NaN.
605         MinSrc = APFloat::getInf(SrcSema, true);
606       else
607         // Find the largest value which is too small to represent (before
608         // truncation toward zero).
609         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
610 
611       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
612       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
613       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
614           APFloat::opOverflow)
615         // Don't need an overflow check for upper bound. Just check for
616         // +Inf/NaN.
617         MaxSrc = APFloat::getInf(SrcSema, false);
618       else
619         // Find the smallest value which is too large to represent (before
620         // truncation toward zero).
621         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
622 
623       // If we're converting from __half, convert the range to float to match
624       // the type of src.
625       if (OrigSrcType->isHalfType()) {
626         const llvm::fltSemantics &Sema =
627           CGF.getContext().getFloatTypeSemantics(SrcType);
628         bool IsInexact;
629         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
630         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
631       }
632 
633       llvm::Value *GE =
634         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
635       llvm::Value *LE =
636         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
637       Check = Builder.CreateAnd(GE, LE);
638     } else {
639       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
640       //
641       // Floating-point to floating-point. This has undefined behavior if the
642       // source is not in the range of representable values of the destination
643       // type. The C and C++ standards are spectacularly unclear here. We
644       // diagnose finite out-of-range conversions, but allow infinities and NaNs
645       // to convert to the corresponding value in the smaller type.
646       //
647       // C11 Annex F gives all such conversions defined behavior for IEC 60559
648       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
649       // does not.
650 
651       // Converting from a lower rank to a higher rank can never have
652       // undefined behavior, since higher-rank types must have a superset
653       // of values of lower-rank types.
654       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
655         return;
656 
657       assert(!OrigSrcType->isHalfType() &&
658              "should not check conversion from __half, it has the lowest rank");
659 
660       const llvm::fltSemantics &DstSema =
661         CGF.getContext().getFloatTypeSemantics(DstType);
662       APFloat MinBad = APFloat::getLargest(DstSema, false);
663       APFloat MaxBad = APFloat::getInf(DstSema, false);
664 
665       bool IsInexact;
666       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
667       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
668 
669       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
670         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
671       llvm::Value *GE =
672         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
673       llvm::Value *LE =
674         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
675       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
676     }
677   }
678 
679   // FIXME: Provide a SourceLocation.
680   llvm::Constant *StaticArgs[] = {
681     CGF.EmitCheckTypeDescriptor(OrigSrcType),
682     CGF.EmitCheckTypeDescriptor(DstType)
683   };
684   CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc,
685                 CodeGenFunction::CRK_Recoverable);
686 }
687 
688 /// EmitScalarConversion - Emit a conversion from the specified type to the
689 /// specified destination type, both of which are LLVM scalar types.
690 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
691                                                QualType DstType) {
692   SrcType = CGF.getContext().getCanonicalType(SrcType);
693   DstType = CGF.getContext().getCanonicalType(DstType);
694   if (SrcType == DstType) return Src;
695 
696   if (DstType->isVoidType()) return 0;
697 
698   llvm::Value *OrigSrc = Src;
699   QualType OrigSrcType = SrcType;
700   llvm::Type *SrcTy = Src->getType();
701 
702   // If casting to/from storage-only half FP, use special intrinsics.
703   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
704     Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
705     SrcType = CGF.getContext().FloatTy;
706     SrcTy = CGF.FloatTy;
707   }
708 
709   // Handle conversions to bool first, they are special: comparisons against 0.
710   if (DstType->isBooleanType())
711     return EmitConversionToBool(Src, SrcType);
712 
713   llvm::Type *DstTy = ConvertType(DstType);
714 
715   // Ignore conversions like int -> uint.
716   if (SrcTy == DstTy)
717     return Src;
718 
719   // Handle pointer conversions next: pointers can only be converted to/from
720   // other pointers and integers. Check for pointer types in terms of LLVM, as
721   // some native types (like Obj-C id) may map to a pointer type.
722   if (isa<llvm::PointerType>(DstTy)) {
723     // The source value may be an integer, or a pointer.
724     if (isa<llvm::PointerType>(SrcTy))
725       return Builder.CreateBitCast(Src, DstTy, "conv");
726 
727     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
728     // First, convert to the correct width so that we control the kind of
729     // extension.
730     llvm::Type *MiddleTy = CGF.IntPtrTy;
731     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
732     llvm::Value* IntResult =
733         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
734     // Then, cast to pointer.
735     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
736   }
737 
738   if (isa<llvm::PointerType>(SrcTy)) {
739     // Must be an ptr to int cast.
740     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
741     return Builder.CreatePtrToInt(Src, DstTy, "conv");
742   }
743 
744   // A scalar can be splatted to an extended vector of the same element type
745   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
746     // Cast the scalar to element type
747     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
748     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
749 
750     // Splat the element across to all elements
751     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
752     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
753   }
754 
755   // Allow bitcast from vector to integer/fp of the same size.
756   if (isa<llvm::VectorType>(SrcTy) ||
757       isa<llvm::VectorType>(DstTy))
758     return Builder.CreateBitCast(Src, DstTy, "conv");
759 
760   // Finally, we have the arithmetic types: real int/float.
761   Value *Res = NULL;
762   llvm::Type *ResTy = DstTy;
763 
764   // An overflowing conversion has undefined behavior if either the source type
765   // or the destination type is a floating-point type.
766   if (CGF.SanOpts->FloatCastOverflow &&
767       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
768     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
769                              DstTy);
770 
771   // Cast to half via float
772   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
773     DstTy = CGF.FloatTy;
774 
775   if (isa<llvm::IntegerType>(SrcTy)) {
776     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
777     if (isa<llvm::IntegerType>(DstTy))
778       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
779     else if (InputSigned)
780       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
781     else
782       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
783   } else if (isa<llvm::IntegerType>(DstTy)) {
784     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
785     if (DstType->isSignedIntegerOrEnumerationType())
786       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
787     else
788       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
789   } else {
790     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
791            "Unknown real conversion");
792     if (DstTy->getTypeID() < SrcTy->getTypeID())
793       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
794     else
795       Res = Builder.CreateFPExt(Src, DstTy, "conv");
796   }
797 
798   if (DstTy != ResTy) {
799     assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
800     Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
801   }
802 
803   return Res;
804 }
805 
806 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
807 /// type to the specified destination type, where the destination type is an
808 /// LLVM scalar type.
809 Value *ScalarExprEmitter::
810 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
811                               QualType SrcTy, QualType DstTy) {
812   // Get the source element type.
813   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
814 
815   // Handle conversions to bool first, they are special: comparisons against 0.
816   if (DstTy->isBooleanType()) {
817     //  Complex != 0  -> (Real != 0) | (Imag != 0)
818     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
819     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
820     return Builder.CreateOr(Src.first, Src.second, "tobool");
821   }
822 
823   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
824   // the imaginary part of the complex value is discarded and the value of the
825   // real part is converted according to the conversion rules for the
826   // corresponding real type.
827   return EmitScalarConversion(Src.first, SrcTy, DstTy);
828 }
829 
830 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
831   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
832 }
833 
834 /// \brief Emit a sanitization check for the given "binary" operation (which
835 /// might actually be a unary increment which has been lowered to a binary
836 /// operation). The check passes if \p Check, which is an \c i1, is \c true.
837 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) {
838   StringRef CheckName;
839   SmallVector<llvm::Constant *, 4> StaticData;
840   SmallVector<llvm::Value *, 2> DynamicData;
841 
842   BinaryOperatorKind Opcode = Info.Opcode;
843   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
844     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
845 
846   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
847   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
848   if (UO && UO->getOpcode() == UO_Minus) {
849     CheckName = "negate_overflow";
850     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
851     DynamicData.push_back(Info.RHS);
852   } else {
853     if (BinaryOperator::isShiftOp(Opcode)) {
854       // Shift LHS negative or too large, or RHS out of bounds.
855       CheckName = "shift_out_of_bounds";
856       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
857       StaticData.push_back(
858         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
859       StaticData.push_back(
860         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
861     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
862       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
863       CheckName = "divrem_overflow";
864       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
865     } else {
866       // Signed arithmetic overflow (+, -, *).
867       switch (Opcode) {
868       case BO_Add: CheckName = "add_overflow"; break;
869       case BO_Sub: CheckName = "sub_overflow"; break;
870       case BO_Mul: CheckName = "mul_overflow"; break;
871       default: llvm_unreachable("unexpected opcode for bin op check");
872       }
873       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
874     }
875     DynamicData.push_back(Info.LHS);
876     DynamicData.push_back(Info.RHS);
877   }
878 
879   CGF.EmitCheck(Check, CheckName, StaticData, DynamicData,
880                 CodeGenFunction::CRK_Recoverable);
881 }
882 
883 //===----------------------------------------------------------------------===//
884 //                            Visitor Methods
885 //===----------------------------------------------------------------------===//
886 
887 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
888   CGF.ErrorUnsupported(E, "scalar expression");
889   if (E->getType()->isVoidType())
890     return 0;
891   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
892 }
893 
894 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
895   // Vector Mask Case
896   if (E->getNumSubExprs() == 2 ||
897       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
898     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
899     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
900     Value *Mask;
901 
902     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
903     unsigned LHSElts = LTy->getNumElements();
904 
905     if (E->getNumSubExprs() == 3) {
906       Mask = CGF.EmitScalarExpr(E->getExpr(2));
907 
908       // Shuffle LHS & RHS into one input vector.
909       SmallVector<llvm::Constant*, 32> concat;
910       for (unsigned i = 0; i != LHSElts; ++i) {
911         concat.push_back(Builder.getInt32(2*i));
912         concat.push_back(Builder.getInt32(2*i+1));
913       }
914 
915       Value* CV = llvm::ConstantVector::get(concat);
916       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
917       LHSElts *= 2;
918     } else {
919       Mask = RHS;
920     }
921 
922     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
923     llvm::Constant* EltMask;
924 
925     // Treat vec3 like vec4.
926     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
927       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
928                                        (1 << llvm::Log2_32(LHSElts+2))-1);
929     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
930       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
931                                        (1 << llvm::Log2_32(LHSElts+1))-1);
932     else
933       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
934                                        (1 << llvm::Log2_32(LHSElts))-1);
935 
936     // Mask off the high bits of each shuffle index.
937     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
938                                                      EltMask);
939     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
940 
941     // newv = undef
942     // mask = mask & maskbits
943     // for each elt
944     //   n = extract mask i
945     //   x = extract val n
946     //   newv = insert newv, x, i
947     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
948                                                         MTy->getNumElements());
949     Value* NewV = llvm::UndefValue::get(RTy);
950     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
951       Value *IIndx = Builder.getInt32(i);
952       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
953       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
954 
955       // Handle vec3 special since the index will be off by one for the RHS.
956       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
957         Value *cmpIndx, *newIndx;
958         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
959                                         "cmp_shuf_idx");
960         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
961         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
962       }
963       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
964       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
965     }
966     return NewV;
967   }
968 
969   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
970   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
971 
972   // Handle vec3 special since the index will be off by one for the RHS.
973   llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
974   SmallVector<llvm::Constant*, 32> indices;
975   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
976     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
977     if (VTy->getNumElements() == 3 && Idx > 3)
978       Idx -= 1;
979     indices.push_back(Builder.getInt32(Idx));
980   }
981 
982   Value *SV = llvm::ConstantVector::get(indices);
983   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
984 }
985 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
986   llvm::APSInt Value;
987   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
988     if (E->isArrow())
989       CGF.EmitScalarExpr(E->getBase());
990     else
991       EmitLValue(E->getBase());
992     return Builder.getInt(Value);
993   }
994 
995   // Emit debug info for aggregate now, if it was delayed to reduce
996   // debug info size.
997   CGDebugInfo *DI = CGF.getDebugInfo();
998   if (DI &&
999       CGF.CGM.getCodeGenOpts().getDebugInfo()
1000         == CodeGenOptions::LimitedDebugInfo) {
1001     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
1002     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
1003       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
1004         DI->getOrCreateRecordType(PTy->getPointeeType(),
1005                                   M->getParent()->getLocation());
1006   }
1007   return EmitLoadOfLValue(E);
1008 }
1009 
1010 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1011   TestAndClearIgnoreResultAssign();
1012 
1013   // Emit subscript expressions in rvalue context's.  For most cases, this just
1014   // loads the lvalue formed by the subscript expr.  However, we have to be
1015   // careful, because the base of a vector subscript is occasionally an rvalue,
1016   // so we can't get it as an lvalue.
1017   if (!E->getBase()->getType()->isVectorType())
1018     return EmitLoadOfLValue(E);
1019 
1020   // Handle the vector case.  The base must be a vector, the index must be an
1021   // integer value.
1022   Value *Base = Visit(E->getBase());
1023   Value *Idx  = Visit(E->getIdx());
1024   QualType IdxTy = E->getIdx()->getType();
1025 
1026   if (CGF.SanOpts->Bounds)
1027     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1028 
1029   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1030   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
1031   return Builder.CreateExtractElement(Base, Idx, "vecext");
1032 }
1033 
1034 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1035                                   unsigned Off, llvm::Type *I32Ty) {
1036   int MV = SVI->getMaskValue(Idx);
1037   if (MV == -1)
1038     return llvm::UndefValue::get(I32Ty);
1039   return llvm::ConstantInt::get(I32Ty, Off+MV);
1040 }
1041 
1042 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1043   bool Ignore = TestAndClearIgnoreResultAssign();
1044   (void)Ignore;
1045   assert (Ignore == false && "init list ignored");
1046   unsigned NumInitElements = E->getNumInits();
1047 
1048   if (E->hadArrayRangeDesignator())
1049     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1050 
1051   llvm::VectorType *VType =
1052     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1053 
1054   if (!VType) {
1055     if (NumInitElements == 0) {
1056       // C++11 value-initialization for the scalar.
1057       return EmitNullValue(E->getType());
1058     }
1059     // We have a scalar in braces. Just use the first element.
1060     return Visit(E->getInit(0));
1061   }
1062 
1063   unsigned ResElts = VType->getNumElements();
1064 
1065   // Loop over initializers collecting the Value for each, and remembering
1066   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1067   // us to fold the shuffle for the swizzle into the shuffle for the vector
1068   // initializer, since LLVM optimizers generally do not want to touch
1069   // shuffles.
1070   unsigned CurIdx = 0;
1071   bool VIsUndefShuffle = false;
1072   llvm::Value *V = llvm::UndefValue::get(VType);
1073   for (unsigned i = 0; i != NumInitElements; ++i) {
1074     Expr *IE = E->getInit(i);
1075     Value *Init = Visit(IE);
1076     SmallVector<llvm::Constant*, 16> Args;
1077 
1078     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1079 
1080     // Handle scalar elements.  If the scalar initializer is actually one
1081     // element of a different vector of the same width, use shuffle instead of
1082     // extract+insert.
1083     if (!VVT) {
1084       if (isa<ExtVectorElementExpr>(IE)) {
1085         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1086 
1087         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1088           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1089           Value *LHS = 0, *RHS = 0;
1090           if (CurIdx == 0) {
1091             // insert into undef -> shuffle (src, undef)
1092             Args.push_back(C);
1093             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1094 
1095             LHS = EI->getVectorOperand();
1096             RHS = V;
1097             VIsUndefShuffle = true;
1098           } else if (VIsUndefShuffle) {
1099             // insert into undefshuffle && size match -> shuffle (v, src)
1100             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1101             for (unsigned j = 0; j != CurIdx; ++j)
1102               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1103             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1104             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1105 
1106             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1107             RHS = EI->getVectorOperand();
1108             VIsUndefShuffle = false;
1109           }
1110           if (!Args.empty()) {
1111             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1112             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1113             ++CurIdx;
1114             continue;
1115           }
1116         }
1117       }
1118       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1119                                       "vecinit");
1120       VIsUndefShuffle = false;
1121       ++CurIdx;
1122       continue;
1123     }
1124 
1125     unsigned InitElts = VVT->getNumElements();
1126 
1127     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1128     // input is the same width as the vector being constructed, generate an
1129     // optimized shuffle of the swizzle input into the result.
1130     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1131     if (isa<ExtVectorElementExpr>(IE)) {
1132       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1133       Value *SVOp = SVI->getOperand(0);
1134       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1135 
1136       if (OpTy->getNumElements() == ResElts) {
1137         for (unsigned j = 0; j != CurIdx; ++j) {
1138           // If the current vector initializer is a shuffle with undef, merge
1139           // this shuffle directly into it.
1140           if (VIsUndefShuffle) {
1141             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1142                                       CGF.Int32Ty));
1143           } else {
1144             Args.push_back(Builder.getInt32(j));
1145           }
1146         }
1147         for (unsigned j = 0, je = InitElts; j != je; ++j)
1148           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1149         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1150 
1151         if (VIsUndefShuffle)
1152           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1153 
1154         Init = SVOp;
1155       }
1156     }
1157 
1158     // Extend init to result vector length, and then shuffle its contribution
1159     // to the vector initializer into V.
1160     if (Args.empty()) {
1161       for (unsigned j = 0; j != InitElts; ++j)
1162         Args.push_back(Builder.getInt32(j));
1163       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1164       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1165       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1166                                          Mask, "vext");
1167 
1168       Args.clear();
1169       for (unsigned j = 0; j != CurIdx; ++j)
1170         Args.push_back(Builder.getInt32(j));
1171       for (unsigned j = 0; j != InitElts; ++j)
1172         Args.push_back(Builder.getInt32(j+Offset));
1173       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1174     }
1175 
1176     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1177     // merging subsequent shuffles into this one.
1178     if (CurIdx == 0)
1179       std::swap(V, Init);
1180     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1181     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1182     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1183     CurIdx += InitElts;
1184   }
1185 
1186   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1187   // Emit remaining default initializers.
1188   llvm::Type *EltTy = VType->getElementType();
1189 
1190   // Emit remaining default initializers
1191   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1192     Value *Idx = Builder.getInt32(CurIdx);
1193     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1194     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1195   }
1196   return V;
1197 }
1198 
1199 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1200   const Expr *E = CE->getSubExpr();
1201 
1202   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1203     return false;
1204 
1205   if (isa<CXXThisExpr>(E)) {
1206     // We always assume that 'this' is never null.
1207     return false;
1208   }
1209 
1210   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1211     // And that glvalue casts are never null.
1212     if (ICE->getValueKind() != VK_RValue)
1213       return false;
1214   }
1215 
1216   return true;
1217 }
1218 
1219 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1220 // have to handle a more broad range of conversions than explicit casts, as they
1221 // handle things like function to ptr-to-function decay etc.
1222 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1223   Expr *E = CE->getSubExpr();
1224   QualType DestTy = CE->getType();
1225   CastKind Kind = CE->getCastKind();
1226 
1227   if (!DestTy->isVoidType())
1228     TestAndClearIgnoreResultAssign();
1229 
1230   // Since almost all cast kinds apply to scalars, this switch doesn't have
1231   // a default case, so the compiler will warn on a missing case.  The cases
1232   // are in the same order as in the CastKind enum.
1233   switch (Kind) {
1234   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1235   case CK_BuiltinFnToFnPtr:
1236     llvm_unreachable("builtin functions are handled elsewhere");
1237 
1238   case CK_LValueBitCast:
1239   case CK_ObjCObjectLValueCast: {
1240     Value *V = EmitLValue(E).getAddress();
1241     V = Builder.CreateBitCast(V,
1242                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1243     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
1244   }
1245 
1246   case CK_CPointerToObjCPointerCast:
1247   case CK_BlockPointerToObjCPointerCast:
1248   case CK_AnyPointerToBlockPointerCast:
1249   case CK_BitCast: {
1250     Value *Src = Visit(const_cast<Expr*>(E));
1251     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1252   }
1253   case CK_AtomicToNonAtomic:
1254   case CK_NonAtomicToAtomic:
1255   case CK_NoOp:
1256   case CK_UserDefinedConversion:
1257     return Visit(const_cast<Expr*>(E));
1258 
1259   case CK_BaseToDerived: {
1260     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1261     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1262 
1263     llvm::Value *V = Visit(E);
1264 
1265     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1266     // performed and the object is not of the derived type.
1267     if (CGF.SanitizePerformTypeCheck)
1268       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1269                         V, DestTy->getPointeeType());
1270 
1271     return CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
1272                                         CE->path_begin(), CE->path_end(),
1273                                         ShouldNullCheckClassCastValue(CE));
1274   }
1275   case CK_UncheckedDerivedToBase:
1276   case CK_DerivedToBase: {
1277     const CXXRecordDecl *DerivedClassDecl =
1278       E->getType()->getPointeeCXXRecordDecl();
1279     assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1280 
1281     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1282                                      CE->path_begin(), CE->path_end(),
1283                                      ShouldNullCheckClassCastValue(CE));
1284   }
1285   case CK_Dynamic: {
1286     Value *V = Visit(const_cast<Expr*>(E));
1287     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1288     return CGF.EmitDynamicCast(V, DCE);
1289   }
1290 
1291   case CK_ArrayToPointerDecay: {
1292     assert(E->getType()->isArrayType() &&
1293            "Array to pointer decay must have array source type!");
1294 
1295     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1296 
1297     // Note that VLA pointers are always decayed, so we don't need to do
1298     // anything here.
1299     if (!E->getType()->isVariableArrayType()) {
1300       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1301       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1302                                  ->getElementType()) &&
1303              "Expected pointer to array");
1304       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1305     }
1306 
1307     // Make sure the array decay ends up being the right type.  This matters if
1308     // the array type was of an incomplete type.
1309     return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1310   }
1311   case CK_FunctionToPointerDecay:
1312     return EmitLValue(E).getAddress();
1313 
1314   case CK_NullToPointer:
1315     if (MustVisitNullValue(E))
1316       (void) Visit(E);
1317 
1318     return llvm::ConstantPointerNull::get(
1319                                cast<llvm::PointerType>(ConvertType(DestTy)));
1320 
1321   case CK_NullToMemberPointer: {
1322     if (MustVisitNullValue(E))
1323       (void) Visit(E);
1324 
1325     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1326     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1327   }
1328 
1329   case CK_ReinterpretMemberPointer:
1330   case CK_BaseToDerivedMemberPointer:
1331   case CK_DerivedToBaseMemberPointer: {
1332     Value *Src = Visit(E);
1333 
1334     // Note that the AST doesn't distinguish between checked and
1335     // unchecked member pointer conversions, so we always have to
1336     // implement checked conversions here.  This is inefficient when
1337     // actual control flow may be required in order to perform the
1338     // check, which it is for data member pointers (but not member
1339     // function pointers on Itanium and ARM).
1340     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1341   }
1342 
1343   case CK_ARCProduceObject:
1344     return CGF.EmitARCRetainScalarExpr(E);
1345   case CK_ARCConsumeObject:
1346     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1347   case CK_ARCReclaimReturnedObject: {
1348     llvm::Value *value = Visit(E);
1349     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1350     return CGF.EmitObjCConsumeObject(E->getType(), value);
1351   }
1352   case CK_ARCExtendBlockObject:
1353     return CGF.EmitARCExtendBlockObject(E);
1354 
1355   case CK_CopyAndAutoreleaseBlockObject:
1356     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1357 
1358   case CK_FloatingRealToComplex:
1359   case CK_FloatingComplexCast:
1360   case CK_IntegralRealToComplex:
1361   case CK_IntegralComplexCast:
1362   case CK_IntegralComplexToFloatingComplex:
1363   case CK_FloatingComplexToIntegralComplex:
1364   case CK_ConstructorConversion:
1365   case CK_ToUnion:
1366     llvm_unreachable("scalar cast to non-scalar value");
1367 
1368   case CK_LValueToRValue:
1369     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1370     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1371     return Visit(const_cast<Expr*>(E));
1372 
1373   case CK_IntegralToPointer: {
1374     Value *Src = Visit(const_cast<Expr*>(E));
1375 
1376     // First, convert to the correct width so that we control the kind of
1377     // extension.
1378     llvm::Type *MiddleTy = CGF.IntPtrTy;
1379     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1380     llvm::Value* IntResult =
1381       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1382 
1383     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1384   }
1385   case CK_PointerToIntegral:
1386     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1387     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1388 
1389   case CK_ToVoid: {
1390     CGF.EmitIgnoredExpr(E);
1391     return 0;
1392   }
1393   case CK_VectorSplat: {
1394     llvm::Type *DstTy = ConvertType(DestTy);
1395     Value *Elt = Visit(const_cast<Expr*>(E));
1396     Elt = EmitScalarConversion(Elt, E->getType(),
1397                                DestTy->getAs<VectorType>()->getElementType());
1398 
1399     // Splat the element across to all elements
1400     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1401     return Builder.CreateVectorSplat(NumElements, Elt, "splat");;
1402   }
1403 
1404   case CK_IntegralCast:
1405   case CK_IntegralToFloating:
1406   case CK_FloatingToIntegral:
1407   case CK_FloatingCast:
1408     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1409   case CK_IntegralToBoolean:
1410     return EmitIntToBoolConversion(Visit(E));
1411   case CK_PointerToBoolean:
1412     return EmitPointerToBoolConversion(Visit(E));
1413   case CK_FloatingToBoolean:
1414     return EmitFloatToBoolConversion(Visit(E));
1415   case CK_MemberPointerToBoolean: {
1416     llvm::Value *MemPtr = Visit(E);
1417     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1418     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1419   }
1420 
1421   case CK_FloatingComplexToReal:
1422   case CK_IntegralComplexToReal:
1423     return CGF.EmitComplexExpr(E, false, true).first;
1424 
1425   case CK_FloatingComplexToBoolean:
1426   case CK_IntegralComplexToBoolean: {
1427     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1428 
1429     // TODO: kill this function off, inline appropriate case here
1430     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1431   }
1432 
1433   case CK_ZeroToOCLEvent: {
1434     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non event type");
1435     return llvm::Constant::getNullValue(ConvertType(DestTy));
1436   }
1437 
1438   }
1439 
1440   llvm_unreachable("unknown scalar cast");
1441 }
1442 
1443 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1444   CodeGenFunction::StmtExprEvaluation eval(CGF);
1445   llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1446                                                 !E->getType()->isVoidType());
1447   if (!RetAlloca)
1448     return 0;
1449   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()));
1450 
1451 }
1452 
1453 //===----------------------------------------------------------------------===//
1454 //                             Unary Operators
1455 //===----------------------------------------------------------------------===//
1456 
1457 llvm::Value *ScalarExprEmitter::
1458 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1459                                 llvm::Value *InVal,
1460                                 llvm::Value *NextVal, bool IsInc) {
1461   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1462   case LangOptions::SOB_Defined:
1463     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1464   case LangOptions::SOB_Undefined:
1465     if (!CGF.SanOpts->SignedIntegerOverflow)
1466       return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1467     // Fall through.
1468   case LangOptions::SOB_Trapping:
1469     BinOpInfo BinOp;
1470     BinOp.LHS = InVal;
1471     BinOp.RHS = NextVal;
1472     BinOp.Ty = E->getType();
1473     BinOp.Opcode = BO_Add;
1474     BinOp.FPContractable = false;
1475     BinOp.E = E;
1476     return EmitOverflowCheckedBinOp(BinOp);
1477   }
1478   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1479 }
1480 
1481 llvm::Value *
1482 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1483                                            bool isInc, bool isPre) {
1484 
1485   QualType type = E->getSubExpr()->getType();
1486   llvm::PHINode *atomicPHI = 0;
1487   llvm::Value *value;
1488   llvm::Value *input;
1489 
1490   int amount = (isInc ? 1 : -1);
1491 
1492   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1493     type = atomicTy->getValueType();
1494     if (isInc && type->isBooleanType()) {
1495       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1496       if (isPre) {
1497         Builder.Insert(new llvm::StoreInst(True,
1498               LV.getAddress(), LV.isVolatileQualified(),
1499               LV.getAlignment().getQuantity(),
1500               llvm::SequentiallyConsistent));
1501         return Builder.getTrue();
1502       }
1503       // For atomic bool increment, we just store true and return it for
1504       // preincrement, do an atomic swap with true for postincrement
1505         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1506             LV.getAddress(), True, llvm::SequentiallyConsistent);
1507     }
1508     // Special case for atomic increment / decrement on integers, emit
1509     // atomicrmw instructions.  We skip this if we want to be doing overflow
1510     // checking, and fall into the slow path with the atomic cmpxchg loop.
1511     if (!type->isBooleanType() && type->isIntegerType() &&
1512         !(type->isUnsignedIntegerType() &&
1513          CGF.SanOpts->UnsignedIntegerOverflow) &&
1514         CGF.getLangOpts().getSignedOverflowBehavior() !=
1515          LangOptions::SOB_Trapping) {
1516       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1517         llvm::AtomicRMWInst::Sub;
1518       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1519         llvm::Instruction::Sub;
1520       llvm::Value *amt = CGF.EmitToMemory(
1521           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1522       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1523           LV.getAddress(), amt, llvm::SequentiallyConsistent);
1524       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1525     }
1526     value = EmitLoadOfLValue(LV);
1527     input = value;
1528     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1529     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1530     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1531     value = CGF.EmitToMemory(value, type);
1532     Builder.CreateBr(opBB);
1533     Builder.SetInsertPoint(opBB);
1534     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1535     atomicPHI->addIncoming(value, startBB);
1536     value = atomicPHI;
1537   } else {
1538     value = EmitLoadOfLValue(LV);
1539     input = value;
1540   }
1541 
1542   // Special case of integer increment that we have to check first: bool++.
1543   // Due to promotion rules, we get:
1544   //   bool++ -> bool = bool + 1
1545   //          -> bool = (int)bool + 1
1546   //          -> bool = ((int)bool + 1 != 0)
1547   // An interesting aspect of this is that increment is always true.
1548   // Decrement does not have this property.
1549   if (isInc && type->isBooleanType()) {
1550     value = Builder.getTrue();
1551 
1552   // Most common case by far: integer increment.
1553   } else if (type->isIntegerType()) {
1554 
1555     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1556 
1557     // Note that signed integer inc/dec with width less than int can't
1558     // overflow because of promotion rules; we're just eliding a few steps here.
1559     if (value->getType()->getPrimitiveSizeInBits() >=
1560             CGF.IntTy->getBitWidth() &&
1561         type->isSignedIntegerOrEnumerationType()) {
1562       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1563     } else if (value->getType()->getPrimitiveSizeInBits() >=
1564                CGF.IntTy->getBitWidth() && type->isUnsignedIntegerType() &&
1565                CGF.SanOpts->UnsignedIntegerOverflow) {
1566       BinOpInfo BinOp;
1567       BinOp.LHS = value;
1568       BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
1569       BinOp.Ty = E->getType();
1570       BinOp.Opcode = isInc ? BO_Add : BO_Sub;
1571       BinOp.FPContractable = false;
1572       BinOp.E = E;
1573       value = EmitOverflowCheckedBinOp(BinOp);
1574     } else
1575       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1576 
1577   // Next most common: pointer increment.
1578   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1579     QualType type = ptr->getPointeeType();
1580 
1581     // VLA types don't have constant size.
1582     if (const VariableArrayType *vla
1583           = CGF.getContext().getAsVariableArrayType(type)) {
1584       llvm::Value *numElts = CGF.getVLASize(vla).first;
1585       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1586       if (CGF.getLangOpts().isSignedOverflowDefined())
1587         value = Builder.CreateGEP(value, numElts, "vla.inc");
1588       else
1589         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1590 
1591     // Arithmetic on function pointers (!) is just +-1.
1592     } else if (type->isFunctionType()) {
1593       llvm::Value *amt = Builder.getInt32(amount);
1594 
1595       value = CGF.EmitCastToVoidPtr(value);
1596       if (CGF.getLangOpts().isSignedOverflowDefined())
1597         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1598       else
1599         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1600       value = Builder.CreateBitCast(value, input->getType());
1601 
1602     // For everything else, we can just do a simple increment.
1603     } else {
1604       llvm::Value *amt = Builder.getInt32(amount);
1605       if (CGF.getLangOpts().isSignedOverflowDefined())
1606         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1607       else
1608         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1609     }
1610 
1611   // Vector increment/decrement.
1612   } else if (type->isVectorType()) {
1613     if (type->hasIntegerRepresentation()) {
1614       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1615 
1616       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1617     } else {
1618       value = Builder.CreateFAdd(
1619                   value,
1620                   llvm::ConstantFP::get(value->getType(), amount),
1621                   isInc ? "inc" : "dec");
1622     }
1623 
1624   // Floating point.
1625   } else if (type->isRealFloatingType()) {
1626     // Add the inc/dec to the real part.
1627     llvm::Value *amt;
1628 
1629     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1630       // Another special case: half FP increment should be done via float
1631       value =
1632     Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1633                        input);
1634     }
1635 
1636     if (value->getType()->isFloatTy())
1637       amt = llvm::ConstantFP::get(VMContext,
1638                                   llvm::APFloat(static_cast<float>(amount)));
1639     else if (value->getType()->isDoubleTy())
1640       amt = llvm::ConstantFP::get(VMContext,
1641                                   llvm::APFloat(static_cast<double>(amount)));
1642     else {
1643       llvm::APFloat F(static_cast<float>(amount));
1644       bool ignored;
1645       F.convert(CGF.getTarget().getLongDoubleFormat(),
1646                 llvm::APFloat::rmTowardZero, &ignored);
1647       amt = llvm::ConstantFP::get(VMContext, F);
1648     }
1649     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1650 
1651     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
1652       value =
1653        Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1654                           value);
1655 
1656   // Objective-C pointer types.
1657   } else {
1658     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1659     value = CGF.EmitCastToVoidPtr(value);
1660 
1661     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1662     if (!isInc) size = -size;
1663     llvm::Value *sizeValue =
1664       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1665 
1666     if (CGF.getLangOpts().isSignedOverflowDefined())
1667       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1668     else
1669       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1670     value = Builder.CreateBitCast(value, input->getType());
1671   }
1672 
1673   if (atomicPHI) {
1674     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1675     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1676     llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
1677         CGF.EmitToMemory(value, type), llvm::SequentiallyConsistent);
1678     atomicPHI->addIncoming(old, opBB);
1679     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1680     Builder.CreateCondBr(success, contBB, opBB);
1681     Builder.SetInsertPoint(contBB);
1682     return isPre ? value : input;
1683   }
1684 
1685   // Store the updated result through the lvalue.
1686   if (LV.isBitField())
1687     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1688   else
1689     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1690 
1691   // If this is a postinc, return the value read from memory, otherwise use the
1692   // updated value.
1693   return isPre ? value : input;
1694 }
1695 
1696 
1697 
1698 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1699   TestAndClearIgnoreResultAssign();
1700   // Emit unary minus with EmitSub so we handle overflow cases etc.
1701   BinOpInfo BinOp;
1702   BinOp.RHS = Visit(E->getSubExpr());
1703 
1704   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1705     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1706   else
1707     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1708   BinOp.Ty = E->getType();
1709   BinOp.Opcode = BO_Sub;
1710   BinOp.FPContractable = false;
1711   BinOp.E = E;
1712   return EmitSub(BinOp);
1713 }
1714 
1715 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1716   TestAndClearIgnoreResultAssign();
1717   Value *Op = Visit(E->getSubExpr());
1718   return Builder.CreateNot(Op, "neg");
1719 }
1720 
1721 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1722   // Perform vector logical not on comparison with zero vector.
1723   if (E->getType()->isExtVectorType()) {
1724     Value *Oper = Visit(E->getSubExpr());
1725     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1726     Value *Result;
1727     if (Oper->getType()->isFPOrFPVectorTy())
1728       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1729     else
1730       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1731     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1732   }
1733 
1734   // Compare operand to zero.
1735   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1736 
1737   // Invert value.
1738   // TODO: Could dynamically modify easy computations here.  For example, if
1739   // the operand is an icmp ne, turn into icmp eq.
1740   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1741 
1742   // ZExt result to the expr type.
1743   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1744 }
1745 
1746 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1747   // Try folding the offsetof to a constant.
1748   llvm::APSInt Value;
1749   if (E->EvaluateAsInt(Value, CGF.getContext()))
1750     return Builder.getInt(Value);
1751 
1752   // Loop over the components of the offsetof to compute the value.
1753   unsigned n = E->getNumComponents();
1754   llvm::Type* ResultType = ConvertType(E->getType());
1755   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1756   QualType CurrentType = E->getTypeSourceInfo()->getType();
1757   for (unsigned i = 0; i != n; ++i) {
1758     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1759     llvm::Value *Offset = 0;
1760     switch (ON.getKind()) {
1761     case OffsetOfExpr::OffsetOfNode::Array: {
1762       // Compute the index
1763       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1764       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1765       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1766       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1767 
1768       // Save the element type
1769       CurrentType =
1770           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1771 
1772       // Compute the element size
1773       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1774           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1775 
1776       // Multiply out to compute the result
1777       Offset = Builder.CreateMul(Idx, ElemSize);
1778       break;
1779     }
1780 
1781     case OffsetOfExpr::OffsetOfNode::Field: {
1782       FieldDecl *MemberDecl = ON.getField();
1783       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1784       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1785 
1786       // Compute the index of the field in its parent.
1787       unsigned i = 0;
1788       // FIXME: It would be nice if we didn't have to loop here!
1789       for (RecordDecl::field_iterator Field = RD->field_begin(),
1790                                       FieldEnd = RD->field_end();
1791            Field != FieldEnd; ++Field, ++i) {
1792         if (*Field == MemberDecl)
1793           break;
1794       }
1795       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1796 
1797       // Compute the offset to the field
1798       int64_t OffsetInt = RL.getFieldOffset(i) /
1799                           CGF.getContext().getCharWidth();
1800       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1801 
1802       // Save the element type.
1803       CurrentType = MemberDecl->getType();
1804       break;
1805     }
1806 
1807     case OffsetOfExpr::OffsetOfNode::Identifier:
1808       llvm_unreachable("dependent __builtin_offsetof");
1809 
1810     case OffsetOfExpr::OffsetOfNode::Base: {
1811       if (ON.getBase()->isVirtual()) {
1812         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1813         continue;
1814       }
1815 
1816       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1817       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1818 
1819       // Save the element type.
1820       CurrentType = ON.getBase()->getType();
1821 
1822       // Compute the offset to the base.
1823       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1824       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1825       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1826       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1827       break;
1828     }
1829     }
1830     Result = Builder.CreateAdd(Result, Offset);
1831   }
1832   return Result;
1833 }
1834 
1835 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1836 /// argument of the sizeof expression as an integer.
1837 Value *
1838 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1839                               const UnaryExprOrTypeTraitExpr *E) {
1840   QualType TypeToSize = E->getTypeOfArgument();
1841   if (E->getKind() == UETT_SizeOf) {
1842     if (const VariableArrayType *VAT =
1843           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1844       if (E->isArgumentType()) {
1845         // sizeof(type) - make sure to emit the VLA size.
1846         CGF.EmitVariablyModifiedType(TypeToSize);
1847       } else {
1848         // C99 6.5.3.4p2: If the argument is an expression of type
1849         // VLA, it is evaluated.
1850         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1851       }
1852 
1853       QualType eltType;
1854       llvm::Value *numElts;
1855       llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1856 
1857       llvm::Value *size = numElts;
1858 
1859       // Scale the number of non-VLA elements by the non-VLA element size.
1860       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1861       if (!eltSize.isOne())
1862         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1863 
1864       return size;
1865     }
1866   }
1867 
1868   // If this isn't sizeof(vla), the result must be constant; use the constant
1869   // folding logic so we don't have to duplicate it here.
1870   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1871 }
1872 
1873 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1874   Expr *Op = E->getSubExpr();
1875   if (Op->getType()->isAnyComplexType()) {
1876     // If it's an l-value, load through the appropriate subobject l-value.
1877     // Note that we have to ask E because Op might be an l-value that
1878     // this won't work for, e.g. an Obj-C property.
1879     if (E->isGLValue())
1880       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1881 
1882     // Otherwise, calculate and project.
1883     return CGF.EmitComplexExpr(Op, false, true).first;
1884   }
1885 
1886   return Visit(Op);
1887 }
1888 
1889 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1890   Expr *Op = E->getSubExpr();
1891   if (Op->getType()->isAnyComplexType()) {
1892     // If it's an l-value, load through the appropriate subobject l-value.
1893     // Note that we have to ask E because Op might be an l-value that
1894     // this won't work for, e.g. an Obj-C property.
1895     if (Op->isGLValue())
1896       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1897 
1898     // Otherwise, calculate and project.
1899     return CGF.EmitComplexExpr(Op, true, false).second;
1900   }
1901 
1902   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1903   // effects are evaluated, but not the actual value.
1904   if (Op->isGLValue())
1905     CGF.EmitLValue(Op);
1906   else
1907     CGF.EmitScalarExpr(Op, true);
1908   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1909 }
1910 
1911 //===----------------------------------------------------------------------===//
1912 //                           Binary Operators
1913 //===----------------------------------------------------------------------===//
1914 
1915 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1916   TestAndClearIgnoreResultAssign();
1917   BinOpInfo Result;
1918   Result.LHS = Visit(E->getLHS());
1919   Result.RHS = Visit(E->getRHS());
1920   Result.Ty  = E->getType();
1921   Result.Opcode = E->getOpcode();
1922   Result.FPContractable = E->isFPContractable();
1923   Result.E = E;
1924   return Result;
1925 }
1926 
1927 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1928                                               const CompoundAssignOperator *E,
1929                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1930                                                    Value *&Result) {
1931   QualType LHSTy = E->getLHS()->getType();
1932   BinOpInfo OpInfo;
1933 
1934   if (E->getComputationResultType()->isAnyComplexType())
1935     return CGF.EmitScalarCompooundAssignWithComplex(E, Result);
1936 
1937   // Emit the RHS first.  __block variables need to have the rhs evaluated
1938   // first, plus this should improve codegen a little.
1939   OpInfo.RHS = Visit(E->getRHS());
1940   OpInfo.Ty = E->getComputationResultType();
1941   OpInfo.Opcode = E->getOpcode();
1942   OpInfo.FPContractable = false;
1943   OpInfo.E = E;
1944   // Load/convert the LHS.
1945   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1946 
1947   llvm::PHINode *atomicPHI = 0;
1948   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
1949     QualType type = atomicTy->getValueType();
1950     if (!type->isBooleanType() && type->isIntegerType() &&
1951          !(type->isUnsignedIntegerType() &&
1952           CGF.SanOpts->UnsignedIntegerOverflow) &&
1953          CGF.getLangOpts().getSignedOverflowBehavior() !=
1954           LangOptions::SOB_Trapping) {
1955       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
1956       switch (OpInfo.Opcode) {
1957         // We don't have atomicrmw operands for *, %, /, <<, >>
1958         case BO_MulAssign: case BO_DivAssign:
1959         case BO_RemAssign:
1960         case BO_ShlAssign:
1961         case BO_ShrAssign:
1962           break;
1963         case BO_AddAssign:
1964           aop = llvm::AtomicRMWInst::Add;
1965           break;
1966         case BO_SubAssign:
1967           aop = llvm::AtomicRMWInst::Sub;
1968           break;
1969         case BO_AndAssign:
1970           aop = llvm::AtomicRMWInst::And;
1971           break;
1972         case BO_XorAssign:
1973           aop = llvm::AtomicRMWInst::Xor;
1974           break;
1975         case BO_OrAssign:
1976           aop = llvm::AtomicRMWInst::Or;
1977           break;
1978         default:
1979           llvm_unreachable("Invalid compound assignment type");
1980       }
1981       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
1982         llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
1983               E->getRHS()->getType(), LHSTy), LHSTy);
1984         Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
1985             llvm::SequentiallyConsistent);
1986         return LHSLV;
1987       }
1988     }
1989     // FIXME: For floating point types, we should be saving and restoring the
1990     // floating point environment in the loop.
1991     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1992     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1993     OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1994     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
1995     Builder.CreateBr(opBB);
1996     Builder.SetInsertPoint(opBB);
1997     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
1998     atomicPHI->addIncoming(OpInfo.LHS, startBB);
1999     OpInfo.LHS = atomicPHI;
2000   }
2001   else
2002     OpInfo.LHS = EmitLoadOfLValue(LHSLV);
2003 
2004   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
2005                                     E->getComputationLHSType());
2006 
2007   // Expand the binary operator.
2008   Result = (this->*Func)(OpInfo);
2009 
2010   // Convert the result back to the LHS type.
2011   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
2012 
2013   if (atomicPHI) {
2014     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2015     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2016     llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
2017         CGF.EmitToMemory(Result, LHSTy), llvm::SequentiallyConsistent);
2018     atomicPHI->addIncoming(old, opBB);
2019     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
2020     Builder.CreateCondBr(success, contBB, opBB);
2021     Builder.SetInsertPoint(contBB);
2022     return LHSLV;
2023   }
2024 
2025   // Store the result value into the LHS lvalue. Bit-fields are handled
2026   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2027   // 'An assignment expression has the value of the left operand after the
2028   // assignment...'.
2029   if (LHSLV.isBitField())
2030     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2031   else
2032     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2033 
2034   return LHSLV;
2035 }
2036 
2037 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2038                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2039   bool Ignore = TestAndClearIgnoreResultAssign();
2040   Value *RHS;
2041   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2042 
2043   // If the result is clearly ignored, return now.
2044   if (Ignore)
2045     return 0;
2046 
2047   // The result of an assignment in C is the assigned r-value.
2048   if (!CGF.getLangOpts().CPlusPlus)
2049     return RHS;
2050 
2051   // If the lvalue is non-volatile, return the computed value of the assignment.
2052   if (!LHS.isVolatileQualified())
2053     return RHS;
2054 
2055   // Otherwise, reload the value.
2056   return EmitLoadOfLValue(LHS);
2057 }
2058 
2059 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2060     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2061   llvm::Value *Cond = 0;
2062 
2063   if (CGF.SanOpts->IntegerDivideByZero)
2064     Cond = Builder.CreateICmpNE(Ops.RHS, Zero);
2065 
2066   if (CGF.SanOpts->SignedIntegerOverflow &&
2067       Ops.Ty->hasSignedIntegerRepresentation()) {
2068     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2069 
2070     llvm::Value *IntMin =
2071       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2072     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2073 
2074     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2075     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2076     llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2077     Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow;
2078   }
2079 
2080   if (Cond)
2081     EmitBinOpCheck(Cond, Ops);
2082 }
2083 
2084 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2085   if ((CGF.SanOpts->IntegerDivideByZero ||
2086        CGF.SanOpts->SignedIntegerOverflow) &&
2087       Ops.Ty->isIntegerType()) {
2088     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2089     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2090   } else if (CGF.SanOpts->FloatDivideByZero &&
2091              Ops.Ty->isRealFloatingType()) {
2092     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2093     EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops);
2094   }
2095 
2096   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2097     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2098     if (CGF.getLangOpts().OpenCL) {
2099       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2100       llvm::Type *ValTy = Val->getType();
2101       if (ValTy->isFloatTy() ||
2102           (isa<llvm::VectorType>(ValTy) &&
2103            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2104         CGF.SetFPAccuracy(Val, 2.5);
2105     }
2106     return Val;
2107   }
2108   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2109     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2110   else
2111     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2112 }
2113 
2114 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2115   // Rem in C can't be a floating point type: C99 6.5.5p2.
2116   if (CGF.SanOpts->IntegerDivideByZero) {
2117     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2118 
2119     if (Ops.Ty->isIntegerType())
2120       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2121   }
2122 
2123   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2124     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2125   else
2126     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2127 }
2128 
2129 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2130   unsigned IID;
2131   unsigned OpID = 0;
2132 
2133   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2134   switch (Ops.Opcode) {
2135   case BO_Add:
2136   case BO_AddAssign:
2137     OpID = 1;
2138     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2139                      llvm::Intrinsic::uadd_with_overflow;
2140     break;
2141   case BO_Sub:
2142   case BO_SubAssign:
2143     OpID = 2;
2144     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2145                      llvm::Intrinsic::usub_with_overflow;
2146     break;
2147   case BO_Mul:
2148   case BO_MulAssign:
2149     OpID = 3;
2150     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2151                      llvm::Intrinsic::umul_with_overflow;
2152     break;
2153   default:
2154     llvm_unreachable("Unsupported operation for overflow detection");
2155   }
2156   OpID <<= 1;
2157   if (isSigned)
2158     OpID |= 1;
2159 
2160   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2161 
2162   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2163 
2164   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
2165   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2166   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2167 
2168   // Handle overflow with llvm.trap if no custom handler has been specified.
2169   const std::string *handlerName =
2170     &CGF.getLangOpts().OverflowHandler;
2171   if (handlerName->empty()) {
2172     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2173     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2174     if (!isSigned || CGF.SanOpts->SignedIntegerOverflow)
2175       EmitBinOpCheck(Builder.CreateNot(overflow), Ops);
2176     else
2177       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2178     return result;
2179   }
2180 
2181   // Branch in case of overflow.
2182   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2183   llvm::Function::iterator insertPt = initialBB;
2184   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2185                                                       llvm::next(insertPt));
2186   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2187 
2188   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2189 
2190   // If an overflow handler is set, then we want to call it and then use its
2191   // result, if it returns.
2192   Builder.SetInsertPoint(overflowBB);
2193 
2194   // Get the overflow handler.
2195   llvm::Type *Int8Ty = CGF.Int8Ty;
2196   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2197   llvm::FunctionType *handlerTy =
2198       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2199   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2200 
2201   // Sign extend the args to 64-bit, so that we can use the same handler for
2202   // all types of overflow.
2203   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2204   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2205 
2206   // Call the handler with the two arguments, the operation, and the size of
2207   // the result.
2208   llvm::Value *handlerArgs[] = {
2209     lhs,
2210     rhs,
2211     Builder.getInt8(OpID),
2212     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2213   };
2214   llvm::Value *handlerResult =
2215     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2216 
2217   // Truncate the result back to the desired size.
2218   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2219   Builder.CreateBr(continueBB);
2220 
2221   Builder.SetInsertPoint(continueBB);
2222   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2223   phi->addIncoming(result, initialBB);
2224   phi->addIncoming(handlerResult, overflowBB);
2225 
2226   return phi;
2227 }
2228 
2229 /// Emit pointer + index arithmetic.
2230 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2231                                     const BinOpInfo &op,
2232                                     bool isSubtraction) {
2233   // Must have binary (not unary) expr here.  Unary pointer
2234   // increment/decrement doesn't use this path.
2235   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2236 
2237   Value *pointer = op.LHS;
2238   Expr *pointerOperand = expr->getLHS();
2239   Value *index = op.RHS;
2240   Expr *indexOperand = expr->getRHS();
2241 
2242   // In a subtraction, the LHS is always the pointer.
2243   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2244     std::swap(pointer, index);
2245     std::swap(pointerOperand, indexOperand);
2246   }
2247 
2248   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2249   if (width != CGF.PointerWidthInBits) {
2250     // Zero-extend or sign-extend the pointer value according to
2251     // whether the index is signed or not.
2252     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2253     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2254                                       "idx.ext");
2255   }
2256 
2257   // If this is subtraction, negate the index.
2258   if (isSubtraction)
2259     index = CGF.Builder.CreateNeg(index, "idx.neg");
2260 
2261   if (CGF.SanOpts->Bounds)
2262     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2263                         /*Accessed*/ false);
2264 
2265   const PointerType *pointerType
2266     = pointerOperand->getType()->getAs<PointerType>();
2267   if (!pointerType) {
2268     QualType objectType = pointerOperand->getType()
2269                                         ->castAs<ObjCObjectPointerType>()
2270                                         ->getPointeeType();
2271     llvm::Value *objectSize
2272       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2273 
2274     index = CGF.Builder.CreateMul(index, objectSize);
2275 
2276     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2277     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2278     return CGF.Builder.CreateBitCast(result, pointer->getType());
2279   }
2280 
2281   QualType elementType = pointerType->getPointeeType();
2282   if (const VariableArrayType *vla
2283         = CGF.getContext().getAsVariableArrayType(elementType)) {
2284     // The element count here is the total number of non-VLA elements.
2285     llvm::Value *numElements = CGF.getVLASize(vla).first;
2286 
2287     // Effectively, the multiply by the VLA size is part of the GEP.
2288     // GEP indexes are signed, and scaling an index isn't permitted to
2289     // signed-overflow, so we use the same semantics for our explicit
2290     // multiply.  We suppress this if overflow is not undefined behavior.
2291     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2292       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2293       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2294     } else {
2295       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2296       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2297     }
2298     return pointer;
2299   }
2300 
2301   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2302   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2303   // future proof.
2304   if (elementType->isVoidType() || elementType->isFunctionType()) {
2305     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2306     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2307     return CGF.Builder.CreateBitCast(result, pointer->getType());
2308   }
2309 
2310   if (CGF.getLangOpts().isSignedOverflowDefined())
2311     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2312 
2313   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2314 }
2315 
2316 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2317 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2318 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2319 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2320 // efficient operations.
2321 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2322                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2323                            bool negMul, bool negAdd) {
2324   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2325 
2326   Value *MulOp0 = MulOp->getOperand(0);
2327   Value *MulOp1 = MulOp->getOperand(1);
2328   if (negMul) {
2329     MulOp0 =
2330       Builder.CreateFSub(
2331         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2332         "neg");
2333   } else if (negAdd) {
2334     Addend =
2335       Builder.CreateFSub(
2336         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2337         "neg");
2338   }
2339 
2340   Value *FMulAdd =
2341     Builder.CreateCall3(
2342       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2343                            MulOp0, MulOp1, Addend);
2344    MulOp->eraseFromParent();
2345 
2346    return FMulAdd;
2347 }
2348 
2349 // Check whether it would be legal to emit an fmuladd intrinsic call to
2350 // represent op and if so, build the fmuladd.
2351 //
2352 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2353 // Does NOT check the type of the operation - it's assumed that this function
2354 // will be called from contexts where it's known that the type is contractable.
2355 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2356                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2357                          bool isSub=false) {
2358 
2359   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2360           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2361          "Only fadd/fsub can be the root of an fmuladd.");
2362 
2363   // Check whether this op is marked as fusable.
2364   if (!op.FPContractable)
2365     return 0;
2366 
2367   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2368   // either disabled, or handled entirely by the LLVM backend).
2369   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2370     return 0;
2371 
2372   // We have a potentially fusable op. Look for a mul on one of the operands.
2373   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2374     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2375       assert(LHSBinOp->getNumUses() == 0 &&
2376              "Operations with multiple uses shouldn't be contracted.");
2377       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2378     }
2379   } else if (llvm::BinaryOperator* RHSBinOp =
2380                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2381     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2382       assert(RHSBinOp->getNumUses() == 0 &&
2383              "Operations with multiple uses shouldn't be contracted.");
2384       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2385     }
2386   }
2387 
2388   return 0;
2389 }
2390 
2391 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2392   if (op.LHS->getType()->isPointerTy() ||
2393       op.RHS->getType()->isPointerTy())
2394     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2395 
2396   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2397     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2398     case LangOptions::SOB_Defined:
2399       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2400     case LangOptions::SOB_Undefined:
2401       if (!CGF.SanOpts->SignedIntegerOverflow)
2402         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2403       // Fall through.
2404     case LangOptions::SOB_Trapping:
2405       return EmitOverflowCheckedBinOp(op);
2406     }
2407   }
2408 
2409   if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
2410     return EmitOverflowCheckedBinOp(op);
2411 
2412   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2413     // Try to form an fmuladd.
2414     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2415       return FMulAdd;
2416 
2417     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2418   }
2419 
2420   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2421 }
2422 
2423 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2424   // The LHS is always a pointer if either side is.
2425   if (!op.LHS->getType()->isPointerTy()) {
2426     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2427       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2428       case LangOptions::SOB_Defined:
2429         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2430       case LangOptions::SOB_Undefined:
2431         if (!CGF.SanOpts->SignedIntegerOverflow)
2432           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2433         // Fall through.
2434       case LangOptions::SOB_Trapping:
2435         return EmitOverflowCheckedBinOp(op);
2436       }
2437     }
2438 
2439     if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
2440       return EmitOverflowCheckedBinOp(op);
2441 
2442     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2443       // Try to form an fmuladd.
2444       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2445         return FMulAdd;
2446       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2447     }
2448 
2449     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2450   }
2451 
2452   // If the RHS is not a pointer, then we have normal pointer
2453   // arithmetic.
2454   if (!op.RHS->getType()->isPointerTy())
2455     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2456 
2457   // Otherwise, this is a pointer subtraction.
2458 
2459   // Do the raw subtraction part.
2460   llvm::Value *LHS
2461     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2462   llvm::Value *RHS
2463     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2464   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2465 
2466   // Okay, figure out the element size.
2467   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2468   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2469 
2470   llvm::Value *divisor = 0;
2471 
2472   // For a variable-length array, this is going to be non-constant.
2473   if (const VariableArrayType *vla
2474         = CGF.getContext().getAsVariableArrayType(elementType)) {
2475     llvm::Value *numElements;
2476     llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2477 
2478     divisor = numElements;
2479 
2480     // Scale the number of non-VLA elements by the non-VLA element size.
2481     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2482     if (!eltSize.isOne())
2483       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2484 
2485   // For everything elese, we can just compute it, safe in the
2486   // assumption that Sema won't let anything through that we can't
2487   // safely compute the size of.
2488   } else {
2489     CharUnits elementSize;
2490     // Handle GCC extension for pointer arithmetic on void* and
2491     // function pointer types.
2492     if (elementType->isVoidType() || elementType->isFunctionType())
2493       elementSize = CharUnits::One();
2494     else
2495       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2496 
2497     // Don't even emit the divide for element size of 1.
2498     if (elementSize.isOne())
2499       return diffInChars;
2500 
2501     divisor = CGF.CGM.getSize(elementSize);
2502   }
2503 
2504   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2505   // pointer difference in C is only defined in the case where both operands
2506   // are pointing to elements of an array.
2507   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2508 }
2509 
2510 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2511   llvm::IntegerType *Ty;
2512   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2513     Ty = cast<llvm::IntegerType>(VT->getElementType());
2514   else
2515     Ty = cast<llvm::IntegerType>(LHS->getType());
2516   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2517 }
2518 
2519 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2520   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2521   // RHS to the same size as the LHS.
2522   Value *RHS = Ops.RHS;
2523   if (Ops.LHS->getType() != RHS->getType())
2524     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2525 
2526   if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
2527       isa<llvm::IntegerType>(Ops.LHS->getType())) {
2528     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2529     llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne);
2530 
2531     if (Ops.Ty->hasSignedIntegerRepresentation()) {
2532       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2533       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2534       llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check");
2535       Builder.CreateCondBr(Valid, CheckBitsShifted, Cont);
2536 
2537       // Check whether we are shifting any non-zero bits off the top of the
2538       // integer.
2539       CGF.EmitBlock(CheckBitsShifted);
2540       llvm::Value *BitsShiftedOff =
2541         Builder.CreateLShr(Ops.LHS,
2542                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2543                                              /*NUW*/true, /*NSW*/true),
2544                            "shl.check");
2545       if (CGF.getLangOpts().CPlusPlus) {
2546         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2547         // Under C++11's rules, shifting a 1 bit into the sign bit is
2548         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2549         // define signed left shifts, so we use the C99 and C++11 rules there).
2550         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2551         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2552       }
2553       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2554       llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2555       CGF.EmitBlock(Cont);
2556       llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2);
2557       P->addIncoming(Valid, Orig);
2558       P->addIncoming(SecondCheck, CheckBitsShifted);
2559       Valid = P;
2560     }
2561 
2562     EmitBinOpCheck(Valid, Ops);
2563   }
2564   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2565   if (CGF.getLangOpts().OpenCL)
2566     RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2567 
2568   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2569 }
2570 
2571 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2572   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2573   // RHS to the same size as the LHS.
2574   Value *RHS = Ops.RHS;
2575   if (Ops.LHS->getType() != RHS->getType())
2576     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2577 
2578   if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
2579       isa<llvm::IntegerType>(Ops.LHS->getType()))
2580     EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops);
2581 
2582   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2583   if (CGF.getLangOpts().OpenCL)
2584     RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2585 
2586   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2587     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2588   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2589 }
2590 
2591 enum IntrinsicType { VCMPEQ, VCMPGT };
2592 // return corresponding comparison intrinsic for given vector type
2593 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2594                                         BuiltinType::Kind ElemKind) {
2595   switch (ElemKind) {
2596   default: llvm_unreachable("unexpected element type");
2597   case BuiltinType::Char_U:
2598   case BuiltinType::UChar:
2599     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2600                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2601   case BuiltinType::Char_S:
2602   case BuiltinType::SChar:
2603     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2604                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2605   case BuiltinType::UShort:
2606     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2607                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2608   case BuiltinType::Short:
2609     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2610                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2611   case BuiltinType::UInt:
2612   case BuiltinType::ULong:
2613     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2614                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2615   case BuiltinType::Int:
2616   case BuiltinType::Long:
2617     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2618                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2619   case BuiltinType::Float:
2620     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2621                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2622   }
2623 }
2624 
2625 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2626                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2627   TestAndClearIgnoreResultAssign();
2628   Value *Result;
2629   QualType LHSTy = E->getLHS()->getType();
2630   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2631     assert(E->getOpcode() == BO_EQ ||
2632            E->getOpcode() == BO_NE);
2633     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2634     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2635     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2636                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2637   } else if (!LHSTy->isAnyComplexType()) {
2638     Value *LHS = Visit(E->getLHS());
2639     Value *RHS = Visit(E->getRHS());
2640 
2641     // If AltiVec, the comparison results in a numeric type, so we use
2642     // intrinsics comparing vectors and giving 0 or 1 as a result
2643     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2644       // constants for mapping CR6 register bits to predicate result
2645       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2646 
2647       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2648 
2649       // in several cases vector arguments order will be reversed
2650       Value *FirstVecArg = LHS,
2651             *SecondVecArg = RHS;
2652 
2653       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2654       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2655       BuiltinType::Kind ElementKind = BTy->getKind();
2656 
2657       switch(E->getOpcode()) {
2658       default: llvm_unreachable("is not a comparison operation");
2659       case BO_EQ:
2660         CR6 = CR6_LT;
2661         ID = GetIntrinsic(VCMPEQ, ElementKind);
2662         break;
2663       case BO_NE:
2664         CR6 = CR6_EQ;
2665         ID = GetIntrinsic(VCMPEQ, ElementKind);
2666         break;
2667       case BO_LT:
2668         CR6 = CR6_LT;
2669         ID = GetIntrinsic(VCMPGT, ElementKind);
2670         std::swap(FirstVecArg, SecondVecArg);
2671         break;
2672       case BO_GT:
2673         CR6 = CR6_LT;
2674         ID = GetIntrinsic(VCMPGT, ElementKind);
2675         break;
2676       case BO_LE:
2677         if (ElementKind == BuiltinType::Float) {
2678           CR6 = CR6_LT;
2679           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2680           std::swap(FirstVecArg, SecondVecArg);
2681         }
2682         else {
2683           CR6 = CR6_EQ;
2684           ID = GetIntrinsic(VCMPGT, ElementKind);
2685         }
2686         break;
2687       case BO_GE:
2688         if (ElementKind == BuiltinType::Float) {
2689           CR6 = CR6_LT;
2690           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2691         }
2692         else {
2693           CR6 = CR6_EQ;
2694           ID = GetIntrinsic(VCMPGT, ElementKind);
2695           std::swap(FirstVecArg, SecondVecArg);
2696         }
2697         break;
2698       }
2699 
2700       Value *CR6Param = Builder.getInt32(CR6);
2701       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2702       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2703       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2704     }
2705 
2706     if (LHS->getType()->isFPOrFPVectorTy()) {
2707       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2708                                   LHS, RHS, "cmp");
2709     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2710       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2711                                   LHS, RHS, "cmp");
2712     } else {
2713       // Unsigned integers and pointers.
2714       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2715                                   LHS, RHS, "cmp");
2716     }
2717 
2718     // If this is a vector comparison, sign extend the result to the appropriate
2719     // vector integer type and return it (don't convert to bool).
2720     if (LHSTy->isVectorType())
2721       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2722 
2723   } else {
2724     // Complex Comparison: can only be an equality comparison.
2725     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2726     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2727 
2728     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2729 
2730     Value *ResultR, *ResultI;
2731     if (CETy->isRealFloatingType()) {
2732       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2733                                    LHS.first, RHS.first, "cmp.r");
2734       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2735                                    LHS.second, RHS.second, "cmp.i");
2736     } else {
2737       // Complex comparisons can only be equality comparisons.  As such, signed
2738       // and unsigned opcodes are the same.
2739       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2740                                    LHS.first, RHS.first, "cmp.r");
2741       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2742                                    LHS.second, RHS.second, "cmp.i");
2743     }
2744 
2745     if (E->getOpcode() == BO_EQ) {
2746       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2747     } else {
2748       assert(E->getOpcode() == BO_NE &&
2749              "Complex comparison other than == or != ?");
2750       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2751     }
2752   }
2753 
2754   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2755 }
2756 
2757 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2758   bool Ignore = TestAndClearIgnoreResultAssign();
2759 
2760   Value *RHS;
2761   LValue LHS;
2762 
2763   switch (E->getLHS()->getType().getObjCLifetime()) {
2764   case Qualifiers::OCL_Strong:
2765     llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2766     break;
2767 
2768   case Qualifiers::OCL_Autoreleasing:
2769     llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2770     break;
2771 
2772   case Qualifiers::OCL_Weak:
2773     RHS = Visit(E->getRHS());
2774     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2775     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2776     break;
2777 
2778   // No reason to do any of these differently.
2779   case Qualifiers::OCL_None:
2780   case Qualifiers::OCL_ExplicitNone:
2781     // __block variables need to have the rhs evaluated first, plus
2782     // this should improve codegen just a little.
2783     RHS = Visit(E->getRHS());
2784     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2785 
2786     // Store the value into the LHS.  Bit-fields are handled specially
2787     // because the result is altered by the store, i.e., [C99 6.5.16p1]
2788     // 'An assignment expression has the value of the left operand after
2789     // the assignment...'.
2790     if (LHS.isBitField())
2791       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2792     else
2793       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2794   }
2795 
2796   // If the result is clearly ignored, return now.
2797   if (Ignore)
2798     return 0;
2799 
2800   // The result of an assignment in C is the assigned r-value.
2801   if (!CGF.getLangOpts().CPlusPlus)
2802     return RHS;
2803 
2804   // If the lvalue is non-volatile, return the computed value of the assignment.
2805   if (!LHS.isVolatileQualified())
2806     return RHS;
2807 
2808   // Otherwise, reload the value.
2809   return EmitLoadOfLValue(LHS);
2810 }
2811 
2812 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2813   // Perform vector logical and on comparisons with zero vectors.
2814   if (E->getType()->isVectorType()) {
2815     Value *LHS = Visit(E->getLHS());
2816     Value *RHS = Visit(E->getRHS());
2817     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2818     if (LHS->getType()->isFPOrFPVectorTy()) {
2819       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
2820       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
2821     } else {
2822       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2823       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2824     }
2825     Value *And = Builder.CreateAnd(LHS, RHS);
2826     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
2827   }
2828 
2829   llvm::Type *ResTy = ConvertType(E->getType());
2830 
2831   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2832   // If we have 1 && X, just emit X without inserting the control flow.
2833   bool LHSCondVal;
2834   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2835     if (LHSCondVal) { // If we have 1 && X, just emit X.
2836       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2837       // ZExt result to int or bool.
2838       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2839     }
2840 
2841     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2842     if (!CGF.ContainsLabel(E->getRHS()))
2843       return llvm::Constant::getNullValue(ResTy);
2844   }
2845 
2846   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2847   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2848 
2849   CodeGenFunction::ConditionalEvaluation eval(CGF);
2850 
2851   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2852   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2853 
2854   // Any edges into the ContBlock are now from an (indeterminate number of)
2855   // edges from this first condition.  All of these values will be false.  Start
2856   // setting up the PHI node in the Cont Block for this.
2857   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2858                                             "", ContBlock);
2859   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2860        PI != PE; ++PI)
2861     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2862 
2863   eval.begin(CGF);
2864   CGF.EmitBlock(RHSBlock);
2865   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2866   eval.end(CGF);
2867 
2868   // Reaquire the RHS block, as there may be subblocks inserted.
2869   RHSBlock = Builder.GetInsertBlock();
2870 
2871   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2872   // into the phi node for the edge with the value of RHSCond.
2873   if (CGF.getDebugInfo())
2874     // There is no need to emit line number for unconditional branch.
2875     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2876   CGF.EmitBlock(ContBlock);
2877   PN->addIncoming(RHSCond, RHSBlock);
2878 
2879   // ZExt result to int.
2880   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2881 }
2882 
2883 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2884   // Perform vector logical or on comparisons with zero vectors.
2885   if (E->getType()->isVectorType()) {
2886     Value *LHS = Visit(E->getLHS());
2887     Value *RHS = Visit(E->getRHS());
2888     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2889     if (LHS->getType()->isFPOrFPVectorTy()) {
2890       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
2891       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
2892     } else {
2893       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2894       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2895     }
2896     Value *Or = Builder.CreateOr(LHS, RHS);
2897     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
2898   }
2899 
2900   llvm::Type *ResTy = ConvertType(E->getType());
2901 
2902   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2903   // If we have 0 || X, just emit X without inserting the control flow.
2904   bool LHSCondVal;
2905   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2906     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2907       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2908       // ZExt result to int or bool.
2909       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2910     }
2911 
2912     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2913     if (!CGF.ContainsLabel(E->getRHS()))
2914       return llvm::ConstantInt::get(ResTy, 1);
2915   }
2916 
2917   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2918   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2919 
2920   CodeGenFunction::ConditionalEvaluation eval(CGF);
2921 
2922   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2923   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2924 
2925   // Any edges into the ContBlock are now from an (indeterminate number of)
2926   // edges from this first condition.  All of these values will be true.  Start
2927   // setting up the PHI node in the Cont Block for this.
2928   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2929                                             "", ContBlock);
2930   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2931        PI != PE; ++PI)
2932     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2933 
2934   eval.begin(CGF);
2935 
2936   // Emit the RHS condition as a bool value.
2937   CGF.EmitBlock(RHSBlock);
2938   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2939 
2940   eval.end(CGF);
2941 
2942   // Reaquire the RHS block, as there may be subblocks inserted.
2943   RHSBlock = Builder.GetInsertBlock();
2944 
2945   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2946   // into the phi node for the edge with the value of RHSCond.
2947   CGF.EmitBlock(ContBlock);
2948   PN->addIncoming(RHSCond, RHSBlock);
2949 
2950   // ZExt result to int.
2951   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2952 }
2953 
2954 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2955   CGF.EmitIgnoredExpr(E->getLHS());
2956   CGF.EnsureInsertPoint();
2957   return Visit(E->getRHS());
2958 }
2959 
2960 //===----------------------------------------------------------------------===//
2961 //                             Other Operators
2962 //===----------------------------------------------------------------------===//
2963 
2964 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2965 /// expression is cheap enough and side-effect-free enough to evaluate
2966 /// unconditionally instead of conditionally.  This is used to convert control
2967 /// flow into selects in some cases.
2968 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2969                                                    CodeGenFunction &CGF) {
2970   E = E->IgnoreParens();
2971 
2972   // Anything that is an integer or floating point constant is fine.
2973   if (E->isConstantInitializer(CGF.getContext(), false))
2974     return true;
2975 
2976   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2977   // X and Y are local variables.
2978   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2979     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2980       if (VD->hasLocalStorage() && !(CGF.getContext()
2981                                      .getCanonicalType(VD->getType())
2982                                      .isVolatileQualified()))
2983         return true;
2984 
2985   return false;
2986 }
2987 
2988 
2989 Value *ScalarExprEmitter::
2990 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2991   TestAndClearIgnoreResultAssign();
2992 
2993   // Bind the common expression if necessary.
2994   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2995 
2996   Expr *condExpr = E->getCond();
2997   Expr *lhsExpr = E->getTrueExpr();
2998   Expr *rhsExpr = E->getFalseExpr();
2999 
3000   // If the condition constant folds and can be elided, try to avoid emitting
3001   // the condition and the dead arm.
3002   bool CondExprBool;
3003   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3004     Expr *live = lhsExpr, *dead = rhsExpr;
3005     if (!CondExprBool) std::swap(live, dead);
3006 
3007     // If the dead side doesn't have labels we need, just emit the Live part.
3008     if (!CGF.ContainsLabel(dead)) {
3009       Value *Result = Visit(live);
3010 
3011       // If the live part is a throw expression, it acts like it has a void
3012       // type, so evaluating it returns a null Value*.  However, a conditional
3013       // with non-void type must return a non-null Value*.
3014       if (!Result && !E->getType()->isVoidType())
3015         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3016 
3017       return Result;
3018     }
3019   }
3020 
3021   // OpenCL: If the condition is a vector, we can treat this condition like
3022   // the select function.
3023   if (CGF.getLangOpts().OpenCL
3024       && condExpr->getType()->isVectorType()) {
3025     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3026     llvm::Value *LHS = Visit(lhsExpr);
3027     llvm::Value *RHS = Visit(rhsExpr);
3028 
3029     llvm::Type *condType = ConvertType(condExpr->getType());
3030     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3031 
3032     unsigned numElem = vecTy->getNumElements();
3033     llvm::Type *elemType = vecTy->getElementType();
3034 
3035     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3036     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3037     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3038                                           llvm::VectorType::get(elemType,
3039                                                                 numElem),
3040                                           "sext");
3041     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3042 
3043     // Cast float to int to perform ANDs if necessary.
3044     llvm::Value *RHSTmp = RHS;
3045     llvm::Value *LHSTmp = LHS;
3046     bool wasCast = false;
3047     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3048     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3049       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3050       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3051       wasCast = true;
3052     }
3053 
3054     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3055     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3056     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3057     if (wasCast)
3058       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3059 
3060     return tmp5;
3061   }
3062 
3063   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3064   // select instead of as control flow.  We can only do this if it is cheap and
3065   // safe to evaluate the LHS and RHS unconditionally.
3066   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3067       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3068     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3069     llvm::Value *LHS = Visit(lhsExpr);
3070     llvm::Value *RHS = Visit(rhsExpr);
3071     if (!LHS) {
3072       // If the conditional has void type, make sure we return a null Value*.
3073       assert(!RHS && "LHS and RHS types must match");
3074       return 0;
3075     }
3076     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3077   }
3078 
3079   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3080   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3081   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3082 
3083   CodeGenFunction::ConditionalEvaluation eval(CGF);
3084   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
3085 
3086   CGF.EmitBlock(LHSBlock);
3087   eval.begin(CGF);
3088   Value *LHS = Visit(lhsExpr);
3089   eval.end(CGF);
3090 
3091   LHSBlock = Builder.GetInsertBlock();
3092   Builder.CreateBr(ContBlock);
3093 
3094   CGF.EmitBlock(RHSBlock);
3095   eval.begin(CGF);
3096   Value *RHS = Visit(rhsExpr);
3097   eval.end(CGF);
3098 
3099   RHSBlock = Builder.GetInsertBlock();
3100   CGF.EmitBlock(ContBlock);
3101 
3102   // If the LHS or RHS is a throw expression, it will be legitimately null.
3103   if (!LHS)
3104     return RHS;
3105   if (!RHS)
3106     return LHS;
3107 
3108   // Create a PHI node for the real part.
3109   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3110   PN->addIncoming(LHS, LHSBlock);
3111   PN->addIncoming(RHS, RHSBlock);
3112   return PN;
3113 }
3114 
3115 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3116   return Visit(E->getChosenSubExpr(CGF.getContext()));
3117 }
3118 
3119 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3120   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
3121   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
3122 
3123   // If EmitVAArg fails, we fall back to the LLVM instruction.
3124   if (!ArgPtr)
3125     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
3126 
3127   // FIXME Volatility.
3128   return Builder.CreateLoad(ArgPtr);
3129 }
3130 
3131 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3132   return CGF.EmitBlockLiteral(block);
3133 }
3134 
3135 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3136   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3137   llvm::Type *DstTy = ConvertType(E->getType());
3138 
3139   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3140   // a shuffle vector instead of a bitcast.
3141   llvm::Type *SrcTy = Src->getType();
3142   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3143     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3144     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3145     if ((numElementsDst == 3 && numElementsSrc == 4)
3146         || (numElementsDst == 4 && numElementsSrc == 3)) {
3147 
3148 
3149       // In the case of going from int4->float3, a bitcast is needed before
3150       // doing a shuffle.
3151       llvm::Type *srcElemTy =
3152       cast<llvm::VectorType>(SrcTy)->getElementType();
3153       llvm::Type *dstElemTy =
3154       cast<llvm::VectorType>(DstTy)->getElementType();
3155 
3156       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3157           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3158         // Create a float type of the same size as the source or destination.
3159         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3160                                                                  numElementsSrc);
3161 
3162         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3163       }
3164 
3165       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3166 
3167       SmallVector<llvm::Constant*, 3> Args;
3168       Args.push_back(Builder.getInt32(0));
3169       Args.push_back(Builder.getInt32(1));
3170       Args.push_back(Builder.getInt32(2));
3171 
3172       if (numElementsDst == 4)
3173         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3174 
3175       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3176 
3177       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3178     }
3179   }
3180 
3181   return Builder.CreateBitCast(Src, DstTy, "astype");
3182 }
3183 
3184 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3185   return CGF.EmitAtomicExpr(E).getScalarVal();
3186 }
3187 
3188 //===----------------------------------------------------------------------===//
3189 //                         Entry Point into this File
3190 //===----------------------------------------------------------------------===//
3191 
3192 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
3193 /// type, ignoring the result.
3194 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3195   assert(E && hasScalarEvaluationKind(E->getType()) &&
3196          "Invalid scalar expression to emit");
3197 
3198   if (isa<CXXDefaultArgExpr>(E))
3199     disableDebugInfo();
3200   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
3201     .Visit(const_cast<Expr*>(E));
3202   if (isa<CXXDefaultArgExpr>(E))
3203     enableDebugInfo();
3204   return V;
3205 }
3206 
3207 /// EmitScalarConversion - Emit a conversion from the specified type to the
3208 /// specified destination type, both of which are LLVM scalar types.
3209 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3210                                              QualType DstTy) {
3211   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3212          "Invalid scalar expression to emit");
3213   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3214 }
3215 
3216 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3217 /// type to the specified destination type, where the destination type is an
3218 /// LLVM scalar type.
3219 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3220                                                       QualType SrcTy,
3221                                                       QualType DstTy) {
3222   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3223          "Invalid complex -> scalar conversion");
3224   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3225                                                                 DstTy);
3226 }
3227 
3228 
3229 llvm::Value *CodeGenFunction::
3230 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3231                         bool isInc, bool isPre) {
3232   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3233 }
3234 
3235 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3236   llvm::Value *V;
3237   // object->isa or (*object).isa
3238   // Generate code as for: *(Class*)object
3239   // build Class* type
3240   llvm::Type *ClassPtrTy = ConvertType(E->getType());
3241 
3242   Expr *BaseExpr = E->getBase();
3243   if (BaseExpr->isRValue()) {
3244     V = CreateMemTemp(E->getType(), "resval");
3245     llvm::Value *Src = EmitScalarExpr(BaseExpr);
3246     Builder.CreateStore(Src, V);
3247     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3248       MakeNaturalAlignAddrLValue(V, E->getType()));
3249   } else {
3250     if (E->isArrow())
3251       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3252     else
3253       V = EmitLValue(BaseExpr).getAddress();
3254   }
3255 
3256   // build Class* type
3257   ClassPtrTy = ClassPtrTy->getPointerTo();
3258   V = Builder.CreateBitCast(V, ClassPtrTy);
3259   return MakeNaturalAlignAddrLValue(V, E->getType());
3260 }
3261 
3262 
3263 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3264                                             const CompoundAssignOperator *E) {
3265   ScalarExprEmitter Scalar(*this);
3266   Value *Result = 0;
3267   switch (E->getOpcode()) {
3268 #define COMPOUND_OP(Op)                                                       \
3269     case BO_##Op##Assign:                                                     \
3270       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3271                                              Result)
3272   COMPOUND_OP(Mul);
3273   COMPOUND_OP(Div);
3274   COMPOUND_OP(Rem);
3275   COMPOUND_OP(Add);
3276   COMPOUND_OP(Sub);
3277   COMPOUND_OP(Shl);
3278   COMPOUND_OP(Shr);
3279   COMPOUND_OP(And);
3280   COMPOUND_OP(Xor);
3281   COMPOUND_OP(Or);
3282 #undef COMPOUND_OP
3283 
3284   case BO_PtrMemD:
3285   case BO_PtrMemI:
3286   case BO_Mul:
3287   case BO_Div:
3288   case BO_Rem:
3289   case BO_Add:
3290   case BO_Sub:
3291   case BO_Shl:
3292   case BO_Shr:
3293   case BO_LT:
3294   case BO_GT:
3295   case BO_LE:
3296   case BO_GE:
3297   case BO_EQ:
3298   case BO_NE:
3299   case BO_And:
3300   case BO_Xor:
3301   case BO_Or:
3302   case BO_LAnd:
3303   case BO_LOr:
3304   case BO_Assign:
3305   case BO_Comma:
3306     llvm_unreachable("Not valid compound assignment operators");
3307   }
3308 
3309   llvm_unreachable("Unhandled compound assignment operator");
3310 }
3311