1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Support/CFG.h" 32 #include <cstdarg> 33 34 using namespace clang; 35 using namespace CodeGen; 36 using llvm::Value; 37 38 //===----------------------------------------------------------------------===// 39 // Scalar Expression Emitter 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 struct BinOpInfo { 44 Value *LHS; 45 Value *RHS; 46 QualType Ty; // Computation Type. 47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 48 bool FPContractable; 49 const Expr *E; // Entire expr, for error unsupported. May not be binop. 50 }; 51 52 static bool MustVisitNullValue(const Expr *E) { 53 // If a null pointer expression's type is the C++0x nullptr_t, then 54 // it's not necessarily a simple constant and it must be evaluated 55 // for its potential side effects. 56 return E->getType()->isNullPtrType(); 57 } 58 59 class ScalarExprEmitter 60 : public StmtVisitor<ScalarExprEmitter, Value*> { 61 CodeGenFunction &CGF; 62 CGBuilderTy &Builder; 63 bool IgnoreResultAssign; 64 llvm::LLVMContext &VMContext; 65 public: 66 67 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 68 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 69 VMContext(cgf.getLLVMContext()) { 70 } 71 72 //===--------------------------------------------------------------------===// 73 // Utilities 74 //===--------------------------------------------------------------------===// 75 76 bool TestAndClearIgnoreResultAssign() { 77 bool I = IgnoreResultAssign; 78 IgnoreResultAssign = false; 79 return I; 80 } 81 82 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 83 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 84 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 85 return CGF.EmitCheckedLValue(E, TCK); 86 } 87 88 void EmitBinOpCheck(Value *Check, const BinOpInfo &Info); 89 90 Value *EmitLoadOfLValue(LValue LV) { 91 return CGF.EmitLoadOfLValue(LV).getScalarVal(); 92 } 93 94 /// EmitLoadOfLValue - Given an expression with complex type that represents a 95 /// value l-value, this method emits the address of the l-value, then loads 96 /// and returns the result. 97 Value *EmitLoadOfLValue(const Expr *E) { 98 return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load)); 99 } 100 101 /// EmitConversionToBool - Convert the specified expression value to a 102 /// boolean (i1) truth value. This is equivalent to "Val != 0". 103 Value *EmitConversionToBool(Value *Src, QualType DstTy); 104 105 /// \brief Emit a check that a conversion to or from a floating-point type 106 /// does not overflow. 107 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 108 Value *Src, QualType SrcType, 109 QualType DstType, llvm::Type *DstTy); 110 111 /// EmitScalarConversion - Emit a conversion from the specified type to the 112 /// specified destination type, both of which are LLVM scalar types. 113 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 114 115 /// EmitComplexToScalarConversion - Emit a conversion from the specified 116 /// complex type to the specified destination type, where the destination type 117 /// is an LLVM scalar type. 118 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 119 QualType SrcTy, QualType DstTy); 120 121 /// EmitNullValue - Emit a value that corresponds to null for the given type. 122 Value *EmitNullValue(QualType Ty); 123 124 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 125 Value *EmitFloatToBoolConversion(Value *V) { 126 // Compare against 0.0 for fp scalars. 127 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 128 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 129 } 130 131 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 132 Value *EmitPointerToBoolConversion(Value *V) { 133 Value *Zero = llvm::ConstantPointerNull::get( 134 cast<llvm::PointerType>(V->getType())); 135 return Builder.CreateICmpNE(V, Zero, "tobool"); 136 } 137 138 Value *EmitIntToBoolConversion(Value *V) { 139 // Because of the type rules of C, we often end up computing a 140 // logical value, then zero extending it to int, then wanting it 141 // as a logical value again. Optimize this common case. 142 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 143 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 144 Value *Result = ZI->getOperand(0); 145 // If there aren't any more uses, zap the instruction to save space. 146 // Note that there can be more uses, for example if this 147 // is the result of an assignment. 148 if (ZI->use_empty()) 149 ZI->eraseFromParent(); 150 return Result; 151 } 152 } 153 154 return Builder.CreateIsNotNull(V, "tobool"); 155 } 156 157 //===--------------------------------------------------------------------===// 158 // Visitor Methods 159 //===--------------------------------------------------------------------===// 160 161 Value *Visit(Expr *E) { 162 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 163 } 164 165 Value *VisitStmt(Stmt *S) { 166 S->dump(CGF.getContext().getSourceManager()); 167 llvm_unreachable("Stmt can't have complex result type!"); 168 } 169 Value *VisitExpr(Expr *S); 170 171 Value *VisitParenExpr(ParenExpr *PE) { 172 return Visit(PE->getSubExpr()); 173 } 174 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 175 return Visit(E->getReplacement()); 176 } 177 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 178 return Visit(GE->getResultExpr()); 179 } 180 181 // Leaves. 182 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 183 return Builder.getInt(E->getValue()); 184 } 185 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 186 return llvm::ConstantFP::get(VMContext, E->getValue()); 187 } 188 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 189 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 190 } 191 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 192 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 193 } 194 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 195 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 196 } 197 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 198 return EmitNullValue(E->getType()); 199 } 200 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 201 return EmitNullValue(E->getType()); 202 } 203 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 204 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 205 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 206 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 207 return Builder.CreateBitCast(V, ConvertType(E->getType())); 208 } 209 210 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 211 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 212 } 213 214 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 215 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 216 } 217 218 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 219 if (E->isGLValue()) 220 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E)); 221 222 // Otherwise, assume the mapping is the scalar directly. 223 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 224 } 225 226 // l-values. 227 Value *VisitDeclRefExpr(DeclRefExpr *E) { 228 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 229 if (result.isReference()) 230 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E)); 231 return result.getValue(); 232 } 233 return EmitLoadOfLValue(E); 234 } 235 236 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 237 return CGF.EmitObjCSelectorExpr(E); 238 } 239 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 240 return CGF.EmitObjCProtocolExpr(E); 241 } 242 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 243 return EmitLoadOfLValue(E); 244 } 245 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 246 if (E->getMethodDecl() && 247 E->getMethodDecl()->getResultType()->isReferenceType()) 248 return EmitLoadOfLValue(E); 249 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 250 } 251 252 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 253 LValue LV = CGF.EmitObjCIsaExpr(E); 254 Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal(); 255 return V; 256 } 257 258 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 259 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 260 Value *VisitMemberExpr(MemberExpr *E); 261 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 262 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 263 return EmitLoadOfLValue(E); 264 } 265 266 Value *VisitInitListExpr(InitListExpr *E); 267 268 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 269 return EmitNullValue(E->getType()); 270 } 271 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 272 if (E->getType()->isVariablyModifiedType()) 273 CGF.EmitVariablyModifiedType(E->getType()); 274 return VisitCastExpr(E); 275 } 276 Value *VisitCastExpr(CastExpr *E); 277 278 Value *VisitCallExpr(const CallExpr *E) { 279 if (E->getCallReturnType()->isReferenceType()) 280 return EmitLoadOfLValue(E); 281 282 return CGF.EmitCallExpr(E).getScalarVal(); 283 } 284 285 Value *VisitStmtExpr(const StmtExpr *E); 286 287 // Unary Operators. 288 Value *VisitUnaryPostDec(const UnaryOperator *E) { 289 LValue LV = EmitLValue(E->getSubExpr()); 290 return EmitScalarPrePostIncDec(E, LV, false, false); 291 } 292 Value *VisitUnaryPostInc(const UnaryOperator *E) { 293 LValue LV = EmitLValue(E->getSubExpr()); 294 return EmitScalarPrePostIncDec(E, LV, true, false); 295 } 296 Value *VisitUnaryPreDec(const UnaryOperator *E) { 297 LValue LV = EmitLValue(E->getSubExpr()); 298 return EmitScalarPrePostIncDec(E, LV, false, true); 299 } 300 Value *VisitUnaryPreInc(const UnaryOperator *E) { 301 LValue LV = EmitLValue(E->getSubExpr()); 302 return EmitScalarPrePostIncDec(E, LV, true, true); 303 } 304 305 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 306 llvm::Value *InVal, 307 llvm::Value *NextVal, 308 bool IsInc); 309 310 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 311 bool isInc, bool isPre); 312 313 314 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 315 if (isa<MemberPointerType>(E->getType())) // never sugared 316 return CGF.CGM.getMemberPointerConstant(E); 317 318 return EmitLValue(E->getSubExpr()).getAddress(); 319 } 320 Value *VisitUnaryDeref(const UnaryOperator *E) { 321 if (E->getType()->isVoidType()) 322 return Visit(E->getSubExpr()); // the actual value should be unused 323 return EmitLoadOfLValue(E); 324 } 325 Value *VisitUnaryPlus(const UnaryOperator *E) { 326 // This differs from gcc, though, most likely due to a bug in gcc. 327 TestAndClearIgnoreResultAssign(); 328 return Visit(E->getSubExpr()); 329 } 330 Value *VisitUnaryMinus (const UnaryOperator *E); 331 Value *VisitUnaryNot (const UnaryOperator *E); 332 Value *VisitUnaryLNot (const UnaryOperator *E); 333 Value *VisitUnaryReal (const UnaryOperator *E); 334 Value *VisitUnaryImag (const UnaryOperator *E); 335 Value *VisitUnaryExtension(const UnaryOperator *E) { 336 return Visit(E->getSubExpr()); 337 } 338 339 // C++ 340 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 341 return EmitLoadOfLValue(E); 342 } 343 344 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 345 return Visit(DAE->getExpr()); 346 } 347 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 348 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 349 return Visit(DIE->getExpr()); 350 } 351 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 352 return CGF.LoadCXXThis(); 353 } 354 355 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 356 CGF.enterFullExpression(E); 357 CodeGenFunction::RunCleanupsScope Scope(CGF); 358 return Visit(E->getSubExpr()); 359 } 360 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 361 return CGF.EmitCXXNewExpr(E); 362 } 363 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 364 CGF.EmitCXXDeleteExpr(E); 365 return 0; 366 } 367 Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) { 368 return Builder.getInt1(E->getValue()); 369 } 370 371 Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) { 372 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 373 } 374 375 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 376 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 377 } 378 379 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 380 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 381 } 382 383 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 384 // C++ [expr.pseudo]p1: 385 // The result shall only be used as the operand for the function call 386 // operator (), and the result of such a call has type void. The only 387 // effect is the evaluation of the postfix-expression before the dot or 388 // arrow. 389 CGF.EmitScalarExpr(E->getBase()); 390 return 0; 391 } 392 393 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 394 return EmitNullValue(E->getType()); 395 } 396 397 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 398 CGF.EmitCXXThrowExpr(E); 399 return 0; 400 } 401 402 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 403 return Builder.getInt1(E->getValue()); 404 } 405 406 // Binary Operators. 407 Value *EmitMul(const BinOpInfo &Ops) { 408 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 409 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 410 case LangOptions::SOB_Defined: 411 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 412 case LangOptions::SOB_Undefined: 413 if (!CGF.SanOpts->SignedIntegerOverflow) 414 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 415 // Fall through. 416 case LangOptions::SOB_Trapping: 417 return EmitOverflowCheckedBinOp(Ops); 418 } 419 } 420 421 if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 422 return EmitOverflowCheckedBinOp(Ops); 423 424 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 425 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 426 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 427 } 428 /// Create a binary op that checks for overflow. 429 /// Currently only supports +, - and *. 430 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 431 432 // Check for undefined division and modulus behaviors. 433 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 434 llvm::Value *Zero,bool isDiv); 435 // Common helper for getting how wide LHS of shift is. 436 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 437 Value *EmitDiv(const BinOpInfo &Ops); 438 Value *EmitRem(const BinOpInfo &Ops); 439 Value *EmitAdd(const BinOpInfo &Ops); 440 Value *EmitSub(const BinOpInfo &Ops); 441 Value *EmitShl(const BinOpInfo &Ops); 442 Value *EmitShr(const BinOpInfo &Ops); 443 Value *EmitAnd(const BinOpInfo &Ops) { 444 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 445 } 446 Value *EmitXor(const BinOpInfo &Ops) { 447 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 448 } 449 Value *EmitOr (const BinOpInfo &Ops) { 450 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 451 } 452 453 BinOpInfo EmitBinOps(const BinaryOperator *E); 454 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 455 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 456 Value *&Result); 457 458 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 459 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 460 461 // Binary operators and binary compound assignment operators. 462 #define HANDLEBINOP(OP) \ 463 Value *VisitBin ## OP(const BinaryOperator *E) { \ 464 return Emit ## OP(EmitBinOps(E)); \ 465 } \ 466 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 467 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 468 } 469 HANDLEBINOP(Mul) 470 HANDLEBINOP(Div) 471 HANDLEBINOP(Rem) 472 HANDLEBINOP(Add) 473 HANDLEBINOP(Sub) 474 HANDLEBINOP(Shl) 475 HANDLEBINOP(Shr) 476 HANDLEBINOP(And) 477 HANDLEBINOP(Xor) 478 HANDLEBINOP(Or) 479 #undef HANDLEBINOP 480 481 // Comparisons. 482 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 483 unsigned SICmpOpc, unsigned FCmpOpc); 484 #define VISITCOMP(CODE, UI, SI, FP) \ 485 Value *VisitBin##CODE(const BinaryOperator *E) { \ 486 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 487 llvm::FCmpInst::FP); } 488 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 489 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 490 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 491 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 492 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 493 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 494 #undef VISITCOMP 495 496 Value *VisitBinAssign (const BinaryOperator *E); 497 498 Value *VisitBinLAnd (const BinaryOperator *E); 499 Value *VisitBinLOr (const BinaryOperator *E); 500 Value *VisitBinComma (const BinaryOperator *E); 501 502 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 503 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 504 505 // Other Operators. 506 Value *VisitBlockExpr(const BlockExpr *BE); 507 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 508 Value *VisitChooseExpr(ChooseExpr *CE); 509 Value *VisitVAArgExpr(VAArgExpr *VE); 510 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 511 return CGF.EmitObjCStringLiteral(E); 512 } 513 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 514 return CGF.EmitObjCBoxedExpr(E); 515 } 516 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 517 return CGF.EmitObjCArrayLiteral(E); 518 } 519 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 520 return CGF.EmitObjCDictionaryLiteral(E); 521 } 522 Value *VisitAsTypeExpr(AsTypeExpr *CE); 523 Value *VisitAtomicExpr(AtomicExpr *AE); 524 }; 525 } // end anonymous namespace. 526 527 //===----------------------------------------------------------------------===// 528 // Utilities 529 //===----------------------------------------------------------------------===// 530 531 /// EmitConversionToBool - Convert the specified expression value to a 532 /// boolean (i1) truth value. This is equivalent to "Val != 0". 533 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 534 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 535 536 if (SrcType->isRealFloatingType()) 537 return EmitFloatToBoolConversion(Src); 538 539 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 540 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 541 542 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 543 "Unknown scalar type to convert"); 544 545 if (isa<llvm::IntegerType>(Src->getType())) 546 return EmitIntToBoolConversion(Src); 547 548 assert(isa<llvm::PointerType>(Src->getType())); 549 return EmitPointerToBoolConversion(Src); 550 } 551 552 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc, 553 QualType OrigSrcType, 554 Value *Src, QualType SrcType, 555 QualType DstType, 556 llvm::Type *DstTy) { 557 using llvm::APFloat; 558 using llvm::APSInt; 559 560 llvm::Type *SrcTy = Src->getType(); 561 562 llvm::Value *Check = 0; 563 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 564 // Integer to floating-point. This can fail for unsigned short -> __half 565 // or unsigned __int128 -> float. 566 assert(DstType->isFloatingType()); 567 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 568 569 APFloat LargestFloat = 570 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 571 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 572 573 bool IsExact; 574 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 575 &IsExact) != APFloat::opOK) 576 // The range of representable values of this floating point type includes 577 // all values of this integer type. Don't need an overflow check. 578 return; 579 580 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 581 if (SrcIsUnsigned) 582 Check = Builder.CreateICmpULE(Src, Max); 583 else { 584 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 585 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 586 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 587 Check = Builder.CreateAnd(GE, LE); 588 } 589 } else { 590 const llvm::fltSemantics &SrcSema = 591 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 592 if (isa<llvm::IntegerType>(DstTy)) { 593 // Floating-point to integer. This has undefined behavior if the source is 594 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 595 // to an integer). 596 unsigned Width = CGF.getContext().getIntWidth(DstType); 597 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 598 599 APSInt Min = APSInt::getMinValue(Width, Unsigned); 600 APFloat MinSrc(SrcSema, APFloat::uninitialized); 601 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 602 APFloat::opOverflow) 603 // Don't need an overflow check for lower bound. Just check for 604 // -Inf/NaN. 605 MinSrc = APFloat::getInf(SrcSema, true); 606 else 607 // Find the largest value which is too small to represent (before 608 // truncation toward zero). 609 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 610 611 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 612 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 613 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 614 APFloat::opOverflow) 615 // Don't need an overflow check for upper bound. Just check for 616 // +Inf/NaN. 617 MaxSrc = APFloat::getInf(SrcSema, false); 618 else 619 // Find the smallest value which is too large to represent (before 620 // truncation toward zero). 621 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 622 623 // If we're converting from __half, convert the range to float to match 624 // the type of src. 625 if (OrigSrcType->isHalfType()) { 626 const llvm::fltSemantics &Sema = 627 CGF.getContext().getFloatTypeSemantics(SrcType); 628 bool IsInexact; 629 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 630 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 631 } 632 633 llvm::Value *GE = 634 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 635 llvm::Value *LE = 636 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 637 Check = Builder.CreateAnd(GE, LE); 638 } else { 639 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 640 // 641 // Floating-point to floating-point. This has undefined behavior if the 642 // source is not in the range of representable values of the destination 643 // type. The C and C++ standards are spectacularly unclear here. We 644 // diagnose finite out-of-range conversions, but allow infinities and NaNs 645 // to convert to the corresponding value in the smaller type. 646 // 647 // C11 Annex F gives all such conversions defined behavior for IEC 60559 648 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 649 // does not. 650 651 // Converting from a lower rank to a higher rank can never have 652 // undefined behavior, since higher-rank types must have a superset 653 // of values of lower-rank types. 654 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 655 return; 656 657 assert(!OrigSrcType->isHalfType() && 658 "should not check conversion from __half, it has the lowest rank"); 659 660 const llvm::fltSemantics &DstSema = 661 CGF.getContext().getFloatTypeSemantics(DstType); 662 APFloat MinBad = APFloat::getLargest(DstSema, false); 663 APFloat MaxBad = APFloat::getInf(DstSema, false); 664 665 bool IsInexact; 666 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 667 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 668 669 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 670 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 671 llvm::Value *GE = 672 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 673 llvm::Value *LE = 674 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 675 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 676 } 677 } 678 679 // FIXME: Provide a SourceLocation. 680 llvm::Constant *StaticArgs[] = { 681 CGF.EmitCheckTypeDescriptor(OrigSrcType), 682 CGF.EmitCheckTypeDescriptor(DstType) 683 }; 684 CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc, 685 CodeGenFunction::CRK_Recoverable); 686 } 687 688 /// EmitScalarConversion - Emit a conversion from the specified type to the 689 /// specified destination type, both of which are LLVM scalar types. 690 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 691 QualType DstType) { 692 SrcType = CGF.getContext().getCanonicalType(SrcType); 693 DstType = CGF.getContext().getCanonicalType(DstType); 694 if (SrcType == DstType) return Src; 695 696 if (DstType->isVoidType()) return 0; 697 698 llvm::Value *OrigSrc = Src; 699 QualType OrigSrcType = SrcType; 700 llvm::Type *SrcTy = Src->getType(); 701 702 // If casting to/from storage-only half FP, use special intrinsics. 703 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 704 Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src); 705 SrcType = CGF.getContext().FloatTy; 706 SrcTy = CGF.FloatTy; 707 } 708 709 // Handle conversions to bool first, they are special: comparisons against 0. 710 if (DstType->isBooleanType()) 711 return EmitConversionToBool(Src, SrcType); 712 713 llvm::Type *DstTy = ConvertType(DstType); 714 715 // Ignore conversions like int -> uint. 716 if (SrcTy == DstTy) 717 return Src; 718 719 // Handle pointer conversions next: pointers can only be converted to/from 720 // other pointers and integers. Check for pointer types in terms of LLVM, as 721 // some native types (like Obj-C id) may map to a pointer type. 722 if (isa<llvm::PointerType>(DstTy)) { 723 // The source value may be an integer, or a pointer. 724 if (isa<llvm::PointerType>(SrcTy)) 725 return Builder.CreateBitCast(Src, DstTy, "conv"); 726 727 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 728 // First, convert to the correct width so that we control the kind of 729 // extension. 730 llvm::Type *MiddleTy = CGF.IntPtrTy; 731 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 732 llvm::Value* IntResult = 733 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 734 // Then, cast to pointer. 735 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 736 } 737 738 if (isa<llvm::PointerType>(SrcTy)) { 739 // Must be an ptr to int cast. 740 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 741 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 742 } 743 744 // A scalar can be splatted to an extended vector of the same element type 745 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 746 // Cast the scalar to element type 747 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 748 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 749 750 // Splat the element across to all elements 751 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 752 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 753 } 754 755 // Allow bitcast from vector to integer/fp of the same size. 756 if (isa<llvm::VectorType>(SrcTy) || 757 isa<llvm::VectorType>(DstTy)) 758 return Builder.CreateBitCast(Src, DstTy, "conv"); 759 760 // Finally, we have the arithmetic types: real int/float. 761 Value *Res = NULL; 762 llvm::Type *ResTy = DstTy; 763 764 // An overflowing conversion has undefined behavior if either the source type 765 // or the destination type is a floating-point type. 766 if (CGF.SanOpts->FloatCastOverflow && 767 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 768 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, 769 DstTy); 770 771 // Cast to half via float 772 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) 773 DstTy = CGF.FloatTy; 774 775 if (isa<llvm::IntegerType>(SrcTy)) { 776 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 777 if (isa<llvm::IntegerType>(DstTy)) 778 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 779 else if (InputSigned) 780 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 781 else 782 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 783 } else if (isa<llvm::IntegerType>(DstTy)) { 784 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 785 if (DstType->isSignedIntegerOrEnumerationType()) 786 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 787 else 788 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 789 } else { 790 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 791 "Unknown real conversion"); 792 if (DstTy->getTypeID() < SrcTy->getTypeID()) 793 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 794 else 795 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 796 } 797 798 if (DstTy != ResTy) { 799 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 800 Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res); 801 } 802 803 return Res; 804 } 805 806 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 807 /// type to the specified destination type, where the destination type is an 808 /// LLVM scalar type. 809 Value *ScalarExprEmitter:: 810 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 811 QualType SrcTy, QualType DstTy) { 812 // Get the source element type. 813 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 814 815 // Handle conversions to bool first, they are special: comparisons against 0. 816 if (DstTy->isBooleanType()) { 817 // Complex != 0 -> (Real != 0) | (Imag != 0) 818 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 819 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 820 return Builder.CreateOr(Src.first, Src.second, "tobool"); 821 } 822 823 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 824 // the imaginary part of the complex value is discarded and the value of the 825 // real part is converted according to the conversion rules for the 826 // corresponding real type. 827 return EmitScalarConversion(Src.first, SrcTy, DstTy); 828 } 829 830 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 831 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 832 } 833 834 /// \brief Emit a sanitization check for the given "binary" operation (which 835 /// might actually be a unary increment which has been lowered to a binary 836 /// operation). The check passes if \p Check, which is an \c i1, is \c true. 837 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) { 838 StringRef CheckName; 839 SmallVector<llvm::Constant *, 4> StaticData; 840 SmallVector<llvm::Value *, 2> DynamicData; 841 842 BinaryOperatorKind Opcode = Info.Opcode; 843 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 844 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 845 846 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 847 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 848 if (UO && UO->getOpcode() == UO_Minus) { 849 CheckName = "negate_overflow"; 850 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 851 DynamicData.push_back(Info.RHS); 852 } else { 853 if (BinaryOperator::isShiftOp(Opcode)) { 854 // Shift LHS negative or too large, or RHS out of bounds. 855 CheckName = "shift_out_of_bounds"; 856 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 857 StaticData.push_back( 858 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 859 StaticData.push_back( 860 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 861 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 862 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 863 CheckName = "divrem_overflow"; 864 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 865 } else { 866 // Signed arithmetic overflow (+, -, *). 867 switch (Opcode) { 868 case BO_Add: CheckName = "add_overflow"; break; 869 case BO_Sub: CheckName = "sub_overflow"; break; 870 case BO_Mul: CheckName = "mul_overflow"; break; 871 default: llvm_unreachable("unexpected opcode for bin op check"); 872 } 873 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 874 } 875 DynamicData.push_back(Info.LHS); 876 DynamicData.push_back(Info.RHS); 877 } 878 879 CGF.EmitCheck(Check, CheckName, StaticData, DynamicData, 880 CodeGenFunction::CRK_Recoverable); 881 } 882 883 //===----------------------------------------------------------------------===// 884 // Visitor Methods 885 //===----------------------------------------------------------------------===// 886 887 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 888 CGF.ErrorUnsupported(E, "scalar expression"); 889 if (E->getType()->isVoidType()) 890 return 0; 891 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 892 } 893 894 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 895 // Vector Mask Case 896 if (E->getNumSubExprs() == 2 || 897 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 898 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 899 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 900 Value *Mask; 901 902 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 903 unsigned LHSElts = LTy->getNumElements(); 904 905 if (E->getNumSubExprs() == 3) { 906 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 907 908 // Shuffle LHS & RHS into one input vector. 909 SmallVector<llvm::Constant*, 32> concat; 910 for (unsigned i = 0; i != LHSElts; ++i) { 911 concat.push_back(Builder.getInt32(2*i)); 912 concat.push_back(Builder.getInt32(2*i+1)); 913 } 914 915 Value* CV = llvm::ConstantVector::get(concat); 916 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 917 LHSElts *= 2; 918 } else { 919 Mask = RHS; 920 } 921 922 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 923 llvm::Constant* EltMask; 924 925 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 926 llvm::NextPowerOf2(LHSElts-1)-1); 927 928 // Mask off the high bits of each shuffle index. 929 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(), 930 EltMask); 931 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 932 933 // newv = undef 934 // mask = mask & maskbits 935 // for each elt 936 // n = extract mask i 937 // x = extract val n 938 // newv = insert newv, x, i 939 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 940 MTy->getNumElements()); 941 Value* NewV = llvm::UndefValue::get(RTy); 942 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 943 Value *IIndx = Builder.getInt32(i); 944 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 945 Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext"); 946 947 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 948 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 949 } 950 return NewV; 951 } 952 953 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 954 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 955 956 SmallVector<llvm::Constant*, 32> indices; 957 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 958 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 959 // Check for -1 and output it as undef in the IR. 960 if (Idx.isSigned() && Idx.isAllOnesValue()) 961 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 962 else 963 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 964 } 965 966 Value *SV = llvm::ConstantVector::get(indices); 967 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 968 } 969 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 970 llvm::APSInt Value; 971 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 972 if (E->isArrow()) 973 CGF.EmitScalarExpr(E->getBase()); 974 else 975 EmitLValue(E->getBase()); 976 return Builder.getInt(Value); 977 } 978 979 return EmitLoadOfLValue(E); 980 } 981 982 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 983 TestAndClearIgnoreResultAssign(); 984 985 // Emit subscript expressions in rvalue context's. For most cases, this just 986 // loads the lvalue formed by the subscript expr. However, we have to be 987 // careful, because the base of a vector subscript is occasionally an rvalue, 988 // so we can't get it as an lvalue. 989 if (!E->getBase()->getType()->isVectorType()) 990 return EmitLoadOfLValue(E); 991 992 // Handle the vector case. The base must be a vector, the index must be an 993 // integer value. 994 Value *Base = Visit(E->getBase()); 995 Value *Idx = Visit(E->getIdx()); 996 QualType IdxTy = E->getIdx()->getType(); 997 998 if (CGF.SanOpts->Bounds) 999 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1000 1001 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1002 Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast"); 1003 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1004 } 1005 1006 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1007 unsigned Off, llvm::Type *I32Ty) { 1008 int MV = SVI->getMaskValue(Idx); 1009 if (MV == -1) 1010 return llvm::UndefValue::get(I32Ty); 1011 return llvm::ConstantInt::get(I32Ty, Off+MV); 1012 } 1013 1014 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1015 bool Ignore = TestAndClearIgnoreResultAssign(); 1016 (void)Ignore; 1017 assert (Ignore == false && "init list ignored"); 1018 unsigned NumInitElements = E->getNumInits(); 1019 1020 if (E->hadArrayRangeDesignator()) 1021 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1022 1023 llvm::VectorType *VType = 1024 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1025 1026 if (!VType) { 1027 if (NumInitElements == 0) { 1028 // C++11 value-initialization for the scalar. 1029 return EmitNullValue(E->getType()); 1030 } 1031 // We have a scalar in braces. Just use the first element. 1032 return Visit(E->getInit(0)); 1033 } 1034 1035 unsigned ResElts = VType->getNumElements(); 1036 1037 // Loop over initializers collecting the Value for each, and remembering 1038 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1039 // us to fold the shuffle for the swizzle into the shuffle for the vector 1040 // initializer, since LLVM optimizers generally do not want to touch 1041 // shuffles. 1042 unsigned CurIdx = 0; 1043 bool VIsUndefShuffle = false; 1044 llvm::Value *V = llvm::UndefValue::get(VType); 1045 for (unsigned i = 0; i != NumInitElements; ++i) { 1046 Expr *IE = E->getInit(i); 1047 Value *Init = Visit(IE); 1048 SmallVector<llvm::Constant*, 16> Args; 1049 1050 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1051 1052 // Handle scalar elements. If the scalar initializer is actually one 1053 // element of a different vector of the same width, use shuffle instead of 1054 // extract+insert. 1055 if (!VVT) { 1056 if (isa<ExtVectorElementExpr>(IE)) { 1057 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1058 1059 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1060 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1061 Value *LHS = 0, *RHS = 0; 1062 if (CurIdx == 0) { 1063 // insert into undef -> shuffle (src, undef) 1064 Args.push_back(C); 1065 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1066 1067 LHS = EI->getVectorOperand(); 1068 RHS = V; 1069 VIsUndefShuffle = true; 1070 } else if (VIsUndefShuffle) { 1071 // insert into undefshuffle && size match -> shuffle (v, src) 1072 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1073 for (unsigned j = 0; j != CurIdx; ++j) 1074 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1075 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1076 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1077 1078 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1079 RHS = EI->getVectorOperand(); 1080 VIsUndefShuffle = false; 1081 } 1082 if (!Args.empty()) { 1083 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1084 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1085 ++CurIdx; 1086 continue; 1087 } 1088 } 1089 } 1090 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1091 "vecinit"); 1092 VIsUndefShuffle = false; 1093 ++CurIdx; 1094 continue; 1095 } 1096 1097 unsigned InitElts = VVT->getNumElements(); 1098 1099 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1100 // input is the same width as the vector being constructed, generate an 1101 // optimized shuffle of the swizzle input into the result. 1102 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1103 if (isa<ExtVectorElementExpr>(IE)) { 1104 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1105 Value *SVOp = SVI->getOperand(0); 1106 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1107 1108 if (OpTy->getNumElements() == ResElts) { 1109 for (unsigned j = 0; j != CurIdx; ++j) { 1110 // If the current vector initializer is a shuffle with undef, merge 1111 // this shuffle directly into it. 1112 if (VIsUndefShuffle) { 1113 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1114 CGF.Int32Ty)); 1115 } else { 1116 Args.push_back(Builder.getInt32(j)); 1117 } 1118 } 1119 for (unsigned j = 0, je = InitElts; j != je; ++j) 1120 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1121 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1122 1123 if (VIsUndefShuffle) 1124 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1125 1126 Init = SVOp; 1127 } 1128 } 1129 1130 // Extend init to result vector length, and then shuffle its contribution 1131 // to the vector initializer into V. 1132 if (Args.empty()) { 1133 for (unsigned j = 0; j != InitElts; ++j) 1134 Args.push_back(Builder.getInt32(j)); 1135 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1136 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1137 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1138 Mask, "vext"); 1139 1140 Args.clear(); 1141 for (unsigned j = 0; j != CurIdx; ++j) 1142 Args.push_back(Builder.getInt32(j)); 1143 for (unsigned j = 0; j != InitElts; ++j) 1144 Args.push_back(Builder.getInt32(j+Offset)); 1145 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1146 } 1147 1148 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1149 // merging subsequent shuffles into this one. 1150 if (CurIdx == 0) 1151 std::swap(V, Init); 1152 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1153 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1154 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1155 CurIdx += InitElts; 1156 } 1157 1158 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1159 // Emit remaining default initializers. 1160 llvm::Type *EltTy = VType->getElementType(); 1161 1162 // Emit remaining default initializers 1163 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1164 Value *Idx = Builder.getInt32(CurIdx); 1165 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1166 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1167 } 1168 return V; 1169 } 1170 1171 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 1172 const Expr *E = CE->getSubExpr(); 1173 1174 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1175 return false; 1176 1177 if (isa<CXXThisExpr>(E)) { 1178 // We always assume that 'this' is never null. 1179 return false; 1180 } 1181 1182 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1183 // And that glvalue casts are never null. 1184 if (ICE->getValueKind() != VK_RValue) 1185 return false; 1186 } 1187 1188 return true; 1189 } 1190 1191 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1192 // have to handle a more broad range of conversions than explicit casts, as they 1193 // handle things like function to ptr-to-function decay etc. 1194 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1195 Expr *E = CE->getSubExpr(); 1196 QualType DestTy = CE->getType(); 1197 CastKind Kind = CE->getCastKind(); 1198 1199 if (!DestTy->isVoidType()) 1200 TestAndClearIgnoreResultAssign(); 1201 1202 // Since almost all cast kinds apply to scalars, this switch doesn't have 1203 // a default case, so the compiler will warn on a missing case. The cases 1204 // are in the same order as in the CastKind enum. 1205 switch (Kind) { 1206 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1207 case CK_BuiltinFnToFnPtr: 1208 llvm_unreachable("builtin functions are handled elsewhere"); 1209 1210 case CK_LValueBitCast: 1211 case CK_ObjCObjectLValueCast: { 1212 Value *V = EmitLValue(E).getAddress(); 1213 V = Builder.CreateBitCast(V, 1214 ConvertType(CGF.getContext().getPointerType(DestTy))); 1215 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy)); 1216 } 1217 1218 case CK_CPointerToObjCPointerCast: 1219 case CK_BlockPointerToObjCPointerCast: 1220 case CK_AnyPointerToBlockPointerCast: 1221 case CK_BitCast: { 1222 Value *Src = Visit(const_cast<Expr*>(E)); 1223 return Builder.CreateBitCast(Src, ConvertType(DestTy)); 1224 } 1225 case CK_AtomicToNonAtomic: 1226 case CK_NonAtomicToAtomic: 1227 case CK_NoOp: 1228 case CK_UserDefinedConversion: 1229 return Visit(const_cast<Expr*>(E)); 1230 1231 case CK_BaseToDerived: { 1232 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1233 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1234 1235 llvm::Value *V = Visit(E); 1236 1237 llvm::Value *Derived = 1238 CGF.GetAddressOfDerivedClass(V, DerivedClassDecl, 1239 CE->path_begin(), CE->path_end(), 1240 ShouldNullCheckClassCastValue(CE)); 1241 1242 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1243 // performed and the object is not of the derived type. 1244 if (CGF.SanitizePerformTypeCheck) 1245 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1246 Derived, DestTy->getPointeeType()); 1247 1248 return Derived; 1249 } 1250 case CK_UncheckedDerivedToBase: 1251 case CK_DerivedToBase: { 1252 const CXXRecordDecl *DerivedClassDecl = 1253 E->getType()->getPointeeCXXRecordDecl(); 1254 assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!"); 1255 1256 return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl, 1257 CE->path_begin(), CE->path_end(), 1258 ShouldNullCheckClassCastValue(CE)); 1259 } 1260 case CK_Dynamic: { 1261 Value *V = Visit(const_cast<Expr*>(E)); 1262 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1263 return CGF.EmitDynamicCast(V, DCE); 1264 } 1265 1266 case CK_ArrayToPointerDecay: { 1267 assert(E->getType()->isArrayType() && 1268 "Array to pointer decay must have array source type!"); 1269 1270 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 1271 1272 // Note that VLA pointers are always decayed, so we don't need to do 1273 // anything here. 1274 if (!E->getType()->isVariableArrayType()) { 1275 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 1276 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) 1277 ->getElementType()) && 1278 "Expected pointer to array"); 1279 V = Builder.CreateStructGEP(V, 0, "arraydecay"); 1280 } 1281 1282 // Make sure the array decay ends up being the right type. This matters if 1283 // the array type was of an incomplete type. 1284 return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType())); 1285 } 1286 case CK_FunctionToPointerDecay: 1287 return EmitLValue(E).getAddress(); 1288 1289 case CK_NullToPointer: 1290 if (MustVisitNullValue(E)) 1291 (void) Visit(E); 1292 1293 return llvm::ConstantPointerNull::get( 1294 cast<llvm::PointerType>(ConvertType(DestTy))); 1295 1296 case CK_NullToMemberPointer: { 1297 if (MustVisitNullValue(E)) 1298 (void) Visit(E); 1299 1300 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1301 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1302 } 1303 1304 case CK_ReinterpretMemberPointer: 1305 case CK_BaseToDerivedMemberPointer: 1306 case CK_DerivedToBaseMemberPointer: { 1307 Value *Src = Visit(E); 1308 1309 // Note that the AST doesn't distinguish between checked and 1310 // unchecked member pointer conversions, so we always have to 1311 // implement checked conversions here. This is inefficient when 1312 // actual control flow may be required in order to perform the 1313 // check, which it is for data member pointers (but not member 1314 // function pointers on Itanium and ARM). 1315 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1316 } 1317 1318 case CK_ARCProduceObject: 1319 return CGF.EmitARCRetainScalarExpr(E); 1320 case CK_ARCConsumeObject: 1321 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1322 case CK_ARCReclaimReturnedObject: { 1323 llvm::Value *value = Visit(E); 1324 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1325 return CGF.EmitObjCConsumeObject(E->getType(), value); 1326 } 1327 case CK_ARCExtendBlockObject: 1328 return CGF.EmitARCExtendBlockObject(E); 1329 1330 case CK_CopyAndAutoreleaseBlockObject: 1331 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1332 1333 case CK_FloatingRealToComplex: 1334 case CK_FloatingComplexCast: 1335 case CK_IntegralRealToComplex: 1336 case CK_IntegralComplexCast: 1337 case CK_IntegralComplexToFloatingComplex: 1338 case CK_FloatingComplexToIntegralComplex: 1339 case CK_ConstructorConversion: 1340 case CK_ToUnion: 1341 llvm_unreachable("scalar cast to non-scalar value"); 1342 1343 case CK_LValueToRValue: 1344 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1345 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1346 return Visit(const_cast<Expr*>(E)); 1347 1348 case CK_IntegralToPointer: { 1349 Value *Src = Visit(const_cast<Expr*>(E)); 1350 1351 // First, convert to the correct width so that we control the kind of 1352 // extension. 1353 llvm::Type *MiddleTy = CGF.IntPtrTy; 1354 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1355 llvm::Value* IntResult = 1356 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1357 1358 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1359 } 1360 case CK_PointerToIntegral: 1361 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1362 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1363 1364 case CK_ToVoid: { 1365 CGF.EmitIgnoredExpr(E); 1366 return 0; 1367 } 1368 case CK_VectorSplat: { 1369 llvm::Type *DstTy = ConvertType(DestTy); 1370 Value *Elt = Visit(const_cast<Expr*>(E)); 1371 Elt = EmitScalarConversion(Elt, E->getType(), 1372 DestTy->getAs<VectorType>()->getElementType()); 1373 1374 // Splat the element across to all elements 1375 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1376 return Builder.CreateVectorSplat(NumElements, Elt, "splat");; 1377 } 1378 1379 case CK_IntegralCast: 1380 case CK_IntegralToFloating: 1381 case CK_FloatingToIntegral: 1382 case CK_FloatingCast: 1383 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 1384 case CK_IntegralToBoolean: 1385 return EmitIntToBoolConversion(Visit(E)); 1386 case CK_PointerToBoolean: 1387 return EmitPointerToBoolConversion(Visit(E)); 1388 case CK_FloatingToBoolean: 1389 return EmitFloatToBoolConversion(Visit(E)); 1390 case CK_MemberPointerToBoolean: { 1391 llvm::Value *MemPtr = Visit(E); 1392 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1393 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1394 } 1395 1396 case CK_FloatingComplexToReal: 1397 case CK_IntegralComplexToReal: 1398 return CGF.EmitComplexExpr(E, false, true).first; 1399 1400 case CK_FloatingComplexToBoolean: 1401 case CK_IntegralComplexToBoolean: { 1402 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1403 1404 // TODO: kill this function off, inline appropriate case here 1405 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 1406 } 1407 1408 case CK_ZeroToOCLEvent: { 1409 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non event type"); 1410 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1411 } 1412 1413 } 1414 1415 llvm_unreachable("unknown scalar cast"); 1416 } 1417 1418 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1419 CodeGenFunction::StmtExprEvaluation eval(CGF); 1420 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1421 !E->getType()->isVoidType()); 1422 if (!RetAlloca) 1423 return 0; 1424 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType())); 1425 1426 } 1427 1428 //===----------------------------------------------------------------------===// 1429 // Unary Operators 1430 //===----------------------------------------------------------------------===// 1431 1432 llvm::Value *ScalarExprEmitter:: 1433 EmitAddConsiderOverflowBehavior(const UnaryOperator *E, 1434 llvm::Value *InVal, 1435 llvm::Value *NextVal, bool IsInc) { 1436 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1437 case LangOptions::SOB_Defined: 1438 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1439 case LangOptions::SOB_Undefined: 1440 if (!CGF.SanOpts->SignedIntegerOverflow) 1441 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec"); 1442 // Fall through. 1443 case LangOptions::SOB_Trapping: 1444 BinOpInfo BinOp; 1445 BinOp.LHS = InVal; 1446 BinOp.RHS = NextVal; 1447 BinOp.Ty = E->getType(); 1448 BinOp.Opcode = BO_Add; 1449 BinOp.FPContractable = false; 1450 BinOp.E = E; 1451 return EmitOverflowCheckedBinOp(BinOp); 1452 } 1453 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1454 } 1455 1456 llvm::Value * 1457 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1458 bool isInc, bool isPre) { 1459 1460 QualType type = E->getSubExpr()->getType(); 1461 llvm::PHINode *atomicPHI = 0; 1462 llvm::Value *value; 1463 llvm::Value *input; 1464 1465 int amount = (isInc ? 1 : -1); 1466 1467 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1468 type = atomicTy->getValueType(); 1469 if (isInc && type->isBooleanType()) { 1470 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1471 if (isPre) { 1472 Builder.Insert(new llvm::StoreInst(True, 1473 LV.getAddress(), LV.isVolatileQualified(), 1474 LV.getAlignment().getQuantity(), 1475 llvm::SequentiallyConsistent)); 1476 return Builder.getTrue(); 1477 } 1478 // For atomic bool increment, we just store true and return it for 1479 // preincrement, do an atomic swap with true for postincrement 1480 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1481 LV.getAddress(), True, llvm::SequentiallyConsistent); 1482 } 1483 // Special case for atomic increment / decrement on integers, emit 1484 // atomicrmw instructions. We skip this if we want to be doing overflow 1485 // checking, and fall into the slow path with the atomic cmpxchg loop. 1486 if (!type->isBooleanType() && type->isIntegerType() && 1487 !(type->isUnsignedIntegerType() && 1488 CGF.SanOpts->UnsignedIntegerOverflow) && 1489 CGF.getLangOpts().getSignedOverflowBehavior() != 1490 LangOptions::SOB_Trapping) { 1491 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1492 llvm::AtomicRMWInst::Sub; 1493 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1494 llvm::Instruction::Sub; 1495 llvm::Value *amt = CGF.EmitToMemory( 1496 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1497 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1498 LV.getAddress(), amt, llvm::SequentiallyConsistent); 1499 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1500 } 1501 value = EmitLoadOfLValue(LV); 1502 input = value; 1503 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1504 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1505 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1506 value = CGF.EmitToMemory(value, type); 1507 Builder.CreateBr(opBB); 1508 Builder.SetInsertPoint(opBB); 1509 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1510 atomicPHI->addIncoming(value, startBB); 1511 value = atomicPHI; 1512 } else { 1513 value = EmitLoadOfLValue(LV); 1514 input = value; 1515 } 1516 1517 // Special case of integer increment that we have to check first: bool++. 1518 // Due to promotion rules, we get: 1519 // bool++ -> bool = bool + 1 1520 // -> bool = (int)bool + 1 1521 // -> bool = ((int)bool + 1 != 0) 1522 // An interesting aspect of this is that increment is always true. 1523 // Decrement does not have this property. 1524 if (isInc && type->isBooleanType()) { 1525 value = Builder.getTrue(); 1526 1527 // Most common case by far: integer increment. 1528 } else if (type->isIntegerType()) { 1529 1530 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1531 1532 // Note that signed integer inc/dec with width less than int can't 1533 // overflow because of promotion rules; we're just eliding a few steps here. 1534 if (value->getType()->getPrimitiveSizeInBits() >= 1535 CGF.IntTy->getBitWidth() && 1536 type->isSignedIntegerOrEnumerationType()) { 1537 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc); 1538 } else if (value->getType()->getPrimitiveSizeInBits() >= 1539 CGF.IntTy->getBitWidth() && type->isUnsignedIntegerType() && 1540 CGF.SanOpts->UnsignedIntegerOverflow) { 1541 BinOpInfo BinOp; 1542 BinOp.LHS = value; 1543 BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false); 1544 BinOp.Ty = E->getType(); 1545 BinOp.Opcode = isInc ? BO_Add : BO_Sub; 1546 BinOp.FPContractable = false; 1547 BinOp.E = E; 1548 value = EmitOverflowCheckedBinOp(BinOp); 1549 } else 1550 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1551 1552 // Next most common: pointer increment. 1553 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1554 QualType type = ptr->getPointeeType(); 1555 1556 // VLA types don't have constant size. 1557 if (const VariableArrayType *vla 1558 = CGF.getContext().getAsVariableArrayType(type)) { 1559 llvm::Value *numElts = CGF.getVLASize(vla).first; 1560 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1561 if (CGF.getLangOpts().isSignedOverflowDefined()) 1562 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1563 else 1564 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1565 1566 // Arithmetic on function pointers (!) is just +-1. 1567 } else if (type->isFunctionType()) { 1568 llvm::Value *amt = Builder.getInt32(amount); 1569 1570 value = CGF.EmitCastToVoidPtr(value); 1571 if (CGF.getLangOpts().isSignedOverflowDefined()) 1572 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1573 else 1574 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1575 value = Builder.CreateBitCast(value, input->getType()); 1576 1577 // For everything else, we can just do a simple increment. 1578 } else { 1579 llvm::Value *amt = Builder.getInt32(amount); 1580 if (CGF.getLangOpts().isSignedOverflowDefined()) 1581 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1582 else 1583 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1584 } 1585 1586 // Vector increment/decrement. 1587 } else if (type->isVectorType()) { 1588 if (type->hasIntegerRepresentation()) { 1589 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1590 1591 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1592 } else { 1593 value = Builder.CreateFAdd( 1594 value, 1595 llvm::ConstantFP::get(value->getType(), amount), 1596 isInc ? "inc" : "dec"); 1597 } 1598 1599 // Floating point. 1600 } else if (type->isRealFloatingType()) { 1601 // Add the inc/dec to the real part. 1602 llvm::Value *amt; 1603 1604 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1605 // Another special case: half FP increment should be done via float 1606 value = 1607 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), 1608 input); 1609 } 1610 1611 if (value->getType()->isFloatTy()) 1612 amt = llvm::ConstantFP::get(VMContext, 1613 llvm::APFloat(static_cast<float>(amount))); 1614 else if (value->getType()->isDoubleTy()) 1615 amt = llvm::ConstantFP::get(VMContext, 1616 llvm::APFloat(static_cast<double>(amount))); 1617 else { 1618 llvm::APFloat F(static_cast<float>(amount)); 1619 bool ignored; 1620 F.convert(CGF.getTarget().getLongDoubleFormat(), 1621 llvm::APFloat::rmTowardZero, &ignored); 1622 amt = llvm::ConstantFP::get(VMContext, F); 1623 } 1624 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1625 1626 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) 1627 value = 1628 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), 1629 value); 1630 1631 // Objective-C pointer types. 1632 } else { 1633 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1634 value = CGF.EmitCastToVoidPtr(value); 1635 1636 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1637 if (!isInc) size = -size; 1638 llvm::Value *sizeValue = 1639 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1640 1641 if (CGF.getLangOpts().isSignedOverflowDefined()) 1642 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1643 else 1644 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1645 value = Builder.CreateBitCast(value, input->getType()); 1646 } 1647 1648 if (atomicPHI) { 1649 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1650 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1651 llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI, 1652 CGF.EmitToMemory(value, type), llvm::SequentiallyConsistent); 1653 atomicPHI->addIncoming(old, opBB); 1654 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); 1655 Builder.CreateCondBr(success, contBB, opBB); 1656 Builder.SetInsertPoint(contBB); 1657 return isPre ? value : input; 1658 } 1659 1660 // Store the updated result through the lvalue. 1661 if (LV.isBitField()) 1662 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1663 else 1664 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1665 1666 // If this is a postinc, return the value read from memory, otherwise use the 1667 // updated value. 1668 return isPre ? value : input; 1669 } 1670 1671 1672 1673 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1674 TestAndClearIgnoreResultAssign(); 1675 // Emit unary minus with EmitSub so we handle overflow cases etc. 1676 BinOpInfo BinOp; 1677 BinOp.RHS = Visit(E->getSubExpr()); 1678 1679 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1680 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1681 else 1682 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1683 BinOp.Ty = E->getType(); 1684 BinOp.Opcode = BO_Sub; 1685 BinOp.FPContractable = false; 1686 BinOp.E = E; 1687 return EmitSub(BinOp); 1688 } 1689 1690 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1691 TestAndClearIgnoreResultAssign(); 1692 Value *Op = Visit(E->getSubExpr()); 1693 return Builder.CreateNot(Op, "neg"); 1694 } 1695 1696 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1697 // Perform vector logical not on comparison with zero vector. 1698 if (E->getType()->isExtVectorType()) { 1699 Value *Oper = Visit(E->getSubExpr()); 1700 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1701 Value *Result; 1702 if (Oper->getType()->isFPOrFPVectorTy()) 1703 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1704 else 1705 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1706 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1707 } 1708 1709 // Compare operand to zero. 1710 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1711 1712 // Invert value. 1713 // TODO: Could dynamically modify easy computations here. For example, if 1714 // the operand is an icmp ne, turn into icmp eq. 1715 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1716 1717 // ZExt result to the expr type. 1718 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1719 } 1720 1721 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1722 // Try folding the offsetof to a constant. 1723 llvm::APSInt Value; 1724 if (E->EvaluateAsInt(Value, CGF.getContext())) 1725 return Builder.getInt(Value); 1726 1727 // Loop over the components of the offsetof to compute the value. 1728 unsigned n = E->getNumComponents(); 1729 llvm::Type* ResultType = ConvertType(E->getType()); 1730 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1731 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1732 for (unsigned i = 0; i != n; ++i) { 1733 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1734 llvm::Value *Offset = 0; 1735 switch (ON.getKind()) { 1736 case OffsetOfExpr::OffsetOfNode::Array: { 1737 // Compute the index 1738 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1739 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1740 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1741 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1742 1743 // Save the element type 1744 CurrentType = 1745 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1746 1747 // Compute the element size 1748 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1749 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1750 1751 // Multiply out to compute the result 1752 Offset = Builder.CreateMul(Idx, ElemSize); 1753 break; 1754 } 1755 1756 case OffsetOfExpr::OffsetOfNode::Field: { 1757 FieldDecl *MemberDecl = ON.getField(); 1758 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1759 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1760 1761 // Compute the index of the field in its parent. 1762 unsigned i = 0; 1763 // FIXME: It would be nice if we didn't have to loop here! 1764 for (RecordDecl::field_iterator Field = RD->field_begin(), 1765 FieldEnd = RD->field_end(); 1766 Field != FieldEnd; ++Field, ++i) { 1767 if (*Field == MemberDecl) 1768 break; 1769 } 1770 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1771 1772 // Compute the offset to the field 1773 int64_t OffsetInt = RL.getFieldOffset(i) / 1774 CGF.getContext().getCharWidth(); 1775 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1776 1777 // Save the element type. 1778 CurrentType = MemberDecl->getType(); 1779 break; 1780 } 1781 1782 case OffsetOfExpr::OffsetOfNode::Identifier: 1783 llvm_unreachable("dependent __builtin_offsetof"); 1784 1785 case OffsetOfExpr::OffsetOfNode::Base: { 1786 if (ON.getBase()->isVirtual()) { 1787 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1788 continue; 1789 } 1790 1791 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1792 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1793 1794 // Save the element type. 1795 CurrentType = ON.getBase()->getType(); 1796 1797 // Compute the offset to the base. 1798 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1799 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1800 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1801 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1802 break; 1803 } 1804 } 1805 Result = Builder.CreateAdd(Result, Offset); 1806 } 1807 return Result; 1808 } 1809 1810 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 1811 /// argument of the sizeof expression as an integer. 1812 Value * 1813 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 1814 const UnaryExprOrTypeTraitExpr *E) { 1815 QualType TypeToSize = E->getTypeOfArgument(); 1816 if (E->getKind() == UETT_SizeOf) { 1817 if (const VariableArrayType *VAT = 1818 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 1819 if (E->isArgumentType()) { 1820 // sizeof(type) - make sure to emit the VLA size. 1821 CGF.EmitVariablyModifiedType(TypeToSize); 1822 } else { 1823 // C99 6.5.3.4p2: If the argument is an expression of type 1824 // VLA, it is evaluated. 1825 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 1826 } 1827 1828 QualType eltType; 1829 llvm::Value *numElts; 1830 llvm::tie(numElts, eltType) = CGF.getVLASize(VAT); 1831 1832 llvm::Value *size = numElts; 1833 1834 // Scale the number of non-VLA elements by the non-VLA element size. 1835 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 1836 if (!eltSize.isOne()) 1837 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 1838 1839 return size; 1840 } 1841 } 1842 1843 // If this isn't sizeof(vla), the result must be constant; use the constant 1844 // folding logic so we don't have to duplicate it here. 1845 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 1846 } 1847 1848 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 1849 Expr *Op = E->getSubExpr(); 1850 if (Op->getType()->isAnyComplexType()) { 1851 // If it's an l-value, load through the appropriate subobject l-value. 1852 // Note that we have to ask E because Op might be an l-value that 1853 // this won't work for, e.g. an Obj-C property. 1854 if (E->isGLValue()) 1855 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal(); 1856 1857 // Otherwise, calculate and project. 1858 return CGF.EmitComplexExpr(Op, false, true).first; 1859 } 1860 1861 return Visit(Op); 1862 } 1863 1864 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 1865 Expr *Op = E->getSubExpr(); 1866 if (Op->getType()->isAnyComplexType()) { 1867 // If it's an l-value, load through the appropriate subobject l-value. 1868 // Note that we have to ask E because Op might be an l-value that 1869 // this won't work for, e.g. an Obj-C property. 1870 if (Op->isGLValue()) 1871 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal(); 1872 1873 // Otherwise, calculate and project. 1874 return CGF.EmitComplexExpr(Op, true, false).second; 1875 } 1876 1877 // __imag on a scalar returns zero. Emit the subexpr to ensure side 1878 // effects are evaluated, but not the actual value. 1879 if (Op->isGLValue()) 1880 CGF.EmitLValue(Op); 1881 else 1882 CGF.EmitScalarExpr(Op, true); 1883 return llvm::Constant::getNullValue(ConvertType(E->getType())); 1884 } 1885 1886 //===----------------------------------------------------------------------===// 1887 // Binary Operators 1888 //===----------------------------------------------------------------------===// 1889 1890 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 1891 TestAndClearIgnoreResultAssign(); 1892 BinOpInfo Result; 1893 Result.LHS = Visit(E->getLHS()); 1894 Result.RHS = Visit(E->getRHS()); 1895 Result.Ty = E->getType(); 1896 Result.Opcode = E->getOpcode(); 1897 Result.FPContractable = E->isFPContractable(); 1898 Result.E = E; 1899 return Result; 1900 } 1901 1902 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 1903 const CompoundAssignOperator *E, 1904 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 1905 Value *&Result) { 1906 QualType LHSTy = E->getLHS()->getType(); 1907 BinOpInfo OpInfo; 1908 1909 if (E->getComputationResultType()->isAnyComplexType()) 1910 return CGF.EmitScalarCompooundAssignWithComplex(E, Result); 1911 1912 // Emit the RHS first. __block variables need to have the rhs evaluated 1913 // first, plus this should improve codegen a little. 1914 OpInfo.RHS = Visit(E->getRHS()); 1915 OpInfo.Ty = E->getComputationResultType(); 1916 OpInfo.Opcode = E->getOpcode(); 1917 OpInfo.FPContractable = false; 1918 OpInfo.E = E; 1919 // Load/convert the LHS. 1920 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1921 1922 llvm::PHINode *atomicPHI = 0; 1923 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 1924 QualType type = atomicTy->getValueType(); 1925 if (!type->isBooleanType() && type->isIntegerType() && 1926 !(type->isUnsignedIntegerType() && 1927 CGF.SanOpts->UnsignedIntegerOverflow) && 1928 CGF.getLangOpts().getSignedOverflowBehavior() != 1929 LangOptions::SOB_Trapping) { 1930 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 1931 switch (OpInfo.Opcode) { 1932 // We don't have atomicrmw operands for *, %, /, <<, >> 1933 case BO_MulAssign: case BO_DivAssign: 1934 case BO_RemAssign: 1935 case BO_ShlAssign: 1936 case BO_ShrAssign: 1937 break; 1938 case BO_AddAssign: 1939 aop = llvm::AtomicRMWInst::Add; 1940 break; 1941 case BO_SubAssign: 1942 aop = llvm::AtomicRMWInst::Sub; 1943 break; 1944 case BO_AndAssign: 1945 aop = llvm::AtomicRMWInst::And; 1946 break; 1947 case BO_XorAssign: 1948 aop = llvm::AtomicRMWInst::Xor; 1949 break; 1950 case BO_OrAssign: 1951 aop = llvm::AtomicRMWInst::Or; 1952 break; 1953 default: 1954 llvm_unreachable("Invalid compound assignment type"); 1955 } 1956 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 1957 llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS, 1958 E->getRHS()->getType(), LHSTy), LHSTy); 1959 Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt, 1960 llvm::SequentiallyConsistent); 1961 return LHSLV; 1962 } 1963 } 1964 // FIXME: For floating point types, we should be saving and restoring the 1965 // floating point environment in the loop. 1966 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1967 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1968 OpInfo.LHS = EmitLoadOfLValue(LHSLV); 1969 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 1970 Builder.CreateBr(opBB); 1971 Builder.SetInsertPoint(opBB); 1972 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 1973 atomicPHI->addIncoming(OpInfo.LHS, startBB); 1974 OpInfo.LHS = atomicPHI; 1975 } 1976 else 1977 OpInfo.LHS = EmitLoadOfLValue(LHSLV); 1978 1979 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 1980 E->getComputationLHSType()); 1981 1982 // Expand the binary operator. 1983 Result = (this->*Func)(OpInfo); 1984 1985 // Convert the result back to the LHS type. 1986 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 1987 1988 if (atomicPHI) { 1989 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1990 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1991 llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI, 1992 CGF.EmitToMemory(Result, LHSTy), llvm::SequentiallyConsistent); 1993 atomicPHI->addIncoming(old, opBB); 1994 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI); 1995 Builder.CreateCondBr(success, contBB, opBB); 1996 Builder.SetInsertPoint(contBB); 1997 return LHSLV; 1998 } 1999 2000 // Store the result value into the LHS lvalue. Bit-fields are handled 2001 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2002 // 'An assignment expression has the value of the left operand after the 2003 // assignment...'. 2004 if (LHSLV.isBitField()) 2005 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2006 else 2007 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2008 2009 return LHSLV; 2010 } 2011 2012 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2013 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2014 bool Ignore = TestAndClearIgnoreResultAssign(); 2015 Value *RHS; 2016 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2017 2018 // If the result is clearly ignored, return now. 2019 if (Ignore) 2020 return 0; 2021 2022 // The result of an assignment in C is the assigned r-value. 2023 if (!CGF.getLangOpts().CPlusPlus) 2024 return RHS; 2025 2026 // If the lvalue is non-volatile, return the computed value of the assignment. 2027 if (!LHS.isVolatileQualified()) 2028 return RHS; 2029 2030 // Otherwise, reload the value. 2031 return EmitLoadOfLValue(LHS); 2032 } 2033 2034 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2035 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2036 llvm::Value *Cond = 0; 2037 2038 if (CGF.SanOpts->IntegerDivideByZero) 2039 Cond = Builder.CreateICmpNE(Ops.RHS, Zero); 2040 2041 if (CGF.SanOpts->SignedIntegerOverflow && 2042 Ops.Ty->hasSignedIntegerRepresentation()) { 2043 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2044 2045 llvm::Value *IntMin = 2046 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2047 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2048 2049 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2050 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2051 llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2052 Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow; 2053 } 2054 2055 if (Cond) 2056 EmitBinOpCheck(Cond, Ops); 2057 } 2058 2059 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2060 if ((CGF.SanOpts->IntegerDivideByZero || 2061 CGF.SanOpts->SignedIntegerOverflow) && 2062 Ops.Ty->isIntegerType()) { 2063 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2064 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2065 } else if (CGF.SanOpts->FloatDivideByZero && 2066 Ops.Ty->isRealFloatingType()) { 2067 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2068 EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops); 2069 } 2070 2071 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2072 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2073 if (CGF.getLangOpts().OpenCL) { 2074 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2075 llvm::Type *ValTy = Val->getType(); 2076 if (ValTy->isFloatTy() || 2077 (isa<llvm::VectorType>(ValTy) && 2078 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2079 CGF.SetFPAccuracy(Val, 2.5); 2080 } 2081 return Val; 2082 } 2083 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2084 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2085 else 2086 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2087 } 2088 2089 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2090 // Rem in C can't be a floating point type: C99 6.5.5p2. 2091 if (CGF.SanOpts->IntegerDivideByZero) { 2092 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2093 2094 if (Ops.Ty->isIntegerType()) 2095 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2096 } 2097 2098 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2099 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2100 else 2101 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2102 } 2103 2104 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2105 unsigned IID; 2106 unsigned OpID = 0; 2107 2108 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2109 switch (Ops.Opcode) { 2110 case BO_Add: 2111 case BO_AddAssign: 2112 OpID = 1; 2113 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2114 llvm::Intrinsic::uadd_with_overflow; 2115 break; 2116 case BO_Sub: 2117 case BO_SubAssign: 2118 OpID = 2; 2119 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2120 llvm::Intrinsic::usub_with_overflow; 2121 break; 2122 case BO_Mul: 2123 case BO_MulAssign: 2124 OpID = 3; 2125 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2126 llvm::Intrinsic::umul_with_overflow; 2127 break; 2128 default: 2129 llvm_unreachable("Unsupported operation for overflow detection"); 2130 } 2131 OpID <<= 1; 2132 if (isSigned) 2133 OpID |= 1; 2134 2135 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2136 2137 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2138 2139 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); 2140 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2141 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2142 2143 // Handle overflow with llvm.trap if no custom handler has been specified. 2144 const std::string *handlerName = 2145 &CGF.getLangOpts().OverflowHandler; 2146 if (handlerName->empty()) { 2147 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2148 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2149 if (!isSigned || CGF.SanOpts->SignedIntegerOverflow) 2150 EmitBinOpCheck(Builder.CreateNot(overflow), Ops); 2151 else 2152 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2153 return result; 2154 } 2155 2156 // Branch in case of overflow. 2157 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2158 llvm::Function::iterator insertPt = initialBB; 2159 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2160 llvm::next(insertPt)); 2161 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2162 2163 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2164 2165 // If an overflow handler is set, then we want to call it and then use its 2166 // result, if it returns. 2167 Builder.SetInsertPoint(overflowBB); 2168 2169 // Get the overflow handler. 2170 llvm::Type *Int8Ty = CGF.Int8Ty; 2171 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2172 llvm::FunctionType *handlerTy = 2173 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2174 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2175 2176 // Sign extend the args to 64-bit, so that we can use the same handler for 2177 // all types of overflow. 2178 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2179 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2180 2181 // Call the handler with the two arguments, the operation, and the size of 2182 // the result. 2183 llvm::Value *handlerArgs[] = { 2184 lhs, 2185 rhs, 2186 Builder.getInt8(OpID), 2187 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2188 }; 2189 llvm::Value *handlerResult = 2190 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2191 2192 // Truncate the result back to the desired size. 2193 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2194 Builder.CreateBr(continueBB); 2195 2196 Builder.SetInsertPoint(continueBB); 2197 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2198 phi->addIncoming(result, initialBB); 2199 phi->addIncoming(handlerResult, overflowBB); 2200 2201 return phi; 2202 } 2203 2204 /// Emit pointer + index arithmetic. 2205 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2206 const BinOpInfo &op, 2207 bool isSubtraction) { 2208 // Must have binary (not unary) expr here. Unary pointer 2209 // increment/decrement doesn't use this path. 2210 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2211 2212 Value *pointer = op.LHS; 2213 Expr *pointerOperand = expr->getLHS(); 2214 Value *index = op.RHS; 2215 Expr *indexOperand = expr->getRHS(); 2216 2217 // In a subtraction, the LHS is always the pointer. 2218 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2219 std::swap(pointer, index); 2220 std::swap(pointerOperand, indexOperand); 2221 } 2222 2223 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2224 if (width != CGF.PointerWidthInBits) { 2225 // Zero-extend or sign-extend the pointer value according to 2226 // whether the index is signed or not. 2227 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2228 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2229 "idx.ext"); 2230 } 2231 2232 // If this is subtraction, negate the index. 2233 if (isSubtraction) 2234 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2235 2236 if (CGF.SanOpts->Bounds) 2237 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2238 /*Accessed*/ false); 2239 2240 const PointerType *pointerType 2241 = pointerOperand->getType()->getAs<PointerType>(); 2242 if (!pointerType) { 2243 QualType objectType = pointerOperand->getType() 2244 ->castAs<ObjCObjectPointerType>() 2245 ->getPointeeType(); 2246 llvm::Value *objectSize 2247 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2248 2249 index = CGF.Builder.CreateMul(index, objectSize); 2250 2251 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2252 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2253 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2254 } 2255 2256 QualType elementType = pointerType->getPointeeType(); 2257 if (const VariableArrayType *vla 2258 = CGF.getContext().getAsVariableArrayType(elementType)) { 2259 // The element count here is the total number of non-VLA elements. 2260 llvm::Value *numElements = CGF.getVLASize(vla).first; 2261 2262 // Effectively, the multiply by the VLA size is part of the GEP. 2263 // GEP indexes are signed, and scaling an index isn't permitted to 2264 // signed-overflow, so we use the same semantics for our explicit 2265 // multiply. We suppress this if overflow is not undefined behavior. 2266 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2267 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2268 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2269 } else { 2270 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2271 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2272 } 2273 return pointer; 2274 } 2275 2276 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2277 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2278 // future proof. 2279 if (elementType->isVoidType() || elementType->isFunctionType()) { 2280 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2281 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2282 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2283 } 2284 2285 if (CGF.getLangOpts().isSignedOverflowDefined()) 2286 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2287 2288 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2289 } 2290 2291 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2292 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2293 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2294 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2295 // efficient operations. 2296 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2297 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2298 bool negMul, bool negAdd) { 2299 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2300 2301 Value *MulOp0 = MulOp->getOperand(0); 2302 Value *MulOp1 = MulOp->getOperand(1); 2303 if (negMul) { 2304 MulOp0 = 2305 Builder.CreateFSub( 2306 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2307 "neg"); 2308 } else if (negAdd) { 2309 Addend = 2310 Builder.CreateFSub( 2311 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2312 "neg"); 2313 } 2314 2315 Value *FMulAdd = 2316 Builder.CreateCall3( 2317 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2318 MulOp0, MulOp1, Addend); 2319 MulOp->eraseFromParent(); 2320 2321 return FMulAdd; 2322 } 2323 2324 // Check whether it would be legal to emit an fmuladd intrinsic call to 2325 // represent op and if so, build the fmuladd. 2326 // 2327 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2328 // Does NOT check the type of the operation - it's assumed that this function 2329 // will be called from contexts where it's known that the type is contractable. 2330 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2331 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2332 bool isSub=false) { 2333 2334 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2335 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2336 "Only fadd/fsub can be the root of an fmuladd."); 2337 2338 // Check whether this op is marked as fusable. 2339 if (!op.FPContractable) 2340 return 0; 2341 2342 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2343 // either disabled, or handled entirely by the LLVM backend). 2344 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2345 return 0; 2346 2347 // We have a potentially fusable op. Look for a mul on one of the operands. 2348 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2349 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2350 assert(LHSBinOp->getNumUses() == 0 && 2351 "Operations with multiple uses shouldn't be contracted."); 2352 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2353 } 2354 } else if (llvm::BinaryOperator* RHSBinOp = 2355 dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2356 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2357 assert(RHSBinOp->getNumUses() == 0 && 2358 "Operations with multiple uses shouldn't be contracted."); 2359 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2360 } 2361 } 2362 2363 return 0; 2364 } 2365 2366 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2367 if (op.LHS->getType()->isPointerTy() || 2368 op.RHS->getType()->isPointerTy()) 2369 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2370 2371 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2372 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2373 case LangOptions::SOB_Defined: 2374 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2375 case LangOptions::SOB_Undefined: 2376 if (!CGF.SanOpts->SignedIntegerOverflow) 2377 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2378 // Fall through. 2379 case LangOptions::SOB_Trapping: 2380 return EmitOverflowCheckedBinOp(op); 2381 } 2382 } 2383 2384 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2385 return EmitOverflowCheckedBinOp(op); 2386 2387 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2388 // Try to form an fmuladd. 2389 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2390 return FMulAdd; 2391 2392 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2393 } 2394 2395 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2396 } 2397 2398 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2399 // The LHS is always a pointer if either side is. 2400 if (!op.LHS->getType()->isPointerTy()) { 2401 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2402 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2403 case LangOptions::SOB_Defined: 2404 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2405 case LangOptions::SOB_Undefined: 2406 if (!CGF.SanOpts->SignedIntegerOverflow) 2407 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2408 // Fall through. 2409 case LangOptions::SOB_Trapping: 2410 return EmitOverflowCheckedBinOp(op); 2411 } 2412 } 2413 2414 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow) 2415 return EmitOverflowCheckedBinOp(op); 2416 2417 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2418 // Try to form an fmuladd. 2419 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2420 return FMulAdd; 2421 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2422 } 2423 2424 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2425 } 2426 2427 // If the RHS is not a pointer, then we have normal pointer 2428 // arithmetic. 2429 if (!op.RHS->getType()->isPointerTy()) 2430 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2431 2432 // Otherwise, this is a pointer subtraction. 2433 2434 // Do the raw subtraction part. 2435 llvm::Value *LHS 2436 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2437 llvm::Value *RHS 2438 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2439 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2440 2441 // Okay, figure out the element size. 2442 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2443 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2444 2445 llvm::Value *divisor = 0; 2446 2447 // For a variable-length array, this is going to be non-constant. 2448 if (const VariableArrayType *vla 2449 = CGF.getContext().getAsVariableArrayType(elementType)) { 2450 llvm::Value *numElements; 2451 llvm::tie(numElements, elementType) = CGF.getVLASize(vla); 2452 2453 divisor = numElements; 2454 2455 // Scale the number of non-VLA elements by the non-VLA element size. 2456 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2457 if (!eltSize.isOne()) 2458 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2459 2460 // For everything elese, we can just compute it, safe in the 2461 // assumption that Sema won't let anything through that we can't 2462 // safely compute the size of. 2463 } else { 2464 CharUnits elementSize; 2465 // Handle GCC extension for pointer arithmetic on void* and 2466 // function pointer types. 2467 if (elementType->isVoidType() || elementType->isFunctionType()) 2468 elementSize = CharUnits::One(); 2469 else 2470 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2471 2472 // Don't even emit the divide for element size of 1. 2473 if (elementSize.isOne()) 2474 return diffInChars; 2475 2476 divisor = CGF.CGM.getSize(elementSize); 2477 } 2478 2479 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2480 // pointer difference in C is only defined in the case where both operands 2481 // are pointing to elements of an array. 2482 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2483 } 2484 2485 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2486 llvm::IntegerType *Ty; 2487 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2488 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2489 else 2490 Ty = cast<llvm::IntegerType>(LHS->getType()); 2491 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2492 } 2493 2494 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2495 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2496 // RHS to the same size as the LHS. 2497 Value *RHS = Ops.RHS; 2498 if (Ops.LHS->getType() != RHS->getType()) 2499 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2500 2501 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2502 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2503 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2504 llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne); 2505 2506 if (Ops.Ty->hasSignedIntegerRepresentation()) { 2507 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2508 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2509 llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check"); 2510 Builder.CreateCondBr(Valid, CheckBitsShifted, Cont); 2511 2512 // Check whether we are shifting any non-zero bits off the top of the 2513 // integer. 2514 CGF.EmitBlock(CheckBitsShifted); 2515 llvm::Value *BitsShiftedOff = 2516 Builder.CreateLShr(Ops.LHS, 2517 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2518 /*NUW*/true, /*NSW*/true), 2519 "shl.check"); 2520 if (CGF.getLangOpts().CPlusPlus) { 2521 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2522 // Under C++11's rules, shifting a 1 bit into the sign bit is 2523 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2524 // define signed left shifts, so we use the C99 and C++11 rules there). 2525 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2526 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2527 } 2528 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2529 llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2530 CGF.EmitBlock(Cont); 2531 llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2); 2532 P->addIncoming(Valid, Orig); 2533 P->addIncoming(SecondCheck, CheckBitsShifted); 2534 Valid = P; 2535 } 2536 2537 EmitBinOpCheck(Valid, Ops); 2538 } 2539 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2540 if (CGF.getLangOpts().OpenCL) 2541 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2542 2543 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2544 } 2545 2546 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2547 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2548 // RHS to the same size as the LHS. 2549 Value *RHS = Ops.RHS; 2550 if (Ops.LHS->getType() != RHS->getType()) 2551 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2552 2553 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL && 2554 isa<llvm::IntegerType>(Ops.LHS->getType())) 2555 EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops); 2556 2557 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2558 if (CGF.getLangOpts().OpenCL) 2559 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2560 2561 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2562 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2563 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2564 } 2565 2566 enum IntrinsicType { VCMPEQ, VCMPGT }; 2567 // return corresponding comparison intrinsic for given vector type 2568 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2569 BuiltinType::Kind ElemKind) { 2570 switch (ElemKind) { 2571 default: llvm_unreachable("unexpected element type"); 2572 case BuiltinType::Char_U: 2573 case BuiltinType::UChar: 2574 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2575 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2576 case BuiltinType::Char_S: 2577 case BuiltinType::SChar: 2578 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2579 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2580 case BuiltinType::UShort: 2581 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2582 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2583 case BuiltinType::Short: 2584 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2585 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2586 case BuiltinType::UInt: 2587 case BuiltinType::ULong: 2588 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2589 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2590 case BuiltinType::Int: 2591 case BuiltinType::Long: 2592 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2593 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2594 case BuiltinType::Float: 2595 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2596 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2597 } 2598 } 2599 2600 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2601 unsigned SICmpOpc, unsigned FCmpOpc) { 2602 TestAndClearIgnoreResultAssign(); 2603 Value *Result; 2604 QualType LHSTy = E->getLHS()->getType(); 2605 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2606 assert(E->getOpcode() == BO_EQ || 2607 E->getOpcode() == BO_NE); 2608 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2609 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2610 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2611 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2612 } else if (!LHSTy->isAnyComplexType()) { 2613 Value *LHS = Visit(E->getLHS()); 2614 Value *RHS = Visit(E->getRHS()); 2615 2616 // If AltiVec, the comparison results in a numeric type, so we use 2617 // intrinsics comparing vectors and giving 0 or 1 as a result 2618 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2619 // constants for mapping CR6 register bits to predicate result 2620 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2621 2622 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2623 2624 // in several cases vector arguments order will be reversed 2625 Value *FirstVecArg = LHS, 2626 *SecondVecArg = RHS; 2627 2628 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2629 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2630 BuiltinType::Kind ElementKind = BTy->getKind(); 2631 2632 switch(E->getOpcode()) { 2633 default: llvm_unreachable("is not a comparison operation"); 2634 case BO_EQ: 2635 CR6 = CR6_LT; 2636 ID = GetIntrinsic(VCMPEQ, ElementKind); 2637 break; 2638 case BO_NE: 2639 CR6 = CR6_EQ; 2640 ID = GetIntrinsic(VCMPEQ, ElementKind); 2641 break; 2642 case BO_LT: 2643 CR6 = CR6_LT; 2644 ID = GetIntrinsic(VCMPGT, ElementKind); 2645 std::swap(FirstVecArg, SecondVecArg); 2646 break; 2647 case BO_GT: 2648 CR6 = CR6_LT; 2649 ID = GetIntrinsic(VCMPGT, ElementKind); 2650 break; 2651 case BO_LE: 2652 if (ElementKind == BuiltinType::Float) { 2653 CR6 = CR6_LT; 2654 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2655 std::swap(FirstVecArg, SecondVecArg); 2656 } 2657 else { 2658 CR6 = CR6_EQ; 2659 ID = GetIntrinsic(VCMPGT, ElementKind); 2660 } 2661 break; 2662 case BO_GE: 2663 if (ElementKind == BuiltinType::Float) { 2664 CR6 = CR6_LT; 2665 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2666 } 2667 else { 2668 CR6 = CR6_EQ; 2669 ID = GetIntrinsic(VCMPGT, ElementKind); 2670 std::swap(FirstVecArg, SecondVecArg); 2671 } 2672 break; 2673 } 2674 2675 Value *CR6Param = Builder.getInt32(CR6); 2676 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2677 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, ""); 2678 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2679 } 2680 2681 if (LHS->getType()->isFPOrFPVectorTy()) { 2682 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2683 LHS, RHS, "cmp"); 2684 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2685 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2686 LHS, RHS, "cmp"); 2687 } else { 2688 // Unsigned integers and pointers. 2689 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2690 LHS, RHS, "cmp"); 2691 } 2692 2693 // If this is a vector comparison, sign extend the result to the appropriate 2694 // vector integer type and return it (don't convert to bool). 2695 if (LHSTy->isVectorType()) 2696 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2697 2698 } else { 2699 // Complex Comparison: can only be an equality comparison. 2700 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); 2701 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); 2702 2703 QualType CETy = LHSTy->getAs<ComplexType>()->getElementType(); 2704 2705 Value *ResultR, *ResultI; 2706 if (CETy->isRealFloatingType()) { 2707 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2708 LHS.first, RHS.first, "cmp.r"); 2709 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2710 LHS.second, RHS.second, "cmp.i"); 2711 } else { 2712 // Complex comparisons can only be equality comparisons. As such, signed 2713 // and unsigned opcodes are the same. 2714 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2715 LHS.first, RHS.first, "cmp.r"); 2716 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2717 LHS.second, RHS.second, "cmp.i"); 2718 } 2719 2720 if (E->getOpcode() == BO_EQ) { 2721 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2722 } else { 2723 assert(E->getOpcode() == BO_NE && 2724 "Complex comparison other than == or != ?"); 2725 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2726 } 2727 } 2728 2729 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2730 } 2731 2732 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2733 bool Ignore = TestAndClearIgnoreResultAssign(); 2734 2735 Value *RHS; 2736 LValue LHS; 2737 2738 switch (E->getLHS()->getType().getObjCLifetime()) { 2739 case Qualifiers::OCL_Strong: 2740 llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2741 break; 2742 2743 case Qualifiers::OCL_Autoreleasing: 2744 llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E); 2745 break; 2746 2747 case Qualifiers::OCL_Weak: 2748 RHS = Visit(E->getRHS()); 2749 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2750 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 2751 break; 2752 2753 // No reason to do any of these differently. 2754 case Qualifiers::OCL_None: 2755 case Qualifiers::OCL_ExplicitNone: 2756 // __block variables need to have the rhs evaluated first, plus 2757 // this should improve codegen just a little. 2758 RHS = Visit(E->getRHS()); 2759 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2760 2761 // Store the value into the LHS. Bit-fields are handled specially 2762 // because the result is altered by the store, i.e., [C99 6.5.16p1] 2763 // 'An assignment expression has the value of the left operand after 2764 // the assignment...'. 2765 if (LHS.isBitField()) 2766 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 2767 else 2768 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 2769 } 2770 2771 // If the result is clearly ignored, return now. 2772 if (Ignore) 2773 return 0; 2774 2775 // The result of an assignment in C is the assigned r-value. 2776 if (!CGF.getLangOpts().CPlusPlus) 2777 return RHS; 2778 2779 // If the lvalue is non-volatile, return the computed value of the assignment. 2780 if (!LHS.isVolatileQualified()) 2781 return RHS; 2782 2783 // Otherwise, reload the value. 2784 return EmitLoadOfLValue(LHS); 2785 } 2786 2787 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 2788 // Perform vector logical and on comparisons with zero vectors. 2789 if (E->getType()->isVectorType()) { 2790 Value *LHS = Visit(E->getLHS()); 2791 Value *RHS = Visit(E->getRHS()); 2792 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2793 if (LHS->getType()->isFPOrFPVectorTy()) { 2794 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 2795 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 2796 } else { 2797 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2798 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2799 } 2800 Value *And = Builder.CreateAnd(LHS, RHS); 2801 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 2802 } 2803 2804 llvm::Type *ResTy = ConvertType(E->getType()); 2805 2806 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 2807 // If we have 1 && X, just emit X without inserting the control flow. 2808 bool LHSCondVal; 2809 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2810 if (LHSCondVal) { // If we have 1 && X, just emit X. 2811 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2812 // ZExt result to int or bool. 2813 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 2814 } 2815 2816 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 2817 if (!CGF.ContainsLabel(E->getRHS())) 2818 return llvm::Constant::getNullValue(ResTy); 2819 } 2820 2821 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 2822 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 2823 2824 CodeGenFunction::ConditionalEvaluation eval(CGF); 2825 2826 // Branch on the LHS first. If it is false, go to the failure (cont) block. 2827 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock); 2828 2829 // Any edges into the ContBlock are now from an (indeterminate number of) 2830 // edges from this first condition. All of these values will be false. Start 2831 // setting up the PHI node in the Cont Block for this. 2832 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2833 "", ContBlock); 2834 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2835 PI != PE; ++PI) 2836 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 2837 2838 eval.begin(CGF); 2839 CGF.EmitBlock(RHSBlock); 2840 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2841 eval.end(CGF); 2842 2843 // Reaquire the RHS block, as there may be subblocks inserted. 2844 RHSBlock = Builder.GetInsertBlock(); 2845 2846 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2847 // into the phi node for the edge with the value of RHSCond. 2848 if (CGF.getDebugInfo()) 2849 // There is no need to emit line number for unconditional branch. 2850 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 2851 CGF.EmitBlock(ContBlock); 2852 PN->addIncoming(RHSCond, RHSBlock); 2853 2854 // ZExt result to int. 2855 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 2856 } 2857 2858 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 2859 // Perform vector logical or on comparisons with zero vectors. 2860 if (E->getType()->isVectorType()) { 2861 Value *LHS = Visit(E->getLHS()); 2862 Value *RHS = Visit(E->getRHS()); 2863 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 2864 if (LHS->getType()->isFPOrFPVectorTy()) { 2865 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 2866 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 2867 } else { 2868 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 2869 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 2870 } 2871 Value *Or = Builder.CreateOr(LHS, RHS); 2872 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 2873 } 2874 2875 llvm::Type *ResTy = ConvertType(E->getType()); 2876 2877 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 2878 // If we have 0 || X, just emit X without inserting the control flow. 2879 bool LHSCondVal; 2880 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 2881 if (!LHSCondVal) { // If we have 0 || X, just emit X. 2882 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2883 // ZExt result to int or bool. 2884 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 2885 } 2886 2887 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 2888 if (!CGF.ContainsLabel(E->getRHS())) 2889 return llvm::ConstantInt::get(ResTy, 1); 2890 } 2891 2892 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 2893 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 2894 2895 CodeGenFunction::ConditionalEvaluation eval(CGF); 2896 2897 // Branch on the LHS first. If it is true, go to the success (cont) block. 2898 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock); 2899 2900 // Any edges into the ContBlock are now from an (indeterminate number of) 2901 // edges from this first condition. All of these values will be true. Start 2902 // setting up the PHI node in the Cont Block for this. 2903 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 2904 "", ContBlock); 2905 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 2906 PI != PE; ++PI) 2907 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 2908 2909 eval.begin(CGF); 2910 2911 // Emit the RHS condition as a bool value. 2912 CGF.EmitBlock(RHSBlock); 2913 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 2914 2915 eval.end(CGF); 2916 2917 // Reaquire the RHS block, as there may be subblocks inserted. 2918 RHSBlock = Builder.GetInsertBlock(); 2919 2920 // Emit an unconditional branch from this block to ContBlock. Insert an entry 2921 // into the phi node for the edge with the value of RHSCond. 2922 CGF.EmitBlock(ContBlock); 2923 PN->addIncoming(RHSCond, RHSBlock); 2924 2925 // ZExt result to int. 2926 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 2927 } 2928 2929 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 2930 CGF.EmitIgnoredExpr(E->getLHS()); 2931 CGF.EnsureInsertPoint(); 2932 return Visit(E->getRHS()); 2933 } 2934 2935 //===----------------------------------------------------------------------===// 2936 // Other Operators 2937 //===----------------------------------------------------------------------===// 2938 2939 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 2940 /// expression is cheap enough and side-effect-free enough to evaluate 2941 /// unconditionally instead of conditionally. This is used to convert control 2942 /// flow into selects in some cases. 2943 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 2944 CodeGenFunction &CGF) { 2945 E = E->IgnoreParens(); 2946 2947 // Anything that is an integer or floating point constant is fine. 2948 if (E->isEvaluatable(CGF.getContext())) 2949 return true; 2950 2951 // Non-volatile automatic variables too, to get "cond ? X : Y" where 2952 // X and Y are local variables. 2953 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 2954 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2955 if (VD->hasLocalStorage() && !(CGF.getContext() 2956 .getCanonicalType(VD->getType()) 2957 .isVolatileQualified())) 2958 return true; 2959 2960 return false; 2961 } 2962 2963 2964 Value *ScalarExprEmitter:: 2965 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 2966 TestAndClearIgnoreResultAssign(); 2967 2968 // Bind the common expression if necessary. 2969 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 2970 2971 Expr *condExpr = E->getCond(); 2972 Expr *lhsExpr = E->getTrueExpr(); 2973 Expr *rhsExpr = E->getFalseExpr(); 2974 2975 // If the condition constant folds and can be elided, try to avoid emitting 2976 // the condition and the dead arm. 2977 bool CondExprBool; 2978 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2979 Expr *live = lhsExpr, *dead = rhsExpr; 2980 if (!CondExprBool) std::swap(live, dead); 2981 2982 // If the dead side doesn't have labels we need, just emit the Live part. 2983 if (!CGF.ContainsLabel(dead)) { 2984 Value *Result = Visit(live); 2985 2986 // If the live part is a throw expression, it acts like it has a void 2987 // type, so evaluating it returns a null Value*. However, a conditional 2988 // with non-void type must return a non-null Value*. 2989 if (!Result && !E->getType()->isVoidType()) 2990 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 2991 2992 return Result; 2993 } 2994 } 2995 2996 // OpenCL: If the condition is a vector, we can treat this condition like 2997 // the select function. 2998 if (CGF.getLangOpts().OpenCL 2999 && condExpr->getType()->isVectorType()) { 3000 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3001 llvm::Value *LHS = Visit(lhsExpr); 3002 llvm::Value *RHS = Visit(rhsExpr); 3003 3004 llvm::Type *condType = ConvertType(condExpr->getType()); 3005 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3006 3007 unsigned numElem = vecTy->getNumElements(); 3008 llvm::Type *elemType = vecTy->getElementType(); 3009 3010 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3011 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3012 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3013 llvm::VectorType::get(elemType, 3014 numElem), 3015 "sext"); 3016 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3017 3018 // Cast float to int to perform ANDs if necessary. 3019 llvm::Value *RHSTmp = RHS; 3020 llvm::Value *LHSTmp = LHS; 3021 bool wasCast = false; 3022 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3023 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3024 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3025 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3026 wasCast = true; 3027 } 3028 3029 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3030 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3031 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3032 if (wasCast) 3033 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3034 3035 return tmp5; 3036 } 3037 3038 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3039 // select instead of as control flow. We can only do this if it is cheap and 3040 // safe to evaluate the LHS and RHS unconditionally. 3041 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3042 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3043 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3044 llvm::Value *LHS = Visit(lhsExpr); 3045 llvm::Value *RHS = Visit(rhsExpr); 3046 if (!LHS) { 3047 // If the conditional has void type, make sure we return a null Value*. 3048 assert(!RHS && "LHS and RHS types must match"); 3049 return 0; 3050 } 3051 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3052 } 3053 3054 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3055 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3056 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3057 3058 CodeGenFunction::ConditionalEvaluation eval(CGF); 3059 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock); 3060 3061 CGF.EmitBlock(LHSBlock); 3062 eval.begin(CGF); 3063 Value *LHS = Visit(lhsExpr); 3064 eval.end(CGF); 3065 3066 LHSBlock = Builder.GetInsertBlock(); 3067 Builder.CreateBr(ContBlock); 3068 3069 CGF.EmitBlock(RHSBlock); 3070 eval.begin(CGF); 3071 Value *RHS = Visit(rhsExpr); 3072 eval.end(CGF); 3073 3074 RHSBlock = Builder.GetInsertBlock(); 3075 CGF.EmitBlock(ContBlock); 3076 3077 // If the LHS or RHS is a throw expression, it will be legitimately null. 3078 if (!LHS) 3079 return RHS; 3080 if (!RHS) 3081 return LHS; 3082 3083 // Create a PHI node for the real part. 3084 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3085 PN->addIncoming(LHS, LHSBlock); 3086 PN->addIncoming(RHS, RHSBlock); 3087 return PN; 3088 } 3089 3090 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3091 return Visit(E->getChosenSubExpr()); 3092 } 3093 3094 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3095 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 3096 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 3097 3098 // If EmitVAArg fails, we fall back to the LLVM instruction. 3099 if (!ArgPtr) 3100 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); 3101 3102 // FIXME Volatility. 3103 return Builder.CreateLoad(ArgPtr); 3104 } 3105 3106 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3107 return CGF.EmitBlockLiteral(block); 3108 } 3109 3110 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3111 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3112 llvm::Type *DstTy = ConvertType(E->getType()); 3113 3114 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3115 // a shuffle vector instead of a bitcast. 3116 llvm::Type *SrcTy = Src->getType(); 3117 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3118 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3119 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3120 if ((numElementsDst == 3 && numElementsSrc == 4) 3121 || (numElementsDst == 4 && numElementsSrc == 3)) { 3122 3123 3124 // In the case of going from int4->float3, a bitcast is needed before 3125 // doing a shuffle. 3126 llvm::Type *srcElemTy = 3127 cast<llvm::VectorType>(SrcTy)->getElementType(); 3128 llvm::Type *dstElemTy = 3129 cast<llvm::VectorType>(DstTy)->getElementType(); 3130 3131 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3132 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3133 // Create a float type of the same size as the source or destination. 3134 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3135 numElementsSrc); 3136 3137 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3138 } 3139 3140 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3141 3142 SmallVector<llvm::Constant*, 3> Args; 3143 Args.push_back(Builder.getInt32(0)); 3144 Args.push_back(Builder.getInt32(1)); 3145 Args.push_back(Builder.getInt32(2)); 3146 3147 if (numElementsDst == 4) 3148 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3149 3150 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3151 3152 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3153 } 3154 } 3155 3156 return Builder.CreateBitCast(Src, DstTy, "astype"); 3157 } 3158 3159 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3160 return CGF.EmitAtomicExpr(E).getScalarVal(); 3161 } 3162 3163 //===----------------------------------------------------------------------===// 3164 // Entry Point into this File 3165 //===----------------------------------------------------------------------===// 3166 3167 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 3168 /// type, ignoring the result. 3169 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3170 assert(E && hasScalarEvaluationKind(E->getType()) && 3171 "Invalid scalar expression to emit"); 3172 3173 if (isa<CXXDefaultArgExpr>(E)) 3174 disableDebugInfo(); 3175 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign) 3176 .Visit(const_cast<Expr*>(E)); 3177 if (isa<CXXDefaultArgExpr>(E)) 3178 enableDebugInfo(); 3179 return V; 3180 } 3181 3182 /// EmitScalarConversion - Emit a conversion from the specified type to the 3183 /// specified destination type, both of which are LLVM scalar types. 3184 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3185 QualType DstTy) { 3186 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3187 "Invalid scalar expression to emit"); 3188 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 3189 } 3190 3191 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 3192 /// type to the specified destination type, where the destination type is an 3193 /// LLVM scalar type. 3194 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3195 QualType SrcTy, 3196 QualType DstTy) { 3197 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3198 "Invalid complex -> scalar conversion"); 3199 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 3200 DstTy); 3201 } 3202 3203 3204 llvm::Value *CodeGenFunction:: 3205 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3206 bool isInc, bool isPre) { 3207 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3208 } 3209 3210 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3211 llvm::Value *V; 3212 // object->isa or (*object).isa 3213 // Generate code as for: *(Class*)object 3214 // build Class* type 3215 llvm::Type *ClassPtrTy = ConvertType(E->getType()); 3216 3217 Expr *BaseExpr = E->getBase(); 3218 if (BaseExpr->isRValue()) { 3219 V = CreateMemTemp(E->getType(), "resval"); 3220 llvm::Value *Src = EmitScalarExpr(BaseExpr); 3221 Builder.CreateStore(Src, V); 3222 V = ScalarExprEmitter(*this).EmitLoadOfLValue( 3223 MakeNaturalAlignAddrLValue(V, E->getType())); 3224 } else { 3225 if (E->isArrow()) 3226 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 3227 else 3228 V = EmitLValue(BaseExpr).getAddress(); 3229 } 3230 3231 // build Class* type 3232 ClassPtrTy = ClassPtrTy->getPointerTo(); 3233 V = Builder.CreateBitCast(V, ClassPtrTy); 3234 return MakeNaturalAlignAddrLValue(V, E->getType()); 3235 } 3236 3237 3238 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3239 const CompoundAssignOperator *E) { 3240 ScalarExprEmitter Scalar(*this); 3241 Value *Result = 0; 3242 switch (E->getOpcode()) { 3243 #define COMPOUND_OP(Op) \ 3244 case BO_##Op##Assign: \ 3245 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3246 Result) 3247 COMPOUND_OP(Mul); 3248 COMPOUND_OP(Div); 3249 COMPOUND_OP(Rem); 3250 COMPOUND_OP(Add); 3251 COMPOUND_OP(Sub); 3252 COMPOUND_OP(Shl); 3253 COMPOUND_OP(Shr); 3254 COMPOUND_OP(And); 3255 COMPOUND_OP(Xor); 3256 COMPOUND_OP(Or); 3257 #undef COMPOUND_OP 3258 3259 case BO_PtrMemD: 3260 case BO_PtrMemI: 3261 case BO_Mul: 3262 case BO_Div: 3263 case BO_Rem: 3264 case BO_Add: 3265 case BO_Sub: 3266 case BO_Shl: 3267 case BO_Shr: 3268 case BO_LT: 3269 case BO_GT: 3270 case BO_LE: 3271 case BO_GE: 3272 case BO_EQ: 3273 case BO_NE: 3274 case BO_And: 3275 case BO_Xor: 3276 case BO_Or: 3277 case BO_LAnd: 3278 case BO_LOr: 3279 case BO_Assign: 3280 case BO_Comma: 3281 llvm_unreachable("Not valid compound assignment operators"); 3282 } 3283 3284 llvm_unreachable("Unhandled compound assignment operator"); 3285 } 3286