1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/Support/CFG.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   bool FPContractable;
49   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
50 };
51 
52 static bool MustVisitNullValue(const Expr *E) {
53   // If a null pointer expression's type is the C++0x nullptr_t, then
54   // it's not necessarily a simple constant and it must be evaluated
55   // for its potential side effects.
56   return E->getType()->isNullPtrType();
57 }
58 
59 class ScalarExprEmitter
60   : public StmtVisitor<ScalarExprEmitter, Value*> {
61   CodeGenFunction &CGF;
62   CGBuilderTy &Builder;
63   bool IgnoreResultAssign;
64   llvm::LLVMContext &VMContext;
65 public:
66 
67   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
68     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
69       VMContext(cgf.getLLVMContext()) {
70   }
71 
72   //===--------------------------------------------------------------------===//
73   //                               Utilities
74   //===--------------------------------------------------------------------===//
75 
76   bool TestAndClearIgnoreResultAssign() {
77     bool I = IgnoreResultAssign;
78     IgnoreResultAssign = false;
79     return I;
80   }
81 
82   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
83   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
84   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
85     return CGF.EmitCheckedLValue(E, TCK);
86   }
87 
88   void EmitBinOpCheck(Value *Check, const BinOpInfo &Info);
89 
90   Value *EmitLoadOfLValue(LValue LV) {
91     return CGF.EmitLoadOfLValue(LV).getScalarVal();
92   }
93 
94   /// EmitLoadOfLValue - Given an expression with complex type that represents a
95   /// value l-value, this method emits the address of the l-value, then loads
96   /// and returns the result.
97   Value *EmitLoadOfLValue(const Expr *E) {
98     return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load));
99   }
100 
101   /// EmitConversionToBool - Convert the specified expression value to a
102   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
103   Value *EmitConversionToBool(Value *Src, QualType DstTy);
104 
105   /// \brief Emit a check that a conversion to or from a floating-point type
106   /// does not overflow.
107   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
108                                 Value *Src, QualType SrcType,
109                                 QualType DstType, llvm::Type *DstTy);
110 
111   /// EmitScalarConversion - Emit a conversion from the specified type to the
112   /// specified destination type, both of which are LLVM scalar types.
113   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
114 
115   /// EmitComplexToScalarConversion - Emit a conversion from the specified
116   /// complex type to the specified destination type, where the destination type
117   /// is an LLVM scalar type.
118   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
119                                        QualType SrcTy, QualType DstTy);
120 
121   /// EmitNullValue - Emit a value that corresponds to null for the given type.
122   Value *EmitNullValue(QualType Ty);
123 
124   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
125   Value *EmitFloatToBoolConversion(Value *V) {
126     // Compare against 0.0 for fp scalars.
127     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
128     return Builder.CreateFCmpUNE(V, Zero, "tobool");
129   }
130 
131   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
132   Value *EmitPointerToBoolConversion(Value *V) {
133     Value *Zero = llvm::ConstantPointerNull::get(
134                                       cast<llvm::PointerType>(V->getType()));
135     return Builder.CreateICmpNE(V, Zero, "tobool");
136   }
137 
138   Value *EmitIntToBoolConversion(Value *V) {
139     // Because of the type rules of C, we often end up computing a
140     // logical value, then zero extending it to int, then wanting it
141     // as a logical value again.  Optimize this common case.
142     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
143       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
144         Value *Result = ZI->getOperand(0);
145         // If there aren't any more uses, zap the instruction to save space.
146         // Note that there can be more uses, for example if this
147         // is the result of an assignment.
148         if (ZI->use_empty())
149           ZI->eraseFromParent();
150         return Result;
151       }
152     }
153 
154     return Builder.CreateIsNotNull(V, "tobool");
155   }
156 
157   //===--------------------------------------------------------------------===//
158   //                            Visitor Methods
159   //===--------------------------------------------------------------------===//
160 
161   Value *Visit(Expr *E) {
162     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
163   }
164 
165   Value *VisitStmt(Stmt *S) {
166     S->dump(CGF.getContext().getSourceManager());
167     llvm_unreachable("Stmt can't have complex result type!");
168   }
169   Value *VisitExpr(Expr *S);
170 
171   Value *VisitParenExpr(ParenExpr *PE) {
172     return Visit(PE->getSubExpr());
173   }
174   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
175     return Visit(E->getReplacement());
176   }
177   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
178     return Visit(GE->getResultExpr());
179   }
180 
181   // Leaves.
182   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
183     return Builder.getInt(E->getValue());
184   }
185   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
186     return llvm::ConstantFP::get(VMContext, E->getValue());
187   }
188   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
189     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
190   }
191   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
192     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
193   }
194   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
195     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
196   }
197   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
198     return EmitNullValue(E->getType());
199   }
200   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
201     return EmitNullValue(E->getType());
202   }
203   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
204   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
205   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
206     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
207     return Builder.CreateBitCast(V, ConvertType(E->getType()));
208   }
209 
210   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
211     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
212   }
213 
214   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
215     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
216   }
217 
218   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
219     if (E->isGLValue())
220       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
221 
222     // Otherwise, assume the mapping is the scalar directly.
223     return CGF.getOpaqueRValueMapping(E).getScalarVal();
224   }
225 
226   // l-values.
227   Value *VisitDeclRefExpr(DeclRefExpr *E) {
228     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
229       if (result.isReference())
230         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E));
231       return result.getValue();
232     }
233     return EmitLoadOfLValue(E);
234   }
235 
236   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
237     return CGF.EmitObjCSelectorExpr(E);
238   }
239   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
240     return CGF.EmitObjCProtocolExpr(E);
241   }
242   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
243     return EmitLoadOfLValue(E);
244   }
245   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
246     if (E->getMethodDecl() &&
247         E->getMethodDecl()->getResultType()->isReferenceType())
248       return EmitLoadOfLValue(E);
249     return CGF.EmitObjCMessageExpr(E).getScalarVal();
250   }
251 
252   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
253     LValue LV = CGF.EmitObjCIsaExpr(E);
254     Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
255     return V;
256   }
257 
258   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
259   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
260   Value *VisitMemberExpr(MemberExpr *E);
261   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
262   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
263     return EmitLoadOfLValue(E);
264   }
265 
266   Value *VisitInitListExpr(InitListExpr *E);
267 
268   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
269     return EmitNullValue(E->getType());
270   }
271   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
272     if (E->getType()->isVariablyModifiedType())
273       CGF.EmitVariablyModifiedType(E->getType());
274     return VisitCastExpr(E);
275   }
276   Value *VisitCastExpr(CastExpr *E);
277 
278   Value *VisitCallExpr(const CallExpr *E) {
279     if (E->getCallReturnType()->isReferenceType())
280       return EmitLoadOfLValue(E);
281 
282     return CGF.EmitCallExpr(E).getScalarVal();
283   }
284 
285   Value *VisitStmtExpr(const StmtExpr *E);
286 
287   // Unary Operators.
288   Value *VisitUnaryPostDec(const UnaryOperator *E) {
289     LValue LV = EmitLValue(E->getSubExpr());
290     return EmitScalarPrePostIncDec(E, LV, false, false);
291   }
292   Value *VisitUnaryPostInc(const UnaryOperator *E) {
293     LValue LV = EmitLValue(E->getSubExpr());
294     return EmitScalarPrePostIncDec(E, LV, true, false);
295   }
296   Value *VisitUnaryPreDec(const UnaryOperator *E) {
297     LValue LV = EmitLValue(E->getSubExpr());
298     return EmitScalarPrePostIncDec(E, LV, false, true);
299   }
300   Value *VisitUnaryPreInc(const UnaryOperator *E) {
301     LValue LV = EmitLValue(E->getSubExpr());
302     return EmitScalarPrePostIncDec(E, LV, true, true);
303   }
304 
305   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
306                                                llvm::Value *InVal,
307                                                llvm::Value *NextVal,
308                                                bool IsInc);
309 
310   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
311                                        bool isInc, bool isPre);
312 
313 
314   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
315     if (isa<MemberPointerType>(E->getType())) // never sugared
316       return CGF.CGM.getMemberPointerConstant(E);
317 
318     return EmitLValue(E->getSubExpr()).getAddress();
319   }
320   Value *VisitUnaryDeref(const UnaryOperator *E) {
321     if (E->getType()->isVoidType())
322       return Visit(E->getSubExpr()); // the actual value should be unused
323     return EmitLoadOfLValue(E);
324   }
325   Value *VisitUnaryPlus(const UnaryOperator *E) {
326     // This differs from gcc, though, most likely due to a bug in gcc.
327     TestAndClearIgnoreResultAssign();
328     return Visit(E->getSubExpr());
329   }
330   Value *VisitUnaryMinus    (const UnaryOperator *E);
331   Value *VisitUnaryNot      (const UnaryOperator *E);
332   Value *VisitUnaryLNot     (const UnaryOperator *E);
333   Value *VisitUnaryReal     (const UnaryOperator *E);
334   Value *VisitUnaryImag     (const UnaryOperator *E);
335   Value *VisitUnaryExtension(const UnaryOperator *E) {
336     return Visit(E->getSubExpr());
337   }
338 
339   // C++
340   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
341     return EmitLoadOfLValue(E);
342   }
343 
344   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
345     return Visit(DAE->getExpr());
346   }
347   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
348     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
349     return Visit(DIE->getExpr());
350   }
351   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
352     return CGF.LoadCXXThis();
353   }
354 
355   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
356     CGF.enterFullExpression(E);
357     CodeGenFunction::RunCleanupsScope Scope(CGF);
358     return Visit(E->getSubExpr());
359   }
360   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
361     return CGF.EmitCXXNewExpr(E);
362   }
363   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
364     CGF.EmitCXXDeleteExpr(E);
365     return 0;
366   }
367   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
368     return Builder.getInt1(E->getValue());
369   }
370 
371   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
372     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
373   }
374 
375   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
376     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
377   }
378 
379   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
380     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
381   }
382 
383   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
384     // C++ [expr.pseudo]p1:
385     //   The result shall only be used as the operand for the function call
386     //   operator (), and the result of such a call has type void. The only
387     //   effect is the evaluation of the postfix-expression before the dot or
388     //   arrow.
389     CGF.EmitScalarExpr(E->getBase());
390     return 0;
391   }
392 
393   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
394     return EmitNullValue(E->getType());
395   }
396 
397   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
398     CGF.EmitCXXThrowExpr(E);
399     return 0;
400   }
401 
402   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
403     return Builder.getInt1(E->getValue());
404   }
405 
406   // Binary Operators.
407   Value *EmitMul(const BinOpInfo &Ops) {
408     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
409       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
410       case LangOptions::SOB_Defined:
411         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
412       case LangOptions::SOB_Undefined:
413         if (!CGF.SanOpts->SignedIntegerOverflow)
414           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
415         // Fall through.
416       case LangOptions::SOB_Trapping:
417         return EmitOverflowCheckedBinOp(Ops);
418       }
419     }
420 
421     if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
422       return EmitOverflowCheckedBinOp(Ops);
423 
424     if (Ops.LHS->getType()->isFPOrFPVectorTy())
425       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
426     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
427   }
428   /// Create a binary op that checks for overflow.
429   /// Currently only supports +, - and *.
430   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
431 
432   // Check for undefined division and modulus behaviors.
433   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
434                                                   llvm::Value *Zero,bool isDiv);
435   // Common helper for getting how wide LHS of shift is.
436   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
437   Value *EmitDiv(const BinOpInfo &Ops);
438   Value *EmitRem(const BinOpInfo &Ops);
439   Value *EmitAdd(const BinOpInfo &Ops);
440   Value *EmitSub(const BinOpInfo &Ops);
441   Value *EmitShl(const BinOpInfo &Ops);
442   Value *EmitShr(const BinOpInfo &Ops);
443   Value *EmitAnd(const BinOpInfo &Ops) {
444     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
445   }
446   Value *EmitXor(const BinOpInfo &Ops) {
447     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
448   }
449   Value *EmitOr (const BinOpInfo &Ops) {
450     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
451   }
452 
453   BinOpInfo EmitBinOps(const BinaryOperator *E);
454   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
455                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
456                                   Value *&Result);
457 
458   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
459                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
460 
461   // Binary operators and binary compound assignment operators.
462 #define HANDLEBINOP(OP) \
463   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
464     return Emit ## OP(EmitBinOps(E));                                      \
465   }                                                                        \
466   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
467     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
468   }
469   HANDLEBINOP(Mul)
470   HANDLEBINOP(Div)
471   HANDLEBINOP(Rem)
472   HANDLEBINOP(Add)
473   HANDLEBINOP(Sub)
474   HANDLEBINOP(Shl)
475   HANDLEBINOP(Shr)
476   HANDLEBINOP(And)
477   HANDLEBINOP(Xor)
478   HANDLEBINOP(Or)
479 #undef HANDLEBINOP
480 
481   // Comparisons.
482   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
483                      unsigned SICmpOpc, unsigned FCmpOpc);
484 #define VISITCOMP(CODE, UI, SI, FP) \
485     Value *VisitBin##CODE(const BinaryOperator *E) { \
486       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
487                          llvm::FCmpInst::FP); }
488   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
489   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
490   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
491   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
492   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
493   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
494 #undef VISITCOMP
495 
496   Value *VisitBinAssign     (const BinaryOperator *E);
497 
498   Value *VisitBinLAnd       (const BinaryOperator *E);
499   Value *VisitBinLOr        (const BinaryOperator *E);
500   Value *VisitBinComma      (const BinaryOperator *E);
501 
502   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
503   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
504 
505   // Other Operators.
506   Value *VisitBlockExpr(const BlockExpr *BE);
507   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
508   Value *VisitChooseExpr(ChooseExpr *CE);
509   Value *VisitVAArgExpr(VAArgExpr *VE);
510   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
511     return CGF.EmitObjCStringLiteral(E);
512   }
513   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
514     return CGF.EmitObjCBoxedExpr(E);
515   }
516   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
517     return CGF.EmitObjCArrayLiteral(E);
518   }
519   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
520     return CGF.EmitObjCDictionaryLiteral(E);
521   }
522   Value *VisitAsTypeExpr(AsTypeExpr *CE);
523   Value *VisitAtomicExpr(AtomicExpr *AE);
524 };
525 }  // end anonymous namespace.
526 
527 //===----------------------------------------------------------------------===//
528 //                                Utilities
529 //===----------------------------------------------------------------------===//
530 
531 /// EmitConversionToBool - Convert the specified expression value to a
532 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
533 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
534   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
535 
536   if (SrcType->isRealFloatingType())
537     return EmitFloatToBoolConversion(Src);
538 
539   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
540     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
541 
542   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
543          "Unknown scalar type to convert");
544 
545   if (isa<llvm::IntegerType>(Src->getType()))
546     return EmitIntToBoolConversion(Src);
547 
548   assert(isa<llvm::PointerType>(Src->getType()));
549   return EmitPointerToBoolConversion(Src);
550 }
551 
552 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
553                                                  QualType OrigSrcType,
554                                                  Value *Src, QualType SrcType,
555                                                  QualType DstType,
556                                                  llvm::Type *DstTy) {
557   using llvm::APFloat;
558   using llvm::APSInt;
559 
560   llvm::Type *SrcTy = Src->getType();
561 
562   llvm::Value *Check = 0;
563   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
564     // Integer to floating-point. This can fail for unsigned short -> __half
565     // or unsigned __int128 -> float.
566     assert(DstType->isFloatingType());
567     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
568 
569     APFloat LargestFloat =
570       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
571     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
572 
573     bool IsExact;
574     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
575                                       &IsExact) != APFloat::opOK)
576       // The range of representable values of this floating point type includes
577       // all values of this integer type. Don't need an overflow check.
578       return;
579 
580     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
581     if (SrcIsUnsigned)
582       Check = Builder.CreateICmpULE(Src, Max);
583     else {
584       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
585       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
586       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
587       Check = Builder.CreateAnd(GE, LE);
588     }
589   } else {
590     const llvm::fltSemantics &SrcSema =
591       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
592     if (isa<llvm::IntegerType>(DstTy)) {
593       // Floating-point to integer. This has undefined behavior if the source is
594       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
595       // to an integer).
596       unsigned Width = CGF.getContext().getIntWidth(DstType);
597       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
598 
599       APSInt Min = APSInt::getMinValue(Width, Unsigned);
600       APFloat MinSrc(SrcSema, APFloat::uninitialized);
601       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
602           APFloat::opOverflow)
603         // Don't need an overflow check for lower bound. Just check for
604         // -Inf/NaN.
605         MinSrc = APFloat::getInf(SrcSema, true);
606       else
607         // Find the largest value which is too small to represent (before
608         // truncation toward zero).
609         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
610 
611       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
612       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
613       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
614           APFloat::opOverflow)
615         // Don't need an overflow check for upper bound. Just check for
616         // +Inf/NaN.
617         MaxSrc = APFloat::getInf(SrcSema, false);
618       else
619         // Find the smallest value which is too large to represent (before
620         // truncation toward zero).
621         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
622 
623       // If we're converting from __half, convert the range to float to match
624       // the type of src.
625       if (OrigSrcType->isHalfType()) {
626         const llvm::fltSemantics &Sema =
627           CGF.getContext().getFloatTypeSemantics(SrcType);
628         bool IsInexact;
629         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
630         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
631       }
632 
633       llvm::Value *GE =
634         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
635       llvm::Value *LE =
636         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
637       Check = Builder.CreateAnd(GE, LE);
638     } else {
639       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
640       //
641       // Floating-point to floating-point. This has undefined behavior if the
642       // source is not in the range of representable values of the destination
643       // type. The C and C++ standards are spectacularly unclear here. We
644       // diagnose finite out-of-range conversions, but allow infinities and NaNs
645       // to convert to the corresponding value in the smaller type.
646       //
647       // C11 Annex F gives all such conversions defined behavior for IEC 60559
648       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
649       // does not.
650 
651       // Converting from a lower rank to a higher rank can never have
652       // undefined behavior, since higher-rank types must have a superset
653       // of values of lower-rank types.
654       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
655         return;
656 
657       assert(!OrigSrcType->isHalfType() &&
658              "should not check conversion from __half, it has the lowest rank");
659 
660       const llvm::fltSemantics &DstSema =
661         CGF.getContext().getFloatTypeSemantics(DstType);
662       APFloat MinBad = APFloat::getLargest(DstSema, false);
663       APFloat MaxBad = APFloat::getInf(DstSema, false);
664 
665       bool IsInexact;
666       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
667       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
668 
669       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
670         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
671       llvm::Value *GE =
672         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
673       llvm::Value *LE =
674         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
675       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
676     }
677   }
678 
679   // FIXME: Provide a SourceLocation.
680   llvm::Constant *StaticArgs[] = {
681     CGF.EmitCheckTypeDescriptor(OrigSrcType),
682     CGF.EmitCheckTypeDescriptor(DstType)
683   };
684   CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc,
685                 CodeGenFunction::CRK_Recoverable);
686 }
687 
688 /// EmitScalarConversion - Emit a conversion from the specified type to the
689 /// specified destination type, both of which are LLVM scalar types.
690 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
691                                                QualType DstType) {
692   SrcType = CGF.getContext().getCanonicalType(SrcType);
693   DstType = CGF.getContext().getCanonicalType(DstType);
694   if (SrcType == DstType) return Src;
695 
696   if (DstType->isVoidType()) return 0;
697 
698   llvm::Value *OrigSrc = Src;
699   QualType OrigSrcType = SrcType;
700   llvm::Type *SrcTy = Src->getType();
701 
702   // If casting to/from storage-only half FP, use special intrinsics.
703   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
704     Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
705     SrcType = CGF.getContext().FloatTy;
706     SrcTy = CGF.FloatTy;
707   }
708 
709   // Handle conversions to bool first, they are special: comparisons against 0.
710   if (DstType->isBooleanType())
711     return EmitConversionToBool(Src, SrcType);
712 
713   llvm::Type *DstTy = ConvertType(DstType);
714 
715   // Ignore conversions like int -> uint.
716   if (SrcTy == DstTy)
717     return Src;
718 
719   // Handle pointer conversions next: pointers can only be converted to/from
720   // other pointers and integers. Check for pointer types in terms of LLVM, as
721   // some native types (like Obj-C id) may map to a pointer type.
722   if (isa<llvm::PointerType>(DstTy)) {
723     // The source value may be an integer, or a pointer.
724     if (isa<llvm::PointerType>(SrcTy))
725       return Builder.CreateBitCast(Src, DstTy, "conv");
726 
727     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
728     // First, convert to the correct width so that we control the kind of
729     // extension.
730     llvm::Type *MiddleTy = CGF.IntPtrTy;
731     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
732     llvm::Value* IntResult =
733         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
734     // Then, cast to pointer.
735     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
736   }
737 
738   if (isa<llvm::PointerType>(SrcTy)) {
739     // Must be an ptr to int cast.
740     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
741     return Builder.CreatePtrToInt(Src, DstTy, "conv");
742   }
743 
744   // A scalar can be splatted to an extended vector of the same element type
745   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
746     // Cast the scalar to element type
747     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
748     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
749 
750     // Splat the element across to all elements
751     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
752     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
753   }
754 
755   // Allow bitcast from vector to integer/fp of the same size.
756   if (isa<llvm::VectorType>(SrcTy) ||
757       isa<llvm::VectorType>(DstTy))
758     return Builder.CreateBitCast(Src, DstTy, "conv");
759 
760   // Finally, we have the arithmetic types: real int/float.
761   Value *Res = NULL;
762   llvm::Type *ResTy = DstTy;
763 
764   // An overflowing conversion has undefined behavior if either the source type
765   // or the destination type is a floating-point type.
766   if (CGF.SanOpts->FloatCastOverflow &&
767       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
768     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
769                              DstTy);
770 
771   // Cast to half via float
772   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
773     DstTy = CGF.FloatTy;
774 
775   if (isa<llvm::IntegerType>(SrcTy)) {
776     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
777     if (isa<llvm::IntegerType>(DstTy))
778       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
779     else if (InputSigned)
780       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
781     else
782       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
783   } else if (isa<llvm::IntegerType>(DstTy)) {
784     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
785     if (DstType->isSignedIntegerOrEnumerationType())
786       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
787     else
788       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
789   } else {
790     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
791            "Unknown real conversion");
792     if (DstTy->getTypeID() < SrcTy->getTypeID())
793       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
794     else
795       Res = Builder.CreateFPExt(Src, DstTy, "conv");
796   }
797 
798   if (DstTy != ResTy) {
799     assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
800     Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
801   }
802 
803   return Res;
804 }
805 
806 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
807 /// type to the specified destination type, where the destination type is an
808 /// LLVM scalar type.
809 Value *ScalarExprEmitter::
810 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
811                               QualType SrcTy, QualType DstTy) {
812   // Get the source element type.
813   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
814 
815   // Handle conversions to bool first, they are special: comparisons against 0.
816   if (DstTy->isBooleanType()) {
817     //  Complex != 0  -> (Real != 0) | (Imag != 0)
818     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
819     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
820     return Builder.CreateOr(Src.first, Src.second, "tobool");
821   }
822 
823   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
824   // the imaginary part of the complex value is discarded and the value of the
825   // real part is converted according to the conversion rules for the
826   // corresponding real type.
827   return EmitScalarConversion(Src.first, SrcTy, DstTy);
828 }
829 
830 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
831   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
832 }
833 
834 /// \brief Emit a sanitization check for the given "binary" operation (which
835 /// might actually be a unary increment which has been lowered to a binary
836 /// operation). The check passes if \p Check, which is an \c i1, is \c true.
837 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) {
838   StringRef CheckName;
839   SmallVector<llvm::Constant *, 4> StaticData;
840   SmallVector<llvm::Value *, 2> DynamicData;
841 
842   BinaryOperatorKind Opcode = Info.Opcode;
843   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
844     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
845 
846   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
847   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
848   if (UO && UO->getOpcode() == UO_Minus) {
849     CheckName = "negate_overflow";
850     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
851     DynamicData.push_back(Info.RHS);
852   } else {
853     if (BinaryOperator::isShiftOp(Opcode)) {
854       // Shift LHS negative or too large, or RHS out of bounds.
855       CheckName = "shift_out_of_bounds";
856       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
857       StaticData.push_back(
858         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
859       StaticData.push_back(
860         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
861     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
862       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
863       CheckName = "divrem_overflow";
864       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
865     } else {
866       // Signed arithmetic overflow (+, -, *).
867       switch (Opcode) {
868       case BO_Add: CheckName = "add_overflow"; break;
869       case BO_Sub: CheckName = "sub_overflow"; break;
870       case BO_Mul: CheckName = "mul_overflow"; break;
871       default: llvm_unreachable("unexpected opcode for bin op check");
872       }
873       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
874     }
875     DynamicData.push_back(Info.LHS);
876     DynamicData.push_back(Info.RHS);
877   }
878 
879   CGF.EmitCheck(Check, CheckName, StaticData, DynamicData,
880                 CodeGenFunction::CRK_Recoverable);
881 }
882 
883 //===----------------------------------------------------------------------===//
884 //                            Visitor Methods
885 //===----------------------------------------------------------------------===//
886 
887 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
888   CGF.ErrorUnsupported(E, "scalar expression");
889   if (E->getType()->isVoidType())
890     return 0;
891   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
892 }
893 
894 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
895   // Vector Mask Case
896   if (E->getNumSubExprs() == 2 ||
897       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
898     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
899     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
900     Value *Mask;
901 
902     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
903     unsigned LHSElts = LTy->getNumElements();
904 
905     if (E->getNumSubExprs() == 3) {
906       Mask = CGF.EmitScalarExpr(E->getExpr(2));
907 
908       // Shuffle LHS & RHS into one input vector.
909       SmallVector<llvm::Constant*, 32> concat;
910       for (unsigned i = 0; i != LHSElts; ++i) {
911         concat.push_back(Builder.getInt32(2*i));
912         concat.push_back(Builder.getInt32(2*i+1));
913       }
914 
915       Value* CV = llvm::ConstantVector::get(concat);
916       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
917       LHSElts *= 2;
918     } else {
919       Mask = RHS;
920     }
921 
922     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
923     llvm::Constant* EltMask;
924 
925     EltMask = llvm::ConstantInt::get(MTy->getElementType(),
926                                      llvm::NextPowerOf2(LHSElts-1)-1);
927 
928     // Mask off the high bits of each shuffle index.
929     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
930                                                      EltMask);
931     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
932 
933     // newv = undef
934     // mask = mask & maskbits
935     // for each elt
936     //   n = extract mask i
937     //   x = extract val n
938     //   newv = insert newv, x, i
939     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
940                                                   MTy->getNumElements());
941     Value* NewV = llvm::UndefValue::get(RTy);
942     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
943       Value *IIndx = Builder.getInt32(i);
944       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
945       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
946 
947       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
948       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
949     }
950     return NewV;
951   }
952 
953   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
954   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
955 
956   SmallVector<llvm::Constant*, 32> indices;
957   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
958     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
959     // Check for -1 and output it as undef in the IR.
960     if (Idx.isSigned() && Idx.isAllOnesValue())
961       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
962     else
963       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
964   }
965 
966   Value *SV = llvm::ConstantVector::get(indices);
967   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
968 }
969 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
970   llvm::APSInt Value;
971   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
972     if (E->isArrow())
973       CGF.EmitScalarExpr(E->getBase());
974     else
975       EmitLValue(E->getBase());
976     return Builder.getInt(Value);
977   }
978 
979   return EmitLoadOfLValue(E);
980 }
981 
982 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
983   TestAndClearIgnoreResultAssign();
984 
985   // Emit subscript expressions in rvalue context's.  For most cases, this just
986   // loads the lvalue formed by the subscript expr.  However, we have to be
987   // careful, because the base of a vector subscript is occasionally an rvalue,
988   // so we can't get it as an lvalue.
989   if (!E->getBase()->getType()->isVectorType())
990     return EmitLoadOfLValue(E);
991 
992   // Handle the vector case.  The base must be a vector, the index must be an
993   // integer value.
994   Value *Base = Visit(E->getBase());
995   Value *Idx  = Visit(E->getIdx());
996   QualType IdxTy = E->getIdx()->getType();
997 
998   if (CGF.SanOpts->Bounds)
999     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1000 
1001   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1002   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
1003   return Builder.CreateExtractElement(Base, Idx, "vecext");
1004 }
1005 
1006 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1007                                   unsigned Off, llvm::Type *I32Ty) {
1008   int MV = SVI->getMaskValue(Idx);
1009   if (MV == -1)
1010     return llvm::UndefValue::get(I32Ty);
1011   return llvm::ConstantInt::get(I32Ty, Off+MV);
1012 }
1013 
1014 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1015   bool Ignore = TestAndClearIgnoreResultAssign();
1016   (void)Ignore;
1017   assert (Ignore == false && "init list ignored");
1018   unsigned NumInitElements = E->getNumInits();
1019 
1020   if (E->hadArrayRangeDesignator())
1021     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1022 
1023   llvm::VectorType *VType =
1024     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1025 
1026   if (!VType) {
1027     if (NumInitElements == 0) {
1028       // C++11 value-initialization for the scalar.
1029       return EmitNullValue(E->getType());
1030     }
1031     // We have a scalar in braces. Just use the first element.
1032     return Visit(E->getInit(0));
1033   }
1034 
1035   unsigned ResElts = VType->getNumElements();
1036 
1037   // Loop over initializers collecting the Value for each, and remembering
1038   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1039   // us to fold the shuffle for the swizzle into the shuffle for the vector
1040   // initializer, since LLVM optimizers generally do not want to touch
1041   // shuffles.
1042   unsigned CurIdx = 0;
1043   bool VIsUndefShuffle = false;
1044   llvm::Value *V = llvm::UndefValue::get(VType);
1045   for (unsigned i = 0; i != NumInitElements; ++i) {
1046     Expr *IE = E->getInit(i);
1047     Value *Init = Visit(IE);
1048     SmallVector<llvm::Constant*, 16> Args;
1049 
1050     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1051 
1052     // Handle scalar elements.  If the scalar initializer is actually one
1053     // element of a different vector of the same width, use shuffle instead of
1054     // extract+insert.
1055     if (!VVT) {
1056       if (isa<ExtVectorElementExpr>(IE)) {
1057         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1058 
1059         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1060           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1061           Value *LHS = 0, *RHS = 0;
1062           if (CurIdx == 0) {
1063             // insert into undef -> shuffle (src, undef)
1064             Args.push_back(C);
1065             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1066 
1067             LHS = EI->getVectorOperand();
1068             RHS = V;
1069             VIsUndefShuffle = true;
1070           } else if (VIsUndefShuffle) {
1071             // insert into undefshuffle && size match -> shuffle (v, src)
1072             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1073             for (unsigned j = 0; j != CurIdx; ++j)
1074               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1075             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1076             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1077 
1078             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1079             RHS = EI->getVectorOperand();
1080             VIsUndefShuffle = false;
1081           }
1082           if (!Args.empty()) {
1083             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1084             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1085             ++CurIdx;
1086             continue;
1087           }
1088         }
1089       }
1090       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1091                                       "vecinit");
1092       VIsUndefShuffle = false;
1093       ++CurIdx;
1094       continue;
1095     }
1096 
1097     unsigned InitElts = VVT->getNumElements();
1098 
1099     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1100     // input is the same width as the vector being constructed, generate an
1101     // optimized shuffle of the swizzle input into the result.
1102     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1103     if (isa<ExtVectorElementExpr>(IE)) {
1104       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1105       Value *SVOp = SVI->getOperand(0);
1106       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1107 
1108       if (OpTy->getNumElements() == ResElts) {
1109         for (unsigned j = 0; j != CurIdx; ++j) {
1110           // If the current vector initializer is a shuffle with undef, merge
1111           // this shuffle directly into it.
1112           if (VIsUndefShuffle) {
1113             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1114                                       CGF.Int32Ty));
1115           } else {
1116             Args.push_back(Builder.getInt32(j));
1117           }
1118         }
1119         for (unsigned j = 0, je = InitElts; j != je; ++j)
1120           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1121         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1122 
1123         if (VIsUndefShuffle)
1124           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1125 
1126         Init = SVOp;
1127       }
1128     }
1129 
1130     // Extend init to result vector length, and then shuffle its contribution
1131     // to the vector initializer into V.
1132     if (Args.empty()) {
1133       for (unsigned j = 0; j != InitElts; ++j)
1134         Args.push_back(Builder.getInt32(j));
1135       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1136       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1137       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1138                                          Mask, "vext");
1139 
1140       Args.clear();
1141       for (unsigned j = 0; j != CurIdx; ++j)
1142         Args.push_back(Builder.getInt32(j));
1143       for (unsigned j = 0; j != InitElts; ++j)
1144         Args.push_back(Builder.getInt32(j+Offset));
1145       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1146     }
1147 
1148     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1149     // merging subsequent shuffles into this one.
1150     if (CurIdx == 0)
1151       std::swap(V, Init);
1152     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1153     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1154     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1155     CurIdx += InitElts;
1156   }
1157 
1158   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1159   // Emit remaining default initializers.
1160   llvm::Type *EltTy = VType->getElementType();
1161 
1162   // Emit remaining default initializers
1163   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1164     Value *Idx = Builder.getInt32(CurIdx);
1165     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1166     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1167   }
1168   return V;
1169 }
1170 
1171 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1172   const Expr *E = CE->getSubExpr();
1173 
1174   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1175     return false;
1176 
1177   if (isa<CXXThisExpr>(E)) {
1178     // We always assume that 'this' is never null.
1179     return false;
1180   }
1181 
1182   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1183     // And that glvalue casts are never null.
1184     if (ICE->getValueKind() != VK_RValue)
1185       return false;
1186   }
1187 
1188   return true;
1189 }
1190 
1191 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1192 // have to handle a more broad range of conversions than explicit casts, as they
1193 // handle things like function to ptr-to-function decay etc.
1194 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1195   Expr *E = CE->getSubExpr();
1196   QualType DestTy = CE->getType();
1197   CastKind Kind = CE->getCastKind();
1198 
1199   if (!DestTy->isVoidType())
1200     TestAndClearIgnoreResultAssign();
1201 
1202   // Since almost all cast kinds apply to scalars, this switch doesn't have
1203   // a default case, so the compiler will warn on a missing case.  The cases
1204   // are in the same order as in the CastKind enum.
1205   switch (Kind) {
1206   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1207   case CK_BuiltinFnToFnPtr:
1208     llvm_unreachable("builtin functions are handled elsewhere");
1209 
1210   case CK_LValueBitCast:
1211   case CK_ObjCObjectLValueCast: {
1212     Value *V = EmitLValue(E).getAddress();
1213     V = Builder.CreateBitCast(V,
1214                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1215     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
1216   }
1217 
1218   case CK_CPointerToObjCPointerCast:
1219   case CK_BlockPointerToObjCPointerCast:
1220   case CK_AnyPointerToBlockPointerCast:
1221   case CK_BitCast: {
1222     Value *Src = Visit(const_cast<Expr*>(E));
1223     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1224   }
1225   case CK_AtomicToNonAtomic:
1226   case CK_NonAtomicToAtomic:
1227   case CK_NoOp:
1228   case CK_UserDefinedConversion:
1229     return Visit(const_cast<Expr*>(E));
1230 
1231   case CK_BaseToDerived: {
1232     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1233     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1234 
1235     llvm::Value *V = Visit(E);
1236 
1237     llvm::Value *Derived =
1238       CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
1239                                    CE->path_begin(), CE->path_end(),
1240                                    ShouldNullCheckClassCastValue(CE));
1241 
1242     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1243     // performed and the object is not of the derived type.
1244     if (CGF.SanitizePerformTypeCheck)
1245       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1246                         Derived, DestTy->getPointeeType());
1247 
1248     return Derived;
1249   }
1250   case CK_UncheckedDerivedToBase:
1251   case CK_DerivedToBase: {
1252     const CXXRecordDecl *DerivedClassDecl =
1253       E->getType()->getPointeeCXXRecordDecl();
1254     assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1255 
1256     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1257                                      CE->path_begin(), CE->path_end(),
1258                                      ShouldNullCheckClassCastValue(CE));
1259   }
1260   case CK_Dynamic: {
1261     Value *V = Visit(const_cast<Expr*>(E));
1262     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1263     return CGF.EmitDynamicCast(V, DCE);
1264   }
1265 
1266   case CK_ArrayToPointerDecay: {
1267     assert(E->getType()->isArrayType() &&
1268            "Array to pointer decay must have array source type!");
1269 
1270     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1271 
1272     // Note that VLA pointers are always decayed, so we don't need to do
1273     // anything here.
1274     if (!E->getType()->isVariableArrayType()) {
1275       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1276       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1277                                  ->getElementType()) &&
1278              "Expected pointer to array");
1279       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1280     }
1281 
1282     // Make sure the array decay ends up being the right type.  This matters if
1283     // the array type was of an incomplete type.
1284     return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1285   }
1286   case CK_FunctionToPointerDecay:
1287     return EmitLValue(E).getAddress();
1288 
1289   case CK_NullToPointer:
1290     if (MustVisitNullValue(E))
1291       (void) Visit(E);
1292 
1293     return llvm::ConstantPointerNull::get(
1294                                cast<llvm::PointerType>(ConvertType(DestTy)));
1295 
1296   case CK_NullToMemberPointer: {
1297     if (MustVisitNullValue(E))
1298       (void) Visit(E);
1299 
1300     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1301     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1302   }
1303 
1304   case CK_ReinterpretMemberPointer:
1305   case CK_BaseToDerivedMemberPointer:
1306   case CK_DerivedToBaseMemberPointer: {
1307     Value *Src = Visit(E);
1308 
1309     // Note that the AST doesn't distinguish between checked and
1310     // unchecked member pointer conversions, so we always have to
1311     // implement checked conversions here.  This is inefficient when
1312     // actual control flow may be required in order to perform the
1313     // check, which it is for data member pointers (but not member
1314     // function pointers on Itanium and ARM).
1315     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1316   }
1317 
1318   case CK_ARCProduceObject:
1319     return CGF.EmitARCRetainScalarExpr(E);
1320   case CK_ARCConsumeObject:
1321     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1322   case CK_ARCReclaimReturnedObject: {
1323     llvm::Value *value = Visit(E);
1324     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1325     return CGF.EmitObjCConsumeObject(E->getType(), value);
1326   }
1327   case CK_ARCExtendBlockObject:
1328     return CGF.EmitARCExtendBlockObject(E);
1329 
1330   case CK_CopyAndAutoreleaseBlockObject:
1331     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1332 
1333   case CK_FloatingRealToComplex:
1334   case CK_FloatingComplexCast:
1335   case CK_IntegralRealToComplex:
1336   case CK_IntegralComplexCast:
1337   case CK_IntegralComplexToFloatingComplex:
1338   case CK_FloatingComplexToIntegralComplex:
1339   case CK_ConstructorConversion:
1340   case CK_ToUnion:
1341     llvm_unreachable("scalar cast to non-scalar value");
1342 
1343   case CK_LValueToRValue:
1344     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1345     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1346     return Visit(const_cast<Expr*>(E));
1347 
1348   case CK_IntegralToPointer: {
1349     Value *Src = Visit(const_cast<Expr*>(E));
1350 
1351     // First, convert to the correct width so that we control the kind of
1352     // extension.
1353     llvm::Type *MiddleTy = CGF.IntPtrTy;
1354     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1355     llvm::Value* IntResult =
1356       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1357 
1358     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1359   }
1360   case CK_PointerToIntegral:
1361     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1362     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1363 
1364   case CK_ToVoid: {
1365     CGF.EmitIgnoredExpr(E);
1366     return 0;
1367   }
1368   case CK_VectorSplat: {
1369     llvm::Type *DstTy = ConvertType(DestTy);
1370     Value *Elt = Visit(const_cast<Expr*>(E));
1371     Elt = EmitScalarConversion(Elt, E->getType(),
1372                                DestTy->getAs<VectorType>()->getElementType());
1373 
1374     // Splat the element across to all elements
1375     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1376     return Builder.CreateVectorSplat(NumElements, Elt, "splat");;
1377   }
1378 
1379   case CK_IntegralCast:
1380   case CK_IntegralToFloating:
1381   case CK_FloatingToIntegral:
1382   case CK_FloatingCast:
1383     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1384   case CK_IntegralToBoolean:
1385     return EmitIntToBoolConversion(Visit(E));
1386   case CK_PointerToBoolean:
1387     return EmitPointerToBoolConversion(Visit(E));
1388   case CK_FloatingToBoolean:
1389     return EmitFloatToBoolConversion(Visit(E));
1390   case CK_MemberPointerToBoolean: {
1391     llvm::Value *MemPtr = Visit(E);
1392     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1393     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1394   }
1395 
1396   case CK_FloatingComplexToReal:
1397   case CK_IntegralComplexToReal:
1398     return CGF.EmitComplexExpr(E, false, true).first;
1399 
1400   case CK_FloatingComplexToBoolean:
1401   case CK_IntegralComplexToBoolean: {
1402     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1403 
1404     // TODO: kill this function off, inline appropriate case here
1405     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1406   }
1407 
1408   case CK_ZeroToOCLEvent: {
1409     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non event type");
1410     return llvm::Constant::getNullValue(ConvertType(DestTy));
1411   }
1412 
1413   }
1414 
1415   llvm_unreachable("unknown scalar cast");
1416 }
1417 
1418 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1419   CodeGenFunction::StmtExprEvaluation eval(CGF);
1420   llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1421                                                 !E->getType()->isVoidType());
1422   if (!RetAlloca)
1423     return 0;
1424   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()));
1425 
1426 }
1427 
1428 //===----------------------------------------------------------------------===//
1429 //                             Unary Operators
1430 //===----------------------------------------------------------------------===//
1431 
1432 llvm::Value *ScalarExprEmitter::
1433 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1434                                 llvm::Value *InVal,
1435                                 llvm::Value *NextVal, bool IsInc) {
1436   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1437   case LangOptions::SOB_Defined:
1438     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1439   case LangOptions::SOB_Undefined:
1440     if (!CGF.SanOpts->SignedIntegerOverflow)
1441       return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1442     // Fall through.
1443   case LangOptions::SOB_Trapping:
1444     BinOpInfo BinOp;
1445     BinOp.LHS = InVal;
1446     BinOp.RHS = NextVal;
1447     BinOp.Ty = E->getType();
1448     BinOp.Opcode = BO_Add;
1449     BinOp.FPContractable = false;
1450     BinOp.E = E;
1451     return EmitOverflowCheckedBinOp(BinOp);
1452   }
1453   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1454 }
1455 
1456 llvm::Value *
1457 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1458                                            bool isInc, bool isPre) {
1459 
1460   QualType type = E->getSubExpr()->getType();
1461   llvm::PHINode *atomicPHI = 0;
1462   llvm::Value *value;
1463   llvm::Value *input;
1464 
1465   int amount = (isInc ? 1 : -1);
1466 
1467   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1468     type = atomicTy->getValueType();
1469     if (isInc && type->isBooleanType()) {
1470       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1471       if (isPre) {
1472         Builder.Insert(new llvm::StoreInst(True,
1473               LV.getAddress(), LV.isVolatileQualified(),
1474               LV.getAlignment().getQuantity(),
1475               llvm::SequentiallyConsistent));
1476         return Builder.getTrue();
1477       }
1478       // For atomic bool increment, we just store true and return it for
1479       // preincrement, do an atomic swap with true for postincrement
1480         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1481             LV.getAddress(), True, llvm::SequentiallyConsistent);
1482     }
1483     // Special case for atomic increment / decrement on integers, emit
1484     // atomicrmw instructions.  We skip this if we want to be doing overflow
1485     // checking, and fall into the slow path with the atomic cmpxchg loop.
1486     if (!type->isBooleanType() && type->isIntegerType() &&
1487         !(type->isUnsignedIntegerType() &&
1488          CGF.SanOpts->UnsignedIntegerOverflow) &&
1489         CGF.getLangOpts().getSignedOverflowBehavior() !=
1490          LangOptions::SOB_Trapping) {
1491       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1492         llvm::AtomicRMWInst::Sub;
1493       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1494         llvm::Instruction::Sub;
1495       llvm::Value *amt = CGF.EmitToMemory(
1496           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1497       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1498           LV.getAddress(), amt, llvm::SequentiallyConsistent);
1499       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1500     }
1501     value = EmitLoadOfLValue(LV);
1502     input = value;
1503     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1504     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1505     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1506     value = CGF.EmitToMemory(value, type);
1507     Builder.CreateBr(opBB);
1508     Builder.SetInsertPoint(opBB);
1509     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1510     atomicPHI->addIncoming(value, startBB);
1511     value = atomicPHI;
1512   } else {
1513     value = EmitLoadOfLValue(LV);
1514     input = value;
1515   }
1516 
1517   // Special case of integer increment that we have to check first: bool++.
1518   // Due to promotion rules, we get:
1519   //   bool++ -> bool = bool + 1
1520   //          -> bool = (int)bool + 1
1521   //          -> bool = ((int)bool + 1 != 0)
1522   // An interesting aspect of this is that increment is always true.
1523   // Decrement does not have this property.
1524   if (isInc && type->isBooleanType()) {
1525     value = Builder.getTrue();
1526 
1527   // Most common case by far: integer increment.
1528   } else if (type->isIntegerType()) {
1529 
1530     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1531 
1532     // Note that signed integer inc/dec with width less than int can't
1533     // overflow because of promotion rules; we're just eliding a few steps here.
1534     if (value->getType()->getPrimitiveSizeInBits() >=
1535             CGF.IntTy->getBitWidth() &&
1536         type->isSignedIntegerOrEnumerationType()) {
1537       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1538     } else if (value->getType()->getPrimitiveSizeInBits() >=
1539                CGF.IntTy->getBitWidth() && type->isUnsignedIntegerType() &&
1540                CGF.SanOpts->UnsignedIntegerOverflow) {
1541       BinOpInfo BinOp;
1542       BinOp.LHS = value;
1543       BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
1544       BinOp.Ty = E->getType();
1545       BinOp.Opcode = isInc ? BO_Add : BO_Sub;
1546       BinOp.FPContractable = false;
1547       BinOp.E = E;
1548       value = EmitOverflowCheckedBinOp(BinOp);
1549     } else
1550       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1551 
1552   // Next most common: pointer increment.
1553   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1554     QualType type = ptr->getPointeeType();
1555 
1556     // VLA types don't have constant size.
1557     if (const VariableArrayType *vla
1558           = CGF.getContext().getAsVariableArrayType(type)) {
1559       llvm::Value *numElts = CGF.getVLASize(vla).first;
1560       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1561       if (CGF.getLangOpts().isSignedOverflowDefined())
1562         value = Builder.CreateGEP(value, numElts, "vla.inc");
1563       else
1564         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1565 
1566     // Arithmetic on function pointers (!) is just +-1.
1567     } else if (type->isFunctionType()) {
1568       llvm::Value *amt = Builder.getInt32(amount);
1569 
1570       value = CGF.EmitCastToVoidPtr(value);
1571       if (CGF.getLangOpts().isSignedOverflowDefined())
1572         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1573       else
1574         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1575       value = Builder.CreateBitCast(value, input->getType());
1576 
1577     // For everything else, we can just do a simple increment.
1578     } else {
1579       llvm::Value *amt = Builder.getInt32(amount);
1580       if (CGF.getLangOpts().isSignedOverflowDefined())
1581         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1582       else
1583         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1584     }
1585 
1586   // Vector increment/decrement.
1587   } else if (type->isVectorType()) {
1588     if (type->hasIntegerRepresentation()) {
1589       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1590 
1591       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1592     } else {
1593       value = Builder.CreateFAdd(
1594                   value,
1595                   llvm::ConstantFP::get(value->getType(), amount),
1596                   isInc ? "inc" : "dec");
1597     }
1598 
1599   // Floating point.
1600   } else if (type->isRealFloatingType()) {
1601     // Add the inc/dec to the real part.
1602     llvm::Value *amt;
1603 
1604     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1605       // Another special case: half FP increment should be done via float
1606       value =
1607     Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1608                        input);
1609     }
1610 
1611     if (value->getType()->isFloatTy())
1612       amt = llvm::ConstantFP::get(VMContext,
1613                                   llvm::APFloat(static_cast<float>(amount)));
1614     else if (value->getType()->isDoubleTy())
1615       amt = llvm::ConstantFP::get(VMContext,
1616                                   llvm::APFloat(static_cast<double>(amount)));
1617     else {
1618       llvm::APFloat F(static_cast<float>(amount));
1619       bool ignored;
1620       F.convert(CGF.getTarget().getLongDoubleFormat(),
1621                 llvm::APFloat::rmTowardZero, &ignored);
1622       amt = llvm::ConstantFP::get(VMContext, F);
1623     }
1624     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1625 
1626     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
1627       value =
1628        Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1629                           value);
1630 
1631   // Objective-C pointer types.
1632   } else {
1633     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1634     value = CGF.EmitCastToVoidPtr(value);
1635 
1636     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1637     if (!isInc) size = -size;
1638     llvm::Value *sizeValue =
1639       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1640 
1641     if (CGF.getLangOpts().isSignedOverflowDefined())
1642       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1643     else
1644       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1645     value = Builder.CreateBitCast(value, input->getType());
1646   }
1647 
1648   if (atomicPHI) {
1649     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1650     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1651     llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
1652         CGF.EmitToMemory(value, type), llvm::SequentiallyConsistent);
1653     atomicPHI->addIncoming(old, opBB);
1654     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1655     Builder.CreateCondBr(success, contBB, opBB);
1656     Builder.SetInsertPoint(contBB);
1657     return isPre ? value : input;
1658   }
1659 
1660   // Store the updated result through the lvalue.
1661   if (LV.isBitField())
1662     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1663   else
1664     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1665 
1666   // If this is a postinc, return the value read from memory, otherwise use the
1667   // updated value.
1668   return isPre ? value : input;
1669 }
1670 
1671 
1672 
1673 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1674   TestAndClearIgnoreResultAssign();
1675   // Emit unary minus with EmitSub so we handle overflow cases etc.
1676   BinOpInfo BinOp;
1677   BinOp.RHS = Visit(E->getSubExpr());
1678 
1679   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1680     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1681   else
1682     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1683   BinOp.Ty = E->getType();
1684   BinOp.Opcode = BO_Sub;
1685   BinOp.FPContractable = false;
1686   BinOp.E = E;
1687   return EmitSub(BinOp);
1688 }
1689 
1690 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1691   TestAndClearIgnoreResultAssign();
1692   Value *Op = Visit(E->getSubExpr());
1693   return Builder.CreateNot(Op, "neg");
1694 }
1695 
1696 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1697   // Perform vector logical not on comparison with zero vector.
1698   if (E->getType()->isExtVectorType()) {
1699     Value *Oper = Visit(E->getSubExpr());
1700     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1701     Value *Result;
1702     if (Oper->getType()->isFPOrFPVectorTy())
1703       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1704     else
1705       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1706     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1707   }
1708 
1709   // Compare operand to zero.
1710   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1711 
1712   // Invert value.
1713   // TODO: Could dynamically modify easy computations here.  For example, if
1714   // the operand is an icmp ne, turn into icmp eq.
1715   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1716 
1717   // ZExt result to the expr type.
1718   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1719 }
1720 
1721 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1722   // Try folding the offsetof to a constant.
1723   llvm::APSInt Value;
1724   if (E->EvaluateAsInt(Value, CGF.getContext()))
1725     return Builder.getInt(Value);
1726 
1727   // Loop over the components of the offsetof to compute the value.
1728   unsigned n = E->getNumComponents();
1729   llvm::Type* ResultType = ConvertType(E->getType());
1730   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1731   QualType CurrentType = E->getTypeSourceInfo()->getType();
1732   for (unsigned i = 0; i != n; ++i) {
1733     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1734     llvm::Value *Offset = 0;
1735     switch (ON.getKind()) {
1736     case OffsetOfExpr::OffsetOfNode::Array: {
1737       // Compute the index
1738       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1739       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1740       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1741       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1742 
1743       // Save the element type
1744       CurrentType =
1745           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1746 
1747       // Compute the element size
1748       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1749           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1750 
1751       // Multiply out to compute the result
1752       Offset = Builder.CreateMul(Idx, ElemSize);
1753       break;
1754     }
1755 
1756     case OffsetOfExpr::OffsetOfNode::Field: {
1757       FieldDecl *MemberDecl = ON.getField();
1758       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1759       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1760 
1761       // Compute the index of the field in its parent.
1762       unsigned i = 0;
1763       // FIXME: It would be nice if we didn't have to loop here!
1764       for (RecordDecl::field_iterator Field = RD->field_begin(),
1765                                       FieldEnd = RD->field_end();
1766            Field != FieldEnd; ++Field, ++i) {
1767         if (*Field == MemberDecl)
1768           break;
1769       }
1770       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1771 
1772       // Compute the offset to the field
1773       int64_t OffsetInt = RL.getFieldOffset(i) /
1774                           CGF.getContext().getCharWidth();
1775       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1776 
1777       // Save the element type.
1778       CurrentType = MemberDecl->getType();
1779       break;
1780     }
1781 
1782     case OffsetOfExpr::OffsetOfNode::Identifier:
1783       llvm_unreachable("dependent __builtin_offsetof");
1784 
1785     case OffsetOfExpr::OffsetOfNode::Base: {
1786       if (ON.getBase()->isVirtual()) {
1787         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1788         continue;
1789       }
1790 
1791       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1792       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1793 
1794       // Save the element type.
1795       CurrentType = ON.getBase()->getType();
1796 
1797       // Compute the offset to the base.
1798       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1799       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1800       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1801       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1802       break;
1803     }
1804     }
1805     Result = Builder.CreateAdd(Result, Offset);
1806   }
1807   return Result;
1808 }
1809 
1810 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1811 /// argument of the sizeof expression as an integer.
1812 Value *
1813 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1814                               const UnaryExprOrTypeTraitExpr *E) {
1815   QualType TypeToSize = E->getTypeOfArgument();
1816   if (E->getKind() == UETT_SizeOf) {
1817     if (const VariableArrayType *VAT =
1818           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1819       if (E->isArgumentType()) {
1820         // sizeof(type) - make sure to emit the VLA size.
1821         CGF.EmitVariablyModifiedType(TypeToSize);
1822       } else {
1823         // C99 6.5.3.4p2: If the argument is an expression of type
1824         // VLA, it is evaluated.
1825         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1826       }
1827 
1828       QualType eltType;
1829       llvm::Value *numElts;
1830       llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1831 
1832       llvm::Value *size = numElts;
1833 
1834       // Scale the number of non-VLA elements by the non-VLA element size.
1835       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1836       if (!eltSize.isOne())
1837         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1838 
1839       return size;
1840     }
1841   }
1842 
1843   // If this isn't sizeof(vla), the result must be constant; use the constant
1844   // folding logic so we don't have to duplicate it here.
1845   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1846 }
1847 
1848 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1849   Expr *Op = E->getSubExpr();
1850   if (Op->getType()->isAnyComplexType()) {
1851     // If it's an l-value, load through the appropriate subobject l-value.
1852     // Note that we have to ask E because Op might be an l-value that
1853     // this won't work for, e.g. an Obj-C property.
1854     if (E->isGLValue())
1855       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1856 
1857     // Otherwise, calculate and project.
1858     return CGF.EmitComplexExpr(Op, false, true).first;
1859   }
1860 
1861   return Visit(Op);
1862 }
1863 
1864 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1865   Expr *Op = E->getSubExpr();
1866   if (Op->getType()->isAnyComplexType()) {
1867     // If it's an l-value, load through the appropriate subobject l-value.
1868     // Note that we have to ask E because Op might be an l-value that
1869     // this won't work for, e.g. an Obj-C property.
1870     if (Op->isGLValue())
1871       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1872 
1873     // Otherwise, calculate and project.
1874     return CGF.EmitComplexExpr(Op, true, false).second;
1875   }
1876 
1877   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1878   // effects are evaluated, but not the actual value.
1879   if (Op->isGLValue())
1880     CGF.EmitLValue(Op);
1881   else
1882     CGF.EmitScalarExpr(Op, true);
1883   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1884 }
1885 
1886 //===----------------------------------------------------------------------===//
1887 //                           Binary Operators
1888 //===----------------------------------------------------------------------===//
1889 
1890 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1891   TestAndClearIgnoreResultAssign();
1892   BinOpInfo Result;
1893   Result.LHS = Visit(E->getLHS());
1894   Result.RHS = Visit(E->getRHS());
1895   Result.Ty  = E->getType();
1896   Result.Opcode = E->getOpcode();
1897   Result.FPContractable = E->isFPContractable();
1898   Result.E = E;
1899   return Result;
1900 }
1901 
1902 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1903                                               const CompoundAssignOperator *E,
1904                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1905                                                    Value *&Result) {
1906   QualType LHSTy = E->getLHS()->getType();
1907   BinOpInfo OpInfo;
1908 
1909   if (E->getComputationResultType()->isAnyComplexType())
1910     return CGF.EmitScalarCompooundAssignWithComplex(E, Result);
1911 
1912   // Emit the RHS first.  __block variables need to have the rhs evaluated
1913   // first, plus this should improve codegen a little.
1914   OpInfo.RHS = Visit(E->getRHS());
1915   OpInfo.Ty = E->getComputationResultType();
1916   OpInfo.Opcode = E->getOpcode();
1917   OpInfo.FPContractable = false;
1918   OpInfo.E = E;
1919   // Load/convert the LHS.
1920   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1921 
1922   llvm::PHINode *atomicPHI = 0;
1923   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
1924     QualType type = atomicTy->getValueType();
1925     if (!type->isBooleanType() && type->isIntegerType() &&
1926          !(type->isUnsignedIntegerType() &&
1927           CGF.SanOpts->UnsignedIntegerOverflow) &&
1928          CGF.getLangOpts().getSignedOverflowBehavior() !=
1929           LangOptions::SOB_Trapping) {
1930       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
1931       switch (OpInfo.Opcode) {
1932         // We don't have atomicrmw operands for *, %, /, <<, >>
1933         case BO_MulAssign: case BO_DivAssign:
1934         case BO_RemAssign:
1935         case BO_ShlAssign:
1936         case BO_ShrAssign:
1937           break;
1938         case BO_AddAssign:
1939           aop = llvm::AtomicRMWInst::Add;
1940           break;
1941         case BO_SubAssign:
1942           aop = llvm::AtomicRMWInst::Sub;
1943           break;
1944         case BO_AndAssign:
1945           aop = llvm::AtomicRMWInst::And;
1946           break;
1947         case BO_XorAssign:
1948           aop = llvm::AtomicRMWInst::Xor;
1949           break;
1950         case BO_OrAssign:
1951           aop = llvm::AtomicRMWInst::Or;
1952           break;
1953         default:
1954           llvm_unreachable("Invalid compound assignment type");
1955       }
1956       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
1957         llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
1958               E->getRHS()->getType(), LHSTy), LHSTy);
1959         Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
1960             llvm::SequentiallyConsistent);
1961         return LHSLV;
1962       }
1963     }
1964     // FIXME: For floating point types, we should be saving and restoring the
1965     // floating point environment in the loop.
1966     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1967     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1968     OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1969     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
1970     Builder.CreateBr(opBB);
1971     Builder.SetInsertPoint(opBB);
1972     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
1973     atomicPHI->addIncoming(OpInfo.LHS, startBB);
1974     OpInfo.LHS = atomicPHI;
1975   }
1976   else
1977     OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1978 
1979   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1980                                     E->getComputationLHSType());
1981 
1982   // Expand the binary operator.
1983   Result = (this->*Func)(OpInfo);
1984 
1985   // Convert the result back to the LHS type.
1986   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1987 
1988   if (atomicPHI) {
1989     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1990     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1991     llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
1992         CGF.EmitToMemory(Result, LHSTy), llvm::SequentiallyConsistent);
1993     atomicPHI->addIncoming(old, opBB);
1994     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1995     Builder.CreateCondBr(success, contBB, opBB);
1996     Builder.SetInsertPoint(contBB);
1997     return LHSLV;
1998   }
1999 
2000   // Store the result value into the LHS lvalue. Bit-fields are handled
2001   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2002   // 'An assignment expression has the value of the left operand after the
2003   // assignment...'.
2004   if (LHSLV.isBitField())
2005     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2006   else
2007     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2008 
2009   return LHSLV;
2010 }
2011 
2012 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2013                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2014   bool Ignore = TestAndClearIgnoreResultAssign();
2015   Value *RHS;
2016   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2017 
2018   // If the result is clearly ignored, return now.
2019   if (Ignore)
2020     return 0;
2021 
2022   // The result of an assignment in C is the assigned r-value.
2023   if (!CGF.getLangOpts().CPlusPlus)
2024     return RHS;
2025 
2026   // If the lvalue is non-volatile, return the computed value of the assignment.
2027   if (!LHS.isVolatileQualified())
2028     return RHS;
2029 
2030   // Otherwise, reload the value.
2031   return EmitLoadOfLValue(LHS);
2032 }
2033 
2034 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2035     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2036   llvm::Value *Cond = 0;
2037 
2038   if (CGF.SanOpts->IntegerDivideByZero)
2039     Cond = Builder.CreateICmpNE(Ops.RHS, Zero);
2040 
2041   if (CGF.SanOpts->SignedIntegerOverflow &&
2042       Ops.Ty->hasSignedIntegerRepresentation()) {
2043     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2044 
2045     llvm::Value *IntMin =
2046       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2047     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2048 
2049     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2050     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2051     llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2052     Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow;
2053   }
2054 
2055   if (Cond)
2056     EmitBinOpCheck(Cond, Ops);
2057 }
2058 
2059 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2060   if ((CGF.SanOpts->IntegerDivideByZero ||
2061        CGF.SanOpts->SignedIntegerOverflow) &&
2062       Ops.Ty->isIntegerType()) {
2063     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2064     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2065   } else if (CGF.SanOpts->FloatDivideByZero &&
2066              Ops.Ty->isRealFloatingType()) {
2067     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2068     EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops);
2069   }
2070 
2071   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2072     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2073     if (CGF.getLangOpts().OpenCL) {
2074       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2075       llvm::Type *ValTy = Val->getType();
2076       if (ValTy->isFloatTy() ||
2077           (isa<llvm::VectorType>(ValTy) &&
2078            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2079         CGF.SetFPAccuracy(Val, 2.5);
2080     }
2081     return Val;
2082   }
2083   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2084     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2085   else
2086     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2087 }
2088 
2089 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2090   // Rem in C can't be a floating point type: C99 6.5.5p2.
2091   if (CGF.SanOpts->IntegerDivideByZero) {
2092     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2093 
2094     if (Ops.Ty->isIntegerType())
2095       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2096   }
2097 
2098   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2099     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2100   else
2101     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2102 }
2103 
2104 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2105   unsigned IID;
2106   unsigned OpID = 0;
2107 
2108   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2109   switch (Ops.Opcode) {
2110   case BO_Add:
2111   case BO_AddAssign:
2112     OpID = 1;
2113     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2114                      llvm::Intrinsic::uadd_with_overflow;
2115     break;
2116   case BO_Sub:
2117   case BO_SubAssign:
2118     OpID = 2;
2119     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2120                      llvm::Intrinsic::usub_with_overflow;
2121     break;
2122   case BO_Mul:
2123   case BO_MulAssign:
2124     OpID = 3;
2125     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2126                      llvm::Intrinsic::umul_with_overflow;
2127     break;
2128   default:
2129     llvm_unreachable("Unsupported operation for overflow detection");
2130   }
2131   OpID <<= 1;
2132   if (isSigned)
2133     OpID |= 1;
2134 
2135   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2136 
2137   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2138 
2139   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
2140   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2141   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2142 
2143   // Handle overflow with llvm.trap if no custom handler has been specified.
2144   const std::string *handlerName =
2145     &CGF.getLangOpts().OverflowHandler;
2146   if (handlerName->empty()) {
2147     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2148     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2149     if (!isSigned || CGF.SanOpts->SignedIntegerOverflow)
2150       EmitBinOpCheck(Builder.CreateNot(overflow), Ops);
2151     else
2152       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2153     return result;
2154   }
2155 
2156   // Branch in case of overflow.
2157   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2158   llvm::Function::iterator insertPt = initialBB;
2159   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2160                                                       llvm::next(insertPt));
2161   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2162 
2163   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2164 
2165   // If an overflow handler is set, then we want to call it and then use its
2166   // result, if it returns.
2167   Builder.SetInsertPoint(overflowBB);
2168 
2169   // Get the overflow handler.
2170   llvm::Type *Int8Ty = CGF.Int8Ty;
2171   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2172   llvm::FunctionType *handlerTy =
2173       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2174   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2175 
2176   // Sign extend the args to 64-bit, so that we can use the same handler for
2177   // all types of overflow.
2178   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2179   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2180 
2181   // Call the handler with the two arguments, the operation, and the size of
2182   // the result.
2183   llvm::Value *handlerArgs[] = {
2184     lhs,
2185     rhs,
2186     Builder.getInt8(OpID),
2187     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2188   };
2189   llvm::Value *handlerResult =
2190     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2191 
2192   // Truncate the result back to the desired size.
2193   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2194   Builder.CreateBr(continueBB);
2195 
2196   Builder.SetInsertPoint(continueBB);
2197   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2198   phi->addIncoming(result, initialBB);
2199   phi->addIncoming(handlerResult, overflowBB);
2200 
2201   return phi;
2202 }
2203 
2204 /// Emit pointer + index arithmetic.
2205 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2206                                     const BinOpInfo &op,
2207                                     bool isSubtraction) {
2208   // Must have binary (not unary) expr here.  Unary pointer
2209   // increment/decrement doesn't use this path.
2210   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2211 
2212   Value *pointer = op.LHS;
2213   Expr *pointerOperand = expr->getLHS();
2214   Value *index = op.RHS;
2215   Expr *indexOperand = expr->getRHS();
2216 
2217   // In a subtraction, the LHS is always the pointer.
2218   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2219     std::swap(pointer, index);
2220     std::swap(pointerOperand, indexOperand);
2221   }
2222 
2223   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2224   if (width != CGF.PointerWidthInBits) {
2225     // Zero-extend or sign-extend the pointer value according to
2226     // whether the index is signed or not.
2227     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2228     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2229                                       "idx.ext");
2230   }
2231 
2232   // If this is subtraction, negate the index.
2233   if (isSubtraction)
2234     index = CGF.Builder.CreateNeg(index, "idx.neg");
2235 
2236   if (CGF.SanOpts->Bounds)
2237     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2238                         /*Accessed*/ false);
2239 
2240   const PointerType *pointerType
2241     = pointerOperand->getType()->getAs<PointerType>();
2242   if (!pointerType) {
2243     QualType objectType = pointerOperand->getType()
2244                                         ->castAs<ObjCObjectPointerType>()
2245                                         ->getPointeeType();
2246     llvm::Value *objectSize
2247       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2248 
2249     index = CGF.Builder.CreateMul(index, objectSize);
2250 
2251     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2252     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2253     return CGF.Builder.CreateBitCast(result, pointer->getType());
2254   }
2255 
2256   QualType elementType = pointerType->getPointeeType();
2257   if (const VariableArrayType *vla
2258         = CGF.getContext().getAsVariableArrayType(elementType)) {
2259     // The element count here is the total number of non-VLA elements.
2260     llvm::Value *numElements = CGF.getVLASize(vla).first;
2261 
2262     // Effectively, the multiply by the VLA size is part of the GEP.
2263     // GEP indexes are signed, and scaling an index isn't permitted to
2264     // signed-overflow, so we use the same semantics for our explicit
2265     // multiply.  We suppress this if overflow is not undefined behavior.
2266     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2267       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2268       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2269     } else {
2270       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2271       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2272     }
2273     return pointer;
2274   }
2275 
2276   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2277   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2278   // future proof.
2279   if (elementType->isVoidType() || elementType->isFunctionType()) {
2280     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2281     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2282     return CGF.Builder.CreateBitCast(result, pointer->getType());
2283   }
2284 
2285   if (CGF.getLangOpts().isSignedOverflowDefined())
2286     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2287 
2288   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2289 }
2290 
2291 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2292 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2293 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2294 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2295 // efficient operations.
2296 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2297                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2298                            bool negMul, bool negAdd) {
2299   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2300 
2301   Value *MulOp0 = MulOp->getOperand(0);
2302   Value *MulOp1 = MulOp->getOperand(1);
2303   if (negMul) {
2304     MulOp0 =
2305       Builder.CreateFSub(
2306         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2307         "neg");
2308   } else if (negAdd) {
2309     Addend =
2310       Builder.CreateFSub(
2311         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2312         "neg");
2313   }
2314 
2315   Value *FMulAdd =
2316     Builder.CreateCall3(
2317       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2318                            MulOp0, MulOp1, Addend);
2319    MulOp->eraseFromParent();
2320 
2321    return FMulAdd;
2322 }
2323 
2324 // Check whether it would be legal to emit an fmuladd intrinsic call to
2325 // represent op and if so, build the fmuladd.
2326 //
2327 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2328 // Does NOT check the type of the operation - it's assumed that this function
2329 // will be called from contexts where it's known that the type is contractable.
2330 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2331                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2332                          bool isSub=false) {
2333 
2334   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2335           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2336          "Only fadd/fsub can be the root of an fmuladd.");
2337 
2338   // Check whether this op is marked as fusable.
2339   if (!op.FPContractable)
2340     return 0;
2341 
2342   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2343   // either disabled, or handled entirely by the LLVM backend).
2344   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2345     return 0;
2346 
2347   // We have a potentially fusable op. Look for a mul on one of the operands.
2348   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2349     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2350       assert(LHSBinOp->getNumUses() == 0 &&
2351              "Operations with multiple uses shouldn't be contracted.");
2352       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2353     }
2354   } else if (llvm::BinaryOperator* RHSBinOp =
2355                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2356     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2357       assert(RHSBinOp->getNumUses() == 0 &&
2358              "Operations with multiple uses shouldn't be contracted.");
2359       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2360     }
2361   }
2362 
2363   return 0;
2364 }
2365 
2366 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2367   if (op.LHS->getType()->isPointerTy() ||
2368       op.RHS->getType()->isPointerTy())
2369     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2370 
2371   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2372     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2373     case LangOptions::SOB_Defined:
2374       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2375     case LangOptions::SOB_Undefined:
2376       if (!CGF.SanOpts->SignedIntegerOverflow)
2377         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2378       // Fall through.
2379     case LangOptions::SOB_Trapping:
2380       return EmitOverflowCheckedBinOp(op);
2381     }
2382   }
2383 
2384   if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
2385     return EmitOverflowCheckedBinOp(op);
2386 
2387   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2388     // Try to form an fmuladd.
2389     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2390       return FMulAdd;
2391 
2392     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2393   }
2394 
2395   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2396 }
2397 
2398 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2399   // The LHS is always a pointer if either side is.
2400   if (!op.LHS->getType()->isPointerTy()) {
2401     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2402       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2403       case LangOptions::SOB_Defined:
2404         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2405       case LangOptions::SOB_Undefined:
2406         if (!CGF.SanOpts->SignedIntegerOverflow)
2407           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2408         // Fall through.
2409       case LangOptions::SOB_Trapping:
2410         return EmitOverflowCheckedBinOp(op);
2411       }
2412     }
2413 
2414     if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
2415       return EmitOverflowCheckedBinOp(op);
2416 
2417     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2418       // Try to form an fmuladd.
2419       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2420         return FMulAdd;
2421       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2422     }
2423 
2424     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2425   }
2426 
2427   // If the RHS is not a pointer, then we have normal pointer
2428   // arithmetic.
2429   if (!op.RHS->getType()->isPointerTy())
2430     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2431 
2432   // Otherwise, this is a pointer subtraction.
2433 
2434   // Do the raw subtraction part.
2435   llvm::Value *LHS
2436     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2437   llvm::Value *RHS
2438     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2439   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2440 
2441   // Okay, figure out the element size.
2442   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2443   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2444 
2445   llvm::Value *divisor = 0;
2446 
2447   // For a variable-length array, this is going to be non-constant.
2448   if (const VariableArrayType *vla
2449         = CGF.getContext().getAsVariableArrayType(elementType)) {
2450     llvm::Value *numElements;
2451     llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2452 
2453     divisor = numElements;
2454 
2455     // Scale the number of non-VLA elements by the non-VLA element size.
2456     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2457     if (!eltSize.isOne())
2458       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2459 
2460   // For everything elese, we can just compute it, safe in the
2461   // assumption that Sema won't let anything through that we can't
2462   // safely compute the size of.
2463   } else {
2464     CharUnits elementSize;
2465     // Handle GCC extension for pointer arithmetic on void* and
2466     // function pointer types.
2467     if (elementType->isVoidType() || elementType->isFunctionType())
2468       elementSize = CharUnits::One();
2469     else
2470       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2471 
2472     // Don't even emit the divide for element size of 1.
2473     if (elementSize.isOne())
2474       return diffInChars;
2475 
2476     divisor = CGF.CGM.getSize(elementSize);
2477   }
2478 
2479   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2480   // pointer difference in C is only defined in the case where both operands
2481   // are pointing to elements of an array.
2482   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2483 }
2484 
2485 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2486   llvm::IntegerType *Ty;
2487   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2488     Ty = cast<llvm::IntegerType>(VT->getElementType());
2489   else
2490     Ty = cast<llvm::IntegerType>(LHS->getType());
2491   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2492 }
2493 
2494 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2495   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2496   // RHS to the same size as the LHS.
2497   Value *RHS = Ops.RHS;
2498   if (Ops.LHS->getType() != RHS->getType())
2499     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2500 
2501   if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
2502       isa<llvm::IntegerType>(Ops.LHS->getType())) {
2503     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2504     llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne);
2505 
2506     if (Ops.Ty->hasSignedIntegerRepresentation()) {
2507       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2508       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2509       llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check");
2510       Builder.CreateCondBr(Valid, CheckBitsShifted, Cont);
2511 
2512       // Check whether we are shifting any non-zero bits off the top of the
2513       // integer.
2514       CGF.EmitBlock(CheckBitsShifted);
2515       llvm::Value *BitsShiftedOff =
2516         Builder.CreateLShr(Ops.LHS,
2517                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2518                                              /*NUW*/true, /*NSW*/true),
2519                            "shl.check");
2520       if (CGF.getLangOpts().CPlusPlus) {
2521         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2522         // Under C++11's rules, shifting a 1 bit into the sign bit is
2523         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2524         // define signed left shifts, so we use the C99 and C++11 rules there).
2525         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2526         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2527       }
2528       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2529       llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2530       CGF.EmitBlock(Cont);
2531       llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2);
2532       P->addIncoming(Valid, Orig);
2533       P->addIncoming(SecondCheck, CheckBitsShifted);
2534       Valid = P;
2535     }
2536 
2537     EmitBinOpCheck(Valid, Ops);
2538   }
2539   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2540   if (CGF.getLangOpts().OpenCL)
2541     RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2542 
2543   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2544 }
2545 
2546 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2547   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2548   // RHS to the same size as the LHS.
2549   Value *RHS = Ops.RHS;
2550   if (Ops.LHS->getType() != RHS->getType())
2551     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2552 
2553   if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
2554       isa<llvm::IntegerType>(Ops.LHS->getType()))
2555     EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops);
2556 
2557   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2558   if (CGF.getLangOpts().OpenCL)
2559     RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2560 
2561   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2562     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2563   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2564 }
2565 
2566 enum IntrinsicType { VCMPEQ, VCMPGT };
2567 // return corresponding comparison intrinsic for given vector type
2568 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2569                                         BuiltinType::Kind ElemKind) {
2570   switch (ElemKind) {
2571   default: llvm_unreachable("unexpected element type");
2572   case BuiltinType::Char_U:
2573   case BuiltinType::UChar:
2574     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2575                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2576   case BuiltinType::Char_S:
2577   case BuiltinType::SChar:
2578     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2579                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2580   case BuiltinType::UShort:
2581     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2582                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2583   case BuiltinType::Short:
2584     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2585                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2586   case BuiltinType::UInt:
2587   case BuiltinType::ULong:
2588     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2589                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2590   case BuiltinType::Int:
2591   case BuiltinType::Long:
2592     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2593                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2594   case BuiltinType::Float:
2595     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2596                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2597   }
2598 }
2599 
2600 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2601                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2602   TestAndClearIgnoreResultAssign();
2603   Value *Result;
2604   QualType LHSTy = E->getLHS()->getType();
2605   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2606     assert(E->getOpcode() == BO_EQ ||
2607            E->getOpcode() == BO_NE);
2608     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2609     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2610     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2611                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2612   } else if (!LHSTy->isAnyComplexType()) {
2613     Value *LHS = Visit(E->getLHS());
2614     Value *RHS = Visit(E->getRHS());
2615 
2616     // If AltiVec, the comparison results in a numeric type, so we use
2617     // intrinsics comparing vectors and giving 0 or 1 as a result
2618     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2619       // constants for mapping CR6 register bits to predicate result
2620       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2621 
2622       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2623 
2624       // in several cases vector arguments order will be reversed
2625       Value *FirstVecArg = LHS,
2626             *SecondVecArg = RHS;
2627 
2628       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2629       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2630       BuiltinType::Kind ElementKind = BTy->getKind();
2631 
2632       switch(E->getOpcode()) {
2633       default: llvm_unreachable("is not a comparison operation");
2634       case BO_EQ:
2635         CR6 = CR6_LT;
2636         ID = GetIntrinsic(VCMPEQ, ElementKind);
2637         break;
2638       case BO_NE:
2639         CR6 = CR6_EQ;
2640         ID = GetIntrinsic(VCMPEQ, ElementKind);
2641         break;
2642       case BO_LT:
2643         CR6 = CR6_LT;
2644         ID = GetIntrinsic(VCMPGT, ElementKind);
2645         std::swap(FirstVecArg, SecondVecArg);
2646         break;
2647       case BO_GT:
2648         CR6 = CR6_LT;
2649         ID = GetIntrinsic(VCMPGT, ElementKind);
2650         break;
2651       case BO_LE:
2652         if (ElementKind == BuiltinType::Float) {
2653           CR6 = CR6_LT;
2654           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2655           std::swap(FirstVecArg, SecondVecArg);
2656         }
2657         else {
2658           CR6 = CR6_EQ;
2659           ID = GetIntrinsic(VCMPGT, ElementKind);
2660         }
2661         break;
2662       case BO_GE:
2663         if (ElementKind == BuiltinType::Float) {
2664           CR6 = CR6_LT;
2665           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2666         }
2667         else {
2668           CR6 = CR6_EQ;
2669           ID = GetIntrinsic(VCMPGT, ElementKind);
2670           std::swap(FirstVecArg, SecondVecArg);
2671         }
2672         break;
2673       }
2674 
2675       Value *CR6Param = Builder.getInt32(CR6);
2676       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2677       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2678       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2679     }
2680 
2681     if (LHS->getType()->isFPOrFPVectorTy()) {
2682       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2683                                   LHS, RHS, "cmp");
2684     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2685       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2686                                   LHS, RHS, "cmp");
2687     } else {
2688       // Unsigned integers and pointers.
2689       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2690                                   LHS, RHS, "cmp");
2691     }
2692 
2693     // If this is a vector comparison, sign extend the result to the appropriate
2694     // vector integer type and return it (don't convert to bool).
2695     if (LHSTy->isVectorType())
2696       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2697 
2698   } else {
2699     // Complex Comparison: can only be an equality comparison.
2700     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2701     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2702 
2703     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2704 
2705     Value *ResultR, *ResultI;
2706     if (CETy->isRealFloatingType()) {
2707       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2708                                    LHS.first, RHS.first, "cmp.r");
2709       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2710                                    LHS.second, RHS.second, "cmp.i");
2711     } else {
2712       // Complex comparisons can only be equality comparisons.  As such, signed
2713       // and unsigned opcodes are the same.
2714       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2715                                    LHS.first, RHS.first, "cmp.r");
2716       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2717                                    LHS.second, RHS.second, "cmp.i");
2718     }
2719 
2720     if (E->getOpcode() == BO_EQ) {
2721       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2722     } else {
2723       assert(E->getOpcode() == BO_NE &&
2724              "Complex comparison other than == or != ?");
2725       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2726     }
2727   }
2728 
2729   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2730 }
2731 
2732 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2733   bool Ignore = TestAndClearIgnoreResultAssign();
2734 
2735   Value *RHS;
2736   LValue LHS;
2737 
2738   switch (E->getLHS()->getType().getObjCLifetime()) {
2739   case Qualifiers::OCL_Strong:
2740     llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2741     break;
2742 
2743   case Qualifiers::OCL_Autoreleasing:
2744     llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2745     break;
2746 
2747   case Qualifiers::OCL_Weak:
2748     RHS = Visit(E->getRHS());
2749     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2750     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2751     break;
2752 
2753   // No reason to do any of these differently.
2754   case Qualifiers::OCL_None:
2755   case Qualifiers::OCL_ExplicitNone:
2756     // __block variables need to have the rhs evaluated first, plus
2757     // this should improve codegen just a little.
2758     RHS = Visit(E->getRHS());
2759     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2760 
2761     // Store the value into the LHS.  Bit-fields are handled specially
2762     // because the result is altered by the store, i.e., [C99 6.5.16p1]
2763     // 'An assignment expression has the value of the left operand after
2764     // the assignment...'.
2765     if (LHS.isBitField())
2766       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2767     else
2768       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2769   }
2770 
2771   // If the result is clearly ignored, return now.
2772   if (Ignore)
2773     return 0;
2774 
2775   // The result of an assignment in C is the assigned r-value.
2776   if (!CGF.getLangOpts().CPlusPlus)
2777     return RHS;
2778 
2779   // If the lvalue is non-volatile, return the computed value of the assignment.
2780   if (!LHS.isVolatileQualified())
2781     return RHS;
2782 
2783   // Otherwise, reload the value.
2784   return EmitLoadOfLValue(LHS);
2785 }
2786 
2787 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2788   // Perform vector logical and on comparisons with zero vectors.
2789   if (E->getType()->isVectorType()) {
2790     Value *LHS = Visit(E->getLHS());
2791     Value *RHS = Visit(E->getRHS());
2792     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2793     if (LHS->getType()->isFPOrFPVectorTy()) {
2794       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
2795       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
2796     } else {
2797       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2798       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2799     }
2800     Value *And = Builder.CreateAnd(LHS, RHS);
2801     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
2802   }
2803 
2804   llvm::Type *ResTy = ConvertType(E->getType());
2805 
2806   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2807   // If we have 1 && X, just emit X without inserting the control flow.
2808   bool LHSCondVal;
2809   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2810     if (LHSCondVal) { // If we have 1 && X, just emit X.
2811       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2812       // ZExt result to int or bool.
2813       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2814     }
2815 
2816     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2817     if (!CGF.ContainsLabel(E->getRHS()))
2818       return llvm::Constant::getNullValue(ResTy);
2819   }
2820 
2821   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2822   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2823 
2824   CodeGenFunction::ConditionalEvaluation eval(CGF);
2825 
2826   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2827   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2828 
2829   // Any edges into the ContBlock are now from an (indeterminate number of)
2830   // edges from this first condition.  All of these values will be false.  Start
2831   // setting up the PHI node in the Cont Block for this.
2832   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2833                                             "", ContBlock);
2834   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2835        PI != PE; ++PI)
2836     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2837 
2838   eval.begin(CGF);
2839   CGF.EmitBlock(RHSBlock);
2840   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2841   eval.end(CGF);
2842 
2843   // Reaquire the RHS block, as there may be subblocks inserted.
2844   RHSBlock = Builder.GetInsertBlock();
2845 
2846   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2847   // into the phi node for the edge with the value of RHSCond.
2848   if (CGF.getDebugInfo())
2849     // There is no need to emit line number for unconditional branch.
2850     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2851   CGF.EmitBlock(ContBlock);
2852   PN->addIncoming(RHSCond, RHSBlock);
2853 
2854   // ZExt result to int.
2855   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2856 }
2857 
2858 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2859   // Perform vector logical or on comparisons with zero vectors.
2860   if (E->getType()->isVectorType()) {
2861     Value *LHS = Visit(E->getLHS());
2862     Value *RHS = Visit(E->getRHS());
2863     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2864     if (LHS->getType()->isFPOrFPVectorTy()) {
2865       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
2866       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
2867     } else {
2868       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2869       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2870     }
2871     Value *Or = Builder.CreateOr(LHS, RHS);
2872     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
2873   }
2874 
2875   llvm::Type *ResTy = ConvertType(E->getType());
2876 
2877   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2878   // If we have 0 || X, just emit X without inserting the control flow.
2879   bool LHSCondVal;
2880   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2881     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2882       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2883       // ZExt result to int or bool.
2884       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2885     }
2886 
2887     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2888     if (!CGF.ContainsLabel(E->getRHS()))
2889       return llvm::ConstantInt::get(ResTy, 1);
2890   }
2891 
2892   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2893   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2894 
2895   CodeGenFunction::ConditionalEvaluation eval(CGF);
2896 
2897   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2898   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2899 
2900   // Any edges into the ContBlock are now from an (indeterminate number of)
2901   // edges from this first condition.  All of these values will be true.  Start
2902   // setting up the PHI node in the Cont Block for this.
2903   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2904                                             "", ContBlock);
2905   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2906        PI != PE; ++PI)
2907     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2908 
2909   eval.begin(CGF);
2910 
2911   // Emit the RHS condition as a bool value.
2912   CGF.EmitBlock(RHSBlock);
2913   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2914 
2915   eval.end(CGF);
2916 
2917   // Reaquire the RHS block, as there may be subblocks inserted.
2918   RHSBlock = Builder.GetInsertBlock();
2919 
2920   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2921   // into the phi node for the edge with the value of RHSCond.
2922   CGF.EmitBlock(ContBlock);
2923   PN->addIncoming(RHSCond, RHSBlock);
2924 
2925   // ZExt result to int.
2926   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2927 }
2928 
2929 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2930   CGF.EmitIgnoredExpr(E->getLHS());
2931   CGF.EnsureInsertPoint();
2932   return Visit(E->getRHS());
2933 }
2934 
2935 //===----------------------------------------------------------------------===//
2936 //                             Other Operators
2937 //===----------------------------------------------------------------------===//
2938 
2939 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2940 /// expression is cheap enough and side-effect-free enough to evaluate
2941 /// unconditionally instead of conditionally.  This is used to convert control
2942 /// flow into selects in some cases.
2943 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2944                                                    CodeGenFunction &CGF) {
2945   E = E->IgnoreParens();
2946 
2947   // Anything that is an integer or floating point constant is fine.
2948   if (E->isEvaluatable(CGF.getContext()))
2949     return true;
2950 
2951   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2952   // X and Y are local variables.
2953   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2954     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2955       if (VD->hasLocalStorage() && !(CGF.getContext()
2956                                      .getCanonicalType(VD->getType())
2957                                      .isVolatileQualified()))
2958         return true;
2959 
2960   return false;
2961 }
2962 
2963 
2964 Value *ScalarExprEmitter::
2965 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2966   TestAndClearIgnoreResultAssign();
2967 
2968   // Bind the common expression if necessary.
2969   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2970 
2971   Expr *condExpr = E->getCond();
2972   Expr *lhsExpr = E->getTrueExpr();
2973   Expr *rhsExpr = E->getFalseExpr();
2974 
2975   // If the condition constant folds and can be elided, try to avoid emitting
2976   // the condition and the dead arm.
2977   bool CondExprBool;
2978   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2979     Expr *live = lhsExpr, *dead = rhsExpr;
2980     if (!CondExprBool) std::swap(live, dead);
2981 
2982     // If the dead side doesn't have labels we need, just emit the Live part.
2983     if (!CGF.ContainsLabel(dead)) {
2984       Value *Result = Visit(live);
2985 
2986       // If the live part is a throw expression, it acts like it has a void
2987       // type, so evaluating it returns a null Value*.  However, a conditional
2988       // with non-void type must return a non-null Value*.
2989       if (!Result && !E->getType()->isVoidType())
2990         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
2991 
2992       return Result;
2993     }
2994   }
2995 
2996   // OpenCL: If the condition is a vector, we can treat this condition like
2997   // the select function.
2998   if (CGF.getLangOpts().OpenCL
2999       && condExpr->getType()->isVectorType()) {
3000     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3001     llvm::Value *LHS = Visit(lhsExpr);
3002     llvm::Value *RHS = Visit(rhsExpr);
3003 
3004     llvm::Type *condType = ConvertType(condExpr->getType());
3005     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3006 
3007     unsigned numElem = vecTy->getNumElements();
3008     llvm::Type *elemType = vecTy->getElementType();
3009 
3010     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3011     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3012     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3013                                           llvm::VectorType::get(elemType,
3014                                                                 numElem),
3015                                           "sext");
3016     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3017 
3018     // Cast float to int to perform ANDs if necessary.
3019     llvm::Value *RHSTmp = RHS;
3020     llvm::Value *LHSTmp = LHS;
3021     bool wasCast = false;
3022     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3023     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3024       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3025       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3026       wasCast = true;
3027     }
3028 
3029     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3030     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3031     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3032     if (wasCast)
3033       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3034 
3035     return tmp5;
3036   }
3037 
3038   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3039   // select instead of as control flow.  We can only do this if it is cheap and
3040   // safe to evaluate the LHS and RHS unconditionally.
3041   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3042       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3043     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3044     llvm::Value *LHS = Visit(lhsExpr);
3045     llvm::Value *RHS = Visit(rhsExpr);
3046     if (!LHS) {
3047       // If the conditional has void type, make sure we return a null Value*.
3048       assert(!RHS && "LHS and RHS types must match");
3049       return 0;
3050     }
3051     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3052   }
3053 
3054   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3055   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3056   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3057 
3058   CodeGenFunction::ConditionalEvaluation eval(CGF);
3059   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
3060 
3061   CGF.EmitBlock(LHSBlock);
3062   eval.begin(CGF);
3063   Value *LHS = Visit(lhsExpr);
3064   eval.end(CGF);
3065 
3066   LHSBlock = Builder.GetInsertBlock();
3067   Builder.CreateBr(ContBlock);
3068 
3069   CGF.EmitBlock(RHSBlock);
3070   eval.begin(CGF);
3071   Value *RHS = Visit(rhsExpr);
3072   eval.end(CGF);
3073 
3074   RHSBlock = Builder.GetInsertBlock();
3075   CGF.EmitBlock(ContBlock);
3076 
3077   // If the LHS or RHS is a throw expression, it will be legitimately null.
3078   if (!LHS)
3079     return RHS;
3080   if (!RHS)
3081     return LHS;
3082 
3083   // Create a PHI node for the real part.
3084   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3085   PN->addIncoming(LHS, LHSBlock);
3086   PN->addIncoming(RHS, RHSBlock);
3087   return PN;
3088 }
3089 
3090 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3091   return Visit(E->getChosenSubExpr());
3092 }
3093 
3094 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3095   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
3096   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
3097 
3098   // If EmitVAArg fails, we fall back to the LLVM instruction.
3099   if (!ArgPtr)
3100     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
3101 
3102   // FIXME Volatility.
3103   return Builder.CreateLoad(ArgPtr);
3104 }
3105 
3106 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3107   return CGF.EmitBlockLiteral(block);
3108 }
3109 
3110 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3111   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3112   llvm::Type *DstTy = ConvertType(E->getType());
3113 
3114   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3115   // a shuffle vector instead of a bitcast.
3116   llvm::Type *SrcTy = Src->getType();
3117   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3118     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3119     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3120     if ((numElementsDst == 3 && numElementsSrc == 4)
3121         || (numElementsDst == 4 && numElementsSrc == 3)) {
3122 
3123 
3124       // In the case of going from int4->float3, a bitcast is needed before
3125       // doing a shuffle.
3126       llvm::Type *srcElemTy =
3127       cast<llvm::VectorType>(SrcTy)->getElementType();
3128       llvm::Type *dstElemTy =
3129       cast<llvm::VectorType>(DstTy)->getElementType();
3130 
3131       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3132           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3133         // Create a float type of the same size as the source or destination.
3134         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3135                                                                  numElementsSrc);
3136 
3137         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3138       }
3139 
3140       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3141 
3142       SmallVector<llvm::Constant*, 3> Args;
3143       Args.push_back(Builder.getInt32(0));
3144       Args.push_back(Builder.getInt32(1));
3145       Args.push_back(Builder.getInt32(2));
3146 
3147       if (numElementsDst == 4)
3148         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3149 
3150       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3151 
3152       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3153     }
3154   }
3155 
3156   return Builder.CreateBitCast(Src, DstTy, "astype");
3157 }
3158 
3159 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3160   return CGF.EmitAtomicExpr(E).getScalarVal();
3161 }
3162 
3163 //===----------------------------------------------------------------------===//
3164 //                         Entry Point into this File
3165 //===----------------------------------------------------------------------===//
3166 
3167 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
3168 /// type, ignoring the result.
3169 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3170   assert(E && hasScalarEvaluationKind(E->getType()) &&
3171          "Invalid scalar expression to emit");
3172 
3173   if (isa<CXXDefaultArgExpr>(E))
3174     disableDebugInfo();
3175   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
3176     .Visit(const_cast<Expr*>(E));
3177   if (isa<CXXDefaultArgExpr>(E))
3178     enableDebugInfo();
3179   return V;
3180 }
3181 
3182 /// EmitScalarConversion - Emit a conversion from the specified type to the
3183 /// specified destination type, both of which are LLVM scalar types.
3184 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3185                                              QualType DstTy) {
3186   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3187          "Invalid scalar expression to emit");
3188   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3189 }
3190 
3191 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3192 /// type to the specified destination type, where the destination type is an
3193 /// LLVM scalar type.
3194 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3195                                                       QualType SrcTy,
3196                                                       QualType DstTy) {
3197   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3198          "Invalid complex -> scalar conversion");
3199   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3200                                                                 DstTy);
3201 }
3202 
3203 
3204 llvm::Value *CodeGenFunction::
3205 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3206                         bool isInc, bool isPre) {
3207   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3208 }
3209 
3210 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3211   llvm::Value *V;
3212   // object->isa or (*object).isa
3213   // Generate code as for: *(Class*)object
3214   // build Class* type
3215   llvm::Type *ClassPtrTy = ConvertType(E->getType());
3216 
3217   Expr *BaseExpr = E->getBase();
3218   if (BaseExpr->isRValue()) {
3219     V = CreateMemTemp(E->getType(), "resval");
3220     llvm::Value *Src = EmitScalarExpr(BaseExpr);
3221     Builder.CreateStore(Src, V);
3222     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3223       MakeNaturalAlignAddrLValue(V, E->getType()));
3224   } else {
3225     if (E->isArrow())
3226       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3227     else
3228       V = EmitLValue(BaseExpr).getAddress();
3229   }
3230 
3231   // build Class* type
3232   ClassPtrTy = ClassPtrTy->getPointerTo();
3233   V = Builder.CreateBitCast(V, ClassPtrTy);
3234   return MakeNaturalAlignAddrLValue(V, E->getType());
3235 }
3236 
3237 
3238 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3239                                             const CompoundAssignOperator *E) {
3240   ScalarExprEmitter Scalar(*this);
3241   Value *Result = 0;
3242   switch (E->getOpcode()) {
3243 #define COMPOUND_OP(Op)                                                       \
3244     case BO_##Op##Assign:                                                     \
3245       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3246                                              Result)
3247   COMPOUND_OP(Mul);
3248   COMPOUND_OP(Div);
3249   COMPOUND_OP(Rem);
3250   COMPOUND_OP(Add);
3251   COMPOUND_OP(Sub);
3252   COMPOUND_OP(Shl);
3253   COMPOUND_OP(Shr);
3254   COMPOUND_OP(And);
3255   COMPOUND_OP(Xor);
3256   COMPOUND_OP(Or);
3257 #undef COMPOUND_OP
3258 
3259   case BO_PtrMemD:
3260   case BO_PtrMemI:
3261   case BO_Mul:
3262   case BO_Div:
3263   case BO_Rem:
3264   case BO_Add:
3265   case BO_Sub:
3266   case BO_Shl:
3267   case BO_Shr:
3268   case BO_LT:
3269   case BO_GT:
3270   case BO_LE:
3271   case BO_GE:
3272   case BO_EQ:
3273   case BO_NE:
3274   case BO_And:
3275   case BO_Xor:
3276   case BO_Or:
3277   case BO_LAnd:
3278   case BO_LOr:
3279   case BO_Assign:
3280   case BO_Comma:
3281     llvm_unreachable("Not valid compound assignment operators");
3282   }
3283 
3284   llvm_unreachable("Unhandled compound assignment operator");
3285 }
3286